0
14
0
8
12
8
10
4
4
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Bfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/graph_utils.h> |
28 | 28 |
#include <lemon/bits/path_dump.h> |
29 | 29 |
#include <lemon/bits/invalid.h> |
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
|
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
|
39 | 39 |
///Default traits class of Bfs class. |
40 |
///\ |
|
40 |
///\tparam GR Digraph type. |
|
41 | 41 |
template<class GR> |
42 | 42 |
struct BfsDefaultTraits |
43 | 43 |
{ |
44 | 44 |
///The digraph type the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
///\brief The type of the map that stores the last |
47 | 47 |
///arcs of the shortest paths. |
48 | 48 |
/// |
49 | 49 |
///The type of the map that stores the last |
50 | 50 |
///arcs of the shortest paths. |
51 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
52 | 52 |
/// |
53 | 53 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
54 | 54 |
///Instantiates a PredMap. |
55 | 55 |
|
56 | 56 |
///This function instantiates a \ref PredMap. |
57 | 57 |
///\param G is the digraph, to which we would like to define the PredMap. |
58 | 58 |
///\todo The digraph alone may be insufficient to initialize |
59 | 59 |
static PredMap *createPredMap(const GR &G) |
60 | 60 |
{ |
61 | 61 |
return new PredMap(G); |
62 | 62 |
} |
63 | 63 |
///The type of the map that indicates which nodes are processed. |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
67 | 67 |
///\todo named parameter to set this type, function to read and write. |
68 | 68 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
69 | 69 |
///Instantiates a ProcessedMap. |
70 | 70 |
|
71 | 71 |
///This function instantiates a \ref ProcessedMap. |
72 | 72 |
///\param g is the digraph, to which |
73 | 73 |
///we would like to define the \ref ProcessedMap |
74 | 74 |
#ifdef DOXYGEN |
75 | 75 |
static ProcessedMap *createProcessedMap(const GR &g) |
76 | 76 |
#else |
77 | 77 |
static ProcessedMap *createProcessedMap(const GR &) |
78 | 78 |
#endif |
79 | 79 |
{ |
80 | 80 |
return new ProcessedMap(); |
81 | 81 |
} |
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
86 | 86 |
///\todo named parameter to set this type, function to read and write. |
87 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
88 | 88 |
///Instantiates a ReachedMap. |
89 | 89 |
|
90 | 90 |
///This function instantiates a \ref ReachedMap. |
91 | 91 |
///\param G is the digraph, to which |
92 | 92 |
///we would like to define the \ref ReachedMap. |
93 | 93 |
static ReachedMap *createReachedMap(const GR &G) |
94 | 94 |
{ |
95 | 95 |
return new ReachedMap(G); |
96 | 96 |
} |
97 | 97 |
///The type of the map that stores the dists of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the dists of the nodes. |
100 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
/// |
102 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
103 | 103 |
///Instantiates a DistMap. |
104 | 104 |
|
105 | 105 |
///This function instantiates a \ref DistMap. |
106 | 106 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
107 | 107 |
static DistMap *createDistMap(const GR &G) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(G); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%BFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 117 |
/// |
118 |
///\ |
|
118 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
|
119 | 119 |
///\ref ListDigraph. The value of GR is not used directly by Bfs, it |
120 | 120 |
///is only passed to \ref BfsDefaultTraits. |
121 |
///\ |
|
121 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
122 | 122 |
///The default traits class is |
123 | 123 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
124 | 124 |
///See \ref BfsDefaultTraits for the documentation of |
125 | 125 |
///a Bfs traits class. |
126 |
/// |
|
127 |
///\author Alpar Juttner |
|
128 | 126 |
|
129 | 127 |
#ifdef DOXYGEN |
130 | 128 |
template <typename GR, |
131 | 129 |
typename TR> |
132 | 130 |
#else |
133 | 131 |
template <typename GR=ListDigraph, |
134 | 132 |
typename TR=BfsDefaultTraits<GR> > |
135 | 133 |
#endif |
136 | 134 |
class Bfs { |
137 | 135 |
public: |
138 | 136 |
/** |
139 | 137 |
* \brief \ref Exception for uninitialized parameters. |
140 | 138 |
* |
141 | 139 |
* This error represents problems in the initialization |
142 | 140 |
* of the parameters of the algorithms. |
143 | 141 |
*/ |
144 | 142 |
class UninitializedParameter : public lemon::UninitializedParameter { |
145 | 143 |
public: |
146 | 144 |
virtual const char* what() const throw() { |
147 | 145 |
return "lemon::Bfs::UninitializedParameter"; |
148 | 146 |
} |
149 | 147 |
}; |
150 | 148 |
|
151 | 149 |
typedef TR Traits; |
152 | 150 |
///The type of the underlying digraph. |
153 | 151 |
typedef typename TR::Digraph Digraph; |
154 | 152 |
|
155 | 153 |
///\brief The type of the map that stores the last |
156 | 154 |
///arcs of the shortest paths. |
157 | 155 |
typedef typename TR::PredMap PredMap; |
158 | 156 |
///The type of the map indicating which nodes are reached. |
159 | 157 |
typedef typename TR::ReachedMap ReachedMap; |
160 | 158 |
///The type of the map indicating which nodes are processed. |
161 | 159 |
typedef typename TR::ProcessedMap ProcessedMap; |
162 | 160 |
///The type of the map that stores the dists of the nodes. |
163 | 161 |
typedef typename TR::DistMap DistMap; |
164 | 162 |
private: |
165 | 163 |
|
166 | 164 |
typedef typename Digraph::Node Node; |
167 | 165 |
typedef typename Digraph::NodeIt NodeIt; |
168 | 166 |
typedef typename Digraph::Arc Arc; |
169 | 167 |
typedef typename Digraph::OutArcIt OutArcIt; |
170 | 168 |
|
171 | 169 |
/// Pointer to the underlying digraph. |
172 | 170 |
const Digraph *G; |
173 | 171 |
///Pointer to the map of predecessors arcs. |
174 | 172 |
PredMap *_pred; |
175 | 173 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
176 | 174 |
bool local_pred; |
177 | 175 |
///Pointer to the map of distances. |
178 | 176 |
DistMap *_dist; |
179 | 177 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
180 | 178 |
bool local_dist; |
181 | 179 |
///Pointer to the map of reached status of the nodes. |
182 | 180 |
ReachedMap *_reached; |
183 | 181 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
184 | 182 |
bool local_reached; |
185 | 183 |
///Pointer to the map of processed status of the nodes. |
186 | 184 |
ProcessedMap *_processed; |
187 | 185 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
188 | 186 |
bool local_processed; |
189 | 187 |
|
190 | 188 |
std::vector<typename Digraph::Node> _queue; |
191 | 189 |
int _queue_head,_queue_tail,_queue_next_dist; |
... | ... |
@@ -695,129 +693,129 @@ |
695 | 693 |
///Returns the distance of a node from the root(s). |
696 | 694 |
///\pre \ref run() must be called before using this function. |
697 | 695 |
///\warning If node \c v in unreachable from the root(s) the return value |
698 | 696 |
///of this function is undefined. |
699 | 697 |
int dist(Node v) const { return (*_dist)[v]; } |
700 | 698 |
|
701 | 699 |
///Returns the 'previous arc' of the shortest path tree. |
702 | 700 |
|
703 | 701 |
///For a node \c v it returns the 'previous arc' |
704 | 702 |
///of the shortest path tree, |
705 | 703 |
///i.e. it returns the last arc of a shortest path from the root(s) to \c |
706 | 704 |
///v. It is \ref INVALID |
707 | 705 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
708 | 706 |
///shortest path tree used here is equal to the shortest path tree used in |
709 | 707 |
///\ref predNode(). |
710 | 708 |
///\pre Either \ref run() or \ref start() must be called before using |
711 | 709 |
///this function. |
712 | 710 |
Arc predArc(Node v) const { return (*_pred)[v];} |
713 | 711 |
|
714 | 712 |
///Returns the 'previous node' of the shortest path tree. |
715 | 713 |
|
716 | 714 |
///For a node \c v it returns the 'previous node' |
717 | 715 |
///of the shortest path tree, |
718 | 716 |
///i.e. it returns the last but one node from a shortest path from the |
719 | 717 |
///root(a) to \c /v. |
720 | 718 |
///It is INVALID if \c v is unreachable from the root(s) or |
721 | 719 |
///if \c v itself a root. |
722 | 720 |
///The shortest path tree used here is equal to the shortest path |
723 | 721 |
///tree used in \ref predArc(). |
724 | 722 |
///\pre Either \ref run() or \ref start() must be called before |
725 | 723 |
///using this function. |
726 | 724 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
727 | 725 |
G->source((*_pred)[v]); } |
728 | 726 |
|
729 | 727 |
///Returns a reference to the NodeMap of distances. |
730 | 728 |
|
731 | 729 |
///Returns a reference to the NodeMap of distances. |
732 | 730 |
///\pre Either \ref run() or \ref init() must |
733 | 731 |
///be called before using this function. |
734 | 732 |
const DistMap &distMap() const { return *_dist;} |
735 | 733 |
|
736 | 734 |
///Returns a reference to the shortest path tree map. |
737 | 735 |
|
738 | 736 |
///Returns a reference to the NodeMap of the arcs of the |
739 | 737 |
///shortest path tree. |
740 | 738 |
///\pre Either \ref run() or \ref init() |
741 | 739 |
///must be called before using this function. |
742 | 740 |
const PredMap &predMap() const { return *_pred;} |
743 | 741 |
|
744 | 742 |
///Checks if a node is reachable from the root. |
745 | 743 |
|
746 | 744 |
///Returns \c true if \c v is reachable from the root. |
747 | 745 |
///\warning The source nodes are indicated as unreached. |
748 | 746 |
///\pre Either \ref run() or \ref start() |
749 | 747 |
///must be called before using this function. |
750 | 748 |
/// |
751 | 749 |
bool reached(Node v) { return (*_reached)[v]; } |
752 | 750 |
|
753 | 751 |
///@} |
754 | 752 |
}; |
755 | 753 |
|
756 | 754 |
///Default traits class of Bfs function. |
757 | 755 |
|
758 | 756 |
///Default traits class of Bfs function. |
759 |
///\ |
|
757 |
///\tparam GR Digraph type. |
|
760 | 758 |
template<class GR> |
761 | 759 |
struct BfsWizardDefaultTraits |
762 | 760 |
{ |
763 | 761 |
///The digraph type the algorithm runs on. |
764 | 762 |
typedef GR Digraph; |
765 | 763 |
///\brief The type of the map that stores the last |
766 | 764 |
///arcs of the shortest paths. |
767 | 765 |
/// |
768 | 766 |
///The type of the map that stores the last |
769 | 767 |
///arcs of the shortest paths. |
770 | 768 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
771 | 769 |
/// |
772 | 770 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
773 | 771 |
///Instantiates a PredMap. |
774 | 772 |
|
775 | 773 |
///This function instantiates a \ref PredMap. |
776 | 774 |
///\param g is the digraph, to which we would like to define the PredMap. |
777 | 775 |
///\todo The digraph alone may be insufficient to initialize |
778 | 776 |
#ifdef DOXYGEN |
779 | 777 |
static PredMap *createPredMap(const GR &g) |
780 | 778 |
#else |
781 | 779 |
static PredMap *createPredMap(const GR &) |
782 | 780 |
#endif |
783 | 781 |
{ |
784 | 782 |
return new PredMap(); |
785 | 783 |
} |
786 | 784 |
|
787 | 785 |
///The type of the map that indicates which nodes are processed. |
788 | 786 |
|
789 | 787 |
///The type of the map that indicates which nodes are processed. |
790 | 788 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
791 | 789 |
///\todo named parameter to set this type, function to read and write. |
792 | 790 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
793 | 791 |
///Instantiates a ProcessedMap. |
794 | 792 |
|
795 | 793 |
///This function instantiates a \ref ProcessedMap. |
796 | 794 |
///\param g is the digraph, to which |
797 | 795 |
///we would like to define the \ref ProcessedMap |
798 | 796 |
#ifdef DOXYGEN |
799 | 797 |
static ProcessedMap *createProcessedMap(const GR &g) |
800 | 798 |
#else |
801 | 799 |
static ProcessedMap *createProcessedMap(const GR &) |
802 | 800 |
#endif |
803 | 801 |
{ |
804 | 802 |
return new ProcessedMap(); |
805 | 803 |
} |
806 | 804 |
///The type of the map that indicates which nodes are reached. |
807 | 805 |
|
808 | 806 |
///The type of the map that indicates which nodes are reached. |
809 | 807 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
810 | 808 |
///\todo named parameter to set this type, function to read and write. |
811 | 809 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
812 | 810 |
///Instantiates a ReachedMap. |
813 | 811 |
|
814 | 812 |
///This function instantiates a \ref ReachedMap. |
815 | 813 |
///\param G is the digraph, to which |
816 | 814 |
///we would like to define the \ref ReachedMap. |
817 | 815 |
static ReachedMap *createReachedMap(const GR &G) |
818 | 816 |
{ |
819 | 817 |
return new ReachedMap(G); |
820 | 818 |
} |
821 | 819 |
///The type of the map that stores the dists of the nodes. |
822 | 820 |
|
823 | 821 |
///The type of the map that stores the dists of the nodes. |
... | ... |
@@ -1104,178 +1102,176 @@ |
1104 | 1102 |
/// \brief Visitor class for bfs. |
1105 | 1103 |
/// |
1106 | 1104 |
/// This class defines the interface of the BfsVisit events, and |
1107 | 1105 |
/// it could be the base of a real Visitor class. |
1108 | 1106 |
template <typename _Digraph> |
1109 | 1107 |
struct BfsVisitor { |
1110 | 1108 |
typedef _Digraph Digraph; |
1111 | 1109 |
typedef typename Digraph::Arc Arc; |
1112 | 1110 |
typedef typename Digraph::Node Node; |
1113 | 1111 |
/// \brief Called when the arc reach a node. |
1114 | 1112 |
/// |
1115 | 1113 |
/// It is called when the bfs find an arc which target is not |
1116 | 1114 |
/// reached yet. |
1117 | 1115 |
void discover(const Arc& arc) {} |
1118 | 1116 |
/// \brief Called when the node reached first time. |
1119 | 1117 |
/// |
1120 | 1118 |
/// It is Called when the node reached first time. |
1121 | 1119 |
void reach(const Node& node) {} |
1122 | 1120 |
/// \brief Called when the arc examined but target of the arc |
1123 | 1121 |
/// already discovered. |
1124 | 1122 |
/// |
1125 | 1123 |
/// It called when the arc examined but the target of the arc |
1126 | 1124 |
/// already discovered. |
1127 | 1125 |
void examine(const Arc& arc) {} |
1128 | 1126 |
/// \brief Called for the source node of the bfs. |
1129 | 1127 |
/// |
1130 | 1128 |
/// It is called for the source node of the bfs. |
1131 | 1129 |
void start(const Node& node) {} |
1132 | 1130 |
/// \brief Called when the node processed. |
1133 | 1131 |
/// |
1134 | 1132 |
/// It is Called when the node processed. |
1135 | 1133 |
void process(const Node& node) {} |
1136 | 1134 |
}; |
1137 | 1135 |
#else |
1138 | 1136 |
template <typename _Digraph> |
1139 | 1137 |
struct BfsVisitor { |
1140 | 1138 |
typedef _Digraph Digraph; |
1141 | 1139 |
typedef typename Digraph::Arc Arc; |
1142 | 1140 |
typedef typename Digraph::Node Node; |
1143 | 1141 |
void discover(const Arc&) {} |
1144 | 1142 |
void reach(const Node&) {} |
1145 | 1143 |
void examine(const Arc&) {} |
1146 | 1144 |
void start(const Node&) {} |
1147 | 1145 |
void process(const Node&) {} |
1148 | 1146 |
|
1149 | 1147 |
template <typename _Visitor> |
1150 | 1148 |
struct Constraints { |
1151 | 1149 |
void constraints() { |
1152 | 1150 |
Arc arc; |
1153 | 1151 |
Node node; |
1154 | 1152 |
visitor.discover(arc); |
1155 | 1153 |
visitor.reach(node); |
1156 | 1154 |
visitor.examine(arc); |
1157 | 1155 |
visitor.start(node); |
1158 | 1156 |
visitor.process(node); |
1159 | 1157 |
} |
1160 | 1158 |
_Visitor& visitor; |
1161 | 1159 |
}; |
1162 | 1160 |
}; |
1163 | 1161 |
#endif |
1164 | 1162 |
|
1165 | 1163 |
/// \brief Default traits class of BfsVisit class. |
1166 | 1164 |
/// |
1167 | 1165 |
/// Default traits class of BfsVisit class. |
1168 |
/// \ |
|
1166 |
/// \tparam _Digraph Digraph type. |
|
1169 | 1167 |
template<class _Digraph> |
1170 | 1168 |
struct BfsVisitDefaultTraits { |
1171 | 1169 |
|
1172 | 1170 |
/// \brief The digraph type the algorithm runs on. |
1173 | 1171 |
typedef _Digraph Digraph; |
1174 | 1172 |
|
1175 | 1173 |
/// \brief The type of the map that indicates which nodes are reached. |
1176 | 1174 |
/// |
1177 | 1175 |
/// The type of the map that indicates which nodes are reached. |
1178 | 1176 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1179 | 1177 |
/// \todo named parameter to set this type, function to read and write. |
1180 | 1178 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1181 | 1179 |
|
1182 | 1180 |
/// \brief Instantiates a ReachedMap. |
1183 | 1181 |
/// |
1184 | 1182 |
/// This function instantiates a \ref ReachedMap. |
1185 | 1183 |
/// \param digraph is the digraph, to which |
1186 | 1184 |
/// we would like to define the \ref ReachedMap. |
1187 | 1185 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1188 | 1186 |
return new ReachedMap(digraph); |
1189 | 1187 |
} |
1190 | 1188 |
|
1191 | 1189 |
}; |
1192 | 1190 |
|
1193 | 1191 |
/// \ingroup search |
1194 | 1192 |
/// |
1195 | 1193 |
/// \brief %BFS Visit algorithm class. |
1196 | 1194 |
/// |
1197 | 1195 |
/// This class provides an efficient implementation of the %BFS algorithm |
1198 | 1196 |
/// with visitor interface. |
1199 | 1197 |
/// |
1200 | 1198 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1201 | 1199 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1202 | 1200 |
/// on every bfs event the \c Visitor class member functions. |
1203 | 1201 |
/// |
1204 |
/// \ |
|
1202 |
/// \tparam _Digraph The digraph type the algorithm runs on. The default value is |
|
1205 | 1203 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it |
1206 | 1204 |
/// is only passed to \ref BfsDefaultTraits. |
1207 |
/// \ |
|
1205 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
|
1208 | 1206 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which |
1209 | 1207 |
/// does not observe the Bfs events. If you want to observe the bfs |
1210 | 1208 |
/// events you should implement your own Visitor class. |
1211 |
/// \ |
|
1209 |
/// \tparam _Traits Traits class to set various data types used by the |
|
1212 | 1210 |
/// algorithm. The default traits class is |
1213 | 1211 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1214 | 1212 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1215 | 1213 |
/// a Bfs visit traits class. |
1216 |
/// |
|
1217 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
|
1218 | 1214 |
#ifdef DOXYGEN |
1219 | 1215 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1220 | 1216 |
#else |
1221 | 1217 |
template <typename _Digraph = ListDigraph, |
1222 | 1218 |
typename _Visitor = BfsVisitor<_Digraph>, |
1223 | 1219 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
1224 | 1220 |
#endif |
1225 | 1221 |
class BfsVisit { |
1226 | 1222 |
public: |
1227 | 1223 |
|
1228 | 1224 |
/// \brief \ref Exception for uninitialized parameters. |
1229 | 1225 |
/// |
1230 | 1226 |
/// This error represents problems in the initialization |
1231 | 1227 |
/// of the parameters of the algorithms. |
1232 | 1228 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1233 | 1229 |
public: |
1234 | 1230 |
virtual const char* what() const throw() |
1235 | 1231 |
{ |
1236 | 1232 |
return "lemon::BfsVisit::UninitializedParameter"; |
1237 | 1233 |
} |
1238 | 1234 |
}; |
1239 | 1235 |
|
1240 | 1236 |
typedef _Traits Traits; |
1241 | 1237 |
|
1242 | 1238 |
typedef typename Traits::Digraph Digraph; |
1243 | 1239 |
|
1244 | 1240 |
typedef _Visitor Visitor; |
1245 | 1241 |
|
1246 | 1242 |
///The type of the map indicating which nodes are reached. |
1247 | 1243 |
typedef typename Traits::ReachedMap ReachedMap; |
1248 | 1244 |
|
1249 | 1245 |
private: |
1250 | 1246 |
|
1251 | 1247 |
typedef typename Digraph::Node Node; |
1252 | 1248 |
typedef typename Digraph::NodeIt NodeIt; |
1253 | 1249 |
typedef typename Digraph::Arc Arc; |
1254 | 1250 |
typedef typename Digraph::OutArcIt OutArcIt; |
1255 | 1251 |
|
1256 | 1252 |
/// Pointer to the underlying digraph. |
1257 | 1253 |
const Digraph *_digraph; |
1258 | 1254 |
/// Pointer to the visitor object. |
1259 | 1255 |
Visitor *_visitor; |
1260 | 1256 |
///Pointer to the map of reached status of the nodes. |
1261 | 1257 |
ReachedMap *_reached; |
1262 | 1258 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
1263 | 1259 |
bool local_reached; |
1264 | 1260 |
|
1265 | 1261 |
std::vector<typename Digraph::Node> _list; |
1266 | 1262 |
int _list_front, _list_back; |
1267 | 1263 |
|
1268 | 1264 |
/// \brief Creates the maps if necessary. |
1269 | 1265 |
/// |
1270 | 1266 |
/// Creates the maps if necessary. |
1271 | 1267 |
void create_maps() { |
1272 | 1268 |
if(!_reached) { |
1273 | 1269 |
local_reached = true; |
1274 | 1270 |
_reached = Traits::createReachedMap(*_digraph); |
1275 | 1271 |
} |
1276 | 1272 |
} |
1277 | 1273 |
|
1278 | 1274 |
protected: |
1279 | 1275 |
|
1280 | 1276 |
BfsVisit() {} |
1281 | 1277 |
|
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Binary Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
///\ingroup auxdat |
33 | 33 |
/// |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 | 36 |
///This class implements the \e binary \e heap data structure. A \e heap |
37 | 37 |
///is a data structure for storing items with specified values called \e |
38 | 38 |
///priorities in such a way that finding the item with minimum priority is |
39 | 39 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
40 | 40 |
///one can change the priority of an item, add or erase an item, etc. |
41 | 41 |
/// |
42 |
///\param _Prio Type of the priority of the items. |
|
43 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
42 |
///\tparam _Prio Type of the priority of the items. |
|
43 |
