0
5
0
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
| 20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include<iostream> |
| 23 | 23 |
#include<fstream> |
| 24 | 24 |
#include<sstream> |
| 25 | 25 |
#include<algorithm> |
| 26 | 26 |
#include<vector> |
| 27 | 27 |
|
| 28 | 28 |
#ifndef WIN32 |
| 29 | 29 |
#include<sys/time.h> |
| 30 | 30 |
#include<ctime> |
| 31 | 31 |
#else |
| 32 |
#ifndef WIN32_LEAN_AND_MEAN |
|
| 32 | 33 |
#define WIN32_LEAN_AND_MEAN |
| 34 |
#endif |
|
| 35 |
#ifndef NOMINMAX |
|
| 33 | 36 |
#define NOMINMAX |
| 37 |
#endif |
|
| 34 | 38 |
#include<windows.h> |
| 35 | 39 |
#endif |
| 36 | 40 |
|
| 37 | 41 |
#include<lemon/math.h> |
| 38 | 42 |
#include<lemon/core.h> |
| 39 | 43 |
#include<lemon/dim2.h> |
| 40 | 44 |
#include<lemon/maps.h> |
| 41 | 45 |
#include<lemon/color.h> |
| 42 | 46 |
#include<lemon/bits/bezier.h> |
| 43 | 47 |
#include<lemon/error.h> |
| 44 | 48 |
|
| 45 | 49 |
|
| 46 | 50 |
///\ingroup eps_io |
| 47 | 51 |
///\file |
| 48 | 52 |
///\brief A well configurable tool for visualizing graphs |
| 49 | 53 |
|
| 50 | 54 |
namespace lemon {
|
| 51 | 55 |
|
| 52 | 56 |
namespace _graph_to_eps_bits {
|
| 53 | 57 |
template<class MT> |
| 54 | 58 |
class _NegY {
|
| 55 | 59 |
public: |
| 56 | 60 |
typedef typename MT::Key Key; |
| 57 | 61 |
typedef typename MT::Value Value; |
| 58 | 62 |
const MT ↦ |
| 59 | 63 |
int yscale; |
| 60 | 64 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
|
| 61 | 65 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
|
| 62 | 66 |
}; |
| 63 | 67 |
} |
| 64 | 68 |
|
| 65 | 69 |
///Default traits class of GraphToEps |
| 66 | 70 |
|
| 67 | 71 |
///Default traits class of \ref GraphToEps. |
| 68 | 72 |
/// |
| 69 | 73 |
///\c G is the type of the underlying graph. |
| 70 | 74 |
template<class G> |
| 71 | 75 |
struct DefaultGraphToEpsTraits |
| 72 | 76 |
{
|
| 73 | 77 |
typedef G Graph; |
| 74 | 78 |
typedef typename Graph::Node Node; |
| 75 | 79 |
typedef typename Graph::NodeIt NodeIt; |
| 76 | 80 |
typedef typename Graph::Arc Arc; |
| 77 | 81 |
typedef typename Graph::ArcIt ArcIt; |
| 78 | 82 |
typedef typename Graph::InArcIt InArcIt; |
| 79 | 83 |
typedef typename Graph::OutArcIt OutArcIt; |
| 80 | 84 |
|
| 81 | 85 |
|
| 82 | 86 |
const Graph &g; |
| 83 | 87 |
|
| 84 | 88 |
std::ostream& os; |
| 85 | 89 |
|
| 86 | 90 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
| 87 | 91 |
CoordsMapType _coords; |
| 88 | 92 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
| 89 | 93 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
| 90 | 94 |
|
| 91 | 95 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
| 92 | 96 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
| 93 | 97 |
|
| 94 | 98 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
| 95 | 99 |
|
| 96 | 100 |
double _arcWidthScale; |
| 97 | 101 |
|
| 98 | 102 |
double _nodeScale; |
| 99 | 103 |
double _xBorder, _yBorder; |
| 100 | 104 |
double _scale; |
| 101 | 105 |
double _nodeBorderQuotient; |
| 102 | 106 |
|
| 103 | 107 |
bool _drawArrows; |
| 104 | 108 |
double _arrowLength, _arrowWidth; |
| 105 | 109 |
|
| 106 | 110 |
bool _showNodes, _showArcs; |
| 107 | 111 |
|
| 108 | 112 |
bool _enableParallel; |
| 109 | 113 |
double _parArcDist; |
| 110 | 114 |
|
| 111 | 115 |
bool _showNodeText; |
| 112 | 116 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
| 113 | 117 |
double _nodeTextSize; |
| 114 | 118 |
|
| 115 | 119 |
bool _showNodePsText; |
| 116 | 120 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
| 117 | 121 |
char *_nodePsTextsPreamble; |
| 118 | 122 |
|
| 119 | 123 |
bool _undirected; |
| 120 | 124 |
|
| 121 | 125 |
bool _pleaseRemoveOsStream; |
| 122 | 126 |
|
| 123 | 127 |
bool _scaleToA4; |
| 124 | 128 |
|
| 125 | 129 |
std::string _title; |
| 126 | 130 |
std::string _copyright; |
| 127 | 131 |
|
| 128 | 132 |
enum NodeTextColorType |
| 129 | 133 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
|
| 130 | 134 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
| 131 | 135 |
|
| 132 | 136 |
bool _autoNodeScale; |
| 133 | 137 |
bool _autoArcWidthScale; |
| 134 | 138 |
|
| 135 | 139 |
bool _absoluteNodeSizes; |
| 136 | 140 |
bool _absoluteArcWidths; |
| 137 | 141 |
|
| 138 | 142 |
bool _negY; |
| 139 | 143 |
|
| 140 | 144 |
bool _preScale; |
| 141 | 145 |
///Constructor |
| 142 | 146 |
|
| 143 | 147 |
///Constructor |
| 144 | 148 |
///\param _g Reference to the graph to be printed. |
| 145 | 149 |
///\param _os Reference to the output stream. |
| 146 | 150 |
///\param _os Reference to the output stream. |
| 147 | 151 |
///By default it is <tt>std::cout</tt>. |
| 148 | 152 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
| 149 | 153 |
///will be explicitly deallocated by the destructor. |
| 150 | 154 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
| 151 | 155 |
bool _pros=false) : |
| 152 | 156 |
g(_g), os(_os), |
| 153 | 157 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
| 154 | 158 |
_nodeColors(WHITE), _arcColors(BLACK), |
| 155 | 159 |
_arcWidths(1.0), _arcWidthScale(0.003), |
| 156 | 160 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
| 157 | 161 |
_nodeBorderQuotient(.1), |
| 158 | 162 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
| 159 | 163 |
_showNodes(true), _showArcs(true), |
| 160 | 164 |
_enableParallel(false), _parArcDist(1), |
| 161 | 165 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
| 162 | 166 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
| 163 | 167 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
| 164 | 168 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
| 165 | 169 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
| 166 | 170 |
_autoNodeScale(false), |
| 167 | 171 |
_autoArcWidthScale(false), |
| 168 | 172 |
_absoluteNodeSizes(false), |
| 169 | 173 |
_absoluteArcWidths(false), |
| 170 | 174 |
_negY(false), |
| 171 | 175 |
_preScale(true) |
| 172 | 176 |
{}
|
| 173 | 177 |
}; |
| 174 | 178 |
|
| 175 | 179 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
| 176 | 180 |
|
| 177 | 181 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
| 178 | 182 |
/// |
| 179 | 183 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
| 180 | 184 |
template<class T> class GraphToEps : public T |
| 181 | 185 |
{
|
| 182 | 186 |
// Can't believe it is required by the C++ standard |
| 183 | 187 |
using T::g; |
| 184 | 188 |
using T::os; |
| 185 | 189 |
|
| 186 | 190 |
using T::_coords; |
| 187 | 191 |
using T::_nodeSizes; |
| 188 | 192 |
using T::_nodeShapes; |
| 189 | 193 |
using T::_nodeColors; |
| 190 | 194 |
using T::_arcColors; |
| 191 | 195 |
using T::_arcWidths; |
| 192 | 196 |
|
| 193 | 197 |
using T::_arcWidthScale; |
| 194 | 198 |
using T::_nodeScale; |
| 195 | 199 |
using T::_xBorder; |
| 196 | 200 |
using T::_yBorder; |
| 197 | 201 |
using T::_scale; |
| 198 | 202 |
using T::_nodeBorderQuotient; |
| 199 | 203 |
|
| 200 | 204 |
using T::_drawArrows; |
| 201 | 205 |
using T::_arrowLength; |
| 202 | 206 |
using T::_arrowWidth; |
| 203 | 207 |
|
| 204 | 208 |
using T::_showNodes; |
| 205 | 209 |
using T::_showArcs; |
| 206 | 210 |
|
| 207 | 211 |
using T::_enableParallel; |
| 208 | 212 |
using T::_parArcDist; |
| 209 | 213 |
|
| 210 | 214 |
using T::_showNodeText; |
| 211 | 215 |
using T::_nodeTexts; |
| 212 | 216 |
using T::_nodeTextSize; |
| 213 | 217 |
|
| 214 | 218 |
using T::_showNodePsText; |
| 215 | 219 |
using T::_nodePsTexts; |
| 216 | 220 |
using T::_nodePsTextsPreamble; |
| 217 | 221 |
|
| 218 | 222 |
using T::_undirected; |
| 219 | 223 |
|
| 220 | 224 |
using T::_pleaseRemoveOsStream; |
| 221 | 225 |
|
| 222 | 226 |
using T::_scaleToA4; |
| 223 | 227 |
|
| 224 | 228 |
using T::_title; |
| 225 | 229 |
using T::_copyright; |
| 226 | 230 |
|
| 227 | 231 |
using T::NodeTextColorType; |
| 228 | 232 |
using T::CUST_COL; |
| 229 | 233 |
using T::DIST_COL; |
| 230 | 234 |
using T::DIST_BW; |
| 231 | 235 |
using T::_nodeTextColorType; |
| 232 | 236 |
using T::_nodeTextColors; |
| 233 | 237 |
|
| 234 | 238 |
using T::_autoNodeScale; |
| 235 | 239 |
using T::_autoArcWidthScale; |
| 236 | 240 |
|
| 237 | 241 |
using T::_absoluteNodeSizes; |
| 238 | 242 |
using T::_absoluteArcWidths; |
| 239 | 243 |
|
| 240 | 244 |
|
| 241 | 245 |
using T::_negY; |
| 242 | 246 |
using T::_preScale; |
| 243 | 247 |
|
| 244 | 248 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
| 245 | 249 |
|
| 246 | 250 |
typedef typename T::Graph Graph; |
| 247 | 251 |
typedef typename Graph::Node Node; |
| 248 | 252 |
typedef typename Graph::NodeIt NodeIt; |
| 249 | 253 |
typedef typename Graph::Arc Arc; |
| 250 | 254 |
typedef typename Graph::ArcIt ArcIt; |
| 251 | 255 |
typedef typename Graph::InArcIt InArcIt; |
| 252 | 256 |
typedef typename Graph::OutArcIt OutArcIt; |
| 253 | 257 |
|
| 254 | 258 |
static const int INTERPOL_PREC; |
| 255 | 259 |
static const double A4HEIGHT; |
| 256 | 260 |
static const double A4WIDTH; |
| 257 | 261 |
static const double A4BORDER; |
| 258 | 262 |
|
| 259 | 263 |
bool dontPrint; |
| 260 | 264 |
|
| 261 | 265 |
public: |
| 262 | 266 |
///Node shapes |
| 263 | 267 |
|
| 264 | 268 |
///Node shapes. |
| 265 | 269 |
/// |
| 266 | 270 |
enum NodeShapes {
|
| 267 | 271 |
/// = 0 |
| 268 | 272 |
///\image html nodeshape_0.png |
| 269 | 273 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
| 270 | 274 |
CIRCLE=0, |
| 271 | 275 |
/// = 1 |
| 272 | 276 |
///\image html nodeshape_1.png |
| 273 | 277 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
| 274 | 278 |
/// |
| 275 | 279 |
SQUARE=1, |
| 276 | 280 |
/// = 2 |
| 277 | 281 |
///\image html nodeshape_2.png |
| 278 | 282 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
| 279 | 283 |
/// |
| 280 | 284 |
DIAMOND=2, |
| 281 | 285 |
/// = 3 |
| 282 | 286 |
///\image html nodeshape_3.png |
| 283 | 287 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
| 284 | 288 |
/// |
| 285 | 289 |
MALE=3, |
| 286 | 290 |
/// = 4 |
| 287 | 291 |
///\image html nodeshape_4.png |
| 288 | 292 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
| 289 | 293 |
/// |
| 290 | 294 |
FEMALE=4 |
| 291 | 295 |
}; |
| 292 | 296 |
|
| 293 | 297 |
private: |
| 294 | 298 |
class arcLess {
|
| 295 | 299 |
const Graph &g; |
| 296 | 300 |
public: |
| 297 | 301 |
arcLess(const Graph &_g) : g(_g) {}
|
| 298 | 302 |
bool operator()(Arc a,Arc b) const |
| 299 | 303 |
{
|
| 300 | 304 |
Node ai=std::min(g.source(a),g.target(a)); |
| 301 | 305 |
Node aa=std::max(g.source(a),g.target(a)); |
| 302 | 306 |
Node bi=std::min(g.source(b),g.target(b)); |
| 303 | 307 |
Node ba=std::max(g.source(b),g.target(b)); |
| 304 | 308 |
return ai<bi || |
| 305 | 309 |
(ai==bi && (aa < ba || |
| 306 | 310 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
| 307 | 311 |
} |
| 308 | 312 |
}; |
| 309 | 313 |
bool isParallel(Arc e,Arc f) const |
| 310 | 314 |
{
|
| 311 | 315 |
return (g.source(e)==g.source(f)&& |
| 312 | 316 |
g.target(e)==g.target(f)) || |
| 313 | 317 |
(g.source(e)==g.target(f)&& |
| 314 | 318 |
g.target(e)==g.source(f)); |
| 315 | 319 |
} |
| 316 | 320 |
template<class TT> |
| 317 | 321 |
static std::string psOut(const dim2::Point<TT> &p) |
| 318 | 322 |
{
|
| 319 | 323 |
std::ostringstream os; |
| 320 | 324 |
os << p.x << ' ' << p.y; |
| 321 | 325 |
return os.str(); |
| 322 | 326 |
} |
| 323 | 327 |
static std::string psOut(const Color &c) |
| 324 | 328 |
{
|
| 325 | 329 |
std::ostringstream os; |
| 326 | 330 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
| 327 | 331 |
return os.str(); |
| 328 | 332 |
} |
| 329 | 333 |
|
| 330 | 334 |
public: |
| 331 | 335 |
GraphToEps(const T &t) : T(t), dontPrint(false) {};
|
| 332 | 336 |
|
| 333 | 337 |
template<class X> struct CoordsTraits : public T {
|
| 334 | 338 |
typedef X CoordsMapType; |
| 335 | 339 |
const X &_coords; |
| 336 | 340 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
|
| 337 | 341 |
}; |
| 338 | 342 |
///Sets the map of the node coordinates |
| 339 | 343 |
|
| 340 | 344 |
///Sets the map of the node coordinates. |
| 341 | 345 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
| 342 | 346 |
///\ref dim2::Point "dim2::Point<int>" values. |
| 343 | 347 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
|
| 344 | 348 |
dontPrint=true; |
| 345 | 349 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
| 346 | 350 |
} |
| 347 | 351 |
template<class X> struct NodeSizesTraits : public T {
|
| 348 | 352 |
const X &_nodeSizes; |
| 349 | 353 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
|
| 350 | 354 |
}; |
| 351 | 355 |
///Sets the map of the node sizes |
| 352 | 356 |
|
| 353 | 357 |
///Sets the map of the node sizes. |
| 354 | 358 |
///\param x must be a node map with \c double (or convertible) values. |
| 355 | 359 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
| 356 | 360 |
{
|
| 357 | 361 |
dontPrint=true; |
| 358 | 362 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
| 359 | 363 |
} |
| 360 | 364 |
template<class X> struct NodeShapesTraits : public T {
|
| 361 | 365 |
const X &_nodeShapes; |
| 362 | 366 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
|
| 363 | 367 |
}; |
| 364 | 368 |
///Sets the map of the node shapes |
| 365 | 369 |
|
| 366 | 370 |
///Sets the map of the node shapes. |
| 367 | 371 |
///The available shape values |
| 368 | 372 |
///can be found in \ref NodeShapes "enum NodeShapes". |
| 369 | 373 |
///\param x must be a node map with \c int (or convertible) values. |
| 370 | 374 |
///\sa NodeShapes |
| 371 | 375 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
| 372 | 376 |
{
|
| 373 | 377 |
dontPrint=true; |
| 374 | 378 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
| 375 | 379 |
} |
| 376 | 380 |
template<class X> struct NodeTextsTraits : public T {
|
| 377 | 381 |
const X &_nodeTexts; |
| 378 | 382 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
|
| 379 | 383 |
}; |
| 380 | 384 |
///Sets the text printed on the nodes |
| 381 | 385 |
|
| 382 | 386 |
///Sets the text printed on the nodes. |
| 383 | 387 |
///\param x must be a node map with type that can be pushed to a standard |
| 384 | 388 |
///\c ostream. |
| 385 | 389 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
| 386 | 390 |
{
|
| 387 | 391 |
dontPrint=true; |
| 388 | 392 |
_showNodeText=true; |
| 389 | 393 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
| 390 | 394 |
} |
| 391 | 395 |
template<class X> struct NodePsTextsTraits : public T {
|
| 392 | 396 |
const X &_nodePsTexts; |
| 393 | 397 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
|
| 394 | 398 |
}; |
| 395 | 399 |
///Inserts a PostScript block to the nodes |
| 396 | 400 |
|
| 397 | 401 |
///With this command it is possible to insert a verbatim PostScript |
| 398 | 402 |
///block to the nodes. |
| 399 | 403 |
///The PS current point will be moved to the center of the node before |
| 400 | 404 |
///the PostScript block inserted. |
| 401 | 405 |
/// |
| 402 | 406 |
///Before and after the block a newline character is inserted so you |
| 403 | 407 |
///don't have to bother with the separators. |
| 404 | 408 |
/// |
| 405 | 409 |
///\param x must be a node map with type that can be pushed to a standard |
| 406 | 410 |
///\c ostream. |
| 407 | 411 |
/// |
| 408 | 412 |
///\sa nodePsTextsPreamble() |
| 409 | 413 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
| 410 | 414 |
{
|
| 411 | 415 |
dontPrint=true; |
| 412 | 416 |
_showNodePsText=true; |
| 413 | 417 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
| 414 | 418 |
} |
| 415 | 419 |
template<class X> struct ArcWidthsTraits : public T {
|
| 416 | 420 |
const X &_arcWidths; |
| 417 | 421 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
|
| 418 | 422 |
}; |
| 419 | 423 |
///Sets the map of the arc widths |
| 420 | 424 |
|
| 421 | 425 |
///Sets the map of the arc widths. |
| 422 | 426 |
///\param x must be an arc map with \c double (or convertible) values. |
| 423 | 427 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
| 424 | 428 |
{
|
| 425 | 429 |
dontPrint=true; |
| 426 | 430 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
| 427 | 431 |
} |
| 428 | 432 |
|
| 429 | 433 |
template<class X> struct NodeColorsTraits : public T {
|
| 430 | 434 |
const X &_nodeColors; |
| 431 | 435 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
|
| 432 | 436 |
}; |
| 433 | 437 |
///Sets the map of the node colors |
| 434 | 438 |
|
| 435 | 439 |
///Sets the map of the node colors. |
| 436 | 440 |
///\param x must be a node map with \ref Color values. |
| 437 | 441 |
/// |
| 438 | 442 |
///\sa Palette |
| 439 | 443 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
| 440 | 444 |
nodeColors(const X &x) |
| 441 | 445 |
{
|
| 442 | 446 |
dontPrint=true; |
| 443 | 447 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
| 444 | 448 |
} |
| 445 | 449 |
template<class X> struct NodeTextColorsTraits : public T {
|
| 446 | 450 |
const X &_nodeTextColors; |
| 447 | 451 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
|
| 448 | 452 |
}; |
| 449 | 453 |
///Sets the map of the node text colors |
| 450 | 454 |
|
| 451 | 455 |
///Sets the map of the node text colors. |
| 452 | 456 |
///\param x must be a node map with \ref Color values. |
| 453 | 457 |
/// |
| 454 | 458 |
///\sa Palette |
| 455 | 459 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
| 456 | 460 |
nodeTextColors(const X &x) |
| 457 | 461 |
{
|
| 458 | 462 |
dontPrint=true; |
| 459 | 463 |
_nodeTextColorType=CUST_COL; |
| 460 | 464 |
return GraphToEps<NodeTextColorsTraits<X> > |
| 461 | 465 |
(NodeTextColorsTraits<X>(*this,x)); |
| 462 | 466 |
} |
| 463 | 467 |
template<class X> struct ArcColorsTraits : public T {
|
| 464 | 468 |
const X &_arcColors; |
| 465 | 469 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
|
| 466 | 470 |
}; |
| 467 | 471 |
///Sets the map of the arc colors |
| 468 | 472 |
|
| 469 | 473 |
///Sets the map of the arc colors. |
| 470 | 474 |
///\param x must be an arc map with \ref Color values. |
| 471 | 475 |
/// |
| 472 | 476 |
///\sa Palette |
| 473 | 477 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
| 474 | 478 |
arcColors(const X &x) |
| 475 | 479 |
{
|
| 476 | 480 |
dontPrint=true; |
| 477 | 481 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
| 478 | 482 |
} |
| 479 | 483 |
///Sets a global scale factor for node sizes |
| 480 | 484 |
|
| 481 | 485 |
///Sets a global scale factor for node sizes. |
| 482 | 486 |
/// |
| 483 | 487 |
/// If nodeSizes() is not given, this function simply sets the node |
| 484 | 488 |
/// sizes to \c d. If nodeSizes() is given, but |
| 485 | 489 |
/// autoNodeScale() is not, then the node size given by |
| 486 | 490 |
/// nodeSizes() will be multiplied by the value \c d. |
| 487 | 491 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
| 488 | 492 |
/// node sizes will be scaled in such a way that the greatest size will be |
| 489 | 493 |
/// equal to \c d. |
| 490 | 494 |
/// \sa nodeSizes() |
| 491 | 495 |
/// \sa autoNodeScale() |
| 492 | 496 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
|
| 493 | 497 |
///Turns on/off the automatic node size scaling. |
| 494 | 498 |
|
| 495 | 499 |
///Turns on/off the automatic node size scaling. |
| 496 | 500 |
/// |
| 497 | 501 |
///\sa nodeScale() |
| 498 | 502 |
/// |
| 499 | 503 |
GraphToEps<T> &autoNodeScale(bool b=true) {
|
| 500 | 504 |
_autoNodeScale=b;return *this; |
| 501 | 505 |
} |
| 502 | 506 |
|
| 503 | 507 |
///Turns on/off the absolutematic node size scaling. |
| 504 | 508 |
|
| 505 | 509 |
///Turns on/off the absolutematic node size scaling. |
| 506 | 510 |
/// |
| 507 | 511 |
///\sa nodeScale() |
| 508 | 512 |
/// |
| 509 | 513 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) {
|
| 510 | 514 |
_absoluteNodeSizes=b;return *this; |
| 511 | 515 |
} |
| 512 | 516 |
|
| 513 | 517 |
///Negates the Y coordinates. |
| 514 | 518 |
GraphToEps<T> &negateY(bool b=true) {
|
| 515 | 519 |
_negY=b;return *this; |
| 516 | 520 |
} |
| 517 | 521 |
|
| 518 | 522 |
///Turn on/off pre-scaling |
| 519 | 523 |
|
| 520 | 524 |
///By default graphToEps() rescales the whole image in order to avoid |
| 521 | 525 |
///very big or very small bounding boxes. |
| 522 | 526 |
