| ... |
... |
@@ -909,844 +909,878 @@
|
| 909 |
909 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
|
| 910 |
910 |
};
|
| 911 |
911 |
|
| 912 |
912 |
/// Returns a \ref MulMap class
|
| 913 |
913 |
|
| 914 |
914 |
/// This function just returns a \ref MulMap class.
|
| 915 |
915 |
///
|
| 916 |
916 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 917 |
917 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
|
| 918 |
918 |
/// <tt>m1[x]*m2[x]</tt>.
|
| 919 |
919 |
///
|
| 920 |
920 |
/// \relates MulMap
|
| 921 |
921 |
template<typename M1, typename M2>
|
| 922 |
922 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
| 923 |
923 |
return MulMap<M1, M2>(m1,m2);
|
| 924 |
924 |
}
|
| 925 |
925 |
|
| 926 |
926 |
|
| 927 |
927 |
/// Quotient of two maps
|
| 928 |
928 |
|
| 929 |
929 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient
|
| 930 |
930 |
/// of the values of the two given maps.
|
| 931 |
931 |
/// Its \c Key and \c Value types are inherited from \c M1.
|
| 932 |
932 |
/// The \c Key and \c Value of \c M2 must be convertible to those of
|
| 933 |
933 |
/// \c M1.
|
| 934 |
934 |
///
|
| 935 |
935 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 936 |
936 |
/// \code
|
| 937 |
937 |
/// DivMap<M1,M2> dm(m1,m2);
|
| 938 |
938 |
/// \endcode
|
| 939 |
939 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
|
| 940 |
940 |
///
|
| 941 |
941 |
/// The simplest way of using this map is through the divMap()
|
| 942 |
942 |
/// function.
|
| 943 |
943 |
///
|
| 944 |
944 |
/// \sa AddMap, SubMap, MulMap
|
| 945 |
945 |
template<typename M1, typename M2>
|
| 946 |
946 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 947 |
947 |
const M1 &_m1;
|
| 948 |
948 |
const M2 &_m2;
|
| 949 |
949 |
public:
|
| 950 |
950 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent;
|
| 951 |
951 |
typedef typename Parent::Key Key;
|
| 952 |
952 |
typedef typename Parent::Value Value;
|
| 953 |
953 |
|
| 954 |
954 |
/// Constructor
|
| 955 |
955 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 956 |
956 |
/// \e
|
| 957 |
957 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
|
| 958 |
958 |
};
|
| 959 |
959 |
|
| 960 |
960 |
/// Returns a \ref DivMap class
|
| 961 |
961 |
|
| 962 |
962 |
/// This function just returns a \ref DivMap class.
|
| 963 |
963 |
///
|
| 964 |
964 |
/// For example, if \c m1 and \c m2 are both maps with \c double
|
| 965 |
965 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
|
| 966 |
966 |
/// <tt>m1[x]/m2[x]</tt>.
|
| 967 |
967 |
///
|
| 968 |
968 |
/// \relates DivMap
|
| 969 |
969 |
template<typename M1, typename M2>
|
| 970 |
970 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
| 971 |
971 |
return DivMap<M1, M2>(m1,m2);
|
| 972 |
972 |
}
|
| 973 |
973 |
|
| 974 |
974 |
|
| 975 |
975 |
/// Shifts a map with a constant.
|
| 976 |
976 |
|
| 977 |
977 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of
|
| 978 |
978 |
/// the given map and a constant value (i.e. it shifts the map with
|
| 979 |
979 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
| 980 |
980 |
///
|
| 981 |
981 |
/// Actually,
|
| 982 |
982 |
/// \code
|
| 983 |
983 |
/// ShiftMap<M> sh(m,v);
|
| 984 |
984 |
/// \endcode
|
| 985 |
985 |
/// is equivalent to
|
| 986 |
986 |
/// \code
|
| 987 |
987 |
/// ConstMap<M::Key, M::Value> cm(v);
|
| 988 |
988 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
|
| 989 |
989 |
/// \endcode
|
| 990 |
990 |
///
|
| 991 |
991 |
/// The simplest way of using this map is through the shiftMap()
|
| 992 |
992 |
/// function.
|
| 993 |
993 |
///
|
| 994 |
994 |
/// \sa ShiftWriteMap
|
| 995 |
995 |
template<typename M, typename C = typename M::Value>
|
| 996 |
996 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
| 997 |
997 |
const M &_m;
|
| 998 |
998 |
C _v;
|
| 999 |
999 |
public:
|
| 1000 |
1000 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 1001 |
1001 |
typedef typename Parent::Key Key;
|
| 1002 |
1002 |
typedef typename Parent::Value Value;
|
| 1003 |
1003 |
|
| 1004 |
1004 |
/// Constructor
|
| 1005 |
1005 |
|
| 1006 |
1006 |
/// Constructor.
|
| 1007 |
1007 |
/// \param m The undelying map.
|
| 1008 |
1008 |
/// \param v The constant value.
|
| 1009 |
1009 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1010 |
1010 |
/// \e
|
| 1011 |
1011 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1012 |
1012 |
};
|
| 1013 |
1013 |
|
| 1014 |
1014 |
/// Shifts a map with a constant (read-write version).
|
| 1015 |
1015 |
|
| 1016 |
1016 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
|
| 1017 |
1017 |
/// of the given map and a constant value (i.e. it shifts the map with
|
| 1018 |
1018 |
/// the constant). Its \c Key and \c Value are inherited from \c M.
|
| 1019 |
1019 |
/// It makes also possible to write the map.
|
| 1020 |
1020 |
///
|
| 1021 |
1021 |
/// The simplest way of using this map is through the shiftWriteMap()
|
| 1022 |
1022 |
/// function.
