1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Bfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/graph_utils.h> |
28 | 28 |
#include <lemon/bits/path_dump.h> |
29 | 29 |
#include <lemon/bits/invalid.h> |
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
|
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
|
39 | 39 |
///Default traits class of Bfs class. |
40 |
///\ |
|
40 |
///\tparam GR Digraph type. |
|
41 | 41 |
template<class GR> |
42 | 42 |
struct BfsDefaultTraits |
43 | 43 |
{ |
44 | 44 |
///The digraph type the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
///\brief The type of the map that stores the last |
47 | 47 |
///arcs of the shortest paths. |
48 | 48 |
/// |
49 | 49 |
///The type of the map that stores the last |
50 | 50 |
///arcs of the shortest paths. |
51 | 51 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
52 | 52 |
/// |
53 | 53 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
54 | 54 |
///Instantiates a PredMap. |
55 | 55 |
|
56 | 56 |
///This function instantiates a \ref PredMap. |
57 | 57 |
///\param G is the digraph, to which we would like to define the PredMap. |
58 | 58 |
///\todo The digraph alone may be insufficient to initialize |
59 | 59 |
static PredMap *createPredMap(const GR &G) |
60 | 60 |
{ |
61 | 61 |
return new PredMap(G); |
62 | 62 |
} |
63 | 63 |
///The type of the map that indicates which nodes are processed. |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
67 | 67 |
///\todo named parameter to set this type, function to read and write. |
68 | 68 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
69 | 69 |
///Instantiates a ProcessedMap. |
70 | 70 |
|
71 | 71 |
///This function instantiates a \ref ProcessedMap. |
72 | 72 |
///\param g is the digraph, to which |
73 | 73 |
///we would like to define the \ref ProcessedMap |
74 | 74 |
#ifdef DOXYGEN |
75 | 75 |
static ProcessedMap *createProcessedMap(const GR &g) |
76 | 76 |
#else |
77 | 77 |
static ProcessedMap *createProcessedMap(const GR &) |
78 | 78 |
#endif |
79 | 79 |
{ |
80 | 80 |
return new ProcessedMap(); |
81 | 81 |
} |
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
86 | 86 |
///\todo named parameter to set this type, function to read and write. |
87 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
88 | 88 |
///Instantiates a ReachedMap. |
89 | 89 |
|
90 | 90 |
///This function instantiates a \ref ReachedMap. |
91 | 91 |
///\param G is the digraph, to which |
92 | 92 |
///we would like to define the \ref ReachedMap. |
93 | 93 |
static ReachedMap *createReachedMap(const GR &G) |
94 | 94 |
{ |
95 | 95 |
return new ReachedMap(G); |
96 | 96 |
} |
97 | 97 |
///The type of the map that stores the dists of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the dists of the nodes. |
100 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
/// |
102 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
103 | 103 |
///Instantiates a DistMap. |
104 | 104 |
|
105 | 105 |
///This function instantiates a \ref DistMap. |
106 | 106 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
107 | 107 |
static DistMap *createDistMap(const GR &G) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(G); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%BFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 117 |
/// |
118 |
///\ |
|
118 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
|
119 | 119 |
///\ref ListDigraph. The value of GR is not used directly by Bfs, it |
120 | 120 |
///is only passed to \ref BfsDefaultTraits. |
121 |
///\ |
|
121 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
122 | 122 |
///The default traits class is |
123 | 123 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
124 | 124 |
///See \ref BfsDefaultTraits for the documentation of |
125 | 125 |
///a Bfs traits class. |
126 |
/// |
|
127 |
///\author Alpar Juttner |
|
128 | 126 |
|
129 | 127 |
#ifdef DOXYGEN |
130 | 128 |
template <typename GR, |
131 | 129 |
typename TR> |
132 | 130 |
#else |
133 | 131 |
template <typename GR=ListDigraph, |
134 | 132 |
typename TR=BfsDefaultTraits<GR> > |
135 | 133 |
#endif |
136 | 134 |
class Bfs { |
137 | 135 |
public: |
138 | 136 |
/** |
139 | 137 |
* \brief \ref Exception for uninitialized parameters. |
140 | 138 |
* |
141 | 139 |
* This error represents problems in the initialization |
142 | 140 |
* of the parameters of the algorithms. |
143 | 141 |
*/ |
144 | 142 |
class UninitializedParameter : public lemon::UninitializedParameter { |
145 | 143 |
public: |
146 | 144 |
virtual const char* what() const throw() { |
147 | 145 |
return "lemon::Bfs::UninitializedParameter"; |
148 | 146 |
} |
149 | 147 |
}; |
150 | 148 |
|
151 | 149 |
typedef TR Traits; |
152 | 150 |
///The type of the underlying digraph. |
153 | 151 |
typedef typename TR::Digraph Digraph; |
154 | 152 |
|
155 | 153 |
///\brief The type of the map that stores the last |
156 | 154 |
///arcs of the shortest paths. |
157 | 155 |
typedef typename TR::PredMap PredMap; |
158 | 156 |
///The type of the map indicating which nodes are reached. |
159 | 157 |
typedef typename TR::ReachedMap ReachedMap; |
160 | 158 |
///The type of the map indicating which nodes are processed. |
161 | 159 |
typedef typename TR::ProcessedMap ProcessedMap; |
162 | 160 |
///The type of the map that stores the dists of the nodes. |
163 | 161 |
typedef typename TR::DistMap DistMap; |
164 | 162 |
private: |
165 | 163 |
|
166 | 164 |
typedef typename Digraph::Node Node; |
167 | 165 |
typedef typename Digraph::NodeIt NodeIt; |
168 | 166 |
typedef typename Digraph::Arc Arc; |
169 | 167 |
typedef typename Digraph::OutArcIt OutArcIt; |
170 | 168 |
|
171 | 169 |
/// Pointer to the underlying digraph. |
172 | 170 |
const Digraph *G; |
173 | 171 |
///Pointer to the map of predecessors arcs. |
174 | 172 |
PredMap *_pred; |
175 | 173 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
176 | 174 |
bool local_pred; |
177 | 175 |
///Pointer to the map of distances. |
178 | 176 |
DistMap *_dist; |
179 | 177 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
180 | 178 |
bool local_dist; |
181 | 179 |
///Pointer to the map of reached status of the nodes. |
182 | 180 |
ReachedMap *_reached; |
183 | 181 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
184 | 182 |
bool local_reached; |
185 | 183 |
///Pointer to the map of processed status of the nodes. |
186 | 184 |
ProcessedMap *_processed; |
187 | 185 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
188 | 186 |
bool local_processed; |
189 | 187 |
|
190 | 188 |
std::vector<typename Digraph::Node> _queue; |
191 | 189 |
int _queue_head,_queue_tail,_queue_next_dist; |
192 | 190 |
int _curr_dist; |
193 | 191 |
|
194 | 192 |
///Creates the maps if necessary. |
195 | 193 |
|
196 | 194 |
///\todo Better memory allocation (instead of new). |
197 | 195 |
void create_maps() |
198 | 196 |
{ |
199 | 197 |
if(!_pred) { |
200 | 198 |
local_pred = true; |
201 | 199 |
_pred = Traits::createPredMap(*G); |
202 | 200 |
} |
203 | 201 |
if(!_dist) { |
204 | 202 |
local_dist = true; |
205 | 203 |
_dist = Traits::createDistMap(*G); |
206 | 204 |
} |
207 | 205 |
if(!_reached) { |
208 | 206 |
local_reached = true; |
209 | 207 |
_reached = Traits::createReachedMap(*G); |
210 | 208 |
} |
211 | 209 |
if(!_processed) { |
212 | 210 |
local_processed = true; |
213 | 211 |
_processed = Traits::createProcessedMap(*G); |
214 | 212 |
} |
215 | 213 |
} |
216 | 214 |
|
217 | 215 |
protected: |
218 | 216 |
|
219 | 217 |
Bfs() {} |
220 | 218 |
|
221 | 219 |
public: |
222 | 220 |
|
223 | 221 |
typedef Bfs Create; |
224 | 222 |
|
225 | 223 |
///\name Named template parameters |
226 | 224 |
|
227 | 225 |
///@{ |
228 | 226 |
|
229 | 227 |
template <class T> |
230 | 228 |
struct DefPredMapTraits : public Traits { |
231 | 229 |
typedef T PredMap; |
232 | 230 |
static PredMap *createPredMap(const Digraph &) |
233 | 231 |
{ |
234 | 232 |
throw UninitializedParameter(); |
235 | 233 |
} |
236 | 234 |
}; |
237 | 235 |
///\brief \ref named-templ-param "Named parameter" for setting |
238 | 236 |
///PredMap type |
239 | 237 |
/// |
240 | 238 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
241 | 239 |
/// |
242 | 240 |
template <class T> |
243 | 241 |
struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > { |
244 | 242 |
typedef Bfs< Digraph, DefPredMapTraits<T> > Create; |
245 | 243 |
}; |
246 | 244 |
|
247 | 245 |
template <class T> |
248 | 246 |
struct DefDistMapTraits : public Traits { |
249 | 247 |
typedef T DistMap; |
250 | 248 |
static DistMap *createDistMap(const Digraph &) |
251 | 249 |
{ |
252 | 250 |
throw UninitializedParameter(); |
253 | 251 |
} |
254 | 252 |
}; |
255 | 253 |
///\brief \ref named-templ-param "Named parameter" for setting |
256 | 254 |
///DistMap type |
257 | 255 |
/// |
258 | 256 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
259 | 257 |
/// |
260 | 258 |
template <class T> |
261 | 259 |
struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > { |
262 | 260 |
typedef Bfs< Digraph, DefDistMapTraits<T> > Create; |
263 | 261 |
}; |
264 | 262 |
|
265 | 263 |
template <class T> |
266 | 264 |
struct DefReachedMapTraits : public Traits { |
267 | 265 |
typedef T ReachedMap; |
268 | 266 |
static ReachedMap *createReachedMap(const Digraph &) |
269 | 267 |
{ |
270 | 268 |
throw UninitializedParameter(); |
271 | 269 |
} |
272 | 270 |
}; |
273 | 271 |
///\brief \ref named-templ-param "Named parameter" for setting |
274 | 272 |
///ReachedMap type |
275 | 273 |
/// |
276 | 274 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type |
277 | 275 |
/// |
278 | 276 |
template <class T> |
279 | 277 |
struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > { |
280 | 278 |
typedef Bfs< Digraph, DefReachedMapTraits<T> > Create; |
281 | 279 |
}; |
282 | 280 |
|
283 | 281 |
template <class T> |
284 | 282 |
struct DefProcessedMapTraits : public Traits { |
285 | 283 |
typedef T ProcessedMap; |
286 | 284 |
static ProcessedMap *createProcessedMap(const Digraph &) |
287 | 285 |
{ |
288 | 286 |
throw UninitializedParameter(); |
289 | 287 |
} |
290 | 288 |
}; |
291 | 289 |
///\brief \ref named-templ-param "Named parameter" for setting |
292 | 290 |
///ProcessedMap type |
293 | 291 |
/// |
294 | 292 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
295 | 293 |
/// |
296 | 294 |
template <class T> |
297 | 295 |
struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > { |
298 | 296 |
typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create; |
299 | 297 |
}; |
300 | 298 |
|
301 | 299 |
struct DefDigraphProcessedMapTraits : public Traits { |
302 | 300 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
303 | 301 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
304 | 302 |
{ |
305 | 303 |
return new ProcessedMap(G); |
306 | 304 |
} |
307 | 305 |
}; |
308 | 306 |
///\brief \ref named-templ-param "Named parameter" |
309 | 307 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
310 | 308 |
/// |
311 | 309 |
///\ref named-templ-param "Named parameter" |
312 | 310 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
313 | 311 |
///If you don't set it explicitly, it will be automatically allocated. |
314 | 312 |
template <class T> |
315 | 313 |
struct DefProcessedMapToBeDefaultMap : |
316 | 314 |
public Bfs< Digraph, DefDigraphProcessedMapTraits> { |
317 | 315 |
typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create; |
318 | 316 |
}; |
319 | 317 |
|
320 | 318 |
///@} |
321 | 319 |
|
322 | 320 |
public: |
323 | 321 |
|
324 | 322 |
///Constructor. |
325 | 323 |
|
326 | 324 |
///\param _G the digraph the algorithm will run on. |
327 | 325 |
/// |
328 | 326 |
Bfs(const Digraph& _G) : |
329 | 327 |
G(&_G), |
330 | 328 |
_pred(NULL), local_pred(false), |
331 | 329 |
_dist(NULL), local_dist(false), |
332 | 330 |
_reached(NULL), local_reached(false), |
333 | 331 |
_processed(NULL), local_processed(false) |
334 | 332 |
{ } |
335 | 333 |
|
336 | 334 |
///Destructor. |
337 | 335 |
~Bfs() |
338 | 336 |
{ |
339 | 337 |
if(local_pred) delete _pred; |
340 | 338 |
if(local_dist) delete _dist; |
341 | 339 |
if(local_reached) delete _reached; |
342 | 340 |
if(local_processed) delete _processed; |
343 | 341 |
} |
344 | 342 |
|
345 | 343 |
///Sets the map storing the predecessor arcs. |
346 | 344 |
|
347 | 345 |
///Sets the map storing the predecessor arcs. |
348 | 346 |
///If you don't use this function before calling \ref run(), |
349 | 347 |
///it will allocate one. The destructor deallocates this |
350 | 348 |
///automatically allocated map, of course. |
351 | 349 |
///\return <tt> (*this) </tt> |
352 | 350 |
Bfs &predMap(PredMap &m) |
353 | 351 |
{ |
354 | 352 |
if(local_pred) { |
355 | 353 |
delete _pred; |
356 | 354 |
local_pred=false; |
357 | 355 |
} |
358 | 356 |
_pred = &m; |
359 | 357 |
return *this; |
360 | 358 |
} |
361 | 359 |
|
362 | 360 |
///Sets the map indicating the reached nodes. |
363 | 361 |
|
364 | 362 |
///Sets the map indicating the reached nodes. |
365 | 363 |
///If you don't use this function before calling \ref run(), |
366 | 364 |
///it will allocate one. The destructor deallocates this |
367 | 365 |
///automatically allocated map, of course. |
368 | 366 |
///\return <tt> (*this) </tt> |
369 | 367 |
Bfs &reachedMap(ReachedMap &m) |
370 | 368 |
{ |
371 | 369 |
if(local_reached) { |
372 | 370 |
delete _reached; |
373 | 371 |
local_reached=false; |
374 | 372 |
} |
375 | 373 |
_reached = &m; |
376 | 374 |
return *this; |
377 | 375 |
} |
378 | 376 |
|
379 | 377 |
///Sets the map indicating the processed nodes. |
380 | 378 |
|
381 | 379 |
///Sets the map indicating the processed nodes. |
382 | 380 |
///If you don't use this function before calling \ref run(), |
383 | 381 |
///it will allocate one. The destructor deallocates this |
384 | 382 |
///automatically allocated map, of course. |
385 | 383 |
///\return <tt> (*this) </tt> |
386 | 384 |
Bfs &processedMap(ProcessedMap &m) |
387 | 385 |
{ |
388 | 386 |
if(local_processed) { |
389 | 387 |
delete _processed; |
390 | 388 |
local_processed=false; |
391 | 389 |
} |
392 | 390 |
_processed = &m; |
393 | 391 |
return *this; |
394 | 392 |
} |
395 | 393 |
|
396 | 394 |
///Sets the map storing the distances calculated by the algorithm. |
397 | 395 |
|
398 | 396 |
///Sets the map storing the distances calculated by the algorithm. |
399 | 397 |
///If you don't use this function before calling \ref run(), |
400 | 398 |
///it will allocate one. The destructor deallocates this |
401 | 399 |
///automatically allocated map, of course. |
402 | 400 |
///\return <tt> (*this) </tt> |
403 | 401 |
Bfs &distMap(DistMap &m) |
404 | 402 |
{ |
405 | 403 |
if(local_dist) { |
406 | 404 |
delete _dist; |
407 | 405 |
local_dist=false; |
408 | 406 |
} |
409 | 407 |
_dist = &m; |
410 | 408 |
return *this; |
411 | 409 |
} |
412 | 410 |
|
413 | 411 |
public: |
414 | 412 |
///\name Execution control |
415 | 413 |
///The simplest way to execute the algorithm is to use |
416 | 414 |
///one of the member functions called \c run(...). |
417 | 415 |
///\n |
418 | 416 |
///If you need more control on the execution, |
419 | 417 |
///first you must call \ref init(), then you can add several source nodes |
420 | 418 |
///with \ref addSource(). |
421 | 419 |
///Finally \ref start() will perform the actual path |
422 | 420 |
///computation. |
423 | 421 |
|
424 | 422 |
///@{ |
425 | 423 |
|
426 | 424 |
///\brief Initializes the internal data structures. |
427 | 425 |
/// |
428 | 426 |
///Initializes the internal data structures. |
429 | 427 |
/// |
430 | 428 |
void init() |
431 | 429 |
{ |
432 | 430 |
create_maps(); |
433 | 431 |
_queue.resize(countNodes(*G)); |
434 | 432 |
_queue_head=_queue_tail=0; |
435 | 433 |
_curr_dist=1; |
436 | 434 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
437 | 435 |
_pred->set(u,INVALID); |
438 | 436 |
_reached->set(u,false); |
439 | 437 |
_processed->set(u,false); |
440 | 438 |
} |
441 | 439 |
} |
442 | 440 |
|
443 | 441 |
///Adds a new source node. |
444 | 442 |
|
445 | 443 |
///Adds a new source node to the set of nodes to be processed. |
446 | 444 |
/// |
447 | 445 |
void addSource(Node s) |
448 | 446 |
{ |
449 | 447 |
if(!(*_reached)[s]) |
450 | 448 |
{ |
451 | 449 |
_reached->set(s,true); |
452 | 450 |
_pred->set(s,INVALID); |
453 | 451 |
_dist->set(s,0); |
454 | 452 |
_queue[_queue_head++]=s; |
455 | 453 |
_queue_next_dist=_queue_head; |
456 | 454 |
} |
457 | 455 |
} |
458 | 456 |
|
459 | 457 |
///Processes the next node. |
460 | 458 |
|
461 | 459 |
///Processes the next node. |
462 | 460 |
/// |
463 | 461 |
///\return The processed node. |
464 | 462 |
/// |
465 | 463 |
///\warning The queue must not be empty! |
466 | 464 |
Node processNextNode() |
467 | 465 |
{ |
468 | 466 |
if(_queue_tail==_queue_next_dist) { |
469 | 467 |
_curr_dist++; |
470 | 468 |
_queue_next_dist=_queue_head; |
471 | 469 |
} |
472 | 470 |
Node n=_queue[_queue_tail++]; |
473 | 471 |
_processed->set(n,true); |
474 | 472 |
Node m; |
475 | 473 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
476 | 474 |
if(!(*_reached)[m=G->target(e)]) { |
477 | 475 |
_queue[_queue_head++]=m; |
478 | 476 |
_reached->set(m,true); |
479 | 477 |
_pred->set(m,e); |
480 | 478 |
_dist->set(m,_curr_dist); |
481 | 479 |
} |
482 | 480 |
return n; |
483 | 481 |
} |
484 | 482 |
|
485 | 483 |
///Processes the next node. |
486 | 484 |
|
487 | 485 |
///Processes the next node. And checks that the given target node |
488 | 486 |
///is reached. If the target node is reachable from the processed |
489 | 487 |
///node then the reached parameter will be set true. The reached |
490 | 488 |
///parameter should be initially false. |
491 | 489 |
/// |
492 | 490 |
///\param target The target node. |
493 | 491 |
///\retval reach Indicates that the target node is reached. |
494 | 492 |
///\return The processed node. |
495 | 493 |
/// |
496 | 494 |
///\warning The queue must not be empty! |
497 | 495 |
Node processNextNode(Node target, bool& reach) |
498 | 496 |
{ |
499 | 497 |
if(_queue_tail==_queue_next_dist) { |
500 | 498 |
_curr_dist++; |
501 | 499 |
_queue_next_dist=_queue_head; |
502 | 500 |
} |
503 | 501 |
Node n=_queue[_queue_tail++]; |
504 | 502 |
_processed->set(n,true); |
505 | 503 |
Node m; |
506 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
507 | 505 |
if(!(*_reached)[m=G->target(e)]) { |
508 | 506 |
_queue[_queue_head++]=m; |
509 | 507 |
_reached->set(m,true); |
510 | 508 |
_pred->set(m,e); |
511 | 509 |
_dist->set(m,_curr_dist); |
512 | 510 |
reach = reach || (target == m); |
513 | 511 |
} |
514 | 512 |
return n; |
515 | 513 |
} |
516 | 514 |
|
517 | 515 |
///Processes the next node. |
518 | 516 |
|
519 | 517 |
///Processes the next node. And checks that at least one of |
520 | 518 |
///reached node has true value in the \c nm node map. If one node |
521 | 519 |
///with true value is reachable from the processed node then the |
522 | 520 |
///rnode parameter will be set to the first of such nodes. |
523 | 521 |
/// |
524 | 522 |
///\param nm The node map of possible targets. |
525 | 523 |
///\retval rnode The reached target node. |
526 | 524 |
///\return The processed node. |
527 | 525 |
/// |
528 | 526 |
///\warning The queue must not be empty! |
529 | 527 |
template<class NM> |
530 | 528 |
Node processNextNode(const NM& nm, Node& rnode) |
531 | 529 |
{ |
532 | 530 |
if(_queue_tail==_queue_next_dist) { |
533 | 531 |
_curr_dist++; |
534 | 532 |
_queue_next_dist=_queue_head; |
535 | 533 |
} |
536 | 534 |
Node n=_queue[_queue_tail++]; |
537 | 535 |
_processed->set(n,true); |
538 | 536 |
Node m; |
539 | 537 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
540 | 538 |
if(!(*_reached)[m=G->target(e)]) { |
541 | 539 |
_queue[_queue_head++]=m; |
542 | 540 |
_reached->set(m,true); |
543 | 541 |
_pred->set(m,e); |
544 | 542 |
_dist->set(m,_curr_dist); |
545 | 543 |
if (nm[m] && rnode == INVALID) rnode = m; |
546 | 544 |
} |
547 | 545 |
return n; |
548 | 546 |
} |
549 | 547 |
|
550 | 548 |
///Next node to be processed. |
551 | 549 |
|
552 | 550 |
///Next node to be processed. |
553 | 551 |
/// |
554 | 552 |
///\return The next node to be processed or INVALID if the queue is |
555 | 553 |
/// empty. |
556 | 554 |
Node nextNode() |
557 | 555 |
{ |
558 | 556 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
559 | 557 |
} |
560 | 558 |
|
561 | 559 |
///\brief Returns \c false if there are nodes |
562 | 560 |
///to be processed in the queue |
563 | 561 |
/// |
564 | 562 |
///Returns \c false if there are nodes |
565 | 563 |
///to be processed in the queue |
566 | 564 |
bool emptyQueue() { return _queue_tail==_queue_head; } |
567 | 565 |
///Returns the number of the nodes to be processed. |
568 | 566 |
|
569 | 567 |
///Returns the number of the nodes to be processed in the queue. |
570 | 568 |
int queueSize() { return _queue_head-_queue_tail; } |
571 | 569 |
|
572 | 570 |
///Executes the algorithm. |
573 | 571 |
|
574 | 572 |
///Executes the algorithm. |
575 | 573 |
/// |
576 | 574 |
///\pre init() must be called and at least one node should be added |
577 | 575 |
///with addSource() before using this function. |
578 | 576 |
/// |
579 | 577 |
///This method runs the %BFS algorithm from the root node(s) |
580 | 578 |
///in order to |
581 | 579 |
///compute the |
582 | 580 |
///shortest path to each node. The algorithm computes |
583 | 581 |
///- The shortest path tree. |
584 | 582 |
///- The distance of each node from the root(s). |
585 | 583 |
void start() |
586 | 584 |
{ |
587 | 585 |
while ( !emptyQueue() ) processNextNode(); |
588 | 586 |
} |
589 | 587 |
|
590 | 588 |
///Executes the algorithm until \c dest is reached. |
591 | 589 |
|
592 | 590 |
///Executes the algorithm until \c dest is reached. |
593 | 591 |
/// |
594 | 592 |
///\pre init() must be called and at least one node should be added |
595 | 593 |
///with addSource() before using this function. |
596 | 594 |
/// |
597 | 595 |
///This method runs the %BFS algorithm from the root node(s) |
598 | 596 |
///in order to compute the shortest path to \c dest. |
599 | 597 |
///The algorithm computes |
600 | 598 |
///- The shortest path to \c dest. |
601 | 599 |
///- The distance of \c dest from the root(s). |
602 | 600 |
void start(Node dest) |
603 | 601 |
{ |
604 | 602 |
bool reach = false; |
605 | 603 |
while ( !emptyQueue() && !reach ) processNextNode(dest, reach); |
606 | 604 |
} |
607 | 605 |
|
608 | 606 |
///Executes the algorithm until a condition is met. |
609 | 607 |
|
610 | 608 |
///Executes the algorithm until a condition is met. |
611 | 609 |
/// |
612 | 610 |
///\pre init() must be called and at least one node should be added |
613 | 611 |
///with addSource() before using this function. |
614 | 612 |
/// |
615 | 613 |
///\param nm must be a bool (or convertible) node map. The |
616 | 614 |
///algorithm will stop when it reaches a node \c v with |
617 | 615 |
/// <tt>nm[v]</tt> true. |
618 | 616 |
/// |
619 | 617 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
620 | 618 |
///\c INVALID if no such node was found. |
621 | 619 |
template<class NM> |
622 | 620 |
Node start(const NM &nm) |
623 | 621 |
{ |
624 | 622 |
Node rnode = INVALID; |
625 | 623 |
while ( !emptyQueue() && rnode == INVALID ) { |
626 | 624 |
processNextNode(nm, rnode); |
627 | 625 |
} |
628 | 626 |
return rnode; |
629 | 627 |
} |
630 | 628 |
|
631 | 629 |
///Runs %BFS algorithm from node \c s. |
632 | 630 |
|
633 | 631 |
///This method runs the %BFS algorithm from a root node \c s |
634 | 632 |
///in order to |
635 | 633 |
///compute the |
636 | 634 |
///shortest path to each node. The algorithm computes |
637 | 635 |
///- The shortest path tree. |
638 | 636 |
///- The distance of each node from the root. |
639 | 637 |
/// |
640 | 638 |
///\note b.run(s) is just a shortcut of the following code. |
641 | 639 |
///\code |
642 | 640 |
/// b.init(); |
643 | 641 |
/// b.addSource(s); |
644 | 642 |
/// b.start(); |
645 | 643 |
///\endcode |
646 | 644 |
void run(Node s) { |
647 | 645 |
init(); |
648 | 646 |
addSource(s); |
649 | 647 |
start(); |
650 | 648 |
} |
651 | 649 |
|
652 | 650 |
///Finds the shortest path between \c s and \c t. |
653 | 651 |
|
654 | 652 |
///Finds the shortest path between \c s and \c t. |
655 | 653 |
/// |
656 | 654 |
///\return The length of the shortest s---t path if there exists one, |
657 | 655 |
///0 otherwise. |
658 | 656 |
///\note Apart from the return value, b.run(s) is |
659 | 657 |
///just a shortcut of the following code. |
660 | 658 |
///\code |
661 | 659 |
/// b.init(); |
662 | 660 |
/// b.addSource(s); |
663 | 661 |
/// b.start(t); |
664 | 662 |
///\endcode |
665 | 663 |
int run(Node s,Node t) { |
666 | 664 |
init(); |
667 | 665 |
addSource(s); |
668 | 666 |
start(t); |
669 | 667 |
return reached(t) ? _curr_dist : 0; |
670 | 668 |
} |
671 | 669 |
|
672 | 670 |
///@} |
673 | 671 |
|
674 | 672 |
///\name Query Functions |
675 | 673 |
///The result of the %BFS algorithm can be obtained using these |
676 | 674 |
///functions.\n |
677 | 675 |
///Before the use of these functions, |
678 | 676 |
///either run() or start() must be calleb. |
679 | 677 |
|
680 | 678 |
///@{ |
681 | 679 |
|
682 | 680 |
typedef PredMapPath<Digraph, PredMap> Path; |
683 | 681 |
|
684 | 682 |
///Gives back the shortest path. |
685 | 683 |
|
686 | 684 |
///Gives back the shortest path. |
687 | 685 |
///\pre The \c t should be reachable from the source. |
688 | 686 |
Path path(Node t) |
689 | 687 |
{ |
690 | 688 |
return Path(*G, *_pred, t); |
691 | 689 |
} |
692 | 690 |
|
693 | 691 |
///The distance of a node from the root(s). |
694 | 692 |
|
695 | 693 |
///Returns the distance of a node from the root(s). |
696 | 694 |
///\pre \ref run() must be called before using this function. |
697 | 695 |
///\warning If node \c v in unreachable from the root(s) the return value |
698 | 696 |
///of this function is undefined. |
699 | 697 |
int dist(Node v) const { return (*_dist)[v]; } |
700 | 698 |
|
701 | 699 |
///Returns the 'previous arc' of the shortest path tree. |
702 | 700 |
|
703 | 701 |
///For a node \c v it returns the 'previous arc' |
704 | 702 |
///of the shortest path tree, |
705 | 703 |
///i.e. it returns the last arc of a shortest path from the root(s) to \c |
706 | 704 |
///v. It is \ref INVALID |
707 | 705 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
708 | 706 |
///shortest path tree used here is equal to the shortest path tree used in |
709 | 707 |
///\ref predNode(). |
710 | 708 |
///\pre Either \ref run() or \ref start() must be called before using |
711 | 709 |
///this function. |
712 | 710 |
Arc predArc(Node v) const { return (*_pred)[v];} |
713 | 711 |
|
714 | 712 |
///Returns the 'previous node' of the shortest path tree. |
715 | 713 |
|
716 | 714 |
///For a node \c v it returns the 'previous node' |
717 | 715 |
///of the shortest path tree, |
718 | 716 |
///i.e. it returns the last but one node from a shortest path from the |
719 | 717 |
///root(a) to \c /v. |
720 | 718 |
///It is INVALID if \c v is unreachable from the root(s) or |
721 | 719 |
///if \c v itself a root. |
722 | 720 |
///The shortest path tree used here is equal to the shortest path |
723 | 721 |
///tree used in \ref predArc(). |
724 | 722 |
///\pre Either \ref run() or \ref start() must be called before |
725 | 723 |
///using this function. |
726 | 724 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
727 | 725 |
G->source((*_pred)[v]); } |
728 | 726 |
|
729 | 727 |
///Returns a reference to the NodeMap of distances. |
730 | 728 |
|
731 | 729 |
///Returns a reference to the NodeMap of distances. |
732 | 730 |
///\pre Either \ref run() or \ref init() must |
733 | 731 |
///be called before using this function. |
734 | 732 |
const DistMap &distMap() const { return *_dist;} |
735 | 733 |
|
736 | 734 |
///Returns a reference to the shortest path tree map. |
737 | 735 |
|
738 | 736 |
///Returns a reference to the NodeMap of the arcs of the |
739 | 737 |
///shortest path tree. |
740 | 738 |
///\pre Either \ref run() or \ref init() |
741 | 739 |
///must be called before using this function. |
742 | 740 |
const PredMap &predMap() const { return *_pred;} |
743 | 741 |
|
744 | 742 |
///Checks if a node is reachable from the root. |
745 | 743 |
|
746 | 744 |
///Returns \c true if \c v is reachable from the root. |
747 | 745 |
///\warning The source nodes are indicated as unreached. |
748 | 746 |
///\pre Either \ref run() or \ref start() |
749 | 747 |
///must be called before using this function. |
750 | 748 |
/// |
751 | 749 |
bool reached(Node v) { return (*_reached)[v]; } |
752 | 750 |
|
753 | 751 |
///@} |
754 | 752 |
}; |
755 | 753 |
|
756 | 754 |
///Default traits class of Bfs function. |
757 | 755 |
|
758 | 756 |
///Default traits class of Bfs function. |
759 |
///\ |
|
757 |
///\tparam GR Digraph type. |
|
760 | 758 |
template<class GR> |
761 | 759 |
struct BfsWizardDefaultTraits |
762 | 760 |
{ |
763 | 761 |
///The digraph type the algorithm runs on. |
764 | 762 |
typedef GR Digraph; |
765 | 763 |
///\brief The type of the map that stores the last |
766 | 764 |
///arcs of the shortest paths. |
767 | 765 |
/// |
768 | 766 |
///The type of the map that stores the last |
769 | 767 |
///arcs of the shortest paths. |
770 | 768 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
771 | 769 |
/// |
772 | 770 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
773 | 771 |
///Instantiates a PredMap. |
774 | 772 |
|
775 | 773 |
///This function instantiates a \ref PredMap. |
776 | 774 |
///\param g is the digraph, to which we would like to define the PredMap. |
777 | 775 |
///\todo The digraph alone may be insufficient to initialize |
778 | 776 |
#ifdef DOXYGEN |
779 | 777 |
static PredMap *createPredMap(const GR &g) |
780 | 778 |
#else |
781 | 779 |
static PredMap *createPredMap(const GR &) |
782 | 780 |
#endif |
783 | 781 |
{ |
784 | 782 |
return new PredMap(); |
785 | 783 |
} |
786 | 784 |
|
787 | 785 |
///The type of the map that indicates which nodes are processed. |
788 | 786 |
|
789 | 787 |
///The type of the map that indicates which nodes are processed. |
790 | 788 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
791 | 789 |
///\todo named parameter to set this type, function to read and write. |
792 | 790 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
793 | 791 |
///Instantiates a ProcessedMap. |
794 | 792 |
|
795 | 793 |
///This function instantiates a \ref ProcessedMap. |
796 | 794 |
///\param g is the digraph, to which |
797 | 795 |
///we would like to define the \ref ProcessedMap |
798 | 796 |
#ifdef DOXYGEN |
799 | 797 |
static ProcessedMap *createProcessedMap(const GR &g) |
800 | 798 |
#else |
801 | 799 |
static ProcessedMap *createProcessedMap(const GR &) |
802 | 800 |
#endif |
803 | 801 |
{ |
804 | 802 |
return new ProcessedMap(); |
805 | 803 |
} |
806 | 804 |
///The type of the map that indicates which nodes are reached. |
807 | 805 |
|
808 | 806 |
///The type of the map that indicates which nodes are reached. |
809 | 807 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
810 | 808 |
///\todo named parameter to set this type, function to read and write. |
811 | 809 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
812 | 810 |
///Instantiates a ReachedMap. |
813 | 811 |
|
814 | 812 |
///This function instantiates a \ref ReachedMap. |
815 | 813 |
///\param G is the digraph, to which |
816 | 814 |
///we would like to define the \ref ReachedMap. |
817 | 815 |
static ReachedMap *createReachedMap(const GR &G) |
818 | 816 |
{ |
819 | 817 |
return new ReachedMap(G); |
820 | 818 |
} |
821 | 819 |
///The type of the map that stores the dists of the nodes. |
822 | 820 |
|
823 | 821 |
///The type of the map that stores the dists of the nodes. |
824 | 822 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
825 | 823 |
/// |
826 | 824 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
827 | 825 |
///Instantiates a DistMap. |
828 | 826 |
|
829 | 827 |
///This function instantiates a \ref DistMap. |
830 | 828 |
///\param g is the digraph, to which we would like to define the \ref DistMap |
831 | 829 |
#ifdef DOXYGEN |
832 | 830 |
static DistMap *createDistMap(const GR &g) |
833 | 831 |
#else |
834 | 832 |
static DistMap *createDistMap(const GR &) |
835 | 833 |
#endif |
836 | 834 |
{ |
837 | 835 |
return new DistMap(); |
838 | 836 |
} |
839 | 837 |
}; |
840 | 838 |
|
841 | 839 |
/// Default traits used by \ref BfsWizard |
842 | 840 |
|
843 | 841 |
/// To make it easier to use Bfs algorithm |
844 | 842 |
///we have created a wizard class. |
845 | 843 |
/// This \ref BfsWizard class needs default traits, |
846 | 844 |
///as well as the \ref Bfs class. |
847 | 845 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
848 | 846 |
/// \ref BfsWizard class. |
849 | 847 |
template<class GR> |
850 | 848 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
851 | 849 |
{ |
852 | 850 |
|
853 | 851 |
typedef BfsWizardDefaultTraits<GR> Base; |
854 | 852 |
protected: |
855 | 853 |
/// Type of the nodes in the digraph. |
856 | 854 |
typedef typename Base::Digraph::Node Node; |
857 | 855 |
|
858 | 856 |
/// Pointer to the underlying digraph. |
859 | 857 |
void *_g; |
860 | 858 |
///Pointer to the map of reached nodes. |
861 | 859 |
void *_reached; |
862 | 860 |
///Pointer to the map of processed nodes. |
863 | 861 |
void *_processed; |
864 | 862 |
///Pointer to the map of predecessors arcs. |
865 | 863 |
void *_pred; |
866 | 864 |
///Pointer to the map of distances. |
867 | 865 |
void *_dist; |
868 | 866 |
///Pointer to the source node. |
869 | 867 |
Node _source; |
870 | 868 |
|
871 | 869 |
public: |
872 | 870 |
/// Constructor. |
873 | 871 |
|
874 | 872 |
/// This constructor does not require parameters, therefore it initiates |
875 | 873 |
/// all of the attributes to default values (0, INVALID). |
876 | 874 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
877 | 875 |
_dist(0), _source(INVALID) {} |
878 | 876 |
|
879 | 877 |
/// Constructor. |
880 | 878 |
|
881 | 879 |
/// This constructor requires some parameters, |
882 | 880 |
/// listed in the parameters list. |
883 | 881 |
/// Others are initiated to 0. |
884 | 882 |