///\tparam _ItemIntMap A read and writable Item int map, used internally |
|
44 | 44 |
///to handle the cross references. |
45 |
///\ |
|
45 |
///\tparam _Compare A class for the ordering of the priorities. The |
|
46 | 46 |
///default is \c std::less<_Prio>. |
47 | 47 |
/// |
48 | 48 |
///\sa FibHeap |
49 | 49 |
///\sa Dijkstra |
50 | 50 |
template <typename _Prio, typename _ItemIntMap, |
51 | 51 |
typename _Compare = std::less<_Prio> > |
52 | 52 |
class BinHeap { |
53 | 53 |
|
54 | 54 |
public: |
55 | 55 |
///\e |
56 | 56 |
typedef _ItemIntMap ItemIntMap; |
57 | 57 |
///\e |
58 | 58 |
typedef _Prio Prio; |
59 | 59 |
///\e |
60 | 60 |
typedef typename ItemIntMap::Key Item; |
61 | 61 |
///\e |
62 | 62 |
typedef std::pair<Item,Prio> Pair; |
63 | 63 |
///\e |
64 | 64 |
typedef _Compare Compare; |
65 | 65 |
|
66 | 66 |
/// \brief Type to represent the items states. |
67 | 67 |
/// |
68 | 68 |
/// Each Item element have a state associated to it. It may be "in heap", |
69 | 69 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
70 | 70 |
/// heap's point of view, but may be useful to the user. |
71 | 71 |
/// |
72 | 72 |
/// The ItemIntMap \e should be initialized in such way that it maps |
73 | 73 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
74 | 74 |
enum State { |
75 | 75 |
IN_HEAP = 0, |
76 | 76 |
PRE_HEAP = -1, |
77 | 77 |
POST_HEAP = -2 |
78 | 78 |
}; |
79 | 79 |
|
80 | 80 |
private: |
81 | 81 |
std::vector<Pair> data; |
82 | 82 |
Compare comp; |
83 | 83 |
ItemIntMap &iim; |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
/// \brief The constructor. |
87 | 87 |
/// |
88 | 88 |
/// The constructor. |
89 | 89 |
/// \param _iim should be given to the constructor, since it is used |
90 | 90 |
/// internally to handle the cross references. The value of the map |
91 | 91 |
/// should be PRE_HEAP (-1) for each element. |
92 | 92 |
explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {} |
93 | 93 |
|
94 | 94 |
/// \brief The constructor. |
95 | 95 |
/// |
96 | 96 |
/// The constructor. |
97 | 97 |
/// \param _iim should be given to the constructor, since it is used |
98 | 98 |
/// internally to handle the cross references. The value of the map |
99 | 99 |
/// should be PRE_HEAP (-1) for each element. |
100 | 100 |
/// |
101 | 101 |
/// \param _comp The comparator function object. |
102 | 102 |
BinHeap(ItemIntMap &_iim, const Compare &_comp) |
103 | 103 |
: iim(_iim), comp(_comp) {} |
104 | 104 |
|
105 | 105 |
|
106 | 106 |
/// The number of items stored in the heap. |
107 | 107 |
/// |
108 | 108 |
/// \brief Returns the number of items stored in the heap. |
109 | 109 |
int size() const { return data.size(); } |
... | ... |
@@ -33,166 +33,162 @@ |
33 | 33 |
/// \ingroup graphbits |
34 | 34 |
/// |
35 | 35 |
/// \brief Notifier class to notify observes about alterations in |
36 | 36 |
/// a container. |
37 | 37 |
/// |
38 | 38 |
/// The simple graph's can be refered as two containers, one node container |
39 | 39 |
/// and one edge container. But they are not standard containers they |
40 | 40 |
/// does not store values directly they are just key continars for more |
41 | 41 |
/// value containers which are the node and edge maps. |
42 | 42 |
/// |
43 | 43 |
/// The graph's node and edge sets can be changed as we add or erase |
44 | 44 |
/// nodes and edges in the graph. Lemon would like to handle easily |
45 | 45 |
/// that the node and edge maps should contain values for all nodes or |
46 | 46 |
/// edges. If we want to check on every indicing if the map contains |
47 | 47 |
/// the current indicing key that cause a drawback in the performance |
48 | 48 |
/// in the library. We use another solution we notify all maps about |
49 | 49 |
/// an alteration in the graph, which cause only drawback on the |
50 | 50 |
/// alteration of the graph. |
51 | 51 |
/// |
52 | 52 |
/// This class provides an interface to the container. The \e first() and \e |
53 | 53 |
/// next() member functions make possible to iterate on the keys of the |
54 | 54 |
/// container. The \e id() function returns an integer id for each key. |
55 | 55 |
/// The \e maxId() function gives back an upper bound of the ids. |
56 | 56 |
/// |
57 | 57 |
/// For the proper functonality of this class, we should notify it |
58 | 58 |
/// about each alteration in the container. The alterations have four type |
59 | 59 |
/// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and |
60 | 60 |
/// \e erase() signals that only one or few items added or erased to or |
61 | 61 |
/// from the graph. If all items are erased from the graph or from an empty |
62 | 62 |
/// graph a new graph is builded then it can be signaled with the |
63 | 63 |
/// clear() and build() members. Important rule that if we erase items |
64 | 64 |
/// from graph we should first signal the alteration and after that erase |
65 | 65 |
/// them from the container, on the other way on item addition we should |
66 | 66 |
/// first extend the container and just after that signal the alteration. |
67 | 67 |
/// |
68 | 68 |
/// The alteration can be observed with a class inherited from the |
69 | 69 |
/// \e ObserverBase nested class. The signals can be handled with |
70 | 70 |
/// overriding the virtual functions defined in the base class. The |
71 | 71 |
/// observer base can be attached to the notifier with the |
72 | 72 |
/// \e attach() member and can be detached with detach() function. The |
73 | 73 |
/// alteration handlers should not call any function which signals |
74 | 74 |
/// an other alteration in the same notifier and should not |
75 | 75 |
/// detach any observer from the notifier. |
76 | 76 |
/// |
77 | 77 |
/// Alteration observers try to be exception safe. If an \e add() or |
78 | 78 |
/// a \e clear() function throws an exception then the remaining |
79 | 79 |
/// observeres will not be notified and the fulfilled additions will |
80 | 80 |
/// be rolled back by calling the \e erase() or \e clear() |
81 | 81 |
/// functions. Thence the \e erase() and \e clear() should not throw |
82 | 82 |
/// exception. Actullay, it can be throw only |
83 | 83 |
/// \ref AlterationObserver::ImmediateDetach ImmediateDetach |
84 | 84 |
/// exception which detach the observer from the notifier. |
85 | 85 |
/// |
86 | 86 |
/// There are some place when the alteration observing is not completly |
87 | 87 |
/// reliable. If we want to carry out the node degree in the graph |
88 | 88 |
/// as in the \ref InDegMap and we use the reverseEdge that cause |
89 | 89 |
/// unreliable functionality. Because the alteration observing signals |
90 | 90 |
/// only erasing and adding but not the reversing it will stores bad |
91 | 91 |
/// degrees. The sub graph adaptors cannot signal the alterations because |
92 | 92 |
/// just a setting in the filter map can modify the graph and this cannot |
93 | 93 |
/// be watched in any way. |
94 | 94 |
/// |
95 | 95 |
/// \param _Container The container which is observed. |
96 | 96 |
/// \param _Item The item type which is obserbved. |
97 |
/// |
|
98 |
/// \author Balazs Dezso |
|
99 | 97 |
|
100 | 98 |
template <typename _Container, typename _Item> |
101 | 99 |
class AlterationNotifier { |
102 | 100 |
public: |
103 | 101 |
|
104 | 102 |
typedef True Notifier; |
105 | 103 |
|
106 | 104 |
typedef _Container Container; |
107 | 105 |
typedef _Item Item; |
108 | 106 |
|
109 | 107 |
/// \brief Exception which can be called from \e clear() and |
110 | 108 |
/// \e erase(). |
111 | 109 |
/// |
112 | 110 |
/// From the \e clear() and \e erase() function only this |
113 | 111 |
/// exception is allowed to throw. The exception immediatly |
114 | 112 |
/// detaches the current observer from the notifier. Because the |
115 | 113 |
/// \e clear() and \e erase() should not throw other exceptions |
116 | 114 |
/// it can be used to invalidate the observer. |
117 | 115 |
struct ImmediateDetach {}; |
118 | 116 |
|
119 | 117 |
/// \brief ObserverBase is the base class for the observers. |
120 | 118 |
/// |
121 | 119 |
/// ObserverBase is the abstract base class for the observers. |
122 | 120 |
/// It will be notified about an item was inserted into or |
123 | 121 |
/// erased from the graph. |
124 | 122 |
/// |
125 | 123 |
/// The observer interface contains some pure virtual functions |
126 | 124 |
/// to override. The add() and erase() functions are |
127 | 125 |
/// to notify the oberver when one item is added or |
128 | 126 |
/// erased. |
129 | 127 |
/// |
130 | 128 |
/// The build() and clear() members are to notify the observer |
131 | 129 |
/// about the container is built from an empty container or |
132 | 130 |
/// is cleared to an empty container. |
133 |
/// |
|
134 |
/// \author Balazs Dezso |
|
135 | 131 |
|
136 | 132 |
class ObserverBase { |
137 | 133 |
protected: |
138 | 134 |
typedef AlterationNotifier Notifier; |
139 | 135 |
|
140 | 136 |
friend class AlterationNotifier; |
141 | 137 |
|
142 | 138 |
/// \brief Default constructor. |
143 | 139 |
/// |
144 | 140 |
/// Default constructor for ObserverBase. |
145 | 141 |
/// |
146 | 142 |
ObserverBase() : _notifier(0) {} |
147 | 143 |
|
148 | 144 |
/// \brief Constructor which attach the observer into notifier. |
149 | 145 |
/// |
150 | 146 |
/// Constructor which attach the observer into notifier. |
151 | 147 |
ObserverBase(AlterationNotifier& nf) { |
152 | 148 |
attach(nf); |
153 | 149 |
} |
154 | 150 |
|
155 | 151 |
/// \brief Constructor which attach the obserever to the same notifier. |
156 | 152 |
/// |
157 | 153 |
/// Constructor which attach the obserever to the same notifier as |
158 | 154 |
/// the other observer is attached to. |
159 | 155 |
ObserverBase(const ObserverBase& copy) { |
160 | 156 |
if (copy.attached()) { |
161 | 157 |
attach(*copy.notifier()); |
162 | 158 |
} |
163 | 159 |
} |
164 | 160 |
|
165 | 161 |
/// \brief Destructor |
166 | 162 |
virtual ~ObserverBase() { |
167 | 163 |
if (attached()) { |
168 | 164 |
detach(); |
169 | 165 |
} |
170 | 166 |
} |
171 | 167 |
|
172 | 168 |
/// \brief Attaches the observer into an AlterationNotifier. |
173 | 169 |
/// |
174 | 170 |
/// This member attaches the observer into an AlterationNotifier. |
175 | 171 |
/// |
176 | 172 |
void attach(AlterationNotifier& nf) { |
177 | 173 |
nf.attach(*this); |
178 | 174 |
} |
179 | 175 |
|
180 | 176 |
/// \brief Detaches the observer into an AlterationNotifier. |
181 | 177 |
/// |
182 | 178 |
/// This member detaches the observer from an AlterationNotifier. |
183 | 179 |
/// |
184 | 180 |
void detach() { |
185 | 181 |
_notifier->detach(*this); |
186 | 182 |
} |
187 | 183 |
|
188 | 184 |
/// \brief Gives back a pointer to the notifier which the map |
189 | 185 |
/// attached into. |
190 | 186 |
/// |
191 | 187 |
/// This function gives back a pointer to the notifier which the map |
192 | 188 |
/// attached into. |
193 | 189 |
/// |
194 | 190 |
Notifier* notifier() const { return const_cast<Notifier*>(_notifier); } |
195 | 191 |
|
196 | 192 |
/// Gives back true when the observer is attached into a notifier. |
197 | 193 |
bool attached() const { return _notifier != 0; } |
198 | 194 |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BEZIER_H |
20 | 20 |
#define LEMON_BEZIER_H |
21 | 21 |
|
22 | 22 |
///\ingroup misc |
23 | 23 |
///\file |
24 | 24 |
///\brief Classes to compute with Bezier curves. |
25 | 25 |
/// |
26 | 26 |
///Up to now this file is used internally by \ref graph_to_eps.h |
27 |
/// |
|
28 |
///\author Alpar Juttner |
|
29 | 27 |
|
30 | 28 |
#include<lemon/dim2.h> |
31 | 29 |
|
32 | 30 |
namespace lemon { |
33 | 31 |
namespace dim2 { |
34 | 32 |
|
35 | 33 |
class BezierBase { |
36 | 34 |
public: |
37 | 35 |
typedef Point<double> Point; |
38 | 36 |
protected: |
39 | 37 |
static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;} |
40 | 38 |
}; |
41 | 39 |
|
42 | 40 |
class Bezier1 : public BezierBase |
43 | 41 |
{ |
44 | 42 |
public: |
45 | 43 |
Point p1,p2; |
46 | 44 |
|
47 | 45 |
Bezier1() {} |
48 | 46 |
Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {} |
49 | 47 |
|
50 | 48 |
Point operator()(double t) const |
51 | 49 |
{ |
52 | 50 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
53 | 51 |
return conv(p1,p2,t); |
54 | 52 |
} |
55 | 53 |
Bezier1 before(double t) const |
56 | 54 |
{ |
57 | 55 |
return Bezier1(p1,conv(p1,p2,t)); |
58 | 56 |
} |
59 | 57 |
|
60 | 58 |
Bezier1 after(double t) const |
61 | 59 |
{ |
62 | 60 |
return Bezier1(conv(p1,p2,t),p2); |
63 | 61 |
} |
64 | 62 |
|
65 | 63 |
Bezier1 revert() const { return Bezier1(p2,p1);} |
66 | 64 |
Bezier1 operator()(double a,double b) const { return before(b).after(a/b); } |
67 | 65 |
Point grad() const { return p2-p1; } |
68 | 66 |
Point norm() const { return rot90(p2-p1); } |
69 | 67 |
Point grad(double) const { return grad(); } |
70 | 68 |
Point norm(double t) const { return rot90(grad(t)); } |
71 | 69 |
}; |
72 | 70 |
|
73 | 71 |
class Bezier2 : public BezierBase |
74 | 72 |
{ |
75 | 73 |
public: |
76 | 74 |
Point p1,p2,p3; |
77 | 75 |
|
78 | 76 |
Bezier2() {} |
79 | 77 |
Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {} |
80 | 78 |
Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {} |
81 | 79 |
Point operator()(double t) const |
82 | 80 |
{ |
83 | 81 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
84 | 82 |
return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3; |
85 | 83 |
} |
86 | 84 |
Bezier2 before(double t) const |
87 | 85 |
{ |
88 | 86 |
Point q(conv(p1,p2,t)); |
89 | 87 |
Point r(conv(p2,p3,t)); |
90 | 88 |
return Bezier2(p1,q,conv(q,r,t)); |
91 | 89 |
} |
92 | 90 |
|
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/bits/traits.h> |
26 | 26 |
#include <lemon/bits/utility.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/bits/alteration_notifier.h> |
29 | 29 |
|
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
#include <lemon/concepts/maps.h> |
32 | 32 |
|
33 | 33 |
///\ingroup graphbits |
34 | 34 |
/// |
35 | 35 |
///\file |
36 | 36 |
///\brief Vector based graph maps. |
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \ingroup graphbits |
40 | 40 |
/// |
41 | 41 |
/// \brief Graph map based on the std::vector storage. |
42 | 42 |
/// |
43 | 43 |
/// The VectorMap template class is graph map structure what |
44 | 44 |
/// automatically updates the map when a key is added to or erased from |
45 | 45 |
/// the map. This map type uses the std::vector to store the values. |
46 | 46 |
/// |
47 |
/// \param Notifier The AlterationNotifier that will notify this map. |
|
48 |
/// \param Item The item type of the graph items. |
|
49 |
/// \param Value The value type of the map. |
|
50 |
/// |
|
51 |
/// \ |
|
47 |
/// \tparam _Notifier The AlterationNotifier that will notify this map. |
|
48 |
/// \tparam _Item The item type of the graph items. |
|
49 |
/// \tparam _Value The value type of the map. |
|
50 |
/// \todo Fix the doc: there is _Graph parameter instead of _Notifier. |
|
52 | 51 |
template <typename _Graph, typename _Item, typename _Value> |
53 | 52 |
class VectorMap |
54 | 53 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
55 | 54 |
private: |
56 | 55 |
|
57 | 56 |
/// The container type of the map. |
58 | 57 |
typedef std::vector<_Value> Container; |
59 | 58 |
|
60 | 59 |
public: |
61 | 60 |
|
62 | 61 |
/// The graph type of the map. |
63 | 62 |
typedef _Graph Graph; |
64 | 63 |
/// The item type of the map. |
65 | 64 |
typedef _Item Item; |
66 | 65 |
/// The reference map tag. |
67 | 66 |
typedef True ReferenceMapTag; |
68 | 67 |
|
69 | 68 |
/// The key type of the map. |
70 | 69 |
typedef _Item Key; |
71 | 70 |
/// The value type of the map. |
72 | 71 |
typedef _Value Value; |
73 | 72 |
|
74 | 73 |
/// The notifier type. |
75 | 74 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
76 | 75 |
|
77 | 76 |
/// The map type. |
78 | 77 |
typedef VectorMap Map; |
79 | 78 |
/// The base class of the map. |
80 | 79 |
typedef typename Notifier::ObserverBase Parent; |
81 | 80 |
|
82 | 81 |
/// The reference type of the map; |
83 | 82 |
typedef typename Container::reference Reference; |
84 | 83 |
/// The const reference type of the map; |
85 | 84 |
typedef typename Container::const_reference ConstReference; |
86 | 85 |
|
87 | 86 |
|
88 | 87 |
/// \brief Constructor to attach the new map into the notifier. |
89 | 88 |
/// |
90 | 89 |
/// It constructs a map and attachs it into the notifier. |
91 | 90 |
/// It adds all the items of the graph to the map. |
92 | 91 |
VectorMap(const Graph& graph) { |
93 | 92 |
Parent::attach(graph.notifier(Item())); |
94 | 93 |
container.resize(Parent::notifier()->maxId() + 1); |
95 | 94 |
} |
96 | 95 |
|
97 | 96 |
/// \brief Constructor uses given value to initialize the map. |
98 | 97 |
/// |
99 | 98 |
/// It constructs a map uses a given value to initialize the map. |
100 | 99 |
/// It adds all the items of the graph to the map. |
101 | 100 |
VectorMap(const Graph& graph, const Value& value) { |
102 | 101 |
Parent::attach(graph.notifier(Item())); |
103 | 102 |
container.resize(Parent::notifier()->maxId() + 1, value); |
104 | 103 |
} |
105 | 104 |
|
106 | 105 |
/// \brief Copy constructor |
107 | 106 |
/// |
108 | 107 |
/// Copy constructor. |
109 | 108 |
VectorMap(const VectorMap& _copy) : Parent() { |
110 | 109 |
if (_copy.attached()) { |
111 | 110 |
Parent::attach(*_copy.notifier()); |
112 | 111 |
container = _copy.container; |
113 | 112 |
} |
114 | 113 |
} |
115 | 114 |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COLOR_H |
20 | 20 |
#define LEMON_COLOR_H |
21 | 21 |
|
22 | 22 |
#include<vector> |
23 | 23 |
#include<lemon/math.h> |
24 | 24 |
#include<lemon/maps.h> |
25 | 25 |
|
26 | 26 |
|
27 | 27 |
///\ingroup misc |
28 | 28 |
///\file |
29 | 29 |
///\brief Tools to manage RGB colors. |
30 |
/// |
|
31 |
///\author Alpar Juttner |
|
32 | 30 |
|
33 | 31 |
namespace lemon { |
34 | 32 |
|
35 | 33 |
|
36 | 34 |
/// \addtogroup misc |
37 | 35 |
/// @{ |
38 | 36 |
|
39 | 37 |
///Data structure representing RGB colors. |
40 | 38 |
|
41 | 39 |
///Data structure representing RGB colors. |
42 | 40 |
class Color |
43 | 41 |
{ |
44 | 42 |
double _r,_g,_b; |
45 | 43 |
public: |
46 | 44 |
///Default constructor |
47 | 45 |
Color() {} |
48 | 46 |
///Constructor |
49 | 47 |
Color(double r,double g,double b) :_r(r),_g(g),_b(b) {}; |
50 | 48 |
///Set the red component |
51 | 49 |
double & red() {return _r;} |
52 | 50 |
///Return the red component |
53 | 51 |
const double & red() const {return _r;} |
54 | 52 |
///Set the green component |
55 | 53 |
double & green() {return _g;} |
56 | 54 |
///Return the green component |
57 | 55 |
const double & green() const {return _g;} |
58 | 56 |
///Set the blue component |
59 | 57 |
double & blue() {return _b;} |
60 | 58 |
///Return the blue component |
61 | 59 |
const double & blue() const {return _b;} |
62 | 60 |
///Set the color components |
63 | 61 |
void set(double r,double g,double b) { _r=r;_g=g;_b=b; }; |
64 | 62 |
}; |
65 | 63 |
|
66 | 64 |
/// White color constant |
67 | 65 |
extern const Color WHITE; |
68 | 66 |
/// Black color constant |
69 | 67 |
extern const Color BLACK; |
70 | 68 |
/// Red color constant |
71 | 69 |
extern const Color RED; |
72 | 70 |
/// Green color constant |
73 | 71 |
extern const Color GREEN; |
74 | 72 |
/// Blue color constant |
75 | 73 |
extern const Color BLUE; |
76 | 74 |
/// Yellow color constant |
77 | 75 |
extern const Color YELLOW; |
78 | 76 |
/// Magenta color constant |
79 | 77 |
extern const Color MAGENTA; |
80 | 78 |
/// Cyan color constant |
81 | 79 |
extern const Color CYAN; |
82 | 80 |
/// Grey color constant |
83 | 81 |
extern const Color GREY; |
84 | 82 |
/// Dark red color constant |
85 | 83 |
extern const Color DARK_RED; |
86 | 84 |
/// Dark green color constant |
87 | 85 |
extern const Color DARK_GREEN; |
88 | 86 |
/// Drak blue color constant |
89 | 87 |
extern const Color DARK_BLUE; |
90 | 88 |
/// Dark yellow color constant |
91 | 89 |
extern const Color DARK_YELLOW; |
92 | 90 |
/// Dark magenta color constant |
93 | 91 |
extern const Color DARK_MAGENTA; |
94 | 92 |
/// Dark cyan color constant |
95 | 93 |
extern const Color DARK_CYAN; |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
///\todo Iterators have obsolete style |
24 | 24 |
|
25 | 25 |
#ifndef LEMON_CONCEPT_PATH_H |
26 | 26 |
#define LEMON_CONCEPT_PATH_H |
27 | 27 |
|
28 | 28 |
#include <lemon/bits/invalid.h> |
29 | 29 |
#include <lemon/bits/utility.h> |
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
namespace concepts { |
34 | 34 |
|
35 | 35 |
/// \addtogroup concept |
36 | 36 |
/// @{ |
37 | 37 |
|
38 | 38 |
/// \brief A skeleton structure for representing directed paths in |
39 | 39 |
/// a digraph. |
40 | 40 |
/// |
41 | 41 |
/// A skeleton structure for representing directed paths in a |
42 | 42 |
/// digraph. |
43 |
/// \ |
|
43 |
/// \tparam _Digraph The digraph type in which the path is. |
|
44 | 44 |
/// |
45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
46 | 46 |
/// lemon path type stores just this list. As a consequence it |
47 | 47 |
/// cannot enumerate the nodes in the path and the zero length |
48 | 48 |
/// paths cannot store the source. |
49 | 49 |
/// |
50 | 50 |
template <typename _Digraph> |
51 | 51 |
class Path { |
52 | 52 |
public: |
53 | 53 |
|
54 | 54 |
/// Type of the underlying digraph. |
55 | 55 |
typedef _Digraph Digraph; |
56 | 56 |
/// Arc type of the underlying digraph. |
57 | 57 |
typedef typename Digraph::Arc Arc; |
58 | 58 |
|
59 | 59 |
class ArcIt; |
60 | 60 |
|
61 | 61 |
/// \brief Default constructor |
62 | 62 |
Path() {} |
63 | 63 |
|
64 | 64 |
/// \brief Template constructor |