|
| 1023 |
1023 |
///
|
| 1024 |
1024 |
/// \sa ShiftMap
|
| 1025 |
1025 |
template<typename M, typename C = typename M::Value>
|
| 1026 |
1026 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1027 |
1027 |
M &_m;
|
| 1028 |
1028 |
C _v;
|
| 1029 |
1029 |
public:
|
| 1030 |
1030 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 1031 |
1031 |
typedef typename Parent::Key Key;
|
| 1032 |
1032 |
typedef typename Parent::Value Value;
|
| 1033 |
1033 |
|
| 1034 |
1034 |
/// Constructor
|
| 1035 |
1035 |
|
| 1036 |
1036 |
/// Constructor.
|
| 1037 |
1037 |
/// \param m The undelying map.
|
| 1038 |
1038 |
/// \param v The constant value.
|
| 1039 |
1039 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1040 |
1040 |
/// \e
|
| 1041 |
1041 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1042 |
1042 |
/// \e
|
| 1043 |
1043 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
|
| 1044 |
1044 |
};
|
| 1045 |
1045 |
|
| 1046 |
1046 |
/// Returns a \ref ShiftMap class
|
| 1047 |
1047 |
|
| 1048 |
1048 |
/// This function just returns a \ref ShiftMap class.
|
| 1049 |
1049 |
///
|
| 1050 |
1050 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1051 |
1051 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
|
| 1052 |
1052 |
/// <tt>m[x]+v</tt>.
|
| 1053 |
1053 |
///
|
| 1054 |
1054 |
/// \relates ShiftMap
|
| 1055 |
1055 |
template<typename M, typename C>
|
| 1056 |
1056 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
|
| 1057 |
1057 |
return ShiftMap<M, C>(m,v);
|
| 1058 |
1058 |
}
|
| 1059 |
1059 |
|
| 1060 |
1060 |
/// Returns a \ref ShiftWriteMap class
|
| 1061 |
1061 |
|
| 1062 |
1062 |
/// This function just returns a \ref ShiftWriteMap class.
|
| 1063 |
1063 |
///
|
| 1064 |
1064 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1065 |
1065 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
|
| 1066 |
1066 |
/// <tt>m[x]+v</tt>.
|
| 1067 |
1067 |
/// Moreover it makes also possible to write the map.
|
| 1068 |
1068 |
///
|
| 1069 |
1069 |
/// \relates ShiftWriteMap
|
| 1070 |
1070 |
template<typename M, typename C>
|
| 1071 |
1071 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
| 1072 |
1072 |
return ShiftWriteMap<M, C>(m,v);
|
| 1073 |
1073 |
}
|
| 1074 |
1074 |
|
| 1075 |
1075 |
|
| 1076 |
1076 |
/// Scales a map with a constant.
|
| 1077 |
1077 |
|
| 1078 |
1078 |
/// This \ref concepts::ReadMap "read-only map" returns the value of
|
| 1079 |
1079 |
/// the given map multiplied from the left side with a constant value.
|
| 1080 |
1080 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1081 |
1081 |
///
|
| 1082 |
1082 |
/// Actually,
|
| 1083 |
1083 |
/// \code
|
| 1084 |
1084 |
/// ScaleMap<M> sc(m,v);
|
| 1085 |
1085 |
/// \endcode
|
| 1086 |
1086 |
/// is equivalent to
|
| 1087 |
1087 |
/// \code
|
| 1088 |
1088 |
/// ConstMap<M::Key, M::Value> cm(v);
|
| 1089 |
1089 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
|
| 1090 |
1090 |
/// \endcode
|
| 1091 |
1091 |
///
|
| 1092 |
1092 |
/// The simplest way of using this map is through the scaleMap()
|
| 1093 |
1093 |
/// function.
|
| 1094 |
1094 |
///
|
| 1095 |
1095 |
/// \sa ScaleWriteMap
|
| 1096 |
1096 |
template<typename M, typename C = typename M::Value>
|
| 1097 |
1097 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1098 |
1098 |
const M &_m;
|
| 1099 |
1099 |
C _v;
|
| 1100 |
1100 |
public:
|
| 1101 |
1101 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 1102 |
1102 |
typedef typename Parent::Key Key;
|
| 1103 |
1103 |
typedef typename Parent::Value Value;
|
| 1104 |
1104 |
|
| 1105 |
1105 |
/// Constructor
|
| 1106 |
1106 |
|
| 1107 |
1107 |
/// Constructor.
|
| 1108 |
1108 |
/// \param m The undelying map.
|
| 1109 |
1109 |
/// \param v The constant value.
|
| 1110 |
1110 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1111 |
1111 |
/// \e
|
| 1112 |
1112 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1113 |
1113 |
};
|
| 1114 |
1114 |
|
| 1115 |
1115 |
/// Scales a map with a constant (read-write version).
|
| 1116 |
1116 |
|
| 1117 |
1117 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
|
| 1118 |
1118 |
/// the given map multiplied from the left side with a constant value.
|
| 1119 |
1119 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1120 |
1120 |
/// It can also be used as write map if the \c / operator is defined
|
| 1121 |
1121 |
/// between \c Value and \c C and the given multiplier is not zero.
|
| 1122 |
1122 |
///
|
| 1123 |
1123 |
/// The simplest way of using this map is through the scaleWriteMap()
|
| 1124 |
1124 |
/// function.
|
| 1125 |
1125 |
///
|
| 1126 |
1126 |
/// \sa ScaleMap
|
| 1127 |
1127 |
template<typename M, typename C = typename M::Value>
|
| 1128 |
1128 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1129 |
1129 |
M &_m;
|
| 1130 |
1130 |
C _v;
|
| 1131 |
1131 |
public:
|
| 1132 |
1132 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 1133 |
1133 |
typedef typename Parent::Key Key;
|
| 1134 |
1134 |
typedef typename Parent::Value Value;
|
| 1135 |
1135 |
|
| 1136 |
1136 |
/// Constructor
|
| 1137 |
1137 |
|
| 1138 |
1138 |
/// Constructor.
|
| 1139 |
1139 |
/// \param m The undelying map.
|
| 1140 |
1140 |
/// \param v The constant value.