/// |
| 523 | 527 |
///This (p)rescaling can be turned off with this function. |
| 524 | 528 |
/// |
| 525 | 529 |
GraphToEps<T> &preScale(bool b=true) {
|
| 526 | 530 |
_preScale=b;return *this; |
| 527 | 531 |
} |
| 528 | 532 |
|
| 529 | 533 |
///Sets a global scale factor for arc widths |
| 530 | 534 |
|
| 531 | 535 |
/// Sets a global scale factor for arc widths. |
| 532 | 536 |
/// |
| 533 | 537 |
/// If arcWidths() is not given, this function simply sets the arc |
| 534 | 538 |
/// widths to \c d. If arcWidths() is given, but |
| 535 | 539 |
/// autoArcWidthScale() is not, then the arc withs given by |
| 536 | 540 |
/// arcWidths() will be multiplied by the value \c d. |
| 537 | 541 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
| 538 | 542 |
/// arc withs will be scaled in such a way that the greatest width will be |
| 539 | 543 |
/// equal to \c d. |
| 540 | 544 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
|
| 541 | 545 |
///Turns on/off the automatic arc width scaling. |
| 542 | 546 |
|
| 543 | 547 |
///Turns on/off the automatic arc width scaling. |
| 544 | 548 |
/// |
| 545 | 549 |
///\sa arcWidthScale() |
| 546 | 550 |
/// |
| 547 | 551 |
GraphToEps<T> &autoArcWidthScale(bool b=true) {
|
| 548 | 552 |
_autoArcWidthScale=b;return *this; |
| 549 | 553 |
} |
| 550 | 554 |
///Turns on/off the absolutematic arc width scaling. |
| 551 | 555 |
|
| 552 | 556 |
///Turns on/off the absolutematic arc width scaling. |
| 553 | 557 |
/// |
| 554 | 558 |
///\sa arcWidthScale() |
| 555 | 559 |
/// |
| 556 | 560 |
GraphToEps<T> &absoluteArcWidths(bool b=true) {
|
| 557 | 561 |
_absoluteArcWidths=b;return *this; |
| 558 | 562 |
} |
| 559 | 563 |
///Sets a global scale factor for the whole picture |
| 560 | 564 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;}
|
| 561 | 565 |
///Sets the width of the border around the picture |
| 562 | 566 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
|
| 563 | 567 |
///Sets the width of the border around the picture |
| 564 | 568 |
GraphToEps<T> &border(double x, double y) {
|
| 565 | 569 |
_xBorder=x;_yBorder=y;return *this; |
| 566 | 570 |
} |
| 567 | 571 |
///Sets whether to draw arrows |
| 568 | 572 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
|
| 569 | 573 |
///Sets the length of the arrowheads |
| 570 | 574 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
|
| 571 | 575 |
///Sets the width of the arrowheads |
| 572 | 576 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
|
| 573 | 577 |
|
| 574 | 578 |
///Scales the drawing to fit to A4 page |
| 575 | 579 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
|
| 576 | 580 |
|
| 577 | 581 |
///Enables parallel arcs |
| 578 | 582 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
|
| 579 | 583 |
|
| 580 | 584 |
///Sets the distance between parallel arcs |
| 581 | 585 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
|
| 582 | 586 |
|
| 583 | 587 |
///Hides the arcs |
| 584 | 588 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
|
| 585 | 589 |
///Hides the nodes |
| 586 | 590 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
|
| 587 | 591 |
|
| 588 | 592 |
///Sets the size of the node texts |
| 589 | 593 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
|
| 590 | 594 |
|
| 591 | 595 |
///Sets the color of the node texts to be different from the node color |
| 592 | 596 |
|
| 593 | 597 |
///Sets the color of the node texts to be as different from the node color |
| 594 | 598 |
///as it is possible. |
| 595 | 599 |
GraphToEps<T> &distantColorNodeTexts() |
| 596 | 600 |
{_nodeTextColorType=DIST_COL;return *this;}
|
| 597 | 601 |
///Sets the color of the node texts to be black or white and always visible. |
| 598 | 602 |
|
| 599 | 603 |
///Sets the color of the node texts to be black or white according to |
| 600 | 604 |
///which is more different from the node color. |
| 601 | 605 |
GraphToEps<T> &distantBWNodeTexts() |
| 602 | 606 |
{_nodeTextColorType=DIST_BW;return *this;}
|
| 603 | 607 |
|
| 604 | 608 |
///Gives a preamble block for node Postscript block. |
| 605 | 609 |
|
| 606 | 610 |
///Gives a preamble block for node Postscript block. |
| 607 | 611 |
/// |
| 608 | 612 |
///\sa nodePsTexts() |
| 609 | 613 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) {
|
| 610 | 614 |
_nodePsTextsPreamble=str ;return *this; |
| 611 | 615 |
} |
| 612 | 616 |
///Sets whether the graph is undirected |
| 613 | 617 |
|
| 614 | 618 |
///Sets whether the graph is undirected. |
| 615 | 619 |
/// |
| 616 | 620 |
///This setting is the default for undirected graphs. |
| 617 | 621 |
/// |
| 618 | 622 |
///\sa directed() |
| 619 | 623 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
|
| 620 | 624 |
|
| 621 | 625 |
///Sets whether the graph is directed |
| 622 | 626 |
|
| 623 | 627 |
///Sets whether the graph is directed. |
| 624 | 628 |
///Use it to show the edges as a pair of directed ones. |
| 625 | 629 |
/// |
| 626 | 630 |
///This setting is the default for digraphs. |
| 627 | 631 |
/// |
| 628 | 632 |
///\sa undirected() |
| 629 | 633 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
|
| 630 | 634 |
|
| 631 | 635 |
///Sets the title. |
| 632 | 636 |
|
| 633 | 637 |
///Sets the title of the generated image, |
| 634 | 638 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
| 635 | 639 |
///the EPS file. |
| 636 | 640 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
|
| 637 | 641 |
///Sets the copyright statement. |
| 638 | 642 |
|
| 639 | 643 |
///Sets the copyright statement of the generated image, |
| 640 | 644 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
| 641 | 645 |
///the EPS file. |
| 642 | 646 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;}
|
| 643 | 647 |
|
| 644 | 648 |
protected: |
| 645 | 649 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
| 646 | 650 |
{
|
| 647 | 651 |
switch(t) {
|
| 648 | 652 |
case CIRCLE: |
| 649 | 653 |
case MALE: |
| 650 | 654 |
case FEMALE: |
| 651 | 655 |
return p.normSquare()<=r*r; |
| 652 | 656 |
case SQUARE: |
| 653 | 657 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
| 654 | 658 |
case DIAMOND: |
| 655 | 659 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
| 656 | 660 |
} |
| 657 | 661 |
return false; |
| 658 | 662 |
} |
| 659 | 663 |
|
| 660 | 664 |
public: |
| 661 | 665 |
~GraphToEps() { }
|
| 662 | 666 |
|
| 663 | 667 |
///Draws the graph. |
| 664 | 668 |
|
| 665 | 669 |
///Like other functions using |
| 666 | 670 |
///\ref named-templ-func-param "named template parameters", |
| 667 | 671 |
///this function calls the algorithm itself, i.e. in this case |
| 668 | 672 |
///it draws the graph. |
| 669 | 673 |
void run() {
|
| 670 | 674 |
const double EPSILON=1e-9; |
| 671 | 675 |
if(dontPrint) return; |
| 672 | 676 |
|
| 673 | 677 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
| 674 | 678 |
mycoords(_coords,_negY); |
| 675 | 679 |
|
| 676 | 680 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
| 677 | 681 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
| 678 | 682 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
| 679 | 683 |
os << "%%Creator: LEMON, graphToEps()\n"; |
| 680 | 684 |
|
| 681 | 685 |
{
|
| 682 | 686 |
#ifndef WIN32 |
| 683 | 687 |
timeval tv; |
| 684 | 688 |
gettimeofday(&tv, 0); |
| 685 | 689 |
|
| 686 | 690 |
char cbuf[26]; |
| 687 | 691 |
ctime_r(&tv.tv_sec,cbuf); |
| 688 | 692 |
os << "%%CreationDate: " << cbuf; |
| 689 | 693 |
#else |
| 690 | 694 |
SYSTEMTIME time; |
| 691 |
char buf1[11], buf2[9], buf3[5]; |
|
| 692 |
|
|
| 693 | 695 |
GetSystemTime(&time); |
| 696 |
#if defined(_MSC_VER) && (_MSC_VER < 1500) |
|
| 697 |
LPWSTR buf1, buf2, buf3; |
|
| 694 | 698 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
| 695 |
"ddd MMM dd", buf1, 11) && |
|
| 699 |
L"ddd MMM dd", buf1, 11) && |
|
| 696 | 700 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
| 697 |
"HH':'mm':'ss", buf2, 9) && |
|
| 701 |
L"HH':'mm':'ss", buf2, 9) && |
|
| 698 | 702 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
| 699 |
|
|
| 703 |
L"yyyy", buf3, 5)) {
|
|
| 700 | 704 |
os << "%%CreationDate: " << buf1 << ' ' |
| 701 | 705 |
<< buf2 << ' ' << buf3 << std::endl; |
| 702 | 706 |
} |
| 707 |
#else |
|
| 708 |
char buf1[11], buf2[9], buf3[5]; |
|
| 709 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
|
| 710 |
"ddd MMM dd", buf1, 11) && |
|
| 711 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
|
| 712 |
"HH':'mm':'ss", buf2, 9) && |
|
| 713 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
|
| 714 |
"yyyy", buf3, 5)) {
|
|
| 715 |
os << "%%CreationDate: " << buf1 << ' ' |
|
| 716 |
<< buf2 << ' ' << buf3 << std::endl; |
|
| 717 |
} |
|
| 718 |
#endif |
|
| 703 | 719 |
#endif |
| 704 | 720 |
} |
| 705 | 721 |
|
| 706 | 722 |
if (_autoArcWidthScale) {
|
| 707 | 723 |
double max_w=0; |
| 708 | 724 |
for(ArcIt e(g);e!=INVALID;++e) |
| 709 | 725 |
max_w=std::max(double(_arcWidths[e]),max_w); |
| 710 | 726 |
if(max_w>EPSILON) {
|
| 711 | 727 |
_arcWidthScale/=max_w; |
| 712 | 728 |
} |
| 713 | 729 |
} |
| 714 | 730 |
|
| 715 | 731 |
if (_autoNodeScale) {
|
| 716 | 732 |
double max_s=0; |
| 717 | 733 |
for(NodeIt n(g);n!=INVALID;++n) |
| 718 | 734 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
| 719 | 735 |
if(max_s>EPSILON) {
|
| 720 | 736 |
_nodeScale/=max_s; |
| 721 | 737 |
} |
| 722 | 738 |
} |
| 723 | 739 |
|
| 724 | 740 |
double diag_len = 1; |
| 725 | 741 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
|
| 726 | 742 |
dim2::Box<double> bb; |
| 727 | 743 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
| 728 | 744 |
if (bb.empty()) {
|
| 729 | 745 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
| 730 | 746 |
} |
| 731 | 747 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
| 732 | 748 |
if(diag_len<EPSILON) diag_len = 1; |
| 733 | 749 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
| 734 | 750 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
| 735 | 751 |
} |
| 736 | 752 |
|
| 737 | 753 |
dim2::Box<double> bb; |
| 738 | 754 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 739 | 755 |
double ns=_nodeSizes[n]*_nodeScale; |
| 740 | 756 |
dim2::Point<double> p(ns,ns); |
| 741 | 757 |
switch(_nodeShapes[n]) {
|
| 742 | 758 |
case CIRCLE: |
| 743 | 759 |
case SQUARE: |
| 744 | 760 |
case DIAMOND: |
| 745 | 761 |
bb.add(p+mycoords[n]); |
| 746 | 762 |
bb.add(-p+mycoords[n]); |
| 747 | 763 |
break; |
| 748 | 764 |
case MALE: |
| 749 | 765 |
bb.add(-p+mycoords[n]); |
| 750 | 766 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
| 751 | 767 |
break; |
| 752 | 768 |
case FEMALE: |
| 753 | 769 |
bb.add(p+mycoords[n]); |
| 754 | 770 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
| 755 | 771 |
break; |
| 756 | 772 |
} |
| 757 | 773 |
} |
| 758 | 774 |
if (bb.empty()) {
|
| 759 | 775 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
| 760 | 776 |
} |
| 761 | 777 |
|
| 762 | 778 |
if(_scaleToA4) |
| 763 | 779 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
| 764 | 780 |
else {
|
| 765 | 781 |
if(_preScale) {
|
| 766 | 782 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
| 767 | 783 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
| 768 | 784 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
| 769 | 785 |
} |
| 770 | 786 |
|
| 771 | 787 |
os << "%%BoundingBox: " |
| 772 | 788 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
| 773 | 789 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
| 774 | 790 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
| 775 | 791 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
| 776 | 792 |
} |
| 777 | 793 |
|
| 778 | 794 |
os << "%%EndComments\n"; |
| 779 | 795 |
|
| 780 | 796 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
| 781 | 797 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
|
| 782 | 798 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
| 783 | 799 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
|
| 784 | 800 |
<< " bind def\n"; |
| 785 | 801 |
//x y r |
| 786 | 802 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }"
|
| 787 | 803 |
<< " bind def\n"; |
| 788 | 804 |
//x y r |
| 789 | 805 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
|
| 790 | 806 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
| 791 | 807 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
| 792 | 808 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
| 793 | 809 |
<< " closepath pop pop pop} bind def\n"; |
| 794 | 810 |
//x y r |
| 795 | 811 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n"
|
| 796 | 812 |
<< " 2 index 2 index 2 index add lineto\n" |
| 797 | 813 |
<< " 2 index 1 index sub 2 index lineto\n" |
| 798 | 814 |
<< " 2 index 2 index 2 index sub lineto\n" |
| 799 | 815 |
<< " closepath pop pop pop} bind def\n"; |
| 800 | 816 |
// x y r cr cg cb |
| 801 | 817 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
|
| 802 | 818 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 803 | 819 |
<< " } bind def\n"; |
| 804 | 820 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
|
| 805 | 821 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
| 806 | 822 |
<< " } bind def\n"; |
| 807 | 823 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
|
| 808 | 824 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
| 809 | 825 |
<< " } bind def\n"; |
| 810 | 826 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index "
|
| 811 | 827 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
| 812 | 828 |
<< " 1.5 mul mul setlinewidth\n" |
| 813 | 829 |
<< " newpath 5 index 5 index moveto " |
| 814 | 830 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
| 815 | 831 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
| 816 | 832 |
<< " moveto\n" |
| 817 | 833 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
| 818 | 834 |
<< "stroke\n" |
| 819 | 835 |
<< " 5 index 5 index 5 index c fill\n" |
| 820 | 836 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 821 | 837 |
<< " } bind def\n"; |
| 822 | 838 |
os << "/nmale {\n"
|
| 823 | 839 |
<< " 0 0 0 setrgbcolor 3 index " |
| 824 | 840 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
| 825 | 841 |
<<" 1.5 mul mul setlinewidth\n" |
| 826 | 842 |
<< " newpath 5 index 5 index moveto\n" |
| 827 | 843 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
| 828 | 844 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
| 829 | 845 |
<< " 1 index 1 index lineto\n" |
| 830 | 846 |
<< " 1 index 1 index 7 index sub moveto\n" |
| 831 | 847 |
<< " 1 index 1 index lineto\n" |
| 832 | 848 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
| 833 | 849 |
<< " lineto\n" |
| 834 | 850 |
<< " stroke\n" |
| 835 | 851 |
<< " 5 index 5 index 5 index c fill\n" |
| 836 | 852 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 837 | 853 |
<< " } bind def\n"; |
| 838 | 854 |
|
| 839 | 855 |
|
| 840 | 856 |
os << "/arrl " << _arrowLength << " def\n"; |
| 841 | 857 |
os << "/arrw " << _arrowWidth << " def\n"; |
| 842 | 858 |
// l dx_norm dy_norm |
| 843 | 859 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n";
|
| 844 | 860 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
| 845 | 861 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx "
|
| 846 | 862 |
<< "exch def\n" |
| 847 | 863 |
<< " /w exch def /len exch def\n" |
| 848 | 864 |
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
| 849 | 865 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
| 850 | 866 |
<< " len w sub arrl sub dx dy lrl\n" |
| 851 | 867 |
<< " arrw dy dx neg lrl\n" |
| 852 | 868 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
| 853 | 869 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
| 854 | 870 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
| 855 | 871 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
| 856 | 872 |
<< " arrw dy dx neg lrl\n" |
| 857 | 873 |
<< " len w sub arrl sub neg dx dy lrl\n" |
| 858 | 874 |
<< " closepath fill } bind def\n"; |
| 859 | 875 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n"
|
| 860 | 876 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
| 861 | 877 |
|
| 862 | 878 |
os << "\ngsave\n"; |
| 863 | 879 |
if(_scaleToA4) |
| 864 | 880 |
if(bb.height()>bb.width()) {
|
| 865 | 881 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
| 866 | 882 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
| 867 | 883 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
| 868 | 884 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
| 869 | 885 |
<< " translate\n" |
| 870 | 886 |
<< sc << " dup scale\n" |
| 871 | 887 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
| 872 | 888 |
} |
| 873 | 889 |
else {
|
| 874 | 890 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
| 875 | 891 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
| 876 | 892 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
| 877 | 893 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
| 878 | 894 |
<< " translate\n" |
| 879 | 895 |
<< sc << " dup scale\n90 rotate\n" |
| 880 | 896 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
| 881 | 897 |
} |
| 882 | 898 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
| 883 | 899 |
|
| 884 | 900 |
if(_showArcs) {
|
| 885 | 901 |
os << "%Arcs:\ngsave\n"; |
| 886 | 902 |
if(_enableParallel) {
|
| 887 | 903 |
std::vector<Arc> el; |
| 888 | 904 |
for(ArcIt e(g);e!=INVALID;++e) |
| 889 | 905 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
| 890 | 906 |
&&g.source(e)!=g.target(e)) |
| 891 | 907 |
el.push_back(e); |
| 892 | 908 |
std::sort(el.begin(),el.end(),arcLess(g)); |
| 893 | 909 |
|
| 894 | 910 |
typename std::vector<Arc>::iterator j; |
| 895 | 911 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) {
|
| 896 | 912 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
| 897 | 913 |
|
| 898 | 914 |
double sw=0; |
| 899 | 915 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
| 900 | 916 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
| 901 | 917 |
sw-=_parArcDist; |
| 902 | 918 |
sw/=-2.0; |
| 903 | 919 |
dim2::Point<double> |
| 904 | 920 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
| 905 | 921 |
double l=std::sqrt(dvec.normSquare()); |
| 906 | 922 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
| 907 | 923 |
dim2::Point<double> m; |
| 908 | 924 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
| 909 | 925 |
// mycoords[g.source(*i)])/2.0; |
| 910 | 926 |
|
| 911 | 927 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
| 912 | 928 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
| 913 | 929 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
| 914 | 930 |
|
| 915 | 931 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
| 916 | 932 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
| 917 | 933 |
|
| 918 | 934 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) {
|
| 919 | 935 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
| 920 | 936 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
| 921 | 937 |
if(_drawArrows) {
|
| 922 | 938 |
int node_shape; |
| 923 | 939 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
| 924 | 940 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
| 925 | 941 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
| 926 | 942 |
node_shape=_nodeShapes[g.target(*e)]; |
| 927 | 943 |
dim2::Bezier3 bez(s,mm,mm,t); |
| 928 | 944 |
double t1=0,t2=1; |
| 929 | 945 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
| 930 | 946 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
| 931 | 947 |
else t1=(t1+t2)/2; |
| 932 | 948 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
| 933 | 949 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
| 934 | 950 |
rn*=rn; |
| 935 | 951 |
t2=(t1+t2)/2;t1=0; |
| 936 | 952 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
| 937 | 953 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
| 938 | 954 |
else t2=(t1+t2)/2; |
| 939 | 955 |
dim2::Point<double> linend=bez((t1+t2)/2); |
| 940 | 956 |
bez=bez.before((t1+t2)/2); |
| 941 | 957 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
| 942 | 958 |
// node_shape=_nodeShapes[g.source(*e)]; |
| 943 | 959 |
// t1=0;t2=1; |
| 944 | 960 |