65 | 65 |
template <typename CPath> |
66 | 66 |
Path(const CPath& cpath) {} |
67 | 67 |
|
68 | 68 |
/// \brief Template assigment |
69 | 69 |
template <typename CPath> |
70 | 70 |
Path& operator=(const CPath& cpath) {} |
71 | 71 |
|
72 | 72 |
/// Length of the path ie. the number of arcs in the path. |
73 | 73 |
int length() const { return 0;} |
74 | 74 |
|
75 | 75 |
/// Returns whether the path is empty. |
76 | 76 |
bool empty() const { return true;} |
77 | 77 |
|
78 | 78 |
/// Resets the path to an empty path. |
79 | 79 |
void clear() {} |
80 | 80 |
|
81 | 81 |
/// \brief Lemon style iterator for path arcs |
82 | 82 |
/// |
83 | 83 |
/// This class is used to iterate on the arcs of the paths. |
84 | 84 |
class ArcIt { |
85 | 85 |
public: |
86 | 86 |
/// Default constructor |
87 | 87 |
ArcIt() {} |
88 | 88 |
/// Invalid constructor |
89 | 89 |
ArcIt(Invalid) {} |
90 | 90 |
/// Constructor for first arc |
91 | 91 |
ArcIt(const Path &) {} |
92 | 92 |
|
93 | 93 |
/// Conversion to Arc |
94 | 94 |
operator Arc() const { return INVALID; } |
95 | 95 |
|
96 | 96 |
/// Next arc |
97 | 97 |
ArcIt& operator++() {return *this;} |
98 | 98 |
|
99 | 99 |
/// Comparison operator |
100 | 100 |
bool operator==(const ArcIt&) const {return true;} |
101 | 101 |
/// Comparison operator |
102 | 102 |
bool operator!=(const ArcIt&) const {return true;} |
103 | 103 |
/// Comparison operator |
104 | 104 |
bool operator<(const ArcIt&) const {return false;} |
105 | 105 |
|
106 | 106 |
}; |
107 | 107 |
|
... | ... |
@@ -144,129 +144,129 @@ |
144 | 144 |
int l = p.length(); |
145 | 145 |
int e = p.empty(); |
146 | 146 |
|
147 | 147 |
typename _Path::ArcIt id, i(p); |
148 | 148 |
|
149 | 149 |
++i; |
150 | 150 |
typename _Digraph::Arc ed = i; |
151 | 151 |
|
152 | 152 |
e = (i == INVALID); |
153 | 153 |
e = (i != INVALID); |
154 | 154 |
|
155 | 155 |
ignore_unused_variable_warning(l); |
156 | 156 |
ignore_unused_variable_warning(e); |
157 | 157 |
ignore_unused_variable_warning(id); |
158 | 158 |
ignore_unused_variable_warning(ed); |
159 | 159 |
} |
160 | 160 |
_Path& p; |
161 | 161 |
}; |
162 | 162 |
|
163 | 163 |
template <typename _Digraph, typename _Path> |
164 | 164 |
struct PathDumperConstraints< |
165 | 165 |
_Digraph, _Path, |
166 | 166 |
typename enable_if<typename _Path::RevPathTag, void>::type |
167 | 167 |
> { |
168 | 168 |
void constraints() { |
169 | 169 |
int l = p.length(); |
170 | 170 |
int e = p.empty(); |
171 | 171 |
|
172 | 172 |
typename _Path::RevArcIt id, i(p); |
173 | 173 |
|
174 | 174 |
++i; |
175 | 175 |
typename _Digraph::Arc ed = i; |
176 | 176 |
|
177 | 177 |
e = (i == INVALID); |
178 | 178 |
e = (i != INVALID); |
179 | 179 |
|
180 | 180 |
ignore_unused_variable_warning(l); |
181 | 181 |
ignore_unused_variable_warning(e); |
182 | 182 |
ignore_unused_variable_warning(id); |
183 | 183 |
ignore_unused_variable_warning(ed); |
184 | 184 |
} |
185 | 185 |
_Path& p; |
186 | 186 |
}; |
187 | 187 |
|
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
|
191 | 191 |
/// \brief A skeleton structure for path dumpers. |
192 | 192 |
/// |
193 | 193 |
/// A skeleton structure for path dumpers. The path dumpers are |
194 | 194 |
/// the generalization of the paths. The path dumpers can |
195 | 195 |
/// enumerate the arcs of the path wheter in forward or in |
196 | 196 |
/// backward order. In most time these classes are not used |
197 | 197 |
/// directly rather it used to assign a dumped class to a real |
198 | 198 |
/// path type. |
199 | 199 |
/// |
200 | 200 |
/// The main purpose of this concept is that the shortest path |
201 | 201 |
/// algorithms can enumerate easily the arcs in reverse order. |
202 | 202 |
/// If we would like to give back a real path from these |
203 | 203 |
/// algorithms then we should create a temporarly path object. In |
204 | 204 |
/// Lemon such algorithms gives back a path dumper what can |
205 | 205 |
/// assigned to a real path and the dumpers can be implemented as |
206 | 206 |
/// an adaptor class to the predecessor map. |
207 | 207 |
|
208 |
/// \ |
|
208 |
/// \tparam _Digraph The digraph type in which the path is. |
|
209 | 209 |
/// |
210 | 210 |
/// The paths can be constructed from any path type by a |
211 | 211 |
/// template constructor or a template assignment operator. |
212 | 212 |
/// |
213 | 213 |
template <typename _Digraph> |
214 | 214 |
class PathDumper { |
215 | 215 |
public: |
216 | 216 |
|
217 | 217 |
/// Type of the underlying digraph. |
218 | 218 |
typedef _Digraph Digraph; |
219 | 219 |
/// Arc type of the underlying digraph. |
220 | 220 |
typedef typename Digraph::Arc Arc; |
221 | 221 |
|
222 | 222 |
/// Length of the path ie. the number of arcs in the path. |
223 | 223 |
int length() const { return 0;} |
224 | 224 |
|
225 | 225 |
/// Returns whether the path is empty. |
226 | 226 |
bool empty() const { return true;} |
227 | 227 |
|
228 | 228 |
/// \brief Forward or reverse dumping |
229 | 229 |
/// |
230 | 230 |
/// If the RevPathTag is defined and true then reverse dumping |
231 | 231 |
/// is provided in the path dumper. In this case instead of the |
232 | 232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
233 | 233 |
/// dumper. |
234 | 234 |
typedef False RevPathTag; |
235 | 235 |
|
236 | 236 |
/// \brief Lemon style iterator for path arcs |
237 | 237 |
/// |
238 | 238 |
/// This class is used to iterate on the arcs of the paths. |
239 | 239 |
class ArcIt { |
240 | 240 |
public: |
241 | 241 |
/// Default constructor |
242 | 242 |
ArcIt() {} |
243 | 243 |
/// Invalid constructor |
244 | 244 |
ArcIt(Invalid) {} |
245 | 245 |
/// Constructor for first arc |
246 | 246 |
ArcIt(const PathDumper&) {} |
247 | 247 |
|
248 | 248 |
/// Conversion to Arc |
249 | 249 |
operator Arc() const { return INVALID; } |
250 | 250 |
|
251 | 251 |
/// Next arc |
252 | 252 |
ArcIt& operator++() {return *this;} |
253 | 253 |
|
254 | 254 |
/// Comparison operator |
255 | 255 |
bool operator==(const ArcIt&) const {return true;} |
256 | 256 |
/// Comparison operator |
257 | 257 |
bool operator!=(const ArcIt&) const {return true;} |
258 | 258 |
/// Comparison operator |
259 | 259 |
bool operator<(const ArcIt&) const {return false;} |
260 | 260 |
|
261 | 261 |
}; |
262 | 262 |
|
263 | 263 |
/// \brief Lemon style iterator for path arcs |
264 | 264 |
/// |
265 | 265 |
/// This class is used to iterate on the arcs of the paths in |
266 | 266 |
/// reverse direction. |
267 | 267 |
class RevArcIt { |
268 | 268 |
public: |
269 | 269 |
/// Default constructor |
270 | 270 |
RevArcIt() {} |
271 | 271 |
/// Invalid constructor |
272 | 272 |
RevArcIt(Invalid) {} |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Dfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/graph_utils.h> |
28 | 28 |
#include <lemon/bits/path_dump.h> |
29 | 29 |
#include <lemon/bits/invalid.h> |
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
#include <lemon/concept_check.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
|
38 | 38 |
///Default traits class of Dfs class. |
39 | 39 |
|
40 | 40 |
///Default traits class of Dfs class. |
41 |
///\ |
|
41 |
///\tparam GR Digraph type. |
|
42 | 42 |
template<class GR> |
43 | 43 |
struct DfsDefaultTraits |
44 | 44 |
{ |
45 | 45 |
///The digraph type the algorithm runs on. |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
///\brief The type of the map that stores the last |
48 | 48 |
///arcs of the %DFS paths. |
49 | 49 |
/// |
50 | 50 |
///The type of the map that stores the last |
51 | 51 |
///arcs of the %DFS paths. |
52 | 52 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
53 | 53 |
/// |
54 | 54 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
55 | 55 |
///Instantiates a PredMap. |
56 | 56 |
|
57 | 57 |
///This function instantiates a \ref PredMap. |
58 | 58 |
///\param G is the digraph, to which we would like to define the PredMap. |
59 | 59 |
///\todo The digraph alone may be insufficient to initialize |
60 | 60 |
static PredMap *createPredMap(const GR &G) |
61 | 61 |
{ |
62 | 62 |
return new PredMap(G); |
63 | 63 |
} |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
|
67 | 67 |
///The type of the map that indicates which nodes are processed. |
68 | 68 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
69 | 69 |
///\todo named parameter to set this type, function to read and write. |
70 | 70 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
71 | 71 |
///Instantiates a ProcessedMap. |
72 | 72 |
|
73 | 73 |
///This function instantiates a \ref ProcessedMap. |
74 | 74 |
///\param g is the digraph, to which |
75 | 75 |
///we would like to define the \ref ProcessedMap |
76 | 76 |
#ifdef DOXYGEN |
77 | 77 |
static ProcessedMap *createProcessedMap(const GR &g) |
78 | 78 |
#else |
79 | 79 |
static ProcessedMap *createProcessedMap(const GR &) |
80 | 80 |
#endif |
81 | 81 |
{ |
82 | 82 |
return new ProcessedMap(); |
83 | 83 |
} |
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
|
86 | 86 |
///The type of the map that indicates which nodes are reached. |
87 | 87 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
88 | 88 |
///\todo named parameter to set this type, function to read and write. |
89 | 89 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
90 | 90 |
///Instantiates a ReachedMap. |
91 | 91 |
|
92 | 92 |
///This function instantiates a \ref ReachedMap. |
93 | 93 |
///\param G is the digraph, to which |
94 | 94 |
///we would like to define the \ref ReachedMap. |
95 | 95 |
static ReachedMap *createReachedMap(const GR &G) |
96 | 96 |
{ |
97 | 97 |
return new ReachedMap(G); |
98 | 98 |
} |
99 | 99 |
///The type of the map that stores the dists of the nodes. |
100 | 100 |
|
101 | 101 |
///The type of the map that stores the dists of the nodes. |
102 | 102 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
103 | 103 |
/// |
104 | 104 |
typedef typename Digraph::template NodeMap<int> DistMap; |
105 | 105 |
///Instantiates a DistMap. |
106 | 106 |
|
107 | 107 |
///This function instantiates a \ref DistMap. |
108 | 108 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
109 | 109 |
static DistMap *createDistMap(const GR &G) |
110 | 110 |
{ |
111 | 111 |
return new DistMap(G); |
112 | 112 |
} |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
///%DFS algorithm class. |
116 | 116 |
|
117 | 117 |
///\ingroup search |
118 | 118 |
///This class provides an efficient implementation of the %DFS algorithm. |
119 | 119 |
/// |
120 |
///\ |
|
120 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
|
121 | 121 |
///\ref ListDigraph. The value of GR is not used directly by Dfs, it |
122 | 122 |
///is only passed to \ref DfsDefaultTraits. |
123 |
///\ |
|
123 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
124 | 124 |
///The default traits class is |
125 | 125 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
126 | 126 |
///See \ref DfsDefaultTraits for the documentation of |
127 | 127 |
///a Dfs traits class. |
128 |
/// |
|
129 |
///\author Jacint Szabo and Alpar Juttner |
|
130 | 128 |
#ifdef DOXYGEN |
131 | 129 |
template <typename GR, |
132 | 130 |
typename TR> |
133 | 131 |
#else |
134 | 132 |
template <typename GR=ListDigraph, |
135 | 133 |
typename TR=DfsDefaultTraits<GR> > |
136 | 134 |
#endif |
137 | 135 |
class Dfs { |
138 | 136 |
public: |
139 | 137 |
/** |
140 | 138 |
* \brief \ref Exception for uninitialized parameters. |
141 | 139 |
* |
142 | 140 |
* This error represents problems in the initialization |
143 | 141 |
* of the parameters of the algorithms. |
144 | 142 |
*/ |
145 | 143 |
class UninitializedParameter : public lemon::UninitializedParameter { |
146 | 144 |
public: |
147 | 145 |
virtual const char* what() const throw() { |
148 | 146 |
return "lemon::Dfs::UninitializedParameter"; |
149 | 147 |
} |
150 | 148 |
}; |
151 | 149 |
|
152 | 150 |
typedef TR Traits; |
153 | 151 |
///The type of the underlying digraph. |
154 | 152 |
typedef typename TR::Digraph Digraph; |
155 | 153 |
///\e |
156 | 154 |
typedef typename Digraph::Node Node; |
157 | 155 |
///\e |
158 | 156 |
typedef typename Digraph::NodeIt NodeIt; |
159 | 157 |
///\e |
160 | 158 |
typedef typename Digraph::Arc Arc; |
161 | 159 |
///\e |
162 | 160 |
typedef typename Digraph::OutArcIt OutArcIt; |
163 | 161 |
|
164 | 162 |
///\brief The type of the map that stores the last |
165 | 163 |
///arcs of the %DFS paths. |
166 | 164 |
typedef typename TR::PredMap PredMap; |
167 | 165 |
///The type of the map indicating which nodes are reached. |
168 | 166 |
typedef typename TR::ReachedMap ReachedMap; |
169 | 167 |
///The type of the map indicating which nodes are processed. |
170 | 168 |
typedef typename TR::ProcessedMap ProcessedMap; |
171 | 169 |
///The type of the map that stores the dists of the nodes. |
172 | 170 |
typedef typename TR::DistMap DistMap; |
173 | 171 |
private: |
174 | 172 |
/// Pointer to the underlying digraph. |
175 | 173 |
const Digraph *G; |
176 | 174 |
///Pointer to the map of predecessors arcs. |
177 | 175 |
PredMap *_pred; |
178 | 176 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
179 | 177 |
bool local_pred; |
180 | 178 |
///Pointer to the map of distances. |
181 | 179 |
DistMap *_dist; |
182 | 180 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
183 | 181 |
bool local_dist; |
184 | 182 |
///Pointer to the map of reached status of the nodes. |
185 | 183 |
ReachedMap *_reached; |
186 | 184 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
187 | 185 |
bool local_reached; |
188 | 186 |
///Pointer to the map of processed status of the nodes. |
189 | 187 |
ProcessedMap *_processed; |
190 | 188 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
191 | 189 |
bool local_processed; |
192 | 190 |
|
193 | 191 |
std::vector<typename Digraph::OutArcIt> _stack; |
... | ... |
@@ -678,129 +676,129 @@ |
678 | 676 |
///Returns the distance of a node from the root(s). |
679 | 677 |
///\pre \ref run() must be called before using this function. |
680 | 678 |
///\warning If node \c v is unreachable from the root(s) then the return |
681 | 679 |
///value of this funcion is undefined. |
682 | 680 |
int dist(Node v) const { return (*_dist)[v]; } |
683 | 681 |
|
684 | 682 |
///Returns the 'previous arc' of the %DFS tree. |
685 | 683 |
|
686 | 684 |
///For a node \c v it returns the 'previous arc' |
687 | 685 |
///of the %DFS path, |
688 | 686 |
///i.e. it returns the last arc of a %DFS path from the root(s) to \c |
689 | 687 |
///v. It is \ref INVALID |
690 | 688 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
691 | 689 |
///%DFS tree used here is equal to the %DFS tree used in |
692 | 690 |
///\ref predNode(). |
693 | 691 |
///\pre Either \ref run() or \ref start() must be called before using |
694 | 692 |
///this function. |
695 | 693 |
Arc predArc(Node v) const { return (*_pred)[v];} |
696 | 694 |
|
697 | 695 |
///Returns the 'previous node' of the %DFS tree. |
698 | 696 |
|
699 | 697 |
///For a node \c v it returns the 'previous node' |
700 | 698 |
///of the %DFS tree, |
701 | 699 |
///i.e. it returns the last but one node from a %DFS path from the |
702 | 700 |
///root(s) to \c v. |
703 | 701 |
///It is INVALID if \c v is unreachable from the root(s) or |
704 | 702 |
///if \c v itself a root. |
705 | 703 |
///The %DFS tree used here is equal to the %DFS |
706 | 704 |
///tree used in \ref predArc(). |
707 | 705 |
///\pre Either \ref run() or \ref start() must be called before |
708 | 706 |
///using this function. |
709 | 707 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
710 | 708 |
G->source((*_pred)[v]); } |
711 | 709 |
|
712 | 710 |
///Returns a reference to the NodeMap of distances. |
713 | 711 |
|
714 | 712 |
///Returns a reference to the NodeMap of distances. |
715 | 713 |
///\pre Either \ref run() or \ref init() must |
716 | 714 |
///be called before using this function. |
717 | 715 |
const DistMap &distMap() const { return *_dist;} |
718 | 716 |
|
719 | 717 |
///Returns a reference to the %DFS arc-tree map. |
720 | 718 |
|
721 | 719 |
///Returns a reference to the NodeMap of the arcs of the |
722 | 720 |
///%DFS tree. |
723 | 721 |
///\pre Either \ref run() or \ref init() |
724 | 722 |
///must be called before using this function. |
725 | 723 |
const PredMap &predMap() const { return *_pred;} |
726 | 724 |
|
727 | 725 |
///Checks if a node is reachable from the root. |
728 | 726 |
|
729 | 727 |
///Returns \c true if \c v is reachable from the root(s). |
730 | 728 |
///\warning The source nodes are inditated as unreachable. |
731 | 729 |
///\pre Either \ref run() or \ref start() |
732 | 730 |
///must be called before using this function. |
733 | 731 |
/// |
734 | 732 |
bool reached(Node v) { return (*_reached)[v]; } |
735 | 733 |
|
736 | 734 |
///@} |
737 | 735 |
}; |
738 | 736 |
|
739 | 737 |
///Default traits class of Dfs function. |
740 | 738 |
|
741 | 739 |
///Default traits class of Dfs function. |
742 |
///\ |
|
740 |
///\tparam GR Digraph type. |
|
743 | 741 |
template<class GR> |
744 | 742 |
struct DfsWizardDefaultTraits |
745 | 743 |
{ |
746 | 744 |
///The digraph type the algorithm runs on. |
747 | 745 |
typedef GR Digraph; |
748 | 746 |
///\brief The type of the map that stores the last |
749 | 747 |
///arcs of the %DFS paths. |
750 | 748 |
/// |
751 | 749 |
///The type of the map that stores the last |
752 | 750 |
///arcs of the %DFS paths. |
753 | 751 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
754 | 752 |
/// |
755 | 753 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
756 | 754 |
///Instantiates a PredMap. |
757 | 755 |
|
758 | 756 |
///This function instantiates a \ref PredMap. |
759 | 757 |
///\param g is the digraph, to which we would like to define the PredMap. |
760 | 758 |
///\todo The digraph alone may be insufficient to initialize |
761 | 759 |
#ifdef DOXYGEN |
762 | 760 |
static PredMap *createPredMap(const GR &g) |
763 | 761 |
#else |
764 | 762 |
static PredMap *createPredMap(const GR &) |
765 | 763 |
#endif |
766 | 764 |
{ |
767 | 765 |
return new PredMap(); |
768 | 766 |
} |
769 | 767 |
|
770 | 768 |
///The type of the map that indicates which nodes are processed. |
771 | 769 |
|
772 | 770 |
///The type of the map that indicates which nodes are processed. |
773 | 771 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
774 | 772 |
///\todo named parameter to set this type, function to read and write. |
775 | 773 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
776 | 774 |
///Instantiates a ProcessedMap. |
777 | 775 |
|
778 | 776 |
///This function instantiates a \ref ProcessedMap. |
779 | 777 |
///\param g is the digraph, to which |
780 | 778 |
///we would like to define the \ref ProcessedMap |
781 | 779 |
#ifdef DOXYGEN |
782 | 780 |
static ProcessedMap *createProcessedMap(const GR &g) |
783 | 781 |
#else |
784 | 782 |
static ProcessedMap *createProcessedMap(const GR &) |
785 | 783 |
#endif |
786 | 784 |
{ |
787 | 785 |
return new ProcessedMap(); |
788 | 786 |
} |
789 | 787 |
///The type of the map that indicates which nodes are reached. |
790 | 788 |
|
791 | 789 |
///The type of the map that indicates which nodes are reached. |
792 | 790 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
793 | 791 |
///\todo named parameter to set this type, function to read and write. |
794 | 792 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
795 | 793 |
///Instantiates a ReachedMap. |
796 | 794 |
|
797 | 795 |
///This function instantiates a \ref ReachedMap. |
798 | 796 |
///\param G is the digraph, to which |
799 | 797 |
///we would like to define the \ref ReachedMap. |
800 | 798 |
static ReachedMap *createReachedMap(const GR &G) |
801 | 799 |
{ |
802 | 800 |
return new ReachedMap(G); |
803 | 801 |
} |
804 | 802 |
///The type of the map that stores the dists of the nodes. |
805 | 803 |
|
806 | 804 |
///The type of the map that stores the dists of the nodes. |
... | ... |
@@ -1099,171 +1097,171 @@ |
1099 | 1097 |
void discover(const Arc& arc) {} |
1100 | 1098 |
/// \brief Called when the node reached first time. |
1101 | 1099 |
/// |
1102 | 1100 |
/// It is Called when the node reached first time. |
1103 | 1101 |
void reach(const Node& node) {} |
1104 | 1102 |
/// \brief Called when we step back on an arc. |
1105 | 1103 |
/// |
1106 | 1104 |
/// It is called when the dfs should step back on the arc. |
1107 | 1105 |
void backtrack(const Arc& arc) {} |
1108 | 1106 |
/// \brief Called when we step back from the node. |
1109 | 1107 |
/// |
1110 | 1108 |
/// It is called when we step back from the node. |
1111 | 1109 |
void leave(const Node& node) {} |
1112 | 1110 |
/// \brief Called when the arc examined but target of the arc |
1113 | 1111 |
/// already discovered. |
1114 | 1112 |
/// |
1115 | 1113 |
/// It called when the arc examined but the target of the arc |
1116 | 1114 |
/// already discovered. |
1117 | 1115 |
void examine(const Arc& arc) {} |
1118 | 1116 |
/// \brief Called for the source node of the dfs. |
1119 | 1117 |
/// |
1120 | 1118 |
/// It is called for the source node of the dfs. |
1121 | 1119 |
void start(const Node& node) {} |
1122 | 1120 |
/// \brief Called when we leave the source node of the dfs. |
1123 | 1121 |
/// |
1124 | 1122 |
/// It is called when we leave the source node of the dfs. |
1125 | 1123 |
void stop(const Node& node) {} |
1126 | 1124 |
|
1127 | 1125 |
}; |
1128 | 1126 |
#else |
1129 | 1127 |
template <typename _Digraph> |
1130 | 1128 |
struct DfsVisitor { |
1131 | 1129 |
typedef _Digraph Digraph; |
1132 | 1130 |
typedef typename Digraph::Arc Arc; |
1133 | 1131 |
typedef typename Digraph::Node Node; |
1134 | 1132 |