|
| 1141 |
1141 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1142 |
1142 |
/// \e
|
| 1143 |
1143 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1144 |
1144 |
/// \e
|
| 1145 |
1145 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
| 1146 |
1146 |
};
|
| 1147 |
1147 |
|
| 1148 |
1148 |
/// Returns a \ref ScaleMap class
|
| 1149 |
1149 |
|
| 1150 |
1150 |
/// This function just returns a \ref ScaleMap class.
|
| 1151 |
1151 |
///
|
| 1152 |
1152 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1153 |
1153 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
|
| 1154 |
1154 |
/// <tt>v*m[x]</tt>.
|
| 1155 |
1155 |
///
|
| 1156 |
1156 |
/// \relates ScaleMap
|
| 1157 |
1157 |
template<typename M, typename C>
|
| 1158 |
1158 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
| 1159 |
1159 |
return ScaleMap<M, C>(m,v);
|
| 1160 |
1160 |
}
|
| 1161 |
1161 |
|
| 1162 |
1162 |
/// Returns a \ref ScaleWriteMap class
|
| 1163 |
1163 |
|
| 1164 |
1164 |
/// This function just returns a \ref ScaleWriteMap class.
|
| 1165 |
1165 |
///
|
| 1166 |
1166 |
/// For example, if \c m is a map with \c double values and \c v is
|
| 1167 |
1167 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
|
| 1168 |
1168 |
/// <tt>v*m[x]</tt>.
|
| 1169 |
1169 |
/// Moreover it makes also possible to write the map.
|
| 1170 |
1170 |
///
|
| 1171 |
1171 |
/// \relates ScaleWriteMap
|
| 1172 |
1172 |
template<typename M, typename C>
|
| 1173 |
1173 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
| 1174 |
1174 |
return ScaleWriteMap<M, C>(m,v);
|
| 1175 |
1175 |
}
|
| 1176 |
1176 |
|
| 1177 |
1177 |
|
| 1178 |
1178 |
/// Negative of a map
|
| 1179 |
1179 |
|
| 1180 |
1180 |
/// This \ref concepts::ReadMap "read-only map" returns the negative
|
| 1181 |
1181 |
/// of the values of the given map (using the unary \c - operator).
|
| 1182 |
1182 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1183 |
1183 |
///
|
| 1184 |
1184 |
/// If M::Value is \c int, \c double etc., then
|
| 1185 |
1185 |
/// \code
|
| 1186 |
1186 |
/// NegMap<M> neg(m);
|
| 1187 |
1187 |
/// \endcode
|
| 1188 |
1188 |
/// is equivalent to
|
| 1189 |
1189 |
/// \code
|
| 1190 |
1190 |
/// ScaleMap<M> neg(m,-1);
|
| 1191 |
1191 |
/// \endcode
|
| 1192 |
1192 |
///
|
| 1193 |
1193 |
/// The simplest way of using this map is through the negMap()
|
| 1194 |
1194 |
/// function.
|
| 1195 |
1195 |
///
|
| 1196 |
1196 |
/// \sa NegWriteMap
|
| 1197 |
1197 |
template<typename M>
|
| 1198 |
1198 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1199 |
1199 |
const M& _m;
|
| 1200 |
1200 |
public:
|
| 1201 |
1201 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 1202 |
1202 |
typedef typename Parent::Key Key;
|
| 1203 |
1203 |
typedef typename Parent::Value Value;
|
| 1204 |
1204 |
|
| 1205 |
1205 |
/// Constructor
|
| 1206 |
1206 |
NegMap(const M &m) : _m(m) {}
|
| 1207 |
1207 |
/// \e
|
| 1208 |
1208 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1209 |
1209 |
};
|
| 1210 |
1210 |
|
| 1211 |
1211 |
/// Negative of a map (read-write version)
|
| 1212 |
1212 |
|
| 1213 |
1213 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
| 1214 |
1214 |
/// negative of the values of the given map (using the unary \c -
|
| 1215 |
1215 |
/// operator).
|
| 1216 |
1216 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1217 |
1217 |
/// It makes also possible to write the map.
|
| 1218 |
1218 |
///
|
| 1219 |
1219 |
/// If M::Value is \c int, \c double etc., then
|
| 1220 |
1220 |
/// \code
|
| 1221 |
1221 |
/// NegWriteMap<M> neg(m);
|
| 1222 |
1222 |
/// \endcode
|
| 1223 |
1223 |
/// is equivalent to
|
| 1224 |
1224 |
/// \code
|
| 1225 |
1225 |
/// ScaleWriteMap<M> neg(m,-1);
|
| 1226 |
1226 |
/// \endcode
|
| 1227 |
1227 |
///
|
| 1228 |
1228 |
/// The simplest way of using this map is through the negWriteMap()
|
| 1229 |
1229 |
/// function.
|
| 1230 |
1230 |
///
|
| 1231 |
1231 |
/// \sa NegMap
|
| 1232 |
1232 |
template<typename M>
|
| 1233 |
1233 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1234 |
1234 |
M &_m;
|
| 1235 |
1235 |
public:
|
| 1236 |
1236 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 1237 |
1237 |
typedef typename Parent::Key Key;
|
| 1238 |
1238 |
typedef typename Parent::Value Value;
|
| 1239 |
1239 |
|
| 1240 |
1240 |
/// Constructor
|
| 1241 |
1241 |
NegWriteMap(M &m) : _m(m) {}
|
| 1242 |
1242 |
/// \e
|
| 1243 |
1243 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1244 |
1244 |
/// \e
|
| 1245 |
1245 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
| 1246 |
1246 |
};
|
| 1247 |
1247 |
|
| 1248 |
1248 |
/// Returns a \ref NegMap class
|
| 1249 |
1249 |
|
| 1250 |
1250 |
/// This function just returns a \ref NegMap class.