/// \param g is the initial value of \ref _g |
885 | 883 |
/// \param s is the initial value of \ref _source |
886 | 884 |
BfsWizardBase(const GR &g, Node s=INVALID) : |
887 | 885 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
888 | 886 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
889 | 887 |
|
890 | 888 |
}; |
891 | 889 |
|
892 | 890 |
/// A class to make the usage of Bfs algorithm easier |
893 | 891 |
|
894 | 892 |
/// This class is created to make it easier to use Bfs algorithm. |
895 | 893 |
/// It uses the functions and features of the plain \ref Bfs, |
896 | 894 |
/// but it is much simpler to use it. |
897 | 895 |
/// |
898 | 896 |
/// Simplicity means that the way to change the types defined |
899 | 897 |
/// in the traits class is based on functions that returns the new class |
900 | 898 |
/// and not on templatable built-in classes. |
901 | 899 |
/// When using the plain \ref Bfs |
902 | 900 |
/// the new class with the modified type comes from |
903 | 901 |
/// the original class by using the :: |
904 | 902 |
/// operator. In the case of \ref BfsWizard only |
905 | 903 |
/// a function have to be called and it will |
906 | 904 |
/// return the needed class. |
907 | 905 |
/// |
908 | 906 |
/// It does not have own \ref run method. When its \ref run method is called |
909 | 907 |
/// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run |
910 | 908 |
/// method of it. |
911 | 909 |
template<class TR> |
912 | 910 |
class BfsWizard : public TR |
913 | 911 |
{ |
914 | 912 |
typedef TR Base; |
915 | 913 |
|
916 | 914 |
///The type of the underlying digraph. |
917 | 915 |
typedef typename TR::Digraph Digraph; |
918 | 916 |
//\e |
919 | 917 |
typedef typename Digraph::Node Node; |
920 | 918 |
//\e |
921 | 919 |
typedef typename Digraph::NodeIt NodeIt; |
922 | 920 |
//\e |
923 | 921 |
typedef typename Digraph::Arc Arc; |
924 | 922 |
//\e |
925 | 923 |
typedef typename Digraph::OutArcIt OutArcIt; |
926 | 924 |
|
927 | 925 |
///\brief The type of the map that stores |
928 | 926 |
///the reached nodes |
929 | 927 |
typedef typename TR::ReachedMap ReachedMap; |
930 | 928 |
///\brief The type of the map that stores |
931 | 929 |
///the processed nodes |
932 | 930 |
typedef typename TR::ProcessedMap ProcessedMap; |
933 | 931 |
///\brief The type of the map that stores the last |
934 | 932 |
///arcs of the shortest paths. |
935 | 933 |
typedef typename TR::PredMap PredMap; |
936 | 934 |
///The type of the map that stores the dists of the nodes. |
937 | 935 |
typedef typename TR::DistMap DistMap; |
938 | 936 |
|
939 | 937 |
public: |
940 | 938 |
/// Constructor. |
941 | 939 |
BfsWizard() : TR() {} |
942 | 940 |
|
943 | 941 |
/// Constructor that requires parameters. |
944 | 942 |
|
945 | 943 |
/// Constructor that requires parameters. |
946 | 944 |
/// These parameters will be the default values for the traits class. |
947 | 945 |
BfsWizard(const Digraph &g, Node s=INVALID) : |
948 | 946 |
TR(g,s) {} |
949 | 947 |
|
950 | 948 |
///Copy constructor |
951 | 949 |
BfsWizard(const TR &b) : TR(b) {} |
952 | 950 |
|
953 | 951 |
~BfsWizard() {} |
954 | 952 |
|
955 | 953 |
///Runs Bfs algorithm from a given node. |
956 | 954 |
|
957 | 955 |
///Runs Bfs algorithm from a given node. |
958 | 956 |
///The node can be given by the \ref source function. |
959 | 957 |
void run() |
960 | 958 |
{ |
961 | 959 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
962 | 960 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
963 | 961 |
if(Base::_reached) |
964 | 962 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
965 | 963 |
if(Base::_processed) |
966 | 964 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
967 | 965 |
if(Base::_pred) |
968 | 966 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
969 | 967 |
if(Base::_dist) |
970 | 968 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
971 | 969 |
alg.run(Base::_source); |
972 | 970 |
} |
973 | 971 |
|
974 | 972 |
///Runs Bfs algorithm from the given node. |
975 | 973 |
|
976 | 974 |
///Runs Bfs algorithm from the given node. |
977 | 975 |
///\param s is the given source. |
978 | 976 |
void run(Node s) |
979 | 977 |
{ |
980 | 978 |
Base::_source=s; |
981 | 979 |
run(); |
982 | 980 |
} |
983 | 981 |
|
984 | 982 |
template<class T> |
985 | 983 |
struct DefPredMapBase : public Base { |
986 | 984 |
typedef T PredMap; |
987 | 985 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
988 | 986 |
DefPredMapBase(const TR &b) : TR(b) {} |
989 | 987 |
}; |
990 | 988 |
|
991 | 989 |
///\brief \ref named-templ-param "Named parameter" |
992 | 990 |
///function for setting PredMap |
993 | 991 |
/// |
994 | 992 |
/// \ref named-templ-param "Named parameter" |
995 | 993 |
///function for setting PredMap |
996 | 994 |
/// |
997 | 995 |
template<class T> |
998 | 996 |
BfsWizard<DefPredMapBase<T> > predMap(const T &t) |
999 | 997 |
{ |
1000 | 998 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1001 | 999 |
return BfsWizard<DefPredMapBase<T> >(*this); |
1002 | 1000 |
} |
1003 | 1001 |
|
1004 | 1002 |
|
1005 | 1003 |
template<class T> |
1006 | 1004 |
struct DefReachedMapBase : public Base { |
1007 | 1005 |
typedef T ReachedMap; |
1008 | 1006 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1009 | 1007 |
DefReachedMapBase(const TR &b) : TR(b) {} |
1010 | 1008 |
}; |
1011 | 1009 |
|
1012 | 1010 |
///\brief \ref named-templ-param "Named parameter" |
1013 | 1011 |
///function for setting ReachedMap |
1014 | 1012 |
/// |
1015 | 1013 |
/// \ref named-templ-param "Named parameter" |
1016 | 1014 |
///function for setting ReachedMap |
1017 | 1015 |
/// |
1018 | 1016 |
template<class T> |
1019 | 1017 |
BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
1020 | 1018 |
{ |
1021 | 1019 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1022 | 1020 |
return BfsWizard<DefReachedMapBase<T> >(*this); |
1023 | 1021 |
} |
1024 | 1022 |
|
1025 | 1023 |
|
1026 | 1024 |
template<class T> |
1027 | 1025 |
struct DefProcessedMapBase : public Base { |
1028 | 1026 |
typedef T ProcessedMap; |
1029 | 1027 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1030 | 1028 |
DefProcessedMapBase(const TR &b) : TR(b) {} |
1031 | 1029 |
}; |
1032 | 1030 |
|
1033 | 1031 |
///\brief \ref named-templ-param "Named parameter" |
1034 | 1032 |
///function for setting ProcessedMap |
1035 | 1033 |
/// |
1036 | 1034 |
/// \ref named-templ-param "Named parameter" |
1037 | 1035 |
///function for setting ProcessedMap |
1038 | 1036 |
/// |
1039 | 1037 |
template<class T> |
1040 | 1038 |
BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
1041 | 1039 |
{ |
1042 | 1040 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1043 | 1041 |
return BfsWizard<DefProcessedMapBase<T> >(*this); |
1044 | 1042 |
} |
1045 | 1043 |
|
1046 | 1044 |
|
1047 | 1045 |
template<class T> |
1048 | 1046 |
struct DefDistMapBase : public Base { |
1049 | 1047 |
typedef T DistMap; |
1050 | 1048 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1051 | 1049 |
DefDistMapBase(const TR &b) : TR(b) {} |
1052 | 1050 |
}; |
1053 | 1051 |
|
1054 | 1052 |
///\brief \ref named-templ-param "Named parameter" |
1055 | 1053 |
///function for setting DistMap type |
1056 | 1054 |
/// |
1057 | 1055 |
/// \ref named-templ-param "Named parameter" |
1058 | 1056 |
///function for setting DistMap type |
1059 | 1057 |
/// |
1060 | 1058 |
template<class T> |
1061 | 1059 |
BfsWizard<DefDistMapBase<T> > distMap(const T &t) |
1062 | 1060 |
{ |
1063 | 1061 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1064 | 1062 |
return BfsWizard<DefDistMapBase<T> >(*this); |
1065 | 1063 |
} |
1066 | 1064 |
|
1067 | 1065 |
/// Sets the source node, from which the Bfs algorithm runs. |
1068 | 1066 |
|
1069 | 1067 |
/// Sets the source node, from which the Bfs algorithm runs. |
1070 | 1068 |
/// \param s is the source node. |
1071 | 1069 |
BfsWizard<TR> &source(Node s) |
1072 | 1070 |
{ |
1073 | 1071 |
Base::_source=s; |
1074 | 1072 |
return *this; |
1075 | 1073 |
} |
1076 | 1074 |
|
1077 | 1075 |
}; |
1078 | 1076 |
|
1079 | 1077 |
///Function type interface for Bfs algorithm. |
1080 | 1078 |
|
1081 | 1079 |
/// \ingroup search |
1082 | 1080 |
///Function type interface for Bfs algorithm. |
1083 | 1081 |
/// |
1084 | 1082 |
///This function also has several |
1085 | 1083 |
///\ref named-templ-func-param "named parameters", |
1086 | 1084 |
///they are declared as the members of class \ref BfsWizard. |
1087 | 1085 |
///The following |
1088 | 1086 |
///example shows how to use these parameters. |
1089 | 1087 |
///\code |
1090 | 1088 |
/// bfs(g,source).predMap(preds).run(); |
1091 | 1089 |
///\endcode |
1092 | 1090 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
1093 | 1091 |
///to the end of the parameter list. |
1094 | 1092 |
///\sa BfsWizard |
1095 | 1093 |
///\sa Bfs |
1096 | 1094 |
template<class GR> |
1097 | 1095 |
BfsWizard<BfsWizardBase<GR> > |
1098 | 1096 |
bfs(const GR &g,typename GR::Node s=INVALID) |
1099 | 1097 |
{ |
1100 | 1098 |
return BfsWizard<BfsWizardBase<GR> >(g,s); |
1101 | 1099 |
} |
1102 | 1100 |
|
1103 | 1101 |
#ifdef DOXYGEN |
1104 | 1102 |
/// \brief Visitor class for bfs. |
1105 | 1103 |
/// |
1106 | 1104 |
/// This class defines the interface of the BfsVisit events, and |
1107 | 1105 |
/// it could be the base of a real Visitor class. |
1108 | 1106 |
template <typename _Digraph> |
1109 | 1107 |
struct BfsVisitor { |
1110 | 1108 |
typedef _Digraph Digraph; |
1111 | 1109 |
typedef typename Digraph::Arc Arc; |
1112 | 1110 |
typedef typename Digraph::Node Node; |
1113 | 1111 |
/// \brief Called when the arc reach a node. |
1114 | 1112 |
/// |
1115 | 1113 |
/// It is called when the bfs find an arc which target is not |
1116 | 1114 |
/// reached yet. |
1117 | 1115 |
void discover(const Arc& arc) {} |
1118 | 1116 |
/// \brief Called when the node reached first time. |
1119 | 1117 |
/// |
1120 | 1118 |
/// It is Called when the node reached first time. |
1121 | 1119 |
void reach(const Node& node) {} |
1122 | 1120 |
/// \brief Called when the arc examined but target of the arc |
1123 | 1121 |
/// already discovered. |
1124 | 1122 |
/// |
1125 | 1123 |
/// It called when the arc examined but the target of the arc |
1126 | 1124 |
/// already discovered. |
1127 | 1125 |
void examine(const Arc& arc) {} |
1128 | 1126 |
/// \brief Called for the source node of the bfs. |
1129 | 1127 |
/// |
1130 | 1128 |
/// It is called for the source node of the bfs. |
1131 | 1129 |
void start(const Node& node) {} |
1132 | 1130 |
/// \brief Called when the node processed. |
1133 | 1131 |
/// |
1134 | 1132 |
/// It is Called when the node processed. |
1135 | 1133 |
void process(const Node& node) {} |
1136 | 1134 |
}; |
1137 | 1135 |
#else |
1138 | 1136 |
template <typename _Digraph> |
1139 | 1137 |
struct BfsVisitor { |
1140 | 1138 |
typedef _Digraph Digraph; |
1141 | 1139 |
typedef typename Digraph::Arc Arc; |
1142 | 1140 |
typedef typename Digraph::Node Node; |
1143 | 1141 |
void discover(const Arc&) {} |
1144 | 1142 |
void reach(const Node&) {} |
1145 | 1143 |
void examine(const Arc&) {} |
1146 | 1144 |
void start(const Node&) {} |
1147 | 1145 |
void process(const Node&) {} |
1148 | 1146 |
|
1149 | 1147 |
template <typename _Visitor> |
1150 | 1148 |
struct Constraints { |
1151 | 1149 |
void constraints() { |
1152 | 1150 |
Arc arc; |
1153 | 1151 |
Node node; |
1154 | 1152 |
visitor.discover(arc); |
1155 | 1153 |
visitor.reach(node); |
1156 | 1154 |
visitor.examine(arc); |
1157 | 1155 |
visitor.start(node); |
1158 | 1156 |
visitor.process(node); |
1159 | 1157 |
} |
1160 | 1158 |
_Visitor& visitor; |
1161 | 1159 |
}; |
1162 | 1160 |
}; |
1163 | 1161 |
#endif |
1164 | 1162 |
|
1165 | 1163 |
/// \brief Default traits class of BfsVisit class. |
1166 | 1164 |
/// |
1167 | 1165 |
/// Default traits class of BfsVisit class. |
1168 |
/// \ |
|
1166 |
/// \tparam _Digraph Digraph type. |
|
1169 | 1167 |
template<class _Digraph> |
1170 | 1168 |
struct BfsVisitDefaultTraits { |
1171 | 1169 |
|
1172 | 1170 |
/// \brief The digraph type the algorithm runs on. |
1173 | 1171 |
typedef _Digraph Digraph; |
1174 | 1172 |
|
1175 | 1173 |
/// \brief The type of the map that indicates which nodes are reached. |
1176 | 1174 |
/// |
1177 | 1175 |
/// The type of the map that indicates which nodes are reached. |
1178 | 1176 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1179 | 1177 |
/// \todo named parameter to set this type, function to read and write. |
1180 | 1178 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1181 | 1179 |
|
1182 | 1180 |
/// \brief Instantiates a ReachedMap. |
1183 | 1181 |
/// |
1184 | 1182 |
/// This function instantiates a \ref ReachedMap. |
1185 | 1183 |
/// \param digraph is the digraph, to which |
1186 | 1184 |
/// we would like to define the \ref ReachedMap. |
1187 | 1185 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1188 | 1186 |
return new ReachedMap(digraph); |
1189 | 1187 |
} |
1190 | 1188 |
|
1191 | 1189 |
}; |
1192 | 1190 |
|
1193 | 1191 |
/// \ingroup search |
1194 | 1192 |
/// |
1195 | 1193 |
/// \brief %BFS Visit algorithm class. |
1196 | 1194 |
/// |
1197 | 1195 |
/// This class provides an efficient implementation of the %BFS algorithm |
1198 | 1196 |
/// with visitor interface. |
1199 | 1197 |
/// |
1200 | 1198 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1201 | 1199 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1202 | 1200 |
/// on every bfs event the \c Visitor class member functions. |
1203 | 1201 |
/// |
1204 |
/// \ |
|
1202 |
/// \tparam _Digraph The digraph type the algorithm runs on. The default value is |
|
1205 | 1203 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it |
1206 | 1204 |
/// is only passed to \ref BfsDefaultTraits. |
1207 |
/// \ |
|
1205 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
|
1208 | 1206 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which |
1209 | 1207 |
/// does not observe the Bfs events. If you want to observe the bfs |
1210 | 1208 |
/// events you should implement your own Visitor class. |
1211 |
/// \ |
|
1209 |
/// \tparam _Traits Traits class to set various data types used by the |
|
1212 | 1210 |
/// algorithm. The default traits class is |
1213 | 1211 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1214 | 1212 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1215 | 1213 |
/// a Bfs visit traits class. |
1216 |
/// |
|
1217 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
|
1218 | 1214 |
#ifdef DOXYGEN |
1219 | 1215 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1220 | 1216 |
#else |
1221 | 1217 |
template <typename _Digraph = ListDigraph, |
1222 | 1218 |
typename _Visitor = BfsVisitor<_Digraph>, |
1223 | 1219 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
1224 | 1220 |
#endif |
1225 | 1221 |
class BfsVisit { |
1226 | 1222 |
public: |
1227 | 1223 |
|
1228 | 1224 |
/// \brief \ref Exception for uninitialized parameters. |
1229 | 1225 |
/// |
1230 | 1226 |
/// This error represents problems in the initialization |
1231 | 1227 |
/// of the parameters of the algorithms. |
1232 | 1228 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1233 | 1229 |
public: |
1234 | 1230 |
virtual const char* what() const throw() |
1235 | 1231 |
{ |
1236 | 1232 |
return "lemon::BfsVisit::UninitializedParameter"; |
1237 | 1233 |
} |
1238 | 1234 |
}; |
1239 | 1235 |
|
1240 | 1236 |
typedef _Traits Traits; |
1241 | 1237 |
|
1242 | 1238 |
typedef typename Traits::Digraph Digraph; |
1243 | 1239 |
|
1244 | 1240 |
typedef _Visitor Visitor; |
1245 | 1241 |
|
1246 | 1242 |
///The type of the map indicating which nodes are reached. |
1247 | 1243 |
typedef typename Traits::ReachedMap ReachedMap; |
1248 | 1244 |
|
1249 | 1245 |
private: |
1250 | 1246 |
|
1251 | 1247 |
typedef typename Digraph::Node Node; |
1252 | 1248 |
typedef typename Digraph::NodeIt NodeIt; |
1253 | 1249 |
typedef typename Digraph::Arc Arc; |
1254 | 1250 |
typedef typename Digraph::OutArcIt OutArcIt; |
1255 | 1251 |
|
1256 | 1252 |
/// Pointer to the underlying digraph. |
1257 | 1253 |
const Digraph *_digraph; |
1258 | 1254 |
/// Pointer to the visitor object. |
1259 | 1255 |
Visitor *_visitor; |
1260 | 1256 |
///Pointer to the map of reached status of the nodes. |
1261 | 1257 |
ReachedMap *_reached; |
1262 | 1258 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
1263 | 1259 |
bool local_reached; |
1264 | 1260 |
|
1265 | 1261 |
std::vector<typename Digraph::Node> _list; |
1266 | 1262 |
int _list_front, _list_back; |
1267 | 1263 |
|
1268 | 1264 |
/// \brief Creates the maps if necessary. |
1269 | 1265 |
/// |
1270 | 1266 |
/// Creates the maps if necessary. |
1271 | 1267 |
void create_maps() { |
1272 | 1268 |
if(!_reached) { |
1273 | 1269 |
local_reached = true; |
1274 | 1270 |
_reached = Traits::createReachedMap(*_digraph); |
1275 | 1271 |
} |
1276 | 1272 |
} |
1277 | 1273 |
|
1278 | 1274 |
protected: |
1279 | 1275 |
|
1280 | 1276 |
BfsVisit() {} |
1281 | 1277 |
|
1282 | 1278 |
public: |
1283 | 1279 |
|
1284 | 1280 |
typedef BfsVisit Create; |
1285 | 1281 |
|
1286 | 1282 |
/// \name Named template parameters |
1287 | 1283 |
|
1288 | 1284 |
///@{ |
1289 | 1285 |
template <class T> |
1290 | 1286 |
struct DefReachedMapTraits : public Traits { |
1291 | 1287 |
typedef T ReachedMap; |
1292 | 1288 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1293 | 1289 |
throw UninitializedParameter(); |
1294 | 1290 |
} |
1295 | 1291 |
}; |
1296 | 1292 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1297 | 1293 |
/// ReachedMap type |
1298 | 1294 |
/// |
1299 | 1295 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type |
1300 | 1296 |
template <class T> |
1301 | 1297 |
struct DefReachedMap : public BfsVisit< Digraph, Visitor, |
1302 | 1298 |
DefReachedMapTraits<T> > { |
1303 | 1299 |
typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
1304 | 1300 |
}; |
1305 | 1301 |
///@} |
1306 | 1302 |
|
1307 | 1303 |
public: |
1308 | 1304 |
|
1309 | 1305 |
/// \brief Constructor. |
1310 | 1306 |
/// |
1311 | 1307 |
/// Constructor. |
1312 | 1308 |
/// |
1313 | 1309 |
/// \param digraph the digraph the algorithm will run on. |
1314 | 1310 |
/// \param visitor The visitor of the algorithm. |
1315 | 1311 |
/// |
1316 | 1312 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1317 | 1313 |
: _digraph(&digraph), _visitor(&visitor), |
1318 | 1314 |
_reached(0), local_reached(false) {} |
1319 | 1315 |
|
1320 | 1316 |
/// \brief Destructor. |
1321 | 1317 |
/// |
1322 | 1318 |
/// Destructor. |
1323 | 1319 |
~BfsVisit() { |
1324 | 1320 |
if(local_reached) delete _reached; |
1325 | 1321 |
} |
1326 | 1322 |
|
1327 | 1323 |
/// \brief Sets the map indicating if a node is reached. |
1328 | 1324 |
/// |
1329 | 1325 |
/// Sets the map indicating if a node is reached. |
1330 | 1326 |
/// If you don't use this function before calling \ref run(), |
1331 | 1327 |
/// it will allocate one. The destuctor deallocates this |
1332 | 1328 |
/// automatically allocated map, of course. |
1333 | 1329 |
/// \return <tt> (*this) </tt> |
1334 | 1330 |
BfsVisit &reachedMap(ReachedMap &m) { |
1335 | 1331 |
if(local_reached) { |
1336 | 1332 |
delete _reached; |
1337 | 1333 |
local_reached = false; |
1338 | 1334 |
} |
1339 | 1335 |
_reached = &m; |
1340 | 1336 |
return *this; |
1341 | 1337 |
} |
1342 | 1338 |
|
1343 | 1339 |
public: |
1344 | 1340 |
/// \name Execution control |
1345 | 1341 |
/// The simplest way to execute the algorithm is to use |
1346 | 1342 |
/// one of the member functions called \c run(...). |
1347 | 1343 |
/// \n |
1348 | 1344 |
/// If you need more control on the execution, |
1349 | 1345 |
/// first you must call \ref init(), then you can adda source node |
1350 | 1346 |
/// with \ref addSource(). |
1351 | 1347 |
/// Finally \ref start() will perform the actual path |
1352 | 1348 |
/// computation. |
1353 | 1349 |
|
1354 | 1350 |
/// @{ |
1355 | 1351 |
/// \brief Initializes the internal data structures. |
1356 | 1352 |
/// |
1357 | 1353 |
/// Initializes the internal data structures. |
1358 | 1354 |
/// |
1359 | 1355 |
void init() { |
1360 | 1356 |
create_maps(); |
1361 | 1357 |
_list.resize(countNodes(*_digraph)); |
1362 | 1358 |
_list_front = _list_back = -1; |
1363 | 1359 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1364 | 1360 |
_reached->set(u, false); |
1365 | 1361 |
} |
1366 | 1362 |
} |
1367 | 1363 |
|
1368 | 1364 |
/// \brief Adds a new source node. |
1369 | 1365 |
/// |
1370 | 1366 |
/// Adds a new source node to the set of nodes to be processed. |
1371 | 1367 |
void addSource(Node s) { |
1372 | 1368 |
if(!(*_reached)[s]) { |
1373 | 1369 |
_reached->set(s,true); |
1374 | 1370 |
_visitor->start(s); |
1375 | 1371 |
_visitor->reach(s); |
1376 | 1372 |
_list[++_list_back] = s; |
1377 | 1373 |
} |
1378 | 1374 |
} |
1379 | 1375 |
|
1380 | 1376 |
/// \brief Processes the next node. |
1381 | 1377 |
/// |
1382 | 1378 |
/// Processes the next node. |
1383 | 1379 |
/// |
1384 | 1380 |
/// \return The processed node. |
1385 | 1381 |
/// |
1386 | 1382 |
/// \pre The queue must not be empty! |
1387 | 1383 |
Node processNextNode() { |
1388 | 1384 |
Node n = _list[++_list_front]; |
1389 | 1385 |
_visitor->process(n); |
1390 | 1386 |
Arc e; |
1391 | 1387 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1392 | 1388 |
Node m = _digraph->target(e); |
1393 | 1389 |
if (!(*_reached)[m]) { |
1394 | 1390 |
_visitor->discover(e); |
1395 | 1391 |
_visitor->reach(m); |
1396 | 1392 |
_reached->set(m, true); |
1397 | 1393 |
_list[++_list_back] = m; |
1398 | 1394 |
} else { |
1399 | 1395 |
_visitor->examine(e); |
1400 | 1396 |
} |
1401 | 1397 |
} |
1402 | 1398 |
return n; |
1403 | 1399 |
} |
1404 | 1400 |
|
1405 | 1401 |
/// \brief Processes the next node. |
1406 | 1402 |
/// |
1407 | 1403 |
/// Processes the next node. And checks that the given target node |
1408 | 1404 |
/// is reached. If the target node is reachable from the processed |
1409 | 1405 |
/// node then the reached parameter will be set true. The reached |
1410 | 1406 |
/// parameter should be initially false. |
1411 | 1407 |
/// |
1412 | 1408 |
/// \param target The target node. |
1413 | 1409 |
/// \retval reach Indicates that the target node is reached. |
1414 | 1410 |
/// \return The processed node. |
1415 | 1411 |
/// |
1416 | 1412 |
/// \warning The queue must not be empty! |
1417 | 1413 |
Node processNextNode(Node target, bool& reach) { |
1418 | 1414 |
Node n = _list[++_list_front]; |
1419 | 1415 |
_visitor->process(n); |
1420 | 1416 |
Arc e; |
1421 | 1417 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1422 | 1418 |
Node m = _digraph->target(e); |
1423 | 1419 |
if (!(*_reached)[m]) { |
1424 | 1420 |
_visitor->discover(e); |
1425 | 1421 |
_visitor->reach(m); |
1426 | 1422 |
_reached->set(m, true); |
1427 | 1423 |
_list[++_list_back] = m; |
1428 | 1424 |
reach = reach || (target == m); |
1429 | 1425 |
} else { |
1430 | 1426 |
_visitor->examine(e); |
1431 | 1427 |
} |
1432 | 1428 |
} |
1433 | 1429 |
return n; |
1434 | 1430 |
} |
1435 | 1431 |
|
1436 | 1432 |
/// \brief Processes the next node. |
1437 | 1433 |
/// |
1438 | 1434 |
/// Processes the next node. And checks that at least one of |
1439 | 1435 |
/// reached node has true value in the \c nm node map. If one node |
1440 | 1436 |
/// with true value is reachable from the processed node then the |
1441 | 1437 |
/// rnode parameter will be set to the first of such nodes. |
1442 | 1438 |
/// |
1443 | 1439 |
/// \param nm The node map of possible targets. |
1444 | 1440 |
/// \retval rnode The reached target node. |
1445 | 1441 |
/// \return The processed node. |
1446 | 1442 |
/// |
1447 | 1443 |
/// \warning The queue must not be empty! |
1448 | 1444 |
template <typename NM> |
1449 | 1445 |
Node processNextNode(const NM& nm, Node& rnode) { |
1450 | 1446 |
Node n = _list[++_list_front]; |
1451 | 1447 |
_visitor->process(n); |
1452 | 1448 |
Arc e; |
1453 | 1449 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1454 | 1450 |
Node m = _digraph->target(e); |
1455 | 1451 |
if (!(*_reached)[m]) { |
1456 | 1452 |
_visitor->discover(e); |
1457 | 1453 |
_visitor->reach(m); |
1458 | 1454 |
_reached->set(m, true); |
1459 | 1455 |
_list[++_list_back] = m; |
1460 | 1456 |
if (nm[m] && rnode == INVALID) rnode = m; |
1461 | 1457 |
} else { |
1462 | 1458 |
_visitor->examine(e); |
1463 | 1459 |
} |
1464 | 1460 |
} |
1465 | 1461 |
return n; |
1466 | 1462 |
} |
1467 | 1463 |
|
1468 | 1464 |
/// \brief Next node to be processed. |
1469 | 1465 |
/// |
1470 | 1466 |
/// Next node to be processed. |
1471 | 1467 |
/// |
1472 | 1468 |
/// \return The next node to be processed or INVALID if the stack is |
1473 | 1469 |
/// empty. |
1474 | 1470 |
Node nextNode() { |
1475 | 1471 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1476 | 1472 |
} |
1477 | 1473 |
|
1478 | 1474 |
/// \brief Returns \c false if there are nodes |
1479 | 1475 |
/// to be processed in the queue |
1480 | 1476 |
/// |
1481 | 1477 |
/// Returns \c false if there are nodes |
1482 | 1478 |
/// to be processed in the queue |
1483 | 1479 |
bool emptyQueue() { return _list_front == _list_back; } |
1484 | 1480 |
|
1485 | 1481 |
/// \brief Returns the number of the nodes to be processed. |
1486 | 1482 |
/// |
1487 | 1483 |
/// Returns the number of the nodes to be processed in the queue. |
1488 | 1484 |
int queueSize() { return _list_back - _list_front; } |
1489 | 1485 |
|
1490 | 1486 |
/// \brief Executes the algorithm. |
1491 | 1487 |
/// |
1492 | 1488 |
/// Executes the algorithm. |
1493 | 1489 |
/// |
1494 | 1490 |
/// \pre init() must be called and at least one node should be added |
1495 | 1491 |
/// with addSource() before using this function. |
1496 | 1492 |
void start() { |
1497 | 1493 |
while ( !emptyQueue() ) processNextNode(); |
1498 | 1494 |
} |
1499 | 1495 |
|
1500 | 1496 |
/// \brief Executes the algorithm until \c dest is reached. |
1501 | 1497 |
/// |
1502 | 1498 |
/// Executes the algorithm until \c dest is reached. |
1503 | 1499 |
/// |
1504 | 1500 |
/// \pre init() must be called and at least one node should be added |
1505 | 1501 |
/// with addSource() before using this function. |
1506 | 1502 |
void start(Node dest) { |
1507 | 1503 |
bool reach = false; |
1508 | 1504 |
while ( !emptyQueue() && !reach ) processNextNode(dest, reach); |
1509 | 1505 |
} |
1510 | 1506 |
|
1511 | 1507 |
/// \brief Executes the algorithm until a condition is met. |
1512 | 1508 |
/// |
1513 | 1509 |
/// Executes the algorithm until a condition is met. |
1514 | 1510 |
/// |
1515 | 1511 |
/// \pre init() must be called and at least one node should be added |
1516 | 1512 |
/// with addSource() before using this function. |
1517 | 1513 |
/// |
1518 | 1514 |
///\param nm must be a bool (or convertible) node map. The |
1519 | 1515 |
///algorithm will stop when it reaches a node \c v with |
1520 | 1516 |
/// <tt>nm[v]</tt> true. |
1521 | 1517 |
/// |
1522 | 1518 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
1523 | 1519 |
///\c INVALID if no such node was found. |
1524 | 1520 |
template <typename NM> |
1525 | 1521 |
Node start(const NM &nm) { |
1526 | 1522 |
Node rnode = INVALID; |
1527 | 1523 |
while ( !emptyQueue() && rnode == INVALID ) { |
1528 | 1524 |
processNextNode(nm, rnode); |
1529 | 1525 |
} |
1530 | 1526 |
return rnode; |
1531 | 1527 |
} |
1532 | 1528 |
|
1533 | 1529 |
/// \brief Runs %BFSVisit algorithm from node \c s. |
1534 | 1530 |
/// |
1535 | 1531 |
/// This method runs the %BFS algorithm from a root node \c s. |
1536 | 1532 |
/// \note b.run(s) is just a shortcut of the following code. |
1537 | 1533 |
///\code |
1538 | 1534 |
/// b.init(); |
1539 | 1535 |
/// b.addSource(s); |
1540 | 1536 |
/// b.start(); |
1541 | 1537 |
///\endcode |
1542 | 1538 |
void run(Node s) { |
1543 | 1539 |
init(); |
1544 | 1540 |
addSource(s); |
1545 | 1541 |
start(); |
1546 | 1542 |
} |
1547 | 1543 |
|
1548 | 1544 |
/// \brief Runs %BFSVisit algorithm to visit all nodes in the digraph. |
1549 | 1545 |
/// |
1550 | 1546 |
/// This method runs the %BFS algorithm in order to |
1551 | 1547 |
/// compute the %BFS path to each node. The algorithm computes |
1552 | 1548 |
/// - The %BFS tree. |
1553 | 1549 |
/// - The distance of each node from the root in the %BFS tree. |
1554 | 1550 |
/// |
1555 | 1551 |
///\note b.run() is just a shortcut of the following code. |
1556 | 1552 |
///\code |
1557 | 1553 |
/// b.init(); |
1558 | 1554 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
1559 | 1555 |
/// if (!b.reached(it)) { |
1560 | 1556 |
/// b.addSource(it); |
1561 | 1557 |
/// b.start(); |
1562 | 1558 |
/// } |
1563 | 1559 |
/// } |
1564 | 1560 |
///\endcode |
1565 | 1561 |
void run() { |
1566 | 1562 |
init(); |
1567 | 1563 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1568 | 1564 |
if (!reached(it)) { |
1569 | 1565 |
addSource(it); |
1570 | 1566 |
start(); |
1571 | 1567 |
} |
1572 | 1568 |
} |
1573 | 1569 |
} |
1574 | 1570 |
///@} |
1575 | 1571 |
|
1576 | 1572 |
/// \name Query Functions |
1577 | 1573 |
/// The result of the %BFS algorithm can be obtained using these |
1578 | 1574 |
/// functions.\n |
1579 | 1575 |
/// Before the use of these functions, |
1580 | 1576 |
/// either run() or start() must be called. |
1581 | 1577 |
///@{ |
1582 | 1578 |
|
1583 | 1579 |
/// \brief Checks if a node is reachable from the root. |
1584 | 1580 |
/// |
1585 | 1581 |
/// Returns \c true if \c v is reachable from the root(s). |
1586 | 1582 |
/// \warning The source nodes are inditated as unreachable. |
1587 | 1583 |
/// \pre Either \ref run() or \ref start() |
1588 | 1584 |
/// must be called before using this function. |
1589 | 1585 |
/// |
1590 | 1586 |
bool reached(Node v) { return (*_reached)[v]; } |
1591 | 1587 |
///@} |
1592 | 1588 |
}; |
1593 | 1589 |
|
1594 | 1590 |
} //END OF NAMESPACE LEMON |
1595 | 1591 |
|
1596 | 1592 |
#endif |
1597 | 1593 |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Binary Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
///\ingroup auxdat |
33 | 33 |
/// |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 | 36 |
///This class implements the \e binary \e heap data structure. A \e heap |
37 | 37 |
///is a data structure for storing items with specified values called \e |
38 | 38 |
///priorities in such a way that finding the item with minimum priority is |
39 | 39 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
40 | 40 |
///one can change the priority of an item, add or erase an item, etc. |
41 | 41 |
/// |
42 |
///\param _Prio Type of the priority of the items. |
|
43 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
42 |
///\tparam _Prio Type of the priority of the items. |
|
43 |
///\tparam _ItemIntMap A read and writable Item int map, used internally |
|
44 | 44 |
///to handle the cross references. |
45 |
///\ |
|
45 |
///\tparam _Compare A class for the ordering of the priorities. The |
|
46 | 46 |
///default is \c std::less<_Prio>. |
47 | 47 |
/// |
48 | 48 |
///\sa FibHeap |
49 | 49 |
///\sa Dijkstra |
50 | 50 |
template <typename _Prio, typename _ItemIntMap, |
51 | 51 |
typename _Compare = std::less<_Prio> > |
52 | 52 |
class BinHeap { |
53 | 53 |
|
54 | 54 |
public: |
55 | 55 |
///\e |
56 | 56 |
typedef _ItemIntMap ItemIntMap; |
57 | 57 |
///\e |
58 | 58 |
typedef _Prio Prio; |
59 | 59 |
///\e |
60 | 60 |
typedef typename ItemIntMap::Key Item; |
61 | 61 |
///\e |
62 | 62 |
typedef std::pair<Item,Prio> Pair; |
63 | 63 |
///\e |
64 | 64 |
typedef _Compare Compare; |
65 | 65 |
|
66 | 66 |
/// \brief Type to represent the items states. |
67 | 67 |
/// |
68 | 68 |
/// Each Item element have a state associated to it. It may be "in heap", |
69 | 69 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
70 | 70 |
/// heap's point of view, but may be useful to the user. |
71 | 71 |
/// |
72 | 72 |
/// The ItemIntMap \e should be initialized in such way that it maps |
73 | 73 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
74 | 74 |
enum State { |
75 | 75 |
IN_HEAP = 0, |
76 | 76 |
PRE_HEAP = -1, |
77 | 77 |
POST_HEAP = -2 |
78 | 78 |
}; |
79 | 79 |
|
80 | 80 |
private: |
81 | 81 |
std::vector<Pair> data; |
82 | 82 |
Compare comp; |
83 | 83 |
ItemIntMap &iim; |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
/// \brief The constructor. |
87 | 87 |
/// |
88 | 88 |
/// The constructor. |
89 | 89 |
/// \param _iim should be given to the constructor, since it is used |
90 | 90 |
/// internally to handle the cross references. The value of the map |
91 | 91 |
/// should be PRE_HEAP (-1) for each element. |
92 | 92 |
explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {} |
93 | 93 |
|
94 | 94 |
/// \brief The constructor. |
95 | 95 |
/// |
96 | 96 |
/// The constructor. |
97 | 97 |
/// \param _iim should be given to the constructor, since it is used |
98 | 98 |
/// internally to handle the cross references. The value of the map |
99 | 99 |
/// should be PRE_HEAP (-1) for each element. |
100 | 100 |
/// |
101 | 101 |
/// \param _comp The comparator function object. |
102 | 102 |
BinHeap(ItemIntMap &_iim, const Compare &_comp) |
103 | 103 |
: iim(_iim), comp(_comp) {} |
104 | 104 |
|
105 | 105 |
|
106 | 106 |
/// The number of items stored in the heap. |
107 | 107 |
/// |
108 | 108 |
/// \brief Returns the number of items stored in the heap. |
109 | 109 |
int size() const { return data.size(); } |
110 | 110 |
|
111 | 111 |
/// \brief Checks if the heap stores no items. |
112 | 112 |
/// |
113 | 113 |
/// Returns \c true if and only if the heap stores no items. |
114 | 114 |
bool empty() const { return data.empty(); } |
115 | 115 |
|
116 | 116 |
/// \brief Make empty this heap. |
117 | 117 |
/// |
118 | 118 |
/// Make empty this heap. It does not change the cross reference map. |
119 | 119 |
/// If you want to reuse what is not surely empty you should first clear |
120 | 120 |
/// the heap and after that you should set the cross reference map for |
121 | 121 |
/// each item to \c PRE_HEAP. |
122 | 122 |
void clear() { |
123 | 123 |
data.clear(); |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
private: |
127 | 127 |
static int parent(int i) { return (i-1)/2; } |
128 | 128 |
|
129 | 129 |
