gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 5 0
merge default
0 files changed with 37 insertions and 14 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_GRAPH_TO_EPS_H
20 20
#define LEMON_GRAPH_TO_EPS_H
21 21

	
22 22
#include<iostream>
23 23
#include<fstream>
24 24
#include<sstream>
25 25
#include<algorithm>
26 26
#include<vector>
27 27

	
28 28
#ifndef WIN32
29 29
#include<sys/time.h>
30 30
#include<ctime>
31 31
#else
32
#ifndef WIN32_LEAN_AND_MEAN
32 33
#define WIN32_LEAN_AND_MEAN
34
#endif
35
#ifndef NOMINMAX
33 36
#define NOMINMAX
37
#endif
34 38
#include<windows.h>
35 39
#endif
36 40

	
37 41
#include<lemon/math.h>
38 42
#include<lemon/core.h>
39 43
#include<lemon/dim2.h>
40 44
#include<lemon/maps.h>
41 45
#include<lemon/color.h>
42 46
#include<lemon/bits/bezier.h>
43 47
#include<lemon/error.h>
44 48

	
45 49

	
46 50
///\ingroup eps_io
47 51
///\file
48 52
///\brief A well configurable tool for visualizing graphs
49 53

	
50 54
namespace lemon {
51 55

	
52 56
  namespace _graph_to_eps_bits {
53 57
    template<class MT>
54 58
    class _NegY {
55 59
    public:
56 60
      typedef typename MT::Key Key;
57 61
      typedef typename MT::Value Value;
58 62
      const MT &map;
59 63
      int yscale;
60 64
      _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
61 65
      Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
62 66
    };
63 67
  }
64 68

	
65 69
///Default traits class of GraphToEps
66 70

	
67 71
///Default traits class of \ref GraphToEps.
68 72
///
69 73
///\c G is the type of the underlying graph.
70 74
template<class G>
71 75
struct DefaultGraphToEpsTraits
72 76
{
73 77
  typedef G Graph;
74 78
  typedef typename Graph::Node Node;
75 79
  typedef typename Graph::NodeIt NodeIt;
76 80
  typedef typename Graph::Arc Arc;
77 81
  typedef typename Graph::ArcIt ArcIt;
78 82
  typedef typename Graph::InArcIt InArcIt;
79 83
  typedef typename Graph::OutArcIt OutArcIt;
80 84

	
81 85

	
82 86
  const Graph &g;
83 87

	
84 88
  std::ostream& os;
85 89

	
86 90
  typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
87 91
  CoordsMapType _coords;
88 92
  ConstMap<typename Graph::Node,double > _nodeSizes;
89 93
  ConstMap<typename Graph::Node,int > _nodeShapes;
90 94

	
91 95
  ConstMap<typename Graph::Node,Color > _nodeColors;
92 96
  ConstMap<typename Graph::Arc,Color > _arcColors;
93 97

	
94 98
  ConstMap<typename Graph::Arc,double > _arcWidths;
95 99

	
96 100
  double _arcWidthScale;
97 101

	
98 102
  double _nodeScale;
99 103
  double _xBorder, _yBorder;
100 104
  double _scale;
101 105
  double _nodeBorderQuotient;
102 106

	
103 107
  bool _drawArrows;
104 108
  double _arrowLength, _arrowWidth;
105 109

	
106 110
  bool _showNodes, _showArcs;
107 111

	
108 112
  bool _enableParallel;
109 113
  double _parArcDist;
110 114

	
111 115
  bool _showNodeText;
112 116
  ConstMap<typename Graph::Node,bool > _nodeTexts;
113 117
  double _nodeTextSize;
114 118

	
115 119
  bool _showNodePsText;
116 120
  ConstMap<typename Graph::Node,bool > _nodePsTexts;
117 121
  char *_nodePsTextsPreamble;
118 122

	
119 123
  bool _undirected;
120 124

	
121 125
  bool _pleaseRemoveOsStream;
122 126

	
123 127
  bool _scaleToA4;
124 128

	
125 129
  std::string _title;
126 130
  std::string _copyright;
127 131

	
128 132
  enum NodeTextColorType
129 133
    { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
130 134
  ConstMap<typename Graph::Node,Color > _nodeTextColors;
131 135

	
132 136
  bool _autoNodeScale;
133 137
  bool _autoArcWidthScale;
134 138

	
135 139
  bool _absoluteNodeSizes;
136 140
  bool _absoluteArcWidths;
137 141

	
138 142
  bool _negY;
139 143

	
140 144
  bool _preScale;
141 145
  ///Constructor
142 146

	
143 147
  ///Constructor
144 148
  ///\param _g  Reference to the graph to be printed.
145 149
  ///\param _os Reference to the output stream.
146 150
  ///\param _os Reference to the output stream.
147 151
  ///By default it is <tt>std::cout</tt>.
148 152
  ///\param _pros If it is \c true, then the \c ostream referenced by \c _os
149 153
  ///will be explicitly deallocated by the destructor.
150 154
  DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout,
151 155
                          bool _pros=false) :
152 156
    g(_g), os(_os),
153 157
    _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
154 158
    _nodeColors(WHITE), _arcColors(BLACK),
155 159
    _arcWidths(1.0), _arcWidthScale(0.003),
156 160
    _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
157 161
    _nodeBorderQuotient(.1),
158 162
    _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
159 163
    _showNodes(true), _showArcs(true),
160 164
    _enableParallel(false), _parArcDist(1),
161 165
    _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
162 166
    _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
163 167
    _undirected(lemon::UndirectedTagIndicator<G>::value),
164 168
    _pleaseRemoveOsStream(_pros), _scaleToA4(false),
165 169
    _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
166 170
    _autoNodeScale(false),
167 171
    _autoArcWidthScale(false),
168 172
    _absoluteNodeSizes(false),
169 173
    _absoluteArcWidths(false),
170 174
    _negY(false),
171 175
    _preScale(true)
172 176
  {}
173 177
};
174 178

	
175 179
///Auxiliary class to implement the named parameters of \ref graphToEps()
176 180

	
177 181
///Auxiliary class to implement the named parameters of \ref graphToEps().
178 182
///
179 183
///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
180 184
template<class T> class GraphToEps : public T
181 185
{
182 186
  // Can't believe it is required by the C++ standard
183 187
  using T::g;
184 188
  using T::os;
185 189

	
186 190
  using T::_coords;
187 191
  using T::_nodeSizes;
188 192
  using T::_nodeShapes;
189 193
  using T::_nodeColors;
190 194
  using T::_arcColors;
191 195
  using T::_arcWidths;
192 196

	
193 197
  using T::_arcWidthScale;
194 198
  using T::_nodeScale;
195 199
  using T::_xBorder;
196 200
  using T::_yBorder;
197 201
  using T::_scale;
198 202
  using T::_nodeBorderQuotient;
199 203

	
200 204
  using T::_drawArrows;
201 205
  using T::_arrowLength;
202 206
  using T::_arrowWidth;
203 207

	
204 208
  using T::_showNodes;
205 209
  using T::_showArcs;
206 210

	
207 211
  using T::_enableParallel;
208 212
  using T::_parArcDist;
209 213

	
210 214
  using T::_showNodeText;
211 215
  using T::_nodeTexts;
212 216
  using T::_nodeTextSize;
213 217

	
214 218
  using T::_showNodePsText;
215 219
  using T::_nodePsTexts;
216 220
  using T::_nodePsTextsPreamble;
217 221

	
218 222
  using T::_undirected;
219 223

	
220 224
  using T::_pleaseRemoveOsStream;
221 225

	
222 226
  using T::_scaleToA4;
223 227

	
224 228
  using T::_title;
225 229
  using T::_copyright;
226 230

	
227 231
  using T::NodeTextColorType;
228 232
  using T::CUST_COL;
229 233
  using T::DIST_COL;
230 234
  using T::DIST_BW;
231 235
  using T::_nodeTextColorType;
232 236
  using T::_nodeTextColors;
233 237

	
234 238
  using T::_autoNodeScale;
235 239
  using T::_autoArcWidthScale;
236 240

	
237 241
  using T::_absoluteNodeSizes;
238 242
  using T::_absoluteArcWidths;
239 243

	
240 244

	
241 245
  using T::_negY;
242 246
  using T::_preScale;
243 247

	
244 248
  // dradnats ++C eht yb deriuqer si ti eveileb t'naC
245 249

	
246 250
  typedef typename T::Graph Graph;
247 251
  typedef typename Graph::Node Node;
248 252
  typedef typename Graph::NodeIt NodeIt;
249 253
  typedef typename Graph::Arc Arc;
250 254
  typedef typename Graph::ArcIt ArcIt;
251 255
  typedef typename Graph::InArcIt InArcIt;
252 256
  typedef typename Graph::OutArcIt OutArcIt;
253 257

	
254 258
  static const int INTERPOL_PREC;
255 259
  static const double A4HEIGHT;
256 260
  static const double A4WIDTH;
257 261
  static const double A4BORDER;
258 262

	
259 263
  bool dontPrint;
260 264

	
261 265
public:
262 266
  ///Node shapes
263 267

	
264 268
  ///Node shapes.
265 269
  ///
266 270
  enum NodeShapes {
267 271
    /// = 0
268 272
    ///\image html nodeshape_0.png
269 273
    ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
270 274
    CIRCLE=0,
271 275
    /// = 1
272 276
    ///\image html nodeshape_1.png
273 277
    ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
274 278
    ///
275 279
    SQUARE=1,
276 280
    /// = 2
277 281
    ///\image html nodeshape_2.png
278 282
    ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
279 283
    ///
280 284
    DIAMOND=2,
281 285
    /// = 3
282 286
    ///\image html nodeshape_3.png
283 287
    ///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm
284 288
    ///
285 289
    MALE=3,
286 290
    /// = 4
287 291
    ///\image html nodeshape_4.png
288 292
    ///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm
289 293
    ///
... ...
@@ -435,524 +439,536 @@
435 439
  ///Sets the map of the node colors.
436 440
  ///\param x must be a node map with \ref Color values.
437 441
  ///
438 442
  ///\sa Palette
439 443
  template<class X> GraphToEps<NodeColorsTraits<X> >
440 444
  nodeColors(const X &x)
441 445
  {
442 446
    dontPrint=true;
443 447
    return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
444 448
  }
445 449
  template<class X> struct NodeTextColorsTraits : public T {
446 450
    const X &_nodeTextColors;
447 451
    NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
448 452
  };
449 453
  ///Sets the map of the node text colors
450 454

	
451 455
  ///Sets the map of the node text colors.
452 456
  ///\param x must be a node map with \ref Color values.
453 457
  ///
454 458
  ///\sa Palette
455 459
  template<class X> GraphToEps<NodeTextColorsTraits<X> >
456 460
  nodeTextColors(const X &x)
457 461
  {
458 462
    dontPrint=true;
459 463
    _nodeTextColorType=CUST_COL;
460 464
    return GraphToEps<NodeTextColorsTraits<X> >
461 465
      (NodeTextColorsTraits<X>(*this,x));
462 466
  }
463 467
  template<class X> struct ArcColorsTraits : public T {
464 468
    const X &_arcColors;
465 469
    ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
466 470
  };
467 471
  ///Sets the map of the arc colors
468 472