|
| 1251 |
1251 |
///
|
| 1252 |
1252 |
/// For example, if \c m is a map with \c double values, then
|
| 1253 |
1253 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
| 1254 |
1254 |
///
|
| 1255 |
1255 |
/// \relates NegMap
|
| 1256 |
1256 |
template <typename M>
|
| 1257 |
1257 |
inline NegMap<M> negMap(const M &m) {
|
| 1258 |
1258 |
return NegMap<M>(m);
|
| 1259 |
1259 |
}
|
| 1260 |
1260 |
|
| 1261 |
1261 |
/// Returns a \ref NegWriteMap class
|
| 1262 |
1262 |
|
| 1263 |
1263 |
/// This function just returns a \ref NegWriteMap class.
|
| 1264 |
1264 |
///
|
| 1265 |
1265 |
/// For example, if \c m is a map with \c double values, then
|
| 1266 |
1266 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
|
| 1267 |
1267 |
/// Moreover it makes also possible to write the map.
|
| 1268 |
1268 |
///
|
| 1269 |
1269 |
/// \relates NegWriteMap
|
| 1270 |
1270 |
template <typename M>
|
| 1271 |
1271 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
| 1272 |
1272 |
return NegWriteMap<M>(m);
|
| 1273 |
1273 |
}
|
| 1274 |
1274 |
|
| 1275 |
1275 |
|
| 1276 |
1276 |
/// Absolute value of a map
|
| 1277 |
1277 |
|
| 1278 |
1278 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute
|
| 1279 |
1279 |
/// value of the values of the given map.
|
| 1280 |
1280 |
/// Its \c Key and \c Value are inherited from \c M.
|
| 1281 |
1281 |
/// \c Value must be comparable to \c 0 and the unary \c -
|
| 1282 |
1282 |
/// operator must be defined for it, of course.
|
| 1283 |
1283 |
///
|
| 1284 |
1284 |
/// The simplest way of using this map is through the absMap()
|
| 1285 |
1285 |
/// function.
|
| 1286 |
1286 |
template<typename M>
|
| 1287 |
1287 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1288 |
1288 |
const M &_m;
|
| 1289 |
1289 |
public:
|
| 1290 |
1290 |
typedef MapBase<typename M::Key, typename M::Value> Parent;
|
| 1291 |
1291 |
typedef typename Parent::Key Key;
|
| 1292 |
1292 |
typedef typename Parent::Value Value;
|
| 1293 |
1293 |
|
| 1294 |
1294 |
/// Constructor
|
| 1295 |
1295 |
AbsMap(const M &m) : _m(m) {}
|
| 1296 |
1296 |
/// \e
|
| 1297 |
1297 |
Value operator[](const Key &k) const {
|
| 1298 |
1298 |
Value tmp = _m[k];
|
| 1299 |
1299 |
return tmp >= 0 ? tmp : -tmp;
|
| 1300 |
1300 |
}
|
| 1301 |
1301 |
|
| 1302 |
1302 |
};
|
| 1303 |
1303 |
|
| 1304 |
1304 |
/// Returns an \ref AbsMap class
|
| 1305 |
1305 |
|
| 1306 |
1306 |
/// This function just returns an \ref AbsMap class.
|
| 1307 |
1307 |
///
|
| 1308 |
1308 |
/// For example, if \c m is a map with \c double values, then
|
| 1309 |
1309 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
|
| 1310 |
1310 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
|
| 1311 |
1311 |
/// negative.
|
| 1312 |
1312 |
///
|
| 1313 |
1313 |
/// \relates AbsMap
|
| 1314 |
1314 |
template<typename M>
|
| 1315 |
1315 |
inline AbsMap<M> absMap(const M &m) {
|
| 1316 |
1316 |
return AbsMap<M>(m);
|
| 1317 |
1317 |
}
|
| 1318 |
1318 |
|
| 1319 |
1319 |
/// @}
|
| 1320 |
1320 |
|
| 1321 |
1321 |
// Logical maps and map adaptors:
|
| 1322 |
1322 |
|
| 1323 |
1323 |
/// \addtogroup maps
|
| 1324 |
1324 |
/// @{
|
| 1325 |
1325 |
|
| 1326 |
1326 |
/// Constant \c true map.
|
| 1327 |
1327 |
|
| 1328 |
1328 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1329 |
1329 |
/// each key.
|
| 1330 |
1330 |
///
|
| 1331 |
1331 |
/// Note that
|
| 1332 |
1332 |
/// \code
|
| 1333 |
1333 |
/// TrueMap<K> tm;
|
| 1334 |
1334 |
/// \endcode
|
| 1335 |
1335 |
/// is equivalent to
|
| 1336 |
1336 |
/// \code
|
| 1337 |
1337 |
/// ConstMap<K,bool> tm(true);
|
| 1338 |
1338 |
/// \endcode
|
| 1339 |
1339 |
///
|
| 1340 |
1340 |
/// \sa FalseMap
|
| 1341 |
1341 |
/// \sa ConstMap
|
| 1342 |
1342 |
template <typename K>
|
| 1343 |
1343 |
class TrueMap : public MapBase<K, bool> {
|
| 1344 |
1344 |
public:
|
| 1345 |
1345 |
typedef MapBase<K, bool> Parent;
|
| 1346 |
1346 |
typedef typename Parent::Key Key;
|
| 1347 |
1347 |
typedef typename Parent::Value Value;
|
| 1348 |
1348 |
|
| 1349 |
1349 |
/// Gives back \c true.
|
| 1350 |
1350 |
Value operator[](const Key&) const { return true; }
|
| 1351 |
1351 |
};
|
| 1352 |
1352 |
|
| 1353 |
1353 |
/// Returns a \ref TrueMap class
|
| 1354 |
1354 |
|
| 1355 |
1355 |
/// This function just returns a \ref TrueMap class.
|
| 1356 |
1356 |
/// \relates TrueMap
|
| 1357 |
1357 |
template<typename K>
|
| 1358 |
1358 |
inline TrueMap<K> trueMap() {
|
| 1359 |
1359 |
return TrueMap<K>();
|
| 1360 |
1360 |
}
|
| 1361 |
1361 |
|
| 1362 |
1362 |
|
| 1363 |
1363 |
/// Constant \c false map.