static int second_child(int i) { return 2*i+2; } |
130 | 130 |
bool less(const Pair &p1, const Pair &p2) const { |
131 | 131 |
return comp(p1.second, p2.second); |
132 | 132 |
} |
133 | 133 |
|
134 | 134 |
int bubble_up(int hole, Pair p) { |
135 | 135 |
int par = parent(hole); |
136 | 136 |
while( hole>0 && less(p,data[par]) ) { |
137 | 137 |
move(data[par],hole); |
138 | 138 |
hole = par; |
139 | 139 |
par = parent(hole); |
140 | 140 |
} |
141 | 141 |
move(p, hole); |
142 | 142 |
return hole; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
int bubble_down(int hole, Pair p, int length) { |
146 | 146 |
int child = second_child(hole); |
147 | 147 |
while(child < length) { |
148 | 148 |
if( less(data[child-1], data[child]) ) { |
149 | 149 |
--child; |
150 | 150 |
} |
151 | 151 |
if( !less(data[child], p) ) |
152 | 152 |
goto ok; |
153 | 153 |
move(data[child], hole); |
154 | 154 |
hole = child; |
155 | 155 |
child = second_child(hole); |
156 | 156 |
} |
157 | 157 |
child--; |
158 | 158 |
if( child<length && less(data[child], p) ) { |
159 | 159 |
move(data[child], hole); |
160 | 160 |
hole=child; |
161 | 161 |
} |
162 | 162 |
ok: |
163 | 163 |
move(p, hole); |
164 | 164 |
return hole; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
void move(const Pair &p, int i) { |
168 | 168 |
data[i] = p; |
169 | 169 |
iim.set(p.first, i); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
public: |
173 | 173 |
/// \brief Insert a pair of item and priority into the heap. |
174 | 174 |
/// |
175 | 175 |
/// Adds \c p.first to the heap with priority \c p.second. |
176 | 176 |
/// \param p The pair to insert. |
177 | 177 |
void push(const Pair &p) { |
178 | 178 |
int n = data.size(); |
179 | 179 |
data.resize(n+1); |
180 | 180 |
bubble_up(n, p); |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
/// \brief Insert an item into the heap with the given heap. |
184 | 184 |
/// |
185 | 185 |
/// Adds \c i to the heap with priority \c p. |
186 | 186 |
/// \param i The item to insert. |
187 | 187 |
/// \param p The priority of the item. |
188 | 188 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
189 | 189 |
|
190 | 190 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
191 | 191 |
/// |
192 | 192 |
/// This method returns the item with minimum priority relative to \c |
193 | 193 |
/// Compare. |
194 | 194 |
/// \pre The heap must be nonempty. |
195 | 195 |
Item top() const { |
196 | 196 |
return data[0].first; |
197 | 197 |
} |
198 | 198 |
|
199 | 199 |
/// \brief Returns the minimum priority relative to \c Compare. |
200 | 200 |
/// |
201 | 201 |
/// It returns the minimum priority relative to \c Compare. |
202 | 202 |
/// \pre The heap must be nonempty. |
203 | 203 |
Prio prio() const { |
204 | 204 |
return data[0].second; |
205 | 205 |
} |
206 | 206 |
|
207 | 207 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
208 | 208 |
/// |
209 | 209 |
/// This method deletes the item with minimum priority relative to \c |
210 | 210 |
/// Compare from the heap. |
211 | 211 |
/// \pre The heap must be non-empty. |
212 | 212 |
void pop() { |
213 | 213 |
int n = data.size()-1; |
214 | 214 |
iim.set(data[0].first, POST_HEAP); |
215 | 215 |
if (n > 0) { |
216 | 216 |
bubble_down(0, data[n], n); |
217 | 217 |
} |
218 | 218 |
data.pop_back(); |
219 | 219 |
} |
220 | 220 |
|
221 | 221 |
/// \brief Deletes \c i from the heap. |
222 | 222 |
/// |
223 | 223 |
/// This method deletes item \c i from the heap. |
224 | 224 |
/// \param i The item to erase. |
225 | 225 |
/// \pre The item should be in the heap. |
226 | 226 |
void erase(const Item &i) { |
227 | 227 |
int h = iim[i]; |
228 | 228 |
int n = data.size()-1; |
229 | 229 |
iim.set(data[h].first, POST_HEAP); |
230 | 230 |
if( h < n ) { |
231 | 231 |
if ( bubble_up(h, data[n]) == h) { |
232 | 232 |
bubble_down(h, data[n], n); |
233 | 233 |
} |
234 | 234 |
} |
235 | 235 |
data.pop_back(); |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
|
239 | 239 |
/// \brief Returns the priority of \c i. |
240 | 240 |
/// |
241 | 241 |
/// This function returns the priority of item \c i. |
242 | 242 |
/// \pre \c i must be in the heap. |
243 | 243 |
/// \param i The item. |
244 | 244 |
Prio operator[](const Item &i) const { |
245 | 245 |
int idx = iim[i]; |
246 | 246 |
return data[idx].second; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
/// \brief \c i gets to the heap with priority \c p independently |
250 | 250 |
/// if \c i was already there. |
251 | 251 |
/// |
252 | 252 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
253 | 253 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
254 | 254 |
/// \param i The item. |
255 | 255 |
/// \param p The priority. |
256 | 256 |
void set(const Item &i, const Prio &p) { |
257 | 257 |
int idx = iim[i]; |
258 | 258 |
if( idx < 0 ) { |
259 | 259 |
push(i,p); |
260 | 260 |
} |
261 | 261 |
else if( comp(p, data[idx].second) ) { |
262 | 262 |
bubble_up(idx, Pair(i,p)); |
263 | 263 |
} |
264 | 264 |
else { |
265 | 265 |
bubble_down(idx, Pair(i,p), data.size()); |
266 | 266 |
} |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
/// \brief Decreases the priority of \c i to \c p. |
270 | 270 |
/// |
271 | 271 |
/// This method decreases the priority of item \c i to \c p. |
272 | 272 |
/// \pre \c i must be stored in the heap with priority at least \c |
273 | 273 |
/// p relative to \c Compare. |
274 | 274 |
/// \param i The item. |
275 | 275 |
/// \param p The priority. |
276 | 276 |
void decrease(const Item &i, const Prio &p) { |
277 | 277 |
int idx = iim[i]; |
278 | 278 |
bubble_up(idx, Pair(i,p)); |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
/// \brief Increases the priority of \c i to \c p. |
282 | 282 |
/// |
283 | 283 |
/// This method sets the priority of item \c i to \c p. |
284 | 284 |
/// \pre \c i must be stored in the heap with priority at most \c |
285 | 285 |
/// p relative to \c Compare. |
286 | 286 |
/// \param i The item. |
287 | 287 |
/// \param p The priority. |
288 | 288 |
void increase(const Item &i, const Prio &p) { |
289 | 289 |
int idx = iim[i]; |
290 | 290 |
bubble_down(idx, Pair(i,p), data.size()); |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
/// \brief Returns if \c item is in, has already been in, or has |
294 | 294 |
/// never been in the heap. |
295 | 295 |
/// |
296 | 296 |
/// This method returns PRE_HEAP if \c item has never been in the |
297 | 297 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
298 | 298 |
/// otherwise. In the latter case it is possible that \c item will |
299 | 299 |
/// get back to the heap again. |
300 | 300 |
/// \param i The item. |
301 | 301 |
State state(const Item &i) const { |
302 | 302 |
int s = iim[i]; |
303 | 303 |
if( s>=0 ) |
304 | 304 |
s=0; |
305 | 305 |
return State(s); |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
/// \brief Sets the state of the \c item in the heap. |
309 | 309 |
/// |
310 | 310 |
/// Sets the state of the \c item in the heap. It can be used to |
311 | 311 |
/// manually clear the heap when it is important to achive the |
312 | 312 |
/// better time complexity. |
313 | 313 |
/// \param i The item. |
314 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
315 | 315 |
void state(const Item& i, State st) { |
316 | 316 |
switch (st) { |
317 | 317 |
case POST_HEAP: |
318 | 318 |
case PRE_HEAP: |
319 | 319 |
if (state(i) == IN_HEAP) { |
320 | 320 |
erase(i); |
321 | 321 |
} |
322 | 322 |
iim[i] = st; |
323 | 323 |
break; |
324 | 324 |
case IN_HEAP: |
325 | 325 |
break; |
326 | 326 |
} |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
/// \brief Replaces an item in the heap. |
330 | 330 |
/// |
331 | 331 |
/// The \c i item is replaced with \c j item. The \c i item should |
332 | 332 |
/// be in the heap, while the \c j should be out of the heap. The |
333 | 333 |
/// \c i item will out of the heap and \c j will be in the heap |
334 | 334 |
/// with the same prioriority as prevoiusly the \c i item. |
335 | 335 |
void replace(const Item& i, const Item& j) { |
336 | 336 |
int idx = iim[i]; |
337 | 337 |
iim.set(i, iim[j]); |
338 | 338 |
iim.set(j, idx); |
339 | 339 |
data[idx].first = j; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
}; // class BinHeap |
343 | 343 |
|
344 | 344 |
} // namespace lemon |
345 | 345 |
|
346 | 346 |
#endif // LEMON_BIN_HEAP_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H |
20 | 20 |
#define LEMON_BITS_ALTERATION_NOTIFIER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
|
25 | 25 |
#include <lemon/bits/utility.h> |
26 | 26 |
|
27 | 27 |
///\ingroup graphbits |
28 | 28 |
///\file |
29 | 29 |
///\brief Observer notifier for graph alteration observers. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
/// \ingroup graphbits |
34 | 34 |
/// |
35 | 35 |
/// \brief Notifier class to notify observes about alterations in |
36 | 36 |
/// a container. |
37 | 37 |
/// |
38 | 38 |
/// The simple graph's can be refered as two containers, one node container |
39 | 39 |
/// and one edge container. But they are not standard containers they |
40 | 40 |
/// does not store values directly they are just key continars for more |
41 | 41 |
/// value containers which are the node and edge maps. |
42 | 42 |
/// |
43 | 43 |
/// The graph's node and edge sets can be changed as we add or erase |
44 | 44 |
/// nodes and edges in the graph. Lemon would like to handle easily |
45 | 45 |
/// that the node and edge maps should contain values for all nodes or |
46 | 46 |
/// edges. If we want to check on every indicing if the map contains |
47 | 47 |
/// the current indicing key that cause a drawback in the performance |
48 | 48 |
/// in the library. We use another solution we notify all maps about |
49 | 49 |
/// an alteration in the graph, which cause only drawback on the |
50 | 50 |
/// alteration of the graph. |
51 | 51 |
/// |
52 | 52 |
/// This class provides an interface to the container. The \e first() and \e |
53 | 53 |
/// next() member functions make possible to iterate on the keys of the |
54 | 54 |
/// container. The \e id() function returns an integer id for each key. |
55 | 55 |
/// The \e maxId() function gives back an upper bound of the ids. |
56 | 56 |
/// |
57 | 57 |
/// For the proper functonality of this class, we should notify it |
58 | 58 |
/// about each alteration in the container. The alterations have four type |
59 | 59 |
/// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and |
60 | 60 |
/// \e erase() signals that only one or few items added or erased to or |
61 | 61 |
/// from the graph. If all items are erased from the graph or from an empty |
62 | 62 |
/// graph a new graph is builded then it can be signaled with the |
63 | 63 |
/// clear() and build() members. Important rule that if we erase items |
64 | 64 |
/// from graph we should first signal the alteration and after that erase |
65 | 65 |
/// them from the container, on the other way on item addition we should |
66 | 66 |
/// first extend the container and just after that signal the alteration. |
67 | 67 |
/// |
68 | 68 |
/// The alteration can be observed with a class inherited from the |
69 | 69 |
/// \e ObserverBase nested class. The signals can be handled with |
70 | 70 |
/// overriding the virtual functions defined in the base class. The |
71 | 71 |
/// observer base can be attached to the notifier with the |
72 | 72 |
/// \e attach() member and can be detached with detach() function. The |
73 | 73 |
/// alteration handlers should not call any function which signals |
74 | 74 |
/// an other alteration in the same notifier and should not |
75 | 75 |
/// detach any observer from the notifier. |
76 | 76 |
/// |
77 | 77 |
/// Alteration observers try to be exception safe. If an \e add() or |
78 | 78 |
/// a \e clear() function throws an exception then the remaining |
79 | 79 |
/// observeres will not be notified and the fulfilled additions will |
80 | 80 |
/// be rolled back by calling the \e erase() or \e clear() |
81 | 81 |
/// functions. Thence the \e erase() and \e clear() should not throw |
82 | 82 |
/// exception. Actullay, it can be throw only |
83 | 83 |
/// \ref AlterationObserver::ImmediateDetach ImmediateDetach |
84 | 84 |
/// exception which detach the observer from the notifier. |
85 | 85 |
/// |
86 | 86 |
/// There are some place when the alteration observing is not completly |
87 | 87 |
/// reliable. If we want to carry out the node degree in the graph |
88 | 88 |
/// as in the \ref InDegMap and we use the reverseEdge that cause |
89 | 89 |
/// unreliable functionality. Because the alteration observing signals |
90 | 90 |
/// only erasing and adding but not the reversing it will stores bad |
91 | 91 |
/// degrees. The sub graph adaptors cannot signal the alterations because |
92 | 92 |
/// just a setting in the filter map can modify the graph and this cannot |
93 | 93 |
/// be watched in any way. |
94 | 94 |
/// |
95 | 95 |
/// \param _Container The container which is observed. |
96 | 96 |
/// \param _Item The item type which is obserbved. |
97 |
/// |
|
98 |
/// \author Balazs Dezso |
|
99 | 97 |
|
100 | 98 |
template <typename _Container, typename _Item> |
101 | 99 |
class AlterationNotifier { |
102 | 100 |
public: |
103 | 101 |
|
104 | 102 |
typedef True Notifier; |
105 | 103 |
|
106 | 104 |
typedef _Container Container; |
107 | 105 |
typedef _Item Item; |
108 | 106 |
|
109 | 107 |
/// \brief Exception which can be called from \e clear() and |
110 | 108 |
/// \e erase(). |
111 | 109 |
/// |
112 | 110 |
/// From the \e clear() and \e erase() function only this |
113 | 111 |
/// exception is allowed to throw. The exception immediatly |
114 | 112 |
/// detaches the current observer from the notifier. Because the |
115 | 113 |
/// \e clear() and \e erase() should not throw other exceptions |
116 | 114 |
/// it can be used to invalidate the observer. |
117 | 115 |
struct ImmediateDetach {}; |
118 | 116 |
|
119 | 117 |
/// \brief ObserverBase is the base class for the observers. |
120 | 118 |
/// |
121 | 119 |
/// ObserverBase is the abstract base class for the observers. |
122 | 120 |
/// It will be notified about an item was inserted into or |
123 | 121 |
/// erased from the graph. |
124 | 122 |
/// |
125 | 123 |
/// The observer interface contains some pure virtual functions |
126 | 124 |
/// to override. The add() and erase() functions are |
127 | 125 |
/// to notify the oberver when one item is added or |
128 | 126 |
/// erased. |
129 | 127 |
/// |
130 | 128 |
/// The build() and clear() members are to notify the observer |
131 | 129 |
/// about the container is built from an empty container or |
132 | 130 |
/// is cleared to an empty container. |
133 |
/// |
|
134 |
/// \author Balazs Dezso |
|
135 | 131 |
|
136 | 132 |
class ObserverBase { |
137 | 133 |
protected: |
138 | 134 |
typedef AlterationNotifier Notifier; |
139 | 135 |
|
140 | 136 |
friend class AlterationNotifier; |
141 | 137 |
|
142 | 138 |
/// \brief Default constructor. |
143 | 139 |
/// |
144 | 140 |
/// Default constructor for ObserverBase. |
145 | 141 |
/// |
146 | 142 |
ObserverBase() : _notifier(0) {} |
147 | 143 |
|
148 | 144 |
/// \brief Constructor which attach the observer into notifier. |
149 | 145 |
/// |
150 | 146 |
/// Constructor which attach the observer into notifier. |
151 | 147 |
ObserverBase(AlterationNotifier& nf) { |
152 | 148 |
attach(nf); |
153 | 149 |
} |
154 | 150 |
|
155 | 151 |
/// \brief Constructor which attach the obserever to the same notifier. |
156 | 152 |
/// |
157 | 153 |
/// Constructor which attach the obserever to the same notifier as |
158 | 154 |
/// the other observer is attached to. |
159 | 155 |
ObserverBase(const ObserverBase& copy) { |
160 | 156 |
if (copy.attached()) { |
161 | 157 |
attach(*copy.notifier()); |
162 | 158 |
} |
163 | 159 |
} |
164 | 160 |
|
165 | 161 |
/// \brief Destructor |
166 | 162 |
virtual ~ObserverBase() { |
167 | 163 |
if (attached()) { |
168 | 164 |
detach(); |
169 | 165 |
} |
170 | 166 |
} |
171 | 167 |
|
172 | 168 |
/// \brief Attaches the observer into an AlterationNotifier. |
173 | 169 |
/// |
174 | 170 |
/// This member attaches the observer into an AlterationNotifier. |
175 | 171 |
/// |
176 | 172 |
void attach(AlterationNotifier& nf) { |
177 | 173 |
nf.attach(*this); |
178 | 174 |
} |
179 | 175 |
|
180 | 176 |
/// \brief Detaches the observer into an AlterationNotifier. |
181 | 177 |
/// |
182 | 178 |
/// This member detaches the observer from an AlterationNotifier. |
183 | 179 |
/// |
184 | 180 |
void detach() { |
185 | 181 |
_notifier->detach(*this); |
186 | 182 |
} |
187 | 183 |
|
188 | 184 |
/// \brief Gives back a pointer to the notifier which the map |
189 | 185 |
/// attached into. |
190 | 186 |
/// |
191 | 187 |
/// This function gives back a pointer to the notifier which the map |
192 | 188 |
/// attached into. |
193 | 189 |
/// |
194 | 190 |
Notifier* notifier() const { return const_cast<Notifier*>(_notifier); } |
195 | 191 |
|
196 | 192 |
/// Gives back true when the observer is attached into a notifier. |
197 | 193 |
bool attached() const { return _notifier != 0; } |
198 | 194 |
|
199 | 195 |
private: |
200 | 196 |
|
201 | 197 |
ObserverBase& operator=(const ObserverBase& copy); |
202 | 198 |
|
203 | 199 |
protected: |
204 | 200 |
|
205 | 201 |
Notifier* _notifier; |
206 | 202 |
typename std::list<ObserverBase*>::iterator _index; |
207 | 203 |
|
208 | 204 |
/// \brief The member function to notificate the observer about an |
209 | 205 |
/// item is added to the container. |
210 | 206 |
/// |
211 | 207 |
/// The add() member function notificates the observer about an item |
212 | 208 |
/// is added to the container. It have to be overrided in the |
213 | 209 |
/// subclasses. |
214 | 210 |
virtual void add(const Item&) = 0; |
215 | 211 |
|
216 | 212 |
/// \brief The member function to notificate the observer about |
217 | 213 |
/// more item is added to the container. |
218 | 214 |
/// |
219 | 215 |
/// The add() member function notificates the observer about more item |
220 | 216 |
/// is added to the container. It have to be overrided in the |
221 | 217 |
/// subclasses. |
222 | 218 |
virtual void add(const std::vector<Item>& items) = 0; |
223 | 219 |
|
224 | 220 |
/// \brief The member function to notificate the observer about an |
225 | 221 |
/// item is erased from the container. |
226 | 222 |
/// |
227 | 223 |
/// The erase() member function notificates the observer about an |
228 | 224 |
/// item is erased from the container. It have to be overrided in |
229 | 225 |
/// the subclasses. |
230 | 226 |
virtual void erase(const Item&) = 0; |
231 | 227 |
|
232 | 228 |
/// \brief The member function to notificate the observer about |
233 | 229 |
/// more item is erased from the container. |
234 | 230 |
/// |
235 | 231 |
/// The erase() member function notificates the observer about more item |
236 | 232 |
/// is erased from the container. It have to be overrided in the |
237 | 233 |
/// subclasses. |
238 | 234 |
virtual void erase(const std::vector<Item>& items) = 0; |
239 | 235 |
|
240 | 236 |
/// \brief The member function to notificate the observer about the |
241 | 237 |
/// container is built. |
242 | 238 |
/// |
243 | 239 |
/// The build() member function notificates the observer about the |
244 | 240 |
/// container is built from an empty container. It have to be |
245 | 241 |
/// overrided in the subclasses. |
246 | 242 |
|
247 | 243 |
virtual void build() = 0; |
248 | 244 |
|
249 | 245 |
/// \brief The member function to notificate the observer about all |
250 | 246 |
/// items are erased from the container. |
251 | 247 |
/// |
252 | 248 |
/// The clear() member function notificates the observer about all |
253 | 249 |
/// items are erased from the container. It have to be overrided in |
254 | 250 |
/// the subclasses. |
255 | 251 |
virtual void clear() = 0; |
256 | 252 |
|
257 | 253 |
}; |
258 | 254 |
|
259 | 255 |
protected: |
260 | 256 |
|
261 | 257 |
const Container* container; |
262 | 258 |
|
263 | 259 |
typedef std::list<ObserverBase*> Observers; |
264 | 260 |
Observers _observers; |
265 | 261 |
|
266 | 262 |
|
267 | 263 |
public: |
268 | 264 |
|
269 | 265 |
/// \brief Default constructor. |
270 | 266 |
/// |
271 | 267 |
/// The default constructor of the AlterationNotifier. |
272 | 268 |
/// It creates an empty notifier. |
273 | 269 |
AlterationNotifier() |
274 | 270 |
: container(0) {} |
275 | 271 |
|
276 | 272 |
/// \brief Constructor. |
277 | 273 |
/// |
278 | 274 |
/// Constructor with the observed container parameter. |
279 | 275 |
AlterationNotifier(const Container& _container) |
280 | 276 |
: container(&_container) {} |
281 | 277 |
|
282 | 278 |
/// \brief Copy Constructor of the AlterationNotifier. |
283 | 279 |
/// |
284 | 280 |
/// Copy constructor of the AlterationNotifier. |
285 | 281 |
/// It creates only an empty notifier because the copiable |
286 | 282 |
/// notifier's observers have to be registered still into that notifier. |
287 | 283 |
AlterationNotifier(const AlterationNotifier& _notifier) |
288 | 284 |
: container(_notifier.container) {} |
289 | 285 |
|
290 | 286 |
/// \brief Destructor. |
291 | 287 |
/// |
292 | 288 |
/// Destructor of the AlterationNotifier. |
293 | 289 |
/// |
294 | 290 |
~AlterationNotifier() { |
295 | 291 |
typename Observers::iterator it; |
296 | 292 |
for (it = _observers.begin(); it != _observers.end(); ++it) { |
297 | 293 |
(*it)->_notifier = 0; |
298 | 294 |
} |
299 | 295 |
} |
300 | 296 |
|
301 | 297 |
/// \brief Sets the container. |
302 | 298 |
/// |
303 | 299 |
/// Sets the container. |
304 | 300 |
void setContainer(const Container& _container) { |
305 | 301 |
container = &_container; |
306 | 302 |
} |
307 | 303 |
|
308 | 304 |
protected: |
309 | 305 |
|
310 | 306 |
AlterationNotifier& operator=(const AlterationNotifier&); |
311 | 307 |
|
312 | 308 |
public: |
313 | 309 |
|
314 | 310 |
|
315 | 311 |
|
316 | 312 |
/// \brief First item in the container. |
317 | 313 |
/// |
318 | 314 |
/// Returns the first item in the container. It is |
319 | 315 |
/// for start the iteration on the container. |
320 | 316 |
void first(Item& item) const { |
321 | 317 |
container->first(item); |
322 | 318 |
} |
323 | 319 |
|
324 | 320 |
/// \brief Next item in the container. |
325 | 321 |
/// |
326 | 322 |
/// Returns the next item in the container. It is |
327 | 323 |
/// for iterate on the container. |
328 | 324 |
void next(Item& item) const { |
329 | 325 |
container->next(item); |
330 | 326 |
} |
331 | 327 |
|
332 | 328 |
/// \brief Returns the id of the item. |
333 | 329 |
/// |
334 | 330 |
/// Returns the id of the item provided by the container. |
335 | 331 |
int id(const Item& item) const { |
336 | 332 |
return container->id(item); |
337 | 333 |
} |
338 | 334 |
|
339 | 335 |
/// \brief Returns the maximum id of the container. |
340 | 336 |
/// |
341 | 337 |
/// Returns the maximum id of the container. |
342 | 338 |
int maxId() const { |
343 | 339 |
return container->maxId(Item()); |
344 | 340 |
} |
345 | 341 |
|
346 | 342 |
protected: |
347 | 343 |
|
348 | 344 |
void attach(ObserverBase& observer) { |
349 | 345 |
observer._index = _observers.insert(_observers.begin(), &observer); |
350 | 346 |
observer._notifier = this; |
351 | 347 |
} |
352 | 348 |
|
353 | 349 |
void detach(ObserverBase& observer) { |
354 | 350 |
_observers.erase(observer._index); |
355 | 351 |
observer._index = _observers.end(); |
356 | 352 |
observer._notifier = 0; |
357 | 353 |
} |
358 | 354 |
|
359 | 355 |
public: |
360 | 356 |
|
361 | 357 |
/// \brief Notifies all the registed observers about an item added to |
362 | 358 |
/// the container. |
363 | 359 |
/// |
364 | 360 |
/// It notifies all the registed observers about an item added to |
365 | 361 |
/// the container. |
366 | 362 |
/// |
367 | 363 |
void add(const Item& item) { |
368 | 364 |
typename Observers::reverse_iterator it; |
369 | 365 |
try { |
370 | 366 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
371 | 367 |
(*it)->add(item); |
372 | 368 |
} |
373 | 369 |
} catch (...) { |
374 | 370 |
typename Observers::iterator jt; |
375 | 371 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
376 | 372 |
(*jt)->erase(item); |
377 | 373 |
} |
378 | 374 |
throw; |
379 | 375 |
} |
380 | 376 |
} |
381 | 377 |
|
382 | 378 |
/// \brief Notifies all the registed observers about more item added to |
383 | 379 |
/// the container. |
384 | 380 |
/// |
385 | 381 |
/// It notifies all the registed observers about more item added to |
386 | 382 |
/// the container. |
387 | 383 |
/// |
388 | 384 |
void add(const std::vector<Item>& items) { |
389 | 385 |
typename Observers::reverse_iterator it; |
390 | 386 |
try { |
391 | 387 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
392 | 388 |
(*it)->add(items); |
393 | 389 |
} |
394 | 390 |
} catch (...) { |
395 | 391 |
typename Observers::iterator jt; |
396 | 392 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
397 | 393 |
(*jt)->erase(items); |
398 | 394 |
} |
399 | 395 |
throw; |
400 | 396 |
} |
401 | 397 |
} |
402 | 398 |
|
403 | 399 |
/// \brief Notifies all the registed observers about an item erased from |
404 | 400 |
/// the container. |
405 | 401 |
/// |
406 | 402 |
/// It notifies all the registed observers about an item erased from |
407 | 403 |
/// the container. |
408 | 404 |
/// |
409 | 405 |
void erase(const Item& item) throw() { |
410 | 406 |
typename Observers::iterator it = _observers.begin(); |
411 | 407 |
while (it != _observers.end()) { |
412 | 408 |
try { |
413 | 409 |
(*it)->erase(item); |
414 | 410 |
++it; |
415 | 411 |
} catch (const ImmediateDetach&) { |
416 | 412 |
it = _observers.erase(it); |
417 | 413 |
(*it)->_index = _observers.end(); |
418 | 414 |
(*it)->_notifier = 0; |
419 | 415 |
} |
420 | 416 |
} |
421 | 417 |
} |
422 | 418 |
|
423 | 419 |
/// \brief Notifies all the registed observers about more item erased |
424 | 420 |
/// from the container. |
425 | 421 |
/// |
426 | 422 |
/// It notifies all the registed observers about more item erased from |
427 | 423 |
/// the container. |
428 | 424 |
/// |
429 | 425 |
void erase(const std::vector<Item>& items) { |
430 | 426 |
typename Observers::iterator it = _observers.begin(); |
431 | 427 |
while (it != _observers.end()) { |
432 | 428 |
try { |
433 | 429 |
(*it)->erase(items); |
434 | 430 |
++it; |
435 | 431 |
} catch (const ImmediateDetach&) { |
436 | 432 |
it = _observers.erase(it); |
437 | 433 |
(*it)->_index = _observers.end(); |
438 | 434 |
(*it)->_notifier = 0; |
439 | 435 |
} |
440 | 436 |
} |
441 | 437 |
} |
442 | 438 |
|
443 | 439 |
/// \brief Notifies all the registed observers about the container is |
444 | 440 |
/// built. |
445 | 441 |
/// |
446 | 442 |
/// Notifies all the registed observers about the container is built |
447 | 443 |
/// from an empty container. |
448 | 444 |
void build() { |
449 | 445 |
typename Observers::reverse_iterator it; |
450 | 446 |
try { |
451 | 447 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
452 | 448 |
(*it)->build(); |
453 | 449 |
} |
454 | 450 |
} catch (...) { |
455 | 451 |
typename Observers::iterator jt; |
456 | 452 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
457 | 453 |
(*jt)->clear(); |
458 | 454 |
} |
459 | 455 |
throw; |
460 | 456 |
} |
461 | 457 |
} |
462 | 458 |
|
463 | 459 |
/// \brief Notifies all the registed observers about all items are |
464 | 460 |
/// erased. |
465 | 461 |
/// |
466 | 462 |
/// Notifies all the registed observers about all items are erased |
467 | 463 |
/// from the container. |
468 | 464 |
void clear() { |
469 | 465 |
typename Observers::iterator it = _observers.begin(); |
470 | 466 |
while (it != _observers.end()) { |
471 | 467 |
try { |
472 | 468 |
(*it)->clear(); |
473 | 469 |
++it; |
474 | 470 |
} catch (const ImmediateDetach&) { |
475 | 471 |
it = _observers.erase(it); |
476 | 472 |
(*it)->_index = _observers.end(); |
477 | 473 |
(*it)->_notifier = 0; |
478 | 474 |
} |
479 | 475 |
} |
480 | 476 |
} |
481 | 477 |
}; |
482 | 478 |
|
483 | 479 |
} |
484 | 480 |
|
485 | 481 |
#endif |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BEZIER_H |
20 | 20 |
#define LEMON_BEZIER_H |
21 | 21 |
|
22 | 22 |
///\ingroup misc |
23 | 23 |
///\file |
24 | 24 |
///\brief Classes to compute with Bezier curves. |
25 | 25 |
/// |
26 | 26 |
///Up to now this file is used internally by \ref graph_to_eps.h |
27 |
/// |
|
28 |
///\author Alpar Juttner |
|
29 | 27 |
|
30 | 28 |
#include<lemon/dim2.h> |
31 | 29 |
|
32 | 30 |
namespace lemon { |
33 | 31 |
namespace dim2 { |
34 | 32 |
|
35 | 33 |
class BezierBase { |
36 | 34 |
public: |
37 | 35 |
typedef Point<double> Point; |
38 | 36 |
protected: |
39 | 37 |
static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;} |
40 | 38 |
}; |
41 | 39 |
|
42 | 40 |
class Bezier1 : public BezierBase |
43 | 41 |
{ |
44 | 42 |
public: |
45 | 43 |
Point p1,p2; |
46 | 44 |
|
47 | 45 |
Bezier1() {} |
48 | 46 |
Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {} |
49 | 47 |
|
50 | 48 |
Point operator()(double t) const |
51 | 49 |
{ |
52 | 50 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
53 | 51 |
return conv(p1,p2,t); |
54 | 52 |
} |
55 | 53 |
Bezier1 before(double t) const |
56 | 54 |
{ |
57 | 55 |
return Bezier1(p1,conv(p1,p2,t)); |
58 | 56 |
} |
59 | 57 |
|
60 | 58 |
Bezier1 after(double t) const |
61 | 59 |
{ |
62 | 60 |
return Bezier1(conv(p1,p2,t),p2); |
63 | 61 |
} |
64 | 62 |
|
65 | 63 |
Bezier1 revert() const { return Bezier1(p2,p1);} |
66 | 64 |
Bezier1 operator()(double a,double b) const { return before(b).after(a/b); } |
67 | 65 |
Point grad() const { return p2-p1; } |
68 | 66 |
Point norm() const { return rot90(p2-p1); } |
69 | 67 |
Point grad(double) const { return grad(); } |
70 | 68 |
Point norm(double t) const { return rot90(grad(t)); } |
71 | 69 |
}; |
72 | 70 |
|
73 | 71 |
class Bezier2 : public BezierBase |
74 | 72 |
{ |
75 | 73 |
public: |
76 | 74 |
Point p1,p2,p3; |
77 | 75 |
|
78 | 76 |
Bezier2() {} |
79 | 77 |
Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {} |
80 | 78 |
Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {} |
81 | 79 |
Point operator()(double t) const |
82 | 80 |
{ |
83 | 81 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
84 | 82 |
return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3; |
85 | 83 |
} |
86 | 84 |
Bezier2 before(double t) const |
87 | 85 |
{ |
88 | 86 |
Point q(conv(p1,p2,t)); |
89 | 87 |
Point r(conv(p2,p3,t)); |
90 | 88 |
return Bezier2(p1,q,conv(q,r,t)); |
91 | 89 |
} |
92 | 90 |
|
93 | 91 |
Bezier2 after(double t) const |
94 | 92 |
{ |
95 | 93 |
Point q(conv(p1,p2,t)); |
96 | 94 |
Point r(conv(p2,p3,t)); |
97 | 95 |
return Bezier2(conv(q,r,t),r,p3); |
98 | 96 |
} |
99 | 97 |
Bezier2 revert() const { return Bezier2(p3,p2,p1);} |
100 | 98 |
Bezier2 operator()(double a,double b) const { return before(b).after(a/b); } |
101 | 99 |
Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); } |
102 | 100 |
Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); } |
103 | 101 |
Point grad(double t) const { return grad()(t); } |
104 | 102 |
Point norm(double t) const { return rot90(grad(t)); } |
105 | 103 |
}; |
106 | 104 |
|
107 | 105 |
class Bezier3 : public BezierBase |
108 | 106 |
{ |
109 | 107 |
public: |
110 | 108 |
Point p1,p2,p3,p4; |
111 | 109 |
|
112 | 110 |
Bezier3() {} |
113 | 111 |
Bezier3(Point _p1, Point _p2, Point _p3, Point _p4) |
114 | 112 |
: p1(_p1), p2(_p2), p3(_p3), p4(_p4) {} |
115 | 113 |
Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), |
116 | 114 |
p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {} |
117 | 115 |
Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)), |
118 | 116 |
p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {} |
119 | 117 |
|
120 | 118 |
Point operator()(double t) const |
121 | 119 |
{ |
122 | 120 |
// return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t); |
123 | 121 |
return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+ |
124 | 122 |
(3*t*t*(1-t))*p3+(t*t*t)*p4; |
125 | 123 |
} |
126 | 124 |
Bezier3 before(double t) const |
127 | 125 |
{ |
128 | 126 |
Point p(conv(p1,p2,t)); |
129 | 127 |
Point q(conv(p2,p3,t)); |
130 | 128 |
Point r(conv(p3,p4,t)); |
131 | 129 |
Point a(conv(p,q,t)); |
132 | 130 |
Point b(conv(q,r,t)); |
133 | 131 |
Point c(conv(a,b,t)); |
134 | 132 |
return Bezier3(p1,p,a,c); |
135 | 133 |
} |
136 | 134 |
|
137 | 135 |
Bezier3 after(double t) const |
138 | 136 |
{ |
139 | 137 |
Point p(conv(p1,p2,t)); |
140 | 138 |
Point q(conv(p2,p3,t)); |
141 | 139 |
Point r(conv(p3,p4,t)); |
142 | 140 |
Point a(conv(p,q,t)); |
143 | 141 |
Point b(conv(q,r,t)); |
144 | 142 |
Point c(conv(a,b,t)); |
145 | 143 |
return Bezier3(c,b,r,p4); |
146 | 144 |
} |
147 | 145 |
Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);} |
148 | 146 |
Bezier3 operator()(double a,double b) const { return before(b).after(a/b); } |
149 | 147 |
Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); } |
150 | 148 |
Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1), |
151 | 149 |
3.0*rot90(p3-p2), |
152 | 150 |
3.0*rot90(p4-p3)); } |
153 | 151 |
Point grad(double t) const { return grad()(t); } |
154 | 152 |
Point norm(double t) const { return rot90(grad(t)); } |
155 | 153 |
|
156 | 154 |
template<class R,class F,class S,class D> |
157 | 155 |
R recSplit(F &_f,const S &_s,D _d) const |
158 | 156 |
{ |
159 | 157 |
const Point a=(p1+p2)/2; |
160 | 158 |
const Point b=(p2+p3)/2; |
161 | 159 |
const Point c=(p3+p4)/2; |
162 | 160 |
const Point d=(a+b)/2; |
163 | 161 |
const Point e=(b+c)/2; |
164 | 162 |
const Point f=(d+e)/2; |
165 | 163 |
R f1=_f(Bezier3(p1,a,d,e),_d); |
166 | 164 |
R f2=_f(Bezier3(e,d,c,p4),_d); |
167 | 165 |
return _s(f1,f2); |
168 | 166 |
} |
169 | 167 |
|
170 | 168 |
}; |
171 | 169 |
|
172 | 170 |
|
173 | 171 |
} //END OF NAMESPACE dim2 |
174 | 172 |
} //END OF NAMESPACE lemon |
175 | 173 |
|
176 | 174 |
#endif // LEMON_BEZIER_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/bits/traits.h> |
26 | 26 |
#include <lemon/bits/utility.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/bits/alteration_notifier.h> |
29 | 29 |
|