// for(int i=0;i<INTERPOL_PREC;++i) |
| 945 | 961 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
| 946 | 962 |
// t1=(t1+t2)/2; |
| 947 | 963 |
// else t2=(t1+t2)/2; |
| 948 | 964 |
// bez=bez.after((t1+t2)/2); |
| 949 | 965 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
| 950 | 966 |
<< _arcColors[*e].red() << ' ' |
| 951 | 967 |
<< _arcColors[*e].green() << ' ' |
| 952 | 968 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
| 953 | 969 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
| 954 | 970 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
| 955 | 971 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
| 956 | 972 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
| 957 | 973 |
dim2::Point<double> dd(rot90(linend-apoint)); |
| 958 | 974 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
| 959 | 975 |
std::sqrt(dd.normSquare()); |
| 960 | 976 |
os << "newpath " << psOut(apoint) << " moveto " |
| 961 | 977 |
<< psOut(linend+dd) << " lineto " |
| 962 | 978 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
| 963 | 979 |
} |
| 964 | 980 |
else {
|
| 965 | 981 |
os << mycoords[g.source(*e)].x << ' ' |
| 966 | 982 |
<< mycoords[g.source(*e)].y << ' ' |
| 967 | 983 |
<< mm.x << ' ' << mm.y << ' ' |
| 968 | 984 |
<< mycoords[g.target(*e)].x << ' ' |
| 969 | 985 |
<< mycoords[g.target(*e)].y << ' ' |
| 970 | 986 |
<< _arcColors[*e].red() << ' ' |
| 971 | 987 |
<< _arcColors[*e].green() << ' ' |
| 972 | 988 |
<< _arcColors[*e].blue() << ' ' |
| 973 | 989 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
| 974 | 990 |
} |
| 975 | 991 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
| 976 | 992 |
} |
| 977 | 993 |
} |
| 978 | 994 |
} |
| 979 | 995 |
else for(ArcIt e(g);e!=INVALID;++e) |
| 980 | 996 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
| 981 | 997 |
&&g.source(e)!=g.target(e)) {
|
| 982 | 998 |
if(_drawArrows) {
|
| 983 | 999 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
| 984 | 1000 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
| 985 | 1001 |
int node_shape=_nodeShapes[g.target(e)]; |
| 986 | 1002 |
double t1=0,t2=1; |
| 987 | 1003 |
for(int i=0;i<INTERPOL_PREC;++i) |
| 988 | 1004 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
| 989 | 1005 |
else t2=(t1+t2)/2; |
| 990 | 1006 |
double l=std::sqrt(d.normSquare()); |
| 991 | 1007 |
d/=l; |
| 992 | 1008 |
|
| 993 | 1009 |
os << l*(1-(t1+t2)/2) << ' ' |
| 994 | 1010 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
| 995 | 1011 |
<< d.x << ' ' << d.y << ' ' |
| 996 | 1012 |
<< mycoords[g.source(e)].x << ' ' |
| 997 | 1013 |
<< mycoords[g.source(e)].y << ' ' |
| 998 | 1014 |
<< _arcColors[e].red() << ' ' |
| 999 | 1015 |
<< _arcColors[e].green() << ' ' |
| 1000 | 1016 |
<< _arcColors[e].blue() << " arr\n"; |
| 1001 | 1017 |
} |
| 1002 | 1018 |
else os << mycoords[g.source(e)].x << ' ' |
| 1003 | 1019 |
<< mycoords[g.source(e)].y << ' ' |
| 1004 | 1020 |
<< mycoords[g.target(e)].x << ' ' |
| 1005 | 1021 |
<< mycoords[g.target(e)].y << ' ' |
| 1006 | 1022 |
<< _arcColors[e].red() << ' ' |
| 1007 | 1023 |
<< _arcColors[e].green() << ' ' |
| 1008 | 1024 |
<< _arcColors[e].blue() << ' ' |
| 1009 | 1025 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
| 1010 | 1026 |
} |
| 1011 | 1027 |
os << "grestore\n"; |
| 1012 | 1028 |
} |
| 1013 | 1029 |
if(_showNodes) {
|
| 1014 | 1030 |
os << "%Nodes:\ngsave\n"; |
| 1015 | 1031 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 1016 | 1032 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
| 1017 | 1033 |
<< _nodeSizes[n]*_nodeScale << ' ' |
| 1018 | 1034 |
<< _nodeColors[n].red() << ' ' |
| 1019 | 1035 |
<< _nodeColors[n].green() << ' ' |
| 1020 | 1036 |
<< _nodeColors[n].blue() << ' '; |
| 1021 | 1037 |
switch(_nodeShapes[n]) {
|
| 1022 | 1038 |
case CIRCLE: |
| 1023 | 1039 |
os<< "nc";break; |
| 1024 | 1040 |
case SQUARE: |
| 1025 | 1041 |
os<< "nsq";break; |
| 1026 | 1042 |
case DIAMOND: |
| 1027 | 1043 |
os<< "ndi";break; |
| 1028 | 1044 |
case MALE: |
| 1029 | 1045 |
os<< "nmale";break; |
| 1030 | 1046 |
case FEMALE: |
| 1031 | 1047 |
os<< "nfemale";break; |
| 1032 | 1048 |
} |
| 1033 | 1049 |
os<<'\n'; |
| 1034 | 1050 |
} |
| 1035 | 1051 |
os << "grestore\n"; |
| 1036 | 1052 |
} |
| 1037 | 1053 |
if(_showNodeText) {
|
| 1038 | 1054 |
os << "%Node texts:\ngsave\n"; |
| 1039 | 1055 |
os << "/fosi " << _nodeTextSize << " def\n"; |
| 1040 | 1056 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
| 1041 | 1057 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 1042 | 1058 |
switch(_nodeTextColorType) {
|
| 1043 | 1059 |
case DIST_COL: |
| 1044 | 1060 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
| 1045 | 1061 |
break; |
| 1046 | 1062 |
case DIST_BW: |
| 1047 | 1063 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
| 1048 | 1064 |
break; |
| 1049 | 1065 |
case CUST_COL: |
| 1050 | 1066 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
| 1051 | 1067 |
break; |
| 1052 | 1068 |
default: |
| 1053 | 1069 |
os << "0 0 0 setrgbcolor\n"; |
| 1054 | 1070 |
} |
| 1055 | 1071 |
os << mycoords[n].x << ' ' << mycoords[n].y |
| 1056 | 1072 |
<< " (" << _nodeTexts[n] << ") cshow\n";
|
| 1057 | 1073 |
} |
| 1058 | 1074 |
os << "grestore\n"; |
| 1059 | 1075 |
} |
| 1060 | 1076 |
if(_showNodePsText) {
|
| 1061 | 1077 |
os << "%Node PS blocks:\ngsave\n"; |
| 1062 | 1078 |
for(NodeIt n(g);n!=INVALID;++n) |
| 1063 | 1079 |
os << mycoords[n].x << ' ' << mycoords[n].y |
| 1064 | 1080 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
| 1065 | 1081 |
os << "grestore\n"; |
| 1066 | 1082 |
} |
| 1067 | 1083 |
|
| 1068 | 1084 |
os << "grestore\nshowpage\n"; |
| 1069 | 1085 |
|
| 1070 | 1086 |
//CleanUp: |
| 1071 | 1087 |
if(_pleaseRemoveOsStream) {delete &os;}
|
| 1072 | 1088 |
} |
| 1073 | 1089 |
|
| 1074 | 1090 |
///\name Aliases |
| 1075 | 1091 |
///These are just some aliases to other parameter setting functions. |
| 1076 | 1092 |
|
| 1077 | 1093 |
///@{
|
| 1078 | 1094 |
|
| 1079 | 1095 |
///An alias for arcWidths() |
| 1080 | 1096 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
| 1081 | 1097 |
{
|
| 1082 | 1098 |
return arcWidths(x); |
| 1083 | 1099 |
} |
| 1084 | 1100 |
|
| 1085 | 1101 |
///An alias for arcColors() |
| 1086 | 1102 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
| 1087 | 1103 |
edgeColors(const X &x) |
| 1088 | 1104 |
{
|
| 1089 | 1105 |
return arcColors(x); |
| 1090 | 1106 |
} |
| 1091 | 1107 |
|
| 1092 | 1108 |
///An alias for arcWidthScale() |
| 1093 | 1109 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);}
|
| 1094 | 1110 |
|
| 1095 | 1111 |
///An alias for autoArcWidthScale() |
| 1096 | 1112 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
| 1097 | 1113 |
{
|
| 1098 | 1114 |
return autoArcWidthScale(b); |
| 1099 | 1115 |
} |
| 1100 | 1116 |
|
| 1101 | 1117 |
///An alias for absoluteArcWidths() |
| 1102 | 1118 |
GraphToEps<T> &absoluteEdgeWidths(bool b=true) |
| 1103 | 1119 |
{
|
| 1104 | 1120 |
return absoluteArcWidths(b); |
| 1105 | 1121 |
} |
| 1106 | 1122 |
|
| 1107 | 1123 |
///An alias for parArcDist() |
| 1108 | 1124 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);}
|
| 1109 | 1125 |
|
| 1110 | 1126 |
///An alias for hideArcs() |
| 1111 | 1127 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);}
|
| 1112 | 1128 |
|
| 1113 | 1129 |
///@} |
| 1114 | 1130 |
}; |
| 1115 | 1131 |
|
| 1116 | 1132 |
template<class T> |
| 1117 | 1133 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
| 1118 | 1134 |
template<class T> |
| 1119 | 1135 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
| 1120 | 1136 |
template<class T> |
| 1121 | 1137 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
| 1122 | 1138 |
template<class T> |
| 1123 | 1139 |
const double GraphToEps<T>::A4BORDER = 15; |
| 1124 | 1140 |
|
| 1125 | 1141 |
|
| 1126 | 1142 |
///Generates an EPS file from a graph |
| 1127 | 1143 |
|
| 1128 | 1144 |
///\ingroup eps_io |
| 1129 | 1145 |
///Generates an EPS file from a graph. |
| 1130 | 1146 |
///\param g Reference to the graph to be printed. |
| 1131 | 1147 |
///\param os Reference to the output stream. |
| 1132 | 1148 |
///By default it is <tt>std::cout</tt>. |
| 1133 | 1149 |
/// |
| 1134 | 1150 |
///This function also has a lot of |
| 1135 | 1151 |
///\ref named-templ-func-param "named parameters", |
| 1136 | 1152 |
///they are declared as the members of class \ref GraphToEps. The following |
| 1137 | 1153 |
///example shows how to use these parameters. |
| 1138 | 1154 |
///\code |
| 1139 | 1155 |
/// graphToEps(g,os).scale(10).coords(coords) |
| 1140 | 1156 |
/// .nodeScale(2).nodeSizes(sizes) |
| 1141 | 1157 |
/// .arcWidthScale(.4).run(); |
| 1142 | 1158 |
///\endcode |
| 1143 | 1159 |
/// |
| 1144 | 1160 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
| 1145 | 1161 |
/// |
| 1146 | 1162 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
| 1147 | 1163 |
///to the end of the parameter list. |
| 1148 | 1164 |
///\sa GraphToEps |
| 1149 | 1165 |
///\sa graphToEps(G &g, const char *file_name) |
| 1150 | 1166 |
template<class G> |
| 1151 | 1167 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
| 1152 | 1168 |
graphToEps(G &g, std::ostream& os=std::cout) |
| 1153 | 1169 |
{
|
| 1154 | 1170 |
return |
| 1155 | 1171 |
GraphToEps<DefaultGraphToEpsTraits<G> >(DefaultGraphToEpsTraits<G>(g,os)); |
| 1156 | 1172 |
} |
| 1157 | 1173 |
|
| 1158 | 1174 |
///Generates an EPS file from a graph |
| 1159 | 1175 |
|
| 1160 | 1176 |
///\ingroup eps_io |
| 1161 | 1177 |
///This function does the same as |
| 1162 | 1178 |
///\ref graphToEps(G &g,std::ostream& os) |
| 1163 | 1179 |
///but it writes its output into the file \c file_name |
| 1164 | 1180 |
///instead of a stream. |
| 1165 | 1181 |
///\sa graphToEps(G &g, std::ostream& os) |
| 1166 | 1182 |
template<class G> |
| 1167 | 1183 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
| 1168 | 1184 |
graphToEps(G &g,const char *file_name) |
| 1169 | 1185 |
{
|
| 1170 | 1186 |
std::ostream* os = new std::ofstream(file_name); |
| 1171 | 1187 |
if (!(*os)) {
|
| 1172 | 1188 |
delete os; |
| 1173 | 1189 |
throw IoError("Cannot write file", file_name);
|
| 1174 | 1190 |
} |
| 1175 | 1191 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
| 1176 | 1192 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
| 1177 | 1193 |
} |
| 1178 | 1194 |
|
| 1179 | 1195 |
///Generates an EPS file from a graph |
| 1180 | 1196 |
|
| 1181 | 1197 |
///\ingroup eps_io |
| 1182 | 1198 |
///This function does the same as |
| 1183 | 1199 |
///\ref graphToEps(G &g,std::ostream& os) |
| 1184 | 1200 |
///but it writes its output into the file \c file_name |
| 1185 | 1201 |
///instead of a stream. |
| 1186 | 1202 |
///\sa graphToEps(G &g, std::ostream& os) |
| 1187 | 1203 |
template<class G> |
| 1188 | 1204 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
| 1189 | 1205 |
graphToEps(G &g,const std::string& file_name) |
| 1190 | 1206 |
{
|
| 1191 | 1207 |
std::ostream* os = new std::ofstream(file_name.c_str()); |
| 1192 | 1208 |
if (!(*os)) {
|
| 1193 | 1209 |
delete os; |
| 1194 | 1210 |
throw IoError("Cannot write file", file_name);
|
| 1195 | 1211 |
} |
| 1196 | 1212 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
| 1197 | 1213 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
| 1198 | 1214 |
} |
| 1199 | 1215 |
|
| 1200 | 1216 |
} //END OF NAMESPACE LEMON |
| 1201 | 1217 |
|
| 1202 | 1218 |
#endif // LEMON_GRAPH_TO_EPS_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\file |
| 20 | 20 |
///\brief The implementation of the LP solver interface. |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/lp_base.h> |
| 23 | 23 |
namespace lemon {
|
| 24 | 24 |
|
| 25 |
const LpBase::Value LpBase::INF = std::numeric_limits<Value>::infinity(); |
|
| 26 |
const LpBase::Value LpBase::NaN = std::numeric_limits<Value>::quiet_NaN(); |
|
| 25 |
const LpBase::Value LpBase::INF = |
|
| 26 |
std::numeric_limits<LpBase::Value>::infinity(); |
|
| 27 |
const LpBase::Value LpBase::NaN = |
|
| 28 |
std::numeric_limits<LpBase::Value>::quiet_NaN(); |
|
| 27 | 29 |
|
| 28 | 30 |
} //namespace lemon |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_LP_BASE_H |
| 20 | 20 |
#define LEMON_LP_BASE_H |
| 21 | 21 |
|
| 22 | 22 |
#include<iostream> |
| 23 | 23 |
#include<vector> |
| 24 | 24 |
#include<map> |
| 25 | 25 |
#include<limits> |
| 26 | 26 |
#include<lemon/math.h> |
| 27 | 27 |
|
| 28 | 28 |
#include<lemon/error.h> |
| 29 | 29 |
#include<lemon/assert.h> |
| 30 | 30 |
|
| 31 | 31 |
#include<lemon/core.h> |
| 32 | 32 |
#include<lemon/bits/solver_bits.h> |
| 33 | 33 |
|
| 34 | 34 |
///\file |
| 35 | 35 |
///\brief The interface of the LP solver interface. |
| 36 | 36 |
///\ingroup lp_group |
| 37 | 37 |
namespace lemon {
|
| 38 | 38 |
|
| 39 | 39 |
///Common base class for LP and MIP solvers |
| 40 | 40 |
|
| 41 | 41 |
///Usually this class is not used directly, please use one of the concrete |
| 42 | 42 |
///implementations of the solver interface. |
| 43 | 43 |
///\ingroup lp_group |
| 44 | 44 |
class LpBase {
|
| 45 | 45 |
|
| 46 | 46 |
protected: |
| 47 | 47 |
|
| 48 | 48 |
_solver_bits::VarIndex rows; |
| 49 | 49 |
_solver_bits::VarIndex cols; |
| 50 | 50 |
|
| 51 | 51 |
public: |
| 52 | 52 |
|
| 53 | 53 |
///Possible outcomes of an LP solving procedure |
| 54 | 54 |
enum SolveExitStatus {
|
| 55 | 55 |
///This means that the problem has been successfully solved: either |
| 56 | 56 |
///an optimal solution has been found or infeasibility/unboundedness |
| 57 | 57 |
///has been proved. |
| 58 | 58 |
SOLVED = 0, |
| 59 | 59 |
///Any other case (including the case when some user specified |
| 60 | 60 |
///limit has been exceeded) |
| 61 | 61 |
UNSOLVED = 1 |
| 62 | 62 |
}; |
| 63 | 63 |
|
| 64 | 64 |
///Direction of the optimization |
| 65 | 65 |
enum Sense {
|
| 66 | 66 |
/// Minimization |
| 67 | 67 |
MIN, |
| 68 | 68 |
/// Maximization |
| 69 | 69 |
MAX |
| 70 | 70 |
}; |
| 71 | 71 |
|
| 72 | 72 |
///The floating point type used by the solver |
| 73 | 73 |
typedef double Value; |
| 74 | 74 |
///The infinity constant |
| 75 | 75 |
static const Value INF; |
| 76 | 76 |
///The not a number constant |
| 77 | 77 |
static const Value NaN; |
| 78 | 78 |
|
| 79 | 79 |
friend class Col; |
| 80 | 80 |
friend class ColIt; |
| 81 | 81 |
friend class Row; |
| 82 | 82 |
friend class RowIt; |
| 83 | 83 |
|
| 84 | 84 |
///Refer to a column of the LP. |
| 85 | 85 |
|
| 86 | 86 |
///This type is used to refer to a column of the LP. |
| 87 | 87 |
/// |
| 88 | 88 |
///Its value remains valid and correct even after the addition or erase of |
| 89 | 89 |
///other columns. |
| 90 | 90 |
/// |
| 91 | 91 |
///\note This class is similar to other Item types in LEMON, like |
| 92 | 92 |
///Node and Arc types in digraph. |
| 93 | 93 |
class Col {
|
| 94 | 94 |
friend class LpBase; |
| 95 | 95 |
protected: |
| 96 | 96 |
int _id; |
| 97 | 97 |
explicit Col(int id) : _id(id) {}
|
| 98 | 98 |
public: |
| 99 | 99 |
typedef Value ExprValue; |
| 100 | 100 |
typedef True LpCol; |
| 101 | 101 |
/// Default constructor |
| 102 | 102 |
|
| 103 | 103 |
/// \warning The default constructor sets the Col to an |
| 104 | 104 |
/// undefined value. |
| 105 | 105 |
Col() {}
|
| 106 | 106 |
/// Invalid constructor \& conversion. |
| 107 | 107 |
|
| 108 | 108 |
/// This constructor initializes the Col to be invalid. |
| 109 | 109 |
/// \sa Invalid for more details. |
| 110 | 110 |
Col(const Invalid&) : _id(-1) {}
|
| 111 | 111 |
/// Equality operator |
| 112 | 112 |
|
| 113 | 113 |
/// Two \ref Col "Col"s are equal if and only if they point to |
| 114 | 114 |
/// the same LP column or both are invalid. |
| 115 | 115 |
bool operator==(Col c) const {return _id == c._id;}
|
| 116 | 116 |
/// Inequality operator |
| 117 | 117 |
|
| 118 | 118 |
/// \sa operator==(Col c) |
| 119 | 119 |
/// |
| 120 | 120 |
bool operator!=(Col c) const {return _id != c._id;}
|
| 121 | 121 |
/// Artificial ordering operator. |
| 122 | 122 |
|
| 123 | 123 |
/// To allow the use of this object in std::map or similar |
| 124 | 124 |
/// associative container we require this. |
| 125 | 125 |
/// |
| 126 | 126 |
/// \note This operator only have to define some strict ordering of |
| 127 | 127 |
/// the items; this order has nothing to do with the iteration |
| 128 | 128 |
/// ordering of the items. |
| 129 | 129 |
bool operator<(Col c) const {return _id < c._id;}
|
| 130 | 130 |
}; |
| 131 | 131 |
|
| 132 | 132 |
///Iterator for iterate over the columns of an LP problem |
| 133 | 133 |
|
| 134 | 134 |
/// Its usage is quite simple, for example you can count the number |
| 135 | 135 |
/// of columns in an LP \c lp: |
| 136 | 136 |
///\code |
| 137 | 137 |
/// int count=0; |
| 138 | 138 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
| 139 | 139 |
///\endcode |
| 140 | 140 |
class ColIt : public Col {
|
| 141 | 141 |
const LpBase *_solver; |
| 142 | 142 |
public: |
| 143 | 143 |
/// Default constructor |
| 144 | 144 |
|
| 145 | 145 |
/// \warning The default constructor sets the iterator |
| 146 | 146 |
/// to an undefined value. |
| 147 | 147 |
ColIt() {}
|
| 148 | 148 |
/// Sets the iterator to the first Col |
| 149 | 149 |
|
| 150 | 150 |
/// Sets the iterator to the first Col. |
| 151 | 151 |
/// |
| 152 | 152 |
ColIt(const LpBase &solver) : _solver(&solver) |
| 153 | 153 |
{
|
| 154 | 154 |
_solver->cols.firstItem(_id); |
| 155 | 155 |
} |
| 156 | 156 |
/// Invalid constructor \& conversion |
| 157 | 157 |
|
| 158 | 158 |
/// Initialize the iterator to be invalid. |
| 159 | 159 |
/// \sa Invalid for more details. |
| 160 | 160 |
ColIt(const Invalid&) : Col(INVALID) {}
|
| 161 | 161 |
/// Next column |
| 162 | 162 |
|
| 163 | 163 |
/// Assign the iterator to the next column. |
| 164 | 164 |
/// |
| 165 | 165 |
ColIt &operator++() |
| 166 | 166 |
{
|
| 167 | 167 |
_solver->cols.nextItem(_id); |
| 168 | 168 |
return *this; |
| 169 | 169 |
} |
| 170 | 170 |
}; |
| 171 | 171 |
|
| 172 | 172 |
/// \brief Returns the ID of the column. |
| 173 | 173 |
static int id(const Col& col) { return col._id; }
|
| 174 | 174 |
/// \brief Returns the column with the given ID. |
| 175 | 175 |
/// |
| 176 | 176 |
/// \pre The argument should be a valid column ID in the LP problem. |
| 177 | 177 |
static Col colFromId(int id) { return Col(id); }
|
| 178 | 178 |
|
| 179 | 179 |
///Refer to a row of the LP. |
| 180 | 180 |
|
| 181 | 181 |
///This type is used to refer to a row of the LP. |
| 182 | 182 |
/// |
| 183 | 183 |
///Its value remains valid and correct even after the addition or erase of |
| 184 | 184 |
///other rows. |
| 185 | 185 |
/// |
| 186 | 186 |
///\note This class is similar to other Item types in LEMON, like |
| 187 | 187 |
///Node and Arc types in digraph. |
| 188 | 188 |
class Row {
|
| 189 | 189 |
friend class LpBase; |
| 190 | 190 |
protected: |
| 191 | 191 |
int _id; |
| 192 | 192 |
explicit Row(int id) : _id(id) {}
|
| 193 | 193 |
public: |
| 194 | 194 |
typedef Value ExprValue; |
| 195 | 195 |
typedef True LpRow; |
| 196 | 196 |
/// Default constructor |
| 197 | 197 |
|
| 198 | 198 |
/// \warning The default constructor sets the Row to an |
| 199 | 199 |
/// undefined value. |
| 200 | 200 |
Row() {}
|
| 201 | 201 |
/// Invalid constructor \& conversion. |
| 202 | 202 |
|
| 203 | 203 |
/// This constructor initializes the Row to be invalid. |
| 204 | 204 |
/// \sa Invalid for more details. |
| 205 | 205 |
Row(const Invalid&) : _id(-1) {}
|
| 206 | 206 |
/// Equality operator |
| 207 | 207 |
|
| 208 | 208 |
/// Two \ref Row "Row"s are equal if and only if they point to |
| 209 | 209 |
/// the same LP row or both are invalid. |
| 210 | 210 |
bool operator==(Row r) const {return _id == r._id;}
|
| 211 | 211 |
/// Inequality operator |
| 212 | 212 |
|
| 213 | 213 |
/// \sa operator==(Row r) |
| 214 | 214 |
/// |
| 215 | 215 |
bool operator!=(Row r) const {return _id != r._id;}
|
| 216 | 216 |
/// Artificial ordering operator. |
| 217 | 217 |
|
| 218 | 218 |
/// To allow the use of this object in std::map or similar |
| 219 | 219 |
/// associative container we require this. |
| 220 | 220 |
/// |
| 221 | 221 |
/// \note This operator only have to define some strict ordering of |