|
| 1364 |
1364 |
|
| 1365 |
1365 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
|
| 1366 |
1366 |
/// each key.
|
| 1367 |
1367 |
///
|
| 1368 |
1368 |
/// Note that
|
| 1369 |
1369 |
/// \code
|
| 1370 |
1370 |
/// FalseMap<K> fm;
|
| 1371 |
1371 |
/// \endcode
|
| 1372 |
1372 |
/// is equivalent to
|
| 1373 |
1373 |
/// \code
|
| 1374 |
1374 |
/// ConstMap<K,bool> fm(false);
|
| 1375 |
1375 |
/// \endcode
|
| 1376 |
1376 |
///
|
| 1377 |
1377 |
/// \sa TrueMap
|
| 1378 |
1378 |
/// \sa ConstMap
|
| 1379 |
1379 |
template <typename K>
|
| 1380 |
1380 |
class FalseMap : public MapBase<K, bool> {
|
| 1381 |
1381 |
public:
|
| 1382 |
1382 |
typedef MapBase<K, bool> Parent;
|
| 1383 |
1383 |
typedef typename Parent::Key Key;
|
| 1384 |
1384 |
typedef typename Parent::Value Value;
|
| 1385 |
1385 |
|
| 1386 |
1386 |
/// Gives back \c false.
|
| 1387 |
1387 |
Value operator[](const Key&) const { return false; }
|
| 1388 |
1388 |
};
|
| 1389 |
1389 |
|
| 1390 |
1390 |
/// Returns a \ref FalseMap class
|
| 1391 |
1391 |
|
| 1392 |
1392 |
/// This function just returns a \ref FalseMap class.
|
| 1393 |
1393 |
/// \relates FalseMap
|
| 1394 |
1394 |
template<typename K>
|
| 1395 |
1395 |
inline FalseMap<K> falseMap() {
|
| 1396 |
1396 |
return FalseMap<K>();
|
| 1397 |
1397 |
}
|
| 1398 |
1398 |
|
| 1399 |
1399 |
/// @}
|
| 1400 |
1400 |
|
| 1401 |
1401 |
/// \addtogroup map_adaptors
|
| 1402 |
1402 |
/// @{
|
| 1403 |
1403 |
|
| 1404 |
1404 |
/// Logical 'and' of two maps
|
| 1405 |
1405 |
|
| 1406 |
1406 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1407 |
1407 |
/// 'and' of the values of the two given maps.
|
| 1408 |
1408 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1409 |
1409 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1410 |
1410 |
///
|
| 1411 |
1411 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1412 |
1412 |
/// \code
|
| 1413 |
1413 |
/// AndMap<M1,M2> am(m1,m2);
|
| 1414 |
1414 |
/// \endcode
|
| 1415 |
1415 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
|
| 1416 |
1416 |
///
|
| 1417 |
1417 |
/// The simplest way of using this map is through the andMap()
|
| 1418 |
1418 |
/// function.
|
| 1419 |
1419 |
///
|
| 1420 |
1420 |
/// \sa OrMap
|
| 1421 |
1421 |
/// \sa NotMap, NotWriteMap
|
| 1422 |
1422 |
template<typename M1, typename M2>
|
| 1423 |
1423 |
class AndMap : public MapBase<typename M1::Key, bool> {
|
| 1424 |
1424 |
const M1 &_m1;
|
| 1425 |
1425 |
const M2 &_m2;
|
| 1426 |
1426 |
public:
|
| 1427 |
1427 |
typedef MapBase<typename M1::Key, bool> Parent;
|
| 1428 |
1428 |
typedef typename Parent::Key Key;
|
| 1429 |
1429 |
typedef typename Parent::Value Value;
|
| 1430 |
1430 |
|
| 1431 |
1431 |
/// Constructor
|
| 1432 |
1432 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1433 |
1433 |
/// \e
|
| 1434 |
1434 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
| 1435 |
1435 |
};
|
| 1436 |
1436 |
|
| 1437 |
1437 |
/// Returns an \ref AndMap class
|
| 1438 |
1438 |
|
| 1439 |
1439 |
/// This function just returns an \ref AndMap class.
|
| 1440 |
1440 |
///
|
| 1441 |
1441 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
| 1442 |
1442 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
|
| 1443 |
1443 |
/// <tt>m1[x]&&m2[x]</tt>.
|
| 1444 |
1444 |
///
|
| 1445 |
1445 |
/// \relates AndMap
|
| 1446 |
1446 |
template<typename M1, typename M2>
|
| 1447 |
1447 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
| 1448 |
1448 |
return AndMap<M1, M2>(m1,m2);
|
| 1449 |
1449 |
}
|
| 1450 |
1450 |
|
| 1451 |
1451 |
|
| 1452 |
1452 |
/// Logical 'or' of two maps
|
| 1453 |
1453 |
|
| 1454 |
1454 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1455 |
1455 |
/// 'or' of the values of the two given maps.
|
| 1456 |
1456 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1457 |
1457 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1458 |
1458 |
///
|
| 1459 |
1459 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1460 |
1460 |
/// \code
|
| 1461 |
1461 |
/// OrMap<M1,M2> om(m1,m2);
|
| 1462 |
1462 |
/// \endcode
|
| 1463 |
1463 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
|
| 1464 |
1464 |
///
|
| 1465 |
1465 |
/// The simplest way of using this map is through the orMap()
|
| 1466 |
1466 |
/// function.