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
#include <lemon/concepts/maps.h> |
32 | 32 |
|
33 | 33 |
///\ingroup graphbits |
34 | 34 |
/// |
35 | 35 |
///\file |
36 | 36 |
///\brief Vector based graph maps. |
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \ingroup graphbits |
40 | 40 |
/// |
41 | 41 |
/// \brief Graph map based on the std::vector storage. |
42 | 42 |
/// |
43 | 43 |
/// The VectorMap template class is graph map structure what |
44 | 44 |
/// automatically updates the map when a key is added to or erased from |
45 | 45 |
/// the map. This map type uses the std::vector to store the values. |
46 | 46 |
/// |
47 |
/// \param Notifier The AlterationNotifier that will notify this map. |
|
48 |
/// \param Item The item type of the graph items. |
|
49 |
/// \param Value The value type of the map. |
|
50 |
/// |
|
51 |
/// \ |
|
47 |
/// \tparam _Notifier The AlterationNotifier that will notify this map. |
|
48 |
/// \tparam _Item The item type of the graph items. |
|
49 |
/// \tparam _Value The value type of the map. |
|
50 |
/// \todo Fix the doc: there is _Graph parameter instead of _Notifier. |
|
52 | 51 |
template <typename _Graph, typename _Item, typename _Value> |
53 | 52 |
class VectorMap |
54 | 53 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
55 | 54 |
private: |
56 | 55 |
|
57 | 56 |
/// The container type of the map. |
58 | 57 |
typedef std::vector<_Value> Container; |
59 | 58 |
|
60 | 59 |
public: |
61 | 60 |
|
62 | 61 |
/// The graph type of the map. |
63 | 62 |
typedef _Graph Graph; |
64 | 63 |
/// The item type of the map. |
65 | 64 |
typedef _Item Item; |
66 | 65 |
/// The reference map tag. |
67 | 66 |
typedef True ReferenceMapTag; |
68 | 67 |
|
69 | 68 |
/// The key type of the map. |
70 | 69 |
typedef _Item Key; |
71 | 70 |
/// The value type of the map. |
72 | 71 |
typedef _Value Value; |
73 | 72 |
|
74 | 73 |
/// The notifier type. |
75 | 74 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
76 | 75 |
|
77 | 76 |
/// The map type. |
78 | 77 |
typedef VectorMap Map; |
79 | 78 |
/// The base class of the map. |
80 | 79 |
typedef typename Notifier::ObserverBase Parent; |
81 | 80 |
|
82 | 81 |
/// The reference type of the map; |
83 | 82 |
typedef typename Container::reference Reference; |
84 | 83 |
/// The const reference type of the map; |
85 | 84 |
typedef typename Container::const_reference ConstReference; |
86 | 85 |
|
87 | 86 |
|
88 | 87 |
/// \brief Constructor to attach the new map into the notifier. |
89 | 88 |
/// |
90 | 89 |
/// It constructs a map and attachs it into the notifier. |
91 | 90 |
/// It adds all the items of the graph to the map. |
92 | 91 |
VectorMap(const Graph& graph) { |
93 | 92 |
Parent::attach(graph.notifier(Item())); |
94 | 93 |
container.resize(Parent::notifier()->maxId() + 1); |
95 | 94 |
} |
96 | 95 |
|
97 | 96 |
/// \brief Constructor uses given value to initialize the map. |
98 | 97 |
/// |
99 | 98 |
/// It constructs a map uses a given value to initialize the map. |
100 | 99 |
/// It adds all the items of the graph to the map. |
101 | 100 |
VectorMap(const Graph& graph, const Value& value) { |
102 | 101 |
Parent::attach(graph.notifier(Item())); |
103 | 102 |
container.resize(Parent::notifier()->maxId() + 1, value); |
104 | 103 |
} |
105 | 104 |
|
106 | 105 |
/// \brief Copy constructor |
107 | 106 |
/// |
108 | 107 |
/// Copy constructor. |
109 | 108 |
VectorMap(const VectorMap& _copy) : Parent() { |
110 | 109 |
if (_copy.attached()) { |
111 | 110 |
Parent::attach(*_copy.notifier()); |
112 | 111 |
container = _copy.container; |
113 | 112 |
} |
114 | 113 |
} |
115 | 114 |
|
116 | 115 |
/// \brief Assign operator. |
117 | 116 |
/// |
118 | 117 |
/// This operator assigns for each item in the map the |
119 | 118 |
/// value mapped to the same item in the copied map. |
120 | 119 |
/// The parameter map should be indiced with the same |
121 | 120 |
/// itemset because this assign operator does not change |
122 | 121 |
/// the container of the map. |
123 | 122 |
VectorMap& operator=(const VectorMap& cmap) { |
124 | 123 |
return operator=<VectorMap>(cmap); |
125 | 124 |
} |
126 | 125 |
|
127 | 126 |
|
128 | 127 |
/// \brief Template assign operator. |
129 | 128 |
/// |
130 | 129 |
/// The given parameter should be conform to the ReadMap |
131 | 130 |
/// concecpt and could be indiced by the current item set of |
132 | 131 |
/// the NodeMap. In this case the value for each item |
133 | 132 |
/// is assigned by the value of the given ReadMap. |
134 | 133 |
template <typename CMap> |
135 | 134 |
VectorMap& operator=(const CMap& cmap) { |
136 | 135 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
137 | 136 |
const typename Parent::Notifier* nf = Parent::notifier(); |
138 | 137 |
Item it; |
139 | 138 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
140 | 139 |
set(it, cmap[it]); |
141 | 140 |
} |
142 | 141 |
return *this; |
143 | 142 |
} |
144 | 143 |
|
145 | 144 |
public: |
146 | 145 |
|
147 | 146 |
/// \brief The subcript operator. |
148 | 147 |
/// |
149 | 148 |
/// The subscript operator. The map can be subscripted by the |
150 | 149 |
/// actual items of the graph. |
151 | 150 |
Reference operator[](const Key& key) { |
152 | 151 |
return container[Parent::notifier()->id(key)]; |
153 | 152 |
} |
154 | 153 |
|
155 | 154 |
/// \brief The const subcript operator. |
156 | 155 |
/// |
157 | 156 |
/// The const subscript operator. The map can be subscripted by the |
158 | 157 |
/// actual items of the graph. |
159 | 158 |
ConstReference operator[](const Key& key) const { |
160 | 159 |
return container[Parent::notifier()->id(key)]; |
161 | 160 |
} |
162 | 161 |
|
163 | 162 |
|
164 | 163 |
/// \brief The setter function of the map. |
165 | 164 |
/// |
166 | 165 |
/// It the same as operator[](key) = value expression. |
167 | 166 |
void set(const Key& key, const Value& value) { |
168 | 167 |
(*this)[key] = value; |
169 | 168 |
} |
170 | 169 |
|
171 | 170 |
protected: |
172 | 171 |
|
173 | 172 |
/// \brief Adds a new key to the map. |
174 | 173 |
/// |
175 | 174 |
/// It adds a new key to the map. It called by the observer notifier |
176 | 175 |
/// and it overrides the add() member function of the observer base. |
177 | 176 |
virtual void add(const Key& key) { |
178 | 177 |
int id = Parent::notifier()->id(key); |
179 | 178 |
if (id >= int(container.size())) { |
180 | 179 |
container.resize(id + 1); |
181 | 180 |
} |
182 | 181 |
} |
183 | 182 |
|
184 | 183 |
/// \brief Adds more new keys to the map. |
185 | 184 |
/// |
186 | 185 |
/// It adds more new keys to the map. It called by the observer notifier |
187 | 186 |
/// and it overrides the add() member function of the observer base. |
188 | 187 |
virtual void add(const std::vector<Key>& keys) { |
189 | 188 |
int max = container.size() - 1; |
190 | 189 |
for (int i = 0; i < int(keys.size()); ++i) { |
191 | 190 |
int id = Parent::notifier()->id(keys[i]); |
192 | 191 |
if (id >= max) { |
193 | 192 |
max = id; |
194 | 193 |
} |
195 | 194 |
} |
196 | 195 |
container.resize(max + 1); |
197 | 196 |
} |
198 | 197 |
|
199 | 198 |
/// \brief Erase a key from the map. |
200 | 199 |
/// |
201 | 200 |
/// Erase a key from the map. It called by the observer notifier |
202 | 201 |
/// and it overrides the erase() member function of the observer base. |
203 | 202 |
virtual void erase(const Key& key) { |
204 | 203 |
container[Parent::notifier()->id(key)] = Value(); |
205 | 204 |
} |
206 | 205 |
|
207 | 206 |
/// \brief Erase more keys from the map. |
208 | 207 |
/// |
209 | 208 |
/// Erase more keys from the map. It called by the observer notifier |
210 | 209 |
/// and it overrides the erase() member function of the observer base. |
211 | 210 |
virtual void erase(const std::vector<Key>& keys) { |
212 | 211 |
for (int i = 0; i < int(keys.size()); ++i) { |
213 | 212 |
container[Parent::notifier()->id(keys[i])] = Value(); |
214 | 213 |
} |
215 | 214 |
} |
216 | 215 |
|
217 | 216 |
/// \brief Buildes the map. |
218 | 217 |
/// |
219 | 218 |
/// It buildes the map. It called by the observer notifier |
220 | 219 |
/// and it overrides the build() member function of the observer base. |
221 | 220 |
virtual void build() { |
222 | 221 |
int size = Parent::notifier()->maxId() + 1; |
223 | 222 |
container.reserve(size); |
224 | 223 |
container.resize(size); |
225 | 224 |
} |
226 | 225 |
|
227 | 226 |
/// \brief Clear the map. |
228 | 227 |
/// |
229 | 228 |
/// It erase all items from the map. It called by the observer notifier |
230 | 229 |
/// and it overrides the clear() member function of the observer base. |
231 | 230 |
virtual void clear() { |
232 | 231 |
container.clear(); |
233 | 232 |
} |
234 | 233 |
|
235 | 234 |
private: |
236 | 235 |
|
237 | 236 |
Container container; |
238 | 237 |
|
239 | 238 |
}; |
240 | 239 |
|
241 | 240 |
} |
242 | 241 |
|
243 | 242 |
#endif |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COLOR_H |
20 | 20 |
#define LEMON_COLOR_H |
21 | 21 |
|
22 | 22 |
#include<vector> |
23 | 23 |
#include<lemon/math.h> |
24 | 24 |
#include<lemon/maps.h> |
25 | 25 |
|
26 | 26 |
|
27 | 27 |
///\ingroup misc |
28 | 28 |
///\file |
29 | 29 |
///\brief Tools to manage RGB colors. |
30 |
/// |
|
31 |
///\author Alpar Juttner |
|
32 | 30 |
|
33 | 31 |
namespace lemon { |
34 | 32 |
|
35 | 33 |
|
36 | 34 |
/// \addtogroup misc |
37 | 35 |
/// @{ |
38 | 36 |
|
39 | 37 |
///Data structure representing RGB colors. |
40 | 38 |
|
41 | 39 |
///Data structure representing RGB colors. |
42 | 40 |
class Color |
43 | 41 |
{ |
44 | 42 |
double _r,_g,_b; |
45 | 43 |
public: |
46 | 44 |
///Default constructor |
47 | 45 |
Color() {} |
48 | 46 |
///Constructor |
49 | 47 |
Color(double r,double g,double b) :_r(r),_g(g),_b(b) {}; |
50 | 48 |
///Set the red component |
51 | 49 |
double & red() {return _r;} |
52 | 50 |
///Return the red component |
53 | 51 |
const double & red() const {return _r;} |
54 | 52 |
///Set the green component |
55 | 53 |
double & green() {return _g;} |
56 | 54 |
///Return the green component |
57 | 55 |
const double & green() const {return _g;} |
58 | 56 |
///Set the blue component |
59 | 57 |
double & blue() {return _b;} |
60 | 58 |
///Return the blue component |
61 | 59 |
const double & blue() const {return _b;} |
62 | 60 |
///Set the color components |
63 | 61 |
void set(double r,double g,double b) { _r=r;_g=g;_b=b; }; |
64 | 62 |
}; |
65 | 63 |
|
66 | 64 |
/// White color constant |
67 | 65 |
extern const Color WHITE; |
68 | 66 |
/// Black color constant |
69 | 67 |
extern const Color BLACK; |
70 | 68 |
/// Red color constant |
71 | 69 |
extern const Color RED; |
72 | 70 |
/// Green color constant |
73 | 71 |
extern const Color GREEN; |
74 | 72 |
/// Blue color constant |
75 | 73 |
extern const Color BLUE; |
76 | 74 |
/// Yellow color constant |
77 | 75 |
extern const Color YELLOW; |
78 | 76 |
/// Magenta color constant |
79 | 77 |
extern const Color MAGENTA; |
80 | 78 |
/// Cyan color constant |
81 | 79 |
extern const Color CYAN; |
82 | 80 |
/// Grey color constant |
83 | 81 |
extern const Color GREY; |
84 | 82 |
/// Dark red color constant |
85 | 83 |
extern const Color DARK_RED; |
86 | 84 |
/// Dark green color constant |
87 | 85 |
extern const Color DARK_GREEN; |
88 | 86 |
/// Drak blue color constant |
89 | 87 |
extern const Color DARK_BLUE; |
90 | 88 |
/// Dark yellow color constant |
91 | 89 |
extern const Color DARK_YELLOW; |
92 | 90 |
/// Dark magenta color constant |
93 | 91 |
extern const Color DARK_MAGENTA; |
94 | 92 |
/// Dark cyan color constant |
95 | 93 |
extern const Color DARK_CYAN; |
96 | 94 |
|
97 | 95 |
///Map <tt>int</tt>s to different \ref Color "Color"s |
98 | 96 |
|
99 | 97 |
///This map assigns one of the predefined \ref Color "Color"s to |
100 | 98 |
///each <tt>int</tt>. It is possible to change the colors as well as |
101 | 99 |
///their number. The integer range is cyclically mapped to the |
102 | 100 |
///provided set of colors. |
103 | 101 |
/// |
104 | 102 |
///This is a true \ref concepts::ReferenceMap "reference map", so |
105 | 103 |
///you can also change the actual colors. |
106 | 104 |
|
107 | 105 |
class Palette : public MapBase<int,Color> |
108 | 106 |
{ |
109 | 107 |
std::vector<Color> colors; |
110 | 108 |
public: |
111 | 109 |
///Constructor |
112 | 110 |
|
113 | 111 |
///Constructor |
114 | 112 |
///\param have_white indicates whether white is amongst the |
115 | 113 |
///provided initial colors (\c true) or not (\c false). If it is true, |
116 | 114 |
///white will be assigned to \c 0. |
117 | 115 |
///\param num the number of the allocated colors. If it is \c -1, |
118 | 116 |
///the default color configuration is set up (26 color plus optionaly the |
119 | 117 |
///white). If \c num is less then 26/27 then the default color |
120 | 118 |
///list is cut. Otherwise the color list is filled repeatedly with |
121 | 119 |
///the default color list. (The colors can be changed later on.) |
122 | 120 |
Palette(bool have_white=false,int num=-1) |
123 | 121 |
{ |
124 | 122 |
if (num==0) return; |
125 | 123 |
do { |
126 | 124 |
if(have_white) colors.push_back(Color(1,1,1)); |
127 | 125 |
|
128 | 126 |
colors.push_back(Color(0,0,0)); |
129 | 127 |
colors.push_back(Color(1,0,0)); |
130 | 128 |
colors.push_back(Color(0,1,0)); |
131 | 129 |
colors.push_back(Color(0,0,1)); |
132 | 130 |
colors.push_back(Color(1,1,0)); |
133 | 131 |
colors.push_back(Color(1,0,1)); |
134 | 132 |
colors.push_back(Color(0,1,1)); |
135 | 133 |
|
136 | 134 |
colors.push_back(Color(.5,0,0)); |
137 | 135 |
colors.push_back(Color(0,.5,0)); |
138 | 136 |
colors.push_back(Color(0,0,.5)); |
139 | 137 |
colors.push_back(Color(.5,.5,0)); |
140 | 138 |
colors.push_back(Color(.5,0,.5)); |
141 | 139 |
colors.push_back(Color(0,.5,.5)); |
142 | 140 |
|
143 | 141 |
colors.push_back(Color(.5,.5,.5)); |
144 | 142 |
colors.push_back(Color(1,.5,.5)); |
145 | 143 |
colors.push_back(Color(.5,1,.5)); |
146 | 144 |
colors.push_back(Color(.5,.5,1)); |
147 | 145 |
colors.push_back(Color(1,1,.5)); |
148 | 146 |
colors.push_back(Color(1,.5,1)); |
149 | 147 |
colors.push_back(Color(.5,1,1)); |
150 | 148 |
|
151 | 149 |
colors.push_back(Color(1,.5,0)); |
152 | 150 |
colors.push_back(Color(.5,1,0)); |
153 | 151 |
colors.push_back(Color(1,0,.5)); |
154 | 152 |
colors.push_back(Color(0,1,.5)); |
155 | 153 |
colors.push_back(Color(0,.5,1)); |
156 | 154 |
colors.push_back(Color(.5,0,1)); |
157 | 155 |
} while(int(colors.size())<num); |
158 | 156 |
// colors.push_back(Color(1,1,1)); |
159 | 157 |
if(num>=0) colors.resize(num); |
160 | 158 |
} |
161 | 159 |
///\e |
162 | 160 |
Color &operator[](int i) |
163 | 161 |
{ |
164 | 162 |
return colors[i%colors.size()]; |
165 | 163 |
} |
166 | 164 |
///\e |
167 | 165 |
const Color &operator[](int i) const |
168 | 166 |
{ |
169 | 167 |
return colors[i%colors.size()]; |
170 | 168 |
} |
171 | 169 |
///\e |
172 | 170 |
void set(int i,const Color &c) |
173 | 171 |
{ |
174 | 172 |
colors[i%colors.size()]=c; |
175 | 173 |
} |
176 | 174 |
///Add a new color to the end of the color list. |
177 | 175 |
void add(const Color &c) |
178 | 176 |
{ |
179 | 177 |
colors.push_back(c); |
180 | 178 |
} |
181 | 179 |
|
182 | 180 |
///Sets the number of the exiting colors. |
183 | 181 |
void resize(int s) { colors.resize(s);} |
184 | 182 |
///Returns the number of the existing colors. |
185 | 183 |
int size() const { return int(colors.size());} |
186 | 184 |
}; |
187 | 185 |
|
188 | 186 |
///Returns a visibly distinct \ref Color |
189 | 187 |
|
190 | 188 |
///Returns a \ref Color which is as different from the given parameter |
191 | 189 |
///as it is possible. |
192 | 190 |
inline Color distantColor(const Color &c) |
193 | 191 |
{ |
194 | 192 |
return Color(c.red()<.5?1:0,c.green()<.5?1:0,c.blue()<.5?1:0); |
195 | 193 |
} |
196 | 194 |
///Returns black for light colors and white for the dark ones. |
197 | 195 |
|
198 | 196 |
///Returns black for light colors and white for the dark ones. |
199 | 197 |
inline Color distantBW(const Color &c){ |
200 | 198 |
return (.2125*c.red()+.7154*c.green()+.0721*c.blue())<.5 ? WHITE : BLACK; |
201 | 199 |
} |
202 | 200 |
|
203 | 201 |
/// @} |
204 | 202 |
|
205 | 203 |
} //END OF NAMESPACE LEMON |
206 | 204 |
|
207 | 205 |
#endif // LEMON_COLOR_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
///\todo Iterators have obsolete style |
24 | 24 |
|
25 | 25 |
#ifndef LEMON_CONCEPT_PATH_H |
26 | 26 |
#define LEMON_CONCEPT_PATH_H |
27 | 27 |
|
28 | 28 |
#include <lemon/bits/invalid.h> |
29 | 29 |
#include <lemon/bits/utility.h> |
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
namespace concepts { |
34 | 34 |
|
35 | 35 |
/// \addtogroup concept |
36 | 36 |
/// @{ |
37 | 37 |
|
38 | 38 |
/// \brief A skeleton structure for representing directed paths in |
39 | 39 |
/// a digraph. |
40 | 40 |
/// |
41 | 41 |
/// A skeleton structure for representing directed paths in a |
42 | 42 |
/// digraph. |
43 |
/// \ |
|
43 |
/// \tparam _Digraph The digraph type in which the path is. |
|
44 | 44 |
/// |
45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
46 | 46 |
/// lemon path type stores just this list. As a consequence it |
47 | 47 |
/// cannot enumerate the nodes in the path and the zero length |
48 | 48 |
/// paths cannot store the source. |
49 | 49 |
/// |
50 | 50 |
template <typename _Digraph> |
51 | 51 |
class Path { |
52 | 52 |
public: |
53 | 53 |
|
54 | 54 |
/// Type of the underlying digraph. |
55 | 55 |
typedef _Digraph Digraph; |
56 | 56 |
/// Arc type of the underlying digraph. |
57 | 57 |
typedef typename Digraph::Arc Arc; |
58 | 58 |
|
59 | 59 |
class ArcIt; |
60 | 60 |
|
61 | 61 |
/// \brief Default constructor |
62 | 62 |
Path() {} |
63 | 63 |
|
64 | 64 |
/// \brief Template constructor |
65 | 65 |
template <typename CPath> |
66 | 66 |
Path(const CPath& cpath) {} |
67 | 67 |
|
68 | 68 |
/// \brief Template assigment |
69 | 69 |
template <typename CPath> |
70 | 70 |
Path& operator=(const CPath& cpath) {} |
71 | 71 |
|
72 | 72 |
/// Length of the path ie. the number of arcs in the path. |
73 | 73 |
int length() const { return 0;} |
74 | 74 |
|
75 | 75 |
/// Returns whether the path is empty. |
76 | 76 |
bool empty() const { return true;} |
77 | 77 |
|
78 | 78 |
/// Resets the path to an empty path. |
79 | 79 |
void clear() {} |
80 | 80 |
|
81 | 81 |
/// \brief Lemon style iterator for path arcs |
82 | 82 |
/// |
83 | 83 |
/// This class is used to iterate on the arcs of the paths. |
84 | 84 |
class ArcIt { |
85 | 85 |
public: |
86 | 86 |
/// Default constructor |
87 | 87 |
ArcIt() {} |
88 | 88 |
/// Invalid constructor |
89 | 89 |
ArcIt(Invalid) {} |
90 | 90 |
/// Constructor for first arc |
91 | 91 |
ArcIt(const Path &) {} |
92 | 92 |
|
93 | 93 |
/// Conversion to Arc |
94 | 94 |
operator Arc() const { return INVALID; } |
95 | 95 |
|
96 | 96 |
/// Next arc |
97 | 97 |
ArcIt& operator++() {return *this;} |
98 | 98 |
|
99 | 99 |
/// Comparison operator |
100 | 100 |
bool operator==(const ArcIt&) const {return true;} |
101 | 101 |
/// Comparison operator |
102 | 102 |
bool operator!=(const ArcIt&) const {return true;} |
103 | 103 |
/// Comparison operator |
104 | 104 |
bool operator<(const ArcIt&) const {return false;} |
105 | 105 |
|
106 | 106 |
}; |
107 | 107 |
|
108 | 108 |
template <typename _Path> |
109 | 109 |
struct Constraints { |
110 | 110 |
void constraints() { |
111 | 111 |
Path<Digraph> pc; |
112 | 112 |
_Path p, pp(pc); |
113 | 113 |
int l = p.length(); |
114 | 114 |
int e = p.empty(); |
115 | 115 |
p.clear(); |
116 | 116 |
|
117 | 117 |
p = pc; |
118 | 118 |
|
119 | 119 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
120 | 120 |
|
121 | 121 |
++i; |
122 | 122 |
typename Digraph::Arc ed = i; |
123 | 123 |
|
124 | 124 |
e = (i == ii); |
125 | 125 |
e = (i != ii); |
126 | 126 |
e = (i < ii); |
127 | 127 |
|
128 | 128 |
ignore_unused_variable_warning(l); |
129 | 129 |
ignore_unused_variable_warning(pp); |
130 | 130 |
ignore_unused_variable_warning(e); |
131 | 131 |
ignore_unused_variable_warning(id); |
132 | 132 |
ignore_unused_variable_warning(ii); |
133 | 133 |
ignore_unused_variable_warning(ed); |
134 | 134 |
} |
135 | 135 |
}; |
136 | 136 |
|
137 | 137 |
}; |
138 | 138 |
|
139 | 139 |
namespace _path_bits { |
140 | 140 |
|
141 | 141 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
142 | 142 |
struct PathDumperConstraints { |
143 | 143 |
void constraints() { |
144 | 144 |
int l = p.length(); |
145 | 145 |
int e = p.empty(); |
146 | 146 |
|
147 | 147 |
typename _Path::ArcIt id, i(p); |
148 | 148 |
|
149 | 149 |
++i; |
150 | 150 |
typename _Digraph::Arc ed = i; |
151 | 151 |
|
152 | 152 |
e = (i == INVALID); |
153 | 153 |
e = (i != INVALID); |
154 | 154 |
|
155 | 155 |
ignore_unused_variable_warning(l); |
156 | 156 |
ignore_unused_variable_warning(e); |
157 | 157 |
ignore_unused_variable_warning(id); |
158 | 158 |
ignore_unused_variable_warning(ed); |
159 | 159 |
} |
160 | 160 |
_Path& p; |
161 | 161 |
}; |
162 | 162 |
|
163 | 163 |
template <typename _Digraph, typename _Path> |
164 | 164 |
struct PathDumperConstraints< |
165 | 165 |
_Digraph, _Path, |
166 | 166 |
typename enable_if<typename _Path::RevPathTag, void>::type |
167 | 167 |
> { |
168 | 168 |
void constraints() { |
169 | 169 |
int l = p.length(); |
170 | 170 |
int e = p.empty(); |
171 | 171 |
|
172 | 172 |
typename _Path::RevArcIt id, i(p); |
173 | 173 |
|
174 | 174 |
++i; |
175 | 175 |
typename _Digraph::Arc ed = i; |
176 | 176 |
|
177 | 177 |
e = (i == INVALID); |
178 | 178 |
e = (i != INVALID); |
179 | 179 |
|
180 | 180 |
ignore_unused_variable_warning(l); |
181 | 181 |
ignore_unused_variable_warning(e); |
182 | 182 |
ignore_unused_variable_warning(id); |
183 | 183 |
ignore_unused_variable_warning(ed); |
184 | 184 |
} |
185 | 185 |
_Path& p; |
186 | 186 |
}; |
187 | 187 |
|
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
|
191 | 191 |
/// \brief A skeleton structure for path dumpers. |
192 | 192 |
/// |
193 | 193 |
/// A skeleton structure for path dumpers. The path dumpers are |
194 | 194 |
/// the generalization of the paths. The path dumpers can |
195 | 195 |
/// enumerate the arcs of the path wheter in forward or in |
196 | 196 |
/// backward order. In most time these classes are not used |
197 | 197 |
/// directly rather it used to assign a dumped class to a real |
198 | 198 |
/// path type. |
199 | 199 |
/// |
200 | 200 |
/// The main purpose of this concept is that the shortest path |
201 | 201 |
/// algorithms can enumerate easily the arcs in reverse order. |
202 | 202 |
/// If we would like to give back a real path from these |
203 | 203 |
/// algorithms then we should create a temporarly path object. In |
204 | 204 |
/// Lemon such algorithms gives back a path dumper what can |
205 | 205 |
/// assigned to a real path and the dumpers can be implemented as |
206 | 206 |
/// an adaptor class to the predecessor map. |
207 | 207 |
|
208 |
/// \ |
|
208 |
/// \tparam _Digraph The digraph type in which the path is. |
|
209 | 209 |
/// |
210 | 210 |
/// The paths can be constructed from any path type by a |
211 | 211 |
/// template constructor or a template assignment operator. |
212 | 212 |
/// |
213 | 213 |
template <typename _Digraph> |
214 | 214 |
class PathDumper { |
215 | 215 |
public: |
216 | 216 |
|
217 | 217 |
/// Type of the underlying digraph. |
218 | 218 |
typedef _Digraph Digraph; |
219 | 219 |
/// Arc type of the underlying digraph. |
220 | 220 |
typedef typename Digraph::Arc Arc; |
221 | 221 |
|
222 | 222 |
/// Length of the path ie. the number of arcs in the path. |
223 | 223 |
int length() const { return 0;} |
224 | 224 |
|
225 | 225 |
/// Returns whether the path is empty. |
226 | 226 |
bool empty() const { return true;} |
227 | 227 |
|
228 | 228 |
/// \brief Forward or reverse dumping |
229 | 229 |
/// |
230 | 230 |
/// If the RevPathTag is defined and true then reverse dumping |
231 | 231 |
/// is provided in the path dumper. In this case instead of the |
232 | 232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
233 | 233 |
/// dumper. |
234 | 234 |
typedef False RevPathTag; |
235 | 235 |
|
236 | 236 |
/// \brief Lemon style iterator for path arcs |
237 | 237 |
/// |
238 | 238 |
/// This class is used to iterate on the arcs of the paths. |
239 | 239 |
class ArcIt { |
240 | 240 |
public: |
241 | 241 |
/// Default constructor |
242 | 242 |
ArcIt() {} |
243 | 243 |
/// Invalid constructor |
244 | 244 |
ArcIt(Invalid) {} |
245 | 245 |
/// Constructor for first arc |
246 | 246 |
ArcIt(const PathDumper&) {} |
247 | 247 |
|
248 | 248 |
/// Conversion to Arc |
249 | 249 |
operator Arc() const { return INVALID; } |
250 | 250 |
|
251 | 251 |
/// Next arc |
252 | 252 |
ArcIt& operator++() {return *this;} |
253 | 253 |
|
254 | 254 |
/// Comparison operator |
255 | 255 |
bool operator==(const ArcIt&) const {return true;} |
256 | 256 |
/// Comparison operator |
257 | 257 |
bool operator!=(const ArcIt&) const {return true;} |
258 | 258 |
/// Comparison operator |
259 | 259 |
bool operator<(const ArcIt&) const {return false;} |
260 | 260 |
|
261 | 261 |
}; |
262 | 262 |
|
263 | 263 |
/// \brief Lemon style iterator for path arcs |
264 | 264 |
/// |
265 | 265 |
/// This class is used to iterate on the arcs of the paths in |
266 | 266 |
/// reverse direction. |
267 | 267 |
class RevArcIt { |
268 | 268 |
public: |
269 | 269 |
/// Default constructor |
270 | 270 |
RevArcIt() {} |
271 | 271 |
/// Invalid constructor |
272 | 272 |
RevArcIt(Invalid) {} |
273 | 273 |
/// Constructor for first arc |
274 | 274 |
RevArcIt(const PathDumper &) {} |
275 | 275 |
|
276 | 276 |
/// Conversion to Arc |
277 | 277 |
operator Arc() const { return INVALID; } |
278 | 278 |
|
279 | 279 |
/// Next arc |
280 | 280 |
RevArcIt& operator++() {return *this;} |
281 | 281 |
|
282 | 282 |
/// Comparison operator |
283 | 283 |
bool operator==(const RevArcIt&) const {return true;} |
284 | 284 |
/// Comparison operator |
285 | 285 |
bool operator!=(const RevArcIt&) const {return true;} |
286 | 286 |
/// Comparison operator |
287 | 287 |
bool operator<(const RevArcIt&) const {return false;} |
288 | 288 |
|
289 | 289 |
}; |
290 | 290 |
|
291 | 291 |
template <typename _Path> |
292 | 292 |
struct Constraints { |
293 | 293 |
void constraints() { |
294 | 294 |
function_requires<_path_bits:: |
295 | 295 |
PathDumperConstraints<Digraph, _Path> >(); |
296 | 296 |
} |
297 | 297 |
}; |
298 | 298 |
|
299 | 299 |
}; |
300 | 300 |
|
301 | 301 |
|
302 | 302 |
///@} |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
} // namespace lemon |
306 | 306 |
|
307 | 307 |
#endif // LEMON_CONCEPT_PATH_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief Dfs algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/graph_utils.h> |
28 | 28 |
#include <lemon/bits/path_dump.h> |
29 | 29 |
#include <lemon/bits/invalid.h> |
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
#include <lemon/concept_check.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
|
38 | 38 |
///Default traits class of Dfs class. |
39 | 39 |
|
40 | 40 |
///Default traits class of Dfs class. |
41 |
///\ |
|
41 |
///\tparam GR Digraph type. |
|
42 | 42 |
template<class GR> |
43 | 43 |
struct DfsDefaultTraits |
44 | 44 |
{ |
45 | 45 |
///The digraph type the algorithm runs on. |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
///\brief The type of the map that stores the last |
48 | 48 |
///arcs of the %DFS paths. |
49 | 49 |
/// |
50 | 50 |
///The type of the map that stores the last |
51 | 51 |
///arcs of the %DFS paths. |
52 | 52 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
53 | 53 |
/// |
54 | 54 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
55 | 55 |
///Instantiates a PredMap. |
56 | 56 |
|
57 | 57 |
///This function instantiates a \ref PredMap. |
58 | 58 |
///\param G is the digraph, to which we would like to define the PredMap. |
59 | 59 |
///\todo The digraph alone may be insufficient to initialize |
60 | 60 |
static PredMap *createPredMap(const GR &G) |
61 | 61 |
{ |
62 | 62 |
return new PredMap(G); |
63 | 63 |
} |
64 | 64 |
|
65 | 65 |
///The type of the map that indicates which nodes are processed. |
66 | 66 |
|
67 | 67 |
///The type of the map that indicates which nodes are processed. |
68 | 68 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
69 | 69 |
///\todo named parameter to set this type, function to read and write. |
70 | 70 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
71 | 71 |
///Instantiates a ProcessedMap. |
72 | 72 |
|
73 | 73 |
///This function instantiates a \ref ProcessedMap. |
74 | 74 |
///\param g is the digraph, to which |
75 | 75 |
///we would like to define the \ref ProcessedMap |
76 | 76 |
#ifdef DOXYGEN |
77 | 77 |
static ProcessedMap *createProcessedMap(const GR &g) |
78 | 78 |
#else |
79 | 79 |
static ProcessedMap *createProcessedMap(const GR &) |
80 | 80 |
#endif |
81 | 81 |
{ |
82 | 82 |
return new ProcessedMap(); |
83 | 83 |
} |
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
|
86 | 86 |
///The type of the map that indicates which nodes are reached. |
87 | 87 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
88 | 88 |
///\todo named parameter to set this type, function to read and write. |
89 | 89 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
90 | 90 |
///Instantiates a ReachedMap. |
91 | 91 |
|
92 | 92 |
///This function instantiates a \ref ReachedMap. |
93 | 93 |
///\param G is the digraph, to which |
94 | 94 |
///we would like to define the \ref ReachedMap. |
95 | 95 |
static ReachedMap *createReachedMap(const GR &G) |
96 | 96 |
{ |
97 | 97 |
return new ReachedMap(G); |
98 | 98 |
} |
99 | 99 |
///The type of the map that stores the dists of the nodes. |
100 | 100 |
|
101 | 101 |
///The type of the map that stores the dists of the nodes. |
102 | 102 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
103 | 103 |
/// |
104 | 104 |
typedef typename Digraph::template NodeMap<int> DistMap; |
105 | 105 |
///Instantiates a DistMap. |
106 | 106 |
|
107 | 107 |
///This function instantiates a \ref DistMap. |
108 | 108 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
109 | 109 |
static DistMap *createDistMap(const GR &G) |
110 | 110 |
{ |
111 | 111 |
return new DistMap(G); |
112 | 112 |
} |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
///%DFS algorithm class. |
116 | 116 |
|
117 | 117 |
///\ingroup search |
118 | 118 |
///This class provides an efficient implementation of the %DFS algorithm. |
119 | 119 |
/// |
120 |
///\ |
|
120 |
///\tparam GR The digraph type the algorithm runs on. The default value is |
|
121 | 121 |
///\ref ListDigraph. The value of GR is not used directly by Dfs, it |
122 | 122 |
///is only passed to \ref DfsDefaultTraits. |
123 |
///\ |
|
123 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
124 | 124 |
///The default traits class is |
125 | 125 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
126 | 126 |
///See \ref DfsDefaultTraits for the documentation of |
127 | 127 |
///a Dfs traits class. |
128 |
/// |
|
129 |
///\author Jacint Szabo and Alpar Juttner |
|
130 | 128 |
#ifdef DOXYGEN |
131 | 129 |
template <typename GR, |
132 | 130 |
typename TR> |
133 | 131 |
#else |
134 | 132 |
template <typename GR=ListDigraph, |
135 | 133 |
typename TR=DfsDefaultTraits<GR> > |
136 | 134 |
#endif |
137 | 135 |
class Dfs { |
138 | 136 |
public: |
139 | 137 |
/** |
140 | 138 |
* \brief \ref Exception for uninitialized parameters. |
141 | 139 |
* |
142 | 140 |
* This error represents problems in the initialization |
143 | 141 |
* of the parameters of the algorithms. |
144 | 142 |
*/ |
145 | 143 |
class UninitializedParameter : public lemon::UninitializedParameter { |
146 | 144 |
public: |
147 | 145 |
virtual const char* what() const throw() { |
148 | 146 |
return "lemon::Dfs::UninitializedParameter"; |
149 | 147 |
} |
150 | 148 |
}; |
151 | 149 |
|
152 | 150 |
typedef TR Traits; |
153 | 151 |
///The type of the underlying digraph. |
154 | 152 |
typedef typename TR::Digraph Digraph; |
155 | 153 |
///\e |
156 | 154 |
typedef typename Digraph::Node Node; |
157 | 155 |
///\e |
158 | 156 |
typedef typename Digraph::NodeIt NodeIt; |
159 | 157 |
///\e |
160 | 158 |
typedef typename Digraph::Arc Arc; |
161 | 159 |
///\e |
162 | 160 |
typedef typename Digraph::OutArcIt OutArcIt; |
163 | 161 |
|
164 | 162 |
///\brief The type of the map that stores the last |
165 | 163 |
///arcs of the %DFS paths. |
166 | 164 |
typedef typename TR::PredMap PredMap; |
167 | 165 |
///The type of the map indicating which nodes are reached. |
168 | 166 |
typedef typename TR::ReachedMap ReachedMap; |
169 | 167 |
///The type of the map indicating which nodes are processed. |
170 | 168 |
typedef typename TR::ProcessedMap ProcessedMap; |
171 | 169 |
///The type of the map that stores the dists of the nodes. |
172 | 170 |
typedef typename TR::DistMap DistMap; |
173 | 171 |
private: |
174 | 172 |
/// Pointer to the underlying digraph. |
175 | 173 |
const Digraph *G; |
176 | 174 |
///Pointer to the map of predecessors arcs. |
177 | 175 |
PredMap *_pred; |
178 | 176 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
179 | 177 |
bool local_pred; |
180 | 178 |
///Pointer to the map of distances. |
181 | 179 |
DistMap *_dist; |
182 | 180 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
183 | 181 |
bool local_dist; |
184 | 182 |
///Pointer to the map of reached status of the nodes. |
185 | 183 |
ReachedMap *_reached; |
186 | 184 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
187 | 185 |
bool local_reached; |
188 | 186 |
///Pointer to the map of processed status of the nodes. |
189 | 187 |
ProcessedMap *_processed; |
190 | 188 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
191 | 189 |
bool local_processed; |
192 | 190 |
|
193 | 191 |
std::vector<typename Digraph::OutArcIt> _stack; |
194 | 192 |
int _stack_head; |
195 | 193 |
|
196 | 194 |
///Creates the maps if necessary. |
197 | 195 |
|
198 | 196 |
///\todo Better memory allocation (instead of new). |
199 | 197 |
void create_maps() |
200 | 198 |
{ |
201 | 199 |
if(!_pred) { |
202 | 200 |
local_pred = true; |
203 | 201 |
_pred = Traits::createPredMap(*G); |