void discover(const Arc&) {} |
1135 | 1133 |
void reach(const Node&) {} |
1136 | 1134 |
void backtrack(const Arc&) {} |
1137 | 1135 |
void leave(const Node&) {} |
1138 | 1136 |
void examine(const Arc&) {} |
1139 | 1137 |
void start(const Node&) {} |
1140 | 1138 |
void stop(const Node&) {} |
1141 | 1139 |
|
1142 | 1140 |
template <typename _Visitor> |
1143 | 1141 |
struct Constraints { |
1144 | 1142 |
void constraints() { |
1145 | 1143 |
Arc arc; |
1146 | 1144 |
Node node; |
1147 | 1145 |
visitor.discover(arc); |
1148 | 1146 |
visitor.reach(node); |
1149 | 1147 |
visitor.backtrack(arc); |
1150 | 1148 |
visitor.leave(node); |
1151 | 1149 |
visitor.examine(arc); |
1152 | 1150 |
visitor.start(node); |
1153 | 1151 |
visitor.stop(arc); |
1154 | 1152 |
} |
1155 | 1153 |
_Visitor& visitor; |
1156 | 1154 |
}; |
1157 | 1155 |
}; |
1158 | 1156 |
#endif |
1159 | 1157 |
|
1160 | 1158 |
/// \brief Default traits class of DfsVisit class. |
1161 | 1159 |
/// |
1162 | 1160 |
/// Default traits class of DfsVisit class. |
1163 |
/// \ |
|
1161 |
/// \tparam _Digraph Digraph type. |
|
1164 | 1162 |
template<class _Digraph> |
1165 | 1163 |
struct DfsVisitDefaultTraits { |
1166 | 1164 |
|
1167 | 1165 |
/// \brief The digraph type the algorithm runs on. |
1168 | 1166 |
typedef _Digraph Digraph; |
1169 | 1167 |
|
1170 | 1168 |
/// \brief The type of the map that indicates which nodes are reached. |
1171 | 1169 |
/// |
1172 | 1170 |
/// The type of the map that indicates which nodes are reached. |
1173 | 1171 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1174 | 1172 |
/// \todo named parameter to set this type, function to read and write. |
1175 | 1173 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1176 | 1174 |
|
1177 | 1175 |
/// \brief Instantiates a ReachedMap. |
1178 | 1176 |
/// |
1179 | 1177 |
/// This function instantiates a \ref ReachedMap. |
1180 | 1178 |
/// \param digraph is the digraph, to which |
1181 | 1179 |
/// we would like to define the \ref ReachedMap. |
1182 | 1180 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1183 | 1181 |
return new ReachedMap(digraph); |
1184 | 1182 |
} |
1185 | 1183 |
|
1186 | 1184 |
}; |
1187 | 1185 |
|
1188 | 1186 |
/// %DFS Visit algorithm class. |
1189 | 1187 |
|
1190 | 1188 |
/// \ingroup search |
1191 | 1189 |
/// This class provides an efficient implementation of the %DFS algorithm |
1192 | 1190 |
/// with visitor interface. |
1193 | 1191 |
/// |
1194 | 1192 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1195 | 1193 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1196 | 1194 |
/// on every dfs event the \c Visitor class member functions. |
1197 | 1195 |
/// |
1198 |
/// \ |
|
1196 |
/// \tparam _Digraph The digraph type the algorithm runs on. The default value is |
|
1199 | 1197 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Dfs, it |
1200 | 1198 |
/// is only passed to \ref DfsDefaultTraits. |
1201 |
/// \ |
|
1199 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
|
1202 | 1200 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty Visitor which |
1203 | 1201 |
/// does not observe the Dfs events. If you want to observe the dfs |
1204 | 1202 |
/// events you should implement your own Visitor class. |
1205 |
/// \ |
|
1203 |
/// \tparam _Traits Traits class to set various data types used by the |
|
1206 | 1204 |
/// algorithm. The default traits class is |
1207 | 1205 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1208 | 1206 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1209 | 1207 |
/// a Dfs visit traits class. |
1210 | 1208 |
/// |
1211 | 1209 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
1212 | 1210 |
#ifdef DOXYGEN |
1213 | 1211 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1214 | 1212 |
#else |
1215 | 1213 |
template <typename _Digraph = ListDigraph, |
1216 | 1214 |
typename _Visitor = DfsVisitor<_Digraph>, |
1217 | 1215 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
1218 | 1216 |
#endif |
1219 | 1217 |
class DfsVisit { |
1220 | 1218 |
public: |
1221 | 1219 |
|
1222 | 1220 |
/// \brief \ref Exception for uninitialized parameters. |
1223 | 1221 |
/// |
1224 | 1222 |
/// This error represents problems in the initialization |
1225 | 1223 |
/// of the parameters of the algorithms. |
1226 | 1224 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1227 | 1225 |
public: |
1228 | 1226 |
virtual const char* what() const throw() |
1229 | 1227 |
{ |
1230 | 1228 |
return "lemon::DfsVisit::UninitializedParameter"; |
1231 | 1229 |
} |
1232 | 1230 |
}; |
1233 | 1231 |
|
1234 | 1232 |
typedef _Traits Traits; |
1235 | 1233 |
|
1236 | 1234 |
typedef typename Traits::Digraph Digraph; |
1237 | 1235 |
|
1238 | 1236 |
typedef _Visitor Visitor; |
1239 | 1237 |
|
1240 | 1238 |
///The type of the map indicating which nodes are reached. |
1241 | 1239 |
typedef typename Traits::ReachedMap ReachedMap; |
1242 | 1240 |
|
1243 | 1241 |
private: |
1244 | 1242 |
|
1245 | 1243 |
typedef typename Digraph::Node Node; |
1246 | 1244 |
typedef typename Digraph::NodeIt NodeIt; |
1247 | 1245 |
typedef typename Digraph::Arc Arc; |
1248 | 1246 |
typedef typename Digraph::OutArcIt OutArcIt; |
1249 | 1247 |
|
1250 | 1248 |
/// Pointer to the underlying digraph. |
1251 | 1249 |
const Digraph *_digraph; |
1252 | 1250 |
/// Pointer to the visitor object. |
1253 | 1251 |
Visitor *_visitor; |
1254 | 1252 |
///Pointer to the map of reached status of the nodes. |
1255 | 1253 |
ReachedMap *_reached; |
1256 | 1254 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
1257 | 1255 |
bool local_reached; |
1258 | 1256 |
|
1259 | 1257 |
std::vector<typename Digraph::Arc> _stack; |
1260 | 1258 |
int _stack_head; |
1261 | 1259 |
|
1262 | 1260 |
/// \brief Creates the maps if necessary. |
1263 | 1261 |
/// |
1264 | 1262 |
/// Creates the maps if necessary. |
1265 | 1263 |
void create_maps() { |
1266 | 1264 |
if(!_reached) { |
1267 | 1265 |
local_reached = true; |
1268 | 1266 |
_reached = Traits::createReachedMap(*_digraph); |
1269 | 1267 |
} |
... | ... |
@@ -16,262 +16,261 @@ |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
/// |
26 | 26 |
|
27 | 27 |
#include <lemon/list_digraph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/bits/invalid.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default OperationTraits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// It defines all computational operations and constants which are |
40 | 40 |
/// used in the Dijkstra algorithm. |
41 | 41 |
template <typename Value> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \brief Gives back the zero value of the type. |
44 | 44 |
static Value zero() { |
45 | 45 |
return static_cast<Value>(0); |
46 | 46 |
} |
47 | 47 |
/// \brief Gives back the sum of the given two elements. |
48 | 48 |
static Value plus(const Value& left, const Value& right) { |
49 | 49 |
return left + right; |
50 | 50 |
} |
51 | 51 |
/// \brief Gives back true only if the first value less than the second. |
52 | 52 |
static bool less(const Value& left, const Value& right) { |
53 | 53 |
return left < right; |
54 | 54 |
} |
55 | 55 |
}; |
56 | 56 |
|
57 | 57 |
/// \brief Widest path OperationTraits for the Dijkstra algorithm class. |
58 | 58 |
/// |
59 | 59 |
/// It defines all computational operations and constants which are |
60 | 60 |
/// used in the Dijkstra algorithm for widest path computation. |
61 | 61 |
template <typename Value> |
62 | 62 |
struct DijkstraWidestPathOperationTraits { |
63 | 63 |
/// \brief Gives back the maximum value of the type. |
64 | 64 |
static Value zero() { |
65 | 65 |
return std::numeric_limits<Value>::max(); |
66 | 66 |
} |
67 | 67 |
/// \brief Gives back the minimum of the given two elements. |
68 | 68 |
static Value plus(const Value& left, const Value& right) { |
69 | 69 |
return std::min(left, right); |
70 | 70 |
} |
71 | 71 |
/// \brief Gives back true only if the first value less than the second. |
72 | 72 |
static bool less(const Value& left, const Value& right) { |
73 | 73 |
return left < right; |
74 | 74 |
} |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
///Default traits class of Dijkstra class. |
78 | 78 |
|
79 | 79 |
///Default traits class of Dijkstra class. |
80 |
///\param GR Digraph type. |
|
81 |
///\param LM Type of length map. |
|
80 |
///\tparam GR Digraph type. |
|
81 |
///\tparam LM Type of length map. |
|
82 | 82 |
template<class GR, class LM> |
83 | 83 |
struct DijkstraDefaultTraits |
84 | 84 |
{ |
85 | 85 |
///The digraph type the algorithm runs on. |
86 | 86 |
typedef GR Digraph; |
87 | 87 |
///The type of the map that stores the arc lengths. |
88 | 88 |
|
89 | 89 |
///The type of the map that stores the arc lengths. |
90 | 90 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
91 | 91 |
typedef LM LengthMap; |
92 | 92 |
//The type of the length of the arcs. |
93 | 93 |
typedef typename LM::Value Value; |
94 | 94 |
/// Operation traits for Dijkstra algorithm. |
95 | 95 |
|
96 | 96 |
/// It defines the used operation by the algorithm. |
97 | 97 |
/// \see DijkstraDefaultOperationTraits |
98 | 98 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
99 | 99 |
/// The cross reference type used by heap. |
100 | 100 |
|
101 | 101 |
|
102 | 102 |
/// The cross reference type used by heap. |
103 | 103 |
/// Usually it is \c Digraph::NodeMap<int>. |
104 | 104 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
105 | 105 |
///Instantiates a HeapCrossRef. |
106 | 106 |
|
107 | 107 |
///This function instantiates a \c HeapCrossRef. |
108 | 108 |
/// \param G is the digraph, to which we would like to define the |
109 | 109 |
/// HeapCrossRef. |
110 | 110 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
111 | 111 |
{ |
112 | 112 |
return new HeapCrossRef(G); |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
///The heap type used by Dijkstra algorithm. |
116 | 116 |
|
117 | 117 |
///The heap type used by Dijkstra algorithm. |
118 | 118 |
/// |
119 | 119 |
///\sa BinHeap |
120 | 120 |
///\sa Dijkstra |
121 | 121 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
122 | 122 |
|
123 | 123 |
static Heap *createHeap(HeapCrossRef& R) |
124 | 124 |
{ |
125 | 125 |
return new Heap(R); |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
///\brief The type of the map that stores the last |
129 | 129 |
///arcs of the shortest paths. |
130 | 130 |
/// |
131 | 131 |
///The type of the map that stores the last |
132 | 132 |
///arcs of the shortest paths. |
133 | 133 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
134 | 134 |
/// |
135 | 135 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
136 | 136 |
///Instantiates a PredMap. |
137 | 137 |
|
138 | 138 |
///This function instantiates a \c PredMap. |
139 | 139 |
///\param G is the digraph, to which we would like to define the PredMap. |
140 | 140 |
///\todo The digraph alone may be insufficient for the initialization |
141 | 141 |
static PredMap *createPredMap(const GR &G) |
142 | 142 |
{ |
143 | 143 |
return new PredMap(G); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
///The type of the map that stores whether a nodes is processed. |
147 | 147 |
|
148 | 148 |
///The type of the map that stores whether a nodes is processed. |
149 | 149 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
150 | 150 |
///By default it is a NullMap. |
151 | 151 |
///\todo If it is set to a real map, |
152 | 152 |
///Dijkstra::processed() should read this. |
153 | 153 |
///\todo named parameter to set this type, function to read and write. |
154 | 154 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
155 | 155 |
///Instantiates a ProcessedMap. |
156 | 156 |
|
157 | 157 |
///This function instantiates a \c ProcessedMap. |
158 | 158 |
///\param g is the digraph, to which |
159 | 159 |
///we would like to define the \c ProcessedMap |
160 | 160 |
#ifdef DOXYGEN |
161 | 161 |
static ProcessedMap *createProcessedMap(const GR &g) |
162 | 162 |
#else |
163 | 163 |
static ProcessedMap *createProcessedMap(const GR &) |
164 | 164 |
#endif |
165 | 165 |
{ |
166 | 166 |
return new ProcessedMap(); |
167 | 167 |
} |
168 | 168 |
///The type of the map that stores the dists of the nodes. |
169 | 169 |
|
170 | 170 |
///The type of the map that stores the dists of the nodes. |
171 | 171 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
172 | 172 |
/// |
173 | 173 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
174 | 174 |
///Instantiates a DistMap. |
175 | 175 |
|
176 | 176 |
///This function instantiates a \ref DistMap. |
177 | 177 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
178 | 178 |
static DistMap *createDistMap(const GR &G) |
179 | 179 |
{ |
180 | 180 |
return new DistMap(G); |
181 | 181 |
} |
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
///%Dijkstra algorithm class. |
185 | 185 |
|
186 | 186 |
/// \ingroup shortest_path |
187 | 187 |
///This class provides an efficient implementation of %Dijkstra algorithm. |
188 | 188 |
///The arc lengths are passed to the algorithm using a |
189 | 189 |
///\ref concepts::ReadMap "ReadMap", |
190 | 190 |
///so it is easy to change it to any kind of length. |
191 | 191 |
/// |
192 | 192 |
///The type of the length is determined by the |
193 | 193 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
194 | 194 |
/// |
195 | 195 |
///It is also possible to change the underlying priority heap. |
196 | 196 |
/// |
197 |
///\ |
|
197 |
///\tparam GR The digraph type the algorithm runs on. The default value |
|
198 | 198 |
///is \ref ListDigraph. The value of GR is not used directly by |
199 | 199 |
///Dijkstra, it is only passed to \ref DijkstraDefaultTraits. |
200 |
///\ |
|
200 |
///\tparam LM This read-only ArcMap determines the lengths of the |
|
201 | 201 |
///arcs. It is read once for each arc, so the map may involve in |
202 | 202 |
///relatively time consuming process to compute the arc length if |
203 | 203 |
///it is necessary. The default map type is \ref |
204 | 204 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". The value |
205 | 205 |
///of LM is not used directly by Dijkstra, it is only passed to \ref |
206 |
///DijkstraDefaultTraits. |
|
206 |
///DijkstraDefaultTraits. |
|
207 |
///\tparam TR Traits class to set |
|
207 | 208 |
///various data types used by the algorithm. The default traits |
208 | 209 |
///class is \ref DijkstraDefaultTraits |
209 | 210 |
///"DijkstraDefaultTraits<GR,LM>". See \ref |
210 | 211 |
///DijkstraDefaultTraits for the documentation of a Dijkstra traits |
211 | 212 |
///class. |
212 |
/// |
|
213 |
///\author Jacint Szabo and Alpar Juttner |
|
214 | 213 |
|
215 | 214 |
#ifdef DOXYGEN |
216 | 215 |
template <typename GR, typename LM, typename TR> |
217 | 216 |
#else |
218 | 217 |
template <typename GR=ListDigraph, |
219 | 218 |
typename LM=typename GR::template ArcMap<int>, |
220 | 219 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
221 | 220 |
#endif |
222 | 221 |
class Dijkstra { |
223 | 222 |
public: |
224 | 223 |
/** |
225 | 224 |
* \brief \ref Exception for uninitialized parameters. |
226 | 225 |
* |
227 | 226 |
* This error represents problems in the initialization |
228 | 227 |
* of the parameters of the algorithms. |
229 | 228 |
*/ |
230 | 229 |
class UninitializedParameter : public lemon::UninitializedParameter { |
231 | 230 |
public: |
232 | 231 |
virtual const char* what() const throw() { |
233 | 232 |
return "lemon::Dijkstra::UninitializedParameter"; |
234 | 233 |
} |
235 | 234 |
}; |
236 | 235 |
|
237 | 236 |
typedef TR Traits; |
238 | 237 |
///The type of the underlying digraph. |
239 | 238 |
typedef typename TR::Digraph Digraph; |
240 | 239 |
///\e |
241 | 240 |
typedef typename Digraph::Node Node; |
242 | 241 |
///\e |
243 | 242 |
typedef typename Digraph::NodeIt NodeIt; |
244 | 243 |
///\e |
245 | 244 |
typedef typename Digraph::Arc Arc; |
246 | 245 |
///\e |
247 | 246 |
typedef typename Digraph::OutArcIt OutArcIt; |
248 | 247 |
|
249 | 248 |
///The type of the length of the arcs. |
250 | 249 |
typedef typename TR::LengthMap::Value Value; |
251 | 250 |
///The type of the map that stores the arc lengths. |
252 | 251 |
typedef typename TR::LengthMap LengthMap; |
253 | 252 |
///\brief The type of the map that stores the last |
254 | 253 |
///arcs of the shortest paths. |
255 | 254 |
typedef typename TR::PredMap PredMap; |
256 | 255 |
///The type of the map indicating if a node is processed. |
257 | 256 |
typedef typename TR::ProcessedMap ProcessedMap; |
258 | 257 |
///The type of the map that stores the dists of the nodes. |
259 | 258 |
typedef typename TR::DistMap DistMap; |
260 | 259 |
///The cross reference type used for the current heap. |
261 | 260 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
262 | 261 |
///The heap type used by the dijkstra algorithm. |
263 | 262 |
typedef typename TR::Heap Heap; |
264 | 263 |
///The operation traits. |
265 | 264 |
typedef typename TR::OperationTraits OperationTraits; |
266 | 265 |
private: |
267 | 266 |
/// Pointer to the underlying digraph. |
268 | 267 |
const Digraph *G; |
269 | 268 |
/// Pointer to the length map |
270 | 269 |
const LengthMap *length; |
271 | 270 |
///Pointer to the map of predecessors arcs. |
272 | 271 |
PredMap *_pred; |
273 | 272 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
274 | 273 |
bool local_pred; |
275 | 274 |
///Pointer to the map of distances. |
276 | 275 |
DistMap *_dist; |
277 | 276 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
... | ... |
@@ -814,130 +813,130 @@ |
814 | 813 |
///\pre \c node should be reached but not processed |
815 | 814 |
Value currentDist(Node v) const { return (*_heap)[v]; } |
816 | 815 |
|
817 | 816 |
///Returns the 'previous arc' of the shortest path tree. |
818 | 817 |
|
819 | 818 |
///For a node \c v it returns the 'previous arc' of the shortest path tree, |
820 | 819 |
///i.e. it returns the last arc of a shortest path from the root to \c |
821 | 820 |
///v. It is \ref INVALID |
822 | 821 |
///if \c v is unreachable from the root or if \c v=s. The |
823 | 822 |
///shortest path tree used here is equal to the shortest path tree used in |
824 | 823 |
///\ref predNode(). \pre \ref run() must be called before using |
825 | 824 |
///this function. |
826 | 825 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
827 | 826 |
|
828 | 827 |
///Returns the 'previous node' of the shortest path tree. |
829 | 828 |
|
830 | 829 |
///For a node \c v it returns the 'previous node' of the shortest path tree, |
831 | 830 |
///i.e. it returns the last but one node from a shortest path from the |
832 | 831 |
///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
833 | 832 |
///\c v=s. The shortest path tree used here is equal to the shortest path |
834 | 833 |
///tree used in \ref predArc(). \pre \ref run() must be called before |
835 | 834 |
///using this function. |
836 | 835 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
837 | 836 |
G->source((*_pred)[v]); } |
838 | 837 |
|
839 | 838 |
///Returns a reference to the NodeMap of distances. |
840 | 839 |
|
841 | 840 |
///Returns a reference to the NodeMap of distances. \pre \ref run() must |
842 | 841 |
///be called before using this function. |
843 | 842 |
const DistMap &distMap() const { return *_dist;} |
844 | 843 |
|
845 | 844 |
///Returns a reference to the shortest path tree map. |
846 | 845 |
|
847 | 846 |
///Returns a reference to the NodeMap of the arcs of the |
848 | 847 |
///shortest path tree. |
849 | 848 |
///\pre \ref run() must be called before using this function. |
850 | 849 |
const PredMap &predMap() const { return *_pred;} |
851 | 850 |
|
852 | 851 |
///Checks if a node is reachable from the root. |
853 | 852 |
|
854 | 853 |
///Returns \c true if \c v is reachable from the root. |
855 | 854 |
///\warning The source nodes are inditated as unreached. |
856 | 855 |
///\pre \ref run() must be called before using this function. |
857 | 856 |
/// |
858 | 857 |
bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; } |
859 | 858 |
|
860 | 859 |
///Checks if a node is processed. |
861 | 860 |
|
862 | 861 |
///Returns \c true if \c v is processed, i.e. the shortest |
863 | 862 |
///path to \c v has already found. |
864 | 863 |
///\pre \ref run() must be called before using this function. |
865 | 864 |
/// |
866 | 865 |
bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; } |
867 | 866 |
|
868 | 867 |
///@} |
869 | 868 |
}; |
870 | 869 |
|
871 | 870 |
|
872 | 871 |
|
873 | 872 |
|
874 | 873 |
|
875 | 874 |
///Default traits class of Dijkstra function. |
876 | 875 |
|
877 | 876 |
///Default traits class of Dijkstra function. |
878 |
///\param GR Digraph type. |
|
879 |
///\param LM Type of length map. |
|
877 |
///\tparam GR Digraph type. |
|
878 |
///\tparam LM Type of length map. |
|
880 | 879 |
template<class GR, class LM> |
881 | 880 |
struct DijkstraWizardDefaultTraits |
882 | 881 |
{ |
883 | 882 |
///The digraph type the algorithm runs on. |
884 | 883 |
typedef GR Digraph; |
885 | 884 |
///The type of the map that stores the arc lengths. |
886 | 885 |
|
887 | 886 |
///The type of the map that stores the arc lengths. |
888 | 887 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
889 | 888 |
typedef LM LengthMap; |
890 | 889 |
//The type of the length of the arcs. |
891 | 890 |
typedef typename LM::Value Value; |
892 | 891 |
/// Operation traits for Dijkstra algorithm. |
893 | 892 |
|
894 | 893 |
/// It defines the used operation by the algorithm. |
895 | 894 |
/// \see DijkstraDefaultOperationTraits |
896 | 895 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
897 | 896 |