	
469 473
  ///Sets the map of the arc colors.
470 474
  ///\param x must be an arc map with \ref Color values.
471 475
  ///
472 476
  ///\sa Palette
473 477
  template<class X> GraphToEps<ArcColorsTraits<X> >
474 478
  arcColors(const X &x)
475 479
  {
476 480
    dontPrint=true;
477 481
    return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
478 482
  }
479 483
  ///Sets a global scale factor for node sizes
480 484

	
481 485
  ///Sets a global scale factor for node sizes.
482 486
  ///
483 487
  /// If nodeSizes() is not given, this function simply sets the node
484 488
  /// sizes to \c d.  If nodeSizes() is given, but
485 489
  /// autoNodeScale() is not, then the node size given by
486 490
  /// nodeSizes() will be multiplied by the value \c d.
487 491
  /// If both nodeSizes() and autoNodeScale() are used, then the
488 492
  /// node sizes will be scaled in such a way that the greatest size will be
489 493
  /// equal to \c d.
490 494
  /// \sa nodeSizes()
491 495
  /// \sa autoNodeScale()
492 496
  GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
493 497
  ///Turns on/off the automatic node size scaling.
494 498

	
495 499
  ///Turns on/off the automatic node size scaling.
496 500
  ///
497 501
  ///\sa nodeScale()
498 502
  ///
499 503
  GraphToEps<T> &autoNodeScale(bool b=true) {
500 504
    _autoNodeScale=b;return *this;
501 505
  }
502 506

	
503 507
  ///Turns on/off the absolutematic node size scaling.
504 508

	
505 509
  ///Turns on/off the absolutematic node size scaling.
506 510
  ///
507 511
  ///\sa nodeScale()
508 512
  ///
509 513
  GraphToEps<T> &absoluteNodeSizes(bool b=true) {
510 514
    _absoluteNodeSizes=b;return *this;
511 515
  }
512 516

	
513 517
  ///Negates the Y coordinates.
514 518
  GraphToEps<T> &negateY(bool b=true) {
515 519
    _negY=b;return *this;
516 520
  }
517 521

	
518 522
  ///Turn on/off pre-scaling
519 523

	
520 524
  ///By default graphToEps() rescales the whole image in order to avoid
521 525
  ///very big or very small bounding boxes.
522 526
  ///
523 527
  ///This (p)rescaling can be turned off with this function.
524 528
  ///
525 529
  GraphToEps<T> &preScale(bool b=true) {
526 530
    _preScale=b;return *this;
527 531
  }
528 532

	
529 533
  ///Sets a global scale factor for arc widths
530 534

	
531 535
  /// Sets a global scale factor for arc widths.
532 536
  ///
533 537
  /// If arcWidths() is not given, this function simply sets the arc
534 538
  /// widths to \c d.  If arcWidths() is given, but
535 539
  /// autoArcWidthScale() is not, then the arc withs given by
536 540
  /// arcWidths() will be multiplied by the value \c d.
537 541
  /// If both arcWidths() and autoArcWidthScale() are used, then the
538 542
  /// arc withs will be scaled in such a way that the greatest width will be
539 543
  /// equal to \c d.
540 544
  GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
541 545
  ///Turns on/off the automatic arc width scaling.
542 546

	
543 547
  ///Turns on/off the automatic arc width scaling.
544 548
  ///
545 549
  ///\sa arcWidthScale()
546 550
  ///
547 551
  GraphToEps<T> &autoArcWidthScale(bool b=true) {
548 552
    _autoArcWidthScale=b;return *this;
549 553
  }
550 554
  ///Turns on/off the absolutematic arc width scaling.
551 555

	
552 556
  ///Turns on/off the absolutematic arc width scaling.
553 557
  ///
554 558
  ///\sa arcWidthScale()
555 559
  ///
556 560
  GraphToEps<T> &absoluteArcWidths(bool b=true) {
557 561
    _absoluteArcWidths=b;return *this;
558 562
  }
559 563
  ///Sets a global scale factor for the whole picture
560 564
  GraphToEps<T> &scale(double d) {_scale=d;return *this;}
561 565
  ///Sets the width of the border around the picture
562 566
  GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
563 567
  ///Sets the width of the border around the picture
564 568
  GraphToEps<T> &border(double x, double y) {
565 569
    _xBorder=x;_yBorder=y;return *this;
566 570
  }
567 571
  ///Sets whether to draw arrows
568 572
  GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
569 573
  ///Sets the length of the arrowheads
570 574
  GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
571 575
  ///Sets the width of the arrowheads
572 576
  GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
573 577

	
574 578
  ///Scales the drawing to fit to A4 page
575 579
  GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
576 580

	
577 581
  ///Enables parallel arcs
578 582
  GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
579 583

	
580 584
  ///Sets the distance between parallel arcs
581 585
  GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
582 586

	
583 587
  ///Hides the arcs
584 588
  GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
585 589
  ///Hides the nodes
586 590
  GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
587 591

	
588 592
  ///Sets the size of the node texts
589 593
  GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
590 594

	
591 595
  ///Sets the color of the node texts to be different from the node color
592 596

	
593 597
  ///Sets the color of the node texts to be as different from the node color
594 598
  ///as it is possible.
595 599
  GraphToEps<T> &distantColorNodeTexts()
596 600
  {_nodeTextColorType=DIST_COL;return *this;}
597 601
  ///Sets the color of the node texts to be black or white and always visible.
598 602

	
599 603
  ///Sets the color of the node texts to be black or white according to
600 604
  ///which is more different from the node color.
601 605
  GraphToEps<T> &distantBWNodeTexts()
602 606
  {_nodeTextColorType=DIST_BW;return *this;}
603 607

	
604 608
  ///Gives a preamble block for node Postscript block.
605 609

	
606 610
  ///Gives a preamble block for node Postscript block.
607 611
  ///
608 612
  ///\sa nodePsTexts()
609 613
  GraphToEps<T> & nodePsTextsPreamble(const char *str) {
610 614
    _nodePsTextsPreamble=str ;return *this;
611 615
  }
612 616
  ///Sets whether the graph is undirected
613 617

	
614 618
  ///Sets whether the graph is undirected.
615 619
  ///
616 620
  ///This setting is the default for undirected graphs.
617 621
  ///
618 622
  ///\sa directed()
619 623
   GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
620 624

	
621 625
  ///Sets whether the graph is directed
622 626

	
623 627
  ///Sets whether the graph is directed.
624 628
  ///Use it to show the edges as a pair of directed ones.
625 629
  ///
626 630
  ///This setting is the default for digraphs.
627 631
  ///
628 632
  ///\sa undirected()
629 633
  GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
630 634

	
631 635
  ///Sets the title.
632 636

	
633 637
  ///Sets the title of the generated image,
634 638
  ///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
635 639
  ///the EPS file.
636 640
  GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
637 641
  ///Sets the copyright statement.
638 642

	
639 643
  ///Sets the copyright statement of the generated image,
640 644
  ///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
641 645
  ///the EPS file.
642 646
  GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
643 647

	
644 648
protected:
645 649
  bool isInsideNode(dim2::Point<double> p, double r,int t)
646 650
  {
647 651
    switch(t) {
648 652
    case CIRCLE:
649 653
    case MALE:
650 654
    case FEMALE:
651 655
      return p.normSquare()<=r*r;
652 656
    case SQUARE:
653 657
      return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
654 658
    case DIAMOND:
655 659
      return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
656 660
    }
657 661
    return false;
658 662
  }
659 663

	
660 664
public:
661 665
  ~GraphToEps() { }
662 666

	
663 667
  ///Draws the graph.
664 668

	
665 669
  ///Like other functions using
666 670
  ///\ref named-templ-func-param "named template parameters",
667 671
  ///this function calls the algorithm itself, i.e. in this case
668 672
  ///it draws the graph.
669 673
  void run() {
670 674
    const double EPSILON=1e-9;
671 675
    if(dontPrint) return;
672 676

	
673 677
    _graph_to_eps_bits::_NegY<typename T::CoordsMapType>
674 678
      mycoords(_coords,_negY);
675 679

	
676 680
    os << "%!PS-Adobe-2.0 EPSF-2.0\n";
677 681
    if(_title.size()>0) os << "%%Title: " << _title << '\n';
678 682
     if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
679 683
    os << "%%Creator: LEMON, graphToEps()\n";
680 684

	
681 685
    {
682 686
#ifndef WIN32
683 687
      timeval tv;
684 688
      gettimeofday(&tv, 0);
685 689

	
686 690
      char cbuf[26];
687 691
      ctime_r(&tv.tv_sec,cbuf);
688 692
      os << "%%CreationDate: " << cbuf;
689 693
#else
690 694
      SYSTEMTIME time;
691
      char buf1[11], buf2[9], buf3[5];
692

	
693 695
      GetSystemTime(&time);
696
#if defined(_MSC_VER) && (_MSC_VER < 1500)
697
      LPWSTR buf1, buf2, buf3;
694 698
      if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time,
695
                        "ddd MMM dd", buf1, 11) &&
699
                        L"ddd MMM dd", buf1, 11) &&
696 700
          GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time,
697
                        "HH':'mm':'ss", buf2, 9) &&
701
                        L"HH':'mm':'ss", buf2, 9) &&
698 702
          GetDateFormat(LOCALE_USER_DEFAULT, 0, &time,
699
                                "yyyy", buf3, 5)) {
703
                        L"yyyy", buf3, 5)) {
700 704
        os << "%%CreationDate: " << buf1 << ' '
701 705
           << buf2 << ' ' << buf3 << std::endl;
702 706
      }
707
#else
708
        char buf1[11], buf2[9], buf3[5];
709
        if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time,
710
                          "ddd MMM dd", buf1, 11) &&
711
            GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time,
712
                          "HH':'mm':'ss", buf2, 9) &&
713
            GetDateFormat(LOCALE_USER_DEFAULT, 0, &time,
714
                          "yyyy", buf3, 5)) {
715
          os << "%%CreationDate: " << buf1 << ' '
716
             << buf2 << ' ' << buf3 << std::endl;
717
        }
718
#endif
703 719
#endif
704 720
    }
705 721

	
706 722
    if (_autoArcWidthScale) {
707 723
      double max_w=0;
708 724
      for(ArcIt e(g);e!=INVALID;++e)
709 725
        max_w=std::max(double(_arcWidths[e]),max_w);
710 726
      if(max_w>EPSILON) {
711 727
        _arcWidthScale/=max_w;
712 728
      }
713 729
    }
714 730

	
715 731
    if (_autoNodeScale) {
716 732
      double max_s=0;
717 733
      for(NodeIt n(g);n!=INVALID;++n)
718 734
        max_s=std::max(double(_nodeSizes[n]),max_s);
719 735
      if(max_s>EPSILON) {
720 736
        _nodeScale/=max_s;
721 737
      }
722 738
    }
723 739