204 | 202 |
} |
205 | 203 |
if(!_dist) { |
206 | 204 |
local_dist = true; |
207 | 205 |
_dist = Traits::createDistMap(*G); |
208 | 206 |
} |
209 | 207 |
if(!_reached) { |
210 | 208 |
local_reached = true; |
211 | 209 |
_reached = Traits::createReachedMap(*G); |
212 | 210 |
} |
213 | 211 |
if(!_processed) { |
214 | 212 |
local_processed = true; |
215 | 213 |
_processed = Traits::createProcessedMap(*G); |
216 | 214 |
} |
217 | 215 |
} |
218 | 216 |
|
219 | 217 |
protected: |
220 | 218 |
|
221 | 219 |
Dfs() {} |
222 | 220 |
|
223 | 221 |
public: |
224 | 222 |
|
225 | 223 |
typedef Dfs Create; |
226 | 224 |
|
227 | 225 |
///\name Named template parameters |
228 | 226 |
|
229 | 227 |
///@{ |
230 | 228 |
|
231 | 229 |
template <class T> |
232 | 230 |
struct DefPredMapTraits : public Traits { |
233 | 231 |
typedef T PredMap; |
234 | 232 |
static PredMap *createPredMap(const Digraph &G) |
235 | 233 |
{ |
236 | 234 |
throw UninitializedParameter(); |
237 | 235 |
} |
238 | 236 |
}; |
239 | 237 |
///\brief \ref named-templ-param "Named parameter" for setting |
240 | 238 |
///PredMap type |
241 | 239 |
/// |
242 | 240 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
243 | 241 |
/// |
244 | 242 |
template <class T> |
245 | 243 |
struct DefPredMap : public Dfs<Digraph, DefPredMapTraits<T> > { |
246 | 244 |
typedef Dfs<Digraph, DefPredMapTraits<T> > Create; |
247 | 245 |
}; |
248 | 246 |
|
249 | 247 |
|
250 | 248 |
template <class T> |
251 | 249 |
struct DefDistMapTraits : public Traits { |
252 | 250 |
typedef T DistMap; |
253 | 251 |
static DistMap *createDistMap(const Digraph &) |
254 | 252 |
{ |
255 | 253 |
throw UninitializedParameter(); |
256 | 254 |
} |
257 | 255 |
}; |
258 | 256 |
///\brief \ref named-templ-param "Named parameter" for setting |
259 | 257 |
///DistMap type |
260 | 258 |
/// |
261 | 259 |
///\ref named-templ-param "Named parameter" for setting DistMap |
262 | 260 |
///type |
263 | 261 |
template <class T> |
264 | 262 |
struct DefDistMap { |
265 | 263 |
typedef Dfs<Digraph, DefDistMapTraits<T> > Create; |
266 | 264 |
}; |
267 | 265 |
|
268 | 266 |
template <class T> |
269 | 267 |
struct DefReachedMapTraits : public Traits { |
270 | 268 |
typedef T ReachedMap; |
271 | 269 |
static ReachedMap *createReachedMap(const Digraph &) |
272 | 270 |
{ |
273 | 271 |
throw UninitializedParameter(); |
274 | 272 |
} |
275 | 273 |
}; |
276 | 274 |
///\brief \ref named-templ-param "Named parameter" for setting |
277 | 275 |
///ReachedMap type |
278 | 276 |
/// |
279 | 277 |
///\ref named-templ-param "Named parameter" for setting ReachedMap type |
280 | 278 |
/// |
281 | 279 |
template <class T> |
282 | 280 |
struct DefReachedMap : public Dfs< Digraph, DefReachedMapTraits<T> > { |
283 | 281 |
typedef Dfs< Digraph, DefReachedMapTraits<T> > Create; |
284 | 282 |
}; |
285 | 283 |
|
286 | 284 |
template <class T> |
287 | 285 |
struct DefProcessedMapTraits : public Traits { |
288 | 286 |
typedef T ProcessedMap; |
289 | 287 |
static ProcessedMap *createProcessedMap(const Digraph &) |
290 | 288 |
{ |
291 | 289 |
throw UninitializedParameter(); |
292 | 290 |
} |
293 | 291 |
}; |
294 | 292 |
///\brief \ref named-templ-param "Named parameter" for setting |
295 | 293 |
///ProcessedMap type |
296 | 294 |
/// |
297 | 295 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
298 | 296 |
/// |
299 | 297 |
template <class T> |
300 | 298 |
struct DefProcessedMap : public Dfs< Digraph, DefProcessedMapTraits<T> > { |
301 | 299 |
typedef Dfs< Digraph, DefProcessedMapTraits<T> > Create; |
302 | 300 |
}; |
303 | 301 |
|
304 | 302 |
struct DefDigraphProcessedMapTraits : public Traits { |
305 | 303 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
306 | 304 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
307 | 305 |
{ |
308 | 306 |
return new ProcessedMap(G); |
309 | 307 |
} |
310 | 308 |
}; |
311 | 309 |
///\brief \ref named-templ-param "Named parameter" |
312 | 310 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
313 | 311 |
/// |
314 | 312 |
///\ref named-templ-param "Named parameter" |
315 | 313 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
316 | 314 |
///If you don't set it explicitely, it will be automatically allocated. |
317 | 315 |
template <class T> |
318 | 316 |
class DefProcessedMapToBeDefaultMap : |
319 | 317 |
public Dfs< Digraph, DefDigraphProcessedMapTraits> { |
320 | 318 |
typedef Dfs< Digraph, DefDigraphProcessedMapTraits> Create; |
321 | 319 |
}; |
322 | 320 |
|
323 | 321 |
///@} |
324 | 322 |
|
325 | 323 |
public: |
326 | 324 |
|
327 | 325 |
///Constructor. |
328 | 326 |
|
329 | 327 |
///\param _G the digraph the algorithm will run on. |
330 | 328 |
/// |
331 | 329 |
Dfs(const Digraph& _G) : |
332 | 330 |
G(&_G), |
333 | 331 |
_pred(NULL), local_pred(false), |
334 | 332 |
_dist(NULL), local_dist(false), |
335 | 333 |
_reached(NULL), local_reached(false), |
336 | 334 |
_processed(NULL), local_processed(false) |
337 | 335 |
{ } |
338 | 336 |
|
339 | 337 |
///Destructor. |
340 | 338 |
~Dfs() |
341 | 339 |
{ |
342 | 340 |
if(local_pred) delete _pred; |
343 | 341 |
if(local_dist) delete _dist; |
344 | 342 |
if(local_reached) delete _reached; |
345 | 343 |
if(local_processed) delete _processed; |
346 | 344 |
} |
347 | 345 |
|
348 | 346 |
///Sets the map storing the predecessor arcs. |
349 | 347 |
|
350 | 348 |
///Sets the map storing the predecessor arcs. |
351 | 349 |
///If you don't use this function before calling \ref run(), |
352 | 350 |
///it will allocate one. The destuctor deallocates this |
353 | 351 |
///automatically allocated map, of course. |
354 | 352 |
///\return <tt> (*this) </tt> |
355 | 353 |
Dfs &predMap(PredMap &m) |
356 | 354 |
{ |
357 | 355 |
if(local_pred) { |
358 | 356 |
delete _pred; |
359 | 357 |
local_pred=false; |
360 | 358 |
} |
361 | 359 |
_pred = &m; |
362 | 360 |
return *this; |
363 | 361 |
} |
364 | 362 |
|
365 | 363 |
///Sets the map storing the distances calculated by the algorithm. |
366 | 364 |
|
367 | 365 |
///Sets the map storing the distances calculated by the algorithm. |
368 | 366 |
///If you don't use this function before calling \ref run(), |
369 | 367 |
///it will allocate one. The destuctor deallocates this |
370 | 368 |
///automatically allocated map, of course. |
371 | 369 |
///\return <tt> (*this) </tt> |
372 | 370 |
Dfs &distMap(DistMap &m) |
373 | 371 |
{ |
374 | 372 |
if(local_dist) { |
375 | 373 |
delete _dist; |
376 | 374 |
local_dist=false; |
377 | 375 |
} |
378 | 376 |
_dist = &m; |
379 | 377 |
return *this; |
380 | 378 |
} |
381 | 379 |
|
382 | 380 |
///Sets the map indicating if a node is reached. |
383 | 381 |
|
384 | 382 |
///Sets the map indicating if a node is reached. |
385 | 383 |
///If you don't use this function before calling \ref run(), |
386 | 384 |
///it will allocate one. The destuctor deallocates this |
387 | 385 |
///automatically allocated map, of course. |
388 | 386 |
///\return <tt> (*this) </tt> |
389 | 387 |
Dfs &reachedMap(ReachedMap &m) |
390 | 388 |
{ |
391 | 389 |
if(local_reached) { |
392 | 390 |
delete _reached; |
393 | 391 |
local_reached=false; |
394 | 392 |
} |
395 | 393 |
_reached = &m; |
396 | 394 |
return *this; |
397 | 395 |
} |
398 | 396 |
|
399 | 397 |
///Sets the map indicating if a node is processed. |
400 | 398 |
|
401 | 399 |
///Sets the map indicating if a node is processed. |
402 | 400 |
///If you don't use this function before calling \ref run(), |
403 | 401 |
///it will allocate one. The destuctor deallocates this |
404 | 402 |
///automatically allocated map, of course. |
405 | 403 |
///\return <tt> (*this) </tt> |
406 | 404 |
Dfs &processedMap(ProcessedMap &m) |
407 | 405 |
{ |
408 | 406 |
if(local_processed) { |
409 | 407 |
delete _processed; |
410 | 408 |
local_processed=false; |
411 | 409 |
} |
412 | 410 |
_processed = &m; |
413 | 411 |
return *this; |
414 | 412 |
} |
415 | 413 |
|
416 | 414 |
public: |
417 | 415 |
///\name Execution control |
418 | 416 |
///The simplest way to execute the algorithm is to use |
419 | 417 |
///one of the member functions called \c run(...). |
420 | 418 |
///\n |
421 | 419 |
///If you need more control on the execution, |
422 | 420 |
///first you must call \ref init(), then you can add a source node |
423 | 421 |
///with \ref addSource(). |
424 | 422 |
///Finally \ref start() will perform the actual path |
425 | 423 |
///computation. |
426 | 424 |
|
427 | 425 |
///@{ |
428 | 426 |
|
429 | 427 |
///Initializes the internal data structures. |
430 | 428 |
|
431 | 429 |
///Initializes the internal data structures. |
432 | 430 |
/// |
433 | 431 |
void init() |
434 | 432 |
{ |
435 | 433 |
create_maps(); |
436 | 434 |
_stack.resize(countNodes(*G)); |
437 | 435 |
_stack_head=-1; |
438 | 436 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
439 | 437 |
_pred->set(u,INVALID); |
440 | 438 |
// _predNode->set(u,INVALID); |
441 | 439 |
_reached->set(u,false); |
442 | 440 |
_processed->set(u,false); |
443 | 441 |
} |
444 | 442 |
} |
445 | 443 |
|
446 | 444 |
///Adds a new source node. |
447 | 445 |
|
448 | 446 |
///Adds a new source node to the set of nodes to be processed. |
449 | 447 |
/// |
450 | 448 |
///\warning dists are wrong (or at least strange) |
451 | 449 |
///in case of multiple sources. |
452 | 450 |
void addSource(Node s) |
453 | 451 |
{ |
454 | 452 |
if(!(*_reached)[s]) |
455 | 453 |
{ |
456 | 454 |
_reached->set(s,true); |
457 | 455 |
_pred->set(s,INVALID); |
458 | 456 |
OutArcIt e(*G,s); |
459 | 457 |
if(e!=INVALID) { |
460 | 458 |
_stack[++_stack_head]=e; |
461 | 459 |
_dist->set(s,_stack_head); |
462 | 460 |
} |
463 | 461 |
else { |
464 | 462 |
_processed->set(s,true); |
465 | 463 |
_dist->set(s,0); |
466 | 464 |
} |
467 | 465 |
} |
468 | 466 |
} |
469 | 467 |
|
470 | 468 |
///Processes the next arc. |
471 | 469 |
|
472 | 470 |
///Processes the next arc. |
473 | 471 |
/// |
474 | 472 |
///\return The processed arc. |
475 | 473 |
/// |
476 | 474 |
///\pre The stack must not be empty! |
477 | 475 |
Arc processNextArc() |
478 | 476 |
{ |
479 | 477 |
Node m; |
480 | 478 |
Arc e=_stack[_stack_head]; |
481 | 479 |
if(!(*_reached)[m=G->target(e)]) { |
482 | 480 |
_pred->set(m,e); |
483 | 481 |
_reached->set(m,true); |
484 | 482 |
++_stack_head; |
485 | 483 |
_stack[_stack_head] = OutArcIt(*G, m); |
486 | 484 |
_dist->set(m,_stack_head); |
487 | 485 |
} |
488 | 486 |
else { |
489 | 487 |
m=G->source(e); |
490 | 488 |
++_stack[_stack_head]; |
491 | 489 |
} |
492 | 490 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
493 | 491 |
_processed->set(m,true); |
494 | 492 |
--_stack_head; |
495 | 493 |
if(_stack_head>=0) { |
496 | 494 |
m=G->source(_stack[_stack_head]); |
497 | 495 |
++_stack[_stack_head]; |
498 | 496 |
} |
499 | 497 |
} |
500 | 498 |
return e; |
501 | 499 |
} |
502 | 500 |
///Next arc to be processed. |
503 | 501 |
|
504 | 502 |
///Next arc to be processed. |
505 | 503 |
/// |
506 | 504 |
///\return The next arc to be processed or INVALID if the stack is |
507 | 505 |
/// empty. |
508 | 506 |
OutArcIt nextArc() |
509 | 507 |
{ |
510 | 508 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
511 | 509 |
} |
512 | 510 |
|
513 | 511 |
///\brief Returns \c false if there are nodes |
514 | 512 |
///to be processed in the queue |
515 | 513 |
/// |
516 | 514 |
///Returns \c false if there are nodes |
517 | 515 |
///to be processed in the queue |
518 | 516 |
bool emptyQueue() { return _stack_head<0; } |
519 | 517 |
///Returns the number of the nodes to be processed. |
520 | 518 |
|
521 | 519 |
///Returns the number of the nodes to be processed in the queue. |
522 | 520 |
int queueSize() { return _stack_head+1; } |
523 | 521 |
|
524 | 522 |
///Executes the algorithm. |
525 | 523 |
|
526 | 524 |
///Executes the algorithm. |
527 | 525 |
/// |
528 | 526 |
///\pre init() must be called and at least one node should be added |
529 | 527 |
///with addSource() before using this function. |
530 | 528 |
/// |
531 | 529 |
///This method runs the %DFS algorithm from the root node(s) |
532 | 530 |
///in order to |
533 | 531 |
///compute the |
534 | 532 |
///%DFS path to each node. The algorithm computes |
535 | 533 |
///- The %DFS tree. |
536 | 534 |
///- The distance of each node from the root(s) in the %DFS tree. |
537 | 535 |
/// |
538 | 536 |
void start() |
539 | 537 |
{ |
540 | 538 |
while ( !emptyQueue() ) processNextArc(); |
541 | 539 |
} |
542 | 540 |
|
543 | 541 |
///Executes the algorithm until \c dest is reached. |
544 | 542 |
|
545 | 543 |
///Executes the algorithm until \c dest is reached. |
546 | 544 |
/// |
547 | 545 |
///\pre init() must be called and at least one node should be added |
548 | 546 |
///with addSource() before using this function. |
549 | 547 |
/// |
550 | 548 |
///This method runs the %DFS algorithm from the root node(s) |
551 | 549 |
///in order to |
552 | 550 |
///compute the |
553 | 551 |
///%DFS path to \c dest. The algorithm computes |
554 | 552 |
///- The %DFS path to \c dest. |
555 | 553 |
///- The distance of \c dest from the root(s) in the %DFS tree. |
556 | 554 |
/// |
557 | 555 |
void start(Node dest) |
558 | 556 |
{ |
559 | 557 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest ) |
560 | 558 |
processNextArc(); |
561 | 559 |
} |
562 | 560 |
|
563 | 561 |
///Executes the algorithm until a condition is met. |
564 | 562 |
|
565 | 563 |
///Executes the algorithm until a condition is met. |
566 | 564 |
/// |
567 | 565 |
///\pre init() must be called and at least one node should be added |
568 | 566 |
///with addSource() before using this function. |
569 | 567 |
/// |
570 | 568 |
///\param em must be a bool (or convertible) arc map. The algorithm |
571 | 569 |
///will stop when it reaches an arc \c e with <tt>em[e]</tt> true. |
572 | 570 |
/// |
573 | 571 |
///\return The reached arc \c e with <tt>em[e]</tt> true or |
574 | 572 |
///\c INVALID if no such arc was found. |
575 | 573 |
/// |
576 | 574 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, |
577 | 575 |
///not a node map. |
578 | 576 |
template<class EM> |
579 | 577 |
Arc start(const EM &em) |
580 | 578 |
{ |
581 | 579 |
while ( !emptyQueue() && !em[_stack[_stack_head]] ) |
582 | 580 |
processNextArc(); |
583 | 581 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
584 | 582 |
} |
585 | 583 |
|
586 | 584 |
///Runs %DFS algorithm to visit all nodes in the digraph. |
587 | 585 |
|
588 | 586 |
///This method runs the %DFS algorithm in order to |
589 | 587 |
///compute the |
590 | 588 |
///%DFS path to each node. The algorithm computes |
591 | 589 |
///- The %DFS tree. |
592 | 590 |
///- The distance of each node from the root in the %DFS tree. |
593 | 591 |
/// |
594 | 592 |
///\note d.run() is just a shortcut of the following code. |
595 | 593 |
///\code |
596 | 594 |
/// d.init(); |
597 | 595 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
598 | 596 |
/// if (!d.reached(it)) { |
599 | 597 |
/// d.addSource(it); |
600 | 598 |
/// d.start(); |
601 | 599 |
/// } |
602 | 600 |
/// } |
603 | 601 |
///\endcode |
604 | 602 |
void run() { |
605 | 603 |
init(); |
606 | 604 |
for (NodeIt it(*G); it != INVALID; ++it) { |
607 | 605 |
if (!reached(it)) { |
608 | 606 |
addSource(it); |
609 | 607 |
start(); |
610 | 608 |
} |
611 | 609 |
} |
612 | 610 |
} |
613 | 611 |
|
614 | 612 |
///Runs %DFS algorithm from node \c s. |
615 | 613 |
|
616 | 614 |
///This method runs the %DFS algorithm from a root node \c s |
617 | 615 |
///in order to |
618 | 616 |
///compute the |
619 | 617 |
///%DFS path to each node. The algorithm computes |
620 | 618 |
///- The %DFS tree. |
621 | 619 |
///- The distance of each node from the root in the %DFS tree. |
622 | 620 |
/// |
623 | 621 |
///\note d.run(s) is just a shortcut of the following code. |
624 | 622 |
///\code |
625 | 623 |
/// d.init(); |
626 | 624 |
/// d.addSource(s); |
627 | 625 |
/// d.start(); |
628 | 626 |
///\endcode |
629 | 627 |
void run(Node s) { |
630 | 628 |
init(); |
631 | 629 |
addSource(s); |
632 | 630 |
start(); |
633 | 631 |
} |
634 | 632 |
|
635 | 633 |
///Finds the %DFS path between \c s and \c t. |
636 | 634 |
|
637 | 635 |
///Finds the %DFS path between \c s and \c t. |
638 | 636 |
/// |
639 | 637 |
///\return The length of the %DFS s---t path if there exists one, |
640 | 638 |
///0 otherwise. |
641 | 639 |
///\note Apart from the return value, d.run(s,t) is |
642 | 640 |
///just a shortcut of the following code. |
643 | 641 |
///\code |
644 | 642 |
/// d.init(); |
645 | 643 |
/// d.addSource(s); |
646 | 644 |
/// d.start(t); |
647 | 645 |
///\endcode |
648 | 646 |
int run(Node s,Node t) { |
649 | 647 |
init(); |
650 | 648 |
addSource(s); |
651 | 649 |
start(t); |
652 | 650 |
return reached(t)?_stack_head+1:0; |
653 | 651 |
} |
654 | 652 |
|
655 | 653 |
///@} |
656 | 654 |
|
657 | 655 |
///\name Query Functions |
658 | 656 |
///The result of the %DFS algorithm can be obtained using these |
659 | 657 |
///functions.\n |
660 | 658 |
///Before the use of these functions, |
661 | 659 |
///either run() or start() must be called. |
662 | 660 |
|
663 | 661 |
///@{ |
664 | 662 |
|
665 | 663 |
typedef PredMapPath<Digraph, PredMap> Path; |
666 | 664 |
|
667 | 665 |
///Gives back the shortest path. |
668 | 666 |
|
669 | 667 |
///Gives back the shortest path. |
670 | 668 |
///\pre The \c t should be reachable from the source. |
671 | 669 |
Path path(Node t) |
672 | 670 |
{ |
673 | 671 |
return Path(*G, *_pred, t); |
674 | 672 |
} |
675 | 673 |
|
676 | 674 |
///The distance of a node from the root(s). |
677 | 675 |
|
678 | 676 |
///Returns the distance of a node from the root(s). |
679 | 677 |
///\pre \ref run() must be called before using this function. |
680 | 678 |
///\warning If node \c v is unreachable from the root(s) then the return |
681 | 679 |
///value of this funcion is undefined. |
682 | 680 |
int dist(Node v) const { return (*_dist)[v]; } |
683 | 681 |
|
684 | 682 |
///Returns the 'previous arc' of the %DFS tree. |
685 | 683 |
|
686 | 684 |
///For a node \c v it returns the 'previous arc' |
687 | 685 |
///of the %DFS path, |
688 | 686 |
///i.e. it returns the last arc of a %DFS path from the root(s) to \c |
689 | 687 |
///v. It is \ref INVALID |
690 | 688 |
///if \c v is unreachable from the root(s) or \c v is a root. The |
691 | 689 |
///%DFS tree used here is equal to the %DFS tree used in |
692 | 690 |
///\ref predNode(). |
693 | 691 |
///\pre Either \ref run() or \ref start() must be called before using |
694 | 692 |
///this function. |
695 | 693 |
Arc predArc(Node v) const { return (*_pred)[v];} |
696 | 694 |
|
697 | 695 |
///Returns the 'previous node' of the %DFS tree. |
698 | 696 |
|
699 | 697 |
///For a node \c v it returns the 'previous node' |
700 | 698 |
///of the %DFS tree, |
701 | 699 |
///i.e. it returns the last but one node from a %DFS path from the |
702 | 700 |
///root(s) to \c v. |
703 | 701 |
///It is INVALID if \c v is unreachable from the root(s) or |
704 | 702 |
///if \c v itself a root. |
705 | 703 |
///The %DFS tree used here is equal to the %DFS |
706 | 704 |
///tree used in \ref predArc(). |
707 | 705 |
///\pre Either \ref run() or \ref start() must be called before |
708 | 706 |
///using this function. |
709 | 707 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
710 | 708 |
G->source((*_pred)[v]); } |
711 | 709 |
|
712 | 710 |
///Returns a reference to the NodeMap of distances. |
713 | 711 |
|
714 | 712 |
///Returns a reference to the NodeMap of distances. |
715 | 713 |
///\pre Either \ref run() or \ref init() must |
716 | 714 |
///be called before using this function. |
717 | 715 |
const DistMap &distMap() const { return *_dist;} |
718 | 716 |
|
719 | 717 |
///Returns a reference to the %DFS arc-tree map. |
720 | 718 |
|
721 | 719 |
///Returns a reference to the NodeMap of the arcs of the |
722 | 720 |
///%DFS tree. |
723 | 721 |
///\pre Either \ref run() or \ref init() |
724 | 722 |
///must be called before using this function. |
725 | 723 |
const PredMap &predMap() const { return *_pred;} |
726 | 724 |
|
727 | 725 |
///Checks if a node is reachable from the root. |
728 | 726 |
|
729 | 727 |
///Returns \c true if \c v is reachable from the root(s). |
730 | 728 |
///\warning The source nodes are inditated as unreachable. |
731 | 729 |
///\pre Either \ref run() or \ref start() |
732 | 730 |
///must be called before using this function. |
733 | 731 |
/// |
734 | 732 |
bool reached(Node v) { return (*_reached)[v]; } |
735 | 733 |
|
736 | 734 |
///@} |
737 | 735 |
}; |
738 | 736 |
|
739 | 737 |
///Default traits class of Dfs function. |
740 | 738 |
|
741 | 739 |
///Default traits class of Dfs function. |
742 |
///\ |
|
740 |
///\tparam GR Digraph type. |
|
743 | 741 |
template<class GR> |
744 | 742 |
struct DfsWizardDefaultTraits |
745 | 743 |
{ |
746 | 744 |
///The digraph type the algorithm runs on. |
747 | 745 |
typedef GR Digraph; |
748 | 746 |
///\brief The type of the map that stores the last |
749 | 747 |
///arcs of the %DFS paths. |
750 | 748 |
/// |
751 | 749 |
///The type of the map that stores the last |
752 | 750 |
///arcs of the %DFS paths. |
753 | 751 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
754 | 752 |
/// |
755 | 753 |
typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
756 | 754 |
///Instantiates a PredMap. |
757 | 755 |
|
758 | 756 |
///This function instantiates a \ref PredMap. |
759 | 757 |
///\param g is the digraph, to which we would like to define the PredMap. |
760 | 758 |
///\todo The digraph alone may be insufficient to initialize |
761 | 759 |
#ifdef DOXYGEN |
762 | 760 |
static PredMap *createPredMap(const GR &g) |
763 | 761 |
#else |
764 | 762 |
static PredMap *createPredMap(const GR &) |
765 | 763 |
#endif |
766 | 764 |
{ |
767 | 765 |
return new PredMap(); |
768 | 766 |
} |
769 | 767 |
|
770 | 768 |
///The type of the map that indicates which nodes are processed. |
771 | 769 |
|
772 | 770 |
///The type of the map that indicates which nodes are processed. |
773 | 771 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
774 | 772 |
///\todo named parameter to set this type, function to read and write. |
775 | 773 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
776 | 774 |
///Instantiates a ProcessedMap. |
777 | 775 |
|
778 | 776 |
///This function instantiates a \ref ProcessedMap. |
779 | 777 |
///\param g is the digraph, to which |
780 | 778 |
///we would like to define the \ref ProcessedMap |
781 | 779 |
#ifdef DOXYGEN |
782 | 780 |
static ProcessedMap *createProcessedMap(const GR &g) |
783 | 781 |
#else |
784 | 782 |
static ProcessedMap *createProcessedMap(const GR &) |
785 | 783 |
#endif |
786 | 784 |
{ |
787 | 785 |
return new ProcessedMap(); |
788 | 786 |
} |
789 | 787 |
///The type of the map that indicates which nodes are reached. |
790 | 788 |
|
791 | 789 |
///The type of the map that indicates which nodes are reached. |
792 | 790 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
793 | 791 |
///\todo named parameter to set this type, function to read and write. |
794 | 792 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
795 | 793 |
///Instantiates a ReachedMap. |
796 | 794 |
|
797 | 795 |
///This function instantiates a \ref ReachedMap. |
798 | 796 |
///\param G is the digraph, to which |
799 | 797 |
///we would like to define the \ref ReachedMap. |
800 | 798 |
static ReachedMap *createReachedMap(const GR &G) |
801 | 799 |
{ |
802 | 800 |
return new ReachedMap(G); |
803 | 801 |
} |
804 | 802 |
///The type of the map that stores the dists of the nodes. |
805 | 803 |
|
806 | 804 |
///The type of the map that stores the dists of the nodes. |
807 | 805 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
808 | 806 |
/// |
809 | 807 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
810 | 808 |
///Instantiates a DistMap. |
811 | 809 |
|
812 | 810 |
///This function instantiates a \ref DistMap. |
813 | 811 |
///\param g is the digraph, to which we would like to define the \ref DistMap |
814 | 812 |
#ifdef DOXYGEN |
815 | 813 |
static DistMap *createDistMap(const GR &g) |
816 | 814 |
#else |
817 | 815 |
static DistMap *createDistMap(const GR &) |
818 | 816 |
#endif |
819 | 817 |
{ |
820 | 818 |
return new DistMap(); |
821 | 819 |
} |
822 | 820 |
}; |
823 | 821 |
|
824 | 822 |
/// Default traits used by \ref DfsWizard |
825 | 823 |
|
826 | 824 |
/// To make it easier to use Dfs algorithm |
827 | 825 |
///we have created a wizard class. |
828 | 826 |
/// This \ref DfsWizard class needs default traits, |
829 | 827 |
///as well as the \ref Dfs class. |
830 | 828 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
831 | 829 |
/// \ref DfsWizard class. |
832 | 830 |
template<class GR> |
833 | 831 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
834 | 832 |
{ |
835 | 833 |
|
836 | 834 |
typedef DfsWizardDefaultTraits<GR> Base; |
837 | 835 |
protected: |
838 | 836 |
/// Type of the nodes in the digraph. |
839 | 837 |
typedef typename Base::Digraph::Node Node; |
840 | 838 |
|
841 | 839 |
/// Pointer to the underlying digraph. |
842 | 840 |
void *_g; |
843 | 841 |
///Pointer to the map of reached nodes. |
844 | 842 |
void *_reached; |
845 | 843 |
///Pointer to the map of processed nodes. |
846 | 844 |
void *_processed; |
847 | 845 |
///Pointer to the map of predecessors arcs. |
848 | 846 |
void *_pred; |
849 | 847 |
///Pointer to the map of distances. |
850 | 848 |
void *_dist; |
851 | 849 |
///Pointer to the source node. |
852 | 850 |
Node _source; |
853 | 851 |
|
854 | 852 |
public: |
855 | 853 |
/// Constructor. |
856 | 854 |
|
857 | 855 |
/// This constructor does not require parameters, therefore it initiates |
858 | 856 |
/// all of the attributes to default values (0, INVALID). |
859 | 857 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
860 | 858 |
_dist(0), _source(INVALID) {} |
861 | 859 |
|
862 | 860 |
/// Constructor. |
863 | 861 |
|
864 | 862 |
/// This constructor requires some parameters, |
865 | 863 |
/// listed in the parameters list. |
866 | 864 |
/// Others are initiated to 0. |
867 | 865 |
/// \param g is the initial value of \ref _g |
868 | 866 |
/// \param s is the initial value of \ref _source |
869 | 867 |
DfsWizardBase(const GR &g, Node s=INVALID) : |
870 | 868 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
871 | 869 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
872 | 870 |
|
873 | 871 |
}; |
874 | 872 |
|
875 | 873 |
/// A class to make the usage of the Dfs algorithm easier |
876 | 874 |
|
877 | 875 |
/// This class is created to make it easier to use the Dfs algorithm. |
878 | 876 |
/// It uses the functions and features of the plain \ref Dfs, |
879 | 877 |
/// but it is much simpler to use it. |
880 | 878 |
/// |
881 | 879 |
/// Simplicity means that the way to change the types defined |
882 | 880 |
/// in the traits class is based on functions that returns the new class |
883 | 881 |
/// and not on templatable built-in classes. |
884 | 882 |
/// When using the plain \ref Dfs |
885 | 883 |
/// the new class with the modified type comes from |
886 | 884 |
/// the original class by using the :: |
887 | 885 |
/// operator. In the case of \ref DfsWizard only |
888 | 886 |
/// a function have to be called and it will |
889 | 887 |
/// return the needed class. |
890 | 888 |
/// |
891 | 889 |
/// It does not have own \ref run method. When its \ref run method is called |
892 | 890 |
/// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run |
893 | 891 |
/// method of it. |
894 | 892 |
template<class TR> |
895 | 893 |
class DfsWizard : public TR |
896 | 894 |
{ |
897 | 895 |
typedef TR Base; |
898 | 896 |
|
899 | 897 |
///The type of the underlying digraph. |
900 | 898 |
typedef typename TR::Digraph Digraph; |
901 | 899 |
//\e |
902 | 900 |
typedef typename Digraph::Node Node; |
903 | 901 |
//\e |
904 | 902 |
typedef typename Digraph::NodeIt NodeIt; |
905 | 903 |
//\e |
906 | 904 |
typedef typename Digraph::Arc Arc; |
907 | 905 |
//\e |
908 | 906 |
typedef typename Digraph::OutArcIt OutArcIt; |
909 | 907 |
|
910 | 908 |
///\brief The type of the map that stores |
911 | 909 |
///the reached nodes |
912 | 910 |
typedef typename TR::ReachedMap ReachedMap; |
913 | 911 |
///\brief The type of the map that stores |
914 | 912 |
///the processed nodes |
915 | 913 |
typedef typename TR::ProcessedMap ProcessedMap; |
916 | 914 |
///\brief The type of the map that stores the last |
917 | 915 |
///arcs of the %DFS paths. |
918 | 916 |
typedef typename TR::PredMap PredMap; |
919 | 917 |
///The type of the map that stores the distances of the nodes. |
920 | 918 |
typedef typename TR::DistMap DistMap; |
921 | 919 |
|
922 | 920 |
public: |
923 | 921 |
/// Constructor. |
924 | 922 |
DfsWizard() : TR() {} |
925 | 923 |
|
926 | 924 |
/// Constructor that requires parameters. |
927 | 925 |
|
928 | 926 |
/// Constructor that requires parameters. |
929 | 927 |
/// These parameters will be the default values for the traits class. |
930 | 928 |
DfsWizard(const Digraph &g, Node s=INVALID) : |
931 | 929 |
TR(g,s) {} |
932 | 930 |
|
933 | 931 |
///Copy constructor |
934 | 932 |
DfsWizard(const TR &b) : TR(b) {} |
935 | 933 |
|
936 | 934 |
~DfsWizard() {} |
937 | 935 |
|
938 | 936 |
///Runs Dfs algorithm from a given node. |
939 | 937 |
|
940 | 938 |
///Runs Dfs algorithm from a given node. |
941 | 939 |
///The node can be given by the \ref source function. |
942 | 940 |
void run() |
943 | 941 |
{ |
944 | 942 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
945 | 943 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
946 | 944 |
if(Base::_reached) |
947 | 945 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
948 | 946 |
if(Base::_processed) |
949 | 947 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
950 | 948 |
if(Base::_pred) |
951 | 949 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
952 | 950 |
if(Base::_dist) |
953 | 951 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
954 | 952 |
alg.run(Base::_source); |
955 | 953 |
} |
956 | 954 |
|
957 | 955 |
///Runs Dfs algorithm from the given node. |
958 | 956 |
|
959 | 957 |
///Runs Dfs algorithm from the given node. |
960 | 958 |
///\param s is the given source. |
961 | 959 |
void run(Node s) |
962 | 960 |
{ |
963 | 961 |
Base::_source=s; |
964 | 962 |
run(); |
965 | 963 |
} |
966 | 964 |
|
967 | 965 |
template<class T> |
968 | 966 |
struct DefPredMapBase : public Base { |
969 | 967 |
typedef T PredMap; |
970 | 968 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
971 | 969 |
DefPredMapBase(const TR &b) : TR(b) {} |
972 | 970 |
}; |
973 | 971 |
|
974 | 972 |
///\brief \ref named-templ-param "Named parameter" |
975 | 973 |
///function for setting PredMap type |
976 | 974 |
/// |
977 | 975 |
/// \ref named-templ-param "Named parameter" |
978 | 976 |
///function for setting PredMap type |
979 | 977 |
/// |
980 | 978 |
template<class T> |
981 | 979 |
DfsWizard<DefPredMapBase<T> > predMap(const T &t) |
982 | 980 |
{ |
983 | 981 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
984 | 982 |
return DfsWizard<DefPredMapBase<T> >(*this); |
985 | 983 |
} |
986 | 984 |
|
987 | 985 |
|
988 | 986 |
template<class T> |
989 | 987 |
struct DefReachedMapBase : public Base { |
990 | 988 |
typedef T ReachedMap; |
991 | 989 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
992 | 990 |
DefReachedMapBase(const TR &b) : TR(b) {} |
993 | 991 |
}; |
994 | 992 |
|
995 | 993 |
///\brief \ref named-templ-param "Named parameter" |
996 | 994 |
///function for setting ReachedMap |
997 | 995 |
/// |
998 | 996 |
/// \ref named-templ-param "Named parameter" |
999 | 997 |
///function for setting ReachedMap |
1000 | 998 |
/// |
1001 | 999 |
template<class T> |
1002 | 1000 |
DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
1003 | 1001 |
{ |
1004 | 1002 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1005 | 1003 |
return DfsWizard<DefReachedMapBase<T> >(*this); |
1006 | 1004 |
} |
1007 | 1005 |
|
1008 | 1006 |
|
1009 | 1007 |
template<class T> |
1010 | 1008 |
struct DefProcessedMapBase : public Base { |
1011 | 1009 |
typedef T ProcessedMap; |
1012 | 1010 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1013 | 1011 |
DefProcessedMapBase(const TR &b) : TR(b) {} |
1014 | 1012 |
}; |
1015 | 1013 |
|
1016 | 1014 |
///\brief \ref named-templ-param "Named parameter" |
1017 | 1015 |
///function for setting ProcessedMap |
1018 | 1016 |
/// |
1019 | 1017 |
/// \ref named-templ-param "Named parameter" |
1020 | 1018 |
///function for setting ProcessedMap |
1021 | 1019 |
/// |
1022 | 1020 |
template<class T> |
1023 | 1021 |
DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
1024 | 1022 |
{ |
1025 | 1023 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1026 | 1024 |
return DfsWizard<DefProcessedMapBase<T> >(*this); |
1027 | 1025 |
} |
1028 | 1026 |
|
1029 | 1027 |
template<class T> |
1030 | 1028 |
struct DefDistMapBase : public Base { |
1031 | 1029 |
typedef T DistMap; |
1032 | 1030 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1033 | 1031 |
DefDistMapBase(const TR &b) : TR(b) {} |
1034 | 1032 |
}; |
1035 | 1033 |
|
1036 | 1034 |
///\brief \ref named-templ-param "Named parameter" |
1037 | 1035 |
///function for setting DistMap type |
1038 | 1036 |
/// |
1039 | 1037 |
/// \ref named-templ-param "Named parameter" |
1040 | 1038 |
///function for setting DistMap type |
1041 | 1039 |
/// |
1042 | 1040 |
template<class T> |
1043 | 1041 |
DfsWizard<DefDistMapBase<T> > distMap(const T &t) |
1044 | 1042 |
{ |
1045 | 1043 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1046 | 1044 |
return DfsWizard<DefDistMapBase<T> >(*this); |
1047 | 1045 |
} |
1048 | 1046 |
|
1049 | 1047 |
/// Sets the source node, from which the Dfs algorithm runs. |
1050 | 1048 |
|
1051 | 1049 |
/// Sets the source node, from which the Dfs algorithm runs. |
1052 | 1050 |
/// \param s is the source node. |
1053 | 1051 |
DfsWizard<TR> &source(Node s) |
1054 | 1052 |
{ |
1055 | 1053 |
Base::_source=s; |
1056 | 1054 |
return *this; |
1057 | 1055 |
} |
1058 | 1056 |
|
1059 | 1057 |
}; |
1060 | 1058 |
|
1061 | 1059 |
///Function type interface for Dfs algorithm. |
1062 | 1060 |
|
1063 | 1061 |
///\ingroup search |
1064 | 1062 |
///Function type interface for Dfs algorithm. |