| 222 | 222 |
/// the items; this order has nothing to do with the iteration |
| 223 | 223 |
/// ordering of the items. |
| 224 | 224 |
bool operator<(Row r) const {return _id < r._id;}
|
| 225 | 225 |
}; |
| 226 | 226 |
|
| 227 | 227 |
///Iterator for iterate over the rows of an LP problem |
| 228 | 228 |
|
| 229 | 229 |
/// Its usage is quite simple, for example you can count the number |
| 230 | 230 |
/// of rows in an LP \c lp: |
| 231 | 231 |
///\code |
| 232 | 232 |
/// int count=0; |
| 233 | 233 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
| 234 | 234 |
///\endcode |
| 235 | 235 |
class RowIt : public Row {
|
| 236 | 236 |
const LpBase *_solver; |
| 237 | 237 |
public: |
| 238 | 238 |
/// Default constructor |
| 239 | 239 |
|
| 240 | 240 |
/// \warning The default constructor sets the iterator |
| 241 | 241 |
/// to an undefined value. |
| 242 | 242 |
RowIt() {}
|
| 243 | 243 |
/// Sets the iterator to the first Row |
| 244 | 244 |
|
| 245 | 245 |
/// Sets the iterator to the first Row. |
| 246 | 246 |
/// |
| 247 | 247 |
RowIt(const LpBase &solver) : _solver(&solver) |
| 248 | 248 |
{
|
| 249 | 249 |
_solver->rows.firstItem(_id); |
| 250 | 250 |
} |
| 251 | 251 |
/// Invalid constructor \& conversion |
| 252 | 252 |
|
| 253 | 253 |
/// Initialize the iterator to be invalid. |
| 254 | 254 |
/// \sa Invalid for more details. |
| 255 | 255 |
RowIt(const Invalid&) : Row(INVALID) {}
|
| 256 | 256 |
/// Next row |
| 257 | 257 |
|
| 258 | 258 |
/// Assign the iterator to the next row. |
| 259 | 259 |
/// |
| 260 | 260 |
RowIt &operator++() |
| 261 | 261 |
{
|
| 262 | 262 |
_solver->rows.nextItem(_id); |
| 263 | 263 |
return *this; |
| 264 | 264 |
} |
| 265 | 265 |
}; |
| 266 | 266 |
|
| 267 | 267 |
/// \brief Returns the ID of the row. |
| 268 | 268 |
static int id(const Row& row) { return row._id; }
|
| 269 | 269 |
/// \brief Returns the row with the given ID. |
| 270 | 270 |
/// |
| 271 | 271 |
/// \pre The argument should be a valid row ID in the LP problem. |
| 272 | 272 |
static Row rowFromId(int id) { return Row(id); }
|
| 273 | 273 |
|
| 274 | 274 |
public: |
| 275 | 275 |
|
| 276 | 276 |
///Linear expression of variables and a constant component |
| 277 | 277 |
|
| 278 | 278 |
///This data structure stores a linear expression of the variables |
| 279 | 279 |
///(\ref Col "Col"s) and also has a constant component. |
| 280 | 280 |
/// |
| 281 | 281 |
///There are several ways to access and modify the contents of this |
| 282 | 282 |
///container. |
| 283 | 283 |
///\code |
| 284 | 284 |
///e[v]=5; |
| 285 | 285 |
///e[v]+=12; |
| 286 | 286 |
///e.erase(v); |
| 287 | 287 |
///\endcode |
| 288 | 288 |
///or you can also iterate through its elements. |
| 289 | 289 |
///\code |
| 290 | 290 |
///double s=0; |
| 291 | 291 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 292 | 292 |
/// s+=*i * primal(i); |
| 293 | 293 |
///\endcode |
| 294 | 294 |
///(This code computes the primal value of the expression). |
| 295 | 295 |
///- Numbers (<tt>double</tt>'s) |
| 296 | 296 |
///and variables (\ref Col "Col"s) directly convert to an |
| 297 | 297 |
///\ref Expr and the usual linear operations are defined, so |
| 298 | 298 |
///\code |
| 299 | 299 |
///v+w |
| 300 | 300 |
///2*v-3.12*(v-w/2)+2 |
| 301 | 301 |
///v*2.1+(3*v+(v*12+w+6)*3)/2 |
| 302 | 302 |
///\endcode |
| 303 | 303 |
///are valid expressions. |
| 304 | 304 |
///The usual assignment operations are also defined. |
| 305 | 305 |
///\code |
| 306 | 306 |
///e=v+w; |
| 307 | 307 |
///e+=2*v-3.12*(v-w/2)+2; |
| 308 | 308 |
///e*=3.4; |
| 309 | 309 |
///e/=5; |
| 310 | 310 |
///\endcode |
| 311 | 311 |
///- The constant member can be set and read by dereference |
| 312 | 312 |
/// operator (unary *) |
| 313 | 313 |
/// |
| 314 | 314 |
///\code |
| 315 | 315 |
///*e=12; |
| 316 | 316 |
///double c=*e; |
| 317 | 317 |
///\endcode |
| 318 | 318 |
/// |
| 319 | 319 |
///\sa Constr |
| 320 | 320 |
class Expr {
|
| 321 | 321 |
friend class LpBase; |
| 322 | 322 |
public: |
| 323 | 323 |
/// The key type of the expression |
| 324 | 324 |
typedef LpBase::Col Key; |
| 325 | 325 |
/// The value type of the expression |
| 326 | 326 |
typedef LpBase::Value Value; |
| 327 | 327 |
|
| 328 | 328 |
protected: |
| 329 | 329 |
Value const_comp; |
| 330 | 330 |
std::map<int, Value> comps; |
| 331 | 331 |
|
| 332 | 332 |
public: |
| 333 | 333 |
typedef True SolverExpr; |
| 334 | 334 |
/// Default constructor |
| 335 | 335 |
|
| 336 | 336 |
/// Construct an empty expression, the coefficients and |
| 337 | 337 |
/// the constant component are initialized to zero. |
| 338 | 338 |
Expr() : const_comp(0) {}
|
| 339 | 339 |
/// Construct an expression from a column |
| 340 | 340 |
|
| 341 | 341 |
/// Construct an expression, which has a term with \c c variable |
| 342 | 342 |
/// and 1.0 coefficient. |
| 343 | 343 |
Expr(const Col &c) : const_comp(0) {
|
| 344 | 344 |
typedef std::map<int, Value>::value_type pair_type; |
| 345 | 345 |
comps.insert(pair_type(id(c), 1)); |
| 346 | 346 |
} |
| 347 | 347 |
/// Construct an expression from a constant |
| 348 | 348 |
|
| 349 | 349 |
/// Construct an expression, which's constant component is \c v. |
| 350 | 350 |
/// |
| 351 | 351 |
Expr(const Value &v) : const_comp(v) {}
|
| 352 | 352 |
/// Returns the coefficient of the column |
| 353 | 353 |
Value operator[](const Col& c) const {
|
| 354 | 354 |
std::map<int, Value>::const_iterator it=comps.find(id(c)); |
| 355 | 355 |
if (it != comps.end()) {
|
| 356 | 356 |
return it->second; |
| 357 | 357 |
} else {
|
| 358 | 358 |
return 0; |
| 359 | 359 |
} |
| 360 | 360 |
} |
| 361 | 361 |
/// Returns the coefficient of the column |
| 362 | 362 |
Value& operator[](const Col& c) {
|
| 363 | 363 |
return comps[id(c)]; |
| 364 | 364 |
} |
| 365 | 365 |
/// Sets the coefficient of the column |
| 366 | 366 |
void set(const Col &c, const Value &v) {
|
| 367 | 367 |
if (v != 0.0) {
|
| 368 | 368 |
typedef std::map<int, Value>::value_type pair_type; |
| 369 | 369 |
comps.insert(pair_type(id(c), v)); |
| 370 | 370 |
} else {
|
| 371 | 371 |
comps.erase(id(c)); |
| 372 | 372 |
} |
| 373 | 373 |
} |
| 374 | 374 |
/// Returns the constant component of the expression |
| 375 | 375 |
Value& operator*() { return const_comp; }
|
| 376 | 376 |
/// Returns the constant component of the expression |
| 377 | 377 |
const Value& operator*() const { return const_comp; }
|
| 378 | 378 |
/// \brief Removes the coefficients which's absolute value does |
| 379 | 379 |
/// not exceed \c epsilon. It also sets to zero the constant |
| 380 | 380 |
/// component, if it does not exceed epsilon in absolute value. |
| 381 | 381 |
void simplify(Value epsilon = 0.0) {
|
| 382 | 382 |
std::map<int, Value>::iterator it=comps.begin(); |
| 383 | 383 |
while (it != comps.end()) {
|
| 384 | 384 |
std::map<int, Value>::iterator jt=it; |
| 385 | 385 |
++jt; |
| 386 | 386 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
| 387 | 387 |
it=jt; |
| 388 | 388 |
} |
| 389 | 389 |
if (std::fabs(const_comp) <= epsilon) const_comp = 0; |
| 390 | 390 |
} |
| 391 | 391 |
|
| 392 | 392 |
void simplify(Value epsilon = 0.0) const {
|
| 393 | 393 |
const_cast<Expr*>(this)->simplify(epsilon); |
| 394 | 394 |
} |
| 395 | 395 |
|
| 396 | 396 |
///Sets all coefficients and the constant component to 0. |
| 397 | 397 |
void clear() {
|
| 398 | 398 |
comps.clear(); |
| 399 | 399 |
const_comp=0; |
| 400 | 400 |
} |
| 401 | 401 |
|
| 402 | 402 |
///Compound assignment |
| 403 | 403 |
Expr &operator+=(const Expr &e) {
|
| 404 | 404 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 405 | 405 |
it!=e.comps.end(); ++it) |
| 406 | 406 |
comps[it->first]+=it->second; |
| 407 | 407 |
const_comp+=e.const_comp; |
| 408 | 408 |
return *this; |
| 409 | 409 |
} |
| 410 | 410 |
///Compound assignment |
| 411 | 411 |
Expr &operator-=(const Expr &e) {
|
| 412 | 412 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 413 | 413 |
it!=e.comps.end(); ++it) |
| 414 | 414 |
comps[it->first]-=it->second; |
| 415 | 415 |
const_comp-=e.const_comp; |
| 416 | 416 |
return *this; |
| 417 | 417 |
} |
| 418 | 418 |
///Multiply with a constant |
| 419 | 419 |
Expr &operator*=(const Value &v) {
|
| 420 | 420 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 421 | 421 |
it!=comps.end(); ++it) |
| 422 | 422 |
it->second*=v; |
| 423 | 423 |
const_comp*=v; |
| 424 | 424 |
return *this; |
| 425 | 425 |
} |
| 426 | 426 |
///Division with a constant |
| 427 | 427 |
Expr &operator/=(const Value &c) {
|
| 428 | 428 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 429 | 429 |
it!=comps.end(); ++it) |
| 430 | 430 |
it->second/=c; |
| 431 | 431 |
const_comp/=c; |
| 432 | 432 |
return *this; |
| 433 | 433 |
} |
| 434 | 434 |
|
| 435 | 435 |
///Iterator over the expression |
| 436 | 436 |
|
| 437 | 437 |
///The iterator iterates over the terms of the expression. |
| 438 | 438 |
/// |
| 439 | 439 |
///\code |
| 440 | 440 |
///double s=0; |
| 441 | 441 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
| 442 | 442 |
/// s+= *i * primal(i); |
| 443 | 443 |
///\endcode |
| 444 | 444 |
class CoeffIt {
|
| 445 | 445 |
private: |
| 446 | 446 |
|
| 447 | 447 |
std::map<int, Value>::iterator _it, _end; |
| 448 | 448 |
|
| 449 | 449 |
public: |
| 450 | 450 |
|
| 451 | 451 |
/// Sets the iterator to the first term |
| 452 | 452 |
|
| 453 | 453 |
/// Sets the iterator to the first term of the expression. |
| 454 | 454 |
/// |
| 455 | 455 |
CoeffIt(Expr& e) |
| 456 | 456 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 457 | 457 |
|
| 458 | 458 |
/// Convert the iterator to the column of the term |
| 459 | 459 |
operator Col() const {
|
| 460 | 460 |
return colFromId(_it->first); |
| 461 | 461 |
} |
| 462 | 462 |
|
| 463 | 463 |
/// Returns the coefficient of the term |
| 464 | 464 |
Value& operator*() { return _it->second; }
|
| 465 | 465 |
|
| 466 | 466 |
/// Returns the coefficient of the term |
| 467 | 467 |
const Value& operator*() const { return _it->second; }
|
| 468 | 468 |
/// Next term |
| 469 | 469 |
|
| 470 | 470 |
/// Assign the iterator to the next term. |
| 471 | 471 |
/// |
| 472 | 472 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 473 | 473 |
|
| 474 | 474 |
/// Equality operator |
| 475 | 475 |
bool operator==(Invalid) const { return _it == _end; }
|
| 476 | 476 |
/// Inequality operator |
| 477 | 477 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 478 | 478 |
}; |
| 479 | 479 |
|
| 480 | 480 |
/// Const iterator over the expression |
| 481 | 481 |
|
| 482 | 482 |
///The iterator iterates over the terms of the expression. |
| 483 | 483 |
/// |
| 484 | 484 |
///\code |
| 485 | 485 |
///double s=0; |
| 486 | 486 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 487 | 487 |
/// s+=*i * primal(i); |
| 488 | 488 |
///\endcode |
| 489 | 489 |
class ConstCoeffIt {
|
| 490 | 490 |
private: |
| 491 | 491 |
|
| 492 | 492 |
std::map<int, Value>::const_iterator _it, _end; |
| 493 | 493 |
|
| 494 | 494 |
public: |
| 495 | 495 |
|
| 496 | 496 |
/// Sets the iterator to the first term |
| 497 | 497 |
|
| 498 | 498 |
/// Sets the iterator to the first term of the expression. |
| 499 | 499 |
/// |
| 500 | 500 |
ConstCoeffIt(const Expr& e) |
| 501 | 501 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 502 | 502 |
|
| 503 | 503 |
/// Convert the iterator to the column of the term |
| 504 | 504 |
operator Col() const {
|
| 505 | 505 |
return colFromId(_it->first); |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
/// Returns the coefficient of the term |
| 509 | 509 |
const Value& operator*() const { return _it->second; }
|
| 510 | 510 |
|
| 511 | 511 |
/// Next term |
| 512 | 512 |
|
| 513 | 513 |
/// Assign the iterator to the next term. |
| 514 | 514 |
/// |
| 515 | 515 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 516 | 516 |
|
| 517 | 517 |
/// Equality operator |
| 518 | 518 |
bool operator==(Invalid) const { return _it == _end; }
|
| 519 | 519 |
/// Inequality operator |
| 520 | 520 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 521 | 521 |
}; |
| 522 | 522 |
|
| 523 | 523 |
}; |
| 524 | 524 |
|
| 525 | 525 |
///Linear constraint |
| 526 | 526 |
|
| 527 | 527 |
///This data stucture represents a linear constraint in the LP. |
| 528 | 528 |
///Basically it is a linear expression with a lower or an upper bound |
| 529 | 529 |
///(or both). These parts of the constraint can be obtained by the member |
| 530 | 530 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
| 531 | 531 |
///respectively. |
| 532 | 532 |
///There are two ways to construct a constraint. |
| 533 | 533 |
///- You can set the linear expression and the bounds directly |
| 534 | 534 |
/// by the functions above. |
| 535 | 535 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
| 536 | 536 |
/// are defined between expressions, or even between constraints whenever |
| 537 | 537 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and |
| 538 | 538 |
/// \c s and \c t are numbers, then the followings are valid expressions |
| 539 | 539 |
/// and thus they can be used directly e.g. in \ref addRow() whenever |
| 540 | 540 |
/// it makes sense. |
| 541 | 541 |
///\code |
| 542 | 542 |
/// e<=s |
| 543 | 543 |
/// e<=f |
| 544 | 544 |
/// e==f |
| 545 | 545 |
/// s<=e<=t |
| 546 | 546 |
/// e>=t |
| 547 | 547 |
///\endcode |
| 548 | 548 |
///\warning The validity of a constraint is checked only at run |
| 549 | 549 |
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will |
| 550 | 550 |
///compile, but will fail an assertion. |
| 551 | 551 |
class Constr |
| 552 | 552 |
{
|
| 553 | 553 |
public: |
| 554 | 554 |
typedef LpBase::Expr Expr; |
| 555 | 555 |
typedef Expr::Key Key; |
| 556 | 556 |
typedef Expr::Value Value; |
| 557 | 557 |
|
| 558 | 558 |
protected: |
| 559 | 559 |
Expr _expr; |
| 560 | 560 |
Value _lb,_ub; |
| 561 | 561 |
public: |
| 562 | 562 |
///\e |
| 563 | 563 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
|
| 564 | 564 |
///\e |
| 565 | 565 |
Constr(Value lb, const Expr &e, Value ub) : |
| 566 | 566 |
_expr(e), _lb(lb), _ub(ub) {}
|
| 567 | 567 |
Constr(const Expr &e) : |
| 568 | 568 |
_expr(e), _lb(NaN), _ub(NaN) {}
|
| 569 | 569 |
///\e |
| 570 | 570 |
void clear() |
| 571 | 571 |
{
|
| 572 | 572 |
_expr.clear(); |
| 573 | 573 |
_lb=_ub=NaN; |
| 574 | 574 |
} |
| 575 | 575 |
|
| 576 | 576 |
///Reference to the linear expression |
| 577 | 577 |
Expr &expr() { return _expr; }
|
| 578 | 578 |
///Cont reference to the linear expression |
| 579 | 579 |
const Expr &expr() const { return _expr; }
|
| 580 | 580 |
///Reference to the lower bound. |
| 581 | 581 |
|
| 582 | 582 |
///\return |
| 583 | 583 |
///- \ref INF "INF": the constraint is lower unbounded. |
| 584 | 584 |
///- \ref NaN "NaN": lower bound has not been set. |
| 585 | 585 |
///- finite number: the lower bound |
| 586 | 586 |
Value &lowerBound() { return _lb; }
|
| 587 | 587 |
///The const version of \ref lowerBound() |
| 588 | 588 |
const Value &lowerBound() const { return _lb; }
|
| 589 | 589 |
///Reference to the upper bound. |
| 590 | 590 |
|
| 591 | 591 |
///\return |
| 592 | 592 |
///- \ref INF "INF": the constraint is upper unbounded. |
| 593 | 593 |
///- \ref NaN "NaN": upper bound has not been set. |
| 594 | 594 |
///- finite number: the upper bound |
| 595 | 595 |
Value &upperBound() { return _ub; }
|
| 596 | 596 |
///The const version of \ref upperBound() |
| 597 | 597 |
const Value &upperBound() const { return _ub; }
|
| 598 | 598 |
///Is the constraint lower bounded? |
| 599 | 599 |
bool lowerBounded() const {
|
| 600 |
return _lb != -INF && ! |
|
| 600 |
return _lb != -INF && !isNaN(_lb); |
|
| 601 | 601 |
} |
| 602 | 602 |
///Is the constraint upper bounded? |
| 603 | 603 |
bool upperBounded() const {
|
| 604 |
return _ub != INF && ! |
|
| 604 |
return _ub != INF && !isNaN(_ub); |
|
| 605 | 605 |
} |
| 606 | 606 |
|
| 607 | 607 |
}; |
| 608 | 608 |
|
| 609 | 609 |
///Linear expression of rows |
| 610 | 610 |
|
| 611 | 611 |
///This data structure represents a column of the matrix, |
| 612 | 612 |
///thas is it strores a linear expression of the dual variables |
| 613 | 613 |
///(\ref Row "Row"s). |
| 614 | 614 |
/// |
| 615 | 615 |
///There are several ways to access and modify the contents of this |
| 616 | 616 |
///container. |
| 617 | 617 |
///\code |
| 618 | 618 |
///e[v]=5; |
| 619 | 619 |
///e[v]+=12; |
| 620 | 620 |
///e.erase(v); |
| 621 | 621 |
///\endcode |
| 622 | 622 |
///or you can also iterate through its elements. |
| 623 | 623 |
///\code |
| 624 | 624 |
///double s=0; |
| 625 | 625 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 626 | 626 |
/// s+=*i; |
| 627 | 627 |
///\endcode |
| 628 | 628 |
///(This code computes the sum of all coefficients). |
| 629 | 629 |
///- Numbers (<tt>double</tt>'s) |
| 630 | 630 |
///and variables (\ref Row "Row"s) directly convert to an |
| 631 | 631 |
///\ref DualExpr and the usual linear operations are defined, so |
| 632 | 632 |
///\code |
| 633 | 633 |
///v+w |
| 634 | 634 |
///2*v-3.12*(v-w/2) |
| 635 | 635 |
///v*2.1+(3*v+(v*12+w)*3)/2 |
| 636 | 636 |
///\endcode |
| 637 | 637 |
///are valid \ref DualExpr dual expressions. |
| 638 | 638 |
///The usual assignment operations are also defined. |
| 639 | 639 |
///\code |
| 640 | 640 |
///e=v+w; |
| 641 | 641 |
///e+=2*v-3.12*(v-w/2); |
| 642 | 642 |
///e*=3.4; |
| 643 | 643 |
///e/=5; |
| 644 | 644 |
///\endcode |
| 645 | 645 |
/// |
| 646 | 646 |
///\sa Expr |
| 647 | 647 |
class DualExpr {
|
| 648 | 648 |
friend class LpBase; |
| 649 | 649 |
public: |
| 650 | 650 |
/// The key type of the expression |
| 651 | 651 |
typedef LpBase::Row Key; |
| 652 | 652 |
/// The value type of the expression |
| 653 | 653 |
typedef LpBase::Value Value; |
| 654 | 654 |
|
| 655 | 655 |
protected: |
| 656 | 656 |
std::map<int, Value> comps; |
| 657 | 657 |
|
| 658 | 658 |
public: |
| 659 | 659 |
typedef True SolverExpr; |
| 660 | 660 |
/// Default constructor |
| 661 | 661 |
|
| 662 | 662 |
/// Construct an empty expression, the coefficients are |
| 663 | 663 |
/// initialized to zero. |
| 664 | 664 |
DualExpr() {}
|
| 665 | 665 |
/// Construct an expression from a row |
| 666 | 666 |
|
| 667 | 667 |
/// Construct an expression, which has a term with \c r dual |
| 668 | 668 |
/// variable and 1.0 coefficient. |
| 669 | 669 |
DualExpr(const Row &r) {
|
| 670 | 670 |
typedef std::map<int, Value>::value_type pair_type; |
| 671 | 671 |
comps.insert(pair_type(id(r), 1)); |
| 672 | 672 |
} |
| 673 | 673 |
/// Returns the coefficient of the row |
| 674 | 674 |
Value operator[](const Row& r) const {
|
| 675 | 675 |
std::map<int, Value>::const_iterator it = comps.find(id(r)); |
| 676 | 676 |
if (it != comps.end()) {
|
| 677 | 677 |
return it->second; |
| 678 | 678 |
} else {
|
| 679 | 679 |
return 0; |
| 680 | 680 |
} |
| 681 | 681 |
} |
| 682 | 682 |
/// Returns the coefficient of the row |
| 683 | 683 |
Value& operator[](const Row& r) {
|
| 684 | 684 |
return comps[id(r)]; |
| 685 | 685 |
} |
| 686 | 686 |
/// Sets the coefficient of the row |
| 687 | 687 |
void set(const Row &r, const Value &v) {
|
| 688 | 688 |
if (v != 0.0) {
|
| 689 | 689 |
typedef std::map<int, Value>::value_type pair_type; |
| 690 | 690 |
comps.insert(pair_type(id(r), v)); |
| 691 | 691 |
} else {
|
| 692 | 692 |
comps.erase(id(r)); |
| 693 | 693 |
} |
| 694 | 694 |
} |
| 695 | 695 |
/// \brief Removes the coefficients which's absolute value does |
| 696 | 696 |
/// not exceed \c epsilon. |
| 697 | 697 |
void simplify(Value epsilon = 0.0) {
|
| 698 | 698 |
std::map<int, Value>::iterator it=comps.begin(); |
| 699 | 699 |
while (it != comps.end()) {
|
| 700 | 700 |
std::map<int, Value>::iterator jt=it; |
| 701 | 701 |
++jt; |
| 702 | 702 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
| 703 | 703 |
it=jt; |
| 704 | 704 |
} |
| 705 | 705 |
} |
| 706 | 706 |
|
| 707 | 707 |
void simplify(Value epsilon = 0.0) const {
|
| 708 | 708 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
| 709 | 709 |
} |
| 710 | 710 |
|
| 711 | 711 |
///Sets all coefficients to 0. |
| 712 | 712 |
void clear() {
|
| 713 | 713 |
comps.clear(); |
