... | ... |
@@ -1581,172 +1581,206 @@ |
1581 | 1581 |
|
1582 | 1582 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1583 | 1583 |
/// the keys for which the corresponding values of the two maps are |
1584 | 1584 |
/// equal. |
1585 | 1585 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1586 | 1586 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1587 | 1587 |
/// |
1588 | 1588 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1589 | 1589 |
/// \code |
1590 | 1590 |
/// EqualMap<M1,M2> em(m1,m2); |
1591 | 1591 |
/// \endcode |
1592 | 1592 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1593 | 1593 |
/// |
1594 | 1594 |
/// The simplest way of using this map is through the equalMap() |
1595 | 1595 |
/// function. |
1596 | 1596 |
/// |
1597 | 1597 |
/// \sa LessMap |
1598 | 1598 |
template<typename M1, typename M2> |
1599 | 1599 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1600 | 1600 |
const M1 &_m1; |
1601 | 1601 |
const M2 &_m2; |
1602 | 1602 |
public: |
1603 | 1603 |
typedef MapBase<typename M1::Key, bool> Parent; |
1604 | 1604 |
typedef typename Parent::Key Key; |
1605 | 1605 |
typedef typename Parent::Value Value; |
1606 | 1606 |
|
1607 | 1607 |
/// Constructor |
1608 | 1608 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1609 | 1609 |
/// \e |
1610 | 1610 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1611 | 1611 |
}; |
1612 | 1612 |
|
1613 | 1613 |
/// Returns an \ref EqualMap class |
1614 | 1614 |
|
1615 | 1615 |
/// This function just returns an \ref EqualMap class. |
1616 | 1616 |
/// |
1617 | 1617 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1618 | 1618 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1619 | 1619 |
/// <tt>m1[x]==m2[x]</tt>. |
1620 | 1620 |
/// |
1621 | 1621 |
/// \relates EqualMap |
1622 | 1622 |
template<typename M1, typename M2> |
1623 | 1623 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1624 | 1624 |
return EqualMap<M1, M2>(m1,m2); |
1625 | 1625 |
} |
1626 | 1626 |
|
1627 | 1627 |
|
1628 | 1628 |
/// Combination of two maps using the \c < operator |
1629 | 1629 |
|
1630 | 1630 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1631 | 1631 |
/// the keys for which the corresponding value of the first map is |
1632 | 1632 |
/// less then the value of the second map. |
1633 | 1633 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1634 | 1634 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1635 | 1635 |
/// |
1636 | 1636 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1637 | 1637 |
/// \code |
1638 | 1638 |
/// LessMap<M1,M2> lm(m1,m2); |
1639 | 1639 |
/// \endcode |
1640 | 1640 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1641 | 1641 |
/// |
1642 | 1642 |
/// The simplest way of using this map is through the lessMap() |
1643 | 1643 |
/// function. |
1644 | 1644 |
/// |
1645 | 1645 |
/// \sa EqualMap |
1646 | 1646 |
template<typename M1, typename M2> |
1647 | 1647 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1648 | 1648 |
const M1 &_m1; |
1649 | 1649 |
const M2 &_m2; |
1650 | 1650 |
public: |
1651 | 1651 |
typedef MapBase<typename M1::Key, bool> Parent; |
1652 | 1652 |
typedef typename Parent::Key Key; |
1653 | 1653 |
typedef typename Parent::Value Value; |
1654 | 1654 |
|
1655 | 1655 |
/// Constructor |
1656 | 1656 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1657 | 1657 |
/// \e |
1658 | 1658 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1659 | 1659 |
}; |
1660 | 1660 |
|
1661 | 1661 |
/// Returns an \ref LessMap class |
1662 | 1662 |
|
1663 | 1663 |
/// This function just returns an \ref LessMap class. |
1664 | 1664 |
/// |
1665 | 1665 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1666 | 1666 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1667 | 1667 |
/// <tt>m1[x]<m2[x]</tt>. |
1668 | 1668 |
/// |
1669 | 1669 |