1065 | 1063 |
/// |
1066 | 1064 |
///This function also has several |
1067 | 1065 |
///\ref named-templ-func-param "named parameters", |
1068 | 1066 |
///they are declared as the members of class \ref DfsWizard. |
1069 | 1067 |
///The following |
1070 | 1068 |
///example shows how to use these parameters. |
1071 | 1069 |
///\code |
1072 | 1070 |
/// dfs(g,source).predMap(preds).run(); |
1073 | 1071 |
///\endcode |
1074 | 1072 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1075 | 1073 |
///to the end of the parameter list. |
1076 | 1074 |
///\sa DfsWizard |
1077 | 1075 |
///\sa Dfs |
1078 | 1076 |
template<class GR> |
1079 | 1077 |
DfsWizard<DfsWizardBase<GR> > |
1080 | 1078 |
dfs(const GR &g,typename GR::Node s=INVALID) |
1081 | 1079 |
{ |
1082 | 1080 |
return DfsWizard<DfsWizardBase<GR> >(g,s); |
1083 | 1081 |
} |
1084 | 1082 |
|
1085 | 1083 |
#ifdef DOXYGEN |
1086 | 1084 |
/// \brief Visitor class for dfs. |
1087 | 1085 |
/// |
1088 | 1086 |
/// It gives a simple interface for a functional interface for dfs |
1089 | 1087 |
/// traversal. The traversal on a linear data structure. |
1090 | 1088 |
template <typename _Digraph> |
1091 | 1089 |
struct DfsVisitor { |
1092 | 1090 |
typedef _Digraph Digraph; |
1093 | 1091 |
typedef typename Digraph::Arc Arc; |
1094 | 1092 |
typedef typename Digraph::Node Node; |
1095 | 1093 |
/// \brief Called when the arc reach a node. |
1096 | 1094 |
/// |
1097 | 1095 |
/// It is called when the dfs find an arc which target is not |
1098 | 1096 |
/// reached yet. |
1099 | 1097 |
void discover(const Arc& arc) {} |
1100 | 1098 |
/// \brief Called when the node reached first time. |
1101 | 1099 |
/// |
1102 | 1100 |
/// It is Called when the node reached first time. |
1103 | 1101 |
void reach(const Node& node) {} |
1104 | 1102 |
/// \brief Called when we step back on an arc. |
1105 | 1103 |
/// |
1106 | 1104 |
/// It is called when the dfs should step back on the arc. |
1107 | 1105 |
void backtrack(const Arc& arc) {} |
1108 | 1106 |
/// \brief Called when we step back from the node. |
1109 | 1107 |
/// |
1110 | 1108 |
/// It is called when we step back from the node. |
1111 | 1109 |
void leave(const Node& node) {} |
1112 | 1110 |
/// \brief Called when the arc examined but target of the arc |
1113 | 1111 |
/// already discovered. |
1114 | 1112 |
/// |
1115 | 1113 |
/// It called when the arc examined but the target of the arc |
1116 | 1114 |
/// already discovered. |
1117 | 1115 |
void examine(const Arc& arc) {} |
1118 | 1116 |
/// \brief Called for the source node of the dfs. |
1119 | 1117 |
/// |
1120 | 1118 |
/// It is called for the source node of the dfs. |
1121 | 1119 |
void start(const Node& node) {} |
1122 | 1120 |
/// \brief Called when we leave the source node of the dfs. |
1123 | 1121 |
/// |
1124 | 1122 |
/// It is called when we leave the source node of the dfs. |
1125 | 1123 |
void stop(const Node& node) {} |
1126 | 1124 |
|
1127 | 1125 |
}; |
1128 | 1126 |
#else |
1129 | 1127 |
template <typename _Digraph> |
1130 | 1128 |
struct DfsVisitor { |
1131 | 1129 |
typedef _Digraph Digraph; |
1132 | 1130 |
typedef typename Digraph::Arc Arc; |
1133 | 1131 |
typedef typename Digraph::Node Node; |
1134 | 1132 |
void discover(const Arc&) {} |
1135 | 1133 |
void reach(const Node&) {} |
1136 | 1134 |
void backtrack(const Arc&) {} |
1137 | 1135 |
void leave(const Node&) {} |
1138 | 1136 |
void examine(const Arc&) {} |
1139 | 1137 |
void start(const Node&) {} |
1140 | 1138 |
void stop(const Node&) {} |
1141 | 1139 |
|
1142 | 1140 |
template <typename _Visitor> |
1143 | 1141 |
struct Constraints { |
1144 | 1142 |
void constraints() { |
1145 | 1143 |
Arc arc; |
1146 | 1144 |
Node node; |
1147 | 1145 |
visitor.discover(arc); |
1148 | 1146 |
visitor.reach(node); |
1149 | 1147 |
visitor.backtrack(arc); |
1150 | 1148 |
visitor.leave(node); |
1151 | 1149 |
visitor.examine(arc); |
1152 | 1150 |
visitor.start(node); |
1153 | 1151 |
visitor.stop(arc); |
1154 | 1152 |
} |
1155 | 1153 |
_Visitor& visitor; |
1156 | 1154 |
}; |
1157 | 1155 |
}; |
1158 | 1156 |
#endif |
1159 | 1157 |
|
1160 | 1158 |
/// \brief Default traits class of DfsVisit class. |
1161 | 1159 |
/// |
1162 | 1160 |
/// Default traits class of DfsVisit class. |
1163 |
/// \ |
|
1161 |
/// \tparam _Digraph Digraph type. |
|
1164 | 1162 |
template<class _Digraph> |
1165 | 1163 |
struct DfsVisitDefaultTraits { |
1166 | 1164 |
|
1167 | 1165 |
/// \brief The digraph type the algorithm runs on. |
1168 | 1166 |
typedef _Digraph Digraph; |
1169 | 1167 |
|
1170 | 1168 |
/// \brief The type of the map that indicates which nodes are reached. |
1171 | 1169 |
/// |
1172 | 1170 |
/// The type of the map that indicates which nodes are reached. |
1173 | 1171 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1174 | 1172 |
/// \todo named parameter to set this type, function to read and write. |
1175 | 1173 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1176 | 1174 |
|
1177 | 1175 |
/// \brief Instantiates a ReachedMap. |
1178 | 1176 |
/// |
1179 | 1177 |
/// This function instantiates a \ref ReachedMap. |
1180 | 1178 |
/// \param digraph is the digraph, to which |
1181 | 1179 |
/// we would like to define the \ref ReachedMap. |
1182 | 1180 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1183 | 1181 |
return new ReachedMap(digraph); |
1184 | 1182 |
} |
1185 | 1183 |
|
1186 | 1184 |
}; |
1187 | 1185 |
|
1188 | 1186 |
/// %DFS Visit algorithm class. |
1189 | 1187 |
|
1190 | 1188 |
/// \ingroup search |
1191 | 1189 |
/// This class provides an efficient implementation of the %DFS algorithm |
1192 | 1190 |
/// with visitor interface. |
1193 | 1191 |
/// |
1194 | 1192 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1195 | 1193 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1196 | 1194 |
/// on every dfs event the \c Visitor class member functions. |
1197 | 1195 |
/// |
1198 |
/// \ |
|
1196 |
/// \tparam _Digraph The digraph type the algorithm runs on. The default value is |
|
1199 | 1197 |
/// \ref ListDigraph. The value of _Digraph is not used directly by Dfs, it |
1200 | 1198 |
/// is only passed to \ref DfsDefaultTraits. |
1201 |
/// \ |
|
1199 |
/// \tparam _Visitor The Visitor object for the algorithm. The |
|
1202 | 1200 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty Visitor which |
1203 | 1201 |
/// does not observe the Dfs events. If you want to observe the dfs |
1204 | 1202 |
/// events you should implement your own Visitor class. |
1205 |
/// \ |
|
1203 |
/// \tparam _Traits Traits class to set various data types used by the |
|
1206 | 1204 |
/// algorithm. The default traits class is |
1207 | 1205 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1208 | 1206 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1209 | 1207 |
/// a Dfs visit traits class. |
1210 | 1208 |
/// |
1211 | 1209 |
/// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
1212 | 1210 |
#ifdef DOXYGEN |
1213 | 1211 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1214 | 1212 |
#else |
1215 | 1213 |
template <typename _Digraph = ListDigraph, |
1216 | 1214 |
typename _Visitor = DfsVisitor<_Digraph>, |
1217 | 1215 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
1218 | 1216 |
#endif |
1219 | 1217 |
class DfsVisit { |
1220 | 1218 |
public: |
1221 | 1219 |
|
1222 | 1220 |
/// \brief \ref Exception for uninitialized parameters. |
1223 | 1221 |
/// |
1224 | 1222 |
/// This error represents problems in the initialization |
1225 | 1223 |
/// of the parameters of the algorithms. |
1226 | 1224 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1227 | 1225 |
public: |
1228 | 1226 |
virtual const char* what() const throw() |
1229 | 1227 |
{ |
1230 | 1228 |
return "lemon::DfsVisit::UninitializedParameter"; |
1231 | 1229 |
} |
1232 | 1230 |
}; |
1233 | 1231 |
|
1234 | 1232 |
typedef _Traits Traits; |
1235 | 1233 |
|
1236 | 1234 |
typedef typename Traits::Digraph Digraph; |
1237 | 1235 |
|
1238 | 1236 |
typedef _Visitor Visitor; |
1239 | 1237 |
|
1240 | 1238 |
///The type of the map indicating which nodes are reached. |
1241 | 1239 |
typedef typename Traits::ReachedMap ReachedMap; |
1242 | 1240 |
|
1243 | 1241 |
private: |
1244 | 1242 |
|
1245 | 1243 |
typedef typename Digraph::Node Node; |
1246 | 1244 |
typedef typename Digraph::NodeIt NodeIt; |
1247 | 1245 |
typedef typename Digraph::Arc Arc; |
1248 | 1246 |
typedef typename Digraph::OutArcIt OutArcIt; |
1249 | 1247 |
|
1250 | 1248 |
/// Pointer to the underlying digraph. |
1251 | 1249 |
const Digraph *_digraph; |
1252 | 1250 |
/// Pointer to the visitor object. |
1253 | 1251 |
Visitor *_visitor; |
1254 | 1252 |
///Pointer to the map of reached status of the nodes. |
1255 | 1253 |
ReachedMap *_reached; |
1256 | 1254 |
///Indicates if \ref _reached is locally allocated (\c true) or not. |
1257 | 1255 |
bool local_reached; |
1258 | 1256 |
|
1259 | 1257 |
std::vector<typename Digraph::Arc> _stack; |
1260 | 1258 |
int _stack_head; |
1261 | 1259 |
|
1262 | 1260 |
/// \brief Creates the maps if necessary. |
1263 | 1261 |
/// |
1264 | 1262 |
/// Creates the maps if necessary. |
1265 | 1263 |
void create_maps() { |
1266 | 1264 |
if(!_reached) { |
1267 | 1265 |
local_reached = true; |
1268 | 1266 |
_reached = Traits::createReachedMap(*_digraph); |
1269 | 1267 |
} |
1270 | 1268 |
} |
1271 | 1269 |
|
1272 | 1270 |
protected: |
1273 | 1271 |
|
1274 | 1272 |
DfsVisit() {} |
1275 | 1273 |
|
1276 | 1274 |
public: |
1277 | 1275 |
|
1278 | 1276 |
typedef DfsVisit Create; |
1279 | 1277 |
|
1280 | 1278 |
/// \name Named template parameters |
1281 | 1279 |
|
1282 | 1280 |
///@{ |
1283 | 1281 |
template <class T> |
1284 | 1282 |
struct DefReachedMapTraits : public Traits { |
1285 | 1283 |
typedef T ReachedMap; |
1286 | 1284 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1287 | 1285 |
throw UninitializedParameter(); |
1288 | 1286 |
} |
1289 | 1287 |
}; |
1290 | 1288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1291 | 1289 |
/// ReachedMap type |
1292 | 1290 |
/// |
1293 | 1291 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type |
1294 | 1292 |
template <class T> |
1295 | 1293 |
struct DefReachedMap : public DfsVisit< Digraph, Visitor, |
1296 | 1294 |
DefReachedMapTraits<T> > { |
1297 | 1295 |
typedef DfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
1298 | 1296 |
}; |
1299 | 1297 |
///@} |
1300 | 1298 |
|
1301 | 1299 |
public: |
1302 | 1300 |
|
1303 | 1301 |
/// \brief Constructor. |
1304 | 1302 |
/// |
1305 | 1303 |
/// Constructor. |
1306 | 1304 |
/// |
1307 | 1305 |
/// \param digraph the digraph the algorithm will run on. |
1308 | 1306 |
/// \param visitor The visitor of the algorithm. |
1309 | 1307 |
/// |
1310 | 1308 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1311 | 1309 |
: _digraph(&digraph), _visitor(&visitor), |
1312 | 1310 |
_reached(0), local_reached(false) {} |
1313 | 1311 |
|
1314 | 1312 |
/// \brief Destructor. |
1315 | 1313 |
/// |
1316 | 1314 |
/// Destructor. |
1317 | 1315 |
~DfsVisit() { |
1318 | 1316 |
if(local_reached) delete _reached; |
1319 | 1317 |
} |
1320 | 1318 |
|
1321 | 1319 |
/// \brief Sets the map indicating if a node is reached. |
1322 | 1320 |
/// |
1323 | 1321 |
/// Sets the map indicating if a node is reached. |
1324 | 1322 |
/// If you don't use this function before calling \ref run(), |
1325 | 1323 |
/// it will allocate one. The destuctor deallocates this |
1326 | 1324 |
/// automatically allocated map, of course. |
1327 | 1325 |
/// \return <tt> (*this) </tt> |
1328 | 1326 |
DfsVisit &reachedMap(ReachedMap &m) { |
1329 | 1327 |
if(local_reached) { |
1330 | 1328 |
delete _reached; |
1331 | 1329 |
local_reached=false; |
1332 | 1330 |
} |
1333 | 1331 |
_reached = &m; |
1334 | 1332 |
return *this; |
1335 | 1333 |
} |
1336 | 1334 |
|
1337 | 1335 |
public: |
1338 | 1336 |
/// \name Execution control |
1339 | 1337 |
/// The simplest way to execute the algorithm is to use |
1340 | 1338 |
/// one of the member functions called \c run(...). |
1341 | 1339 |
/// \n |
1342 | 1340 |
/// If you need more control on the execution, |
1343 | 1341 |
/// first you must call \ref init(), then you can adda source node |
1344 | 1342 |
/// with \ref addSource(). |
1345 | 1343 |
/// Finally \ref start() will perform the actual path |
1346 | 1344 |
/// computation. |
1347 | 1345 |
|
1348 | 1346 |
/// @{ |
1349 | 1347 |
/// \brief Initializes the internal data structures. |
1350 | 1348 |
/// |
1351 | 1349 |
/// Initializes the internal data structures. |
1352 | 1350 |
/// |
1353 | 1351 |
void init() { |
1354 | 1352 |
create_maps(); |
1355 | 1353 |
_stack.resize(countNodes(*_digraph)); |
1356 | 1354 |
_stack_head = -1; |
1357 | 1355 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1358 | 1356 |
_reached->set(u, false); |
1359 | 1357 |
} |
1360 | 1358 |
} |
1361 | 1359 |
|
1362 | 1360 |
/// \brief Adds a new source node. |
1363 | 1361 |
/// |
1364 | 1362 |
/// Adds a new source node to the set of nodes to be processed. |
1365 | 1363 |
void addSource(Node s) { |
1366 | 1364 |
if(!(*_reached)[s]) { |
1367 | 1365 |
_reached->set(s,true); |
1368 | 1366 |
_visitor->start(s); |
1369 | 1367 |
_visitor->reach(s); |
1370 | 1368 |
Arc e; |
1371 | 1369 |
_digraph->firstOut(e, s); |
1372 | 1370 |
if (e != INVALID) { |
1373 | 1371 |
_stack[++_stack_head] = e; |
1374 | 1372 |
} else { |
1375 | 1373 |
_visitor->leave(s); |
1376 | 1374 |
} |
1377 | 1375 |
} |
1378 | 1376 |
} |
1379 | 1377 |
|
1380 | 1378 |
/// \brief Processes the next arc. |
1381 | 1379 |
/// |
1382 | 1380 |
/// Processes the next arc. |
1383 | 1381 |
/// |
1384 | 1382 |
/// \return The processed arc. |
1385 | 1383 |
/// |
1386 | 1384 |
/// \pre The stack must not be empty! |
1387 | 1385 |
Arc processNextArc() { |
1388 | 1386 |
Arc e = _stack[_stack_head]; |
1389 | 1387 |
Node m = _digraph->target(e); |
1390 | 1388 |
if(!(*_reached)[m]) { |
1391 | 1389 |
_visitor->discover(e); |
1392 | 1390 |
_visitor->reach(m); |
1393 | 1391 |
_reached->set(m, true); |
1394 | 1392 |
_digraph->firstOut(_stack[++_stack_head], m); |
1395 | 1393 |
} else { |
1396 | 1394 |
_visitor->examine(e); |
1397 | 1395 |
m = _digraph->source(e); |
1398 | 1396 |
_digraph->nextOut(_stack[_stack_head]); |
1399 | 1397 |
} |
1400 | 1398 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1401 | 1399 |
_visitor->leave(m); |
1402 | 1400 |
--_stack_head; |
1403 | 1401 |
if (_stack_head >= 0) { |
1404 | 1402 |
_visitor->backtrack(_stack[_stack_head]); |
1405 | 1403 |
m = _digraph->source(_stack[_stack_head]); |
1406 | 1404 |
_digraph->nextOut(_stack[_stack_head]); |
1407 | 1405 |
} else { |
1408 | 1406 |
_visitor->stop(m); |
1409 | 1407 |
} |
1410 | 1408 |
} |
1411 | 1409 |
return e; |
1412 | 1410 |
} |
1413 | 1411 |
|
1414 | 1412 |
/// \brief Next arc to be processed. |
1415 | 1413 |
/// |
1416 | 1414 |
/// Next arc to be processed. |
1417 | 1415 |
/// |
1418 | 1416 |
/// \return The next arc to be processed or INVALID if the stack is |
1419 | 1417 |
/// empty. |
1420 | 1418 |
Arc nextArc() { |
1421 | 1419 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1422 | 1420 |
} |
1423 | 1421 |
|
1424 | 1422 |
/// \brief Returns \c false if there are nodes |
1425 | 1423 |
/// to be processed in the queue |
1426 | 1424 |
/// |
1427 | 1425 |
/// Returns \c false if there are nodes |
1428 | 1426 |
/// to be processed in the queue |
1429 | 1427 |
bool emptyQueue() { return _stack_head < 0; } |
1430 | 1428 |
|
1431 | 1429 |
/// \brief Returns the number of the nodes to be processed. |
1432 | 1430 |
/// |
1433 | 1431 |
/// Returns the number of the nodes to be processed in the queue. |
1434 | 1432 |
int queueSize() { return _stack_head + 1; } |
1435 | 1433 |
|
1436 | 1434 |
/// \brief Executes the algorithm. |
1437 | 1435 |
/// |
1438 | 1436 |
/// Executes the algorithm. |
1439 | 1437 |
/// |
1440 | 1438 |
/// \pre init() must be called and at least one node should be added |
1441 | 1439 |
/// with addSource() before using this function. |
1442 | 1440 |
void start() { |
1443 | 1441 |
while ( !emptyQueue() ) processNextArc(); |
1444 | 1442 |
} |
1445 | 1443 |
|
1446 | 1444 |
/// \brief Executes the algorithm until \c dest is reached. |
1447 | 1445 |
/// |
1448 | 1446 |
/// Executes the algorithm until \c dest is reached. |
1449 | 1447 |
/// |
1450 | 1448 |
/// \pre init() must be called and at least one node should be added |
1451 | 1449 |
/// with addSource() before using this function. |
1452 | 1450 |
void start(Node dest) { |
1453 | 1451 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest ) |
1454 | 1452 |
processNextArc(); |
1455 | 1453 |
} |
1456 | 1454 |
|
1457 | 1455 |
/// \brief Executes the algorithm until a condition is met. |
1458 | 1456 |
/// |
1459 | 1457 |
/// Executes the algorithm until a condition is met. |
1460 | 1458 |
/// |
1461 | 1459 |
/// \pre init() must be called and at least one node should be added |
1462 | 1460 |
/// with addSource() before using this function. |
1463 | 1461 |
/// |
1464 | 1462 |
/// \param em must be a bool (or convertible) arc map. The algorithm |
1465 | 1463 |
/// will stop when it reaches an arc \c e with <tt>em[e]</tt> true. |
1466 | 1464 |
/// |
1467 | 1465 |
///\return The reached arc \c e with <tt>em[e]</tt> true or |
1468 | 1466 |
///\c INVALID if no such arc was found. |
1469 | 1467 |
/// |
1470 | 1468 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, |
1471 | 1469 |
/// not a node map. |
1472 | 1470 |
template <typename EM> |
1473 | 1471 |
Arc start(const EM &em) { |
1474 | 1472 |
while ( !emptyQueue() && !em[_stack[_stack_head]] ) |
1475 | 1473 |
processNextArc(); |
1476 | 1474 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1477 | 1475 |
} |
1478 | 1476 |
|
1479 | 1477 |
/// \brief Runs %DFSVisit algorithm from node \c s. |
1480 | 1478 |
/// |
1481 | 1479 |
/// This method runs the %DFS algorithm from a root node \c s. |
1482 | 1480 |
/// \note d.run(s) is just a shortcut of the following code. |
1483 | 1481 |
///\code |
1484 | 1482 |
/// d.init(); |
1485 | 1483 |
/// d.addSource(s); |
1486 | 1484 |
/// d.start(); |
1487 | 1485 |
///\endcode |
1488 | 1486 |
void run(Node s) { |
1489 | 1487 |
init(); |
1490 | 1488 |
addSource(s); |
1491 | 1489 |
start(); |
1492 | 1490 |
} |
1493 | 1491 |
|
1494 | 1492 |
/// \brief Runs %DFSVisit algorithm to visit all nodes in the digraph. |
1495 | 1493 |
|
1496 | 1494 |
/// This method runs the %DFS algorithm in order to |
1497 | 1495 |
/// compute the %DFS path to each node. The algorithm computes |
1498 | 1496 |
/// - The %DFS tree. |
1499 | 1497 |
/// - The distance of each node from the root in the %DFS tree. |
1500 | 1498 |
/// |
1501 | 1499 |
///\note d.run() is just a shortcut of the following code. |
1502 | 1500 |
///\code |
1503 | 1501 |
/// d.init(); |
1504 | 1502 |
/// for (NodeIt it(digraph); it != INVALID; ++it) { |
1505 | 1503 |
/// if (!d.reached(it)) { |
1506 | 1504 |
/// d.addSource(it); |
1507 | 1505 |
/// d.start(); |
1508 | 1506 |
/// } |
1509 | 1507 |
/// } |
1510 | 1508 |
///\endcode |
1511 | 1509 |
void run() { |
1512 | 1510 |
init(); |
1513 | 1511 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1514 | 1512 |
if (!reached(it)) { |
1515 | 1513 |
addSource(it); |
1516 | 1514 |
start(); |
1517 | 1515 |
} |
1518 | 1516 |
} |
1519 | 1517 |
} |
1520 | 1518 |
///@} |
1521 | 1519 |
|
1522 | 1520 |
/// \name Query Functions |
1523 | 1521 |
/// The result of the %DFS algorithm can be obtained using these |
1524 | 1522 |
/// functions.\n |
1525 | 1523 |
/// Before the use of these functions, |
1526 | 1524 |
/// either run() or start() must be called. |
1527 | 1525 |
///@{ |
1528 | 1526 |
/// \brief Checks if a node is reachable from the root. |
1529 | 1527 |
/// |
1530 | 1528 |
/// Returns \c true if \c v is reachable from the root(s). |
1531 | 1529 |
/// \warning The source nodes are inditated as unreachable. |
1532 | 1530 |
/// \pre Either \ref run() or \ref start() |
1533 | 1531 |
/// must be called before using this function. |
1534 | 1532 |
/// |
1535 | 1533 |
bool reached(Node v) { return (*_reached)[v]; } |
1536 | 1534 |
///@} |
1537 | 1535 |
}; |
1538 | 1536 |
|
1539 | 1537 |
|
1540 | 1538 |
} //END OF NAMESPACE LEMON |
1541 | 1539 |
|
1542 | 1540 |
#endif |
1543 | 1541 |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
/// |
26 | 26 |
|
27 | 27 |
#include <lemon/list_digraph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/bits/invalid.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default OperationTraits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// It defines all computational operations and constants which are |
40 | 40 |
/// used in the Dijkstra algorithm. |
41 | 41 |
template <typename Value> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \brief Gives back the zero value of the type. |
44 | 44 |
static Value zero() { |
45 | 45 |
return static_cast<Value>(0); |
46 | 46 |
} |
47 | 47 |
/// \brief Gives back the sum of the given two elements. |
48 | 48 |
static Value plus(const Value& left, const Value& right) { |
49 | 49 |
return left + right; |
50 | 50 |
} |
51 | 51 |
/// \brief Gives back true only if the first value less than the second. |
52 | 52 |
static bool less(const Value& left, const Value& right) { |
53 | 53 |
return left < right; |
54 | 54 |
} |
55 | 55 |
}; |
56 | 56 |
|
57 | 57 |
/// \brief Widest path OperationTraits for the Dijkstra algorithm class. |
58 | 58 |
/// |
59 | 59 |
/// It defines all computational operations and constants which are |
60 | 60 |
/// used in the Dijkstra algorithm for widest path computation. |
61 | 61 |
template <typename Value> |
62 | 62 |
struct DijkstraWidestPathOperationTraits { |
63 | 63 |
/// \brief Gives back the maximum value of the type. |
64 | 64 |
static Value zero() { |
65 | 65 |
return std::numeric_limits<Value>::max(); |
66 | 66 |
} |
67 | 67 |
/// \brief Gives back the minimum of the given two elements. |
68 | 68 |
static Value plus(const Value& left, const Value& right) { |
69 | 69 |
return std::min(left, right); |
70 | 70 |
} |
71 | 71 |
/// \brief Gives back true only if the first value less than the second. |
72 | 72 |
static bool less(const Value& left, const Value& right) { |
73 | 73 |
return left < right; |
74 | 74 |
} |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
///Default traits class of Dijkstra class. |
78 | 78 |
|
79 | 79 |
///Default traits class of Dijkstra class. |
80 |
///\param GR Digraph type. |
|
81 |
///\param LM Type of length map. |
|
80 |
///\tparam GR Digraph type. |
|
81 |
///\tparam LM Type of length map. |
|
82 | 82 |
template<class GR, class LM> |
83 | 83 |
struct DijkstraDefaultTraits |
84 | 84 |
{ |
85 | 85 |
///The digraph type the algorithm runs on. |
86 | 86 |
typedef GR Digraph; |
87 | 87 |
///The type of the map that stores the arc lengths. |
88 | 88 |
|
89 | 89 |
///The type of the map that stores the arc lengths. |
90 | 90 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
91 | 91 |
typedef LM LengthMap; |
92 | 92 |
//The type of the length of the arcs. |
93 | 93 |
typedef typename LM::Value Value; |
94 | 94 |
/// Operation traits for Dijkstra algorithm. |
95 | 95 |
|
96 | 96 |
/// It defines the used operation by the algorithm. |
97 | 97 |
/// \see DijkstraDefaultOperationTraits |
98 | 98 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
99 | 99 |
/// The cross reference type used by heap. |
100 | 100 |
|
101 | 101 |
|
102 | 102 |
/// The cross reference type used by heap. |
103 | 103 |
/// Usually it is \c Digraph::NodeMap<int>. |
104 | 104 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
105 | 105 |
///Instantiates a HeapCrossRef. |
106 | 106 |
|
107 | 107 |
///This function instantiates a \c HeapCrossRef. |
108 | 108 |
/// \param G is the digraph, to which we would like to define the |
109 | 109 |
/// HeapCrossRef. |
110 | 110 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
111 | 111 |
{ |
112 | 112 |
return new HeapCrossRef(G); |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
///The heap type used by Dijkstra algorithm. |
116 | 116 |
|
117 | 117 |
///The heap type used by Dijkstra algorithm. |
118 | 118 |
/// |
119 | 119 |
///\sa BinHeap |
120 | 120 |
///\sa Dijkstra |
121 | 121 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
122 | 122 |
|
123 | 123 |
static Heap *createHeap(HeapCrossRef& R) |
124 | 124 |
{ |
125 | 125 |
return new Heap(R); |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
///\brief The type of the map that stores the last |
129 | 129 |
///arcs of the shortest paths. |
130 | 130 |
/// |
131 | 131 |
///The type of the map that stores the last |
132 | 132 |
///arcs of the shortest paths. |
133 | 133 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
134 | 134 |
/// |
135 | 135 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
136 | 136 |
///Instantiates a PredMap. |
137 | 137 |
|
138 | 138 |
///This function instantiates a \c PredMap. |
139 | 139 |
///\param G is the digraph, to which we would like to define the PredMap. |
140 | 140 |
///\todo The digraph alone may be insufficient for the initialization |
141 | 141 |
static PredMap *createPredMap(const GR &G) |
142 | 142 |
{ |
143 | 143 |
return new PredMap(G); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
///The type of the map that stores whether a nodes is processed. |
147 | 147 |
|
148 | 148 |
///The type of the map that stores whether a nodes is processed. |
149 | 149 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
150 | 150 |
///By default it is a NullMap. |
151 | 151 |
///\todo If it is set to a real map, |
152 | 152 |
///Dijkstra::processed() should read this. |
153 | 153 |
///\todo named parameter to set this type, function to read and write. |
154 | 154 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
155 | 155 |
///Instantiates a ProcessedMap. |
156 | 156 |
|
157 | 157 |
///This function instantiates a \c ProcessedMap. |
158 | 158 |
///\param g is the digraph, to which |
159 | 159 |
///we would like to define the \c ProcessedMap |
160 | 160 |
#ifdef DOXYGEN |
161 | 161 |
static ProcessedMap *createProcessedMap(const GR &g) |
162 | 162 |
#else |
163 | 163 |
static ProcessedMap *createProcessedMap(const GR &) |
164 | 164 |
#endif |
165 | 165 |
{ |
166 | 166 |
return new ProcessedMap(); |
167 | 167 |
} |
168 | 168 |
///The type of the map that stores the dists of the nodes. |
169 | 169 |
|
170 | 170 |
///The type of the map that stores the dists of the nodes. |
171 | 171 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
172 | 172 |
/// |
173 | 173 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
174 | 174 |
///Instantiates a DistMap. |
175 | 175 |
|
176 | 176 |
///This function instantiates a \ref DistMap. |
177 | 177 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
178 | 178 |
static DistMap *createDistMap(const GR &G) |
179 | 179 |
{ |
180 | 180 |
return new DistMap(G); |
181 | 181 |
} |
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
///%Dijkstra algorithm class. |
185 | 185 |
|
186 | 186 |
/// \ingroup shortest_path |
187 | 187 |
///This class provides an efficient implementation of %Dijkstra algorithm. |
188 | 188 |
///The arc lengths are passed to the algorithm using a |
189 | 189 |
///\ref concepts::ReadMap "ReadMap", |
190 | 190 |
///so it is easy to change it to any kind of length. |
191 | 191 |
/// |
192 | 192 |
///The type of the length is determined by the |
193 | 193 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
194 | 194 |
/// |
195 | 195 |
///It is also possible to change the underlying priority heap. |
196 | 196 |
/// |
197 |
///\ |
|
197 |
///\tparam GR The digraph type the algorithm runs on. The default value |
|
198 | 198 |
///is \ref ListDigraph. The value of GR is not used directly by |
199 | 199 |
///Dijkstra, it is only passed to \ref DijkstraDefaultTraits. |
200 |
///\ |
|
200 |
///\tparam LM This read-only ArcMap determines the lengths of the |
|
201 | 201 |
///arcs. It is read once for each arc, so the map may involve in |
202 | 202 |
///relatively time consuming process to compute the arc length if |
203 | 203 |
///it is necessary. The default map type is \ref |
204 | 204 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". The value |
205 | 205 |
///of LM is not used directly by Dijkstra, it is only passed to \ref |
206 |
///DijkstraDefaultTraits. |
|
206 |
///DijkstraDefaultTraits. |
|
207 |
///\tparam TR Traits class to set |
|
207 | 208 |
///various data types used by the algorithm. The default traits |
208 | 209 |
///class is \ref DijkstraDefaultTraits |
209 | 210 |
///"DijkstraDefaultTraits<GR,LM>". See \ref |
210 | 211 |
///DijkstraDefaultTraits for the documentation of a Dijkstra traits |
211 | 212 |
///class. |
212 |
/// |
|
213 |
///\author Jacint Szabo and Alpar Juttner |
|
214 | 213 |
|
215 | 214 |
#ifdef DOXYGEN |
216 | 215 |
template <typename GR, typename LM, typename TR> |
217 | 216 |
#else |
218 | 217 |
template <typename GR=ListDigraph, |
219 | 218 |
typename LM=typename GR::template ArcMap<int>, |
220 | 219 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
221 | 220 |
#endif |
222 | 221 |
class Dijkstra { |
223 | 222 |
public: |
224 | 223 |
/** |
225 | 224 |
* \brief \ref Exception for uninitialized parameters. |
226 | 225 |
* |
227 | 226 |
* This error represents problems in the initialization |
228 | 227 |
* of the parameters of the algorithms. |
229 | 228 |
*/ |
230 | 229 |
class UninitializedParameter : public lemon::UninitializedParameter { |
231 | 230 |
public: |
232 | 231 |
virtual const char* what() const throw() { |
233 | 232 |
return "lemon::Dijkstra::UninitializedParameter"; |
234 | 233 |
} |
235 | 234 |
}; |
236 | 235 |
|
237 | 236 |
typedef TR Traits; |
238 | 237 |
///The type of the underlying digraph. |
239 | 238 |
typedef typename TR::Digraph Digraph; |
240 | 239 |
///\e |
241 | 240 |
typedef typename Digraph::Node Node; |
242 | 241 |
///\e |
243 | 242 |
typedef typename Digraph::NodeIt NodeIt; |
244 | 243 |
///\e |
245 | 244 |
typedef typename Digraph::Arc Arc; |
246 | 245 |
///\e |
247 | 246 |
typedef typename Digraph::OutArcIt OutArcIt; |
248 | 247 |
|
249 | 248 |
///The type of the length of the arcs. |
250 | 249 |
typedef typename TR::LengthMap::Value Value; |
251 | 250 |
///The type of the map that stores the arc lengths. |
252 | 251 |
typedef typename TR::LengthMap LengthMap; |
253 | 252 |
///\brief The type of the map that stores the last |
254 | 253 |
///arcs of the shortest paths. |
255 | 254 |
typedef typename TR::PredMap PredMap; |
256 | 255 |
///The type of the map indicating if a node is processed. |
257 | 256 |
typedef typename TR::ProcessedMap ProcessedMap; |
258 | 257 |
///The type of the map that stores the dists of the nodes. |
259 | 258 |
typedef typename TR::DistMap DistMap; |
260 | 259 |
///The cross reference type used for the current heap. |
261 | 260 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
262 | 261 |
///The heap type used by the dijkstra algorithm. |
263 | 262 |
typedef typename TR::Heap Heap; |
264 | 263 |
///The operation traits. |
265 | 264 |
typedef typename TR::OperationTraits OperationTraits; |
266 | 265 |
private: |
267 | 266 |
/// Pointer to the underlying digraph. |
268 | 267 |
const Digraph *G; |
269 | 268 |
/// Pointer to the length map |
270 | 269 |
const LengthMap *length; |
271 | 270 |
///Pointer to the map of predecessors arcs. |
272 | 271 |
PredMap *_pred; |
273 | 272 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
274 | 273 |
bool local_pred; |
275 | 274 |
///Pointer to the map of distances. |
276 | 275 |
DistMap *_dist; |
277 | 276 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
278 | 277 |
bool local_dist; |
279 | 278 |
///Pointer to the map of processed status of the nodes. |
280 | 279 |
ProcessedMap *_processed; |
281 | 280 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
282 | 281 |
bool local_processed; |
283 | 282 |
///Pointer to the heap cross references. |
284 | 283 |
HeapCrossRef *_heap_cross_ref; |
285 | 284 |
///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. |
286 | 285 |
bool local_heap_cross_ref; |
287 | 286 |
///Pointer to the heap. |
288 | 287 |
Heap *_heap; |
289 | 288 |
///Indicates if \ref _heap is locally allocated (\c true) or not. |
290 | 289 |
bool local_heap; |
291 | 290 |
|
292 | 291 |
///Creates the maps if necessary. |
293 | 292 |
|
294 | 293 |
///\todo Better memory allocation (instead of new). |
295 | 294 |
void create_maps() |
296 | 295 |
{ |
297 | 296 |
if(!_pred) { |
298 | 297 |
local_pred = true; |
299 | 298 |
_pred = Traits::createPredMap(*G); |
300 | 299 |
} |
301 | 300 |
if(!_dist) { |
302 | 301 |
local_dist = true; |
303 | 302 |
_dist = Traits::createDistMap(*G); |
304 | 303 |
} |
305 | 304 |
if(!_processed) { |
306 | 305 |
local_processed = true; |
307 | 306 |
_processed = Traits::createProcessedMap(*G); |
308 | 307 |
} |
309 | 308 |
if (!_heap_cross_ref) { |
310 | 309 |
local_heap_cross_ref = true; |
311 | 310 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
312 | 311 |
} |
313 | 312 |
if (!_heap) { |
314 | 313 |
local_heap = true; |
315 | 314 |
_heap = Traits::createHeap(*_heap_cross_ref); |
316 | 315 |
} |
317 | 316 |
} |
318 | 317 |
|
319 | 318 |
public : |
320 | 319 |
|
321 | 320 |
typedef Dijkstra Create; |
322 | 321 |
|
323 | 322 |
///\name Named template parameters |
324 | 323 |
|
325 | 324 |
///@{ |
326 | 325 |
|
327 | 326 |
template <class T> |
328 | 327 |
struct DefPredMapTraits : public Traits { |
329 | 328 |
typedef T PredMap; |
330 | 329 |
static PredMap *createPredMap(const Digraph &) |
331 | 330 |
{ |
332 | 331 |
throw UninitializedParameter(); |
333 | 332 |
} |
334 | 333 |
}; |
335 | 334 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
336 | 335 |
|
337 | 336 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
338 | 337 |
/// |
339 | 338 |
template <class T> |
340 | 339 |
struct DefPredMap |
341 | 340 |
: public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > { |
342 | 341 |
typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
343 | 342 |
}; |
344 | 343 |
|
345 | 344 |
template <class T> |
346 | 345 |
struct DefDistMapTraits : public Traits { |
347 | 346 |
typedef T DistMap; |