| 714 | 714 |
} |
| 715 | 715 |
///Compound assignment |
| 716 | 716 |
DualExpr &operator+=(const DualExpr &e) {
|
| 717 | 717 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 718 | 718 |
it!=e.comps.end(); ++it) |
| 719 | 719 |
comps[it->first]+=it->second; |
| 720 | 720 |
return *this; |
| 721 | 721 |
} |
| 722 | 722 |
///Compound assignment |
| 723 | 723 |
DualExpr &operator-=(const DualExpr &e) {
|
| 724 | 724 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 725 | 725 |
it!=e.comps.end(); ++it) |
| 726 | 726 |
comps[it->first]-=it->second; |
| 727 | 727 |
return *this; |
| 728 | 728 |
} |
| 729 | 729 |
///Multiply with a constant |
| 730 | 730 |
DualExpr &operator*=(const Value &v) {
|
| 731 | 731 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 732 | 732 |
it!=comps.end(); ++it) |
| 733 | 733 |
it->second*=v; |
| 734 | 734 |
return *this; |
| 735 | 735 |
} |
| 736 | 736 |
///Division with a constant |
| 737 | 737 |
DualExpr &operator/=(const Value &v) {
|
| 738 | 738 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 739 | 739 |
it!=comps.end(); ++it) |
| 740 | 740 |
it->second/=v; |
| 741 | 741 |
return *this; |
| 742 | 742 |
} |
| 743 | 743 |
|
| 744 | 744 |
///Iterator over the expression |
| 745 | 745 |
|
| 746 | 746 |
///The iterator iterates over the terms of the expression. |
| 747 | 747 |
/// |
| 748 | 748 |
///\code |
| 749 | 749 |
///double s=0; |
| 750 | 750 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
| 751 | 751 |
/// s+= *i * dual(i); |
| 752 | 752 |
///\endcode |
| 753 | 753 |
class CoeffIt {
|
| 754 | 754 |
private: |
| 755 | 755 |
|
| 756 | 756 |
std::map<int, Value>::iterator _it, _end; |
| 757 | 757 |
|
| 758 | 758 |
public: |
| 759 | 759 |
|
| 760 | 760 |
/// Sets the iterator to the first term |
| 761 | 761 |
|
| 762 | 762 |
/// Sets the iterator to the first term of the expression. |
| 763 | 763 |
/// |
| 764 | 764 |
CoeffIt(DualExpr& e) |
| 765 | 765 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 766 | 766 |
|
| 767 | 767 |
/// Convert the iterator to the row of the term |
| 768 | 768 |
operator Row() const {
|
| 769 | 769 |
return rowFromId(_it->first); |
| 770 | 770 |
} |
| 771 | 771 |
|
| 772 | 772 |
/// Returns the coefficient of the term |
| 773 | 773 |
Value& operator*() { return _it->second; }
|
| 774 | 774 |
|
| 775 | 775 |
/// Returns the coefficient of the term |
| 776 | 776 |
const Value& operator*() const { return _it->second; }
|
| 777 | 777 |
|
| 778 | 778 |
/// Next term |
| 779 | 779 |
|
| 780 | 780 |
/// Assign the iterator to the next term. |
| 781 | 781 |
/// |
| 782 | 782 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 783 | 783 |
|
| 784 | 784 |
/// Equality operator |
| 785 | 785 |
bool operator==(Invalid) const { return _it == _end; }
|
| 786 | 786 |
/// Inequality operator |
| 787 | 787 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 788 | 788 |
}; |
| 789 | 789 |
|
| 790 | 790 |
///Iterator over the expression |
| 791 | 791 |
|
| 792 | 792 |
///The iterator iterates over the terms of the expression. |
| 793 | 793 |
/// |
| 794 | 794 |
///\code |
| 795 | 795 |
///double s=0; |
| 796 | 796 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 797 | 797 |
/// s+= *i * dual(i); |
| 798 | 798 |
///\endcode |
| 799 | 799 |
class ConstCoeffIt {
|
| 800 | 800 |
private: |
| 801 | 801 |
|
| 802 | 802 |
std::map<int, Value>::const_iterator _it, _end; |
| 803 | 803 |
|
| 804 | 804 |
public: |
| 805 | 805 |
|
| 806 | 806 |
/// Sets the iterator to the first term |
| 807 | 807 |
|
| 808 | 808 |
/// Sets the iterator to the first term of the expression. |
| 809 | 809 |
/// |
| 810 | 810 |
ConstCoeffIt(const DualExpr& e) |
| 811 | 811 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 812 | 812 |
|
| 813 | 813 |
/// Convert the iterator to the row of the term |
| 814 | 814 |
operator Row() const {
|
| 815 | 815 |
return rowFromId(_it->first); |
| 816 | 816 |
} |
| 817 | 817 |
|
| 818 | 818 |
/// Returns the coefficient of the term |
| 819 | 819 |
const Value& operator*() const { return _it->second; }
|
| 820 | 820 |
|
| 821 | 821 |
/// Next term |
| 822 | 822 |
|
| 823 | 823 |
/// Assign the iterator to the next term. |
| 824 | 824 |
/// |
| 825 | 825 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 826 | 826 |
|
| 827 | 827 |
/// Equality operator |
| 828 | 828 |
bool operator==(Invalid) const { return _it == _end; }
|
| 829 | 829 |
/// Inequality operator |
| 830 | 830 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 831 | 831 |
}; |
| 832 | 832 |
}; |
| 833 | 833 |
|
| 834 | 834 |
|
| 835 | 835 |
protected: |
| 836 | 836 |
|
| 837 | 837 |
class InsertIterator {
|
| 838 | 838 |
private: |
| 839 | 839 |
|
| 840 | 840 |
std::map<int, Value>& _host; |
| 841 | 841 |
const _solver_bits::VarIndex& _index; |
| 842 | 842 |
|
| 843 | 843 |
public: |
| 844 | 844 |
|
| 845 | 845 |
typedef std::output_iterator_tag iterator_category; |
| 846 | 846 |
typedef void difference_type; |
| 847 | 847 |
typedef void value_type; |
| 848 | 848 |
typedef void reference; |
| 849 | 849 |
typedef void pointer; |
| 850 | 850 |
|
| 851 | 851 |
InsertIterator(std::map<int, Value>& host, |
| 852 | 852 |
const _solver_bits::VarIndex& index) |
| 853 | 853 |
: _host(host), _index(index) {}
|
| 854 | 854 |
|
| 855 | 855 |
InsertIterator& operator=(const std::pair<int, Value>& value) {
|
| 856 | 856 |
typedef std::map<int, Value>::value_type pair_type; |
| 857 | 857 |
_host.insert(pair_type(_index[value.first], value.second)); |
| 858 | 858 |
return *this; |
| 859 | 859 |
} |
| 860 | 860 |
|
| 861 | 861 |
InsertIterator& operator*() { return *this; }
|
| 862 | 862 |
InsertIterator& operator++() { return *this; }
|
| 863 | 863 |
InsertIterator operator++(int) { return *this; }
|
| 864 | 864 |
|
| 865 | 865 |
}; |
| 866 | 866 |
|
| 867 | 867 |
class ExprIterator {
|
| 868 | 868 |
private: |
| 869 | 869 |
std::map<int, Value>::const_iterator _host_it; |
| 870 | 870 |
const _solver_bits::VarIndex& _index; |
| 871 | 871 |
public: |
| 872 | 872 |
|
| 873 | 873 |
typedef std::bidirectional_iterator_tag iterator_category; |
| 874 | 874 |
typedef std::ptrdiff_t difference_type; |
| 875 | 875 |
typedef const std::pair<int, Value> value_type; |
| 876 | 876 |
typedef value_type reference; |
| 877 | 877 |
|
| 878 | 878 |
class pointer {
|
| 879 | 879 |
public: |
| 880 | 880 |
pointer(value_type& _value) : value(_value) {}
|
| 881 | 881 |
value_type* operator->() { return &value; }
|
| 882 | 882 |
private: |
| 883 | 883 |
value_type value; |
| 884 | 884 |
}; |
| 885 | 885 |
|
| 886 | 886 |
ExprIterator(const std::map<int, Value>::const_iterator& host_it, |
| 887 | 887 |
const _solver_bits::VarIndex& index) |
| 888 | 888 |
: _host_it(host_it), _index(index) {}
|
| 889 | 889 |
|
| 890 | 890 |
reference operator*() {
|
| 891 | 891 |
return std::make_pair(_index(_host_it->first), _host_it->second); |
| 892 | 892 |
} |
| 893 | 893 |
|
| 894 | 894 |
pointer operator->() {
|
| 895 | 895 |
return pointer(operator*()); |
| 896 | 896 |
} |
| 897 | 897 |
|
| 898 | 898 |
ExprIterator& operator++() { ++_host_it; return *this; }
|
| 899 | 899 |
ExprIterator operator++(int) {
|
| 900 | 900 |
ExprIterator tmp(*this); ++_host_it; return tmp; |
| 901 | 901 |
} |
| 902 | 902 |
|
| 903 | 903 |
ExprIterator& operator--() { --_host_it; return *this; }
|
| 904 | 904 |
ExprIterator operator--(int) {
|
| 905 | 905 |
ExprIterator tmp(*this); --_host_it; return tmp; |
| 906 | 906 |
} |
| 907 | 907 |
|
| 908 | 908 |
bool operator==(const ExprIterator& it) const {
|
| 909 | 909 |
return _host_it == it._host_it; |
| 910 | 910 |
} |
| 911 | 911 |
|
| 912 | 912 |
bool operator!=(const ExprIterator& it) const {
|
| 913 | 913 |
return _host_it != it._host_it; |
| 914 | 914 |
} |
| 915 | 915 |
|
| 916 | 916 |
}; |
| 917 | 917 |
|
| 918 | 918 |
protected: |
| 919 | 919 |
|
| 920 | 920 |
//Abstract virtual functions |
| 921 | 921 |
virtual LpBase* _newSolver() const = 0; |
| 922 | 922 |
virtual LpBase* _cloneSolver() const = 0; |
| 923 | 923 |
|
| 924 | 924 |
virtual int _addColId(int col) { return cols.addIndex(col); }
|
| 925 | 925 |
virtual int _addRowId(int row) { return rows.addIndex(row); }
|
| 926 | 926 |
|
| 927 | 927 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); }
|
| 928 | 928 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
|
| 929 | 929 |
|
| 930 | 930 |
virtual int _addCol() = 0; |
| 931 | 931 |
virtual int _addRow() = 0; |
| 932 | 932 |
|
| 933 | 933 |
virtual void _eraseCol(int col) = 0; |
| 934 | 934 |
virtual void _eraseRow(int row) = 0; |
| 935 | 935 |
|
| 936 | 936 |
virtual void _getColName(int col, std::string& name) const = 0; |
| 937 | 937 |
virtual void _setColName(int col, const std::string& name) = 0; |
| 938 | 938 |
virtual int _colByName(const std::string& name) const = 0; |
| 939 | 939 |
|
| 940 | 940 |
virtual void _getRowName(int row, std::string& name) const = 0; |
| 941 | 941 |
virtual void _setRowName(int row, const std::string& name) = 0; |
| 942 | 942 |
virtual int _rowByName(const std::string& name) const = 0; |
| 943 | 943 |
|
| 944 | 944 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
| 945 | 945 |
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; |
| 946 | 946 |
|
| 947 | 947 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
| 948 | 948 |
virtual void _getColCoeffs(int i, InsertIterator b) const = 0; |
| 949 | 949 |
|
| 950 | 950 |
virtual void _setCoeff(int row, int col, Value value) = 0; |
| 951 | 951 |
virtual Value _getCoeff(int row, int col) const = 0; |
| 952 | 952 |
|
| 953 | 953 |
virtual void _setColLowerBound(int i, Value value) = 0; |
| 954 | 954 |
virtual Value _getColLowerBound(int i) const = 0; |
| 955 | 955 |
|
| 956 | 956 |
virtual void _setColUpperBound(int i, Value value) = 0; |
| 957 | 957 |
virtual Value _getColUpperBound(int i) const = 0; |
| 958 | 958 |
|
| 959 | 959 |
virtual void _setRowLowerBound(int i, Value value) = 0; |
| 960 | 960 |
virtual Value _getRowLowerBound(int i) const = 0; |
| 961 | 961 |
|
| 962 | 962 |
virtual void _setRowUpperBound(int i, Value value) = 0; |
| 963 | 963 |
virtual Value _getRowUpperBound(int i) const = 0; |
| 964 | 964 |
|
| 965 | 965 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; |
| 966 | 966 |
virtual void _getObjCoeffs(InsertIterator b) const = 0; |
| 967 | 967 |
|
| 968 | 968 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
| 969 | 969 |
virtual Value _getObjCoeff(int i) const = 0; |
| 970 | 970 |
|
| 971 | 971 |
virtual void _setSense(Sense) = 0; |
| 972 | 972 |
virtual Sense _getSense() const = 0; |
| 973 | 973 |
|
| 974 | 974 |
virtual void _clear() = 0; |
| 975 | 975 |
|
| 976 | 976 |
virtual const char* _solverName() const = 0; |
| 977 | 977 |
|
| 978 | 978 |
//Own protected stuff |
| 979 | 979 |
|
| 980 | 980 |
//Constant component of the objective function |
| 981 | 981 |
Value obj_const_comp; |
| 982 | 982 |
|
| 983 | 983 |
LpBase() : rows(), cols(), obj_const_comp(0) {}
|
| 984 | 984 |
|
| 985 | 985 |
public: |
| 986 | 986 |
|
| 987 | 987 |
/// Virtual destructor |
| 988 | 988 |
virtual ~LpBase() {}
|
| 989 | 989 |
|
| 990 | 990 |
///Creates a new LP problem |
| 991 | 991 |
LpBase* newSolver() {return _newSolver();}
|
| 992 | 992 |
///Makes a copy of the LP problem |
| 993 | 993 |
LpBase* cloneSolver() {return _cloneSolver();}
|
| 994 | 994 |
|
| 995 | 995 |
///Gives back the name of the solver. |
| 996 | 996 |
const char* solverName() const {return _solverName();}
|
| 997 | 997 |
|
| 998 | 998 |
///\name Build up and modify the LP |
| 999 | 999 |
|
| 1000 | 1000 |
///@{
|
| 1001 | 1001 |
|
| 1002 | 1002 |
///Add a new empty column (i.e a new variable) to the LP |
| 1003 | 1003 |
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}
|
| 1004 | 1004 |
|
| 1005 | 1005 |
///\brief Adds several new columns (i.e variables) at once |
| 1006 | 1006 |
/// |
| 1007 | 1007 |
///This magic function takes a container as its argument and fills |
| 1008 | 1008 |
///its elements with new columns (i.e. variables) |
| 1009 | 1009 |
///\param t can be |
| 1010 | 1010 |
///- a standard STL compatible iterable container with |
| 1011 | 1011 |
///\ref Col as its \c values_type like |
| 1012 | 1012 |
///\code |
| 1013 | 1013 |
///std::vector<LpBase::Col> |
| 1014 | 1014 |
///std::list<LpBase::Col> |
| 1015 | 1015 |
///\endcode |
| 1016 | 1016 |
///- a standard STL compatible iterable container with |
| 1017 | 1017 |
///\ref Col as its \c mapped_type like |
| 1018 | 1018 |
///\code |
| 1019 | 1019 |
///std::map<AnyType,LpBase::Col> |
| 1020 | 1020 |
///\endcode |
| 1021 | 1021 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
| 1022 | 1022 |
///\code |
| 1023 | 1023 |
///ListGraph::NodeMap<LpBase::Col> |
| 1024 | 1024 |
///ListGraph::ArcMap<LpBase::Col> |
| 1025 | 1025 |
///\endcode |
| 1026 | 1026 |
///\return The number of the created column. |
| 1027 | 1027 |
#ifdef DOXYGEN |
| 1028 | 1028 |
template<class T> |
| 1029 | 1029 |
int addColSet(T &t) { return 0;}
|
| 1030 | 1030 |
#else |
| 1031 | 1031 |
template<class T> |
| 1032 | 1032 |
typename enable_if<typename T::value_type::LpCol,int>::type |
| 1033 | 1033 |
addColSet(T &t,dummy<0> = 0) {
|
| 1034 | 1034 |
int s=0; |
| 1035 | 1035 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
|
| 1036 | 1036 |
return s; |
| 1037 | 1037 |
} |
| 1038 | 1038 |
template<class T> |
| 1039 | 1039 |
typename enable_if<typename T::value_type::second_type::LpCol, |
| 1040 | 1040 |
int>::type |
| 1041 | 1041 |
addColSet(T &t,dummy<1> = 1) {
|
| 1042 | 1042 |
int s=0; |
| 1043 | 1043 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1044 | 1044 |
i->second=addCol(); |
| 1045 | 1045 |
s++; |
| 1046 | 1046 |
} |
| 1047 | 1047 |
return s; |
| 1048 | 1048 |
} |
| 1049 | 1049 |
template<class T> |
| 1050 | 1050 |
typename enable_if<typename T::MapIt::Value::LpCol, |
| 1051 | 1051 |
int>::type |
| 1052 | 1052 |
addColSet(T &t,dummy<2> = 2) {
|
| 1053 | 1053 |
int s=0; |
| 1054 | 1054 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
| 1055 | 1055 |
{
|
| 1056 | 1056 |
i.set(addCol()); |
| 1057 | 1057 |
s++; |
| 1058 | 1058 |
} |
| 1059 | 1059 |
return s; |
| 1060 | 1060 |
} |
| 1061 | 1061 |
#endif |
| 1062 | 1062 |
|
| 1063 | 1063 |
///Set a column (i.e a dual constraint) of the LP |
| 1064 | 1064 |
|
| 1065 | 1065 |
///\param c is the column to be modified |
| 1066 | 1066 |
///\param e is a dual linear expression (see \ref DualExpr) |
| 1067 | 1067 |
///a better one. |
| 1068 | 1068 |
void col(Col c, const DualExpr &e) {
|
| 1069 | 1069 |
e.simplify(); |
| 1070 | 1070 |
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), |
| 1071 | 1071 |
ExprIterator(e.comps.end(), rows)); |
| 1072 | 1072 |
} |
| 1073 | 1073 |
|
| 1074 | 1074 |
///Get a column (i.e a dual constraint) of the LP |
| 1075 | 1075 |
|
| 1076 | 1076 |
///\param c is the column to get |
| 1077 | 1077 |
///\return the dual expression associated to the column |
| 1078 | 1078 |
DualExpr col(Col c) const {
|
| 1079 | 1079 |
DualExpr e; |
| 1080 | 1080 |
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); |
| 1081 | 1081 |
return e; |
| 1082 | 1082 |
} |
| 1083 | 1083 |
|
| 1084 | 1084 |
///Add a new column to the LP |
| 1085 | 1085 |
|
| 1086 | 1086 |
///\param e is a dual linear expression (see \ref DualExpr) |
| 1087 | 1087 |
///\param o is the corresponding component of the objective |
| 1088 | 1088 |
///function. It is 0 by default. |
| 1089 | 1089 |
///\return The created column. |
| 1090 | 1090 |
Col addCol(const DualExpr &e, Value o = 0) {
|
| 1091 | 1091 |
Col c=addCol(); |
| 1092 | 1092 |
col(c,e); |
| 1093 | 1093 |
objCoeff(c,o); |
| 1094 | 1094 |
return c; |
| 1095 | 1095 |
} |
| 1096 | 1096 |
|
| 1097 | 1097 |
///Add a new empty row (i.e a new constraint) to the LP |
| 1098 | 1098 |
|
| 1099 | 1099 |
///This function adds a new empty row (i.e a new constraint) to the LP. |
| 1100 | 1100 |
///\return The created row |
| 1101 | 1101 |
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}
|
| 1102 | 1102 |
|
| 1103 | 1103 |
///\brief Add several new rows (i.e constraints) at once |
| 1104 | 1104 |
/// |
| 1105 | 1105 |
///This magic function takes a container as its argument and fills |
| 1106 | 1106 |
///its elements with new row (i.e. variables) |
| 1107 | 1107 |
///\param t can be |
| 1108 | 1108 |
///- a standard STL compatible iterable container with |
| 1109 | 1109 |
///\ref Row as its \c values_type like |
| 1110 | 1110 |
///\code |
| 1111 | 1111 |
///std::vector<LpBase::Row> |
| 1112 | 1112 |
///std::list<LpBase::Row> |
| 1113 | 1113 |
///\endcode |
| 1114 | 1114 |
///- a standard STL compatible iterable container with |
| 1115 | 1115 |
///\ref Row as its \c mapped_type like |
| 1116 | 1116 |
///\code |
| 1117 | 1117 |
///std::map<AnyType,LpBase::Row> |
| 1118 | 1118 |
///\endcode |
| 1119 | 1119 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
| 1120 | 1120 |
///\code |
| 1121 | 1121 |
///ListGraph::NodeMap<LpBase::Row> |
| 1122 | 1122 |
///ListGraph::ArcMap<LpBase::Row> |
| 1123 | 1123 |
///\endcode |
| 1124 | 1124 |
///\return The number of rows created. |
| 1125 | 1125 |
#ifdef DOXYGEN |
| 1126 | 1126 |
template<class T> |
| 1127 | 1127 |
int addRowSet(T &t) { return 0;}
|
| 1128 | 1128 |
#else |
| 1129 | 1129 |
template<class T> |
| 1130 | 1130 |
typename enable_if<typename T::value_type::LpRow,int>::type |
| 1131 | 1131 |
addRowSet(T &t, dummy<0> = 0) {
|
| 1132 | 1132 |
int s=0; |
| 1133 | 1133 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
|
| 1134 | 1134 |
return s; |
| 1135 | 1135 |
} |
| 1136 | 1136 |
template<class T> |
| 1137 | 1137 |
typename enable_if<typename T::value_type::second_type::LpRow, int>::type |
| 1138 | 1138 |
addRowSet(T &t, dummy<1> = 1) {
|
| 1139 | 1139 |
int s=0; |
| 1140 | 1140 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1141 | 1141 |
i->second=addRow(); |
| 1142 | 1142 |
s++; |
| 1143 | 1143 |
} |
| 1144 | 1144 |
return s; |
| 1145 | 1145 |
} |
| 1146 | 1146 |
template<class T> |
| 1147 | 1147 |
typename enable_if<typename T::MapIt::Value::LpRow, int>::type |
| 1148 | 1148 |
addRowSet(T &t, dummy<2> = 2) {
|
| 1149 | 1149 |
int s=0; |
| 1150 | 1150 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
| 1151 | 1151 |
{
|
| 1152 | 1152 |
i.set(addRow()); |
| 1153 | 1153 |
s++; |
| 1154 | 1154 |
} |
| 1155 | 1155 |
return s; |
| 1156 | 1156 |
} |
| 1157 | 1157 |
#endif |
| 1158 | 1158 |
|
| 1159 | 1159 |
///Set a row (i.e a constraint) of the LP |
| 1160 | 1160 |
|
| 1161 | 1161 |
///\param r is the row to be modified |
| 1162 | 1162 |
///\param l is lower bound (-\ref INF means no bound) |
| 1163 | 1163 |
///\param e is a linear expression (see \ref Expr) |
| 1164 | 1164 |
///\param u is the upper bound (\ref INF means no bound) |
| 1165 | 1165 |
void row(Row r, Value l, const Expr &e, Value u) {
|
| 1166 | 1166 |
e.simplify(); |
| 1167 | 1167 |
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), |
| 1168 | 1168 |
ExprIterator(e.comps.end(), cols)); |
| 1169 | 1169 |
_setRowLowerBound(rows(id(r)),l - *e); |
| 1170 | 1170 |
_setRowUpperBound(rows(id(r)),u - *e); |
| 1171 | 1171 |
} |
| 1172 | 1172 |
|
| 1173 | 1173 |
///Set a row (i.e a constraint) of the LP |
| 1174 | 1174 |
|
| 1175 | 1175 |
///\param r is the row to be modified |
| 1176 | 1176 |
///\param c is a linear expression (see \ref Constr) |
| 1177 | 1177 |
void row(Row r, const Constr &c) {
|
| 1178 | 1178 |
row(r, c.lowerBounded()?c.lowerBound():-INF, |
| 1179 | 1179 |
c.expr(), c.upperBounded()?c.upperBound():INF); |
| 1180 | 1180 |
} |
| 1181 | 1181 |
|
| 1182 | 1182 |
|
| 1183 | 1183 |
///Get a row (i.e a constraint) of the LP |
| 1184 | 1184 |
|
| 1185 | 1185 |
///\param r is the row to get |
| 1186 | 1186 |
///\return the expression associated to the row |
| 1187 | 1187 |
Expr row(Row r) const {
|
| 1188 | 1188 |
Expr e; |
| 1189 | 1189 |
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); |
| 1190 | 1190 |
return e; |
| 1191 | 1191 |
} |
| 1192 | 1192 |
|
| 1193 | 1193 |
///Add a new row (i.e a new constraint) to the LP |
| 1194 | 1194 |
|
| 1195 | 1195 |
///\param l is the lower bound (-\ref INF means no bound) |
| 1196 | 1196 |