|
| 1467 |
1467 |
///
|
| 1468 |
1468 |
/// \sa AndMap
|
| 1469 |
1469 |
/// \sa NotMap, NotWriteMap
|
| 1470 |
1470 |
template<typename M1, typename M2>
|
| 1471 |
1471 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
| 1472 |
1472 |
const M1 &_m1;
|
| 1473 |
1473 |
const M2 &_m2;
|
| 1474 |
1474 |
public:
|
| 1475 |
1475 |
typedef MapBase<typename M1::Key, bool> Parent;
|
| 1476 |
1476 |
typedef typename Parent::Key Key;
|
| 1477 |
1477 |
typedef typename Parent::Value Value;
|
| 1478 |
1478 |
|
| 1479 |
1479 |
/// Constructor
|
| 1480 |
1480 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1481 |
1481 |
/// \e
|
| 1482 |
1482 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
| 1483 |
1483 |
};
|
| 1484 |
1484 |
|
| 1485 |
1485 |
/// Returns an \ref OrMap class
|
| 1486 |
1486 |
|
| 1487 |
1487 |
/// This function just returns an \ref OrMap class.
|
| 1488 |
1488 |
///
|
| 1489 |
1489 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
|
| 1490 |
1490 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
|
| 1491 |
1491 |
/// <tt>m1[x]||m2[x]</tt>.
|
| 1492 |
1492 |
///
|
| 1493 |
1493 |
/// \relates OrMap
|
| 1494 |
1494 |
template<typename M1, typename M2>
|
| 1495 |
1495 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
| 1496 |
1496 |
return OrMap<M1, M2>(m1,m2);
|
| 1497 |
1497 |
}
|
| 1498 |
1498 |
|
| 1499 |
1499 |
|
| 1500 |
1500 |
/// Logical 'not' of a map
|
| 1501 |
1501 |
|
| 1502 |
1502 |
/// This \ref concepts::ReadMap "read-only map" returns the logical
|
| 1503 |
1503 |
/// negation of the values of the given map.
|
| 1504 |
1504 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
| 1505 |
1505 |
///
|
| 1506 |
1506 |
/// The simplest way of using this map is through the notMap()
|
| 1507 |
1507 |
/// function.
|
| 1508 |
1508 |
///
|
| 1509 |
1509 |
/// \sa NotWriteMap
|
| 1510 |
1510 |
template <typename M>
|
| 1511 |
1511 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1512 |
1512 |
const M &_m;
|
| 1513 |
1513 |
public:
|
| 1514 |
1514 |
typedef MapBase<typename M::Key, bool> Parent;
|
| 1515 |
1515 |
typedef typename Parent::Key Key;
|
| 1516 |
1516 |
typedef typename Parent::Value Value;
|
| 1517 |
1517 |
|
| 1518 |
1518 |
/// Constructor
|
| 1519 |
1519 |
NotMap(const M &m) : _m(m) {}
|
| 1520 |
1520 |
/// \e
|
| 1521 |
1521 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1522 |
1522 |
};
|
| 1523 |
1523 |
|
| 1524 |
1524 |
/// Logical 'not' of a map (read-write version)
|
| 1525 |
1525 |
|
| 1526 |
1526 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the
|
| 1527 |
1527 |
/// logical negation of the values of the given map.
|
| 1528 |
1528 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
|
| 1529 |
1529 |
/// It makes also possible to write the map. When a value is set,
|
| 1530 |
1530 |
/// the opposite value is set to the original map.
|
| 1531 |
1531 |
///
|
| 1532 |
1532 |
/// The simplest way of using this map is through the notWriteMap()
|
| 1533 |
1533 |
/// function.
|
| 1534 |
1534 |
///
|
| 1535 |
1535 |
/// \sa NotMap
|
| 1536 |
1536 |
template <typename M>
|
| 1537 |
1537 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1538 |
1538 |
M &_m;
|
| 1539 |
1539 |
public:
|
| 1540 |
1540 |
typedef MapBase<typename M::Key, bool> Parent;
|
| 1541 |
1541 |
typedef typename Parent::Key Key;
|
| 1542 |
1542 |
typedef typename Parent::Value Value;
|
| 1543 |
1543 |
|
| 1544 |
1544 |
/// Constructor
|
| 1545 |
1545 |
NotWriteMap(M &m) : _m(m) {}
|
| 1546 |
1546 |
/// \e
|
| 1547 |
1547 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1548 |
1548 |
/// \e
|
| 1549 |
1549 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
| 1550 |
1550 |
};
|
| 1551 |
1551 |
|
| 1552 |
1552 |
/// Returns a \ref NotMap class
|
| 1553 |
1553 |
|
| 1554 |
1554 |
/// This function just returns a \ref NotMap class.
|
| 1555 |
1555 |
///
|
| 1556 |
1556 |
/// For example, if \c m is a map with \c bool values, then
|
| 1557 |
1557 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
| 1558 |
1558 |
///
|
| 1559 |
1559 |
/// \relates NotMap
|
| 1560 |
1560 |
template <typename M>
|
| 1561 |
1561 |
inline NotMap<M> notMap(const M &m) {
|
| 1562 |
1562 |
return NotMap<M>(m);
|
| 1563 |
1563 |
}
|
| 1564 |
1564 |
|
| 1565 |
1565 |
/// Returns a \ref NotWriteMap class
|
| 1566 |
1566 |
|
| 1567 |
1567 |
/// This function just returns a \ref NotWriteMap class.
|
| 1568 |
1568 |
///
|
| 1569 |
1569 |
/// For example, if \c m is a map with \c bool values, then
|
| 1570 |
1570 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
|
| 1571 |
1571 |
/// Moreover it makes also possible to write the map.
|
| 1572 |
1572 |
///
|
| 1573 |
1573 |
/// \relates NotWriteMap
|
| 1574 |
1574 |
template <typename M>
|
| 1575 |
1575 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
| 1576 |
1576 |
return NotWriteMap<M>(m);
|
| 1577 |
1577 |
}
|
| 1578 |
1578 |
|
| 1579 |
1579 |
|
| 1580 |
1580 |
/// Combination of two maps using the \c == operator
|
| 1581 |
1581 |
|
| 1582 |
1582 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1583 |
1583 |
/// the keys for which the corresponding values of the two maps are
|
| 1584 |
1584 |
/// equal.