348 | 347 |
static DistMap *createDistMap(const Digraph &) |
349 | 348 |
{ |
350 | 349 |
throw UninitializedParameter(); |
351 | 350 |
} |
352 | 351 |
}; |
353 | 352 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
354 | 353 |
|
355 | 354 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
356 | 355 |
/// |
357 | 356 |
template <class T> |
358 | 357 |
struct DefDistMap |
359 | 358 |
: public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > { |
360 | 359 |
typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
361 | 360 |
}; |
362 | 361 |
|
363 | 362 |
template <class T> |
364 | 363 |
struct DefProcessedMapTraits : public Traits { |
365 | 364 |
typedef T ProcessedMap; |
366 | 365 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
367 | 366 |
{ |
368 | 367 |
throw UninitializedParameter(); |
369 | 368 |
} |
370 | 369 |
}; |
371 | 370 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
372 | 371 |
|
373 | 372 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
374 | 373 |
/// |
375 | 374 |
template <class T> |
376 | 375 |
struct DefProcessedMap |
377 | 376 |
: public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > { |
378 | 377 |
typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > Create; |
379 | 378 |
}; |
380 | 379 |
|
381 | 380 |
struct DefDigraphProcessedMapTraits : public Traits { |
382 | 381 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
383 | 382 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
384 | 383 |
{ |
385 | 384 |
return new ProcessedMap(G); |
386 | 385 |
} |
387 | 386 |
}; |
388 | 387 |
///\brief \ref named-templ-param "Named parameter" |
389 | 388 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
390 | 389 |
/// |
391 | 390 |
///\ref named-templ-param "Named parameter" |
392 | 391 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
393 | 392 |
///If you don't set it explicitely, it will be automatically allocated. |
394 | 393 |
template <class T> |
395 | 394 |
struct DefProcessedMapToBeDefaultMap |
396 | 395 |
: public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> { |
397 | 396 |
typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> Create; |
398 | 397 |
}; |
399 | 398 |
|
400 | 399 |
template <class H, class CR> |
401 | 400 |
struct DefHeapTraits : public Traits { |
402 | 401 |
typedef CR HeapCrossRef; |
403 | 402 |
typedef H Heap; |
404 | 403 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
405 | 404 |
throw UninitializedParameter(); |
406 | 405 |
} |
407 | 406 |
static Heap *createHeap(HeapCrossRef &) |
408 | 407 |
{ |
409 | 408 |
throw UninitializedParameter(); |
410 | 409 |
} |
411 | 410 |
}; |
412 | 411 |
///\brief \ref named-templ-param "Named parameter" for setting |
413 | 412 |
///heap and cross reference type |
414 | 413 |
/// |
415 | 414 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
416 | 415 |
///reference type |
417 | 416 |
/// |
418 | 417 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
419 | 418 |
struct DefHeap |
420 | 419 |
: public Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > { |
421 | 420 |
typedef Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > Create; |
422 | 421 |
}; |
423 | 422 |
|
424 | 423 |
template <class H, class CR> |
425 | 424 |
struct DefStandardHeapTraits : public Traits { |
426 | 425 |
typedef CR HeapCrossRef; |
427 | 426 |
typedef H Heap; |
428 | 427 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
429 | 428 |
return new HeapCrossRef(G); |
430 | 429 |
} |
431 | 430 |
static Heap *createHeap(HeapCrossRef &R) |
432 | 431 |
{ |
433 | 432 |
return new Heap(R); |
434 | 433 |
} |
435 | 434 |
}; |
436 | 435 |
///\brief \ref named-templ-param "Named parameter" for setting |
437 | 436 |
///heap and cross reference type with automatic allocation |
438 | 437 |
/// |
439 | 438 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
440 | 439 |
///reference type. It can allocate the heap and the cross reference |
441 | 440 |
///object if the cross reference's constructor waits for the digraph as |
442 | 441 |
///parameter and the heap's constructor waits for the cross reference. |
443 | 442 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
444 | 443 |
struct DefStandardHeap |
445 | 444 |
: public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > { |
446 | 445 |
typedef Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > |
447 | 446 |
Create; |
448 | 447 |
}; |
449 | 448 |
|
450 | 449 |
template <class T> |
451 | 450 |
struct DefOperationTraitsTraits : public Traits { |
452 | 451 |
typedef T OperationTraits; |
453 | 452 |
}; |
454 | 453 |
|
455 | 454 |
/// \brief \ref named-templ-param "Named parameter" for setting |
456 | 455 |
/// OperationTraits type |
457 | 456 |
/// |
458 | 457 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits |
459 | 458 |
/// type |
460 | 459 |
template <class T> |
461 | 460 |
struct DefOperationTraits |
462 | 461 |
: public Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
463 | 462 |
typedef Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > |
464 | 463 |
Create; |
465 | 464 |
}; |
466 | 465 |
|
467 | 466 |
///@} |
468 | 467 |
|
469 | 468 |
|
470 | 469 |
protected: |
471 | 470 |
|
472 | 471 |
Dijkstra() {} |
473 | 472 |
|
474 | 473 |
public: |
475 | 474 |
|
476 | 475 |
///Constructor. |
477 | 476 |
|
478 | 477 |
///\param _G the digraph the algorithm will run on. |
479 | 478 |
///\param _length the length map used by the algorithm. |
480 | 479 |
Dijkstra(const Digraph& _G, const LengthMap& _length) : |
481 | 480 |
G(&_G), length(&_length), |
482 | 481 |
_pred(NULL), local_pred(false), |
483 | 482 |
_dist(NULL), local_dist(false), |
484 | 483 |
_processed(NULL), local_processed(false), |
485 | 484 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
486 | 485 |
_heap(NULL), local_heap(false) |
487 | 486 |
{ } |
488 | 487 |
|
489 | 488 |
///Destructor. |
490 | 489 |
~Dijkstra() |
491 | 490 |
{ |
492 | 491 |
if(local_pred) delete _pred; |
493 | 492 |
if(local_dist) delete _dist; |
494 | 493 |
if(local_processed) delete _processed; |
495 | 494 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
496 | 495 |
if(local_heap) delete _heap; |
497 | 496 |
} |
498 | 497 |
|
499 | 498 |
///Sets the length map. |
500 | 499 |
|
501 | 500 |
///Sets the length map. |
502 | 501 |
///\return <tt> (*this) </tt> |
503 | 502 |
Dijkstra &lengthMap(const LengthMap &m) |
504 | 503 |
{ |
505 | 504 |
length = &m; |
506 | 505 |
return *this; |
507 | 506 |
} |
508 | 507 |
|
509 | 508 |
///Sets the map storing the predecessor arcs. |
510 | 509 |
|
511 | 510 |
///Sets the map storing the predecessor arcs. |
512 | 511 |
///If you don't use this function before calling \ref run(), |
513 | 512 |
///it will allocate one. The destuctor deallocates this |
514 | 513 |
///automatically allocated map, of course. |
515 | 514 |
///\return <tt> (*this) </tt> |
516 | 515 |
Dijkstra &predMap(PredMap &m) |
517 | 516 |
{ |
518 | 517 |
if(local_pred) { |
519 | 518 |
delete _pred; |
520 | 519 |
local_pred=false; |
521 | 520 |
} |
522 | 521 |
_pred = &m; |
523 | 522 |
return *this; |
524 | 523 |
} |
525 | 524 |
|
526 | 525 |
///Sets the map storing the distances calculated by the algorithm. |
527 | 526 |
|
528 | 527 |
///Sets the map storing the distances calculated by the algorithm. |
529 | 528 |
///If you don't use this function before calling \ref run(), |
530 | 529 |
///it will allocate one. The destuctor deallocates this |
531 | 530 |
///automatically allocated map, of course. |
532 | 531 |
///\return <tt> (*this) </tt> |
533 | 532 |
Dijkstra &distMap(DistMap &m) |
534 | 533 |
{ |
535 | 534 |
if(local_dist) { |
536 | 535 |
delete _dist; |
537 | 536 |
local_dist=false; |
538 | 537 |
} |
539 | 538 |
_dist = &m; |
540 | 539 |
return *this; |
541 | 540 |
} |
542 | 541 |
|
543 | 542 |
///Sets the heap and the cross reference used by algorithm. |
544 | 543 |
|
545 | 544 |
///Sets the heap and the cross reference used by algorithm. |
546 | 545 |
///If you don't use this function before calling \ref run(), |
547 | 546 |
///it will allocate one. The destuctor deallocates this |
548 | 547 |
///automatically allocated heap and cross reference, of course. |
549 | 548 |
///\return <tt> (*this) </tt> |
550 | 549 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
551 | 550 |
{ |
552 | 551 |
if(local_heap_cross_ref) { |
553 | 552 |
delete _heap_cross_ref; |
554 | 553 |
local_heap_cross_ref=false; |
555 | 554 |
} |
556 | 555 |
_heap_cross_ref = &cr; |
557 | 556 |
if(local_heap) { |
558 | 557 |
delete _heap; |
559 | 558 |
local_heap=false; |
560 | 559 |
} |
561 | 560 |
_heap = &hp; |
562 | 561 |
return *this; |
563 | 562 |
} |
564 | 563 |
|
565 | 564 |
private: |
566 | 565 |
void finalizeNodeData(Node v,Value dst) |
567 | 566 |
{ |
568 | 567 |
_processed->set(v,true); |
569 | 568 |
_dist->set(v, dst); |
570 | 569 |
} |
571 | 570 |
|
572 | 571 |
public: |
573 | 572 |
|
574 | 573 |
typedef PredMapPath<Digraph, PredMap> Path; |
575 | 574 |
|
576 | 575 |
///\name Execution control |
577 | 576 |
///The simplest way to execute the algorithm is to use |
578 | 577 |
///one of the member functions called \c run(...). |
579 | 578 |
///\n |
580 | 579 |
///If you need more control on the execution, |
581 | 580 |
///first you must call \ref init(), then you can add several source nodes |
582 | 581 |
///with \ref addSource(). |
583 | 582 |
///Finally \ref start() will perform the actual path |
584 | 583 |
///computation. |
585 | 584 |
|
586 | 585 |
///@{ |
587 | 586 |
|
588 | 587 |
///Initializes the internal data structures. |
589 | 588 |
|
590 | 589 |
///Initializes the internal data structures. |
591 | 590 |
/// |
592 | 591 |
void init() |
593 | 592 |
{ |
594 | 593 |
create_maps(); |
595 | 594 |
_heap->clear(); |
596 | 595 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
597 | 596 |
_pred->set(u,INVALID); |
598 | 597 |
_processed->set(u,false); |
599 | 598 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
600 | 599 |
} |
601 | 600 |
} |
602 | 601 |
|
603 | 602 |
///Adds a new source node. |
604 | 603 |
|
605 | 604 |
///Adds a new source node to the priority heap. |
606 | 605 |
/// |
607 | 606 |
///The optional second parameter is the initial distance of the node. |
608 | 607 |
/// |
609 | 608 |
///It checks if the node has already been added to the heap and |
610 | 609 |
///it is pushed to the heap only if either it was not in the heap |
611 | 610 |
///or the shortest path found till then is shorter than \c dst. |
612 | 611 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
613 | 612 |
{ |
614 | 613 |
if(_heap->state(s) != Heap::IN_HEAP) { |
615 | 614 |
_heap->push(s,dst); |
616 | 615 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
617 | 616 |
_heap->set(s,dst); |
618 | 617 |
_pred->set(s,INVALID); |
619 | 618 |
} |
620 | 619 |
} |
621 | 620 |
|
622 | 621 |
///Processes the next node in the priority heap |
623 | 622 |
|
624 | 623 |
///Processes the next node in the priority heap. |
625 | 624 |
/// |
626 | 625 |
///\return The processed node. |
627 | 626 |
/// |
628 | 627 |
///\warning The priority heap must not be empty! |
629 | 628 |
Node processNextNode() |
630 | 629 |
{ |
631 | 630 |
Node v=_heap->top(); |
632 | 631 |
Value oldvalue=_heap->prio(); |
633 | 632 |
_heap->pop(); |
634 | 633 |
finalizeNodeData(v,oldvalue); |
635 | 634 |
|
636 | 635 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
637 | 636 |
Node w=G->target(e); |
638 | 637 |
switch(_heap->state(w)) { |
639 | 638 |
case Heap::PRE_HEAP: |
640 | 639 |
_heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
641 | 640 |
_pred->set(w,e); |
642 | 641 |
break; |
643 | 642 |
case Heap::IN_HEAP: |
644 | 643 |
{ |
645 | 644 |
Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
646 | 645 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
647 | 646 |
_heap->decrease(w, newvalue); |
648 | 647 |
_pred->set(w,e); |
649 | 648 |
} |
650 | 649 |
} |
651 | 650 |
break; |
652 | 651 |
case Heap::POST_HEAP: |
653 | 652 |
break; |
654 | 653 |
} |
655 | 654 |
} |
656 | 655 |
return v; |
657 | 656 |
} |
658 | 657 |
|
659 | 658 |
///Next node to be processed. |
660 | 659 |
|
661 | 660 |
///Next node to be processed. |
662 | 661 |
/// |
663 | 662 |
///\return The next node to be processed or INVALID if the priority heap |
664 | 663 |
/// is empty. |
665 | 664 |
Node nextNode() |
666 | 665 |
{ |
667 | 666 |
return !_heap->empty()?_heap->top():INVALID; |
668 | 667 |
} |
669 | 668 |
|
670 | 669 |
///\brief Returns \c false if there are nodes |
671 | 670 |
///to be processed in the priority heap |
672 | 671 |
/// |
673 | 672 |
///Returns \c false if there are nodes |
674 | 673 |
///to be processed in the priority heap |
675 | 674 |
bool emptyQueue() { return _heap->empty(); } |
676 | 675 |
///Returns the number of the nodes to be processed in the priority heap |
677 | 676 |
|
678 | 677 |
///Returns the number of the nodes to be processed in the priority heap |
679 | 678 |
/// |
680 | 679 |
int queueSize() { return _heap->size(); } |
681 | 680 |
|
682 | 681 |
///Executes the algorithm. |
683 | 682 |
|
684 | 683 |
///Executes the algorithm. |
685 | 684 |
/// |
686 | 685 |
///\pre init() must be called and at least one node should be added |
687 | 686 |
///with addSource() before using this function. |
688 | 687 |
/// |
689 | 688 |
///This method runs the %Dijkstra algorithm from the root node(s) |
690 | 689 |
///in order to |
691 | 690 |
///compute the |
692 | 691 |
///shortest path to each node. The algorithm computes |
693 | 692 |
///- The shortest path tree. |
694 | 693 |
///- The distance of each node from the root(s). |
695 | 694 |
/// |
696 | 695 |
void start() |
697 | 696 |
{ |
698 | 697 |
while ( !_heap->empty() ) processNextNode(); |
699 | 698 |
} |
700 | 699 |
|
701 | 700 |
///Executes the algorithm until \c dest is reached. |
702 | 701 |
|
703 | 702 |
///Executes the algorithm until \c dest is reached. |
704 | 703 |
/// |
705 | 704 |
///\pre init() must be called and at least one node should be added |
706 | 705 |
///with addSource() before using this function. |
707 | 706 |
/// |
708 | 707 |
///This method runs the %Dijkstra algorithm from the root node(s) |
709 | 708 |
///in order to |
710 | 709 |
///compute the |
711 | 710 |
///shortest path to \c dest. The algorithm computes |
712 | 711 |
///- The shortest path to \c dest. |
713 | 712 |
///- The distance of \c dest from the root(s). |
714 | 713 |
/// |
715 | 714 |
void start(Node dest) |
716 | 715 |
{ |
717 | 716 |
while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); |
718 | 717 |
if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); |
719 | 718 |
} |
720 | 719 |
|
721 | 720 |
///Executes the algorithm until a condition is met. |
722 | 721 |
|
723 | 722 |
///Executes the algorithm until a condition is met. |
724 | 723 |
/// |
725 | 724 |
///\pre init() must be called and at least one node should be added |
726 | 725 |
///with addSource() before using this function. |
727 | 726 |
/// |
728 | 727 |
///\param nm must be a bool (or convertible) node map. The algorithm |
729 | 728 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
730 | 729 |
/// |
731 | 730 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
732 | 731 |
///\c INVALID if no such node was found. |
733 | 732 |
template<class NodeBoolMap> |
734 | 733 |
Node start(const NodeBoolMap &nm) |
735 | 734 |
{ |
736 | 735 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
737 | 736 |
if ( _heap->empty() ) return INVALID; |
738 | 737 |
finalizeNodeData(_heap->top(),_heap->prio()); |
739 | 738 |
return _heap->top(); |
740 | 739 |
} |
741 | 740 |
|
742 | 741 |
///Runs %Dijkstra algorithm from node \c s. |
743 | 742 |
|
744 | 743 |
///This method runs the %Dijkstra algorithm from a root node \c s |
745 | 744 |
///in order to |
746 | 745 |
///compute the |
747 | 746 |
///shortest path to each node. The algorithm computes |
748 | 747 |
///- The shortest path tree. |
749 | 748 |
///- The distance of each node from the root. |
750 | 749 |
/// |
751 | 750 |
///\note d.run(s) is just a shortcut of the following code. |
752 | 751 |
///\code |
753 | 752 |
/// d.init(); |
754 | 753 |
/// d.addSource(s); |
755 | 754 |
/// d.start(); |
756 | 755 |
///\endcode |
757 | 756 |
void run(Node s) { |
758 | 757 |
init(); |
759 | 758 |
addSource(s); |
760 | 759 |
start(); |
761 | 760 |
} |
762 | 761 |
|
763 | 762 |
///Finds the shortest path between \c s and \c t. |
764 | 763 |
|
765 | 764 |
///Finds the shortest path between \c s and \c t. |
766 | 765 |
/// |
767 | 766 |
///\return The length of the shortest s---t path if there exists one, |
768 | 767 |
///0 otherwise. |
769 | 768 |
///\note Apart from the return value, d.run(s) is |
770 | 769 |
///just a shortcut of the following code. |
771 | 770 |
///\code |
772 | 771 |
/// d.init(); |
773 | 772 |
/// d.addSource(s); |
774 | 773 |
/// d.start(t); |
775 | 774 |
///\endcode |
776 | 775 |
Value run(Node s,Node t) { |
777 | 776 |
init(); |
778 | 777 |
addSource(s); |
779 | 778 |
start(t); |
780 | 779 |
return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t]; |
781 | 780 |
} |
782 | 781 |
|
783 | 782 |
///@} |
784 | 783 |
|
785 | 784 |
///\name Query Functions |
786 | 785 |
///The result of the %Dijkstra algorithm can be obtained using these |
787 | 786 |
///functions.\n |
788 | 787 |
///Before the use of these functions, |
789 | 788 |
///either run() or start() must be called. |
790 | 789 |
|
791 | 790 |
///@{ |
792 | 791 |
|
793 | 792 |
///Gives back the shortest path. |
794 | 793 |
|
795 | 794 |
///Gives back the shortest path. |
796 | 795 |
///\pre The \c t should be reachable from the source. |
797 | 796 |
Path path(Node t) |
798 | 797 |
{ |
799 | 798 |
return Path(*G, *_pred, t); |
800 | 799 |
} |
801 | 800 |
|
802 | 801 |
///The distance of a node from the root. |
803 | 802 |
|
804 | 803 |
///Returns the distance of a node from the root. |
805 | 804 |
///\pre \ref run() must be called before using this function. |
806 | 805 |
///\warning If node \c v in unreachable from the root the return value |
807 | 806 |
///of this funcion is undefined. |
808 | 807 |
Value dist(Node v) const { return (*_dist)[v]; } |
809 | 808 |
|
810 | 809 |
///The current distance of a node from the root. |
811 | 810 |
|
812 | 811 |
///Returns the current distance of a node from the root. |
813 | 812 |
///It may be decreased in the following processes. |
814 | 813 |
///\pre \c node should be reached but not processed |
815 | 814 |
Value currentDist(Node v) const { return (*_heap)[v]; } |
816 | 815 |
|
817 | 816 |
///Returns the 'previous arc' of the shortest path tree. |
818 | 817 |
|
819 | 818 |
///For a node \c v it returns the 'previous arc' of the shortest path tree, |
820 | 819 |
///i.e. it returns the last arc of a shortest path from the root to \c |
821 | 820 |
///v. It is \ref INVALID |
822 | 821 |
///if \c v is unreachable from the root or if \c v=s. The |
823 | 822 |
///shortest path tree used here is equal to the shortest path tree used in |
824 | 823 |
///\ref predNode(). \pre \ref run() must be called before using |
825 | 824 |
///this function. |
826 | 825 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
827 | 826 |
|
828 | 827 |
///Returns the 'previous node' of the shortest path tree. |
829 | 828 |
|
830 | 829 |
///For a node \c v it returns the 'previous node' of the shortest path tree, |
831 | 830 |
///i.e. it returns the last but one node from a shortest path from the |
832 | 831 |
///root to \c /v. It is INVALID if \c v is unreachable from the root or if |
833 | 832 |
///\c v=s. The shortest path tree used here is equal to the shortest path |
834 | 833 |
///tree used in \ref predArc(). \pre \ref run() must be called before |
835 | 834 |
///using this function. |
836 | 835 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
837 | 836 |
G->source((*_pred)[v]); } |
838 | 837 |
|
839 | 838 |
///Returns a reference to the NodeMap of distances. |
840 | 839 |
|
841 | 840 |
///Returns a reference to the NodeMap of distances. \pre \ref run() must |
842 | 841 |
///be called before using this function. |
843 | 842 |
const DistMap &distMap() const { return *_dist;} |
844 | 843 |
|
845 | 844 |
///Returns a reference to the shortest path tree map. |
846 | 845 |
|
847 | 846 |
///Returns a reference to the NodeMap of the arcs of the |
848 | 847 |
///shortest path tree. |
849 | 848 |
///\pre \ref run() must be called before using this function. |
850 | 849 |
const PredMap &predMap() const { return *_pred;} |
851 | 850 |
|
852 | 851 |
///Checks if a node is reachable from the root. |
853 | 852 |
|
854 | 853 |
///Returns \c true if \c v is reachable from the root. |
855 | 854 |
///\warning The source nodes are inditated as unreached. |
856 | 855 |
///\pre \ref run() must be called before using this function. |
857 | 856 |
/// |
858 | 857 |
bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; } |
859 | 858 |
|
860 | 859 |
///Checks if a node is processed. |
861 | 860 |
|
862 | 861 |
///Returns \c true if \c v is processed, i.e. the shortest |
863 | 862 |
///path to \c v has already found. |
864 | 863 |
///\pre \ref run() must be called before using this function. |
865 | 864 |
/// |
866 | 865 |
bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; } |
867 | 866 |
|
868 | 867 |
///@} |
869 | 868 |
}; |
870 | 869 |
|
871 | 870 |
|
872 | 871 |
|
873 | 872 |
|
874 | 873 |
|
875 | 874 |
///Default traits class of Dijkstra function. |
876 | 875 |
|
877 | 876 |
///Default traits class of Dijkstra function. |
878 |
///\param GR Digraph type. |
|
879 |
///\param LM Type of length map. |
|
877 |
///\tparam GR Digraph type. |
|
878 |
///\tparam LM Type of length map. |
|
880 | 879 |
template<class GR, class LM> |
881 | 880 |
struct DijkstraWizardDefaultTraits |
882 | 881 |
{ |
883 | 882 |
///The digraph type the algorithm runs on. |
884 | 883 |
typedef GR Digraph; |
885 | 884 |
///The type of the map that stores the arc lengths. |
886 | 885 |
|
887 | 886 |
///The type of the map that stores the arc lengths. |
888 | 887 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
889 | 888 |
typedef LM LengthMap; |
890 | 889 |
//The type of the length of the arcs. |
891 | 890 |
typedef typename LM::Value Value; |
892 | 891 |
/// Operation traits for Dijkstra algorithm. |
893 | 892 |
|
894 | 893 |
/// It defines the used operation by the algorithm. |
895 | 894 |
/// \see DijkstraDefaultOperationTraits |
896 | 895 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
897 | 896 |
///The heap type used by Dijkstra algorithm. |
898 | 897 |
|
899 | 898 |
/// The cross reference type used by heap. |
900 | 899 |
|
901 | 900 |
/// The cross reference type used by heap. |
902 | 901 |
/// Usually it is \c Digraph::NodeMap<int>. |
903 | 902 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
904 | 903 |
///Instantiates a HeapCrossRef. |
905 | 904 |
|
906 | 905 |
///This function instantiates a \ref HeapCrossRef. |
907 | 906 |
/// \param G is the digraph, to which we would like to define the |
908 | 907 |
/// HeapCrossRef. |
909 | 908 |
/// \todo The digraph alone may be insufficient for the initialization |
910 | 909 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
911 | 910 |
{ |
912 | 911 |
return new HeapCrossRef(G); |
913 | 912 |
} |
914 | 913 |
|
915 | 914 |
///The heap type used by Dijkstra algorithm. |
916 | 915 |
|
917 | 916 |
///The heap type used by Dijkstra algorithm. |
918 | 917 |
/// |
919 | 918 |
///\sa BinHeap |
920 | 919 |
///\sa Dijkstra |
921 | 920 |
typedef BinHeap<typename LM::Value, typename GR::template NodeMap<int>, |
922 | 921 |
std::less<Value> > Heap; |
923 | 922 |
|
924 | 923 |
static Heap *createHeap(HeapCrossRef& R) |
925 | 924 |
{ |
926 | 925 |
return new Heap(R); |
927 | 926 |
} |
928 | 927 |
|
929 | 928 |
///\brief The type of the map that stores the last |
930 | 929 |
///arcs of the shortest paths. |
931 | 930 |
/// |
932 | 931 |
///The type of the map that stores the last |
933 | 932 |
///arcs of the shortest paths. |
934 | 933 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
935 | 934 |
/// |
936 | 935 |
typedef NullMap <typename GR::Node,typename GR::Arc> PredMap; |
937 | 936 |
///Instantiates a PredMap. |
938 | 937 |
|
939 | 938 |
///This function instantiates a \ref PredMap. |
940 | 939 |
///\param g is the digraph, to which we would like to define the PredMap. |
941 | 940 |
///\todo The digraph alone may be insufficient for the initialization |
942 | 941 |
#ifdef DOXYGEN |
943 | 942 |
static PredMap *createPredMap(const GR &g) |
944 | 943 |
#else |
945 | 944 |
static PredMap *createPredMap(const GR &) |
946 | 945 |
#endif |
947 | 946 |
{ |
948 | 947 |
return new PredMap(); |
949 | 948 |
} |
950 | 949 |
///The type of the map that stores whether a nodes is processed. |
951 | 950 |
|
952 | 951 |
///The type of the map that stores whether a nodes is processed. |
953 | 952 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
954 | 953 |
///By default it is a NullMap. |
955 | 954 |
///\todo If it is set to a real map, |
956 | 955 |
///Dijkstra::processed() should read this. |
957 | 956 |
///\todo named parameter to set this type, function to read and write. |
958 | 957 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
959 | 958 |
///Instantiates a ProcessedMap. |
960 | 959 |
|
961 | 960 |
///This function instantiates a \ref ProcessedMap. |
962 | 961 |
///\param g is the digraph, to which |
963 | 962 |
///we would like to define the \ref ProcessedMap |
964 | 963 |
#ifdef DOXYGEN |
965 | 964 |
static ProcessedMap *createProcessedMap(const GR &g) |
966 | 965 |
#else |
967 | 966 |
static ProcessedMap *createProcessedMap(const GR &) |
968 | 967 |
#endif |
969 | 968 |
{ |
970 | 969 |
return new ProcessedMap(); |
971 | 970 |
} |
972 | 971 |
///The type of the map that stores the dists of the nodes. |
973 | 972 |
|
974 | 973 |
///The type of the map that stores the dists of the nodes. |
975 | 974 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
976 | 975 |
/// |
977 | 976 |
typedef NullMap<typename Digraph::Node,typename LM::Value> DistMap; |
978 | 977 |
///Instantiates a DistMap. |
979 | 978 |
|
980 | 979 |
///This function instantiates a \ref DistMap. |
981 | 980 |
///\param g is the digraph, to which we would like to define the \ref DistMap |
982 | 981 |
#ifdef DOXYGEN |
983 | 982 |
static DistMap *createDistMap(const GR &g) |
984 | 983 |
#else |
985 | 984 |
static DistMap *createDistMap(const GR &) |
986 | 985 |
#endif |
987 | 986 |
{ |
988 | 987 |
return new DistMap(); |
989 | 988 |
} |
990 | 989 |
}; |
991 | 990 |
|
992 | 991 |
/// Default traits used by \ref DijkstraWizard |
993 | 992 |
|
994 | 993 |
/// To make it easier to use Dijkstra algorithm |
995 | 994 |
///we have created a wizard class. |
996 | 995 |
/// This \ref DijkstraWizard class needs default traits, |
997 | 996 |
///as well as the \ref Dijkstra class. |
998 | 997 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
999 | 998 |
/// \ref DijkstraWizard class. |
1000 | 999 |
/// \todo More named parameters are required... |
1001 | 1000 |
template<class GR,class LM> |
1002 | 1001 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
1003 | 1002 |
{ |
1004 | 1003 |
|
1005 | 1004 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
1006 | 1005 |
protected: |
1007 | 1006 |
/// Type of the nodes in the digraph. |
1008 | 1007 |
typedef typename Base::Digraph::Node Node; |
1009 | 1008 |
|
1010 | 1009 |
/// Pointer to the underlying digraph. |
1011 | 1010 |
void *_g; |
1012 | 1011 |
/// Pointer to the length map |
1013 | 1012 |
void *_length; |
1014 | 1013 |
///Pointer to the map of predecessors arcs. |
1015 | 1014 |
void *_pred; |
1016 | 1015 |
///Pointer to the map of distances. |
1017 | 1016 |
void *_dist; |
1018 | 1017 |
///Pointer to the source node. |
1019 | 1018 |
Node _source; |
1020 | 1019 |
|
1021 | 1020 |
public: |
1022 | 1021 |
/// Constructor. |
1023 | 1022 |
|
1024 | 1023 |
/// This constructor does not require parameters, therefore it initiates |
1025 | 1024 |
/// all of the attributes to default values (0, INVALID). |
1026 | 1025 |
DijkstraWizardBase() : _g(0), _length(0), _pred(0), |
1027 | 1026 |
_dist(0), _source(INVALID) {} |
1028 | 1027 |
|
1029 | 1028 |
/// Constructor. |
1030 | 1029 |
|
1031 | 1030 |
/// This constructor requires some parameters, |
1032 | 1031 |
/// listed in the parameters list. |
1033 | 1032 |
/// Others are initiated to 0. |
1034 | 1033 |
/// \param g is the initial value of \ref _g |
1035 | 1034 |
/// \param l is the initial value of \ref _length |
1036 | 1035 |
/// \param s is the initial value of \ref _source |
1037 | 1036 |
DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) : |
1038 | 1037 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1039 | 1038 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1040 | 1039 |
_pred(0), _dist(0), _source(s) {} |
1041 | 1040 |
|
1042 | 1041 |
}; |
1043 | 1042 |
|
1044 | 1043 |
/// A class to make the usage of Dijkstra algorithm easier |
1045 | 1044 |
|
1046 | 1045 |
/// This class is created to make it easier to use Dijkstra algorithm. |
1047 | 1046 |
/// It uses the functions and features of the plain \ref Dijkstra, |
1048 | 1047 |
/// but it is much simpler to use it. |
1049 | 1048 |
/// |
1050 | 1049 |
/// Simplicity means that the way to change the types defined |
1051 | 1050 |
/// in the traits class is based on functions that returns the new class |
1052 | 1051 |
/// and not on templatable built-in classes. |
1053 | 1052 |
/// When using the plain \ref Dijkstra |
1054 | 1053 |
/// the new class with the modified type comes from |
1055 | 1054 |
/// the original class by using the :: |
1056 | 1055 |
/// operator. In the case of \ref DijkstraWizard only |
1057 | 1056 |
/// a function have to be called and it will |
1058 | 1057 |
/// return the needed class. |
1059 | 1058 |
/// |
1060 | 1059 |
/// It does not have own \ref run method. When its \ref run method is called |
1061 | 1060 |
/// it initiates a plain \ref Dijkstra class, and calls the \ref |
1062 | 1061 |
/// Dijkstra::run method of it. |
1063 | 1062 |
template<class TR> |
1064 | 1063 |
class DijkstraWizard : public TR |
1065 | 1064 |
{ |
1066 | 1065 |
typedef TR Base; |
1067 | 1066 |
|
1068 | 1067 |
///The type of the underlying digraph. |
1069 | 1068 |
typedef typename TR::Digraph Digraph; |
1070 | 1069 |
//\e |
1071 | 1070 |
typedef typename Digraph::Node Node; |
1072 | 1071 |
//\e |
1073 | 1072 |
typedef typename Digraph::NodeIt NodeIt; |
1074 | 1073 |
//\e |
1075 | 1074 |
typedef typename Digraph::Arc Arc; |
1076 | 1075 |
//\e |
1077 | 1076 |
typedef typename Digraph::OutArcIt OutArcIt; |
1078 | 1077 |
|
1079 | 1078 |
///The type of the map that stores the arc lengths. |
1080 | 1079 |
typedef typename TR::LengthMap LengthMap; |
1081 | 1080 |
///The type of the length of the arcs. |
1082 | 1081 |
typedef typename LengthMap::Value Value; |
1083 | 1082 |
///\brief The type of the map that stores the last |
1084 | 1083 |
///arcs of the shortest paths. |
1085 | 1084 |
typedef typename TR::PredMap PredMap; |
1086 | 1085 |
///The type of the map that stores the dists of the nodes. |
1087 | 1086 |
typedef typename TR::DistMap DistMap; |
1088 | 1087 |
///The heap type used by the dijkstra algorithm. |
1089 | 1088 |
typedef typename TR::Heap Heap; |
1090 | 1089 |
public: |
1091 | 1090 |
/// Constructor. |
1092 | 1091 |
DijkstraWizard() : TR() {} |
1093 | 1092 |
|
1094 | 1093 |
/// Constructor that requires parameters. |
1095 | 1094 |
|
1096 | 1095 |
/// Constructor that requires parameters. |
1097 | 1096 |
/// These parameters will be the default values for the traits class. |
1098 | 1097 |
DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) : |
1099 | 1098 |
TR(g,l,s) {} |
1100 | 1099 |
|
1101 | 1100 |
///Copy constructor |
1102 | 1101 |
DijkstraWizard(const TR &b) : TR(b) {} |
1103 | 1102 |
|
1104 | 1103 |
~DijkstraWizard() {} |
1105 | 1104 |
|
1106 | 1105 |
///Runs Dijkstra algorithm from a given node. |
1107 | 1106 |
|
1108 | 1107 |
///Runs Dijkstra algorithm from a given node. |
1109 | 1108 |
///The node can be given by the \ref source function. |
1110 | 1109 |
void run() |
1111 | 1110 |
{ |
1112 | 1111 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
1113 | 1112 |
Dijkstra<Digraph,LengthMap,TR> |
1114 | 1113 |
dij(*reinterpret_cast<const Digraph*>(Base::_g), |
1115 | 1114 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1116 | 1115 |
if(Base::_pred) dij.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1117 | 1116 |
if(Base::_dist) dij.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1118 | 1117 |
dij.run(Base::_source); |
1119 | 1118 |
} |
1120 | 1119 |
|
1121 | 1120 |
///Runs Dijkstra algorithm from the given node. |
1122 | 1121 |
|
1123 | 1122 |
///Runs Dijkstra algorithm from the given node. |
1124 | 1123 |
///\param s is the given source. |
1125 | 1124 |
void run(Node s) |
1126 | 1125 |
{ |
1127 | 1126 |
Base::_source=s; |
1128 | 1127 |
run(); |
1129 | 1128 |
} |
1130 | 1129 |
|
1131 | 1130 |
template<class T> |
1132 | 1131 |
struct DefPredMapBase : public Base { |
1133 | 1132 |
typedef T PredMap; |
1134 | 1133 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1135 | 1134 |
DefPredMapBase(const TR &b) : TR(b) {} |
1136 | 1135 |
}; |
1137 | 1136 |
|
1138 | 1137 |
///\brief \ref named-templ-param "Named parameter" |
1139 | 1138 |
///function for setting PredMap type |
1140 | 1139 |
/// |
1141 | 1140 |
/// \ref named-templ-param "Named parameter" |
1142 | 1141 |
///function for setting PredMap type |
1143 | 1142 |
/// |
1144 | 1143 |
template<class T> |
1145 | 1144 |
DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) |
1146 | 1145 |
{ |
1147 | 1146 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1148 | 1147 |
return DijkstraWizard<DefPredMapBase<T> >(*this); |
1149 | 1148 |
} |
1150 | 1149 |
|
1151 | 1150 |
template<class T> |
1152 | 1151 |
struct DefDistMapBase : public Base { |
1153 | 1152 |
typedef T DistMap; |
1154 | 1153 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1155 | 1154 |
DefDistMapBase(const TR &b) : TR(b) {} |
1156 | 1155 |
}; |
1157 | 1156 |
|
1158 | 1157 |