///\param e is a linear expression (see \ref Expr) |
| 1197 | 1197 |
///\param u is the upper bound (\ref INF means no bound) |
| 1198 | 1198 |
///\return The created row. |
| 1199 | 1199 |
Row addRow(Value l,const Expr &e, Value u) {
|
| 1200 | 1200 |
Row r=addRow(); |
| 1201 | 1201 |
row(r,l,e,u); |
| 1202 | 1202 |
return r; |
| 1203 | 1203 |
} |
| 1204 | 1204 |
|
| 1205 | 1205 |
///Add a new row (i.e a new constraint) to the LP |
| 1206 | 1206 |
|
| 1207 | 1207 |
///\param c is a linear expression (see \ref Constr) |
| 1208 | 1208 |
///\return The created row. |
| 1209 | 1209 |
Row addRow(const Constr &c) {
|
| 1210 | 1210 |
Row r=addRow(); |
| 1211 | 1211 |
row(r,c); |
| 1212 | 1212 |
return r; |
| 1213 | 1213 |
} |
| 1214 | 1214 |
///Erase a column (i.e a variable) from the LP |
| 1215 | 1215 |
|
| 1216 | 1216 |
///\param c is the column to be deleted |
| 1217 | 1217 |
void erase(Col c) {
|
| 1218 | 1218 |
_eraseCol(cols(id(c))); |
| 1219 | 1219 |
_eraseColId(cols(id(c))); |
| 1220 | 1220 |
} |
| 1221 | 1221 |
///Erase a row (i.e a constraint) from the LP |
| 1222 | 1222 |
|
| 1223 | 1223 |
///\param r is the row to be deleted |
| 1224 | 1224 |
void erase(Row r) {
|
| 1225 | 1225 |
_eraseRow(rows(id(r))); |
| 1226 | 1226 |
_eraseRowId(rows(id(r))); |
| 1227 | 1227 |
} |
| 1228 | 1228 |
|
| 1229 | 1229 |
/// Get the name of a column |
| 1230 | 1230 |
|
| 1231 | 1231 |
///\param c is the coresponding column |
| 1232 | 1232 |
///\return The name of the colunm |
| 1233 | 1233 |
std::string colName(Col c) const {
|
| 1234 | 1234 |
std::string name; |
| 1235 | 1235 |
_getColName(cols(id(c)), name); |
| 1236 | 1236 |
return name; |
| 1237 | 1237 |
} |
| 1238 | 1238 |
|
| 1239 | 1239 |
/// Set the name of a column |
| 1240 | 1240 |
|
| 1241 | 1241 |
///\param c is the coresponding column |
| 1242 | 1242 |
///\param name The name to be given |
| 1243 | 1243 |
void colName(Col c, const std::string& name) {
|
| 1244 | 1244 |
_setColName(cols(id(c)), name); |
| 1245 | 1245 |
} |
| 1246 | 1246 |
|
| 1247 | 1247 |
/// Get the column by its name |
| 1248 | 1248 |
|
| 1249 | 1249 |
///\param name The name of the column |
| 1250 | 1250 |
///\return the proper column or \c INVALID |
| 1251 | 1251 |
Col colByName(const std::string& name) const {
|
| 1252 | 1252 |
int k = _colByName(name); |
| 1253 | 1253 |
return k != -1 ? Col(cols[k]) : Col(INVALID); |
| 1254 | 1254 |
} |
| 1255 | 1255 |
|
| 1256 | 1256 |
/// Get the name of a row |
| 1257 | 1257 |
|
| 1258 | 1258 |
///\param r is the coresponding row |
| 1259 | 1259 |
///\return The name of the row |
| 1260 | 1260 |
std::string rowName(Row r) const {
|
| 1261 | 1261 |
std::string name; |
| 1262 | 1262 |
_getRowName(rows(id(r)), name); |
| 1263 | 1263 |
return name; |
| 1264 | 1264 |
} |
| 1265 | 1265 |
|
| 1266 | 1266 |
/// Set the name of a row |
| 1267 | 1267 |
|
| 1268 | 1268 |
///\param r is the coresponding row |
| 1269 | 1269 |
///\param name The name to be given |
| 1270 | 1270 |
void rowName(Row r, const std::string& name) {
|
| 1271 | 1271 |
_setRowName(rows(id(r)), name); |
| 1272 | 1272 |
} |
| 1273 | 1273 |
|
| 1274 | 1274 |
/// Get the row by its name |
| 1275 | 1275 |
|
| 1276 | 1276 |
///\param name The name of the row |
| 1277 | 1277 |
///\return the proper row or \c INVALID |
| 1278 | 1278 |
Row rowByName(const std::string& name) const {
|
| 1279 | 1279 |
int k = _rowByName(name); |
| 1280 | 1280 |
return k != -1 ? Row(rows[k]) : Row(INVALID); |
| 1281 | 1281 |
} |
| 1282 | 1282 |
|
| 1283 | 1283 |
/// Set an element of the coefficient matrix of the LP |
| 1284 | 1284 |
|
| 1285 | 1285 |
///\param r is the row of the element to be modified |
| 1286 | 1286 |
///\param c is the column of the element to be modified |
| 1287 | 1287 |
///\param val is the new value of the coefficient |
| 1288 | 1288 |
void coeff(Row r, Col c, Value val) {
|
| 1289 | 1289 |
_setCoeff(rows(id(r)),cols(id(c)), val); |
| 1290 | 1290 |
} |
| 1291 | 1291 |
|
| 1292 | 1292 |
/// Get an element of the coefficient matrix of the LP |
| 1293 | 1293 |
|
| 1294 | 1294 |
///\param r is the row of the element |
| 1295 | 1295 |
///\param c is the column of the element |
| 1296 | 1296 |
///\return the corresponding coefficient |
| 1297 | 1297 |
Value coeff(Row r, Col c) const {
|
| 1298 | 1298 |
return _getCoeff(rows(id(r)),cols(id(c))); |
| 1299 | 1299 |
} |
| 1300 | 1300 |
|
| 1301 | 1301 |
/// Set the lower bound of a column (i.e a variable) |
| 1302 | 1302 |
|
| 1303 | 1303 |
/// The lower bound of a variable (column) has to be given by an |
| 1304 | 1304 |
/// extended number of type Value, i.e. a finite number of type |
| 1305 | 1305 |
/// Value or -\ref INF. |
| 1306 | 1306 |
void colLowerBound(Col c, Value value) {
|
| 1307 | 1307 |
_setColLowerBound(cols(id(c)),value); |
| 1308 | 1308 |
} |
| 1309 | 1309 |
|
| 1310 | 1310 |
/// Get the lower bound of a column (i.e a variable) |
| 1311 | 1311 |
|
| 1312 | 1312 |
/// This function returns the lower bound for column (variable) \c c |
| 1313 | 1313 |
/// (this might be -\ref INF as well). |
| 1314 | 1314 |
///\return The lower bound for column \c c |
| 1315 | 1315 |
Value colLowerBound(Col c) const {
|
| 1316 | 1316 |
return _getColLowerBound(cols(id(c))); |
| 1317 | 1317 |
} |
| 1318 | 1318 |
|
| 1319 | 1319 |
///\brief Set the lower bound of several columns |
| 1320 | 1320 |
///(i.e variables) at once |
| 1321 | 1321 |
/// |
| 1322 | 1322 |
///This magic function takes a container as its argument |
| 1323 | 1323 |
///and applies the function on all of its elements. |
| 1324 | 1324 |
///The lower bound of a variable (column) has to be given by an |
| 1325 | 1325 |
///extended number of type Value, i.e. a finite number of type |
| 1326 | 1326 |
///Value or -\ref INF. |
| 1327 | 1327 |
#ifdef DOXYGEN |
| 1328 | 1328 |
template<class T> |
| 1329 | 1329 |
void colLowerBound(T &t, Value value) { return 0;}
|
| 1330 | 1330 |
#else |
| 1331 | 1331 |
template<class T> |
| 1332 | 1332 |
typename enable_if<typename T::value_type::LpCol,void>::type |
| 1333 | 1333 |
colLowerBound(T &t, Value value,dummy<0> = 0) {
|
| 1334 | 1334 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1335 | 1335 |
colLowerBound(*i, value); |
| 1336 | 1336 |
} |
| 1337 | 1337 |
} |
| 1338 | 1338 |
template<class T> |
| 1339 | 1339 |
typename enable_if<typename T::value_type::second_type::LpCol, |
| 1340 | 1340 |
void>::type |
| 1341 | 1341 |
colLowerBound(T &t, Value value,dummy<1> = 1) {
|
| 1342 | 1342 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1343 | 1343 |
colLowerBound(i->second, value); |
| 1344 | 1344 |
} |
| 1345 | 1345 |
} |
| 1346 | 1346 |
template<class T> |
| 1347 | 1347 |
typename enable_if<typename T::MapIt::Value::LpCol, |
| 1348 | 1348 |
void>::type |
| 1349 | 1349 |
colLowerBound(T &t, Value value,dummy<2> = 2) {
|
| 1350 | 1350 |
for(typename T::MapIt i(t); i!=INVALID; ++i){
|
| 1351 | 1351 |
colLowerBound(*i, value); |
| 1352 | 1352 |
} |
| 1353 | 1353 |
} |
| 1354 | 1354 |
#endif |
| 1355 | 1355 |
|
| 1356 | 1356 |
/// Set the upper bound of a column (i.e a variable) |
| 1357 | 1357 |
|
| 1358 | 1358 |
/// The upper bound of a variable (column) has to be given by an |
| 1359 | 1359 |
/// extended number of type Value, i.e. a finite number of type |
| 1360 | 1360 |
/// Value or \ref INF. |
| 1361 | 1361 |
void colUpperBound(Col c, Value value) {
|
| 1362 | 1362 |
_setColUpperBound(cols(id(c)),value); |
| 1363 | 1363 |
}; |
| 1364 | 1364 |
|
| 1365 | 1365 |
/// Get the upper bound of a column (i.e a variable) |
| 1366 | 1366 |
|
| 1367 | 1367 |
/// This function returns the upper bound for column (variable) \c c |
| 1368 | 1368 |
/// (this might be \ref INF as well). |
| 1369 | 1369 |
/// \return The upper bound for column \c c |
| 1370 | 1370 |
Value colUpperBound(Col c) const {
|
| 1371 | 1371 |
return _getColUpperBound(cols(id(c))); |
| 1372 | 1372 |
} |
| 1373 | 1373 |
|
| 1374 | 1374 |
///\brief Set the upper bound of several columns |
| 1375 | 1375 |
///(i.e variables) at once |
| 1376 | 1376 |
/// |
| 1377 | 1377 |
///This magic function takes a container as its argument |
| 1378 | 1378 |
///and applies the function on all of its elements. |
| 1379 | 1379 |
///The upper bound of a variable (column) has to be given by an |
| 1380 | 1380 |
///extended number of type Value, i.e. a finite number of type |
| 1381 | 1381 |
///Value or \ref INF. |
| 1382 | 1382 |
#ifdef DOXYGEN |
| 1383 | 1383 |
template<class T> |
| 1384 | 1384 |
void colUpperBound(T &t, Value value) { return 0;}
|
| 1385 | 1385 |
#else |
| 1386 | 1386 |
template<class T> |
| 1387 | 1387 |
typename enable_if<typename T::value_type::LpCol,void>::type |
| 1388 | 1388 |
colUpperBound(T &t, Value value,dummy<0> = 0) {
|
| 1389 | 1389 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1390 | 1390 |
colUpperBound(*i, value); |
| 1391 | 1391 |
} |
| 1392 | 1392 |
} |
| 1393 | 1393 |
template<class T> |
| 1394 | 1394 |
typename enable_if<typename T::value_type::second_type::LpCol, |
| 1395 | 1395 |
void>::type |
| 1396 | 1396 |
colUpperBound(T &t, Value value,dummy<1> = 1) {
|
| 1397 | 1397 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1398 | 1398 |
colUpperBound(i->second, value); |
| 1399 | 1399 |
} |
| 1400 | 1400 |
} |
| 1401 | 1401 |
template<class T> |
| 1402 | 1402 |
typename enable_if<typename T::MapIt::Value::LpCol, |
| 1403 | 1403 |
void>::type |
| 1404 | 1404 |
colUpperBound(T &t, Value value,dummy<2> = 2) {
|
| 1405 | 1405 |
for(typename T::MapIt i(t); i!=INVALID; ++i){
|
| 1406 | 1406 |
colUpperBound(*i, value); |
| 1407 | 1407 |
} |
| 1408 | 1408 |
} |
| 1409 | 1409 |
#endif |
| 1410 | 1410 |
|
| 1411 | 1411 |
/// Set the lower and the upper bounds of a column (i.e a variable) |
| 1412 | 1412 |
|
| 1413 | 1413 |
/// The lower and the upper bounds of |
| 1414 | 1414 |
/// a variable (column) have to be given by an |
| 1415 | 1415 |
/// extended number of type Value, i.e. a finite number of type |
| 1416 | 1416 |
/// Value, -\ref INF or \ref INF. |
| 1417 | 1417 |
void colBounds(Col c, Value lower, Value upper) {
|
| 1418 | 1418 |
_setColLowerBound(cols(id(c)),lower); |
| 1419 | 1419 |
_setColUpperBound(cols(id(c)),upper); |
| 1420 | 1420 |
} |
| 1421 | 1421 |
|
| 1422 | 1422 |
///\brief Set the lower and the upper bound of several columns |
| 1423 | 1423 |
///(i.e variables) at once |
| 1424 | 1424 |
/// |
| 1425 | 1425 |
///This magic function takes a container as its argument |
| 1426 | 1426 |
///and applies the function on all of its elements. |
| 1427 | 1427 |
/// The lower and the upper bounds of |
| 1428 | 1428 |
/// a variable (column) have to be given by an |
| 1429 | 1429 |
/// extended number of type Value, i.e. a finite number of type |
| 1430 | 1430 |
/// Value, -\ref INF or \ref INF. |
| 1431 | 1431 |
#ifdef DOXYGEN |
| 1432 | 1432 |
template<class T> |
| 1433 | 1433 |
void colBounds(T &t, Value lower, Value upper) { return 0;}
|
| 1434 | 1434 |
#else |
| 1435 | 1435 |
template<class T> |
| 1436 | 1436 |
typename enable_if<typename T::value_type::LpCol,void>::type |
| 1437 | 1437 |
colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
|
| 1438 | 1438 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1439 | 1439 |
colBounds(*i, lower, upper); |
| 1440 | 1440 |
} |
| 1441 | 1441 |
} |
| 1442 | 1442 |
template<class T> |
| 1443 | 1443 |
typename enable_if<typename T::value_type::second_type::LpCol, void>::type |
| 1444 | 1444 |
colBounds(T &t, Value lower, Value upper,dummy<1> = 1) {
|
| 1445 | 1445 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1446 | 1446 |
colBounds(i->second, lower, upper); |
| 1447 | 1447 |
} |
| 1448 | 1448 |
} |
| 1449 | 1449 |
template<class T> |
| 1450 | 1450 |
typename enable_if<typename T::MapIt::Value::LpCol, void>::type |
| 1451 | 1451 |
colBounds(T &t, Value lower, Value upper,dummy<2> = 2) {
|
| 1452 | 1452 |
for(typename T::MapIt i(t); i!=INVALID; ++i){
|
| 1453 | 1453 |
colBounds(*i, lower, upper); |
| 1454 | 1454 |
} |
| 1455 | 1455 |
} |
| 1456 | 1456 |
#endif |
| 1457 | 1457 |
|
| 1458 | 1458 |
/// Set the lower bound of a row (i.e a constraint) |
| 1459 | 1459 |
|
| 1460 | 1460 |
/// The lower bound of a constraint (row) has to be given by an |
| 1461 | 1461 |
/// extended number of type Value, i.e. a finite number of type |
| 1462 | 1462 |
/// Value or -\ref INF. |
| 1463 | 1463 |
void rowLowerBound(Row r, Value value) {
|
| 1464 | 1464 |
_setRowLowerBound(rows(id(r)),value); |
| 1465 | 1465 |
} |
| 1466 | 1466 |
|
| 1467 | 1467 |
/// Get the lower bound of a row (i.e a constraint) |
| 1468 | 1468 |
|
| 1469 | 1469 |
/// This function returns the lower bound for row (constraint) \c c |
| 1470 | 1470 |
/// (this might be -\ref INF as well). |
| 1471 | 1471 |
///\return The lower bound for row \c r |
| 1472 | 1472 |
Value rowLowerBound(Row r) const {
|
| 1473 | 1473 |
return _getRowLowerBound(rows(id(r))); |
| 1474 | 1474 |
} |
| 1475 | 1475 |
|
| 1476 | 1476 |
/// Set the upper bound of a row (i.e a constraint) |
| 1477 | 1477 |
|
| 1478 | 1478 |
/// The upper bound of a constraint (row) has to be given by an |
| 1479 | 1479 |
/// extended number of type Value, i.e. a finite number of type |
| 1480 | 1480 |
/// Value or -\ref INF. |
| 1481 | 1481 |
void rowUpperBound(Row r, Value value) {
|
| 1482 | 1482 |
_setRowUpperBound(rows(id(r)),value); |
| 1483 | 1483 |
} |
| 1484 | 1484 |
|
| 1485 | 1485 |
/// Get the upper bound of a row (i.e a constraint) |
| 1486 | 1486 |
|
| 1487 | 1487 |
/// This function returns the upper bound for row (constraint) \c c |
| 1488 | 1488 |
/// (this might be -\ref INF as well). |
| 1489 | 1489 |
///\return The upper bound for row \c r |
| 1490 | 1490 |
Value rowUpperBound(Row r) const {
|
| 1491 | 1491 |
return _getRowUpperBound(rows(id(r))); |
| 1492 | 1492 |
} |
| 1493 | 1493 |
|
| 1494 | 1494 |
///Set an element of the objective function |
| 1495 | 1495 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
|
| 1496 | 1496 |
|
| 1497 | 1497 |
///Get an element of the objective function |
| 1498 | 1498 |
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
|
| 1499 | 1499 |
|
| 1500 | 1500 |
///Set the objective function |
| 1501 | 1501 |
|
| 1502 | 1502 |
///\param e is a linear expression of type \ref Expr. |
| 1503 | 1503 |
/// |
| 1504 | 1504 |
void obj(const Expr& e) {
|
| 1505 | 1505 |
_setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
| 1506 | 1506 |
ExprIterator(e.comps.end(), cols)); |
| 1507 | 1507 |
obj_const_comp = *e; |
| 1508 | 1508 |
} |
| 1509 | 1509 |
|
| 1510 | 1510 |
///Get the objective function |
| 1511 | 1511 |
|
| 1512 | 1512 |
///\return the objective function as a linear expression of type |
| 1513 | 1513 |
///Expr. |
| 1514 | 1514 |
Expr obj() const {
|
| 1515 | 1515 |
Expr e; |
| 1516 | 1516 |
_getObjCoeffs(InsertIterator(e.comps, cols)); |
| 1517 | 1517 |
*e = obj_const_comp; |
| 1518 | 1518 |
return e; |
| 1519 | 1519 |
} |
| 1520 | 1520 |
|
| 1521 | 1521 |
|
| 1522 | 1522 |
///Set the direction of optimization |
| 1523 | 1523 |
void sense(Sense sense) { _setSense(sense); }
|
| 1524 | 1524 |
|
| 1525 | 1525 |
///Query the direction of the optimization |
| 1526 | 1526 |
Sense sense() const {return _getSense(); }
|
| 1527 | 1527 |
|
| 1528 | 1528 |
///Set the sense to maximization |
| 1529 | 1529 |
void max() { _setSense(MAX); }
|
| 1530 | 1530 |
|
| 1531 | 1531 |
///Set the sense to maximization |
| 1532 | 1532 |
void min() { _setSense(MIN); }
|
| 1533 | 1533 |
|
| 1534 | 1534 |
///Clears the problem |
| 1535 | 1535 |
void clear() { _clear(); }
|
| 1536 | 1536 |
|
| 1537 | 1537 |
///@} |
| 1538 | 1538 |
|
| 1539 | 1539 |
}; |
| 1540 | 1540 |
|
| 1541 | 1541 |
/// Addition |
| 1542 | 1542 |
|
| 1543 | 1543 |
///\relates LpBase::Expr |
| 1544 | 1544 |
/// |
| 1545 | 1545 |
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1546 | 1546 |
LpBase::Expr tmp(a); |
| 1547 | 1547 |
tmp+=b; |
| 1548 | 1548 |
return tmp; |
| 1549 | 1549 |
} |
| 1550 | 1550 |
///Substraction |
| 1551 | 1551 |
|
| 1552 | 1552 |
///\relates LpBase::Expr |
| 1553 | 1553 |
/// |
| 1554 | 1554 |
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1555 | 1555 |
LpBase::Expr tmp(a); |
| 1556 | 1556 |
tmp-=b; |
| 1557 | 1557 |
return tmp; |
| 1558 | 1558 |
} |
| 1559 | 1559 |
///Multiply with constant |
| 1560 | 1560 |
|
| 1561 | 1561 |
///\relates LpBase::Expr |
| 1562 | 1562 |
/// |
| 1563 | 1563 |
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1564 | 1564 |
LpBase::Expr tmp(a); |
| 1565 | 1565 |
tmp*=b; |
| 1566 | 1566 |
return tmp; |
| 1567 | 1567 |
} |
| 1568 | 1568 |
|
| 1569 | 1569 |
///Multiply with constant |
| 1570 | 1570 |
|
| 1571 | 1571 |
///\relates LpBase::Expr |
| 1572 | 1572 |
/// |
| 1573 | 1573 |
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
|
| 1574 | 1574 |
LpBase::Expr tmp(b); |
| 1575 | 1575 |
tmp*=a; |
| 1576 | 1576 |
return tmp; |
| 1577 | 1577 |
} |
| 1578 | 1578 |
///Divide with constant |
| 1579 | 1579 |
|
| 1580 | 1580 |
///\relates LpBase::Expr |
| 1581 | 1581 |
/// |
| 1582 | 1582 |
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1583 | 1583 |
LpBase::Expr tmp(a); |
| 1584 | 1584 |
tmp/=b; |
| 1585 | 1585 |
return tmp; |
| 1586 | 1586 |
} |
| 1587 | 1587 |
|
| 1588 | 1588 |
///Create constraint |
| 1589 | 1589 |
|
| 1590 | 1590 |
///\relates LpBase::Constr |
| 1591 | 1591 |
/// |
| 1592 | 1592 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1593 | 1593 |
const LpBase::Expr &f) {
|
| 1594 | 1594 |
return LpBase::Constr(0, f - e, LpBase::INF); |
| 1595 | 1595 |
} |
| 1596 | 1596 |
|
| 1597 | 1597 |
///Create constraint |
| 1598 | 1598 |
|
| 1599 | 1599 |
///\relates LpBase::Constr |
| 1600 | 1600 |
/// |
| 1601 | 1601 |
inline LpBase::Constr operator<=(const LpBase::Value &e, |
| 1602 | 1602 |
const LpBase::Expr &f) {
|
| 1603 | 1603 |
return LpBase::Constr(e, f, LpBase::NaN); |
| 1604 | 1604 |
} |
| 1605 | 1605 |
|
| 1606 | 1606 |
///Create constraint |
| 1607 | 1607 |
|
| 1608 | 1608 |
///\relates LpBase::Constr |
| 1609 | 1609 |
/// |
| 1610 | 1610 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1611 | 1611 |
const LpBase::Value &f) {
|
| 1612 | 1612 |
return LpBase::Constr(- LpBase::INF, e, f); |
| 1613 | 1613 |
} |
| 1614 | 1614 |
|
| 1615 | 1615 |
///Create constraint |
| 1616 | 1616 |
|
| 1617 | 1617 |
///\relates LpBase::Constr |
| 1618 | 1618 |
/// |
| 1619 | 1619 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1620 | 1620 |
const LpBase::Expr &f) {
|
| 1621 | 1621 |
return LpBase::Constr(0, e - f, LpBase::INF); |
| 1622 | 1622 |
} |
| 1623 | 1623 |
|
| 1624 | 1624 |
|
| 1625 | 1625 |
///Create constraint |
| 1626 | 1626 |
|
| 1627 | 1627 |
///\relates LpBase::Constr |
| 1628 | 1628 |
/// |
| 1629 | 1629 |
inline LpBase::Constr operator>=(const LpBase::Value &e, |
| 1630 | 1630 |
const LpBase::Expr &f) {
|
| 1631 | 1631 |
return LpBase::Constr(LpBase::NaN, f, e); |
| 1632 | 1632 |
} |
| 1633 | 1633 |
|
| 1634 | 1634 |
|
| 1635 | 1635 |
///Create constraint |
| 1636 | 1636 |
|
| 1637 | 1637 |
///\relates LpBase::Constr |
| 1638 | 1638 |
/// |
| 1639 | 1639 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1640 | 1640 |
const LpBase::Value &f) {
|
| 1641 | 1641 |
return LpBase::Constr(f, e, LpBase::INF); |
| 1642 | 1642 |
} |
| 1643 | 1643 |
|
| 1644 | 1644 |
///Create constraint |
| 1645 | 1645 |
|
| 1646 | 1646 |
///\relates LpBase::Constr |
| 1647 | 1647 |
/// |
| 1648 | 1648 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1649 | 1649 |
const LpBase::Value &f) {
|
| 1650 | 1650 |
return LpBase::Constr(f, e, f); |
| 1651 | 1651 |
} |
| 1652 | 1652 |
|
| 1653 | 1653 |
///Create constraint |
| 1654 | 1654 |
|
| 1655 | 1655 |
///\relates LpBase::Constr |
| 1656 | 1656 |
/// |
| 1657 | 1657 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1658 | 1658 |
const LpBase::Expr &f) {
|
| 1659 | 1659 |
return LpBase::Constr(0, f - e, 0); |
| 1660 | 1660 |
} |
| 1661 | 1661 |
|
| 1662 | 1662 |
///Create constraint |
| 1663 | 1663 |
|
| 1664 | 1664 |
///\relates LpBase::Constr |
| 1665 | 1665 |
/// |
| 1666 | 1666 |
inline LpBase::Constr operator<=(const LpBase::Value &n, |
| 1667 | 1667 |
const LpBase::Constr &c) {
|
| 1668 | 1668 |