	
724 740
    double diag_len = 1;
725 741
    if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
726 742
      dim2::Box<double> bb;
727 743
      for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]);
728 744
      if (bb.empty()) {
729 745
        bb = dim2::Box<double>(dim2::Point<double>(0,0));
730 746
      }
731 747
      diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare());
732 748
      if(diag_len<EPSILON) diag_len = 1;
733 749
      if(!_absoluteNodeSizes) _nodeScale*=diag_len;
734 750
      if(!_absoluteArcWidths) _arcWidthScale*=diag_len;
735 751
    }
736 752

	
737 753
    dim2::Box<double> bb;
738 754
    for(NodeIt n(g);n!=INVALID;++n) {
739 755
      double ns=_nodeSizes[n]*_nodeScale;
740 756
      dim2::Point<double> p(ns,ns);
741 757
      switch(_nodeShapes[n]) {
742 758
      case CIRCLE:
743 759
      case SQUARE:
744 760
      case DIAMOND:
745 761
        bb.add(p+mycoords[n]);
746 762
        bb.add(-p+mycoords[n]);
747 763
        break;
748 764
      case MALE:
749 765
        bb.add(-p+mycoords[n]);
750 766
        bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]);
751 767
        break;
752 768
      case FEMALE:
753 769
        bb.add(p+mycoords[n]);
754 770
        bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]);
755 771
        break;
756 772
      }
757 773
    }
758 774
    if (bb.empty()) {
759 775
      bb = dim2::Box<double>(dim2::Point<double>(0,0));
760 776
    }
761 777

	
762 778
    if(_scaleToA4)
763 779
      os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n";
764 780
    else {
765 781
      if(_preScale) {
766 782
        //Rescale so that BoundingBox won't be neither to big nor too small.
767 783
        while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10;
768 784
        while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10;
769 785
      }
770 786

	
771 787
      os << "%%BoundingBox: "
772 788
         << int(floor(bb.left()   * _scale - _xBorder)) << ' '
773 789
         << int(floor(bb.bottom() * _scale - _yBorder)) << ' '
774 790
         << int(ceil(bb.right()  * _scale + _xBorder)) << ' '
775 791
         << int(ceil(bb.top()    * _scale + _yBorder)) << '\n';
776 792
    }
777 793

	
778 794
    os << "%%EndComments\n";
779 795

	
780 796
    //x1 y1 x2 y2 x3 y3 cr cg cb w
781 797
    os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
782 798
       << "      4 2 roll 1 index 1 index curveto stroke } bind def\n";
783 799
    os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
784 800
       << " bind def\n";
785 801
    //x y r
786 802
    os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }"
787 803
       << " bind def\n";
788 804
    //x y r
789 805
    os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
790 806
       << "      2 index 1 index sub 2 index 2 index add lineto\n"
791 807
       << "      2 index 1 index sub 2 index 2 index sub lineto\n"
792 808
       << "      2 index 1 index add 2 index 2 index sub lineto\n"
793 809
       << "      closepath pop pop pop} bind def\n";
794 810
    //x y r
795 811
    os << "/di { newpath 2 index 1 index add 2 index moveto\n"
796 812
       << "      2 index             2 index 2 index add lineto\n"
797 813
       << "      2 index 1 index sub 2 index             lineto\n"
798 814
       << "      2 index             2 index 2 index sub lineto\n"
799 815
       << "      closepath pop pop pop} bind def\n";
800 816
    // x y r cr cg cb
801 817
    os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
802 818
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
803 819
       << "   } bind def\n";
804 820
    os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
805 821
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n"
806 822
       << "   } bind def\n";
807 823
    os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
808 824
       << "     setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n"
809 825
       << "   } bind def\n";
810 826
    os << "/nfemale { 0 0 0 setrgbcolor 3 index "
811 827
       << _nodeBorderQuotient/(1+_nodeBorderQuotient)
812 828
       << " 1.5 mul mul setlinewidth\n"
813 829
       << "  newpath 5 index 5 index moveto "
814 830
       << "5 index 5 index 5 index 3.01 mul sub\n"
815 831
       << "  lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub"
816 832
       << " moveto\n"
817 833
       << "  5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto "
818 834
       << "stroke\n"
819 835
       << "  5 index 5 index 5 index c fill\n"
820 836
       << "  setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
821 837
       << "  } bind def\n";
822 838
    os << "/nmale {\n"
823 839
       << "  0 0 0 setrgbcolor 3 index "
824 840
       << _nodeBorderQuotient/(1+_nodeBorderQuotient)
825 841
       <<" 1.5 mul mul setlinewidth\n"
826 842
       << "  newpath 5 index 5 index moveto\n"
827 843
       << "  5 index 4 index 1 mul 1.5 mul add\n"
828 844
       << "  5 index 5 index 3 sqrt 1.5 mul mul add\n"
829 845
       << "  1 index 1 index lineto\n"
830 846
       << "  1 index 1 index 7 index sub moveto\n"
831 847
       << "  1 index 1 index lineto\n"
832 848
       << "  exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub"
833 849
       << " lineto\n"
834 850
       << "  stroke\n"
835 851
       << "  5 index 5 index 5 index c fill\n"
836 852
       << "  setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
837 853
       << "  } bind def\n";
838 854

	
839 855

	
840 856
    os << "/arrl " << _arrowLength << " def\n";
841 857
    os << "/arrw " << _arrowWidth << " def\n";
842 858
    // l dx_norm dy_norm
843 859
    os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n";
844 860
    //len w dx_norm dy_norm x1 y1 cr cg cb
845 861
    os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx "
846 862
       << "exch def\n"
847 863
       << "       /w exch def /len exch def\n"
848 864
      //<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke"
849 865
       << "       newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n"
850 866
       << "       len w sub arrl sub dx dy lrl\n"
851 867
       << "       arrw dy dx neg lrl\n"
852 868
       << "       dx arrl w add mul dy w 2 div arrw add mul sub\n"
853 869
       << "       dy arrl w add mul dx w 2 div arrw add mul add rlineto\n"
854 870
       << "       dx arrl w add mul neg dy w 2 div arrw add mul sub\n"
855 871
       << "       dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n"
856 872
       << "       arrw dy dx neg lrl\n"
857 873
       << "       len w sub arrl sub neg dx dy lrl\n"
858 874
       << "       closepath fill } bind def\n";
859 875
    os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n"
860 876
       << "         neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n";
861 877

	
862 878
    os << "\ngsave\n";
863 879
    if(_scaleToA4)
864 880
      if(bb.height()>bb.width()) {
865 881
        double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(),
866 882
                  (A4WIDTH-2*A4BORDER)/bb.width());
867 883
        os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' '
868 884
           << ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER
869 885
           << " translate\n"
870 886
           << sc << " dup scale\n"
871 887
           << -bb.left() << ' ' << -bb.bottom() << " translate\n";
872 888
      }
873 889
      else {
874 890
        double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(),
875 891
                  (A4WIDTH-2*A4BORDER)/bb.height());
876 892
        os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' '
877 893
           << ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER
878 894
           << " translate\n"
879 895
           << sc << " dup scale\n90 rotate\n"
880 896
           << -bb.left() << ' ' << -bb.top() << " translate\n";
881 897
        }
882 898
    else if(_scale!=1.0) os << _scale << " dup scale\n";
883 899

	
884 900
    if(_showArcs) {
885 901
      os << "%Arcs:\ngsave\n";
886 902
      if(_enableParallel) {
887 903
        std::vector<Arc> el;
888 904
        for(ArcIt e(g);e!=INVALID;++e)
889 905
          if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
890 906
             &&g.source(e)!=g.target(e))
891 907
            el.push_back(e);
892 908
        std::sort(el.begin(),el.end(),arcLess(g));
893 909

	
894 910
        typename std::vector<Arc>::iterator j;
895 911
        for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) {
896 912
          for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ;
897 913

	
898 914
          double sw=0;
899 915
          for(typename std::vector<Arc>::iterator e=i;e!=j;++e)
900 916
            sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist;
901 917
          sw-=_parArcDist;
902 918
          sw/=-2.0;
903 919
          dim2::Point<double>
904 920
            dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]);
905 921
          double l=std::sqrt(dvec.normSquare());
906 922
          dim2::Point<double> d(dvec/std::max(l,EPSILON));
907 923
          dim2::Point<double> m;
908 924
//           m=dim2::Point<double>(mycoords[g.target(*i)]+
909 925
//                                 mycoords[g.source(*i)])/2.0;
910 926

	
911 927
//            m=dim2::Point<double>(mycoords[g.source(*i)])+
912 928
//             dvec*(double(_nodeSizes[g.source(*i)])/
913 929
//                (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)]));
914 930

	
915 931
          m=dim2::Point<double>(mycoords[g.source(*i)])+
916 932
            d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0;
917 933

	
918 934
          for(typename std::vector<Arc>::iterator e=i;e!=j;++e) {
919 935
            sw+=_arcWidths[*e]*_arcWidthScale/2.0;
920 936
            dim2::Point<double> mm=m+rot90(d)*sw/.75;
921 937
            if(_drawArrows) {
922 938
              int node_shape;
923 939
              dim2::Point<double> s=mycoords[g.source(*e)];
924 940
              dim2::Point<double> t=mycoords[g.target(*e)];
925 941
              double rn=_nodeSizes[g.target(*e)]*_nodeScale;
926 942
              node_shape=_nodeShapes[g.target(*e)];
927 943
              dim2::Bezier3 bez(s,mm,mm,t);
928 944
              double t1=0,t2=1;
929 945
              for(int ii=0;ii<INTERPOL_PREC;++ii)
930 946
                if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2;
931 947
                else t1=(t1+t2)/2;
932 948
              dim2::Point<double> apoint=bez((t1+t2)/2);
933 949
              rn = _arrowLength+_arcWidths[*e]*_arcWidthScale;
934 950
              rn*=rn;
935 951
              t2=(t1+t2)/2;t1=0;
936 952
              for(int ii=0;ii<INTERPOL_PREC;++ii)
937 953
                if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2;
938 954
                else t2=(t1+t2)/2;
939 955
              dim2::Point<double> linend=bez((t1+t2)/2);
940 956
              bez=bez.before((t1+t2)/2);
941 957
//               rn=_nodeSizes[g.source(*e)]*_nodeScale;
942 958
//               node_shape=_nodeShapes[g.source(*e)];
943 959
//               t1=0;t2=1;
944 960
//               for(int i=0;i<INTERPOL_PREC;++i)
945 961
//                 if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape))
946 962
//                   t1=(t1+t2)/2;
947 963
//                 else t2=(t1+t2)/2;
948 964
//               bez=bez.after((t1+t2)/2);
949 965
              os << _arcWidths[*e]*_arcWidthScale << " setlinewidth "
950 966
                 << _arcColors[*e].red() << ' '
951 967
                 << _arcColors[*e].green() << ' '
952 968
                 << _arcColors[*e].blue() << " setrgbcolor newpath\n"
953 969
                 << bez.p1.x << ' ' <<  bez.p1.y << " moveto\n"
954 970
                 << bez.p2.x << ' ' << bez.p2.y << ' '
955 971
                 << bez.p3.x << ' ' << bez.p3.y << ' '
956 972
                 << bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n";
957 973
              dim2::Point<double> dd(rot90(linend-apoint));
958 974
              dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\file
20 20
///\brief The implementation of the LP solver interface.
21 21