|
| 1585 |
1585 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1586 |
1586 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1587 |
1587 |
///
|
| 1588 |
1588 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1589 |
1589 |
/// \code
|
| 1590 |
1590 |
/// EqualMap<M1,M2> em(m1,m2);
|
| 1591 |
1591 |
/// \endcode
|
| 1592 |
1592 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
|
| 1593 |
1593 |
///
|
| 1594 |
1594 |
/// The simplest way of using this map is through the equalMap()
|
| 1595 |
1595 |
/// function.
|
| 1596 |
1596 |
///
|
| 1597 |
1597 |
/// \sa LessMap
|
| 1598 |
1598 |
template<typename M1, typename M2>
|
| 1599 |
1599 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
| 1600 |
1600 |
const M1 &_m1;
|
| 1601 |
1601 |
const M2 &_m2;
|
| 1602 |
1602 |
public:
|
| 1603 |
1603 |
typedef MapBase<typename M1::Key, bool> Parent;
|
| 1604 |
1604 |
typedef typename Parent::Key Key;
|
| 1605 |
1605 |
typedef typename Parent::Value Value;
|
| 1606 |
1606 |
|
| 1607 |
1607 |
/// Constructor
|
| 1608 |
1608 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1609 |
1609 |
/// \e
|
| 1610 |
1610 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
| 1611 |
1611 |
};
|
| 1612 |
1612 |
|
| 1613 |
1613 |
/// Returns an \ref EqualMap class
|
| 1614 |
1614 |
|
| 1615 |
1615 |
/// This function just returns an \ref EqualMap class.
|
| 1616 |
1616 |
///
|
| 1617 |
1617 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
| 1618 |
1618 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
|
| 1619 |
1619 |
/// <tt>m1[x]==m2[x]</tt>.
|
| 1620 |
1620 |
///
|
| 1621 |
1621 |
/// \relates EqualMap
|
| 1622 |
1622 |
template<typename M1, typename M2>
|
| 1623 |
1623 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
| 1624 |
1624 |
return EqualMap<M1, M2>(m1,m2);
|
| 1625 |
1625 |
}
|
| 1626 |
1626 |
|
| 1627 |
1627 |
|
| 1628 |
1628 |
/// Combination of two maps using the \c < operator
|
| 1629 |
1629 |
|
| 1630 |
1630 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
|
| 1631 |
1631 |
/// the keys for which the corresponding value of the first map is
|
| 1632 |
1632 |
/// less then the value of the second map.
|
| 1633 |
1633 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is
|
| 1634 |
1634 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
|
| 1635 |
1635 |
///
|
| 1636 |
1636 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
|
| 1637 |
1637 |
/// \code
|
| 1638 |
1638 |
/// LessMap<M1,M2> lm(m1,m2);
|
| 1639 |
1639 |
/// \endcode
|
| 1640 |
1640 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
|
| 1641 |
1641 |
///
|
| 1642 |
1642 |
/// The simplest way of using this map is through the lessMap()
|
| 1643 |
1643 |
/// function.
|
| 1644 |
1644 |
///
|
| 1645 |
1645 |
/// \sa EqualMap
|
| 1646 |
1646 |
template<typename M1, typename M2>
|
| 1647 |
1647 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
| 1648 |
1648 |
const M1 &_m1;
|
| 1649 |
1649 |
const M2 &_m2;
|
| 1650 |
1650 |
public:
|
| 1651 |
1651 |
typedef MapBase<typename M1::Key, bool> Parent;
|
| 1652 |
1652 |
typedef typename Parent::Key Key;
|
| 1653 |
1653 |
typedef typename Parent::Value Value;
|
| 1654 |
1654 |
|
| 1655 |
1655 |
/// Constructor
|
| 1656 |
1656 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1657 |
1657 |
/// \e
|
| 1658 |
1658 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
| 1659 |
1659 |
};
|
| 1660 |
1660 |
|
| 1661 |
1661 |
/// Returns an \ref LessMap class
|
| 1662 |
1662 |
|
| 1663 |
1663 |
/// This function just returns an \ref LessMap class.
|
| 1664 |
1664 |
///
|
| 1665 |
1665 |
/// For example, if \c m1 and \c m2 are maps with keys and values of
|
| 1666 |
1666 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
|
| 1667 |
1667 |
/// <tt>m1[x]<m2[x]</tt>.
|
| 1668 |
1668 |
///
|
| 1669 |
1669 |
/// \relates LessMap
|
| 1670 |
1670 |
template<typename M1, typename M2>
|
| 1671 |
1671 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
| 1672 |
1672 |
return LessMap<M1, M2>(m1,m2);
|
| 1673 |
1673 |
}
|
| 1674 |
1674 |
|
| 1675 |
1675 |
namespace _maps_bits {
|
| 1676 |
1676 |
|
| 1677 |
|
template <typename Value>
|
| 1678 |
|
struct Identity {
|
| 1679 |
|
typedef Value argument_type;
|
| 1680 |
|
typedef Value result_type;
|
| 1681 |
|
Value operator()(const Value& val) const {
|
| 1682 |
|
return val;
|
| 1683 |
|
}
|
| 1684 |
|
};
|
| 1685 |
|
|
| 1686 |
1677 |
template <typename _Iterator, typename Enable = void>
|
| 1687 |
1678 |
struct IteratorTraits {
|
| 1688 |
1679 |
typedef typename std::iterator_traits<_Iterator>::value_type Value;
|
| 1689 |
1680 |
};
|
| 1690 |
1681 |
|
| 1691 |
1682 |
template <typename _Iterator>
|
| 1692 |
1683 |
struct IteratorTraits<_Iterator,
|
| 1693 |
1684 |
typename exists<typename _Iterator::container_type>::type>
|
| 1694 |
1685 |
{
|
| 1695 |
1686 |
typedef typename _Iterator::container_type::value_type Value;
|
| 1696 |
1687 |
};
|
| 1697 |
1688 |
|
| 1698 |
1689 |
}
|
| 1699 |
1690 |
|
| 1700 |
1691 |
/// \brief Writable bool map for logging each \c true assigned element
|
| 1701 |
1692 |
///
|
| 1702 |
|
/// A \ref concepts::ReadWriteMap "read-write" bool map for logging
|
|
1693 |
/// A \ref concepts::WriteMap "writable" bool map for logging
|
| 1703 |
1694 |
/// each \c true assigned element, i.e it copies subsequently each
|
| 1704 |
1695 |
/// keys set to \c true to the given iterator.