/// \relates LessMap |
1670 | 1670 |
template<typename M1, typename M2> |
1671 | 1671 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1672 | 1672 |
return LessMap<M1, M2>(m1,m2); |
1673 | 1673 |
} |
1674 | 1674 |
|
1675 | 1675 |
namespace _maps_bits { |
1676 | 1676 |
|
1677 |
template <typename Value> |
|
1678 |
struct Identity { |
|
1679 |
typedef Value argument_type; |
|
1680 |
typedef Value result_type; |
|
1681 |
Value operator()(const Value& val) const { |
|
1682 |
return val; |
|
1683 |
} |
|
1684 |
}; |
|
1685 |
|
|
1686 | 1677 |
template <typename _Iterator, typename Enable = void> |
1687 | 1678 |
struct IteratorTraits { |
1688 | 1679 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1689 | 1680 |
}; |
1690 | 1681 |
|
1691 | 1682 |
template <typename _Iterator> |
1692 | 1683 |
struct IteratorTraits<_Iterator, |
1693 | 1684 |
typename exists<typename _Iterator::container_type>::type> |
1694 | 1685 |
{ |
1695 | 1686 |
typedef typename _Iterator::container_type::value_type Value; |
1696 | 1687 |
}; |
1697 | 1688 |
|
1698 | 1689 |
} |
1699 | 1690 |
|
1700 | 1691 |
/// \brief Writable bool map for logging each \c true assigned element |
1701 | 1692 |
/// |
1702 |
/// A \ref concepts:: |
|
1693 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
|
1703 | 1694 |
/// each \c true assigned element, i.e it copies subsequently each |
1704 | 1695 |
/// keys set to \c true to the given iterator. |
1696 |
/// The most important usage of it is storing certain nodes or arcs |
|
1697 |
/// that were marked \c true by an algorithm. |
|
1705 | 1698 |
/// |
1706 |
/// \tparam It the type of the Iterator. |
|
1707 |
/// \tparam Ke the type of the map's Key. The default value should |
|
1708 |
/// |
|
1699 |
/// There are several algorithms that provide solutions through bool |
|
1700 |
/// maps and most of them assign \c true at most once for each key. |
|
1701 |
/// In these cases it is a natural request to store each \c true |
|
1702 |
/// assigned elements (in order of the assignment), which can be |
|
1703 |
/// easily done with StoreBoolMap. |
|
1704 |
/// |
|
1705 |
/// The simplest way of using this map is through the storeBoolMap() |
|
1706 |
/// function. |
|
1707 |
/// |
|
1708 |
/// \tparam It The type of the iterator. |
|
1709 |
/// \tparam Ke The key type of the map. The default value set |
|
1710 |
/// according to the iterator type should work in most cases. |
|
1709 | 1711 |
/// |
1710 | 1712 |
/// \note The container of the iterator must contain enough space |
1711 |
/// for the elements. (Or it should be an inserter iterator). |
|
1712 |
/// |
|
1713 |
/// |
|
1713 |
/// for the elements or the iterator should be an inserter iterator. |
|
1714 |
#ifdef DOXYGEN |
|
1715 |
template <typename It, typename Ke> |
|
1716 |
#else |
|
1714 | 1717 |
template <typename It, |
1715 | 1718 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
1719 |
#endif |
|
1716 | 1720 |
class StoreBoolMap { |
1717 | 1721 |
public: |
1718 | 1722 |
typedef It Iterator; |
1719 | 1723 |
|
1720 | 1724 |
typedef Ke Key; |
1721 | 1725 |
typedef bool Value; |
1722 | 1726 |
|
1723 | 1727 |
/// Constructor |
1724 | 1728 |
StoreBoolMap(Iterator it) |
1725 | 1729 |
: _begin(it), _end(it) {} |
1726 | 1730 |
|
1727 | 1731 |
/// Gives back the given iterator set for the first key |
1728 | 1732 |
Iterator begin() const { |
1729 | 1733 |
return _begin; |
1730 | 1734 |
} |
1731 | 1735 |
|
1732 | 1736 |
/// Gives back the the 'after the last' iterator |
1733 | 1737 |
Iterator end() const { |
1734 | 1738 |
return _end; |
1735 | 1739 |
} |
1736 | 1740 |
|
1737 | 1741 |
/// The set function of the map |
1738 |
void set(const Key& key, Value value) |
|
1742 |
void set(const Key& key, Value value) { |
|
1739 | 1743 |
if (value) { |
1740 | 1744 |
*_end++ = key; |
1741 | 1745 |
} |