	
22 22
#include <lemon/lp_base.h>
23 23
namespace lemon {
24 24

	
25
  const LpBase::Value LpBase::INF = std::numeric_limits<Value>::infinity();
26
  const LpBase::Value LpBase::NaN = std::numeric_limits<Value>::quiet_NaN();
25
  const LpBase::Value LpBase::INF =
26
    std::numeric_limits<LpBase::Value>::infinity();
27
  const LpBase::Value LpBase::NaN =
28
    std::numeric_limits<LpBase::Value>::quiet_NaN();
27 29

	
28 30
} //namespace lemon
Ignore white space 512 line context
... ...
@@ -344,517 +344,517 @@
344 344
        typedef std::map<int, Value>::value_type pair_type;
345 345
        comps.insert(pair_type(id(c), 1));
346 346
      }
347 347
      /// Construct an expression from a constant
348 348

	
349 349
      /// Construct an expression, which's constant component is \c v.
350 350
      ///
351 351
      Expr(const Value &v) : const_comp(v) {}
352 352
      /// Returns the coefficient of the column
353 353
      Value operator[](const Col& c) const {
354 354
        std::map<int, Value>::const_iterator it=comps.find(id(c));
355 355
        if (it != comps.end()) {
356 356
          return it->second;
357 357
        } else {
358 358
          return 0;
359 359
        }
360 360
      }
361 361
      /// Returns the coefficient of the column
362 362
      Value& operator[](const Col& c) {
363 363
        return comps[id(c)];
364 364
      }
365 365
      /// Sets the coefficient of the column
366 366
      void set(const Col &c, const Value &v) {
367 367
        if (v != 0.0) {
368 368
          typedef std::map<int, Value>::value_type pair_type;
369 369
          comps.insert(pair_type(id(c), v));
370 370
        } else {
371 371
          comps.erase(id(c));
372 372
        }
373 373
      }
374 374
      /// Returns the constant component of the expression
375 375
      Value& operator*() { return const_comp; }
376 376
      /// Returns the constant component of the expression
377 377
      const Value& operator*() const { return const_comp; }
378 378
      /// \brief Removes the coefficients which's absolute value does
379 379
      /// not exceed \c epsilon. It also sets to zero the constant
380 380
      /// component, if it does not exceed epsilon in absolute value.
381 381
      void simplify(Value epsilon = 0.0) {
382 382
        std::map<int, Value>::iterator it=comps.begin();
383 383
        while (it != comps.end()) {
384 384
          std::map<int, Value>::iterator jt=it;
385 385
          ++jt;
386 386
          if (std::fabs((*it).second) <= epsilon) comps.erase(it);
387 387
          it=jt;
388 388
        }
389 389
        if (std::fabs(const_comp) <= epsilon) const_comp = 0;
390 390
      }
391 391

	
392 392
      void simplify(Value epsilon = 0.0) const {
393 393
        const_cast<Expr*>(this)->simplify(epsilon);
394 394
      }
395 395

	
396 396
      ///Sets all coefficients and the constant component to 0.
397 397
      void clear() {
398 398
        comps.clear();
399 399
        const_comp=0;
400 400
      }
401 401

	
402 402
      ///Compound assignment
403 403
      Expr &operator+=(const Expr &e) {
404 404
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
405 405
             it!=e.comps.end(); ++it)
406 406
          comps[it->first]+=it->second;
407 407
        const_comp+=e.const_comp;
408 408
        return *this;
409 409
      }
410 410
      ///Compound assignment
411 411
      Expr &operator-=(const Expr &e) {
412 412
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
413 413
             it!=e.comps.end(); ++it)
414 414
          comps[it->first]-=it->second;
415 415
        const_comp-=e.const_comp;
416 416
        return *this;
417 417
      }
418 418
      ///Multiply with a constant
419 419
      Expr &operator*=(const Value &v) {
420 420
        for (std::map<int, Value>::iterator it=comps.begin();
421 421
             it!=comps.end(); ++it)
422 422
          it->second*=v;
423 423
        const_comp*=v;
424 424
        return *this;
425 425
      }
426 426
      ///Division with a constant
427 427
      Expr &operator/=(const Value &c) {
428 428
        for (std::map<int, Value>::iterator it=comps.begin();
429 429
             it!=comps.end(); ++it)
430 430
          it->second/=c;
431 431
        const_comp/=c;
432 432
        return *this;
433 433
      }
434 434

	
435 435
      ///Iterator over the expression
436 436
      
437 437
      ///The iterator iterates over the terms of the expression. 
438 438
      /// 
439 439
      ///\code
440 440
      ///double s=0;
441 441
      ///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i)
442 442
      ///  s+= *i * primal(i);
443 443
      ///\endcode
444 444
      class CoeffIt {
445 445
      private:
446 446

	
447 447
        std::map<int, Value>::iterator _it, _end;
448 448

	
449 449
      public:
450 450

	
451 451
        /// Sets the iterator to the first term
452 452
        
453 453
        /// Sets the iterator to the first term of the expression.
454 454
        ///
455 455
        CoeffIt(Expr& e)
456 456
          : _it(e.comps.begin()), _end(e.comps.end()){}
457 457

	
458 458
        /// Convert the iterator to the column of the term
459 459
        operator Col() const {
460 460
          return colFromId(_it->first);
461 461
        }
462 462

	
463 463
        /// Returns the coefficient of the term
464 464
        Value& operator*() { return _it->second; }
465 465

	
466 466
        /// Returns the coefficient of the term
467 467
        const Value& operator*() const { return _it->second; }
468 468
        /// Next term
469 469
        
470 470
        /// Assign the iterator to the next term.
471 471
        ///
472 472
        CoeffIt& operator++() { ++_it; return *this; }
473 473

	
474 474
        /// Equality operator
475 475
        bool operator==(Invalid) const { return _it == _end; }
476 476
        /// Inequality operator
477 477
        bool operator!=(Invalid) const { return _it != _end; }
478 478
      };
479 479

	
480 480
      /// Const iterator over the expression
481 481
      
482 482
      ///The iterator iterates over the terms of the expression. 
483 483
      /// 
484 484
      ///\code
485 485
      ///double s=0;
486 486
      ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
487 487
      ///  s+=*i * primal(i);
488 488
      ///\endcode
489 489
      class ConstCoeffIt {
490 490
      private:
491 491

	
492 492
        std::map<int, Value>::const_iterator _it, _end;
493 493

	
494 494
      public:
495 495

	
496 496
        /// Sets the iterator to the first term
497 497
        
498 498
        /// Sets the iterator to the first term of the expression.
499 499
        ///
500 500
        ConstCoeffIt(const Expr& e)
501 501
          : _it(e.comps.begin()), _end(e.comps.end()){}
502 502

	
503 503
        /// Convert the iterator to the column of the term
504 504
        operator Col() const {
505 505
          return colFromId(_it->first);
506 506
        }
507 507

	
508 508
        /// Returns the coefficient of the term
509 509
        const Value& operator*() const { return _it->second; }
510 510

	
511 511
        /// Next term
512 512
        
513 513
        /// Assign the iterator to the next term.
514 514
        ///
515 515
        ConstCoeffIt& operator++() { ++_it; return *this; }
516 516

	
517 517
        /// Equality operator
518 518
        bool operator==(Invalid) const { return _it == _end; }
519 519
        /// Inequality operator
520 520
        bool operator!=(Invalid) const { return _it != _end; }
521 521
      };
522 522

	
523 523
    };
524 524

	
525 525
    ///Linear constraint
526 526

	
527 527
    ///This data stucture represents a linear constraint in the LP.
528 528
    ///Basically it is a linear expression with a lower or an upper bound
529 529
    ///(or both). These parts of the constraint can be obtained by the member
530 530
    ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
531 531
    ///respectively.
532 532
    ///There are two ways to construct a constraint.
533 533
    ///- You can set the linear expression and the bounds directly
534 534
    ///  by the functions above.
535 535
    ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
536 536
    ///  are defined between expressions, or even between constraints whenever
537 537
    ///  it makes sense. Therefore if \c e and \c f are linear expressions and
538 538
    ///  \c s and \c t are numbers, then the followings are valid expressions
539 539
    ///  and thus they can be used directly e.g. in \ref addRow() whenever
540 540
    ///  it makes sense.
541 541
    ///\code
542 542
    ///  e<=s
543 543
    ///  e<=f
544 544
    ///  e==f
545 545
    ///  s<=e<=t
546 546
    ///  e>=t
547 547
    ///\endcode
548 548
    ///\warning The validity of a constraint is checked only at run
549 549
    ///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will
550 550
    ///compile, but will fail an assertion.
551 551
    class Constr
552 552
    {
553 553
    public:
554 554
      typedef LpBase::Expr Expr;
555 555
      typedef Expr::Key Key;
556 556
      typedef Expr::Value Value;
557 557

	
558 558
    protected:
559 559
      Expr _expr;
560 560
      Value _lb,_ub;
561 561
    public:
562 562
      ///\e
563 563
      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
564 564
      ///\e
565 565
      Constr(Value lb, const Expr &e, Value ub) :
566 566
        _expr(e), _lb(lb), _ub(ub) {}
567 567
      Constr(const Expr &e) :
568 568
        _expr(e), _lb(NaN), _ub(NaN) {}
569 569
      ///\e
570 570
      void clear()
571 571
      {
572 572
        _expr.clear();
573 573
        _lb=_ub=NaN;
574 574
      }
575 575

	
576 576
      ///Reference to the linear expression
577 577
      Expr &expr() { return _expr; }
578 578
      ///Cont reference to the linear expression
579 579
      const Expr &expr() const { return _expr; }
580 580
      ///Reference to the lower bound.
581 581

	
582 582
      ///\return
583 583
      ///- \ref INF "INF": the constraint is lower unbounded.
584 584
      ///- \ref NaN "NaN": lower bound has not been set.
585 585
      ///- finite number: the lower bound
586 586
      Value &lowerBound() { return _lb; }
587 587
      ///The const version of \ref lowerBound()
588 588
      const Value &lowerBound() const { return _lb; }
589 589
      ///Reference to the upper bound.
590 590

	
591 591
      ///\return
592 592
      ///- \ref INF "INF": the constraint is upper unbounded.
593 593
      ///- \ref NaN "NaN": upper bound has not been set.
594 594
      ///- finite number: the upper bound
595 595
      Value &upperBound() { return _ub; }
596 596
      ///The const version of \ref upperBound()
597 597
      const Value &upperBound() const { return _ub; }
598 598
      ///Is the constraint lower bounded?
599 599
      bool lowerBounded() const {
600
        return _lb != -INF && !isnan(_lb);
600
        return _lb != -INF && !isNaN(_lb);
601 601
      }
602 602
      ///Is the constraint upper bounded?
603 603
      bool upperBounded() const {
604
        return _ub != INF && !isnan(_ub);
604
        return _ub != INF && !isNaN(_ub);
605 605
      }
606 606