///The heap type used by Dijkstra algorithm. |
898 | 897 |
|
899 | 898 |
/// The cross reference type used by heap. |
900 | 899 |
|
901 | 900 |
/// The cross reference type used by heap. |
902 | 901 |
/// Usually it is \c Digraph::NodeMap<int>. |
903 | 902 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
904 | 903 |
///Instantiates a HeapCrossRef. |
905 | 904 |
|
906 | 905 |
///This function instantiates a \ref HeapCrossRef. |
907 | 906 |
/// \param G is the digraph, to which we would like to define the |
908 | 907 |
/// HeapCrossRef. |
909 | 908 |
/// \todo The digraph alone may be insufficient for the initialization |
910 | 909 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
911 | 910 |
{ |
912 | 911 |
return new HeapCrossRef(G); |
913 | 912 |
} |
914 | 913 |
|
915 | 914 |
///The heap type used by Dijkstra algorithm. |
916 | 915 |
|
917 | 916 |
///The heap type used by Dijkstra algorithm. |
918 | 917 |
/// |
919 | 918 |
///\sa BinHeap |
920 | 919 |
///\sa Dijkstra |
921 | 920 |
typedef BinHeap<typename LM::Value, typename GR::template NodeMap<int>, |
922 | 921 |
std::less<Value> > Heap; |
923 | 922 |
|
924 | 923 |
static Heap *createHeap(HeapCrossRef& R) |
925 | 924 |
{ |
926 | 925 |
return new Heap(R); |
927 | 926 |
} |
928 | 927 |
|
929 | 928 |
///\brief The type of the map that stores the last |
930 | 929 |
///arcs of the shortest paths. |
931 | 930 |
/// |
932 | 931 |
///The type of the map that stores the last |
933 | 932 |
///arcs of the shortest paths. |
934 | 933 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
935 | 934 |
/// |
936 | 935 |
typedef NullMap <typename GR::Node,typename GR::Arc> PredMap; |
937 | 936 |
///Instantiates a PredMap. |
938 | 937 |
|
939 | 938 |
///This function instantiates a \ref PredMap. |
940 | 939 |
///\param g is the digraph, to which we would like to define the PredMap. |
941 | 940 |
///\todo The digraph alone may be insufficient for the initialization |
942 | 941 |
#ifdef DOXYGEN |
943 | 942 |
static PredMap *createPredMap(const GR &g) |
... | ... |
@@ -355,177 +355,177 @@ |
355 | 355 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
356 | 356 |
} |
357 | 357 |
template<class X> struct NodeShapesTraits : public T { |
358 | 358 |
const X &_nodeShapes; |
359 | 359 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
360 | 360 |
}; |
361 | 361 |
///Sets the map of the node shapes |
362 | 362 |
|
363 | 363 |
///Sets the map of the node shapes. |
364 | 364 |
///The available shape values |
365 | 365 |
///can be found in \ref NodeShapes "enum NodeShapes". |
366 | 366 |
///\param x must be a node map with \c int (or convertible) values. |
367 | 367 |
///\sa NodeShapes |
368 | 368 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
369 | 369 |
{ |
370 | 370 |
dontPrint=true; |
371 | 371 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
372 | 372 |
} |
373 | 373 |
template<class X> struct NodeTextsTraits : public T { |
374 | 374 |
const X &_nodeTexts; |
375 | 375 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
376 | 376 |
}; |
377 | 377 |
///Sets the text printed on the nodes |
378 | 378 |
|
379 | 379 |
///Sets the text printed on the nodes |
380 | 380 |
///\param x must be a node map with type that can be pushed to a standard |
381 | 381 |
///ostream. |
382 | 382 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
383 | 383 |
{ |
384 | 384 |
dontPrint=true; |
385 | 385 |
_showNodeText=true; |
386 | 386 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
387 | 387 |
} |
388 | 388 |
template<class X> struct NodePsTextsTraits : public T { |
389 | 389 |
const X &_nodePsTexts; |
390 | 390 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
391 | 391 |
}; |
392 | 392 |
///Inserts a PostScript block to the nodes |
393 | 393 |
|
394 | 394 |
///With this command it is possible to insert a verbatim PostScript |
395 | 395 |
///block to the nodes. |
396 | 396 |
///The PS current point will be moved to the centre of the node before |
397 | 397 |
///the PostScript block inserted. |
398 | 398 |
/// |
399 | 399 |
///Before and after the block a newline character is inserted so you |
400 | 400 |
///don't have to bother with the separators. |
401 | 401 |
/// |
402 | 402 |
///\param x must be a node map with type that can be pushed to a standard |
403 | 403 |
///ostream. |
404 | 404 |
/// |
405 | 405 |
///\sa nodePsTextsPreamble() |
406 | 406 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
407 | 407 |
{ |
408 | 408 |
dontPrint=true; |
409 | 409 |
_showNodePsText=true; |
410 | 410 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
411 | 411 |
} |
412 | 412 |
template<class X> struct ArcWidthsTraits : public T { |
413 | 413 |
const X &_arcWidths; |
414 | 414 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
415 | 415 |
}; |
416 | 416 |
///Sets the map of the arc widths |
417 | 417 |
|
418 | 418 |
///Sets the map of the arc widths |
419 |
///\param x must be |
|
419 |
///\param x must be an arc map with \c double (or convertible) values. |
|
420 | 420 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
421 | 421 |
{ |
422 | 422 |
dontPrint=true; |
423 | 423 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
template<class X> struct NodeColorsTraits : public T { |
427 | 427 |
const X &_nodeColors; |
428 | 428 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
429 | 429 |
}; |
430 | 430 |
///Sets the map of the node colors |
431 | 431 |
|
432 | 432 |
///Sets the map of the node colors |
433 | 433 |
///\param x must be a node map with \ref Color values. |
434 | 434 |
/// |
435 | 435 |
///\sa Palette |
436 | 436 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
437 | 437 |
nodeColors(const X &x) |
438 | 438 |
{ |
439 | 439 |
dontPrint=true; |
440 | 440 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
441 | 441 |
} |
442 | 442 |
template<class X> struct NodeTextColorsTraits : public T { |
443 | 443 |
const X &_nodeTextColors; |
444 | 444 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
445 | 445 |
}; |
446 | 446 |
///Sets the map of the node text colors |
447 | 447 |
|
448 | 448 |
///Sets the map of the node text colors |
449 | 449 |
///\param x must be a node map with \ref Color values. |
450 | 450 |
/// |
451 | 451 |
///\sa Palette |
452 | 452 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
453 | 453 |
nodeTextColors(const X &x) |
454 | 454 |
{ |
455 | 455 |
dontPrint=true; |
456 | 456 |
_nodeTextColorType=CUST_COL; |
457 | 457 |
return GraphToEps<NodeTextColorsTraits<X> > |
458 | 458 |
(NodeTextColorsTraits<X>(*this,x)); |
459 | 459 |
} |
460 | 460 |
template<class X> struct ArcColorsTraits : public T { |
461 | 461 |
const X &_arcColors; |
462 | 462 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
463 | 463 |
}; |
464 | 464 |
///Sets the map of the arc colors |
465 | 465 |
|
466 | 466 |
///Sets the map of the arc colors |
467 |
///\param x must be |
|
467 |
///\param x must be an arc map with \ref Color values. |
|
468 | 468 |
/// |
469 | 469 |
///\sa Palette |
470 | 470 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
471 | 471 |
arcColors(const X &x) |
472 | 472 |
{ |
473 | 473 |
dontPrint=true; |
474 | 474 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
475 | 475 |
} |
476 | 476 |
///Sets a global scale factor for node sizes |
477 | 477 |
|
478 | 478 |
///Sets a global scale factor for node sizes. |
479 | 479 |
/// |
480 | 480 |
/// If nodeSizes() is not given, this function simply sets the node |
481 | 481 |
/// sizes to \c d. If nodeSizes() is given, but |
482 | 482 |
/// autoNodeScale() is not, then the node size given by |
483 | 483 |
/// nodeSizes() will be multiplied by the value \c d. |
484 | 484 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
485 | 485 |
/// node sizes will be scaled in such a way that the greatest size will be |
486 | 486 |
/// equal to \c d. |
487 | 487 |
/// \sa nodeSizes() |
488 | 488 |
/// \sa autoNodeScale() |
489 | 489 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
490 | 490 |
///Turns on/off the automatic node width scaling. |
491 | 491 |
|
492 | 492 |
///Turns on/off the automatic node width scaling. |
493 | 493 |
/// |
494 | 494 |
///\sa nodeScale() |
495 | 495 |
/// |
496 | 496 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
497 | 497 |
_autoNodeScale=b;return *this; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
///Turns on/off the absolutematic node width scaling. |
501 | 501 |
|
502 | 502 |
///Turns on/off the absolutematic node width scaling. |
503 | 503 |
/// |
504 | 504 |
///\sa nodeScale() |
505 | 505 |
/// |
506 | 506 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
507 | 507 |
_absoluteNodeSizes=b;return *this; |
508 | 508 |
} |
509 | 509 |
|
510 | 510 |
///Negates the Y coordinates. |
511 | 511 |
|
512 | 512 |
///Negates the Y coordinates. |
513 | 513 |
/// |
514 | 514 |
GraphToEps<T> &negateY(bool b=true) { |
515 | 515 |
_negY=b;return *this; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Turn on/off pre-scaling |
519 | 519 |
|
520 | 520 |
///By default graphToEps() rescales the whole image in order to avoid |
521 | 521 |
///very big or very small bounding boxes. |
522 | 522 |
/// |
523 | 523 |
///This (p)rescaling can be turned off with this function. |
524 | 524 |
/// |
525 | 525 |
GraphToEps<T> &preScale(bool b=true) { |
526 | 526 |
_preScale=b;return *this; |
527 | 527 |
} |
528 | 528 |
|
529 | 529 |
///Sets a global scale factor for arc widths |
530 | 530 |
|
531 | 531 |
/// Sets a global scale factor for arc widths. |
... | ... |
@@ -293,254 +293,250 @@ |
293 | 293 |
g.nextOut(e); |
294 | 294 |
} |
295 | 295 |
while (e != INVALID && g.target(e) != v) { |
296 | 296 |
g.nextOut(e); |
297 | 297 |
} |
298 | 298 |
return e; |
299 | 299 |
} |
300 | 300 |
}; |
301 | 301 |
|
302 | 302 |
template <typename Graph> |
303 | 303 |
struct FindArcSelector< |
304 | 304 |
Graph, |
305 | 305 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
306 | 306 |
{ |
307 | 307 |
typedef typename Graph::Node Node; |
308 | 308 |
typedef typename Graph::Arc Arc; |
309 | 309 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
310 | 310 |
return g.findArc(u, v, prev); |
311 | 311 |
} |
312 | 312 |
}; |
313 | 313 |
} |
314 | 314 |
|
315 | 315 |
/// \brief Finds an arc between two nodes of a graph. |
316 | 316 |
/// |
317 | 317 |
/// Finds an arc from node \c u to node \c v in graph \c g. |
318 | 318 |
/// |
319 | 319 |
/// If \c prev is \ref INVALID (this is the default value), then |
320 | 320 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
321 | 321 |
/// the next arc from \c u to \c v after \c prev. |
322 | 322 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
323 | 323 |
/// |
324 | 324 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
325 | 325 |
///\code |
326 | 326 |
/// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) { |
327 | 327 |
/// ... |
328 | 328 |
/// } |
329 | 329 |
///\endcode |
330 | 330 |
/// |
331 | 331 |
///\sa ArcLookUp |
332 | 332 |
///\sa AllArcLookUp |
333 | 333 |
///\sa DynArcLookUp |
334 | 334 |
///\sa ConArcIt |
335 | 335 |
template <typename Graph> |
336 | 336 |
inline typename Graph::Arc |
337 | 337 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
338 | 338 |
typename Graph::Arc prev = INVALID) { |
339 | 339 |
return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
/// \brief Iterator for iterating on arcs connected the same nodes. |
343 | 343 |
/// |
344 | 344 |
/// Iterator for iterating on arcs connected the same nodes. It is |
345 | 345 |
/// higher level interface for the findArc() function. You can |
346 | 346 |
/// use it the following way: |
347 | 347 |
///\code |
348 | 348 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
349 | 349 |
/// ... |
350 | 350 |
/// } |
351 | 351 |
///\endcode |
352 | 352 |
/// |
353 | 353 |
///\sa findArc() |
354 | 354 |
///\sa ArcLookUp |
355 | 355 |
///\sa AllArcLookUp |
356 | 356 |
///\sa DynArcLookUp |
357 |
/// |
|
358 |
/// \author Balazs Dezso |
|
359 | 357 |
template <typename _Graph> |
360 | 358 |
class ConArcIt : public _Graph::Arc { |
361 | 359 |
public: |
362 | 360 |
|
363 | 361 |
typedef _Graph Graph; |
364 | 362 |
typedef typename Graph::Arc Parent; |
365 | 363 |
|
366 | 364 |
typedef typename Graph::Arc Arc; |
367 | 365 |
typedef typename Graph::Node Node; |
368 | 366 |
|
369 | 367 |
/// \brief Constructor. |
370 | 368 |
/// |
371 | 369 |
/// Construct a new ConArcIt iterating on the arcs which |
372 | 370 |
/// connects the \c u and \c v node. |
373 | 371 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { |
374 | 372 |
Parent::operator=(findArc(_graph, u, v)); |
375 | 373 |
} |
376 | 374 |
|
377 | 375 |
/// \brief Constructor. |
378 | 376 |
/// |
379 | 377 |
/// Construct a new ConArcIt which continues the iterating from |
380 | 378 |
/// the \c e arc. |
381 | 379 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} |
382 | 380 |
|
383 | 381 |
/// \brief Increment operator. |
384 | 382 |
/// |
385 | 383 |
/// It increments the iterator and gives back the next arc. |
386 | 384 |
ConArcIt& operator++() { |
387 | 385 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
388 | 386 |
_graph.target(*this), *this)); |
389 | 387 |
return *this; |
390 | 388 |
} |
391 | 389 |
private: |
392 | 390 |
const Graph& _graph; |
393 | 391 |
}; |
394 | 392 |
|
395 | 393 |
namespace _graph_utils_bits { |
396 | 394 |
|
397 | 395 |
template <typename Graph, typename Enable = void> |
398 | 396 |
struct FindEdgeSelector { |
399 | 397 |
typedef typename Graph::Node Node; |
400 | 398 |
typedef typename Graph::Edge Edge; |
401 | 399 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
402 | 400 |
bool b; |
403 | 401 |
if (u != v) { |
404 | 402 |
if (e == INVALID) { |
405 | 403 |
g.firstInc(e, b, u); |
406 | 404 |
} else { |
407 | 405 |
b = g.source(e) == u; |
408 | 406 |
g.nextInc(e, b); |
409 | 407 |
} |
410 | 408 |
while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) { |
411 | 409 |
g.nextInc(e, b); |
412 | 410 |
} |
413 | 411 |
} else { |
414 | 412 |
if (e == INVALID) { |
415 | 413 |
g.firstInc(e, b, u); |
416 | 414 |
} else { |
417 | 415 |
b = true; |
418 | 416 |
g.nextInc(e, b); |
419 | 417 |
} |
420 | 418 |
while (e != INVALID && (!b || g.target(e) != v)) { |
421 | 419 |
g.nextInc(e, b); |
422 | 420 |
} |
423 | 421 |
} |
424 | 422 |
return e; |
425 | 423 |
} |
426 | 424 |
}; |
427 | 425 |
|
428 | 426 |
template <typename Graph> |
429 | 427 |
struct FindEdgeSelector< |
430 | 428 |
Graph, |
431 | 429 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
432 | 430 |
{ |
433 | 431 |
typedef typename Graph::Node Node; |
434 | 432 |
typedef typename Graph::Edge Edge; |
435 | 433 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
436 | 434 |
return g.findEdge(u, v, prev); |
437 | 435 |
} |
438 | 436 |
}; |
439 | 437 |
} |
440 | 438 |
|
441 | 439 |
/// \brief Finds an edge between two nodes of a graph. |
442 | 440 |
/// |
443 | 441 |
/// Finds an edge from node \c u to node \c v in graph \c g. |
444 | 442 |
/// If the node \c u and node \c v is equal then each loop edge |
445 | 443 |
/// will be enumerated once. |
446 | 444 |
/// |
447 | 445 |
/// If \c prev is \ref INVALID (this is the default value), then |
448 | 446 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
449 | 447 |
/// the next arc from \c u to \c v after \c prev. |
450 | 448 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
451 | 449 |
/// |
452 | 450 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
453 | 451 |
///\code |
454 | 452 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; |
455 | 453 |
/// e = findEdge(g,u,v,e)) { |
456 | 454 |
/// ... |
457 | 455 |
/// } |
458 | 456 |
///\endcode |
459 | 457 |
/// |
460 | 458 |
///\sa ConArcIt |
461 | 459 |
|
462 | 460 |
template <typename Graph> |
463 | 461 |
inline typename Graph::Edge |
464 | 462 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
465 | 463 |
typename Graph::Edge p = INVALID) { |
466 | 464 |
return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
467 | 465 |
} |
468 | 466 |
|
469 | 467 |
/// \brief Iterator for iterating on edges connected the same nodes. |
470 | 468 |
/// |
471 | 469 |
/// Iterator for iterating on edges connected the same nodes. It is |
472 | 470 |
/// higher level interface for the findEdge() function. You can |
473 | 471 |
/// use it the following way: |
474 | 472 |
///\code |
475 | 473 |
/// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
476 | 474 |
/// ... |
477 | 475 |
/// } |
478 | 476 |
///\endcode |
479 | 477 |
/// |
480 | 478 |
///\sa findEdge() |
481 |
/// |
|
482 |
/// \author Balazs Dezso |
|
483 | 479 |
template <typename _Graph> |
484 | 480 |
class ConEdgeIt : public _Graph::Edge { |
485 | 481 |
public: |
486 | 482 |
|
487 | 483 |
typedef _Graph Graph; |
488 | 484 |
typedef typename Graph::Edge Parent; |
489 | 485 |
|
490 | 486 |
typedef typename Graph::Edge Edge; |
491 | 487 |
typedef typename Graph::Node Node; |
492 | 488 |
|
493 | 489 |
/// \brief Constructor. |
494 | 490 |
/// |
495 | 491 |
/// Construct a new ConEdgeIt iterating on the edges which |
496 | 492 |
/// connects the \c u and \c v node. |
497 | 493 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { |
498 | 494 |
Parent::operator=(findEdge(_graph, u, v)); |
499 | 495 |
} |
500 | 496 |
|
501 | 497 |
/// \brief Constructor. |
502 | 498 |
/// |
503 | 499 |
/// Construct a new ConEdgeIt which continues the iterating from |
504 | 500 |
/// the \c e edge. |
505 | 501 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} |
506 | 502 |
|
507 | 503 |
/// \brief Increment operator. |
508 | 504 |
/// |
509 | 505 |
/// It increments the iterator and gives back the next edge. |
510 | 506 |
ConEdgeIt& operator++() { |
511 | 507 |
Parent::operator=(findEdge(_graph, _graph.source(*this), |
512 | 508 |
_graph.target(*this), *this)); |
513 | 509 |
return *this; |
514 | 510 |
} |
515 | 511 |
private: |
516 | 512 |
const Graph& _graph; |
517 | 513 |
}; |
518 | 514 |
|
519 | 515 |
namespace _graph_utils_bits { |
520 | 516 |
|
521 | 517 |
template <typename Digraph, typename Item, typename RefMap> |
522 | 518 |
class MapCopyBase { |
523 | 519 |
public: |
524 | 520 |
virtual void copy(const Digraph& from, const RefMap& refMap) = 0; |
525 | 521 |
|
526 | 522 |
virtual ~MapCopyBase() {} |
527 | 523 |
}; |
528 | 524 |
|
529 | 525 |
template <typename Digraph, typename Item, typename RefMap, |
530 | 526 |
typename ToMap, typename FromMap> |
531 | 527 |
class MapCopy : public MapCopyBase<Digraph, Item, RefMap> { |
532 | 528 |
public: |
533 | 529 |
|
534 | 530 |
MapCopy(ToMap& tmap, const FromMap& map) |
535 | 531 |
: _tmap(tmap), _map(map) {} |
536 | 532 |
|
537 | 533 |
virtual void copy(const Digraph& digraph, const RefMap& refMap) { |
538 | 534 |
typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt; |
539 | 535 |
for (ItemIt it(digraph); it != INVALID; ++it) { |
540 | 536 |
_tmap.set(refMap[it], _map[it]); |
541 | 537 |
} |
542 | 538 |
} |
543 | 539 |
|
544 | 540 |
private: |
545 | 541 |
ToMap& _tmap; |
546 | 542 |
const FromMap& _map; |
... | ... |
@@ -1181,131 +1177,131 @@ |
1181 | 1177 |
/// |
1182 | 1178 |
/// Constructor of the map. |
1183 | 1179 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1184 | 1180 |
|
1185 | 1181 |
/// \brief Gives back the \e id of the item. |
1186 | 1182 |
/// |
1187 | 1183 |
/// Gives back the immutable and unique \e id of the item. |
1188 | 1184 |
int operator[](const Item& item) const { return _graph->id(item);} |
1189 | 1185 |
|
1190 | 1186 |
/// \brief Gives back the item by its id. |
1191 | 1187 |
/// |
1192 | 1188 |
/// Gives back the item by its id. |
1193 | 1189 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1194 | 1190 |
|
1195 | 1191 |
private: |
1196 | 1192 |
const Graph* _graph; |
1197 | 1193 |
|
1198 | 1194 |
public: |
1199 | 1195 |
|
1200 | 1196 |
/// \brief The class represents the inverse of its owner (IdMap). |
1201 | 1197 |
/// |
1202 | 1198 |
/// The class represents the inverse of its owner (IdMap). |
1203 | 1199 |
/// \see inverse() |
1204 | 1200 |
class InverseMap { |
1205 | 1201 |
public: |
1206 | 1202 |
|
1207 | 1203 |
/// \brief Constructor. |
1208 | 1204 |
/// |
1209 | 1205 |
/// Constructor for creating an id-to-item map. |
1210 | 1206 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1211 | 1207 |
|
1212 | 1208 |
/// \brief Constructor. |
1213 | 1209 |
/// |
1214 | 1210 |
/// Constructor for creating an id-to-item map. |
1215 | 1211 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1216 | 1212 |
|
1217 | 1213 |
/// \brief Gives back the given item from its id. |
1218 | 1214 |
/// |
1219 | 1215 |
/// Gives back the given item from its id. |
1220 | 1216 |
/// |
1221 | 1217 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1222 | 1218 |
|
1223 | 1219 |
private: |
1224 | 1220 |
const Graph* _graph; |
1225 | 1221 |
}; |
1226 | 1222 |
|
1227 | 1223 |
/// \brief Gives back the inverse of the map. |
1228 | 1224 |
/// |
1229 | 1225 |
/// Gives back the inverse of the IdMap. |
1230 | 1226 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1231 | 1227 |
|
1232 | 1228 |
}; |
1233 | 1229 |
|
1234 | 1230 |
|
1235 | 1231 |
/// \brief General invertable graph-map type. |
1236 | 1232 |
|
1237 | 1233 |
/// This type provides simple invertable graph-maps. |
1238 | 1234 |
/// The InvertableMap wraps an arbitrary ReadWriteMap |
1239 | 1235 |
/// and if a key is set to a new value then store it |
1240 | 1236 |
/// in the inverse map. |
1241 | 1237 |
/// |
1242 | 1238 |
/// The values of the map can be accessed |
1243 | 1239 |