1742 | 1746 |
} |
1743 | 1747 |
|
1744 | 1748 |
private: |
1745 | 1749 |
Iterator _begin; |
1746 |
|
|
1750 |
Iterator _end; |
|
1747 | 1751 |
}; |
1752 |
|
|
1753 |
/// Returns a \ref StoreBoolMap class |
|
1754 |
|
|
1755 |
/// This function just returns a \ref StoreBoolMap class. |
|
1756 |
/// |
|
1757 |
/// The most important usage of it is storing certain nodes or arcs |
|
1758 |
/// that were marked \c true by an algorithm. |
|
1759 |
/// For example it makes easier to store the nodes in the processing |
|
1760 |
/// order of Dfs algorithm, as the following examples show. |
|
1761 |
/// \code |
|
1762 |
/// std::vector<Node> v; |
|
1763 |
/// dfs(g,s).processedMap(storeBoolMap(std::back_inserter(v))).run(); |
|
1764 |
/// \endcode |
|
1765 |
/// \code |
|
1766 |
/// std::vector<Node> v(countNodes(g)); |
|
1767 |
/// dfs(g,s).processedMap(storeBoolMap(v.begin())).run(); |
|
1768 |
/// \endcode |
|
1769 |
/// |
|
1770 |
/// \note The container of the iterator must contain enough space |
|
1771 |
/// for the elements or the iterator should be an inserter iterator. |
|
1772 |
/// |
|
1773 |
/// \note StoreBoolMap is just \ref concepts::WriteMap "writable", so |
|
1774 |
/// it cannot be used when a readable map is needed, for example as |
|
1775 |
/// \c ReachedMap for Bfs, Dfs and Dijkstra algorithms. |
|
1776 |
/// |
|
1777 |
/// \relates StoreBoolMap |
|
1778 |
template<typename Iterator> |
|
1779 |
inline StoreBoolMap<Iterator> storeBoolMap(Iterator it) { |
|
1780 |
return StoreBoolMap<Iterator>(it); |
|
1781 |
} |
|
1748 | 1782 |
|
1749 | 1783 |
/// @} |
1750 | 1784 |
} |
1751 | 1785 |
|
1752 | 1786 |
#endif // LEMON_MAPS_H |
... | ... |
@@ -211,99 +211,121 @@ |
211 | 211 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
212 | 212 |
} |
213 | 213 |
|
214 | 214 |
// ForkMap |
215 | 215 |
{ |
216 | 216 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
217 | 217 |
|
218 | 218 |
typedef RangeMap<double> RM; |
219 | 219 |
typedef SparseMap<int, double> SM; |
220 | 220 |
RM m1(10, -1); |
221 | 221 |
SM m2(-1); |
222 | 222 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
223 | 223 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
224 | 224 |
ForkMap<RM, SM> map1(m1,m2); |
225 | 225 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
226 | 226 |
map2.set(5, 10); |
227 | 227 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
228 | 228 |
"Something is wrong with ForkMap"); |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
// Arithmetic maps: |
232 | 232 |
// - AddMap, SubMap, MulMap, DivMap |
233 | 233 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
234 | 234 |
// - NegMap, NegWriteMap, AbsMap |
235 | 235 |
{ |
236 | 236 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
237 | 237 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
238 | 238 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
239 | 239 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
240 | 240 |
|
241 | 241 |
ConstMap<int, double> c1(1.0), c2(3.14); |
242 | 242 |
IdentityMap<int> im; |
243 | 243 |
ConvertMap<IdentityMap<int>, double> id(im); |
244 | 244 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, "Something is wrong with AddMap"); |
245 | 245 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, "Something is wrong with SubMap"); |
246 | 246 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, "Something is wrong with MulMap"); |
247 | 247 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, "Something is wrong with DivMap"); |
248 | 248 |
|
249 | 249 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
250 | 250 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
251 | 251 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
252 | 252 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
253 | 253 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