	
607 607
    };
608 608

	
609 609
    ///Linear expression of rows
610 610

	
611 611
    ///This data structure represents a column of the matrix,
612 612
    ///thas is it strores a linear expression of the dual variables
613 613
    ///(\ref Row "Row"s).
614 614
    ///
615 615
    ///There are several ways to access and modify the contents of this
616 616
    ///container.
617 617
    ///\code
618 618
    ///e[v]=5;
619 619
    ///e[v]+=12;
620 620
    ///e.erase(v);
621 621
    ///\endcode
622 622
    ///or you can also iterate through its elements.
623 623
    ///\code
624 624
    ///double s=0;
625 625
    ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
626 626
    ///  s+=*i;
627 627
    ///\endcode
628 628
    ///(This code computes the sum of all coefficients).
629 629
    ///- Numbers (<tt>double</tt>'s)
630 630
    ///and variables (\ref Row "Row"s) directly convert to an
631 631
    ///\ref DualExpr and the usual linear operations are defined, so
632 632
    ///\code
633 633
    ///v+w
634 634
    ///2*v-3.12*(v-w/2)
635 635
    ///v*2.1+(3*v+(v*12+w)*3)/2
636 636
    ///\endcode
637 637
    ///are valid \ref DualExpr dual expressions.
638 638
    ///The usual assignment operations are also defined.
639 639
    ///\code
640 640
    ///e=v+w;
641 641
    ///e+=2*v-3.12*(v-w/2);
642 642
    ///e*=3.4;
643 643
    ///e/=5;
644 644
    ///\endcode
645 645
    ///
646 646
    ///\sa Expr
647 647
    class DualExpr {
648 648
      friend class LpBase;
649 649
    public:
650 650
      /// The key type of the expression
651 651
      typedef LpBase::Row Key;
652 652
      /// The value type of the expression
653 653
      typedef LpBase::Value Value;
654 654

	
655 655
    protected:
656 656
      std::map<int, Value> comps;
657 657

	
658 658
    public:
659 659
      typedef True SolverExpr;
660 660
      /// Default constructor
661 661
      
662 662
      /// Construct an empty expression, the coefficients are
663 663
      /// initialized to zero.
664 664
      DualExpr() {}
665 665
      /// Construct an expression from a row
666 666

	
667 667
      /// Construct an expression, which has a term with \c r dual
668 668
      /// variable and 1.0 coefficient.
669 669
      DualExpr(const Row &r) {
670 670
        typedef std::map<int, Value>::value_type pair_type;
671 671
        comps.insert(pair_type(id(r), 1));
672 672
      }
673 673
      /// Returns the coefficient of the row
674 674
      Value operator[](const Row& r) const {
675 675
        std::map<int, Value>::const_iterator it = comps.find(id(r));
676 676
        if (it != comps.end()) {
677 677
          return it->second;
678 678
        } else {
679 679
          return 0;
680 680
        }
681 681
      }
682 682
      /// Returns the coefficient of the row
683 683
      Value& operator[](const Row& r) {
684 684
        return comps[id(r)];
685 685
      }
686 686
      /// Sets the coefficient of the row
687 687
      void set(const Row &r, const Value &v) {
688 688
        if (v != 0.0) {
689 689
          typedef std::map<int, Value>::value_type pair_type;
690 690
          comps.insert(pair_type(id(r), v));
691 691
        } else {
692 692
          comps.erase(id(r));
693 693
        }
694 694
      }
695 695
      /// \brief Removes the coefficients which's absolute value does
696 696
      /// not exceed \c epsilon. 
697 697
      void simplify(Value epsilon = 0.0) {
698 698
        std::map<int, Value>::iterator it=comps.begin();
699 699
        while (it != comps.end()) {
700 700
          std::map<int, Value>::iterator jt=it;
701 701
          ++jt;
702 702
          if (std::fabs((*it).second) <= epsilon) comps.erase(it);
703 703
          it=jt;
704 704
        }
705 705
      }
706 706

	
707 707
      void simplify(Value epsilon = 0.0) const {
708 708
        const_cast<DualExpr*>(this)->simplify(epsilon);
709 709
      }
710 710

	
711 711
      ///Sets all coefficients to 0.
712 712
      void clear() {
713 713
        comps.clear();
714 714
      }
715 715
      ///Compound assignment
716 716
      DualExpr &operator+=(const DualExpr &e) {
717 717
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
718 718
             it!=e.comps.end(); ++it)
719 719
          comps[it->first]+=it->second;
720 720
        return *this;
721 721
      }
722 722
      ///Compound assignment
723 723
      DualExpr &operator-=(const DualExpr &e) {
724 724
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
725 725
             it!=e.comps.end(); ++it)
726 726
          comps[it->first]-=it->second;
727 727
        return *this;
728 728
      }
729 729
      ///Multiply with a constant
730 730
      DualExpr &operator*=(const Value &v) {
731 731
        for (std::map<int, Value>::iterator it=comps.begin();
732 732
             it!=comps.end(); ++it)
733 733
          it->second*=v;
734 734
        return *this;
735 735
      }
736 736
      ///Division with a constant
737 737
      DualExpr &operator/=(const Value &v) {
738 738
        for (std::map<int, Value>::iterator it=comps.begin();
739 739
             it!=comps.end(); ++it)
740 740
          it->second/=v;
741 741
        return *this;
742 742
      }
743 743

	
744 744
      ///Iterator over the expression
745 745
      
746 746
      ///The iterator iterates over the terms of the expression. 
747 747
      /// 
748 748
      ///\code
749 749
      ///double s=0;
750 750
      ///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i)
751 751
      ///  s+= *i * dual(i);
752 752
      ///\endcode
753 753
      class CoeffIt {
754 754
      private:
755 755

	
756 756
        std::map<int, Value>::iterator _it, _end;
757 757

	
758 758
      public:
759 759

	
760 760
        /// Sets the iterator to the first term
761 761
        
762 762
        /// Sets the iterator to the first term of the expression.
763 763
        ///
764 764
        CoeffIt(DualExpr& e)
765 765
          : _it(e.comps.begin()), _end(e.comps.end()){}
766 766

	
767 767
        /// Convert the iterator to the row of the term
768 768
        operator Row() const {
769 769
          return rowFromId(_it->first);
770 770
        }
771 771

	
772 772
        /// Returns the coefficient of the term
773 773
        Value& operator*() { return _it->second; }
774 774

	
775 775
        /// Returns the coefficient of the term
776 776
        const Value& operator*() const { return _it->second; }
777 777

	
778 778
        /// Next term
779 779
        
780 780
        /// Assign the iterator to the next term.
781 781
        ///
782 782
        CoeffIt& operator++() { ++_it; return *this; }
783 783

	
784 784
        /// Equality operator
785 785
        bool operator==(Invalid) const { return _it == _end; }
786 786
        /// Inequality operator
787 787
        bool operator!=(Invalid) const { return _it != _end; }
788 788
      };
789 789

	
790 790
      ///Iterator over the expression
791 791
      
792 792
      ///The iterator iterates over the terms of the expression. 
793 793
      /// 
794 794
      ///\code
795 795
      ///double s=0;
796 796
      ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
797 797
      ///  s+= *i * dual(i);
798 798
      ///\endcode
799 799
      class ConstCoeffIt {
800 800
      private:
801 801

	
802 802
        std::map<int, Value>::const_iterator _it, _end;
803 803

	
804 804
      public:
805 805

	
806 806
        /// Sets the iterator to the first term
807 807
        
808 808
        /// Sets the iterator to the first term of the expression.
809 809
        ///
810 810
        ConstCoeffIt(const DualExpr& e)
811 811
          : _it(e.comps.begin()), _end(e.comps.end()){}
812 812

	
813 813
        /// Convert the iterator to the row of the term
814 814
        operator Row() const {
815 815
          return rowFromId(_it->first);
816 816
        }
817 817

	
818 818
        /// Returns the coefficient of the term
819 819
        const Value& operator*() const { return _it->second; }
820 820

	
821 821
        /// Next term
822 822
        
823 823
        /// Assign the iterator to the next term.
824 824
        ///
825 825
        ConstCoeffIt& operator++() { ++_it; return *this; }
826 826

	
827 827
        /// Equality operator
828 828
        bool operator==(Invalid) const { return _it == _end; }
829 829
        /// Inequality operator
830 830
        bool operator!=(Invalid) const { return _it != _end; }
831 831
      };
832 832
    };
833 833

	
834 834

	
835 835
  protected:
836 836

	
837 837
    class InsertIterator {
838 838
    private:
839 839

	
840 840
      std::map<int, Value>& _host;
841 841
      const _solver_bits::VarIndex& _index;
842 842

	
843 843
    public:
844 844

	
845 845
      typedef std::output_iterator_tag iterator_category;
846 846
      typedef void difference_type;
847 847
      typedef void value_type;
848 848
      typedef void reference;
849 849
      typedef void pointer;
850 850

	
851 851
      InsertIterator(std::map<int, Value>& host,
852 852
                   const _solver_bits::VarIndex& index)
853 853
        : _host(host), _index(index) {}
854 854

	
855 855
      InsertIterator& operator=(const std::pair<int, Value>& value) {
856 856
        typedef std::map<int, Value>::value_type pair_type;
857 857
        _host.insert(pair_type(_index[value.first], value.second));
858 858
        return *this;
859 859
      }
860 860

	
... ...
@@ -1413,549 +1413,549 @@
1413 1413
    /// The lower and the upper bounds of
1414 1414
    /// a variable (column) have to be given by an
1415 1415
    /// extended number of type Value, i.e. a finite number of type
1416 1416
    /// Value, -\ref INF or \ref INF.
1417 1417
    void colBounds(Col c, Value lower, Value upper) {
1418 1418
      _setColLowerBound(cols(id(c)),lower);
1419 1419
      _setColUpperBound(cols(id(c)),upper);
1420 1420
    }
1421 1421

	
1422 1422
    ///\brief Set the lower and the upper bound of several columns
1423 1423
    ///(i.e variables) at once
1424 1424
    ///
1425 1425
    ///This magic function takes a container as its argument
1426 1426
    ///and applies the function on all of its elements.
1427 1427
    /// The lower and the upper bounds of
1428 1428
    /// a variable (column) have to be given by an
1429 1429
    /// extended number of type Value, i.e. a finite number of type
1430 1430
    /// Value, -\ref INF or \ref INF.
1431 1431
#ifdef DOXYGEN
1432 1432
    template<class T>
1433 1433
    void colBounds(T &t, Value lower, Value upper) { return 0;}
1434 1434
#else
1435 1435
    template<class T>
1436 1436
    typename enable_if<typename T::value_type::LpCol,void>::type
1437 1437
    colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
1438 1438
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1439 1439
        colBounds(*i, lower, upper);
1440 1440
      }
1441 1441
    }
1442 1442
    template<class T>
1443 1443
    typename enable_if<typename T::value_type::second_type::LpCol, void>::type
1444 1444
    colBounds(T &t, Value lower, Value upper,dummy<1> = 1) {
1445 1445
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1446 1446
        colBounds(i->second, lower, upper);
1447 1447
      }
1448 1448
    }
1449 1449
    template<class T>
1450 1450
    typename enable_if<typename T::MapIt::Value::LpCol, void>::type
1451 1451
    colBounds(T &t, Value lower, Value upper,dummy<2> = 2) {
1452 1452
      for(typename T::MapIt i(t); i!=INVALID; ++i){
1453 1453
        colBounds(*i, lower, upper);
1454 1454
      }
1455 1455
    }
1456 1456
#endif
1457 1457