/// with stl compatible forward iterator. |
1244 | 1240 |
/// |
1245 |
/// \param _Graph The graph type. |
|
1246 |
/// \param _Item The item type of the graph. |
|
1247 |
/// \ |
|
1241 |
/// \tparam _Graph The graph type. |
|
1242 |
/// \tparam _Item The item type of the graph. |
|
1243 |
/// \tparam _Value The value type of the map. |
|
1248 | 1244 |
/// |
1249 | 1245 |
/// \see IterableValueMap |
1250 | 1246 |
template <typename _Graph, typename _Item, typename _Value> |
1251 | 1247 |
class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> { |
1252 | 1248 |
private: |
1253 | 1249 |
|
1254 | 1250 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
1255 | 1251 |
typedef _Graph Graph; |
1256 | 1252 |
|
1257 | 1253 |
typedef std::map<_Value, _Item> Container; |
1258 | 1254 |
Container _inv_map; |
1259 | 1255 |
|
1260 | 1256 |
public: |
1261 | 1257 |
|
1262 | 1258 |
/// The key type of InvertableMap (Node, Arc, Edge). |
1263 | 1259 |
typedef typename Map::Key Key; |
1264 | 1260 |
/// The value type of the InvertableMap. |
1265 | 1261 |
typedef typename Map::Value Value; |
1266 | 1262 |
|
1267 | 1263 |
|
1268 | 1264 |
|
1269 | 1265 |
/// \brief Constructor. |
1270 | 1266 |
/// |
1271 | 1267 |
/// Construct a new InvertableMap for the graph. |
1272 | 1268 |
/// |
1273 | 1269 |
explicit InvertableMap(const Graph& graph) : Map(graph) {} |
1274 | 1270 |
|
1275 | 1271 |
/// \brief Forward iterator for values. |
1276 | 1272 |
/// |
1277 | 1273 |
/// This iterator is an stl compatible forward |
1278 | 1274 |
/// iterator on the values of the map. The values can |
1279 | 1275 |
/// be accessed in the [beginValue, endValue) range. |
1280 | 1276 |
/// |
1281 | 1277 |
class ValueIterator |
1282 | 1278 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1283 | 1279 |
friend class InvertableMap; |
1284 | 1280 |
private: |
1285 | 1281 |
ValueIterator(typename Container::const_iterator _it) |
1286 | 1282 |
: it(_it) {} |
1287 | 1283 |
public: |
1288 | 1284 |
|
1289 | 1285 |
ValueIterator() {} |
1290 | 1286 |
|
1291 | 1287 |
ValueIterator& operator++() { ++it; return *this; } |
1292 | 1288 |
ValueIterator operator++(int) { |
1293 | 1289 |
ValueIterator tmp(*this); |
1294 | 1290 |
operator++(); |
1295 | 1291 |
return tmp; |
1296 | 1292 |
} |
1297 | 1293 |
|
1298 | 1294 |
const Value& operator*() const { return it->first; } |
1299 | 1295 |
const Value* operator->() const { return &(it->first); } |
1300 | 1296 |
|
1301 | 1297 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1302 | 1298 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1303 | 1299 |
|
1304 | 1300 |
private: |
1305 | 1301 |
typename Container::const_iterator it; |
1306 | 1302 |
}; |
1307 | 1303 |
|
1308 | 1304 |
/// \brief Returns an iterator to the first value. |
1309 | 1305 |
/// |
1310 | 1306 |
/// Returns an stl compatible iterator to the |
1311 | 1307 |
/// first value of the map. The values of the |
... | ... |
@@ -1386,130 +1382,130 @@ |
1386 | 1382 |
|
1387 | 1383 |
/// \brief Clear the keys from the map and inverse map. |
1388 | 1384 |
/// |
1389 | 1385 |
/// Clear the keys from the map and inverse map. It is called by the |
1390 | 1386 |
/// \c AlterationNotifier. |
1391 | 1387 |
virtual void clear() { |
1392 | 1388 |
_inv_map.clear(); |
1393 | 1389 |
Map::clear(); |
1394 | 1390 |
} |
1395 | 1391 |
|
1396 | 1392 |
public: |
1397 | 1393 |
|
1398 | 1394 |
/// \brief The inverse map type. |
1399 | 1395 |
/// |
1400 | 1396 |
/// The inverse of this map. The subscript operator of the map |
1401 | 1397 |
/// gives back always the item what was last assigned to the value. |
1402 | 1398 |
class InverseMap { |
1403 | 1399 |
public: |
1404 | 1400 |
/// \brief Constructor of the InverseMap. |
1405 | 1401 |
/// |
1406 | 1402 |
/// Constructor of the InverseMap. |
1407 | 1403 |
explicit InverseMap(const InvertableMap& inverted) |
1408 | 1404 |
: _inverted(inverted) {} |
1409 | 1405 |
|
1410 | 1406 |
/// The value type of the InverseMap. |
1411 | 1407 |
typedef typename InvertableMap::Key Value; |
1412 | 1408 |
/// The key type of the InverseMap. |
1413 | 1409 |
typedef typename InvertableMap::Value Key; |
1414 | 1410 |
|
1415 | 1411 |
/// \brief Subscript operator. |
1416 | 1412 |
/// |
1417 | 1413 |
/// Subscript operator. It gives back always the item |
1418 | 1414 |
/// what was last assigned to the value. |
1419 | 1415 |
Value operator[](const Key& key) const { |
1420 | 1416 |
return _inverted(key); |
1421 | 1417 |
} |
1422 | 1418 |
|
1423 | 1419 |
private: |
1424 | 1420 |
const InvertableMap& _inverted; |
1425 | 1421 |
}; |
1426 | 1422 |
|
1427 | 1423 |
/// \brief It gives back the just readable inverse map. |
1428 | 1424 |
/// |
1429 | 1425 |
/// It gives back the just readable inverse map. |
1430 | 1426 |
InverseMap inverse() const { |
1431 | 1427 |
return InverseMap(*this); |
1432 | 1428 |
} |
1433 | 1429 |
|
1434 | 1430 |
|
1435 | 1431 |
|
1436 | 1432 |
}; |
1437 | 1433 |
|
1438 | 1434 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
1439 | 1435 |
/// item in the graph. |
1440 | 1436 |
/// |
1441 | 1437 |
/// The DescriptorMap class provides a unique and continuous (but mutable) |
1442 | 1438 |
/// descriptor (id) for each item of the same type (e.g. node) in the |
1443 | 1439 |
/// graph. This id is <ul><li>\b unique: different items (nodes) get |
1444 | 1440 |
/// different ids <li>\b continuous: the range of the ids is the set of |
1445 | 1441 |
/// integers between 0 and \c n-1, where \c n is the number of the items of |
1446 | 1442 |
/// this type (e.g. nodes) (so the id of a node can change if you delete an |
1447 | 1443 |
/// other node, i.e. this id is mutable). </ul> This map can be inverted |
1448 | 1444 |
/// with its member class \c InverseMap, or with the \c operator() member. |
1449 | 1445 |
/// |
1450 |
/// \param _Graph The graph class the \c DescriptorMap belongs to. |
|
1451 |
/// \param _Item The Item is the Key of the Map. It may be Node, Arc or |
|
1446 |
/// \tparam _Graph The graph class the \c DescriptorMap belongs to. |
|
1447 |
/// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or |
|
1452 | 1448 |
/// Edge. |
1453 | 1449 |
template <typename _Graph, typename _Item> |
1454 | 1450 |
class DescriptorMap : protected DefaultMap<_Graph, _Item, int> { |
1455 | 1451 |
|
1456 | 1452 |
typedef _Item Item; |
1457 | 1453 |
typedef DefaultMap<_Graph, _Item, int> Map; |
1458 | 1454 |
|
1459 | 1455 |
public: |
1460 | 1456 |
/// The graph class of DescriptorMap. |
1461 | 1457 |
typedef _Graph Graph; |
1462 | 1458 |
|
1463 | 1459 |
/// The key type of DescriptorMap (Node, Arc, Edge). |
1464 | 1460 |
typedef typename Map::Key Key; |
1465 | 1461 |
/// The value type of DescriptorMap. |
1466 | 1462 |
typedef typename Map::Value Value; |
1467 | 1463 |
|
1468 | 1464 |
/// \brief Constructor. |
1469 | 1465 |
/// |
1470 | 1466 |
/// Constructor for descriptor map. |
1471 | 1467 |
explicit DescriptorMap(const Graph& _graph) : Map(_graph) { |
1472 | 1468 |
Item it; |
1473 | 1469 |
const typename Map::Notifier* nf = Map::notifier(); |
1474 | 1470 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1475 | 1471 |
Map::set(it, _inv_map.size()); |
1476 | 1472 |
_inv_map.push_back(it); |
1477 | 1473 |
} |
1478 | 1474 |
} |
1479 | 1475 |
|
1480 | 1476 |
protected: |
1481 | 1477 |
|
1482 | 1478 |
/// \brief Add a new key to the map. |
1483 | 1479 |
/// |
1484 | 1480 |
/// Add a new key to the map. It is called by the |
1485 | 1481 |
/// \c AlterationNotifier. |
1486 | 1482 |
virtual void add(const Item& item) { |
1487 | 1483 |
Map::add(item); |
1488 | 1484 |
Map::set(item, _inv_map.size()); |
1489 | 1485 |
_inv_map.push_back(item); |
1490 | 1486 |
} |
1491 | 1487 |
|
1492 | 1488 |
/// \brief Add more new keys to the map. |
1493 | 1489 |
/// |
1494 | 1490 |
/// Add more new keys to the map. It is called by the |
1495 | 1491 |
/// \c AlterationNotifier. |
1496 | 1492 |
virtual void add(const std::vector<Item>& items) { |
1497 | 1493 |
Map::add(items); |
1498 | 1494 |
for (int i = 0; i < int(items.size()); ++i) { |
1499 | 1495 |
Map::set(items[i], _inv_map.size()); |
1500 | 1496 |
_inv_map.push_back(items[i]); |
1501 | 1497 |
} |
1502 | 1498 |
} |
1503 | 1499 |
|
1504 | 1500 |
/// \brief Erase the key from the map. |
1505 | 1501 |
/// |
1506 | 1502 |
/// Erase the key from the map. It is called by the |
1507 | 1503 |
/// \c AlterationNotifier. |
1508 | 1504 |
virtual void erase(const Item& item) { |
1509 | 1505 |
Map::set(_inv_map.back(), Map::operator[](item)); |
1510 | 1506 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
1511 | 1507 |
_inv_map.pop_back(); |
1512 | 1508 |
Map::erase(item); |
1513 | 1509 |
} |
1514 | 1510 |
|
1515 | 1511 |
/// \brief Erase more keys from the map. |
... | ... |
@@ -1576,249 +1572,245 @@ |
1576 | 1572 |
return Map::operator[](item); |
1577 | 1573 |
} |
1578 | 1574 |
|
1579 | 1575 |
/// \brief Gives back the item by its descriptor. |
1580 | 1576 |
/// |
1581 | 1577 |
/// Gives back th item by its descriptor. |
1582 | 1578 |
Item operator()(int id) const { |
1583 | 1579 |
return _inv_map[id]; |
1584 | 1580 |
} |
1585 | 1581 |
|
1586 | 1582 |
private: |
1587 | 1583 |
|
1588 | 1584 |
typedef std::vector<Item> Container; |
1589 | 1585 |
Container _inv_map; |
1590 | 1586 |
|
1591 | 1587 |
public: |
1592 | 1588 |
/// \brief The inverse map type of DescriptorMap. |
1593 | 1589 |
/// |
1594 | 1590 |
/// The inverse map type of DescriptorMap. |
1595 | 1591 |
class InverseMap { |
1596 | 1592 |
public: |
1597 | 1593 |
/// \brief Constructor of the InverseMap. |
1598 | 1594 |
/// |
1599 | 1595 |
/// Constructor of the InverseMap. |
1600 | 1596 |
explicit InverseMap(const DescriptorMap& inverted) |
1601 | 1597 |
: _inverted(inverted) {} |
1602 | 1598 |
|
1603 | 1599 |
|
1604 | 1600 |
/// The value type of the InverseMap. |
1605 | 1601 |
typedef typename DescriptorMap::Key Value; |
1606 | 1602 |
/// The key type of the InverseMap. |
1607 | 1603 |
typedef typename DescriptorMap::Value Key; |
1608 | 1604 |
|
1609 | 1605 |
/// \brief Subscript operator. |
1610 | 1606 |
/// |
1611 | 1607 |
/// Subscript operator. It gives back the item |
1612 | 1608 |
/// that the descriptor belongs to currently. |
1613 | 1609 |
Value operator[](const Key& key) const { |
1614 | 1610 |
return _inverted(key); |
1615 | 1611 |
} |
1616 | 1612 |
|
1617 | 1613 |
/// \brief Size of the map. |
1618 | 1614 |
/// |
1619 | 1615 |
/// Returns the size of the map. |
1620 | 1616 |
unsigned int size() const { |
1621 | 1617 |
return _inverted.size(); |
1622 | 1618 |
} |
1623 | 1619 |
|
1624 | 1620 |
private: |
1625 | 1621 |
const DescriptorMap& _inverted; |
1626 | 1622 |
}; |
1627 | 1623 |
|
1628 | 1624 |
/// \brief Gives back the inverse of the map. |
1629 | 1625 |
/// |
1630 | 1626 |
/// Gives back the inverse of the map. |
1631 | 1627 |
const InverseMap inverse() const { |
1632 | 1628 |
return InverseMap(*this); |
1633 | 1629 |
} |
1634 | 1630 |
}; |
1635 | 1631 |
|
1636 | 1632 |
/// \brief Returns the source of the given arc. |
1637 | 1633 |
/// |
1638 | 1634 |
/// The SourceMap gives back the source Node of the given arc. |
1639 | 1635 |
/// \see TargetMap |
1640 |
/// \author Balazs Dezso |
|
1641 | 1636 |
template <typename Digraph> |
1642 | 1637 |
class SourceMap { |
1643 | 1638 |
public: |
1644 | 1639 |
|
1645 | 1640 |
typedef typename Digraph::Node Value; |
1646 | 1641 |
typedef typename Digraph::Arc Key; |
1647 | 1642 |
|
1648 | 1643 |
/// \brief Constructor |
1649 | 1644 |
/// |
1650 | 1645 |
/// Constructor |
1651 | 1646 |
/// \param _digraph The digraph that the map belongs to. |
1652 | 1647 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} |
1653 | 1648 |
|
1654 | 1649 |
/// \brief The subscript operator. |
1655 | 1650 |
/// |
1656 | 1651 |
/// The subscript operator. |
1657 | 1652 |
/// \param arc The arc |
1658 | 1653 |
/// \return The source of the arc |
1659 | 1654 |
Value operator[](const Key& arc) const { |
1660 | 1655 |
return _digraph.source(arc); |
1661 | 1656 |
} |
1662 | 1657 |
|
1663 | 1658 |
private: |
1664 | 1659 |
const Digraph& _digraph; |
1665 | 1660 |
}; |
1666 | 1661 |
|
1667 | 1662 |
/// \brief Returns a \ref SourceMap class. |
1668 | 1663 |
/// |
1669 | 1664 |
/// This function just returns an \ref SourceMap class. |
1670 | 1665 |
/// \relates SourceMap |
1671 | 1666 |
template <typename Digraph> |
1672 | 1667 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) { |
1673 | 1668 |
return SourceMap<Digraph>(digraph); |
1674 | 1669 |
} |
1675 | 1670 |
|
1676 | 1671 |
/// \brief Returns the target of the given arc. |
1677 | 1672 |
/// |
1678 | 1673 |
/// The TargetMap gives back the target Node of the given arc. |
1679 | 1674 |
/// \see SourceMap |
1680 |
/// \author Balazs Dezso |
|
1681 | 1675 |
template <typename Digraph> |
1682 | 1676 |
class TargetMap { |
1683 | 1677 |
public: |
1684 | 1678 |
|
1685 | 1679 |
typedef typename Digraph::Node Value; |
1686 | 1680 |
typedef typename Digraph::Arc Key; |
1687 | 1681 |
|
1688 | 1682 |
/// \brief Constructor |
1689 | 1683 |
/// |
1690 | 1684 |
/// Constructor |
1691 | 1685 |
/// \param _digraph The digraph that the map belongs to. |
1692 | 1686 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} |
1693 | 1687 |
|
1694 | 1688 |
/// \brief The subscript operator. |
1695 | 1689 |
/// |
1696 | 1690 |
/// The subscript operator. |
1697 | 1691 |
/// \param e The arc |
1698 | 1692 |
/// \return The target of the arc |
1699 | 1693 |
Value operator[](const Key& e) const { |
1700 | 1694 |
return _digraph.target(e); |
1701 | 1695 |
} |
1702 | 1696 |
|
1703 | 1697 |
private: |
1704 | 1698 |
const Digraph& _digraph; |
1705 | 1699 |
}; |
1706 | 1700 |
|
1707 | 1701 |
/// \brief Returns a \ref TargetMap class. |
1708 | 1702 |
/// |
1709 | 1703 |
/// This function just returns a \ref TargetMap class. |
1710 | 1704 |
/// \relates TargetMap |
1711 | 1705 |
template <typename Digraph> |
1712 | 1706 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) { |
1713 | 1707 |
return TargetMap<Digraph>(digraph); |
1714 | 1708 |
} |
1715 | 1709 |
|
1716 | 1710 |
/// \brief Returns the "forward" directed arc view of an edge. |
1717 | 1711 |
/// |
1718 | 1712 |
/// Returns the "forward" directed arc view of an edge. |
1719 | 1713 |
/// \see BackwardMap |
1720 |
/// \author Balazs Dezso |
|
1721 | 1714 |
template <typename Graph> |
1722 | 1715 |
class ForwardMap { |
1723 | 1716 |
public: |
1724 | 1717 |
|
1725 | 1718 |
typedef typename Graph::Arc Value; |
1726 | 1719 |
typedef typename Graph::Edge Key; |
1727 | 1720 |
|
1728 | 1721 |
/// \brief Constructor |
1729 | 1722 |
/// |
1730 | 1723 |
/// Constructor |
1731 | 1724 |
/// \param _graph The graph that the map belongs to. |
1732 | 1725 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {} |
1733 | 1726 |
|
1734 | 1727 |
/// \brief The subscript operator. |
1735 | 1728 |
/// |
1736 | 1729 |
/// The subscript operator. |
1737 | 1730 |
/// \param key An edge |
1738 | 1731 |
/// \return The "forward" directed arc view of edge |
1739 | 1732 |
Value operator[](const Key& key) const { |
1740 | 1733 |
return _graph.direct(key, true); |
1741 | 1734 |
} |
1742 | 1735 |
|
1743 | 1736 |
private: |
1744 | 1737 |
const Graph& _graph; |
1745 | 1738 |
}; |
1746 | 1739 |
|
1747 | 1740 |
/// \brief Returns a \ref ForwardMap class. |
1748 | 1741 |
/// |
1749 | 1742 |
/// This function just returns an \ref ForwardMap class. |
1750 | 1743 |
/// \relates ForwardMap |
1751 | 1744 |
template <typename Graph> |
1752 | 1745 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
1753 | 1746 |
return ForwardMap<Graph>(graph); |
1754 | 1747 |
} |
1755 | 1748 |
|
1756 | 1749 |
/// \brief Returns the "backward" directed arc view of an edge. |
1757 | 1750 |
/// |
1758 | 1751 |
/// Returns the "backward" directed arc view of an edge. |
1759 | 1752 |
/// \see ForwardMap |
1760 |
/// \author Balazs Dezso |
|
1761 | 1753 |
template <typename Graph> |
1762 | 1754 |
class BackwardMap { |
1763 | 1755 |
public: |
1764 | 1756 |
|
1765 | 1757 |
typedef typename Graph::Arc Value; |
1766 | 1758 |
typedef typename Graph::Edge Key; |
1767 | 1759 |
|
1768 | 1760 |
/// \brief Constructor |
1769 | 1761 |
/// |
1770 | 1762 |
/// Constructor |
1771 | 1763 |
/// \param _graph The graph that the map belongs to. |
1772 | 1764 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {} |
1773 | 1765 |
|
1774 | 1766 |
/// \brief The subscript operator. |
1775 | 1767 |
/// |
1776 | 1768 |
/// The subscript operator. |
1777 | 1769 |
/// \param key An edge |
1778 | 1770 |
/// \return The "backward" directed arc view of edge |
1779 | 1771 |
Value operator[](const Key& key) const { |
1780 | 1772 |
return _graph.direct(key, false); |
1781 | 1773 |
} |
1782 | 1774 |
|
1783 | 1775 |
private: |
1784 | 1776 |
const Graph& _graph; |
1785 | 1777 |
}; |
1786 | 1778 |
|
1787 | 1779 |
/// \brief Returns a \ref BackwardMap class |
1788 | 1780 |
|
1789 | 1781 |
/// This function just returns a \ref BackwardMap class. |
1790 | 1782 |
/// \relates BackwardMap |
1791 | 1783 |
template <typename Graph> |
1792 | 1784 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
1793 | 1785 |
return BackwardMap<Graph>(graph); |
1794 | 1786 |
} |
1795 | 1787 |
|
1796 | 1788 |
/// \brief Potential difference map |
1797 | 1789 |
/// |
1798 | 1790 |
/// If there is an potential map on the nodes then we |
1799 | 1791 |
/// can get an arc map as we get the substraction of the |
1800 | 1792 |
/// values of the target and source. |
1801 | 1793 |
template <typename Digraph, typename NodeMap> |
1802 | 1794 |
class PotentialDifferenceMap { |
1803 | 1795 |
public: |
1804 | 1796 |
typedef typename Digraph::Arc Key; |
1805 | 1797 |
typedef typename NodeMap::Value Value; |
1806 | 1798 |
|
1807 | 1799 |
/// \brief Constructor |
1808 | 1800 |
/// |
1809 | 1801 |
/// Contructor of the map |
1810 | 1802 |
explicit PotentialDifferenceMap(const Digraph& digraph, |
1811 | 1803 |
const NodeMap& potential) |
1812 | 1804 |
: _digraph(digraph), _potential(potential) {} |
1813 | 1805 |
|
1814 | 1806 |
/// \brief Const subscription operator |
1815 | 1807 |
/// |
1816 | 1808 |
/// Const subscription operator |
1817 | 1809 |
Value operator[](const Key& arc) const { |
1818 | 1810 |
return _potential[_digraph.target(arc)] - |
1819 | 1811 |
_potential[_digraph.source(arc)]; |
1820 | 1812 |
} |
1821 | 1813 |
|
1822 | 1814 |
private: |
1823 | 1815 |
const Digraph& _digraph; |
1824 | 1816 |
const NodeMap& _potential; |
... | ... |
@@ -2035,129 +2027,129 @@ |
2035 | 2027 |
return _deg[key]; |
2036 | 2028 |
} |
2037 | 2029 |
|
2038 | 2030 |
protected: |
2039 | 2031 |
|
2040 | 2032 |
typedef typename Digraph::Arc Arc; |
2041 | 2033 |
|
2042 | 2034 |
virtual void add(const Arc& arc) { |
2043 | 2035 |
++_deg[_digraph.source(arc)]; |
2044 | 2036 |
} |
2045 | 2037 |
|
2046 | 2038 |
virtual void add(const std::vector<Arc>& arcs) { |
2047 | 2039 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2048 | 2040 |
++_deg[_digraph.source(arcs[i])]; |
2049 | 2041 |
} |
2050 | 2042 |
} |
2051 | 2043 |
|
2052 | 2044 |
virtual void erase(const Arc& arc) { |
2053 | 2045 |
--_deg[_digraph.source(arc)]; |
2054 | 2046 |
} |
2055 | 2047 |
|
2056 | 2048 |
virtual void erase(const std::vector<Arc>& arcs) { |
2057 | 2049 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2058 | 2050 |
--_deg[_digraph.source(arcs[i])]; |
2059 | 2051 |
} |
2060 | 2052 |
} |
2061 | 2053 |
|
2062 | 2054 |
virtual void build() { |
2063 | 2055 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2064 | 2056 |
_deg[it] = countOutArcs(_digraph, it); |
2065 | 2057 |
} |
2066 | 2058 |
} |
2067 | 2059 |
|
2068 | 2060 |
virtual void clear() { |
2069 | 2061 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2070 | 2062 |
_deg[it] = 0; |
2071 | 2063 |
} |
2072 | 2064 |
} |
2073 | 2065 |
private: |
2074 | 2066 |
|
2075 | 2067 |
const Digraph& _digraph; |
2076 | 2068 |
AutoNodeMap _deg; |
2077 | 2069 |
}; |
2078 | 2070 |
|
2079 | 2071 |
|
2080 | 2072 |
///Dynamic arc look up between given endpoints. |
2081 | 2073 |
|
2082 | 2074 |
///\ingroup gutils |
2083 | 2075 |
///Using this class, you can find an arc in a digraph from a given |
2084 | 2076 |
///source to a given target in amortized time <em>O(log d)</em>, |
2085 | 2077 |
///where <em>d</em> is the out-degree of the source node. |
2086 | 2078 |
/// |
2087 | 2079 |
///It is possible to find \e all parallel arcs between two nodes with |
2088 | 2080 |
///the \c findFirst() and \c findNext() members. |
2089 | 2081 |
/// |
2090 | 2082 |
///See the \ref ArcLookUp and \ref AllArcLookUp classes if your |
2091 | 2083 |
///digraph is not changed so frequently. |
2092 | 2084 |
/// |
2093 | 2085 |
///This class uses a self-adjusting binary search tree, Sleator's |
2094 | 2086 |
///and Tarjan's Splay tree for guarantee the logarithmic amortized |
2095 | 2087 |
///time bound for arc lookups. This class also guarantees the |
2096 | 2088 |
///optimal time bound in a constant factor for any distribution of |
2097 | 2089 |
///queries. |
2098 | 2090 |
/// |
2099 |
///\ |
|
2091 |
///\tparam G The type of the underlying digraph. |
|
2100 | 2092 |
/// |
2101 | 2093 |
///\sa ArcLookUp |
2102 | 2094 |
///\sa AllArcLookUp |
2103 | 2095 |
template<class G> |
2104 | 2096 |
class DynArcLookUp |
2105 | 2097 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
2106 | 2098 |
{ |
2107 | 2099 |
public: |
2108 | 2100 |
typedef typename ItemSetTraits<G, typename G::Arc> |
2109 | 2101 |
::ItemNotifier::ObserverBase Parent; |
2110 | 2102 |
|
2111 | 2103 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
2112 | 2104 |