LpBase::Constr tmp(c); |
| 1669 |
LEMON_ASSERT( |
|
| 1669 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
|
| 1670 | 1670 |
tmp.lowerBound()=n; |
| 1671 | 1671 |
return tmp; |
| 1672 | 1672 |
} |
| 1673 | 1673 |
///Create constraint |
| 1674 | 1674 |
|
| 1675 | 1675 |
///\relates LpBase::Constr |
| 1676 | 1676 |
/// |
| 1677 | 1677 |
inline LpBase::Constr operator<=(const LpBase::Constr &c, |
| 1678 | 1678 |
const LpBase::Value &n) |
| 1679 | 1679 |
{
|
| 1680 | 1680 |
LpBase::Constr tmp(c); |
| 1681 |
LEMON_ASSERT( |
|
| 1681 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
|
| 1682 | 1682 |
tmp.upperBound()=n; |
| 1683 | 1683 |
return tmp; |
| 1684 | 1684 |
} |
| 1685 | 1685 |
|
| 1686 | 1686 |
///Create constraint |
| 1687 | 1687 |
|
| 1688 | 1688 |
///\relates LpBase::Constr |
| 1689 | 1689 |
/// |
| 1690 | 1690 |
inline LpBase::Constr operator>=(const LpBase::Value &n, |
| 1691 | 1691 |
const LpBase::Constr &c) {
|
| 1692 | 1692 |
LpBase::Constr tmp(c); |
| 1693 |
LEMON_ASSERT( |
|
| 1693 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
|
| 1694 | 1694 |
tmp.upperBound()=n; |
| 1695 | 1695 |
return tmp; |
| 1696 | 1696 |
} |
| 1697 | 1697 |
///Create constraint |
| 1698 | 1698 |
|
| 1699 | 1699 |
///\relates LpBase::Constr |
| 1700 | 1700 |
/// |
| 1701 | 1701 |
inline LpBase::Constr operator>=(const LpBase::Constr &c, |
| 1702 | 1702 |
const LpBase::Value &n) |
| 1703 | 1703 |
{
|
| 1704 | 1704 |
LpBase::Constr tmp(c); |
| 1705 |
LEMON_ASSERT( |
|
| 1705 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
|
| 1706 | 1706 |
tmp.lowerBound()=n; |
| 1707 | 1707 |
return tmp; |
| 1708 | 1708 |
} |
| 1709 | 1709 |
|
| 1710 | 1710 |
///Addition |
| 1711 | 1711 |
|
| 1712 | 1712 |
///\relates LpBase::DualExpr |
| 1713 | 1713 |
/// |
| 1714 | 1714 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
| 1715 | 1715 |
const LpBase::DualExpr &b) {
|
| 1716 | 1716 |
LpBase::DualExpr tmp(a); |
| 1717 | 1717 |
tmp+=b; |
| 1718 | 1718 |
return tmp; |
| 1719 | 1719 |
} |
| 1720 | 1720 |
///Substraction |
| 1721 | 1721 |
|
| 1722 | 1722 |
///\relates LpBase::DualExpr |
| 1723 | 1723 |
/// |
| 1724 | 1724 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
| 1725 | 1725 |
const LpBase::DualExpr &b) {
|
| 1726 | 1726 |
LpBase::DualExpr tmp(a); |
| 1727 | 1727 |
tmp-=b; |
| 1728 | 1728 |
return tmp; |
| 1729 | 1729 |
} |
| 1730 | 1730 |
///Multiply with constant |
| 1731 | 1731 |
|
| 1732 | 1732 |
///\relates LpBase::DualExpr |
| 1733 | 1733 |
/// |
| 1734 | 1734 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
| 1735 | 1735 |
const LpBase::Value &b) {
|
| 1736 | 1736 |
LpBase::DualExpr tmp(a); |
| 1737 | 1737 |
tmp*=b; |
| 1738 | 1738 |
return tmp; |
| 1739 | 1739 |
} |
| 1740 | 1740 |
|
| 1741 | 1741 |
///Multiply with constant |
| 1742 | 1742 |
|
| 1743 | 1743 |
///\relates LpBase::DualExpr |
| 1744 | 1744 |
/// |
| 1745 | 1745 |
inline LpBase::DualExpr operator*(const LpBase::Value &a, |
| 1746 | 1746 |
const LpBase::DualExpr &b) {
|
| 1747 | 1747 |
LpBase::DualExpr tmp(b); |
| 1748 | 1748 |
tmp*=a; |
| 1749 | 1749 |
return tmp; |
| 1750 | 1750 |
} |
| 1751 | 1751 |
///Divide with constant |
| 1752 | 1752 |
|
| 1753 | 1753 |
///\relates LpBase::DualExpr |
| 1754 | 1754 |
/// |
| 1755 | 1755 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
| 1756 | 1756 |
const LpBase::Value &b) {
|
| 1757 | 1757 |
LpBase::DualExpr tmp(a); |
| 1758 | 1758 |
tmp/=b; |
| 1759 | 1759 |
return tmp; |
| 1760 | 1760 |
} |
| 1761 | 1761 |
|
| 1762 | 1762 |
/// \ingroup lp_group |
| 1763 | 1763 |
/// |
| 1764 | 1764 |
/// \brief Common base class for LP solvers |
| 1765 | 1765 |
/// |
| 1766 | 1766 |
/// This class is an abstract base class for LP solvers. This class |
| 1767 | 1767 |
/// provides a full interface for set and modify an LP problem, |
| 1768 | 1768 |
/// solve it and retrieve the solution. You can use one of the |
| 1769 | 1769 |
/// descendants as a concrete implementation, or the \c Lp |
| 1770 | 1770 |
/// default LP solver. However, if you would like to handle LP |
| 1771 | 1771 |
/// solvers as reference or pointer in a generic way, you can use |
| 1772 | 1772 |
/// this class directly. |
| 1773 | 1773 |
class LpSolver : virtual public LpBase {
|
| 1774 | 1774 |
public: |
| 1775 | 1775 |
|
| 1776 | 1776 |
/// The problem types for primal and dual problems |
| 1777 | 1777 |
enum ProblemType {
|
| 1778 | 1778 |
///Feasible solution hasn't been found (but may exist). |
| 1779 | 1779 |
UNDEFINED = 0, |
| 1780 | 1780 |
///The problem has no feasible solution |
| 1781 | 1781 |
INFEASIBLE = 1, |
| 1782 | 1782 |
///Feasible solution found |
| 1783 | 1783 |
FEASIBLE = 2, |
| 1784 | 1784 |
///Optimal solution exists and found |
| 1785 | 1785 |
OPTIMAL = 3, |
| 1786 | 1786 |
///The cost function is unbounded |
| 1787 | 1787 |
UNBOUNDED = 4 |
| 1788 | 1788 |
}; |
| 1789 | 1789 |
|
| 1790 | 1790 |
///The basis status of variables |
| 1791 | 1791 |
enum VarStatus {
|
| 1792 | 1792 |
/// The variable is in the basis |
| 1793 | 1793 |
BASIC, |
| 1794 | 1794 |
/// The variable is free, but not basic |
| 1795 | 1795 |
FREE, |
| 1796 | 1796 |
/// The variable has active lower bound |
| 1797 | 1797 |
LOWER, |
| 1798 | 1798 |
/// The variable has active upper bound |
| 1799 | 1799 |
UPPER, |
| 1800 | 1800 |
/// The variable is non-basic and fixed |
| 1801 | 1801 |
FIXED |
| 1802 | 1802 |
}; |
| 1803 | 1803 |
|
| 1804 | 1804 |
protected: |
| 1805 | 1805 |
|
| 1806 | 1806 |
virtual SolveExitStatus _solve() = 0; |
| 1807 | 1807 |
|
| 1808 | 1808 |
virtual Value _getPrimal(int i) const = 0; |
| 1809 | 1809 |
virtual Value _getDual(int i) const = 0; |
| 1810 | 1810 |
|
| 1811 | 1811 |
virtual Value _getPrimalRay(int i) const = 0; |
| 1812 | 1812 |
virtual Value _getDualRay(int i) const = 0; |
| 1813 | 1813 |
|
| 1814 | 1814 |
virtual Value _getPrimalValue() const = 0; |
| 1815 | 1815 |
|
| 1816 | 1816 |
virtual VarStatus _getColStatus(int i) const = 0; |
| 1817 | 1817 |
virtual VarStatus _getRowStatus(int i) const = 0; |
| 1818 | 1818 |
|
| 1819 | 1819 |
virtual ProblemType _getPrimalType() const = 0; |
| 1820 | 1820 |
virtual ProblemType _getDualType() const = 0; |
| 1821 | 1821 |
|
| 1822 | 1822 |
public: |
| 1823 | 1823 |
|
| 1824 | 1824 |
///\name Solve the LP |
| 1825 | 1825 |
|
| 1826 | 1826 |
///@{
|
| 1827 | 1827 |
|
| 1828 | 1828 |
///\e Solve the LP problem at hand |
| 1829 | 1829 |
/// |
| 1830 | 1830 |
///\return The result of the optimization procedure. Possible |
| 1831 | 1831 |
///values and their meanings can be found in the documentation of |
| 1832 | 1832 |
///\ref SolveExitStatus. |
| 1833 | 1833 |
SolveExitStatus solve() { return _solve(); }
|
| 1834 | 1834 |
|
| 1835 | 1835 |
///@} |
| 1836 | 1836 |
|
| 1837 | 1837 |
///\name Obtain the solution |
| 1838 | 1838 |
|
| 1839 | 1839 |
///@{
|
| 1840 | 1840 |
|
| 1841 | 1841 |
/// The type of the primal problem |
| 1842 | 1842 |
ProblemType primalType() const {
|
| 1843 | 1843 |
return _getPrimalType(); |
| 1844 | 1844 |
} |
| 1845 | 1845 |
|
| 1846 | 1846 |
/// The type of the dual problem |
| 1847 | 1847 |
ProblemType dualType() const {
|
| 1848 | 1848 |
return _getDualType(); |
| 1849 | 1849 |
} |
| 1850 | 1850 |
|
| 1851 | 1851 |
/// Return the primal value of the column |
| 1852 | 1852 |
|
| 1853 | 1853 |
/// Return the primal value of the column. |
| 1854 | 1854 |
/// \pre The problem is solved. |
| 1855 | 1855 |
Value primal(Col c) const { return _getPrimal(cols(id(c))); }
|
| 1856 | 1856 |
|
| 1857 | 1857 |
/// Return the primal value of the expression |
| 1858 | 1858 |
|
| 1859 | 1859 |
/// Return the primal value of the expression, i.e. the dot |
| 1860 | 1860 |
/// product of the primal solution and the expression. |
| 1861 | 1861 |
/// \pre The problem is solved. |
| 1862 | 1862 |
Value primal(const Expr& e) const {
|
| 1863 | 1863 |
double res = *e; |
| 1864 | 1864 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
|
| 1865 | 1865 |
res += *c * primal(c); |
| 1866 | 1866 |
} |
| 1867 | 1867 |
return res; |
| 1868 | 1868 |
} |
| 1869 | 1869 |
/// Returns a component of the primal ray |
| 1870 | 1870 |
|
| 1871 | 1871 |
/// The primal ray is solution of the modified primal problem, |
| 1872 | 1872 |
/// where we change each finite bound to 0, and we looking for a |
| 1873 | 1873 |
/// negative objective value in case of minimization, and positive |
| 1874 | 1874 |
/// objective value for maximization. If there is such solution, |
| 1875 | 1875 |
/// that proofs the unsolvability of the dual problem, and if a |
| 1876 | 1876 |
/// feasible primal solution exists, then the unboundness of |
| 1877 | 1877 |
/// primal problem. |
| 1878 | 1878 |
/// |
| 1879 | 1879 |
/// \pre The problem is solved and the dual problem is infeasible. |
| 1880 | 1880 |
/// \note Some solvers does not provide primal ray calculation |
| 1881 | 1881 |
/// functions. |
| 1882 | 1882 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
|
| 1883 | 1883 |
|
| 1884 | 1884 |
/// Return the dual value of the row |
| 1885 | 1885 |
|
| 1886 | 1886 |
/// Return the dual value of the row. |
| 1887 | 1887 |
/// \pre The problem is solved. |
| 1888 | 1888 |
Value dual(Row r) const { return _getDual(rows(id(r))); }
|
| 1889 | 1889 |
|
| 1890 | 1890 |
/// Return the dual value of the dual expression |
| 1891 | 1891 |
|
| 1892 | 1892 |
/// Return the dual value of the dual expression, i.e. the dot |
| 1893 | 1893 |
/// product of the dual solution and the dual expression. |
| 1894 | 1894 |
/// \pre The problem is solved. |
| 1895 | 1895 |
Value dual(const DualExpr& e) const {
|
| 1896 | 1896 |
double res = 0.0; |
| 1897 | 1897 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
|
| 1898 | 1898 |
res += *r * dual(r); |
| 1899 | 1899 |
} |
| 1900 | 1900 |
return res; |
| 1901 | 1901 |
} |
| 1902 | 1902 |
|
| 1903 | 1903 |
/// Returns a component of the dual ray |
| 1904 | 1904 |
|
| 1905 | 1905 |
/// The dual ray is solution of the modified primal problem, where |
| 1906 | 1906 |
/// we change each finite bound to 0 (i.e. the objective function |
| 1907 | 1907 |
/// coefficients in the primal problem), and we looking for a |
| 1908 | 1908 |
/// ositive objective value. If there is such solution, that |
| 1909 | 1909 |
/// proofs the unsolvability of the primal problem, and if a |
| 1910 | 1910 |
/// feasible dual solution exists, then the unboundness of |
| 1911 | 1911 |
/// dual problem. |
| 1912 | 1912 |
/// |
| 1913 | 1913 |
/// \pre The problem is solved and the primal problem is infeasible. |
| 1914 | 1914 |
/// \note Some solvers does not provide dual ray calculation |
| 1915 | 1915 |
/// functions. |
| 1916 | 1916 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
|
| 1917 | 1917 |
|
| 1918 | 1918 |
/// Return the basis status of the column |
| 1919 | 1919 |
|
| 1920 | 1920 |
/// \see VarStatus |
| 1921 | 1921 |
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
|
| 1922 | 1922 |
|
| 1923 | 1923 |
/// Return the basis status of the row |
| 1924 | 1924 |
|
| 1925 | 1925 |
/// \see VarStatus |
| 1926 | 1926 |
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
|
| 1927 | 1927 |
|
| 1928 | 1928 |
///The value of the objective function |
| 1929 | 1929 |
|
| 1930 | 1930 |
///\return |
| 1931 | 1931 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
| 1932 | 1932 |
/// of the primal problem, depending on whether we minimize or maximize. |
| 1933 | 1933 |
///- \ref NaN if no primal solution is found. |
| 1934 | 1934 |
///- The (finite) objective value if an optimal solution is found. |
| 1935 | 1935 |
Value primal() const { return _getPrimalValue()+obj_const_comp;}
|
| 1936 | 1936 |
///@} |
| 1937 | 1937 |
|
| 1938 | 1938 |
LpSolver* newSolver() {return _newSolver();}
|
| 1939 | 1939 |
LpSolver* cloneSolver() {return _cloneSolver();}
|
| 1940 | 1940 |
|
| 1941 | 1941 |
protected: |
| 1942 | 1942 |
|
| 1943 | 1943 |
virtual LpSolver* _newSolver() const = 0; |
| 1944 | 1944 |
virtual LpSolver* _cloneSolver() const = 0; |
| 1945 | 1945 |
}; |
| 1946 | 1946 |
|
| 1947 | 1947 |
|
| 1948 | 1948 |
/// \ingroup lp_group |
| 1949 | 1949 |
/// |
| 1950 | 1950 |
/// \brief Common base class for MIP solvers |
| 1951 | 1951 |
/// |
| 1952 | 1952 |
/// This class is an abstract base class for MIP solvers. This class |
| 1953 | 1953 |
/// provides a full interface for set and modify an MIP problem, |
| 1954 | 1954 |
/// solve it and retrieve the solution. You can use one of the |
| 1955 | 1955 |
/// descendants as a concrete implementation, or the \c Lp |
| 1956 | 1956 |
/// default MIP solver. However, if you would like to handle MIP |
| 1957 | 1957 |
/// solvers as reference or pointer in a generic way, you can use |
| 1958 | 1958 |
/// this class directly. |
| 1959 | 1959 |
class MipSolver : virtual public LpBase {
|
| 1960 | 1960 |
public: |
| 1961 | 1961 |
|
| 1962 | 1962 |
/// The problem types for MIP problems |
| 1963 | 1963 |
enum ProblemType {
|
| 1964 | 1964 |
///Feasible solution hasn't been found (but may exist). |
| 1965 | 1965 |
UNDEFINED = 0, |
| 1966 | 1966 |
///The problem has no feasible solution |
| 1967 | 1967 |
INFEASIBLE = 1, |
| 1968 | 1968 |
///Feasible solution found |
| 1969 | 1969 |
FEASIBLE = 2, |
| 1970 | 1970 |
///Optimal solution exists and found |
| 1971 | 1971 |
OPTIMAL = 3, |
| 1972 | 1972 |
///The cost function is unbounded |
| 1973 | 1973 |
/// |
| 1974 | 1974 |
///The Mip or at least the relaxed problem is unbounded |
| 1975 | 1975 |
UNBOUNDED = 4 |
| 1976 | 1976 |
}; |
| 1977 | 1977 |
|
| 1978 | 1978 |
///\name Solve the MIP |
| 1979 | 1979 |
|
| 1980 | 1980 |
///@{
|
| 1981 | 1981 |
|
| 1982 | 1982 |
/// Solve the MIP problem at hand |
| 1983 | 1983 |
/// |
| 1984 | 1984 |
///\return The result of the optimization procedure. Possible |
| 1985 | 1985 |
///values and their meanings can be found in the documentation of |
| 1986 | 1986 |
///\ref SolveExitStatus. |
| 1987 | 1987 |
SolveExitStatus solve() { return _solve(); }
|
| 1988 | 1988 |
|
| 1989 | 1989 |
///@} |
| 1990 | 1990 |
|
| 1991 | 1991 |
///\name Setting column type |
| 1992 | 1992 |
///@{
|
| 1993 | 1993 |
|
| 1994 | 1994 |
///Possible variable (column) types (e.g. real, integer, binary etc.) |
| 1995 | 1995 |
enum ColTypes {
|
| 1996 | 1996 |
///Continuous variable (default) |
| 1997 | 1997 |
REAL = 0, |
| 1998 | 1998 |
///Integer variable |
| 1999 | 1999 |
INTEGER = 1 |
| 2000 | 2000 |
}; |
| 2001 | 2001 |
|
| 2002 | 2002 |
///Sets the type of the given column to the given type |
| 2003 | 2003 |
|
| 2004 | 2004 |
///Sets the type of the given column to the given type. |
| 2005 | 2005 |
/// |
| 2006 | 2006 |
void colType(Col c, ColTypes col_type) {
|
| 2007 | 2007 |
_setColType(cols(id(c)),col_type); |
| 2008 | 2008 |
} |
| 2009 | 2009 |
|
| 2010 | 2010 |
///Gives back the type of the column. |
| 2011 | 2011 |
|
| 2012 | 2012 |
///Gives back the type of the column. |
| 2013 | 2013 |
/// |
| 2014 | 2014 |
ColTypes colType(Col c) const {
|
| 2015 | 2015 |
return _getColType(cols(id(c))); |
| 2016 | 2016 |
} |
| 2017 | 2017 |
///@} |
| 2018 | 2018 |
|
| 2019 | 2019 |
///\name Obtain the solution |
| 2020 | 2020 |
|
| 2021 | 2021 |
///@{
|
| 2022 | 2022 |
|
| 2023 | 2023 |
/// The type of the MIP problem |
| 2024 | 2024 |
ProblemType type() const {
|
| 2025 | 2025 |
return _getType(); |
| 2026 | 2026 |
} |
| 2027 | 2027 |
|
| 2028 | 2028 |
/// Return the value of the row in the solution |
| 2029 | 2029 |
|
| 2030 | 2030 |
/// Return the value of the row in the solution. |
| 2031 | 2031 |
/// \pre The problem is solved. |
| 2032 | 2032 |
Value sol(Col c) const { return _getSol(cols(id(c))); }
|
| 2033 | 2033 |
|
| 2034 | 2034 |
/// Return the value of the expression in the solution |
| 2035 | 2035 |
|
| 2036 | 2036 |
/// Return the value of the expression in the solution, i.e. the |
| 2037 | 2037 |
/// dot product of the solution and the expression. |
| 2038 | 2038 |
/// \pre The problem is solved. |
| 2039 | 2039 |
Value sol(const Expr& e) const {
|
| 2040 | 2040 |
double res = *e; |
| 2041 | 2041 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
|
| 2042 | 2042 |
res += *c * sol(c); |
| 2043 | 2043 |
} |
| 2044 | 2044 |
return res; |
| 2045 | 2045 |
} |
| 2046 | 2046 |
///The value of the objective function |
| 2047 | 2047 |
|
| 2048 | 2048 |
///\return |
| 2049 | 2049 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
| 2050 | 2050 |
/// of the problem, depending on whether we minimize or maximize. |
| 2051 | 2051 |
///- \ref NaN if no primal solution is found. |
| 2052 | 2052 |
///- The (finite) objective value if an optimal solution is found. |
| 2053 | 2053 |
Value solValue() const { return _getSolValue()+obj_const_comp;}
|
| 2054 | 2054 |
///@} |
| 2055 | 2055 |
|
| 2056 | 2056 |
protected: |
| 2057 | 2057 |
|
| 2058 | 2058 |
virtual SolveExitStatus _solve() = 0; |
| 2059 | 2059 |
virtual ColTypes _getColType(int col) const = 0; |
| 2060 | 2060 |
virtual void _setColType(int col, ColTypes col_type) = 0; |
| 2061 | 2061 |
virtual ProblemType _getType() const = 0; |
| 2062 | 2062 |
virtual Value _getSol(int i) const = 0; |
| 2063 | 2063 |
virtual Value _getSolValue() const = 0; |
| 2064 | 2064 |
|
| 2065 | 2065 |
public: |
| 2066 | 2066 |
|
| 2067 | 2067 |
MipSolver* newSolver() {return _newSolver();}
|
| 2068 | 2068 |
MipSolver* cloneSolver() {return _cloneSolver();}
|
| 2069 | 2069 |
|
| 2070 | 2070 |
protected: |
| 2071 | 2071 |
|
| 2072 | 2072 |
virtual MipSolver* _newSolver() const = 0; |
| 2073 | 2073 |
virtual MipSolver* _cloneSolver() const = 0; |
| 2074 | 2074 |
}; |
| 2075 | 2075 |
|
| 2076 | 2076 |
|
| 2077 | 2077 |
|
| 2078 | 2078 |
} //namespace lemon |
| 2079 | 2079 |
|
| 2080 | 2080 |
#endif //LEMON_LP_BASE_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MATH_H |
| 20 | 20 |
#define LEMON_MATH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup misc |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Some extensions to the standard \c cmath library. |
| 25 | 25 |
/// |
| 26 | 26 |
///Some extensions to the standard \c cmath library. |
| 27 | 27 |
/// |
| 28 | 28 |
///This file includes the standard math library (cmath). |
| 29 | 29 |
|
| 30 | 30 |
#include<cmath> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
/// \addtogroup misc |
| 35 | 35 |
/// @{
|
| 36 | 36 |
|
| 37 | 37 |
/// The Euler constant |
| 38 | 38 |
const long double E = 2.7182818284590452353602874713526625L; |
| 39 | 39 |
/// log_2(e) |
| 40 | 40 |
const long double LOG2E = 1.4426950408889634073599246810018921L; |
| 41 | 41 |
/// log_10(e) |
| 42 | 42 |
const long double LOG10E = 0.4342944819032518276511289189166051L; |
| 43 | 43 |
/// ln(2) |
| 44 | 44 |
const long double LN2 = 0.6931471805599453094172321214581766L; |
| 45 | 45 |
/// ln(10) |
| 46 | 46 |
const long double LN10 = 2.3025850929940456840179914546843642L; |
| 47 | 47 |
/// pi |
| 48 | 48 |
const long double PI = 3.1415926535897932384626433832795029L; |
| 49 | 49 |
/// pi/2 |
| 50 | 50 |
const long double PI_2 = 1.5707963267948966192313216916397514L; |
| 51 | 51 |
/// pi/4 |
| 52 | 52 |
const long double PI_4 = 0.7853981633974483096156608458198757L; |
| 53 | 53 |
/// sqrt(2) |
| 54 | 54 |
const long double SQRT2 = 1.4142135623730950488016887242096981L; |
| 55 | 55 |
/// 1/sqrt(2) |
| 56 | 56 |
const long double SQRT1_2 = 0.7071067811865475244008443621048490L; |
| 57 | 57 |
|
| 58 | 58 |
///Check whether the parameter is NaN or not |
| 59 | 59 |
|
| 60 | 60 |
///This function checks whether the parameter is NaN or not. |
| 61 | 61 |
///Is should be equivalent with std::isnan(), but it is not |
| 62 | 62 |
///provided by all compilers. |
| 63 |
inline bool |
|
| 63 |
inline bool isNaN(double v) |
|
| 64 | 64 |
{
|
| 65 | 65 |
return v!=v; |
| 66 | 66 |
} |
| 67 | 67 |
|
| 68 | 68 |
/// @} |
| 69 | 69 |
|
| 70 | 70 |
} //namespace lemon |
| 71 | 71 |
|
| 72 | 72 |
#endif //LEMON_TOLERANCE_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_TIME_MEASURE_H |
| 20 | 20 |
#define LEMON_TIME_MEASURE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup timecount |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Tools for measuring cpu usage |
| 25 | 25 |
|