	
1458 1458
    /// Set the lower bound of a row (i.e a constraint)
1459 1459

	
1460 1460
    /// The lower bound of a constraint (row) has to be given by an
1461 1461
    /// extended number of type Value, i.e. a finite number of type
1462 1462
    /// Value or -\ref INF.
1463 1463
    void rowLowerBound(Row r, Value value) {
1464 1464
      _setRowLowerBound(rows(id(r)),value);
1465 1465
    }
1466 1466

	
1467 1467
    /// Get the lower bound of a row (i.e a constraint)
1468 1468

	
1469 1469
    /// This function returns the lower bound for row (constraint) \c c
1470 1470
    /// (this might be -\ref INF as well).
1471 1471
    ///\return The lower bound for row \c r
1472 1472
    Value rowLowerBound(Row r) const {
1473 1473
      return _getRowLowerBound(rows(id(r)));
1474 1474
    }
1475 1475

	
1476 1476
    /// Set the upper bound of a row (i.e a constraint)
1477 1477

	
1478 1478
    /// The upper bound of a constraint (row) has to be given by an
1479 1479
    /// extended number of type Value, i.e. a finite number of type
1480 1480
    /// Value or -\ref INF.
1481 1481
    void rowUpperBound(Row r, Value value) {
1482 1482
      _setRowUpperBound(rows(id(r)),value);
1483 1483
    }
1484 1484

	
1485 1485
    /// Get the upper bound of a row (i.e a constraint)
1486 1486

	
1487 1487
    /// This function returns the upper bound for row (constraint) \c c
1488 1488
    /// (this might be -\ref INF as well).
1489 1489
    ///\return The upper bound for row \c r
1490 1490
    Value rowUpperBound(Row r) const {
1491 1491
      return _getRowUpperBound(rows(id(r)));
1492 1492
    }
1493 1493

	
1494 1494
    ///Set an element of the objective function
1495 1495
    void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
1496 1496

	
1497 1497
    ///Get an element of the objective function
1498 1498
    Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
1499 1499

	
1500 1500
    ///Set the objective function
1501 1501

	
1502 1502
    ///\param e is a linear expression of type \ref Expr.
1503 1503
    ///
1504 1504
    void obj(const Expr& e) {
1505 1505
      _setObjCoeffs(ExprIterator(e.comps.begin(), cols),
1506 1506
                    ExprIterator(e.comps.end(), cols));
1507 1507
      obj_const_comp = *e;
1508 1508
    }
1509 1509

	
1510 1510
    ///Get the objective function
1511 1511

	
1512 1512
    ///\return the objective function as a linear expression of type
1513 1513
    ///Expr.
1514 1514
    Expr obj() const {
1515 1515
      Expr e;
1516 1516
      _getObjCoeffs(InsertIterator(e.comps, cols));
1517 1517
      *e = obj_const_comp;
1518 1518
      return e;
1519 1519
    }
1520 1520

	
1521 1521

	
1522 1522
    ///Set the direction of optimization
1523 1523
    void sense(Sense sense) { _setSense(sense); }
1524 1524

	
1525 1525
    ///Query the direction of the optimization
1526 1526
    Sense sense() const {return _getSense(); }
1527 1527

	
1528 1528
    ///Set the sense to maximization
1529 1529
    void max() { _setSense(MAX); }
1530 1530

	
1531 1531
    ///Set the sense to maximization
1532 1532
    void min() { _setSense(MIN); }
1533 1533

	
1534 1534
    ///Clears the problem
1535 1535
    void clear() { _clear(); }
1536 1536

	
1537 1537
    ///@}
1538 1538

	
1539 1539
  };
1540 1540

	
1541 1541
  /// Addition
1542 1542

	
1543 1543
  ///\relates LpBase::Expr
1544 1544
  ///
1545 1545
  inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
1546 1546
    LpBase::Expr tmp(a);
1547 1547
    tmp+=b;
1548 1548
    return tmp;
1549 1549
  }
1550 1550
  ///Substraction
1551 1551

	
1552 1552
  ///\relates LpBase::Expr
1553 1553
  ///
1554 1554
  inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
1555 1555
    LpBase::Expr tmp(a);
1556 1556
    tmp-=b;
1557 1557
    return tmp;
1558 1558
  }
1559 1559
  ///Multiply with constant
1560 1560

	
1561 1561
  ///\relates LpBase::Expr
1562 1562
  ///
1563 1563
  inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
1564 1564
    LpBase::Expr tmp(a);
1565 1565
    tmp*=b;
1566 1566
    return tmp;
1567 1567
  }
1568 1568

	
1569 1569
  ///Multiply with constant
1570 1570

	
1571 1571
  ///\relates LpBase::Expr
1572 1572
  ///
1573 1573
  inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
1574 1574
    LpBase::Expr tmp(b);
1575 1575
    tmp*=a;
1576 1576
    return tmp;
1577 1577
  }
1578 1578
  ///Divide with constant
1579 1579

	
1580 1580
  ///\relates LpBase::Expr
1581 1581
  ///
1582 1582
  inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
1583 1583
    LpBase::Expr tmp(a);
1584 1584
    tmp/=b;
1585 1585
    return tmp;
1586 1586
  }
1587 1587

	
1588 1588
  ///Create constraint
1589 1589

	
1590 1590
  ///\relates LpBase::Constr
1591 1591
  ///
1592 1592
  inline LpBase::Constr operator<=(const LpBase::Expr &e,
1593 1593
                                   const LpBase::Expr &f) {
1594 1594
    return LpBase::Constr(0, f - e, LpBase::INF);
1595 1595
  }
1596 1596

	
1597 1597
  ///Create constraint
1598 1598

	
1599 1599
  ///\relates LpBase::Constr
1600 1600
  ///
1601 1601
  inline LpBase::Constr operator<=(const LpBase::Value &e,
1602 1602
                                   const LpBase::Expr &f) {
1603 1603
    return LpBase::Constr(e, f, LpBase::NaN);
1604 1604
  }
1605 1605

	
1606 1606
  ///Create constraint
1607 1607

	
1608 1608
  ///\relates LpBase::Constr
1609 1609
  ///
1610 1610
  inline LpBase::Constr operator<=(const LpBase::Expr &e,
1611 1611
                                   const LpBase::Value &f) {
1612 1612
    return LpBase::Constr(- LpBase::INF, e, f);
1613 1613
  }
1614 1614

	
1615 1615
  ///Create constraint
1616 1616

	
1617 1617
  ///\relates LpBase::Constr
1618 1618
  ///
1619 1619
  inline LpBase::Constr operator>=(const LpBase::Expr &e,
1620 1620
                                   const LpBase::Expr &f) {
1621 1621
    return LpBase::Constr(0, e - f, LpBase::INF);
1622 1622
  }
1623 1623

	
1624 1624

	
1625 1625
  ///Create constraint
1626 1626

	
1627 1627
  ///\relates LpBase::Constr
1628 1628
  ///
1629 1629
  inline LpBase::Constr operator>=(const LpBase::Value &e,
1630 1630
                                   const LpBase::Expr &f) {
1631 1631
    return LpBase::Constr(LpBase::NaN, f, e);
1632 1632
  }
1633 1633

	
1634 1634

	
1635 1635
  ///Create constraint
1636 1636

	
1637 1637
  ///\relates LpBase::Constr
1638 1638
  ///
1639 1639
  inline LpBase::Constr operator>=(const LpBase::Expr &e,
1640 1640
                                   const LpBase::Value &f) {
1641 1641
    return LpBase::Constr(f, e, LpBase::INF);
1642 1642
  }
1643 1643

	
1644 1644
  ///Create constraint
1645 1645

	
1646 1646
  ///\relates LpBase::Constr
1647 1647
  ///
1648 1648
  inline LpBase::Constr operator==(const LpBase::Expr &e,
1649 1649
                                   const LpBase::Value &f) {
1650 1650
    return LpBase::Constr(f, e, f);
1651 1651
  }
1652 1652

	
1653 1653
  ///Create constraint
1654 1654

	
1655 1655
  ///\relates LpBase::Constr
1656 1656
  ///
1657 1657
  inline LpBase::Constr operator==(const LpBase::Expr &e,
1658 1658
                                   const LpBase::Expr &f) {
1659 1659
    return LpBase::Constr(0, f - e, 0);
1660 1660
  }
1661 1661

	
1662 1662
  ///Create constraint
1663 1663

	
1664 1664
  ///\relates LpBase::Constr
1665 1665
  ///
1666 1666
  inline LpBase::Constr operator<=(const LpBase::Value &n,
1667 1667
                                   const LpBase::Constr &c) {
1668 1668
    LpBase::Constr tmp(c);
1669
    LEMON_ASSERT(isnan(tmp.lowerBound()), "Wrong LP constraint");
1669
    LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
1670 1670
    tmp.lowerBound()=n;
1671 1671
    return tmp;
1672 1672
  }
1673 1673
  ///Create constraint
1674 1674

	
1675 1675
  ///\relates LpBase::Constr
1676 1676
  ///
1677 1677
  inline LpBase::Constr operator<=(const LpBase::Constr &c,
1678 1678
                                   const LpBase::Value &n)
1679 1679
  {
1680 1680
    LpBase::Constr tmp(c);
1681
    LEMON_ASSERT(isnan(tmp.upperBound()), "Wrong LP constraint");
1681
    LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
1682 1682
    tmp.upperBound()=n;
1683 1683
    return tmp;
1684 1684
  }
1685 1685

	
1686 1686
  ///Create constraint
1687 1687

	
1688 1688
  ///\relates LpBase::Constr
1689 1689
  ///
1690 1690
  inline LpBase::Constr operator>=(const LpBase::Value &n,
1691 1691
                                   const LpBase::Constr &c) {
1692 1692
    LpBase::Constr tmp(c);
1693
    LEMON_ASSERT(isnan(tmp.upperBound()), "Wrong LP constraint");
1693
    LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
1694 1694
    tmp.upperBound()=n;
1695 1695
    return tmp;
1696 1696
  }
1697 1697
  ///Create constraint
1698 1698

	
1699 1699
  ///\relates LpBase::Constr
1700 1700
  ///
1701 1701
  inline LpBase::Constr operator>=(const LpBase::Constr &c,
1702 1702
                                   const LpBase::Value &n)
1703 1703
  {
1704 1704
    LpBase::Constr tmp(c);
1705
    LEMON_ASSERT(isnan(tmp.lowerBound()), "Wrong LP constraint");
1705
    LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
1706 1706
    tmp.lowerBound()=n;
1707 1707
    return tmp;
1708 1708
  }
1709 1709