typedef G Digraph; |
2113 | 2105 |
|
2114 | 2106 |
protected: |
2115 | 2107 |
|
2116 | 2108 |
class AutoNodeMap : public DefaultMap<G, Node, Arc> { |
2117 | 2109 |
public: |
2118 | 2110 |
|
2119 | 2111 |
typedef DefaultMap<G, Node, Arc> Parent; |
2120 | 2112 |
|
2121 | 2113 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} |
2122 | 2114 |
|
2123 | 2115 |
virtual void add(const Node& node) { |
2124 | 2116 |
Parent::add(node); |
2125 | 2117 |
Parent::set(node, INVALID); |
2126 | 2118 |
} |
2127 | 2119 |
|
2128 | 2120 |
virtual void add(const std::vector<Node>& nodes) { |
2129 | 2121 |
Parent::add(nodes); |
2130 | 2122 |
for (int i = 0; i < int(nodes.size()); ++i) { |
2131 | 2123 |
Parent::set(nodes[i], INVALID); |
2132 | 2124 |
} |
2133 | 2125 |
} |
2134 | 2126 |
|
2135 | 2127 |
virtual void build() { |
2136 | 2128 |
Parent::build(); |
2137 | 2129 |
Node it; |
2138 | 2130 |
typename Parent::Notifier* nf = Parent::notifier(); |
2139 | 2131 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2140 | 2132 |
Parent::set(it, INVALID); |
2141 | 2133 |
} |
2142 | 2134 |
} |
2143 | 2135 |
}; |
2144 | 2136 |
|
2145 | 2137 |
const Digraph &_g; |
2146 | 2138 |
AutoNodeMap _head; |
2147 | 2139 |
typename Digraph::template ArcMap<Arc> _parent; |
2148 | 2140 |
typename Digraph::template ArcMap<Arc> _left; |
2149 | 2141 |
typename Digraph::template ArcMap<Arc> _right; |
2150 | 2142 |
|
2151 | 2143 |
class ArcLess { |
2152 | 2144 |
const Digraph &g; |
2153 | 2145 |
public: |
2154 | 2146 |
ArcLess(const Digraph &_g) : g(_g) {} |
2155 | 2147 |
bool operator()(Arc a,Arc b) const |
2156 | 2148 |
{ |
2157 | 2149 |
return g.target(a)<g.target(b); |
2158 | 2150 |
} |
2159 | 2151 |
}; |
2160 | 2152 |
|
2161 | 2153 |
public: |
2162 | 2154 |
|
2163 | 2155 |
///Constructor |
... | ... |
@@ -2476,242 +2468,242 @@ |
2476 | 2468 |
return r; |
2477 | 2469 |
} else { |
2478 | 2470 |
a = _left[a]; |
2479 | 2471 |
} |
2480 | 2472 |
} |
2481 | 2473 |
} |
2482 | 2474 |
} |
2483 | 2475 |
|
2484 | 2476 |
///Find the next arc between two nodes. |
2485 | 2477 |
|
2486 | 2478 |
///Find the next arc between two nodes in time |
2487 | 2479 |
/// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
2488 | 2480 |
/// outgoing arcs of \c s. |
2489 | 2481 |
///\param s The source node |
2490 | 2482 |
///\param t The target node |
2491 | 2483 |
///\return An arc from \c s to \c t if there exists, \ref INVALID |
2492 | 2484 |
/// otherwise. |
2493 | 2485 |
|
2494 | 2486 |
///\note If \c e is not the result of the previous \c findFirst() |
2495 | 2487 |
///operation then the amorized time bound can not be guaranteed. |
2496 | 2488 |
#ifdef DOXYGEN |
2497 | 2489 |
Arc findNext(Node s, Node t, Arc a) const |
2498 | 2490 |
#else |
2499 | 2491 |
Arc findNext(Node, Node t, Arc a) const |
2500 | 2492 |
#endif |
2501 | 2493 |
{ |
2502 | 2494 |
if (_right[a] != INVALID) { |
2503 | 2495 |
a = _right[a]; |
2504 | 2496 |
while (_left[a] != INVALID) { |
2505 | 2497 |
a = _left[a]; |
2506 | 2498 |
} |
2507 | 2499 |
const_cast<DynArcLookUp&>(*this).splay(a); |
2508 | 2500 |
} else { |
2509 | 2501 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
2510 | 2502 |
a = _parent[a]; |
2511 | 2503 |
} |
2512 | 2504 |
if (_parent[a] == INVALID) { |
2513 | 2505 |
return INVALID; |
2514 | 2506 |
} else { |
2515 | 2507 |
a = _parent[a]; |
2516 | 2508 |
const_cast<DynArcLookUp&>(*this).splay(a); |
2517 | 2509 |
} |
2518 | 2510 |
} |
2519 | 2511 |
if (_g.target(a) == t) return a; |
2520 | 2512 |
else return INVALID; |
2521 | 2513 |
} |
2522 | 2514 |
|
2523 | 2515 |
}; |
2524 | 2516 |
|
2525 | 2517 |
///Fast arc look up between given endpoints. |
2526 | 2518 |
|
2527 | 2519 |
///\ingroup gutils |
2528 | 2520 |
///Using this class, you can find an arc in a digraph from a given |
2529 | 2521 |
///source to a given target in time <em>O(log d)</em>, |
2530 | 2522 |
///where <em>d</em> is the out-degree of the source node. |
2531 | 2523 |
/// |
2532 | 2524 |
///It is not possible to find \e all parallel arcs between two nodes. |
2533 | 2525 |
///Use \ref AllArcLookUp for this purpose. |
2534 | 2526 |
/// |
2535 | 2527 |
///\warning This class is static, so you should refresh() (or at least |
2536 | 2528 |
///refresh(Node)) this data structure |
2537 | 2529 |
///whenever the digraph changes. This is a time consuming (superlinearly |
2538 | 2530 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
2539 | 2531 |
/// |
2540 |
///\ |
|
2532 |
///\tparam G The type of the underlying digraph. |
|
2541 | 2533 |
/// |
2542 | 2534 |
///\sa DynArcLookUp |
2543 | 2535 |
///\sa AllArcLookUp |
2544 | 2536 |
template<class G> |
2545 | 2537 |
class ArcLookUp |
2546 | 2538 |
{ |
2547 | 2539 |
public: |
2548 | 2540 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
2549 | 2541 |
typedef G Digraph; |
2550 | 2542 |
|
2551 | 2543 |
protected: |
2552 | 2544 |
const Digraph &_g; |
2553 | 2545 |
typename Digraph::template NodeMap<Arc> _head; |
2554 | 2546 |
typename Digraph::template ArcMap<Arc> _left; |
2555 | 2547 |
typename Digraph::template ArcMap<Arc> _right; |
2556 | 2548 |
|
2557 | 2549 |
class ArcLess { |
2558 | 2550 |
const Digraph &g; |
2559 | 2551 |
public: |
2560 | 2552 |
ArcLess(const Digraph &_g) : g(_g) {} |
2561 | 2553 |
bool operator()(Arc a,Arc b) const |
2562 | 2554 |
{ |
2563 | 2555 |
return g.target(a)<g.target(b); |
2564 | 2556 |
} |
2565 | 2557 |
}; |
2566 | 2558 |
|
2567 | 2559 |
public: |
2568 | 2560 |
|
2569 | 2561 |
///Constructor |
2570 | 2562 |
|
2571 | 2563 |
///Constructor. |
2572 | 2564 |
/// |
2573 | 2565 |
///It builds up the search database, which remains valid until the digraph |
2574 | 2566 |
///changes. |
2575 | 2567 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
2576 | 2568 |
|
2577 | 2569 |
private: |
2578 | 2570 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
2579 | 2571 |
{ |
2580 | 2572 |
int m=(a+b)/2; |
2581 | 2573 |
Arc me=v[m]; |
2582 | 2574 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
2583 | 2575 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
2584 | 2576 |
return me; |
2585 | 2577 |
} |
2586 | 2578 |
public: |
2587 | 2579 |
///Refresh the data structure at a node. |
2588 | 2580 |
|
2589 | 2581 |
///Build up the search database of node \c n. |
2590 | 2582 |
/// |
2591 | 2583 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
2592 | 2584 |
///the number of the outgoing arcs of \c n. |
2593 | 2585 |
void refresh(Node n) |
2594 | 2586 |
{ |
2595 | 2587 |
std::vector<Arc> v; |
2596 | 2588 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
2597 | 2589 |
if(v.size()) { |
2598 | 2590 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
2599 | 2591 |
_head[n]=refreshRec(v,0,v.size()-1); |
2600 | 2592 |
} |
2601 | 2593 |
else _head[n]=INVALID; |
2602 | 2594 |
} |
2603 | 2595 |
///Refresh the full data structure. |
2604 | 2596 |
|
2605 | 2597 |
///Build up the full search database. In fact, it simply calls |
2606 | 2598 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
2607 | 2599 |
/// |
2608 | 2600 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
2609 | 2601 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
2610 | 2602 |
///out-degree of the digraph. |
2611 | 2603 |
|
2612 | 2604 |
void refresh() |
2613 | 2605 |
{ |
2614 | 2606 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
2615 | 2607 |
} |
2616 | 2608 |
|
2617 | 2609 |
///Find an arc between two nodes. |
2618 | 2610 |
|
2619 | 2611 |
///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where |
2620 | 2612 |
/// <em>d</em> is the number of outgoing arcs of \c s. |
2621 | 2613 |
///\param s The source node |
2622 | 2614 |
///\param t The target node |
2623 | 2615 |
///\return An arc from \c s to \c t if there exists, |
2624 | 2616 |
///\ref INVALID otherwise. |
2625 | 2617 |
/// |
2626 | 2618 |
///\warning If you change the digraph, refresh() must be called before using |
2627 | 2619 |
///this operator. If you change the outgoing arcs of |
2628 | 2620 |
///a single node \c n, then |
2629 | 2621 |
///\ref refresh(Node) "refresh(n)" is enough. |
2630 | 2622 |
/// |
2631 | 2623 |
Arc operator()(Node s, Node t) const |
2632 | 2624 |
{ |
2633 | 2625 |
Arc e; |
2634 | 2626 |
for(e=_head[s]; |
2635 | 2627 |
e!=INVALID&&_g.target(e)!=t; |
2636 | 2628 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
2637 | 2629 |
return e; |
2638 | 2630 |
} |
2639 | 2631 |
|
2640 | 2632 |
}; |
2641 | 2633 |
|
2642 | 2634 |
///Fast look up of all arcs between given endpoints. |
2643 | 2635 |
|
2644 | 2636 |
///\ingroup gutils |
2645 | 2637 |
///This class is the same as \ref ArcLookUp, with the addition |
2646 | 2638 |
///that it makes it possible to find all arcs between given endpoints. |
2647 | 2639 |
/// |
2648 | 2640 |
///\warning This class is static, so you should refresh() (or at least |
2649 | 2641 |
///refresh(Node)) this data structure |
2650 | 2642 |
///whenever the digraph changes. This is a time consuming (superlinearly |
2651 | 2643 |
///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs). |
2652 | 2644 |
/// |
2653 |
///\ |
|
2645 |
///\tparam G The type of the underlying digraph. |
|
2654 | 2646 |
/// |
2655 | 2647 |
///\sa DynArcLookUp |
2656 | 2648 |
///\sa ArcLookUp |
2657 | 2649 |
template<class G> |
2658 | 2650 |
class AllArcLookUp : public ArcLookUp<G> |
2659 | 2651 |
{ |
2660 | 2652 |
using ArcLookUp<G>::_g; |
2661 | 2653 |
using ArcLookUp<G>::_right; |
2662 | 2654 |
using ArcLookUp<G>::_left; |
2663 | 2655 |
using ArcLookUp<G>::_head; |
2664 | 2656 |
|
2665 | 2657 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
2666 | 2658 |
typedef G Digraph; |
2667 | 2659 |
|
2668 | 2660 |
typename Digraph::template ArcMap<Arc> _next; |
2669 | 2661 |
|
2670 | 2662 |
Arc refreshNext(Arc head,Arc next=INVALID) |
2671 | 2663 |
{ |
2672 | 2664 |
if(head==INVALID) return next; |
2673 | 2665 |
else { |
2674 | 2666 |
next=refreshNext(_right[head],next); |
2675 | 2667 |
// _next[head]=next; |
2676 | 2668 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
2677 | 2669 |
? next : INVALID; |
2678 | 2670 |
return refreshNext(_left[head],head); |
2679 | 2671 |
} |
2680 | 2672 |
} |
2681 | 2673 |
|
2682 | 2674 |
void refreshNext() |
2683 | 2675 |
{ |
2684 | 2676 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
2685 | 2677 |
} |
2686 | 2678 |
|
2687 | 2679 |
public: |
2688 | 2680 |
///Constructor |
2689 | 2681 |
|
2690 | 2682 |
///Constructor. |
2691 | 2683 |
/// |
2692 | 2684 |
///It builds up the search database, which remains valid until the digraph |
2693 | 2685 |
///changes. |
2694 | 2686 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();} |
2695 | 2687 |
|
2696 | 2688 |
///Refresh the data structure at a node. |
2697 | 2689 |
|
2698 | 2690 |
///Build up the search database of node \c n. |
2699 | 2691 |
/// |
2700 | 2692 |
///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
2701 | 2693 |
///the number of the outgoing arcs of \c n. |
2702 | 2694 |
|
2703 | 2695 |
void refresh(Node n) |
2704 | 2696 |
{ |
2705 | 2697 |
ArcLookUp<G>::refresh(n); |
2706 | 2698 |
refreshNext(_head[n]); |
2707 | 2699 |
} |
2708 | 2700 |
|
2709 | 2701 |
///Refresh the full data structure. |
2710 | 2702 |
|
2711 | 2703 |
///Build up the full search database. In fact, it simply calls |
2712 | 2704 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
2713 | 2705 |
/// |
2714 | 2706 |
///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
2715 | 2707 |
///the number of the arcs of \c n and <em>D</em> is the maximum |
2716 | 2708 |
///out-degree of the digraph. |
2717 | 2709 |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup paths |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_PATH_H |
25 | 25 |
#define LEMON_PATH_H |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <algorithm> |
29 | 29 |
|
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/bits/invalid.h> |
32 | 32 |
#include <lemon/concepts/path.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup paths |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
|
40 | 40 |
/// \brief A structure for representing directed paths in a digraph. |
41 | 41 |
/// |
42 | 42 |
/// A structure for representing directed path in a digraph. |
43 |
/// \ |
|
43 |
/// \tparam _Digraph The digraph type in which the path is. |
|
44 | 44 |
/// |
45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
46 | 46 |
/// lemon path type stores just this list. As a consequence, it |
47 | 47 |
/// cannot enumerate the nodes of the path and the source node of |
48 | 48 |
/// a zero length path is undefined. |
49 | 49 |
/// |
50 | 50 |
/// This implementation is a back and front insertable and erasable |
51 | 51 |
/// path type. It can be indexed in O(1) time. The front and back |
52 | 52 |
/// insertion and erase is done in O(1) (amortized) time. The |
53 | 53 |
/// implementation uses two vectors for storing the front and back |
54 | 54 |
/// insertions. |
55 | 55 |
template <typename _Digraph> |
56 | 56 |
class Path { |
57 | 57 |
public: |
58 | 58 |
|
59 | 59 |
typedef _Digraph Digraph; |
60 | 60 |
typedef typename Digraph::Arc Arc; |
61 | 61 |
|
62 | 62 |
/// \brief Default constructor |
63 | 63 |
/// |
64 | 64 |
/// Default constructor |
65 | 65 |
Path() {} |
66 | 66 |
|
67 | 67 |
/// \brief Template copy constructor |
68 | 68 |
/// |
69 | 69 |
/// This constuctor initializes the path from any other path type. |
70 | 70 |
/// It simply makes a copy of the given path. |
71 | 71 |
template <typename CPath> |
72 | 72 |
Path(const CPath& cpath) { |
73 | 73 |
copyPath(*this, cpath); |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
/// \brief Template copy assignment |
77 | 77 |
/// |
78 | 78 |
/// This operator makes a copy of a path of any other type. |
79 | 79 |
template <typename CPath> |
80 | 80 |
Path& operator=(const CPath& cpath) { |
81 | 81 |
copyPath(*this, cpath); |
82 | 82 |
return *this; |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
/// \brief Lemon style iterator for path arcs |
86 | 86 |
/// |
87 | 87 |
/// This class is used to iterate on the arcs of the paths. |
88 | 88 |
class ArcIt { |
89 | 89 |
friend class Path; |
90 | 90 |
public: |
91 | 91 |
/// \brief Default constructor |
92 | 92 |
ArcIt() {} |
93 | 93 |
/// \brief Invalid constructor |
94 | 94 |
ArcIt(Invalid) : path(0), idx(-1) {} |
95 | 95 |
/// \brief Initializate the iterator to the first arc of path |
96 | 96 |
ArcIt(const Path &_path) |
97 | 97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
98 | 98 |
|
99 | 99 |
private: |
100 | 100 |
|
101 | 101 |
ArcIt(const Path &_path, int _idx) |
102 | 102 |
: path(&_path), idx(_idx) {} |
103 | 103 |
|
104 | 104 |
public: |
105 | 105 |
|
106 | 106 |
/// \brief Conversion to Arc |
107 | 107 |
operator const Arc&() const { |
... | ... |
@@ -167,129 +167,129 @@ |
167 | 167 |
} else { |
168 | 168 |
head.clear(); |
169 | 169 |
int halfsize = tail.size() / 2; |
170 | 170 |
head.resize(halfsize); |
171 | 171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
172 | 172 |
head.rbegin()); |
173 | 173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
174 | 174 |
tail.resize(tail.size() - halfsize - 1); |
175 | 175 |
} |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
/// \brief The last arc of the path |
179 | 179 |
const Arc& back() const { |
180 | 180 |
return tail.empty() ? head.front() : tail.back(); |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
/// \brief Add a new arc behind the current path |
184 | 184 |
void addBack(const Arc& arc) { |
185 | 185 |
tail.push_back(arc); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
/// \brief Erase the last arc of the path |
189 | 189 |
void eraseBack() { |
190 | 190 |
if (!tail.empty()) { |
191 | 191 |
tail.pop_back(); |
192 | 192 |
} else { |
193 | 193 |
int halfsize = head.size() / 2; |
194 | 194 |
tail.resize(halfsize); |
195 | 195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
196 | 196 |
tail.rbegin()); |
197 | 197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
198 | 198 |
head.resize(head.size() - halfsize - 1); |
199 | 199 |
} |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
typedef True BuildTag; |
203 | 203 |
|
204 | 204 |
template <typename CPath> |
205 | 205 |
void build(const CPath& path) { |
206 | 206 |
int len = path.length(); |
207 | 207 |
tail.reserve(len); |
208 | 208 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
209 | 209 |
tail.push_back(it); |
210 | 210 |
} |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
template <typename CPath> |
214 | 214 |
void buildRev(const CPath& path) { |
215 | 215 |
int len = path.length(); |
216 | 216 |
head.reserve(len); |
217 | 217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
218 | 218 |
head.push_back(it); |
219 | 219 |
} |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
protected: |
223 | 223 |
typedef std::vector<Arc> Container; |
224 | 224 |
Container head, tail; |
225 | 225 |
|
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// \brief A structure for representing directed paths in a digraph. |
229 | 229 |
/// |
230 | 230 |
/// A structure for representing directed path in a digraph. |
231 |
/// \ |
|
231 |
/// \tparam _Digraph The digraph type in which the path is. |
|
232 | 232 |
/// |
233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
234 | 234 |
/// lemon path type stores just this list. As a consequence it |
235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
236 | 236 |
/// cannot store the source. |
237 | 237 |
/// |
238 | 238 |
/// This implementation is a just back insertable and erasable path |
239 | 239 |
/// type. It can be indexed in O(1) time. The back insertion and |
240 | 240 |
/// erasure is amortized O(1) time. This implementation is faster |
241 | 241 |
/// then the \c Path type because it use just one vector for the |
242 | 242 |
/// arcs. |
243 | 243 |
template <typename _Digraph> |
244 | 244 |
class SimplePath { |
245 | 245 |
public: |
246 | 246 |
|
247 | 247 |
typedef _Digraph Digraph; |
248 | 248 |
typedef typename Digraph::Arc Arc; |
249 | 249 |
|
250 | 250 |
/// \brief Default constructor |
251 | 251 |
/// |
252 | 252 |
/// Default constructor |
253 | 253 |
SimplePath() {} |
254 | 254 |
|
255 | 255 |
/// \brief Template copy constructor |
256 | 256 |
/// |
257 | 257 |
/// This path can be initialized with any other path type. It just |
258 | 258 |
/// makes a copy of the given path. |
259 | 259 |
template <typename CPath> |
260 | 260 |
SimplePath(const CPath& cpath) { |
261 | 261 |
copyPath(*this, cpath); |
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
/// \brief Template copy assignment |
265 | 265 |
/// |
266 | 266 |
/// This path can be initialized with any other path type. It just |
267 | 267 |
/// makes a copy of the given path. |
268 | 268 |
template <typename CPath> |
269 | 269 |
SimplePath& operator=(const CPath& cpath) { |
270 | 270 |
copyPath(*this, cpath); |
271 | 271 |
return *this; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
/// \brief Iterator class to iterate on the arcs of the paths |
275 | 275 |
/// |
276 | 276 |
/// This class is used to iterate on the arcs of the paths |
277 | 277 |
/// |
278 | 278 |
/// Of course it converts to Digraph::Arc |
279 | 279 |
class ArcIt { |
280 | 280 |
friend class SimplePath; |
281 | 281 |
public: |
282 | 282 |
/// Default constructor |
283 | 283 |
ArcIt() {} |
284 | 284 |
/// Invalid constructor |
285 | 285 |
ArcIt(Invalid) : path(0), idx(-1) {} |
286 | 286 |
/// \brief Initializate the constructor to the first arc of path |
287 | 287 |
ArcIt(const SimplePath &_path) |
288 | 288 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
289 | 289 |
|
290 | 290 |
private: |
291 | 291 |
|
292 | 292 |
/// Constructor with starting point |
293 | 293 |
ArcIt(const SimplePath &_path, int _idx) |
294 | 294 |
: idx(_idx), path(&_path) {} |
295 | 295 |
|
... | ... |
@@ -331,129 +331,129 @@ |
331 | 331 |
/// |
332 | 332 |
/// \pre n is in the [0..length() - 1] range |
333 | 333 |
const Arc& nth(int n) const { |
334 | 334 |
return data[n]; |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
/// \brief Initializes arc iterator to point to the nth arc. |
338 | 338 |
ArcIt nthIt(int n) const { |
339 | 339 |
return ArcIt(*this, n); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
/// \brief The first arc of the path. |
343 | 343 |
const Arc& front() const { |
344 | 344 |
return data.front(); |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief The last arc of the path. |
348 | 348 |
const Arc& back() const { |
349 | 349 |
return data.back(); |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
/// \brief Add a new arc behind the current path. |
353 | 353 |
void addBack(const Arc& arc) { |
354 | 354 |
data.push_back(arc); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief Erase the last arc of the path |
358 | 358 |
void eraseBack() { |
359 | 359 |
data.pop_back(); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
typedef True BuildTag; |
363 | 363 |
|
364 | 364 |
template <typename CPath> |
365 | 365 |
void build(const CPath& path) { |
366 | 366 |
int len = path.length(); |
367 | 367 |
data.resize(len); |
368 | 368 |
int index = 0; |
369 | 369 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
370 | 370 |
data[index] = it;; |
371 | 371 |
++index; |
372 | 372 |
} |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
template <typename CPath> |
376 | 376 |
void buildRev(const CPath& path) { |
377 | 377 |
int len = path.length(); |
378 | 378 |
data.resize(len); |
379 | 379 |
int index = len; |
380 | 380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