|
|
1696 |
/// The most important usage of it is storing certain nodes or arcs
|
|
1697 |
/// that were marked \c true by an algorithm.
|
| 1705 |
1698 |
///
|
| 1706 |
|
/// \tparam It the type of the Iterator.
|
| 1707 |
|
/// \tparam Ke the type of the map's Key. The default value should
|
| 1708 |
|
/// work in most cases.
|
|
1699 |
/// There are several algorithms that provide solutions through bool
|
|
1700 |
/// maps and most of them assign \c true at most once for each key.
|
|
1701 |
/// In these cases it is a natural request to store each \c true
|
|
1702 |
/// assigned elements (in order of the assignment), which can be
|
|
1703 |
/// easily done with StoreBoolMap.
|
|
1704 |
///
|
|
1705 |
/// The simplest way of using this map is through the storeBoolMap()
|
|
1706 |
/// function.
|
|
1707 |
///
|
|
1708 |
/// \tparam It The type of the iterator.
|
|
1709 |
/// \tparam Ke The key type of the map. The default value set
|
|
1710 |
/// according to the iterator type should work in most cases.
|
| 1709 |
1711 |
///
|
| 1710 |
1712 |
/// \note The container of the iterator must contain enough space
|
| 1711 |
|
/// for the elements. (Or it should be an inserter iterator).
|
| 1712 |
|
///
|
| 1713 |
|
/// \todo Revise the name of this class and give an example code.
|
|
1713 |
/// for the elements or the iterator should be an inserter iterator.
|
|
1714 |
#ifdef DOXYGEN
|
|
1715 |
template <typename It, typename Ke>
|
|
1716 |
#else
|
| 1714 |
1717 |
template <typename It,
|
| 1715 |
1718 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
|
|
1719 |
#endif
|
| 1716 |
1720 |
class StoreBoolMap {
|
| 1717 |
1721 |
public:
|
| 1718 |
1722 |
typedef It Iterator;
|
| 1719 |
1723 |
|
| 1720 |
1724 |
typedef Ke Key;
|
| 1721 |
1725 |
typedef bool Value;
|
| 1722 |
1726 |
|
| 1723 |
1727 |
/// Constructor
|
| 1724 |
1728 |
StoreBoolMap(Iterator it)
|
| 1725 |
1729 |
: _begin(it), _end(it) {}
|
| 1726 |
1730 |
|
| 1727 |
1731 |
/// Gives back the given iterator set for the first key
|
| 1728 |
1732 |
Iterator begin() const {
|
| 1729 |
1733 |
return _begin;
|
| 1730 |
1734 |
}
|
| 1731 |
1735 |
|
| 1732 |
1736 |
/// Gives back the the 'after the last' iterator
|
| 1733 |
1737 |
Iterator end() const {
|
| 1734 |
1738 |
return _end;
|
| 1735 |
1739 |
}
|
| 1736 |
1740 |
|
| 1737 |
1741 |
/// The set function of the map
|
| 1738 |
|
void set(const Key& key, Value value) const {
|
|
1742 |
void set(const Key& key, Value value) {
|
| 1739 |
1743 |
if (value) {
|
| 1740 |
1744 |
*_end++ = key;
|
| 1741 |
1745 |
}
|
| 1742 |
1746 |
}
|
| 1743 |
1747 |
|
| 1744 |
1748 |
private:
|
| 1745 |
1749 |
Iterator _begin;
|
| 1746 |
|
mutable Iterator _end;
|
|
1750 |
Iterator _end;
|
| 1747 |
1751 |
};
|
|
1752 |
|
|
1753 |
/// Returns a \ref StoreBoolMap class
|
|
1754 |
|
|
1755 |
/// This function just returns a \ref StoreBoolMap class.
|
|
1756 |
///
|
|
1757 |
/// The most important usage of it is storing certain nodes or arcs
|
|
1758 |
/// that were marked \c true by an algorithm.
|
|
1759 |
/// For example it makes easier to store the nodes in the processing
|
|
1760 |
/// order of Dfs algorithm, as the following examples show.
|
|
1761 |
/// \code
|
|
1762 |
/// std::vector<Node> v;
|
|
1763 |
/// dfs(g,s).processedMap(storeBoolMap(std::back_inserter(v))).run();
|
|
1764 |
/// \endcode
|
|
1765 |
/// \code
|
|
1766 |
/// std::vector<Node> v(countNodes(g));
|
|
1767 |
/// dfs(g,s).processedMap(storeBoolMap(v.begin())).run();
|
|
1768 |
/// \endcode
|
|
1769 |
///
|
|
1770 |
/// \note The container of the iterator must contain enough space
|
|
1771 |
/// for the elements or the iterator should be an inserter iterator.
|
|
1772 |
///
|
|
1773 |
/// \note StoreBoolMap is just \ref concepts::WriteMap "writable", so
|
|
1774 |
/// it cannot be used when a readable map is needed, for example as
|
|
1775 |
/// \c ReachedMap for Bfs, Dfs and Dijkstra algorithms.
|
|
1776 |
///
|
|
1777 |
/// \relates StoreBoolMap
|
|
1778 |
template<typename Iterator>
|
|
1779 |
inline StoreBoolMap<Iterator> storeBoolMap(Iterator it) {
|
|
1780 |
return StoreBoolMap<Iterator>(it);
|
|
1781 |
}
|
| 1748 |
1782 |
|
| 1749 |
1783 |
/// @}
|
| 1750 |
1784 |
}
|
| 1751 |
1785 |
|
| 1752 |
1786 |
#endif // LEMON_MAPS_H
|