	
1710 1710
  ///Addition
1711 1711

	
1712 1712
  ///\relates LpBase::DualExpr
1713 1713
  ///
1714 1714
  inline LpBase::DualExpr operator+(const LpBase::DualExpr &a,
1715 1715
                                    const LpBase::DualExpr &b) {
1716 1716
    LpBase::DualExpr tmp(a);
1717 1717
    tmp+=b;
1718 1718
    return tmp;
1719 1719
  }
1720 1720
  ///Substraction
1721 1721

	
1722 1722
  ///\relates LpBase::DualExpr
1723 1723
  ///
1724 1724
  inline LpBase::DualExpr operator-(const LpBase::DualExpr &a,
1725 1725
                                    const LpBase::DualExpr &b) {
1726 1726
    LpBase::DualExpr tmp(a);
1727 1727
    tmp-=b;
1728 1728
    return tmp;
1729 1729
  }
1730 1730
  ///Multiply with constant
1731 1731

	
1732 1732
  ///\relates LpBase::DualExpr
1733 1733
  ///
1734 1734
  inline LpBase::DualExpr operator*(const LpBase::DualExpr &a,
1735 1735
                                    const LpBase::Value &b) {
1736 1736
    LpBase::DualExpr tmp(a);
1737 1737
    tmp*=b;
1738 1738
    return tmp;
1739 1739
  }
1740 1740

	
1741 1741
  ///Multiply with constant
1742 1742

	
1743 1743
  ///\relates LpBase::DualExpr
1744 1744
  ///
1745 1745
  inline LpBase::DualExpr operator*(const LpBase::Value &a,
1746 1746
                                    const LpBase::DualExpr &b) {
1747 1747
    LpBase::DualExpr tmp(b);
1748 1748
    tmp*=a;
1749 1749
    return tmp;
1750 1750
  }
1751 1751
  ///Divide with constant
1752 1752

	
1753 1753
  ///\relates LpBase::DualExpr
1754 1754
  ///
1755 1755
  inline LpBase::DualExpr operator/(const LpBase::DualExpr &a,
1756 1756
                                    const LpBase::Value &b) {
1757 1757
    LpBase::DualExpr tmp(a);
1758 1758
    tmp/=b;
1759 1759
    return tmp;
1760 1760
  }
1761 1761

	
1762 1762
  /// \ingroup lp_group
1763 1763
  ///
1764 1764
  /// \brief Common base class for LP solvers
1765 1765
  ///
1766 1766
  /// This class is an abstract base class for LP solvers. This class
1767 1767
  /// provides a full interface for set and modify an LP problem,
1768 1768
  /// solve it and retrieve the solution. You can use one of the
1769 1769
  /// descendants as a concrete implementation, or the \c Lp
1770 1770
  /// default LP solver. However, if you would like to handle LP
1771 1771
  /// solvers as reference or pointer in a generic way, you can use
1772 1772
  /// this class directly.
1773 1773
  class LpSolver : virtual public LpBase {
1774 1774
  public:
1775 1775

	
1776 1776
    /// The problem types for primal and dual problems
1777 1777
    enum ProblemType {
1778 1778
      ///Feasible solution hasn't been found (but may exist).
1779 1779
      UNDEFINED = 0,
1780 1780
      ///The problem has no feasible solution
1781 1781
      INFEASIBLE = 1,
1782 1782
      ///Feasible solution found
1783 1783
      FEASIBLE = 2,
1784 1784
      ///Optimal solution exists and found
1785 1785
      OPTIMAL = 3,
1786 1786
      ///The cost function is unbounded
1787 1787
      UNBOUNDED = 4
1788 1788
    };
1789 1789

	
1790 1790
    ///The basis status of variables
1791 1791
    enum VarStatus {
1792 1792
      /// The variable is in the basis
1793 1793
      BASIC, 
1794 1794
      /// The variable is free, but not basic
1795 1795
      FREE,
1796 1796
      /// The variable has active lower bound 
1797 1797
      LOWER,
1798 1798
      /// The variable has active upper bound
1799 1799
      UPPER,
1800 1800
      /// The variable is non-basic and fixed
1801 1801
      FIXED
1802 1802
    };
1803 1803

	
1804 1804
  protected:
1805 1805

	
1806 1806
    virtual SolveExitStatus _solve() = 0;
1807 1807

	
1808 1808
    virtual Value _getPrimal(int i) const = 0;
1809 1809
    virtual Value _getDual(int i) const = 0;
1810 1810

	
1811 1811
    virtual Value _getPrimalRay(int i) const = 0;
1812 1812
    virtual Value _getDualRay(int i) const = 0;
1813 1813

	
1814 1814
    virtual Value _getPrimalValue() const = 0;
1815 1815

	
1816 1816
    virtual VarStatus _getColStatus(int i) const = 0;
1817 1817
    virtual VarStatus _getRowStatus(int i) const = 0;
1818 1818

	
1819 1819
    virtual ProblemType _getPrimalType() const = 0;
1820 1820
    virtual ProblemType _getDualType() const = 0;
1821 1821

	
1822 1822
  public:
1823 1823

	
1824 1824
    ///\name Solve the LP
1825 1825

	
1826 1826
    ///@{
1827 1827

	
1828 1828
    ///\e Solve the LP problem at hand
1829 1829
    ///
1830 1830
    ///\return The result of the optimization procedure. Possible
1831 1831
    ///values and their meanings can be found in the documentation of
1832 1832
    ///\ref SolveExitStatus.
1833 1833
    SolveExitStatus solve() { return _solve(); }
1834 1834

	
1835 1835
    ///@}
1836 1836

	
1837 1837
    ///\name Obtain the solution
1838 1838

	
1839 1839
    ///@{
1840 1840

	
1841 1841
    /// The type of the primal problem
1842 1842
    ProblemType primalType() const {
1843 1843
      return _getPrimalType();
1844 1844
    }
1845 1845

	
1846 1846
    /// The type of the dual problem
1847 1847
    ProblemType dualType() const {
1848 1848
      return _getDualType();
1849 1849
    }
1850 1850

	
1851 1851
    /// Return the primal value of the column
1852 1852

	
1853 1853
    /// Return the primal value of the column.
1854 1854
    /// \pre The problem is solved.
1855 1855
    Value primal(Col c) const { return _getPrimal(cols(id(c))); }
1856 1856

	
1857 1857
    /// Return the primal value of the expression
1858 1858

	
1859 1859
    /// Return the primal value of the expression, i.e. the dot
1860 1860
    /// product of the primal solution and the expression.
1861 1861
    /// \pre The problem is solved.
1862 1862
    Value primal(const Expr& e) const {
1863 1863
      double res = *e;
1864 1864
      for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
1865 1865
        res += *c * primal(c);
1866 1866
      }
1867 1867
      return res;
1868 1868
    }
1869 1869
    /// Returns a component of the primal ray
1870 1870
    
1871 1871
    /// The primal ray is solution of the modified primal problem,
1872 1872
    /// where we change each finite bound to 0, and we looking for a
1873 1873
    /// negative objective value in case of minimization, and positive
1874 1874
    /// objective value for maximization. If there is such solution,
1875 1875
    /// that proofs the unsolvability of the dual problem, and if a
1876 1876
    /// feasible primal solution exists, then the unboundness of
1877 1877
    /// primal problem.
1878 1878
    ///
1879 1879
    /// \pre The problem is solved and the dual problem is infeasible.
1880 1880
    /// \note Some solvers does not provide primal ray calculation
1881 1881
    /// functions.
1882 1882
    Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
1883 1883

	
1884 1884
    /// Return the dual value of the row
1885 1885

	
1886 1886
    /// Return the dual value of the row.
1887 1887
    /// \pre The problem is solved.
1888 1888
    Value dual(Row r) const { return _getDual(rows(id(r))); }
1889 1889

	
1890 1890
    /// Return the dual value of the dual expression
1891 1891

	
1892 1892
    /// Return the dual value of the dual expression, i.e. the dot
1893 1893
    /// product of the dual solution and the dual expression.
1894 1894
    /// \pre The problem is solved.
1895 1895
    Value dual(const DualExpr& e) const {
1896 1896
      double res = 0.0;
1897 1897
      for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
1898 1898
        res += *r * dual(r);
1899 1899
      }
1900 1900
      return res;
1901 1901
    }
1902 1902

	
1903 1903
    /// Returns a component of the dual ray
1904 1904
    
1905 1905
    /// The dual ray is solution of the modified primal problem, where
1906 1906
    /// we change each finite bound to 0 (i.e. the objective function
1907 1907
    /// coefficients in the primal problem), and we looking for a
1908 1908
    /// ositive objective value. If there is such solution, that
1909 1909
    /// proofs the unsolvability of the primal problem, and if a
1910 1910
    /// feasible dual solution exists, then the unboundness of
1911 1911
    /// dual problem.
1912 1912
    ///
1913 1913
    /// \pre The problem is solved and the primal problem is infeasible.
1914 1914
    /// \note Some solvers does not provide dual ray calculation
1915 1915
    /// functions.
1916 1916
    Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
1917 1917

	
1918 1918
    /// Return the basis status of the column
1919 1919

	
1920 1920
    /// \see VarStatus
1921 1921
    VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
1922 1922

	
1923 1923
    /// Return the basis status of the row
1924 1924

	
1925 1925
    /// \see VarStatus
1926 1926
    VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
1927 1927

	
1928 1928
    ///The value of the objective function
1929 1929

	
1930 1930
    ///\return
1931 1931
    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
1932 1932
    /// of the primal problem, depending on whether we minimize or maximize.
1933 1933
    ///- \ref NaN if no primal solution is found.
1934 1934
    ///- The (finite) objective value if an optimal solution is found.
1935 1935
    Value primal() const { return _getPrimalValue()+obj_const_comp;}
1936 1936
    ///@}
1937 1937

	
1938 1938
    LpSolver* newSolver() {return _newSolver();}
1939 1939
    LpSolver* cloneSolver() {return _cloneSolver();}
1940 1940

	
1941 1941
  protected:
1942 1942

	
1943 1943
    virtual LpSolver* _newSolver() const = 0;
1944 1944
    virtual LpSolver* _cloneSolver() const = 0;
1945 1945
  };
1946 1946

	
1947 1947

	
1948 1948
  /// \ingroup lp_group
1949 1949
  ///
1950 1950
  /// \brief Common base class for MIP solvers
1951 1951
  ///
1952 1952
  /// This class is an abstract base class for MIP solvers. This class
1953 1953
  /// provides a full interface for set and modify an MIP problem,
1954 1954
  /// solve it and retrieve the solution. You can use one of the
1955 1955
  /// descendants as a concrete implementation, or the \c Lp
1956 1956
  /// default MIP solver. However, if you would like to handle MIP
1957 1957
  /// solvers as reference or pointer in a generic way, you can use
1958 1958
  /// this class directly.
1959 1959
  class MipSolver : virtual public LpBase {
1960 1960
  public:
1961 1961