///\brief \ref named-templ-param "Named parameter" |
1159 | 1158 |
///function for setting DistMap type |
1160 | 1159 |
/// |
1161 | 1160 |
/// \ref named-templ-param "Named parameter" |
1162 | 1161 |
///function for setting DistMap type |
1163 | 1162 |
/// |
1164 | 1163 |
template<class T> |
1165 | 1164 |
DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) |
1166 | 1165 |
{ |
1167 | 1166 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1168 | 1167 |
return DijkstraWizard<DefDistMapBase<T> >(*this); |
1169 | 1168 |
} |
1170 | 1169 |
|
1171 | 1170 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
1172 | 1171 |
|
1173 | 1172 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
1174 | 1173 |
/// \param s is the source node. |
1175 | 1174 |
DijkstraWizard<TR> &source(Node s) |
1176 | 1175 |
{ |
1177 | 1176 |
Base::_source=s; |
1178 | 1177 |
return *this; |
1179 | 1178 |
} |
1180 | 1179 |
|
1181 | 1180 |
}; |
1182 | 1181 |
|
1183 | 1182 |
///Function type interface for Dijkstra algorithm. |
1184 | 1183 |
|
1185 | 1184 |
/// \ingroup shortest_path |
1186 | 1185 |
///Function type interface for Dijkstra algorithm. |
1187 | 1186 |
/// |
1188 | 1187 |
///This function also has several |
1189 | 1188 |
///\ref named-templ-func-param "named parameters", |
1190 | 1189 |
///they are declared as the members of class \ref DijkstraWizard. |
1191 | 1190 |
///The following |
1192 | 1191 |
///example shows how to use these parameters. |
1193 | 1192 |
///\code |
1194 | 1193 |
/// dijkstra(g,length,source).predMap(preds).run(); |
1195 | 1194 |
///\endcode |
1196 | 1195 |
///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
1197 | 1196 |
///to the end of the parameter list. |
1198 | 1197 |
///\sa DijkstraWizard |
1199 | 1198 |
///\sa Dijkstra |
1200 | 1199 |
template<class GR, class LM> |
1201 | 1200 |
DijkstraWizard<DijkstraWizardBase<GR,LM> > |
1202 | 1201 |
dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID) |
1203 | 1202 |
{ |
1204 | 1203 |
return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s); |
1205 | 1204 |
} |
1206 | 1205 |
|
1207 | 1206 |
} //END OF NAMESPACE LEMON |
1208 | 1207 |
|
1209 | 1208 |
#endif |
... | ... |
@@ -35,817 +35,817 @@ |
35 | 35 |
#endif |
36 | 36 |
|
37 | 37 |
#include<lemon/math.h> |
38 | 38 |
#include<lemon/bits/invalid.h> |
39 | 39 |
#include<lemon/dim2.h> |
40 | 40 |
#include<lemon/maps.h> |
41 | 41 |
#include<lemon/color.h> |
42 | 42 |
#include<lemon/bits/bezier.h> |
43 | 43 |
|
44 | 44 |
|
45 | 45 |
///\ingroup eps_io |
46 | 46 |
///\file |
47 | 47 |
///\brief A well configurable tool for visualizing graphs |
48 | 48 |
|
49 | 49 |
namespace lemon { |
50 | 50 |
|
51 | 51 |
namespace _graph_to_eps_bits { |
52 | 52 |
template<class MT> |
53 | 53 |
class _NegY { |
54 | 54 |
public: |
55 | 55 |
typedef typename MT::Key Key; |
56 | 56 |
typedef typename MT::Value Value; |
57 | 57 |
const MT ↦ |
58 | 58 |
int yscale; |
59 | 59 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
60 | 60 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
61 | 61 |
}; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
///Default traits class of \ref GraphToEps |
65 | 65 |
|
66 | 66 |
///Default traits class of \ref GraphToEps |
67 | 67 |
/// |
68 | 68 |
///\c G is the type of the underlying graph. |
69 | 69 |
template<class G> |
70 | 70 |
struct DefaultGraphToEpsTraits |
71 | 71 |
{ |
72 | 72 |
typedef G Graph; |
73 | 73 |
typedef typename Graph::Node Node; |
74 | 74 |
typedef typename Graph::NodeIt NodeIt; |
75 | 75 |
typedef typename Graph::Arc Arc; |
76 | 76 |
typedef typename Graph::ArcIt ArcIt; |
77 | 77 |
typedef typename Graph::InArcIt InArcIt; |
78 | 78 |
typedef typename Graph::OutArcIt OutArcIt; |
79 | 79 |
|
80 | 80 |
|
81 | 81 |
const Graph &g; |
82 | 82 |
|
83 | 83 |
std::ostream& os; |
84 | 84 |
|
85 | 85 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
86 | 86 |
CoordsMapType _coords; |
87 | 87 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
88 | 88 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
89 | 89 |
|
90 | 90 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
91 | 91 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
92 | 92 |
|
93 | 93 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
94 | 94 |
|
95 | 95 |
double _arcWidthScale; |
96 | 96 |
|
97 | 97 |
double _nodeScale; |
98 | 98 |
double _xBorder, _yBorder; |
99 | 99 |
double _scale; |
100 | 100 |
double _nodeBorderQuotient; |
101 | 101 |
|
102 | 102 |
bool _drawArrows; |
103 | 103 |
double _arrowLength, _arrowWidth; |
104 | 104 |
|
105 | 105 |
bool _showNodes, _showArcs; |
106 | 106 |
|
107 | 107 |
bool _enableParallel; |
108 | 108 |
double _parArcDist; |
109 | 109 |
|
110 | 110 |
bool _showNodeText; |
111 | 111 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
112 | 112 |
double _nodeTextSize; |
113 | 113 |
|
114 | 114 |
bool _showNodePsText; |
115 | 115 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
116 | 116 |
char *_nodePsTextsPreamble; |
117 | 117 |
|
118 | 118 |
bool _undirected; |
119 | 119 |
|
120 | 120 |
bool _pleaseRemoveOsStream; |
121 | 121 |
|
122 | 122 |
bool _scaleToA4; |
123 | 123 |
|
124 | 124 |
std::string _title; |
125 | 125 |
std::string _copyright; |
126 | 126 |
|
127 | 127 |
enum NodeTextColorType |
128 | 128 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
129 | 129 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
130 | 130 |
|
131 | 131 |
bool _autoNodeScale; |
132 | 132 |
bool _autoArcWidthScale; |
133 | 133 |
|
134 | 134 |
bool _absoluteNodeSizes; |
135 | 135 |
bool _absoluteArcWidths; |
136 | 136 |
|
137 | 137 |
bool _negY; |
138 | 138 |
|
139 | 139 |
bool _preScale; |
140 | 140 |
///Constructor |
141 | 141 |
|
142 | 142 |
///Constructor |
143 | 143 |
///\param _g is a reference to the graph to be printed |
144 | 144 |
///\param _os is a reference to the output stream. |
145 | 145 |
///\param _os is a reference to the output stream. |
146 | 146 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
147 | 147 |
///will be explicitly deallocated by the destructor. |
148 | 148 |
///By default it is <tt>std::cout</tt> |
149 | 149 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
150 | 150 |
bool _pros=false) : |
151 | 151 |
g(_g), os(_os), |
152 | 152 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
153 | 153 |
_nodeColors(WHITE), _arcColors(BLACK), |
154 | 154 |
_arcWidths(1.0), _arcWidthScale(0.003), |
155 | 155 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
156 | 156 |
_nodeBorderQuotient(.1), |
157 | 157 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
158 | 158 |
_showNodes(true), _showArcs(true), |
159 | 159 |
_enableParallel(false), _parArcDist(1), |
160 | 160 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
161 | 161 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
162 | 162 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
163 | 163 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
164 | 164 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
165 | 165 |
_autoNodeScale(false), |
166 | 166 |
_autoArcWidthScale(false), |
167 | 167 |
_absoluteNodeSizes(false), |
168 | 168 |
_absoluteArcWidths(false), |
169 | 169 |
_negY(false), |
170 | 170 |
_preScale(true) |
171 | 171 |
{} |
172 | 172 |
}; |
173 | 173 |
|
174 | 174 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
175 | 175 |
|
176 | 176 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
177 | 177 |
template<class T> class GraphToEps : public T |
178 | 178 |
{ |
179 | 179 |
// Can't believe it is required by the C++ standard |
180 | 180 |
using T::g; |
181 | 181 |
using T::os; |
182 | 182 |
|
183 | 183 |
using T::_coords; |
184 | 184 |
using T::_nodeSizes; |
185 | 185 |
using T::_nodeShapes; |
186 | 186 |
using T::_nodeColors; |
187 | 187 |
using T::_arcColors; |
188 | 188 |
using T::_arcWidths; |
189 | 189 |
|
190 | 190 |
using T::_arcWidthScale; |
191 | 191 |
using T::_nodeScale; |
192 | 192 |
using T::_xBorder; |
193 | 193 |
using T::_yBorder; |
194 | 194 |
using T::_scale; |
195 | 195 |
using T::_nodeBorderQuotient; |
196 | 196 |
|
197 | 197 |
using T::_drawArrows; |
198 | 198 |
using T::_arrowLength; |
199 | 199 |
using T::_arrowWidth; |
200 | 200 |
|
201 | 201 |
using T::_showNodes; |
202 | 202 |
using T::_showArcs; |
203 | 203 |
|
204 | 204 |
using T::_enableParallel; |
205 | 205 |
using T::_parArcDist; |
206 | 206 |
|
207 | 207 |
using T::_showNodeText; |
208 | 208 |
using T::_nodeTexts; |
209 | 209 |
using T::_nodeTextSize; |
210 | 210 |
|
211 | 211 |
using T::_showNodePsText; |
212 | 212 |
using T::_nodePsTexts; |
213 | 213 |
using T::_nodePsTextsPreamble; |
214 | 214 |
|
215 | 215 |
using T::_undirected; |
216 | 216 |
|
217 | 217 |
using T::_pleaseRemoveOsStream; |
218 | 218 |
|
219 | 219 |
using T::_scaleToA4; |
220 | 220 |
|
221 | 221 |
using T::_title; |
222 | 222 |
using T::_copyright; |
223 | 223 |
|
224 | 224 |
using T::NodeTextColorType; |
225 | 225 |
using T::CUST_COL; |
226 | 226 |
using T::DIST_COL; |
227 | 227 |
using T::DIST_BW; |
228 | 228 |
using T::_nodeTextColorType; |
229 | 229 |
using T::_nodeTextColors; |
230 | 230 |
|
231 | 231 |
using T::_autoNodeScale; |
232 | 232 |
using T::_autoArcWidthScale; |
233 | 233 |
|
234 | 234 |
using T::_absoluteNodeSizes; |
235 | 235 |
using T::_absoluteArcWidths; |
236 | 236 |
|
237 | 237 |
|
238 | 238 |
using T::_negY; |
239 | 239 |
using T::_preScale; |
240 | 240 |
|
241 | 241 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
242 | 242 |
|
243 | 243 |
typedef typename T::Graph Graph; |
244 | 244 |
typedef typename Graph::Node Node; |
245 | 245 |
typedef typename Graph::NodeIt NodeIt; |
246 | 246 |
typedef typename Graph::Arc Arc; |
247 | 247 |
typedef typename Graph::ArcIt ArcIt; |
248 | 248 |
typedef typename Graph::InArcIt InArcIt; |
249 | 249 |
typedef typename Graph::OutArcIt OutArcIt; |
250 | 250 |
|
251 | 251 |
static const int INTERPOL_PREC; |
252 | 252 |
static const double A4HEIGHT; |
253 | 253 |
static const double A4WIDTH; |
254 | 254 |
static const double A4BORDER; |
255 | 255 |
|
256 | 256 |
bool dontPrint; |
257 | 257 |
|
258 | 258 |
public: |
259 | 259 |
///Node shapes |
260 | 260 |
|
261 | 261 |
///Node shapes |
262 | 262 |
/// |
263 | 263 |
enum NodeShapes { |
264 | 264 |
/// = 0 |
265 | 265 |
///\image html nodeshape_0.png |
266 | 266 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
267 | 267 |
CIRCLE=0, |
268 | 268 |
/// = 1 |
269 | 269 |
///\image html nodeshape_1.png |
270 | 270 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
271 | 271 |
/// |
272 | 272 |
SQUARE=1, |
273 | 273 |
/// = 2 |
274 | 274 |
///\image html nodeshape_2.png |
275 | 275 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
276 | 276 |
/// |
277 | 277 |
DIAMOND=2, |
278 | 278 |
/// = 3 |
279 | 279 |
///\image html nodeshape_3.png |
280 | 280 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
281 | 281 |
/// |
282 | 282 |
MALE=3, |
283 | 283 |
/// = 4 |
284 | 284 |
///\image html nodeshape_4.png |
285 | 285 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
286 | 286 |
/// |
287 | 287 |
FEMALE=4 |
288 | 288 |
}; |
289 | 289 |
|
290 | 290 |
private: |
291 | 291 |
class arcLess { |
292 | 292 |
const Graph &g; |
293 | 293 |
public: |
294 | 294 |
arcLess(const Graph &_g) : g(_g) {} |
295 | 295 |
bool operator()(Arc a,Arc b) const |
296 | 296 |
{ |
297 | 297 |
Node ai=std::min(g.source(a),g.target(a)); |
298 | 298 |
Node aa=std::max(g.source(a),g.target(a)); |
299 | 299 |
Node bi=std::min(g.source(b),g.target(b)); |
300 | 300 |
Node ba=std::max(g.source(b),g.target(b)); |
301 | 301 |
return ai<bi || |
302 | 302 |
(ai==bi && (aa < ba || |
303 | 303 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
304 | 304 |
} |
305 | 305 |
}; |
306 | 306 |
bool isParallel(Arc e,Arc f) const |
307 | 307 |
{ |
308 | 308 |
return (g.source(e)==g.source(f)&& |
309 | 309 |
g.target(e)==g.target(f)) || |
310 | 310 |
(g.source(e)==g.target(f)&& |
311 | 311 |
g.target(e)==g.source(f)); |
312 | 312 |
} |
313 | 313 |
template<class TT> |
314 | 314 |
static std::string psOut(const dim2::Point<TT> &p) |
315 | 315 |
{ |
316 | 316 |
std::ostringstream os; |
317 | 317 |
os << p.x << ' ' << p.y; |
318 | 318 |
return os.str(); |
319 | 319 |
} |
320 | 320 |
static std::string psOut(const Color &c) |
321 | 321 |
{ |
322 | 322 |
std::ostringstream os; |
323 | 323 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
324 | 324 |
return os.str(); |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
public: |
328 | 328 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
329 | 329 |
|
330 | 330 |
template<class X> struct CoordsTraits : public T { |
331 | 331 |
typedef X CoordsMapType; |
332 | 332 |
const X &_coords; |
333 | 333 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
334 | 334 |
}; |
335 | 335 |
///Sets the map of the node coordinates |
336 | 336 |
|
337 | 337 |
///Sets the map of the node coordinates. |
338 | 338 |
///\param x must be a node map with dim2::Point<double> or |
339 | 339 |
///\ref dim2::Point "dim2::Point<int>" values. |
340 | 340 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
341 | 341 |
dontPrint=true; |
342 | 342 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
343 | 343 |
} |
344 | 344 |
template<class X> struct NodeSizesTraits : public T { |
345 | 345 |
const X &_nodeSizes; |
346 | 346 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
347 | 347 |
}; |
348 | 348 |
///Sets the map of the node sizes |
349 | 349 |
|
350 | 350 |
///Sets the map of the node sizes |
351 | 351 |
///\param x must be a node map with \c double (or convertible) values. |
352 | 352 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
353 | 353 |
{ |
354 | 354 |
dontPrint=true; |
355 | 355 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
356 | 356 |
} |
357 | 357 |
template<class X> struct NodeShapesTraits : public T { |
358 | 358 |
const X &_nodeShapes; |
359 | 359 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
360 | 360 |
}; |
361 | 361 |
///Sets the map of the node shapes |
362 | 362 |
|
363 | 363 |
///Sets the map of the node shapes. |
364 | 364 |
///The available shape values |
365 | 365 |
///can be found in \ref NodeShapes "enum NodeShapes". |
366 | 366 |
///\param x must be a node map with \c int (or convertible) values. |
367 | 367 |
///\sa NodeShapes |
368 | 368 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
369 | 369 |
{ |
370 | 370 |
dontPrint=true; |
371 | 371 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
372 | 372 |
} |
373 | 373 |
template<class X> struct NodeTextsTraits : public T { |
374 | 374 |
const X &_nodeTexts; |
375 | 375 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
376 | 376 |
}; |
377 | 377 |
///Sets the text printed on the nodes |
378 | 378 |
|
379 | 379 |
///Sets the text printed on the nodes |
380 | 380 |
///\param x must be a node map with type that can be pushed to a standard |
381 | 381 |
///ostream. |
382 | 382 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
383 | 383 |
{ |
384 | 384 |
dontPrint=true; |
385 | 385 |
_showNodeText=true; |
386 | 386 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
387 | 387 |
} |
388 | 388 |
template<class X> struct NodePsTextsTraits : public T { |
389 | 389 |
const X &_nodePsTexts; |
390 | 390 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
391 | 391 |
}; |
392 | 392 |
///Inserts a PostScript block to the nodes |
393 | 393 |
|
394 | 394 |
///With this command it is possible to insert a verbatim PostScript |
395 | 395 |
///block to the nodes. |
396 | 396 |
///The PS current point will be moved to the centre of the node before |
397 | 397 |
///the PostScript block inserted. |
398 | 398 |
/// |
399 | 399 |
///Before and after the block a newline character is inserted so you |
400 | 400 |
///don't have to bother with the separators. |
401 | 401 |
/// |
402 | 402 |
///\param x must be a node map with type that can be pushed to a standard |
403 | 403 |
///ostream. |
404 | 404 |
/// |
405 | 405 |
///\sa nodePsTextsPreamble() |
406 | 406 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
407 | 407 |
{ |
408 | 408 |
dontPrint=true; |
409 | 409 |
_showNodePsText=true; |
410 | 410 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
411 | 411 |
} |
412 | 412 |
template<class X> struct ArcWidthsTraits : public T { |
413 | 413 |
const X &_arcWidths; |
414 | 414 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
415 | 415 |
}; |
416 | 416 |
///Sets the map of the arc widths |
417 | 417 |
|
418 | 418 |
///Sets the map of the arc widths |
419 |
///\param x must be |
|
419 |
///\param x must be an arc map with \c double (or convertible) values. |
|
420 | 420 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
421 | 421 |
{ |
422 | 422 |
dontPrint=true; |
423 | 423 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
template<class X> struct NodeColorsTraits : public T { |
427 | 427 |
const X &_nodeColors; |
428 | 428 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
429 | 429 |
}; |
430 | 430 |
///Sets the map of the node colors |
431 | 431 |
|
432 | 432 |
///Sets the map of the node colors |
433 | 433 |
///\param x must be a node map with \ref Color values. |
434 | 434 |
/// |
435 | 435 |
///\sa Palette |
436 | 436 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
437 | 437 |
nodeColors(const X &x) |
438 | 438 |
{ |
439 | 439 |
dontPrint=true; |
440 | 440 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
441 | 441 |
} |
442 | 442 |
template<class X> struct NodeTextColorsTraits : public T { |
443 | 443 |
const X &_nodeTextColors; |
444 | 444 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
445 | 445 |
}; |
446 | 446 |
///Sets the map of the node text colors |
447 | 447 |
|
448 | 448 |
///Sets the map of the node text colors |
449 | 449 |
///\param x must be a node map with \ref Color values. |
450 | 450 |
/// |
451 | 451 |
///\sa Palette |
452 | 452 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
453 | 453 |
nodeTextColors(const X &x) |
454 | 454 |
{ |
455 | 455 |
dontPrint=true; |
456 | 456 |
_nodeTextColorType=CUST_COL; |
457 | 457 |
return GraphToEps<NodeTextColorsTraits<X> > |
458 | 458 |
(NodeTextColorsTraits<X>(*this,x)); |
459 | 459 |
} |
460 | 460 |
template<class X> struct ArcColorsTraits : public T { |
461 | 461 |
const X &_arcColors; |
462 | 462 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
463 | 463 |
}; |
464 | 464 |
///Sets the map of the arc colors |
465 | 465 |
|
466 | 466 |
///Sets the map of the arc colors |
467 |
///\param x must be |
|
467 |
///\param x must be an arc map with \ref Color values. |
|
468 | 468 |
/// |
469 | 469 |
///\sa Palette |
470 | 470 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
471 | 471 |
arcColors(const X &x) |
472 | 472 |
{ |
473 | 473 |
dontPrint=true; |
474 | 474 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
475 | 475 |
} |
476 | 476 |
///Sets a global scale factor for node sizes |
477 | 477 |
|
478 | 478 |
///Sets a global scale factor for node sizes. |
479 | 479 |
/// |
480 | 480 |
/// If nodeSizes() is not given, this function simply sets the node |
481 | 481 |
/// sizes to \c d. If nodeSizes() is given, but |
482 | 482 |
/// autoNodeScale() is not, then the node size given by |
483 | 483 |
/// nodeSizes() will be multiplied by the value \c d. |
484 | 484 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
485 | 485 |
/// node sizes will be scaled in such a way that the greatest size will be |
486 | 486 |
/// equal to \c d. |
487 | 487 |
/// \sa nodeSizes() |
488 | 488 |
/// \sa autoNodeScale() |
489 | 489 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
490 | 490 |
///Turns on/off the automatic node width scaling. |
491 | 491 |
|
492 | 492 |
///Turns on/off the automatic node width scaling. |
493 | 493 |
/// |
494 | 494 |
///\sa nodeScale() |
495 | 495 |
/// |
496 | 496 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
497 | 497 |
_autoNodeScale=b;return *this; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
///Turns on/off the absolutematic node width scaling. |
501 | 501 |
|
502 | 502 |
///Turns on/off the absolutematic node width scaling. |
503 | 503 |
/// |
504 | 504 |
///\sa nodeScale() |
505 | 505 |
/// |
506 | 506 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
507 | 507 |
_absoluteNodeSizes=b;return *this; |
508 | 508 |
} |
509 | 509 |
|
510 | 510 |
///Negates the Y coordinates. |
511 | 511 |
|
512 | 512 |
///Negates the Y coordinates. |
513 | 513 |
/// |
514 | 514 |
GraphToEps<T> &negateY(bool b=true) { |
515 | 515 |
_negY=b;return *this; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Turn on/off pre-scaling |
519 | 519 |
|
520 | 520 |
///By default graphToEps() rescales the whole image in order to avoid |
521 | 521 |
///very big or very small bounding boxes. |
522 | 522 |
/// |
523 | 523 |
///This (p)rescaling can be turned off with this function. |
524 | 524 |
/// |
525 | 525 |
GraphToEps<T> &preScale(bool b=true) { |
526 | 526 |
_preScale=b;return *this; |
527 | 527 |
} |
528 | 528 |
|
529 | 529 |
///Sets a global scale factor for arc widths |
530 | 530 |
|
531 | 531 |
/// Sets a global scale factor for arc widths. |
532 | 532 |
/// |
533 | 533 |
/// If arcWidths() is not given, this function simply sets the arc |
534 | 534 |
/// widths to \c d. If arcWidths() is given, but |
535 | 535 |
/// autoArcWidthScale() is not, then the arc withs given by |
536 | 536 |
/// arcWidths() will be multiplied by the value \c d. |
537 | 537 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
538 | 538 |
/// arc withs will be scaled in such a way that the greatest width will be |
539 | 539 |
/// equal to \c d. |
540 | 540 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
541 | 541 |
///Turns on/off the automatic arc width scaling. |
542 | 542 |
|
543 | 543 |
///Turns on/off the automatic arc width scaling. |
544 | 544 |
/// |
545 | 545 |
///\sa arcWidthScale() |
546 | 546 |
/// |
547 | 547 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
548 | 548 |
_autoArcWidthScale=b;return *this; |
549 | 549 |
} |
550 | 550 |
///Turns on/off the absolutematic arc width scaling. |
551 | 551 |
|
552 | 552 |
///Turns on/off the absolutematic arc width scaling. |
553 | 553 |
/// |
554 | 554 |
///\sa arcWidthScale() |
555 | 555 |
/// |
556 | 556 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
557 | 557 |
_absoluteArcWidths=b;return *this; |
558 | 558 |
} |
559 | 559 |
///Sets a global scale factor for the whole picture |
560 | 560 |
|
561 | 561 |
///Sets a global scale factor for the whole picture |
562 | 562 |
/// |
563 | 563 |
|
564 | 564 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
565 | 565 |
///Sets the width of the border around the picture |
566 | 566 |
|
567 | 567 |
///Sets the width of the border around the picture |
568 | 568 |
/// |
569 | 569 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
570 | 570 |
///Sets the width of the border around the picture |
571 | 571 |
|
572 | 572 |
///Sets the width of the border around the picture |
573 | 573 |
/// |
574 | 574 |
GraphToEps<T> &border(double x, double y) { |
575 | 575 |
_xBorder=x;_yBorder=y;return *this; |
576 | 576 |
} |
577 | 577 |
///Sets whether to draw arrows |
578 | 578 |
|
579 | 579 |
///Sets whether to draw arrows |
580 | 580 |
/// |
581 | 581 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
582 | 582 |
///Sets the length of the arrowheads |
583 | 583 |
|
584 | 584 |
///Sets the length of the arrowheads |
585 | 585 |
/// |
586 | 586 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
587 | 587 |
///Sets the width of the arrowheads |
588 | 588 |
|
589 | 589 |
///Sets the width of the arrowheads |
590 | 590 |
/// |
591 | 591 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
592 | 592 |
|
593 | 593 |
///Scales the drawing to fit to A4 page |
594 | 594 |
|
595 | 595 |
///Scales the drawing to fit to A4 page |
596 | 596 |
/// |
597 | 597 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
598 | 598 |
|
599 | 599 |
///Enables parallel arcs |
600 | 600 |
|
601 | 601 |
///Enables parallel arcs |
602 | 602 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
603 | 603 |
|
604 | 604 |
///Sets the distance |
605 | 605 |
|
606 | 606 |
///Sets the distance |
607 | 607 |
/// |
608 | 608 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
609 | 609 |
|
610 | 610 |
///Hides the arcs |
611 | 611 |
|
612 | 612 |
///Hides the arcs |
613 | 613 |
/// |
614 | 614 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
615 | 615 |
///Hides the nodes |
616 | 616 |
|
617 | 617 |
///Hides the nodes |
618 | 618 |
/// |
619 | 619 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
620 | 620 |
|
621 | 621 |
///Sets the size of the node texts |
622 | 622 |
|
623 | 623 |
///Sets the size of the node texts |
624 | 624 |
/// |
625 | 625 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
626 | 626 |
|
627 | 627 |
///Sets the color of the node texts to be different from the node color |
628 | 628 |
|
629 | 629 |
///Sets the color of the node texts to be as different from the node color |
630 | 630 |
///as it is possible |
631 | 631 |
/// |
632 | 632 |
GraphToEps<T> &distantColorNodeTexts() |
633 | 633 |
{_nodeTextColorType=DIST_COL;return *this;} |
634 | 634 |
///Sets the color of the node texts to be black or white and always visible. |
635 | 635 |
|
636 | 636 |
///Sets the color of the node texts to be black or white according to |
637 | 637 |
///which is more |
638 | 638 |
///different from the node color |
639 | 639 |
/// |
640 | 640 |
GraphToEps<T> &distantBWNodeTexts() |
641 | 641 |
{_nodeTextColorType=DIST_BW;return *this;} |
642 | 642 |
|
643 | 643 |
///Gives a preamble block for node Postscript block. |
644 | 644 |
|
645 | 645 |
///Gives a preamble block for node Postscript block. |
646 | 646 |
/// |
647 | 647 |
///\sa nodePsTexts() |
648 | 648 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
649 | 649 |
_nodePsTextsPreamble=str ;return *this; |
650 | 650 |
} |
651 | 651 |
///Sets whether the the graph is undirected |
652 | 652 |
|
653 | 653 |
///Sets whether the the graph is undirected. |
654 | 654 |
/// |
655 | 655 |
///This setting is the default for undirected graphs. |
656 | 656 |
/// |
657 | 657 |
///\sa directed() |
658 | 658 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
659 | 659 |
|
660 | 660 |
///Sets whether the the graph is directed |
661 | 661 |
|
662 | 662 |
///Sets whether the the graph is directed. |
663 | 663 |
///Use it to show the edges as a pair of directed ones. |
664 | 664 |
/// |
665 | 665 |
///This setting is the default for digraphs. |
666 | 666 |
/// |
667 | 667 |
///\sa undirected() |
668 | 668 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
669 | 669 |
|
670 | 670 |
///Sets the title. |
671 | 671 |
|
672 | 672 |
///Sets the title of the generated image, |
673 | 673 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
674 | 674 |
///the EPS file. |
675 | 675 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;} |
676 | 676 |
///Sets the copyright statement. |
677 | 677 |
|
678 | 678 |
///Sets the copyright statement of the generated image, |
679 | 679 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
680 | 680 |
///the EPS file. |
681 | 681 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;} |
682 | 682 |
|
683 | 683 |
protected: |
684 | 684 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
685 | 685 |
{ |
686 | 686 |
switch(t) { |
687 | 687 |
case CIRCLE: |
688 | 688 |
case MALE: |
689 | 689 |
case FEMALE: |
690 | 690 |
return p.normSquare()<=r*r; |
691 | 691 |
case SQUARE: |
692 | 692 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
693 | 693 |
case DIAMOND: |
694 | 694 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
695 | 695 |
} |
696 | 696 |
return false; |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
public: |
700 | 700 |
~GraphToEps() { } |
701 | 701 |
|
702 | 702 |
///Draws the graph. |
703 | 703 |
|
704 | 704 |
///Like other functions using |
705 | 705 |
///\ref named-templ-func-param "named template parameters", |
706 | 706 |
///this function calls the algorithm itself, i.e. in this case |
707 | 707 |
///it draws the graph. |
708 | 708 |
void run() { |
709 | 709 |
//\todo better 'epsilon' would be nice here. |
710 | 710 |
const double EPSILON=1e-9; |
711 | 711 |
if(dontPrint) return; |
712 | 712 |
|
713 | 713 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
714 | 714 |
mycoords(_coords,_negY); |
715 | 715 |
|
716 | 716 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
717 | 717 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
718 | 718 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
719 | 719 |
// << "%%Copyright: XXXX\n" |
720 | 720 |
os << "%%Creator: LEMON, graphToEps()\n"; |
721 | 721 |
|
722 | 722 |
{ |
723 | 723 |
#ifndef WIN32 |
724 | 724 |
timeval tv; |
725 | 725 |
gettimeofday(&tv, 0); |
726 | 726 |
|
727 | 727 |
char cbuf[26]; |
728 | 728 |
ctime_r(&tv.tv_sec,cbuf); |
729 | 729 |
os << "%%CreationDate: " << cbuf; |
730 | 730 |
#else |
731 | 731 |
SYSTEMTIME time; |
732 | 732 |
char buf1[11], buf2[9], buf3[5]; |
733 | 733 |
|
734 | 734 |
GetSystemTime(&time); |
735 | 735 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
736 | 736 |
"ddd MMM dd", buf1, 11) && |
737 | 737 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
738 | 738 |
"HH':'mm':'ss", buf2, 9) && |
739 | 739 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
740 | 740 |
"yyyy", buf3, 5)) { |
741 | 741 |
os << "%%CreationDate: " << buf1 << ' ' |
742 | 742 |
<< buf2 << ' ' << buf3 << std::endl; |
743 | 743 |
} |
744 | 744 |
#endif |
745 | 745 |
} |
746 | 746 |
|
747 | 747 |
if (_autoArcWidthScale) { |
748 | 748 |
double max_w=0; |
749 | 749 |
for(ArcIt e(g);e!=INVALID;++e) |
750 | 750 |
max_w=std::max(double(_arcWidths[e]),max_w); |
751 | 751 |
///\todo better 'epsilon' would be nice here. |
752 | 752 |
if(max_w>EPSILON) { |
753 | 753 |
_arcWidthScale/=max_w; |
754 | 754 |
} |
755 | 755 |
} |
756 | 756 |
|
757 | 757 |
if (_autoNodeScale) { |
758 | 758 |
double max_s=0; |
759 | 759 |
for(NodeIt n(g);n!=INVALID;++n) |
760 | 760 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
761 | 761 |
///\todo better 'epsilon' would be nice here. |
762 | 762 |
if(max_s>EPSILON) { |
763 | 763 |
_nodeScale/=max_s; |
764 | 764 |
} |
765 | 765 |
} |
766 | 766 |
|
767 | 767 |
double diag_len = 1; |
768 | 768 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { |
769 | 769 |
dim2::BoundingBox<double> bb; |
770 | 770 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
771 | 771 |
if (bb.empty()) { |
772 | 772 |
bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0)); |
773 | 773 |
} |
774 | 774 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
775 | 775 |
if(diag_len<EPSILON) diag_len = 1; |
776 | 776 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
777 | 777 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
778 | 778 |
} |
779 | 779 |
|
780 | 780 |
dim2::BoundingBox<double> bb; |
781 | 781 |
for(NodeIt n(g);n!=INVALID;++n) { |
782 | 782 |
double ns=_nodeSizes[n]*_nodeScale; |
783 | 783 |
dim2::Point<double> p(ns,ns); |
784 | 784 |
switch(_nodeShapes[n]) { |
785 | 785 |
case CIRCLE: |
786 | 786 |
case SQUARE: |
787 | 787 |
case DIAMOND: |
788 | 788 |
bb.add(p+mycoords[n]); |
789 | 789 |
bb.add(-p+mycoords[n]); |
790 | 790 |
break; |
791 | 791 |
case MALE: |
792 | 792 |
bb.add(-p+mycoords[n]); |
793 | 793 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
794 | 794 |
break; |
795 | 795 |
case FEMALE: |
796 | 796 |
bb.add(p+mycoords[n]); |
797 | 797 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
798 | 798 |
break; |
799 | 799 |
} |
800 | 800 |
} |
801 | 801 |
if (bb.empty()) { |
802 | 802 |
bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0)); |
803 | 803 |
} |
804 | 804 |
|
805 | 805 |
if(_scaleToA4) |
806 | 806 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
807 | 807 |
else { |
808 | 808 |
if(_preScale) { |
809 | 809 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
810 | 810 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
811 | 811 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
812 | 812 |
} |
813 | 813 |
|
814 | 814 |
os << "%%BoundingBox: " |
815 | 815 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
816 | 816 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
817 | 817 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
818 | 818 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
819 | 819 |
} |
820 | 820 |
|
821 | 821 |
os << "%%EndComments\n"; |
822 | 822 |
|
823 | 823 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
824 | 824 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n" |
825 | 825 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
826 | 826 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def\n"; |
827 | 827 |
//x y r |
828 | 828 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def\n"; |
829 | 829 |
//x y r |
830 | 830 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
831 | 831 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
832 | 832 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
833 | 833 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
834 | 834 |
<< " closepath pop pop pop} bind def\n"; |
835 | 835 |
//x y r |
836 | 836 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
837 | 837 |
<< " 2 index 2 index 2 index add lineto\n" |
838 | 838 |
<< " 2 index 1 index sub 2 index lineto\n" |
839 | 839 |
<< " 2 index 2 index 2 index sub lineto\n" |
840 | 840 |
<< " closepath pop pop pop} bind def\n"; |
841 | 841 |
// x y r cr cg cb |
842 | 842 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
843 | 843 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
844 | 844 |
<< " } bind def\n"; |
845 | 845 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
846 | 846 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
847 | 847 |
<< " } bind def\n"; |
848 | 848 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
849 | 849 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
850 | 850 |
<< " } bind def\n"; |
851 | 851 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)