| 26 | 26 |
#ifdef WIN32 |
| 27 |
#ifndef WIN32_LEAN_AND_MEAN |
|
| 27 | 28 |
#define WIN32_LEAN_AND_MEAN |
| 29 |
#endif |
|
| 30 |
#ifndef NOMINMAX |
|
| 28 | 31 |
#define NOMINMAX |
| 32 |
#endif |
|
| 29 | 33 |
#include <windows.h> |
| 30 | 34 |
#include <cmath> |
| 31 | 35 |
#else |
| 36 |
#include <unistd.h> |
|
| 32 | 37 |
#include <sys/times.h> |
| 33 | 38 |
#include <sys/time.h> |
| 34 | 39 |
#endif |
| 35 | 40 |
|
| 36 | 41 |
#include <string> |
| 37 | 42 |
#include <fstream> |
| 38 | 43 |
#include <iostream> |
| 39 | 44 |
|
| 40 | 45 |
namespace lemon {
|
| 41 | 46 |
|
| 42 | 47 |
/// \addtogroup timecount |
| 43 | 48 |
/// @{
|
| 44 | 49 |
|
| 45 | 50 |
/// A class to store (cpu)time instances. |
| 46 | 51 |
|
| 47 | 52 |
/// This class stores five time values. |
| 48 | 53 |
/// - a real time |
| 49 | 54 |
/// - a user cpu time |
| 50 | 55 |
/// - a system cpu time |
| 51 | 56 |
/// - a user cpu time of children |
| 52 | 57 |
/// - a system cpu time of children |
| 53 | 58 |
/// |
| 54 | 59 |
/// TimeStamp's can be added to or substracted from each other and |
| 55 | 60 |
/// they can be pushed to a stream. |
| 56 | 61 |
/// |
| 57 | 62 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport |
| 58 | 63 |
/// class is what you want to use instead. |
| 59 | 64 |
|
| 60 | 65 |
class TimeStamp |
| 61 | 66 |
{
|
| 62 | 67 |
double utime; |
| 63 | 68 |
double stime; |
| 64 | 69 |
double cutime; |
| 65 | 70 |
double cstime; |
| 66 | 71 |
double rtime; |
| 67 | 72 |
|
| 68 | 73 |
void _reset() {
|
| 69 | 74 |
utime = stime = cutime = cstime = rtime = 0; |
| 70 | 75 |
} |
| 71 | 76 |
|
| 72 | 77 |
public: |
| 73 | 78 |
|
| 74 | 79 |
///Read the current time values of the process |
| 75 | 80 |
void stamp() |
| 76 | 81 |
{
|
| 77 | 82 |
#ifndef WIN32 |
| 78 | 83 |
timeval tv; |
| 79 | 84 |
gettimeofday(&tv, 0); |
| 80 | 85 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
| 81 | 86 |
|
| 82 | 87 |
tms ts; |
| 83 | 88 |
double tck=sysconf(_SC_CLK_TCK); |
| 84 | 89 |
times(&ts); |
| 85 | 90 |
utime=ts.tms_utime/tck; |
| 86 | 91 |
stime=ts.tms_stime/tck; |
| 87 | 92 |
cutime=ts.tms_cutime/tck; |
| 88 | 93 |
cstime=ts.tms_cstime/tck; |
| 89 | 94 |
#else |
| 90 | 95 |
static const double ch = 4294967296.0e-7; |
| 91 | 96 |
static const double cl = 1.0e-7; |
| 92 | 97 |
|
| 93 | 98 |
FILETIME system; |
| 94 | 99 |
GetSystemTimeAsFileTime(&system); |
| 95 | 100 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
| 96 | 101 |
|
| 97 | 102 |
FILETIME create, exit, kernel, user; |
| 98 | 103 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
|
| 99 | 104 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
| 100 | 105 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
| 101 | 106 |
cutime = 0; |
| 102 | 107 |
cstime = 0; |
| 103 | 108 |
} else {
|
| 104 | 109 |
rtime = 0; |
| 105 | 110 |
utime = 0; |
| 106 | 111 |
stime = 0; |
| 107 | 112 |
cutime = 0; |
| 108 | 113 |
cstime = 0; |
| 109 | 114 |
} |
| 110 | 115 |
#endif |
| 111 | 116 |
} |
| 112 | 117 |
|
| 113 | 118 |
/// Constructor initializing with zero |
| 114 | 119 |
TimeStamp() |
| 115 | 120 |
{ _reset(); }
|
| 116 | 121 |
///Constructor initializing with the current time values of the process |
| 117 | 122 |
TimeStamp(void *) { stamp();}
|
| 118 | 123 |
|
| 119 | 124 |
///Set every time value to zero |
| 120 | 125 |
TimeStamp &reset() {_reset();return *this;}
|
| 121 | 126 |
|
| 122 | 127 |
///\e |
| 123 | 128 |
TimeStamp &operator+=(const TimeStamp &b) |
| 124 | 129 |
{
|
| 125 | 130 |
utime+=b.utime; |
| 126 | 131 |
stime+=b.stime; |
| 127 | 132 |
cutime+=b.cutime; |
| 128 | 133 |
cstime+=b.cstime; |
| 129 | 134 |
rtime+=b.rtime; |
| 130 | 135 |
return *this; |
| 131 | 136 |
} |
| 132 | 137 |
///\e |
| 133 | 138 |
TimeStamp operator+(const TimeStamp &b) const |
| 134 | 139 |
{
|
| 135 | 140 |
TimeStamp t(*this); |
| 136 | 141 |
return t+=b; |
| 137 | 142 |
} |
| 138 | 143 |
///\e |
| 139 | 144 |
TimeStamp &operator-=(const TimeStamp &b) |
| 140 | 145 |
{
|
| 141 | 146 |
utime-=b.utime; |
| 142 | 147 |
stime-=b.stime; |
| 143 | 148 |
cutime-=b.cutime; |
| 144 | 149 |
cstime-=b.cstime; |
| 145 | 150 |
rtime-=b.rtime; |
| 146 | 151 |
return *this; |
| 147 | 152 |
} |
| 148 | 153 |
///\e |
| 149 | 154 |
TimeStamp operator-(const TimeStamp &b) const |
| 150 | 155 |
{
|
| 151 | 156 |
TimeStamp t(*this); |
| 152 | 157 |
return t-=b; |
| 153 | 158 |
} |
| 154 | 159 |
///\e |
| 155 | 160 |
TimeStamp &operator*=(double b) |
| 156 | 161 |
{
|
| 157 | 162 |
utime*=b; |
| 158 | 163 |
stime*=b; |
| 159 | 164 |
cutime*=b; |
| 160 | 165 |
cstime*=b; |
| 161 | 166 |
rtime*=b; |
| 162 | 167 |
return *this; |
| 163 | 168 |
} |
| 164 | 169 |
///\e |
| 165 | 170 |
TimeStamp operator*(double b) const |
| 166 | 171 |
{
|
| 167 | 172 |
TimeStamp t(*this); |
| 168 | 173 |
return t*=b; |
| 169 | 174 |
} |
| 170 | 175 |
friend TimeStamp operator*(double b,const TimeStamp &t); |
| 171 | 176 |
///\e |
| 172 | 177 |
TimeStamp &operator/=(double b) |
| 173 | 178 |
{
|
| 174 | 179 |
utime/=b; |
| 175 | 180 |
stime/=b; |
| 176 | 181 |
cutime/=b; |
| 177 | 182 |
cstime/=b; |
| 178 | 183 |
rtime/=b; |
| 179 | 184 |
return *this; |
| 180 | 185 |
} |
| 181 | 186 |
///\e |
| 182 | 187 |
TimeStamp operator/(double b) const |
| 183 | 188 |
{
|
| 184 | 189 |
TimeStamp t(*this); |
| 185 | 190 |
return t/=b; |
| 186 | 191 |
} |
| 187 | 192 |
///The time ellapsed since the last call of stamp() |
| 188 | 193 |
TimeStamp ellapsed() const |
| 189 | 194 |
{
|
| 190 | 195 |
TimeStamp t(NULL); |
| 191 | 196 |
return t-*this; |
| 192 | 197 |
} |
| 193 | 198 |
|
| 194 | 199 |
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t); |
| 195 | 200 |
|
| 196 | 201 |
///Gives back the user time of the process |
| 197 | 202 |
double userTime() const |
| 198 | 203 |
{
|
| 199 | 204 |
return utime; |
| 200 | 205 |
} |
| 201 | 206 |
///Gives back the system time of the process |
| 202 | 207 |
double systemTime() const |
| 203 | 208 |
{
|
| 204 | 209 |
return stime; |
| 205 | 210 |
} |
| 206 | 211 |
///Gives back the user time of the process' children |
| 207 | 212 |
|
| 208 | 213 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 209 | 214 |
/// |
| 210 | 215 |
double cUserTime() const |
| 211 | 216 |
{
|
| 212 | 217 |
return cutime; |
| 213 | 218 |
} |
| 214 | 219 |
///Gives back the user time of the process' children |
| 215 | 220 |
|
| 216 | 221 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 217 | 222 |
/// |
| 218 | 223 |
double cSystemTime() const |
| 219 | 224 |
{
|
| 220 | 225 |
return cstime; |
| 221 | 226 |
} |
| 222 | 227 |
///Gives back the real time |
| 223 | 228 |
double realTime() const {return rtime;}
|
| 224 | 229 |
}; |
| 225 | 230 |
|
| 226 | 231 |
TimeStamp operator*(double b,const TimeStamp &t) |
| 227 | 232 |
{
|
| 228 | 233 |
return t*b; |
| 229 | 234 |
} |
| 230 | 235 |
|
| 231 | 236 |
///Prints the time counters |
| 232 | 237 |
|
| 233 | 238 |
///Prints the time counters in the following form: |
| 234 | 239 |
/// |
| 235 | 240 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
| 236 | 241 |
/// |
| 237 | 242 |
/// where the values are the |
| 238 | 243 |
/// \li \c u: user cpu time, |
| 239 | 244 |
/// \li \c s: system cpu time, |
| 240 | 245 |
/// \li \c cu: user cpu time of children, |
| 241 | 246 |
/// \li \c cs: system cpu time of children, |
| 242 | 247 |
/// \li \c real: real time. |
| 243 | 248 |
/// \relates TimeStamp |
| 244 | 249 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
| 245 | 250 |
/// calculated. |
| 246 | 251 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
| 247 | 252 |
{
|
| 248 | 253 |
os << "u: " << t.userTime() << |
| 249 | 254 |
"s, s: " << t.systemTime() << |
| 250 | 255 |
"s, cu: " << t.cUserTime() << |
| 251 | 256 |
"s, cs: " << t.cSystemTime() << |
| 252 | 257 |
"s, real: " << t.realTime() << "s"; |
| 253 | 258 |
return os; |
| 254 | 259 |
} |
| 255 | 260 |
|
| 256 | 261 |
///Class for measuring the cpu time and real time usage of the process |
| 257 | 262 |
|
| 258 | 263 |
///Class for measuring the cpu time and real time usage of the process. |
| 259 | 264 |
///It is quite easy-to-use, here is a short example. |
| 260 | 265 |
///\code |
| 261 | 266 |
/// #include<lemon/time_measure.h> |
| 262 | 267 |
/// #include<iostream> |
| 263 | 268 |
/// |
| 264 | 269 |
/// int main() |
| 265 | 270 |
/// {
|
| 266 | 271 |
/// |
| 267 | 272 |
/// ... |
| 268 | 273 |
/// |
| 269 | 274 |
/// Timer t; |
| 270 | 275 |
/// doSomething(); |
| 271 | 276 |
/// std::cout << t << '\n'; |
| 272 | 277 |
/// t.restart(); |
| 273 | 278 |
/// doSomethingElse(); |
| 274 | 279 |
/// std::cout << t << '\n'; |
| 275 | 280 |
/// |
| 276 | 281 |
/// ... |
| 277 | 282 |
/// |
| 278 | 283 |
/// } |
| 279 | 284 |
///\endcode |
| 280 | 285 |
/// |
| 281 | 286 |
///The \ref Timer can also be \ref stop() "stopped" and |
| 282 | 287 |
///\ref start() "started" again, so it is possible to compute collected |
| 283 | 288 |
///running times. |
| 284 | 289 |
/// |
| 285 | 290 |
///\warning Depending on the operation system and its actual configuration |
| 286 | 291 |
///the time counters have a certain (10ms on a typical Linux system) |
| 287 | 292 |
///granularity. |
| 288 | 293 |
///Therefore this tool is not appropriate to measure very short times. |
| 289 | 294 |
///Also, if you start and stop the timer very frequently, it could lead to |
| 290 | 295 |
///distorted results. |
| 291 | 296 |
/// |
| 292 | 297 |
///\note If you want to measure the running time of the execution of a certain |
| 293 | 298 |
///function, consider the usage of \ref TimeReport instead. |
| 294 | 299 |
/// |
| 295 | 300 |
///\sa TimeReport |
| 296 | 301 |
class Timer |
| 297 | 302 |
{
|
| 298 | 303 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
| 299 | 304 |
TimeStamp start_time; //This is the relativ start-time if the timer |
| 300 | 305 |
//is _running, the collected _running time otherwise. |
| 301 | 306 |
|
| 302 | 307 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
|
| 303 | 308 |
|
| 304 | 309 |
public: |
| 305 | 310 |
///Constructor. |
| 306 | 311 |
|
| 307 | 312 |
///\param run indicates whether or not the timer starts immediately. |
| 308 | 313 |
/// |
| 309 | 314 |
Timer(bool run=true) :_running(run) {_reset();}
|
| 310 | 315 |
|
| 311 | 316 |
///\name Control the state of the timer |
| 312 | 317 |
///Basically a Timer can be either running or stopped, |
| 313 | 318 |
///but it provides a bit finer control on the execution. |
| 314 | 319 |
///The \ref lemon::Timer "Timer" also counts the number of |
| 315 | 320 |
///\ref lemon::Timer::start() "start()" executions, and it stops |
| 316 | 321 |
///only after the same amount (or more) \ref lemon::Timer::stop() |
| 317 | 322 |
///"stop()"s. This can be useful e.g. to compute the running time |
| 318 | 323 |
///of recursive functions. |
| 319 | 324 |
|
| 320 | 325 |
///@{
|
| 321 | 326 |
|
| 322 | 327 |
///Reset and stop the time counters |
| 323 | 328 |
|
| 324 | 329 |
///This function resets and stops the time counters |
| 325 | 330 |
///\sa restart() |
| 326 | 331 |
void reset() |
| 327 | 332 |
{
|
| 328 | 333 |
_running=0; |
| 329 | 334 |
_reset(); |
| 330 | 335 |
} |
| 331 | 336 |
|
| 332 | 337 |
///Start the time counters |
| 333 | 338 |
|
| 334 | 339 |
///This function starts the time counters. |
| 335 | 340 |
/// |
| 336 | 341 |
///If the timer is started more than ones, it will remain running |
| 337 | 342 |
///until the same amount of \ref stop() is called. |
| 338 | 343 |
///\sa stop() |
| 339 | 344 |
void start() |
| 340 | 345 |
{
|
| 341 | 346 |
if(_running) _running++; |
| 342 | 347 |
else {
|
| 343 | 348 |
_running=1; |
| 344 | 349 |
TimeStamp t; |
| 345 | 350 |
t.stamp(); |
| 346 | 351 |
start_time=t-start_time; |
| 347 | 352 |
} |
| 348 | 353 |
} |
| 349 | 354 |
|
| 350 | 355 |
|
| 351 | 356 |
///Stop the time counters |
| 352 | 357 |
|
| 353 | 358 |
///This function stops the time counters. If start() was executed more than |
| 354 | 359 |
///once, then the same number of stop() execution is necessary the really |
| 355 | 360 |
///stop the timer. |
| 356 | 361 |
/// |
| 357 | 362 |
///\sa halt() |
| 358 | 363 |
///\sa start() |
| 359 | 364 |
///\sa restart() |
| 360 | 365 |
///\sa reset() |
| 361 | 366 |
|
| 362 | 367 |
void stop() |
| 363 | 368 |
{
|
| 364 | 369 |
if(_running && !--_running) {
|
| 365 | 370 |
TimeStamp t; |
| 366 | 371 |
t.stamp(); |
| 367 | 372 |
start_time=t-start_time; |
| 368 | 373 |
} |
| 369 | 374 |
} |
| 370 | 375 |
|
| 371 | 376 |
///Halt (i.e stop immediately) the time counters |
| 372 | 377 |
|
| 373 | 378 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt> |
| 374 | 379 |
///is a faster |
| 375 | 380 |
///equivalent of the following. |
| 376 | 381 |
///\code |
| 377 | 382 |
/// while(t.running()) t.stop() |
| 378 | 383 |
///\endcode |
| 379 | 384 |
/// |
| 380 | 385 |
/// |
| 381 | 386 |
///\sa stop() |
| 382 | 387 |
///\sa restart() |
| 383 | 388 |
///\sa reset() |
| 384 | 389 |
|
| 385 | 390 |
void halt() |
| 386 | 391 |
{
|
| 387 | 392 |
if(_running) {
|
| 388 | 393 |
_running=0; |
| 389 | 394 |
TimeStamp t; |
| 390 | 395 |
t.stamp(); |
| 391 | 396 |
start_time=t-start_time; |
| 392 | 397 |
} |
| 393 | 398 |
} |
| 394 | 399 |
|
| 395 | 400 |
///Returns the running state of the timer |
| 396 | 401 |
|
| 397 | 402 |
///This function returns the number of stop() exections that is |
| 398 | 403 |
///necessary to really stop the timer. |
| 399 | 404 |
///For example the timer |
| 400 | 405 |
///is running if and only if the return value is \c true |
| 401 | 406 |
///(i.e. greater than |
| 402 | 407 |
///zero). |
| 403 | 408 |
int running() { return _running; }
|
| 404 | 409 |
|
| 405 | 410 |
|
| 406 | 411 |
///Restart the time counters |
| 407 | 412 |
|
| 408 | 413 |
///This function is a shorthand for |
| 409 | 414 |
///a reset() and a start() calls. |
| 410 | 415 |
/// |
| 411 | 416 |
void restart() |
| 412 | 417 |
{
|
| 413 | 418 |
reset(); |
| 414 | 419 |
start(); |
| 415 | 420 |
} |
| 416 | 421 |
|
| 417 | 422 |
///@} |
| 418 | 423 |
|
| 419 | 424 |
///\name Query Functions for the ellapsed time |
| 420 | 425 |
|
| 421 | 426 |
///@{
|
| 422 | 427 |
|
| 423 | 428 |
///Gives back the ellapsed user time of the process |
| 424 | 429 |
double userTime() const |
| 425 | 430 |
{
|
| 426 | 431 |
return operator TimeStamp().userTime(); |
| 427 | 432 |
} |
| 428 | 433 |
///Gives back the ellapsed system time of the process |
| 429 | 434 |
double systemTime() const |
| 430 | 435 |
{
|
| 431 | 436 |
return operator TimeStamp().systemTime(); |
| 432 | 437 |
} |
| 433 | 438 |
///Gives back the ellapsed user time of the process' children |
| 434 | 439 |
|
| 435 | 440 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 436 | 441 |
/// |
| 437 | 442 |
double cUserTime() const |
| 438 | 443 |
{
|
| 439 | 444 |
return operator TimeStamp().cUserTime(); |
| 440 | 445 |
} |
| 441 | 446 |
///Gives back the ellapsed user time of the process' children |
| 442 | 447 |
|
| 443 | 448 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 444 | 449 |
/// |
| 445 | 450 |
double cSystemTime() const |
| 446 | 451 |
{
|
| 447 | 452 |
return operator TimeStamp().cSystemTime(); |
| 448 | 453 |
} |
| 449 | 454 |
///Gives back the ellapsed real time |
| 450 | 455 |
double realTime() const |
| 451 | 456 |
{
|
| 452 | 457 |
return operator TimeStamp().realTime(); |
| 453 | 458 |
} |
| 454 | 459 |
///Computes the ellapsed time |
| 455 | 460 |
|
| 456 | 461 |
///This conversion computes the ellapsed time, therefore you can print |
| 457 | 462 |
///the ellapsed time like this. |
| 458 | 463 |
///\code |
| 459 | 464 |
/// Timer t; |
| 460 | 465 |
/// doSomething(); |
| 461 | 466 |
/// std::cout << t << '\n'; |
| 462 | 467 |
///\endcode |
| 463 | 468 |
operator TimeStamp () const |
| 464 | 469 |
{
|
| 465 | 470 |
TimeStamp t; |
| 466 | 471 |
t.stamp(); |
| 467 | 472 |
return _running?t-start_time:start_time; |
| 468 | 473 |
} |
| 469 | 474 |
|
| 470 | 475 |
|
| 471 | 476 |
///@} |
| 472 | 477 |
}; |
| 473 | 478 |
|
| 474 | 479 |
///Same as Timer but prints a report on destruction. |
| 475 | 480 |
|
| 476 | 481 |
///Same as \ref Timer but prints a report on destruction. |
| 477 | 482 |
///This example shows its usage. |
| 478 | 483 |
///\code |
| 479 | 484 |
/// void myAlg(ListGraph &g,int n) |
| 480 | 485 |
/// {
|
| 481 | 486 |
/// TimeReport tr("Running time of myAlg: ");
|
| 482 | 487 |
/// ... //Here comes the algorithm |
| 483 | 488 |
/// } |
| 484 | 489 |
///\endcode |
| 485 | 490 |
/// |
| 486 | 491 |
///\sa Timer |
| 487 | 492 |
///\sa NoTimeReport |
| 488 | 493 |
class TimeReport : public Timer |
| 489 | 494 |
{
|
| 490 | 495 |
std::string _title; |
| 491 | 496 |
std::ostream &_os; |
| 492 | 497 |
public: |
| 493 | 498 |
///Constructor |
| 494 | 499 |
|
| 495 | 500 |
///Constructor. |
| 496 | 501 |
///\param title This text will be printed before the ellapsed time. |
| 497 | 502 |
///\param os The stream to print the report to. |
| 498 | 503 |
///\param run Sets whether the timer should start immediately. |
| 499 | 504 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
| 500 | 505 |
: Timer(run), _title(title), _os(os){}
|
| 501 | 506 |
///Destructor that prints the ellapsed time |
| 502 | 507 |
~TimeReport() |
| 503 | 508 |
{
|
| 504 | 509 |
_os << _title << *this << std::endl; |
| 505 | 510 |
} |
| 506 | 511 |
}; |
| 507 | 512 |
|
| 508 | 513 |
///'Do nothing' version of TimeReport |
| 509 | 514 |
|
| 510 | 515 |
///\sa TimeReport |
| 511 | 516 |
/// |
| 512 | 517 |
class NoTimeReport |
| 513 | 518 |
{
|
| 514 | 519 |
public: |
| 515 | 520 |
///\e |
| 516 | 521 |
NoTimeReport(std::string,std::ostream &,bool) {}
|
| 517 | 522 |
///\e |
| 518 | 523 |
NoTimeReport(std::string,std::ostream &) {}
|
| 519 | 524 |
///\e |
| 520 | 525 |
NoTimeReport(std::string) {}
|
| 521 | 526 |
///\e Do nothing. |
| 522 | 527 |
~NoTimeReport() {}
|
| 523 | 528 |
|
| 524 | 529 |
operator TimeStamp () const { return TimeStamp(); }
|
| 525 | 530 |
void reset() {}
|
| 526 | 531 |
void start() {}
|
| 527 | 532 |
void stop() {}
|
| 528 | 533 |
void halt() {}
|
| 529 | 534 |
int running() { return 0; }
|
| 530 | 535 |
void restart() {}
|
| 531 | 536 |
double userTime() const { return 0; }
|
| 532 | 537 |
double systemTime() const { return 0; }
|
| 533 | 538 |
double cUserTime() const { return 0; }
|
| 534 | 539 |
double cSystemTime() const { return 0; }
|
| 535 | 540 |
double realTime() const { return 0; }
|
| 536 | 541 |
}; |
| 537 | 542 |
|
| 538 | 543 |
///Tool to measure the running time more exactly. |
| 539 | 544 |
|
| 540 | 545 |
///This function calls \c f several times and returns the average |
| 541 | 546 |
///running time. The number of the executions will be choosen in such a way |
| 542 | 547 |
///that the full real running time will be roughly between \c min_time |
| 543 | 548 |
///and <tt>2*min_time</tt>. |
| 544 | 549 |
///\param f the function object to be measured. |
| 545 | 550 |
///\param min_time the minimum total running time. |
| 546 | 551 |
///\retval num if it is not \c NULL, then the actual |
| 547 | 552 |
/// number of execution of \c f will be written into <tt>*num</tt>. |
| 548 | 553 |
///\retval full_time if it is not \c NULL, then the actual |
| 549 | 554 |
/// total running time will be written into <tt>*full_time</tt>. |
| 550 | 555 |
///\return The average running time of \c f. |
| 551 | 556 |
|
| 552 | 557 |
template<class F> |
| 553 | 558 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
| 554 | 559 |
TimeStamp *full_time=NULL) |
| 555 | 560 |
{
|
| 556 | 561 |
TimeStamp full; |
| 557 | 562 |
unsigned int total=0; |
| 558 | 563 |
Timer t; |
| 559 | 564 |
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
|
| 560 | 565 |
for(;total<tn;total++) f(); |
| 561 | 566 |
full=t; |
| 562 | 567 |
} |
| 563 | 568 |
if(num) *num=total; |
| 564 | 569 |
if(full_time) *full_time=full; |
| 565 | 570 |
return full/total; |
| 566 | 571 |
} |
| 567 | 572 |
|
| 568 | 573 |
/// @} |
| 569 | 574 |
|
| 570 | 575 |
|
| 571 | 576 |
} //namespace lemon |
| 572 | 577 |
|
| 573 | 578 |
#endif //LEMON_TIME_MEASURE_H |
0 comments (0 inline)