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MATH_H
20 20
#define LEMON_MATH_H
21 21

	
22 22
///\ingroup misc
23 23
///\file
24 24
///\brief Some extensions to the standard \c cmath library.
25 25
///
26 26
///Some extensions to the standard \c cmath library.
27 27
///
28 28
///This file includes the standard math library (cmath).
29 29

	
30 30
#include<cmath>
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  /// \addtogroup misc
35 35
  /// @{
36 36

	
37 37
  /// The Euler constant
38 38
  const long double E       = 2.7182818284590452353602874713526625L;
39 39
  /// log_2(e)
40 40
  const long double LOG2E   = 1.4426950408889634073599246810018921L;
41 41
  /// log_10(e)
42 42
  const long double LOG10E  = 0.4342944819032518276511289189166051L;
43 43
  /// ln(2)
44 44
  const long double LN2     = 0.6931471805599453094172321214581766L;
45 45
  /// ln(10)
46 46
  const long double LN10    = 2.3025850929940456840179914546843642L;
47 47
  /// pi
48 48
  const long double PI      = 3.1415926535897932384626433832795029L;
49 49
  /// pi/2
50 50
  const long double PI_2    = 1.5707963267948966192313216916397514L;
51 51
  /// pi/4
52 52
  const long double PI_4    = 0.7853981633974483096156608458198757L;
53 53
  /// sqrt(2)
54 54
  const long double SQRT2   = 1.4142135623730950488016887242096981L;
55 55
  /// 1/sqrt(2)
56 56
  const long double SQRT1_2 = 0.7071067811865475244008443621048490L;
57 57

	
58 58
  ///Check whether the parameter is NaN or not
59 59
  
60 60
  ///This function checks whether the parameter is NaN or not.
61 61
  ///Is should be equivalent with std::isnan(), but it is not
62 62
  ///provided by all compilers.
63
  inline bool isnan(double v)
63
  inline bool isNaN(double v)
64 64
    {
65 65
      return v!=v;
66 66
    }
67 67

	
68 68
  /// @}
69 69

	
70 70
} //namespace lemon
71 71

	
72 72
#endif //LEMON_TOLERANCE_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_TIME_MEASURE_H
20 20
#define LEMON_TIME_MEASURE_H
21 21

	
22 22
///\ingroup timecount
23 23
///\file
24 24
///\brief Tools for measuring cpu usage
25 25

	
26 26
#ifdef WIN32
27
#ifndef WIN32_LEAN_AND_MEAN
27 28
#define WIN32_LEAN_AND_MEAN
29
#endif
30
#ifndef NOMINMAX
28 31
#define NOMINMAX
32
#endif
29 33
#include <windows.h>
30 34
#include <cmath>
31 35
#else
36
#include <unistd.h>
32 37
#include <sys/times.h>
33 38
#include <sys/time.h>
34 39
#endif
35 40

	
36 41
#include <string>
37 42
#include <fstream>
38 43
#include <iostream>
39 44

	
40 45
namespace lemon {
41 46

	
42 47
  /// \addtogroup timecount
43 48
  /// @{
44 49

	
45 50
  /// A class to store (cpu)time instances.
46 51

	
47 52
  /// This class stores five time values.
48 53
  /// - a real time
49 54
  /// - a user cpu time
50 55
  /// - a system cpu time
51 56
  /// - a user cpu time of children
52 57
  /// - a system cpu time of children
53 58
  ///
54 59
  /// TimeStamp's can be added to or substracted from each other and
55 60
  /// they can be pushed to a stream.
56 61
  ///
57 62
  /// In most cases, perhaps the \ref Timer or the \ref TimeReport
58 63
  /// class is what you want to use instead.
59 64

	
60 65
  class TimeStamp
61 66
  {
62 67
    double utime;
63 68
    double stime;
64 69
    double cutime;
65 70
    double cstime;
66 71
    double rtime;
67 72

	
68 73
    void _reset() {
69 74
      utime = stime = cutime = cstime = rtime = 0;
70 75
    }
71 76

	
72 77
  public:
73 78

	
74 79
    ///Read the current time values of the process
75 80
    void stamp()
76 81
    {
77 82
#ifndef WIN32
78 83
      timeval tv;
79 84
      gettimeofday(&tv, 0);
80 85
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
81 86

	
82 87
      tms ts;
83 88
      double tck=sysconf(_SC_CLK_TCK);
84 89
      times(&ts);
85 90
      utime=ts.tms_utime/tck;
86 91
      stime=ts.tms_stime/tck;
87 92
      cutime=ts.tms_cutime/tck;
88 93
      cstime=ts.tms_cstime/tck;
89 94
#else
90 95
      static const double ch = 4294967296.0e-7;
91 96
      static const double cl = 1.0e-7;
92 97

	
93 98
      FILETIME system;
94 99
      GetSystemTimeAsFileTime(&system);
95 100
      rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
96 101

	
97 102
      FILETIME create, exit, kernel, user;
98 103
      if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
99 104
        utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
100 105
        stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
101 106
        cutime = 0;
102 107
        cstime = 0;
103 108
      } else {
104 109
        rtime = 0;
105 110
        utime = 0;
106 111
        stime = 0;
107 112
        cutime = 0;
108 113
        cstime = 0;
109 114
      }
110 115
#endif
111 116
    }
112 117

	
113 118
    /// Constructor initializing with zero
114 119
    TimeStamp()
115 120
    { _reset(); }
116 121
    ///Constructor initializing with the current time values of the process
117 122
    TimeStamp(void *) { stamp();}
118 123

	
119 124
    ///Set every time value to zero
120 125
    TimeStamp &reset() {_reset();return *this;}
121 126

	
122 127
    ///\e
123 128
    TimeStamp &operator+=(const TimeStamp &b)
124 129
    {
125 130
      utime+=b.utime;
126 131
      stime+=b.stime;
127 132
      cutime+=b.cutime;
128 133
      cstime+=b.cstime;
129 134
      rtime+=b.rtime;
130 135
      return *this;
131 136
    }
132 137
    ///\e
133 138
    TimeStamp operator+(const TimeStamp &b) const
134 139
    {
135 140
      TimeStamp t(*this);
136 141
      return t+=b;
137 142
    }
138 143
    ///\e
139 144
    TimeStamp &operator-=(const TimeStamp &b)
140 145
    {
141 146
      utime-=b.utime;
142 147
      stime-=b.stime;
143 148
      cutime-=b.cutime;
144 149
      cstime-=b.cstime;
145 150
      rtime-=b.rtime;
146 151
      return *this;
147 152
    }
148 153
    ///\e
149 154
    TimeStamp operator-(const TimeStamp &b) const
150 155
    {
151 156
      TimeStamp t(*this);
152 157
      return t-=b;
153 158
    }
154 159
    ///\e
155 160
    TimeStamp &operator*=(double b)
156 161
    {
157 162
      utime*=b;
158 163
      stime*=b;
159 164
      cutime*=b;
160 165
      cstime*=b;
161 166
      rtime*=b;
162 167
      return *this;
163 168
    }
164 169
    ///\e
165 170
    TimeStamp operator*(double b) const
166 171
    {
167 172
      TimeStamp t(*this);
168 173
      return t*=b;
169 174
    }
170 175
    friend TimeStamp operator*(double b,const TimeStamp &t);
171 176
    ///\e
172 177
    TimeStamp &operator/=(double b)
173 178
    {
174 179
      utime/=b;
175 180
      stime/=b;
176 181
      cutime/=b;
177 182
      cstime/=b;
178 183
      rtime/=b;
179 184
      return *this;
180 185
    }
181 186
    ///\e
182 187
    TimeStamp operator/(double b) const
183 188
    {
184 189
      TimeStamp t(*this);
185 190
      return t/=b;
186 191
    }
187 192
    ///The time ellapsed since the last call of stamp()
188 193
    TimeStamp ellapsed() const
189 194
    {
190 195
      TimeStamp t(NULL);
191 196
      return t-*this;
192 197
    }
193 198

	
194 199
    friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
195 200

	
196 201
    ///Gives back the user time of the process
197 202
    double userTime() const
198 203
    {
199 204
      return utime;
200 205
    }
201 206
    ///Gives back the system time of the process
202 207
    double systemTime() const
203 208
    {
204 209
      return stime;
205 210
    }
206 211
    ///Gives back the user time of the process' children
207 212

	
208 213
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
209 214
    ///
210 215
    double cUserTime() const
211 216
    {
212 217
      return cutime;
213 218
    }
214 219
    ///Gives back the user time of the process' children
215 220

	
216 221
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
217 222
    ///
218 223
    double cSystemTime() const
219 224
    {
220 225
      return cstime;
221 226
    }
222 227
    ///Gives back the real time
223 228
    double realTime() const {return rtime;}
224 229
  };
225 230

	
226 231
  TimeStamp operator*(double b,const TimeStamp &t)
227 232
  {
228 233
    return t*b;
229 234
  }
230 235

	
231 236
  ///Prints the time counters
232 237

	
233 238
  ///Prints the time counters in the following form:
234 239
  ///
235 240
  /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
236 241
  ///
237 242
  /// where the values are the
238 243
  /// \li \c u: user cpu time,
239 244
  /// \li \c s: system cpu time,
240 245
  /// \li \c cu: user cpu time of children,
241 246
  /// \li \c cs: system cpu time of children,
242 247
  /// \li \c real: real time.
243 248
  /// \relates TimeStamp
244 249
  /// \note On <tt>WIN32</tt> platform the cummulative values are not
245 250
  /// calculated.
246 251
  inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
247 252
  {
248 253
    os << "u: " << t.userTime() <<
249 254
      "s, s: " << t.systemTime() <<
250 255
      "s, cu: " << t.cUserTime() <<
251 256
      "s, cs: " << t.cSystemTime() <<
252 257
      "s, real: " << t.realTime() << "s";
253 258
    return os;
254 259
  }
255 260

	
256 261
  ///Class for measuring the cpu time and real time usage of the process
257 262

	
258 263
  ///Class for measuring the cpu time and real time usage of the process.
259 264
  ///It is quite easy-to-use, here is a short example.
260 265
  ///\code
261 266
  /// #include<lemon/time_measure.h>
262 267
  /// #include<iostream>
263 268
  ///
264 269
  /// int main()
265 270
  /// {
266 271
  ///
267 272
  ///   ...
268 273
  ///
269 274
  ///   Timer t;
270 275
  ///   doSomething();
271 276
  ///   std::cout << t << '\n';
272 277
  ///   t.restart();
273 278
  ///   doSomethingElse();
274 279
  ///   std::cout << t << '\n';
275 280
  ///
276 281
  ///   ...
277 282
  ///
278 283
  /// }
279 284
  ///\endcode
280 285
  ///
281 286
  ///The \ref Timer can also be \ref stop() "stopped" and
282 287
  ///\ref start() "started" again, so it is possible to compute collected
283 288
  ///running times.
284 289
  ///
285 290
  ///\warning Depending on the operation system and its actual configuration
286 291
  ///the time counters have a certain (10ms on a typical Linux system)
287 292
  ///granularity.
0 comments (0 inline)