254 | 254 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
255 | 255 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
256 | 256 |
|
257 | 257 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
258 | 258 |
"Something is wrong with ShiftMap"); |
259 | 259 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && shiftWriteMap(id, 2.0)[10] == 12.0, |
260 | 260 |
"Something is wrong with ShiftWriteMap"); |
261 | 261 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
262 | 262 |
"Something is wrong with ScaleMap"); |
263 | 263 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && scaleWriteMap(id, 2.0)[10] == 20.0, |
264 | 264 |
"Something is wrong with ScaleWriteMap"); |
265 | 265 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
266 | 266 |
"Something is wrong with NegMap"); |
267 | 267 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
268 | 268 |
"Something is wrong with NegWriteMap"); |
269 | 269 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
270 | 270 |
"Something is wrong with AbsMap"); |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
// Logical maps: |
274 | 274 |
// - TrueMap, FalseMap |
275 | 275 |
// - AndMap, OrMap |
276 | 276 |
// - NotMap, NotWriteMap |
277 | 277 |
// - EqualMap, LessMap |
278 | 278 |
{ |
279 | 279 |
checkConcept<BoolMap, TrueMap<A> >(); |
280 | 280 |
checkConcept<BoolMap, FalseMap<A> >(); |
281 | 281 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
282 | 282 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
283 | 283 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
284 | 284 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
285 | 285 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
286 | 286 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
287 | 287 |
|
288 | 288 |
TrueMap<int> tm; |
289 | 289 |
FalseMap<int> fm; |
290 | 290 |
RangeMap<bool> rm(2); |
291 | 291 |
rm[0] = true; rm[1] = false; |
292 | 292 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && !andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
293 | 293 |
"Something is wrong with AndMap"); |
294 | 294 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
295 | 295 |
"Something is wrong with OrMap"); |
296 | 296 |
check(!notMap(rm)[0] && notMap(rm)[1], "Something is wrong with NotMap"); |
297 | 297 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], "Something is wrong with NotWriteMap"); |
298 | 298 |
|
299 | 299 |
ConstMap<int, double> cm(2.0); |
300 | 300 |
IdentityMap<int> im; |
301 | 301 |
ConvertMap<IdentityMap<int>, double> id(im); |
302 | 302 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
303 | 303 |
"Something is wrong with LessMap"); |
304 | 304 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
305 | 305 |
"Something is wrong with EqualMap"); |
306 | 306 |
} |
307 |
|
|
308 |
// StoreBoolMap |
|
309 |
{ |
|
310 |
typedef std::vector<int> vec; |
|
311 |
vec v1; |
|
312 |
vec v2(10); |
|
313 |
StoreBoolMap<std::back_insert_iterator<vec> > map1(std::back_inserter(v1)); |
|
314 |
StoreBoolMap<vec::iterator> map2(v2.begin()); |
|
315 |
map1.set(10, false); |
|
316 |
map1.set(20, true); map2.set(20, true); |
|
317 |
map1.set(30, false); map2.set(40, false); |
|
318 |
map1.set(50, true); map2.set(50, true); |
|
319 |
map1.set(60, true); map2.set(60, true); |
|
320 |
check(v1.size() == 3 && v2.size() == 10 && |
|
321 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && v2[0]==20 && v2[1]==50 && v2[2]==60, |
|
322 |
"Something is wrong with StoreBoolMap"); |
|
323 |
|
|
324 |
int i = 0; |
|
325 |
for ( StoreBoolMap<vec::iterator>::Iterator it = map2.begin(); |
|
326 |
it != map2.end(); ++it ) |
|
327 |
check(v1[i++] == *it, "Something is wrong with StoreBoolMap"); |
|
328 |
} |
|
307 | 329 |
|
308 | 330 |
return 0; |
309 | 331 |
} |
0 comments (0 inline)