381 | 381 |
--index; |
382 | 382 |
data[index] = it;; |
383 | 383 |
} |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
protected: |
387 | 387 |
typedef std::vector<Arc> Container; |
388 | 388 |
Container data; |
389 | 389 |
|
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
/// \brief A structure for representing directed paths in a digraph. |
393 | 393 |
/// |
394 | 394 |
/// A structure for representing directed path in a digraph. |
395 |
/// \ |
|
395 |
/// \tparam _Digraph The digraph type in which the path is. |
|
396 | 396 |
/// |
397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
398 | 398 |
/// lemon path type stores just this list. As a consequence it |
399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
400 | 400 |
/// cannot store the source. |
401 | 401 |
/// |
402 | 402 |
/// This implementation is a back and front insertable and erasable |
403 | 403 |
/// path type. It can be indexed in O(k) time, where k is the rank |
404 | 404 |
/// of the arc in the path. The length can be computed in O(n) |
405 | 405 |
/// time. The front and back insertion and erasure is O(1) time |
406 | 406 |
/// and it can be splited and spliced in O(1) time. |
407 | 407 |
template <typename _Digraph> |
408 | 408 |
class ListPath { |
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
typedef _Digraph Digraph; |
412 | 412 |
typedef typename Digraph::Arc Arc; |
413 | 413 |
|
414 | 414 |
protected: |
415 | 415 |
|
416 | 416 |
// the std::list<> is incompatible |
417 | 417 |
// hard to create invalid iterator |
418 | 418 |
struct Node { |
419 | 419 |
Arc arc; |
420 | 420 |
Node *next, *prev; |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
Node *first, *last; |
424 | 424 |
|
425 | 425 |
std::allocator<Node> alloc; |
426 | 426 |
|
427 | 427 |
public: |
428 | 428 |
|
429 | 429 |
/// \brief Default constructor |
430 | 430 |
/// |
431 | 431 |
/// Default constructor |
432 | 432 |
ListPath() : first(0), last(0) {} |
433 | 433 |
|
434 | 434 |
/// \brief Template copy constructor |
435 | 435 |
/// |
436 | 436 |
/// This path can be initialized with any other path type. It just |
437 | 437 |
/// makes a copy of the given path. |
438 | 438 |
template <typename CPath> |
439 | 439 |
ListPath(const CPath& cpath) : first(0), last(0) { |
440 | 440 |
copyPath(*this, cpath); |
441 | 441 |
} |
442 | 442 |
|
443 | 443 |
/// \brief Destructor of the path |
444 | 444 |
/// |
445 | 445 |
/// Destructor of the path |
446 | 446 |
~ListPath() { |
447 | 447 |
clear(); |
448 | 448 |
} |
449 | 449 |
|
450 | 450 |
/// \brief Template copy assignment |
451 | 451 |
/// |
452 | 452 |
/// This path can be initialized with any other path type. It just |
453 | 453 |
/// makes a copy of the given path. |
454 | 454 |
template <typename CPath> |
455 | 455 |
ListPath& operator=(const CPath& cpath) { |
456 | 456 |
copyPath(*this, cpath); |
457 | 457 |
return *this; |
458 | 458 |
} |
459 | 459 |
|
... | ... |
@@ -671,129 +671,129 @@ |
671 | 671 |
it.node->prev = tpath.last; |
672 | 672 |
tpath.last->next = it.node; |
673 | 673 |
} |
674 | 674 |
} else { |
675 | 675 |
if (first) { |
676 | 676 |
if (tpath.first) { |
677 | 677 |
last->next = tpath.first; |
678 | 678 |
tpath.first->prev = last; |
679 | 679 |
last = tpath.last; |
680 | 680 |
} |
681 | 681 |
} else { |
682 | 682 |
first = tpath.first; |
683 | 683 |
last = tpath.last; |
684 | 684 |
} |
685 | 685 |
} |
686 | 686 |
tpath.first = tpath.last = 0; |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
/// \brief Split the current path. |
690 | 690 |
/// |
691 | 691 |
/// It splits the current path into two parts. The part before |
692 | 692 |
/// the iterator \c it will remain in the current path and the part |
693 | 693 |
/// starting with |
694 | 694 |
/// \c it will put into \c tpath. If \c tpath have arcs |
695 | 695 |
/// before the operation they are removed first. The time |
696 | 696 |
/// complexity of this function is O(1) plus the the time of emtying |
697 | 697 |
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath |
698 | 698 |
void split(ArcIt it, ListPath& tpath) { |
699 | 699 |
tpath.clear(); |
700 | 700 |
if (it.node) { |
701 | 701 |
tpath.first = it.node; |
702 | 702 |
tpath.last = last; |
703 | 703 |
if (it.node->prev) { |
704 | 704 |
last = it.node->prev; |
705 | 705 |
last->next = 0; |
706 | 706 |
} else { |
707 | 707 |
first = last = 0; |
708 | 708 |
} |
709 | 709 |
it.node->prev = 0; |
710 | 710 |
} |
711 | 711 |
} |
712 | 712 |
|
713 | 713 |
|
714 | 714 |
typedef True BuildTag; |
715 | 715 |
|
716 | 716 |
template <typename CPath> |
717 | 717 |
void build(const CPath& path) { |
718 | 718 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
719 | 719 |
addBack(it); |
720 | 720 |
} |
721 | 721 |
} |
722 | 722 |
|
723 | 723 |
template <typename CPath> |
724 | 724 |
void buildRev(const CPath& path) { |
725 | 725 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
726 | 726 |
addFront(it); |
727 | 727 |
} |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
}; |
731 | 731 |
|
732 | 732 |
/// \brief A structure for representing directed paths in a digraph. |
733 | 733 |
/// |
734 | 734 |
/// A structure for representing directed path in a digraph. |
735 |
/// \ |
|
735 |
/// \tparam _Digraph The digraph type in which the path is. |
|
736 | 736 |
/// |
737 | 737 |
/// In a sense, the path can be treated as a list of arcs. The |
738 | 738 |
/// lemon path type stores just this list. As a consequence it |
739 | 739 |
/// cannot enumerate the nodes in the path and the source node of |
740 | 740 |
/// a zero length path is undefined. |
741 | 741 |
/// |
742 | 742 |
/// This implementation is completly static, i.e. it can be copy constucted |
743 | 743 |
/// or copy assigned from another path, but otherwise it cannot be |
744 | 744 |
/// modified. |
745 | 745 |
/// |
746 | 746 |
/// Being the the most memory efficient path type in LEMON, |
747 | 747 |
/// it is intented to be |
748 | 748 |
/// used when you want to store a large number of paths. |
749 | 749 |
template <typename _Digraph> |
750 | 750 |
class StaticPath { |
751 | 751 |
public: |
752 | 752 |
|
753 | 753 |
typedef _Digraph Digraph; |
754 | 754 |
typedef typename Digraph::Arc Arc; |
755 | 755 |
|
756 | 756 |
/// \brief Default constructor |
757 | 757 |
/// |
758 | 758 |
/// Default constructor |
759 | 759 |
StaticPath() : len(0), arcs(0) {} |
760 | 760 |
|
761 | 761 |
/// \brief Template copy constructor |
762 | 762 |
/// |
763 | 763 |
/// This path can be initialized from any other path type. |
764 | 764 |
template <typename CPath> |
765 | 765 |
StaticPath(const CPath& cpath) : arcs(0) { |
766 | 766 |
copyPath(*this, cpath); |
767 | 767 |
} |
768 | 768 |
|
769 | 769 |
/// \brief Destructor of the path |
770 | 770 |
/// |
771 | 771 |
/// Destructor of the path |
772 | 772 |
~StaticPath() { |
773 | 773 |
if (arcs) delete[] arcs; |
774 | 774 |
} |
775 | 775 |
|
776 | 776 |
/// \brief Template copy assignment |
777 | 777 |
/// |
778 | 778 |
/// This path can be made equal to any other path type. It simply |
779 | 779 |
/// makes a copy of the given path. |
780 | 780 |
template <typename CPath> |
781 | 781 |
StaticPath& operator=(const CPath& cpath) { |
782 | 782 |
copyPath(*this, cpath); |
783 | 783 |
return *this; |
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
/// \brief Iterator class to iterate on the arcs of the paths |
787 | 787 |
/// |
788 | 788 |
/// This class is used to iterate on the arcs of the paths |
789 | 789 |
/// |
790 | 790 |
/// Of course it converts to Digraph::Arc |
791 | 791 |
class ArcIt { |
792 | 792 |
friend class StaticPath; |
793 | 793 |
public: |
794 | 794 |
/// Default constructor |
795 | 795 |
ArcIt() {} |
796 | 796 |
/// Invalid constructor |
797 | 797 |
ArcIt(Invalid) : path(0), idx(-1) {} |
798 | 798 |
/// Initializate the constructor to the first arc of path |
799 | 799 |
ArcIt(const StaticPath &_path) |
... | ... |
@@ -141,130 +141,128 @@ |
141 | 141 |
class Arc { |
142 | 142 |
friend class SmartDigraphBase; |
143 | 143 |
friend class SmartDigraph; |
144 | 144 |
|
145 | 145 |
protected: |
146 | 146 |
int _id; |
147 | 147 |
explicit Arc(int id) : _id(id) {} |
148 | 148 |
public: |
149 | 149 |
Arc() { } |
150 | 150 |
Arc (Invalid) : _id(-1) {} |
151 | 151 |
bool operator==(const Arc i) const {return _id == i._id;} |
152 | 152 |
bool operator!=(const Arc i) const {return _id != i._id;} |
153 | 153 |
bool operator<(const Arc i) const {return _id < i._id;} |
154 | 154 |
}; |
155 | 155 |
|
156 | 156 |
void first(Node& node) const { |
157 | 157 |
node._id = nodes.size() - 1; |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
static void next(Node& node) { |
161 | 161 |
--node._id; |
162 | 162 |
} |
163 | 163 |
|
164 | 164 |
void first(Arc& arc) const { |
165 | 165 |
arc._id = arcs.size() - 1; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
static void next(Arc& arc) { |
169 | 169 |
--arc._id; |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
void firstOut(Arc& arc, const Node& node) const { |
173 | 173 |
arc._id = nodes[node._id].first_out; |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
void nextOut(Arc& arc) const { |
177 | 177 |
arc._id = arcs[arc._id].next_out; |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
void firstIn(Arc& arc, const Node& node) const { |
181 | 181 |
arc._id = nodes[node._id].first_in; |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
void nextIn(Arc& arc) const { |
185 | 185 |
arc._id = arcs[arc._id].next_in; |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
}; |
189 | 189 |
|
190 | 190 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
191 | 191 |
|
192 | 192 |
///\ingroup graphs |
193 | 193 |
/// |
194 | 194 |
///\brief A smart directed graph class. |
195 | 195 |
/// |
196 | 196 |
///This is a simple and fast digraph implementation. |
197 | 197 |
///It is also quite memory efficient, but at the price |
198 | 198 |
///that <b> it does support only limited (only stack-like) |
199 | 199 |
///node and arc deletions</b>. |
200 | 200 |
///It conforms to the \ref concepts::Digraph "Digraph concept" with |
201 | 201 |
///an important extra feature that its maps are real \ref |
202 | 202 |
///concepts::ReferenceMap "reference map"s. |
203 | 203 |
/// |
204 | 204 |
///\sa concepts::Digraph. |
205 |
/// |
|
206 |
///\author Alpar Juttner |
|
207 | 205 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
208 | 206 |
public: |
209 | 207 |
|
210 | 208 |
typedef ExtendedSmartDigraphBase Parent; |
211 | 209 |
|
212 | 210 |
private: |
213 | 211 |
|
214 | 212 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
215 | 213 |
|
216 | 214 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
217 | 215 |
/// |
218 | 216 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {}; |
219 | 217 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
220 | 218 |
///Use DigraphCopy() instead. |
221 | 219 |
|
222 | 220 |
///Assignment of SmartDigraph to another one is \e not allowed. |
223 | 221 |
///Use DigraphCopy() instead. |
224 | 222 |
void operator=(const SmartDigraph &) {} |
225 | 223 |
|
226 | 224 |
public: |
227 | 225 |
|
228 | 226 |
/// Constructor |
229 | 227 |
|
230 | 228 |
/// Constructor. |
231 | 229 |
/// |
232 | 230 |
SmartDigraph() {}; |
233 | 231 |
|
234 | 232 |
///Add a new node to the digraph. |
235 | 233 |
|
236 | 234 |
/// \return the new node. |
237 | 235 |
/// |
238 | 236 |
Node addNode() { return Parent::addNode(); } |
239 | 237 |
|
240 | 238 |
///Add a new arc to the digraph. |
241 | 239 |
|
242 | 240 |
///Add a new arc to the digraph with source node \c s |
243 | 241 |
///and target node \c t. |
244 | 242 |
///\return the new arc. |
245 | 243 |
Arc addArc(const Node& s, const Node& t) { |
246 | 244 |
return Parent::addArc(s, t); |
247 | 245 |
} |
248 | 246 |
|
249 | 247 |
/// \brief Using this it is possible to avoid the superfluous memory |
250 | 248 |
/// allocation. |
251 | 249 |
|
252 | 250 |
/// Using this it is possible to avoid the superfluous memory |
253 | 251 |
/// allocation: if you know that the digraph you want to build will |
254 | 252 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
255 | 253 |
/// then it is worth reserving space for this amount before starting |
256 | 254 |
/// to build the digraph. |
257 | 255 |
/// \sa reserveArc |
258 | 256 |
void reserveNode(int n) { nodes.reserve(n); }; |
259 | 257 |
|
260 | 258 |
/// \brief Using this it is possible to avoid the superfluous memory |
261 | 259 |
/// allocation. |
262 | 260 |
|
263 | 261 |
/// Using this it is possible to avoid the superfluous memory |
264 | 262 |
/// allocation: if you know that the digraph you want to build will |
265 | 263 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
266 | 264 |
/// then it is worth reserving space for this amount before starting |
267 | 265 |
/// to build the digraph. |
268 | 266 |
/// \sa reserveNode |
269 | 267 |
void reserveArc(int m) { arcs.reserve(m); }; |
270 | 268 |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TIME_MEASURE_H |
20 | 20 |
#define LEMON_TIME_MEASURE_H |
21 | 21 |
|
22 | 22 |
///\ingroup timecount |
23 | 23 |
///\file |
24 | 24 |
///\brief Tools for measuring cpu usage |
25 | 25 |
|
26 | 26 |
#ifdef WIN32 |
27 | 27 |
#define WIN32_LEAN_AND_MEAN |
28 | 28 |
#define NOMINMAX |
29 | 29 |
#include <windows.h> |
30 | 30 |
#include <cmath> |
31 | 31 |
#else |
32 | 32 |
#include <sys/times.h> |
33 | 33 |
#include <sys/time.h> |
34 | 34 |
#endif |
35 | 35 |
|
36 | 36 |
#include <string> |
37 | 37 |
#include <fstream> |
38 | 38 |
#include <iostream> |
39 | 39 |
|
40 | 40 |
namespace lemon { |
41 | 41 |
|
42 | 42 |
/// \addtogroup timecount |
43 | 43 |
/// @{ |
44 | 44 |
|
45 | 45 |
/// A class to store (cpu)time instances. |
46 | 46 |
|
47 | 47 |
/// This class stores five time values. |
48 | 48 |
/// - a real time |
49 | 49 |
/// - a user cpu time |
50 | 50 |
/// - a system cpu time |
51 | 51 |
/// - a user cpu time of children |
52 | 52 |
/// - a system cpu time of children |
53 | 53 |
/// |
54 | 54 |
/// TimeStamp's can be added to or substracted from each other and |
55 | 55 |
/// they can be pushed to a stream. |
56 | 56 |
/// |
57 | 57 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport |
58 | 58 |
/// class is what you want to use instead. |
59 |
/// |
|
60 |
///\author Alpar Juttner |
|
61 | 59 |
|
62 | 60 |
class TimeStamp |
63 | 61 |
{ |
64 | 62 |
double utime; |
65 | 63 |
double stime; |
66 | 64 |
double cutime; |
67 | 65 |
double cstime; |
68 | 66 |
double rtime; |
69 | 67 |
|
70 | 68 |
void _reset() { |
71 | 69 |
utime = stime = cutime = cstime = rtime = 0; |
72 | 70 |
} |
73 | 71 |
|
74 | 72 |
public: |
75 | 73 |
|
76 | 74 |
///Read the current time values of the process |
77 | 75 |
void stamp() |
78 | 76 |
{ |
79 | 77 |
#ifndef WIN32 |
80 | 78 |
timeval tv; |
81 | 79 |
gettimeofday(&tv, 0); |
82 | 80 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
83 | 81 |
|
84 | 82 |
tms ts; |
85 | 83 |
double tck=sysconf(_SC_CLK_TCK); |
86 | 84 |
times(&ts); |
87 | 85 |
utime=ts.tms_utime/tck; |
88 | 86 |
stime=ts.tms_stime/tck; |
89 | 87 |
cutime=ts.tms_cutime/tck; |
90 | 88 |
cstime=ts.tms_cstime/tck; |
91 | 89 |
#else |
92 | 90 |
static const double ch = 4294967296.0e-7; |
93 | 91 |
static const double cl = 1.0e-7; |
94 | 92 |
|
95 | 93 |
FILETIME system; |
96 | 94 |
GetSystemTimeAsFileTime(&system); |
97 | 95 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
98 | 96 |
|
99 | 97 |
FILETIME create, exit, kernel, user; |
100 | 98 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { |
101 | 99 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
102 | 100 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
103 | 101 |
cutime = 0; |
104 | 102 |
cstime = 0; |
105 | 103 |
} else { |
106 | 104 |
rtime = 0; |
107 | 105 |
utime = 0; |
108 | 106 |
stime = 0; |
109 | 107 |
cutime = 0; |
110 | 108 |
cstime = 0; |
111 | 109 |
} |
112 | 110 |
#endif |
113 | 111 |
} |
114 | 112 |
|
115 | 113 |
/// Constructor initializing with zero |
116 | 114 |
TimeStamp() |
117 | 115 |
{ _reset(); } |
118 | 116 |
///Constructor initializing with the current time values of the process |
119 | 117 |
TimeStamp(void *) { stamp();} |
120 | 118 |
|
121 | 119 |
///Set every time value to zero |
122 | 120 |
TimeStamp &reset() {_reset();return *this;} |
123 | 121 |
|
124 | 122 |
///\e |
... | ... |
@@ -235,130 +233,128 @@ |
235 | 233 |
///Prints the time counters in the following form: |
236 | 234 |
/// |
237 | 235 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
238 | 236 |
/// |
239 | 237 |
/// where the values are the |
240 | 238 |
/// \li \c u: user cpu time, |
241 | 239 |
/// \li \c s: system cpu time, |
242 | 240 |
/// \li \c cu: user cpu time of children, |
243 | 241 |
/// \li \c cs: system cpu time of children, |
244 | 242 |
/// \li \c real: real time. |
245 | 243 |
/// \relates TimeStamp |
246 | 244 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
247 | 245 |
/// calculated. |
248 | 246 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
249 | 247 |
{ |
250 | 248 |
os << "u: " << t.userTime() << |
251 | 249 |
"s, s: " << t.systemTime() << |
252 | 250 |
"s, cu: " << t.cUserTime() << |
253 | 251 |
"s, cs: " << t.cSystemTime() << |
254 | 252 |
"s, real: " << t.realTime() << "s"; |
255 | 253 |
return os; |
256 | 254 |
} |
257 | 255 |
|
258 | 256 |
///Class for measuring the cpu time and real time usage of the process |
259 | 257 |
|
260 | 258 |
///Class for measuring the cpu time and real time usage of the process. |
261 | 259 |
///It is quite easy-to-use, here is a short example. |
262 | 260 |
///\code |
263 | 261 |
/// #include<lemon/time_measure.h> |
264 | 262 |
/// #include<iostream> |
265 | 263 |
/// |
266 | 264 |
/// int main() |
267 | 265 |
/// { |
268 | 266 |
/// |
269 | 267 |
/// ... |
270 | 268 |
/// |
271 | 269 |
/// Timer t; |
272 | 270 |
/// doSomething(); |
273 | 271 |
/// std::cout << t << '\n'; |
274 | 272 |
/// t.restart(); |
275 | 273 |
/// doSomethingElse(); |
276 | 274 |
/// std::cout << t << '\n'; |
277 | 275 |
/// |
278 | 276 |
/// ... |
279 | 277 |
/// |
280 | 278 |
/// } |
281 | 279 |
///\endcode |
282 | 280 |
/// |
283 | 281 |
///The \ref Timer can also be \ref stop() "stopped" and |
284 | 282 |
///\ref start() "started" again, so it is possible to compute collected |
285 | 283 |
///running times. |
286 | 284 |
/// |
287 | 285 |
///\warning Depending on the operation system and its actual configuration |
288 | 286 |
///the time counters have a certain (10ms on a typical Linux system) |
289 | 287 |
///granularity. |
290 | 288 |
///Therefore this tool is not appropriate to measure very short times. |
291 | 289 |
///Also, if you start and stop the timer very frequently, it could lead to |
292 | 290 |
///distorted results. |
293 | 291 |
/// |
294 | 292 |
///\note If you want to measure the running time of the execution of a certain |
295 | 293 |
///function, consider the usage of \ref TimeReport instead. |
296 | 294 |
/// |
297 | 295 |
///\todo This shouldn't be Unix (Linux) specific. |
298 | 296 |
///\sa TimeReport |
299 |
/// |
|
300 |
///\author Alpar Juttner |
|
301 | 297 |
class Timer |
302 | 298 |
{ |
303 | 299 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
304 | 300 |
TimeStamp start_time; //This is the relativ start-time if the timer |
305 | 301 |
//is _running, the collected _running time otherwise. |
306 | 302 |
|
307 | 303 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
308 | 304 |
|
309 | 305 |
public: |
310 | 306 |
///Constructor. |
311 | 307 |
|
312 | 308 |
///\param run indicates whether or not the timer starts immediately. |
313 | 309 |
/// |
314 | 310 |
Timer(bool run=true) :_running(run) {_reset();} |
315 | 311 |
|
316 | 312 |
///\name Control the state of the timer |
317 | 313 |
///Basically a Timer can be either running or stopped, |
318 | 314 |
///but it provides a bit finer control on the execution. |
319 | 315 |
///The \ref Timer also counts the number of \ref start() |
320 | 316 |
///executions, and is stops only after the same amount (or more) |
321 | 317 |
///\ref stop() "stop()"s. This can be useful e.g. to compute the running time |
322 | 318 |
///of recursive functions. |
323 | 319 |
/// |
324 | 320 |
|
325 | 321 |
///@{ |
326 | 322 |
|
327 | 323 |
///Reset and stop the time counters |
328 | 324 |
|
329 | 325 |
///This function resets and stops the time counters |
330 | 326 |
///\sa restart() |
331 | 327 |
void reset() |
332 | 328 |
{ |
333 | 329 |
_running=0; |
334 | 330 |
_reset(); |
335 | 331 |
} |
336 | 332 |
|
337 | 333 |
///Start the time counters |
338 | 334 |
|
339 | 335 |
///This function starts the time counters. |
340 | 336 |
/// |
341 | 337 |
///If the timer is started more than ones, it will remain running |
342 | 338 |
///until the same amount of \ref stop() is called. |
343 | 339 |
///\sa stop() |
344 | 340 |
void start() |
345 | 341 |
{ |
346 | 342 |
if(_running) _running++; |
347 | 343 |
else { |
348 | 344 |
_running=1; |
349 | 345 |
TimeStamp t; |
350 | 346 |
t.stamp(); |
351 | 347 |
start_time=t-start_time; |
352 | 348 |
} |
353 | 349 |
} |
354 | 350 |
|
355 | 351 |
|
356 | 352 |
///Stop the time counters |
357 | 353 |
|
358 | 354 |
///This function stops the time counters. If start() was executed more than |
359 | 355 |
///once, then the same number of stop() execution is necessary the really |
360 | 356 |
///stop the timer. |
361 | 357 |
/// |
362 | 358 |
///\sa halt() |
363 | 359 |
///\sa start() |
364 | 360 |
///\sa restart() |
0 comments (0 inline)