|
1 |
/* -*- C++ -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2008
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#ifndef LEMON_SUURBALLE_H
|
|
20 |
#define LEMON_SUURBALLE_H
|
|
21 |
|
|
22 |
///\ingroup shortest_path
|
|
23 |
///\file
|
|
24 |
///\brief An algorithm for finding arc-disjoint paths between two
|
|
25 |
/// nodes having minimum total length.
|
|
26 |
|
|
27 |
#include <vector>
|
|
28 |
#include <lemon/bin_heap.h>
|
|
29 |
#include <lemon/path.h>
|
|
30 |
|
|
31 |
namespace lemon {
|
|
32 |
|
|
33 |
/// \addtogroup shortest_path
|
|
34 |
/// @{
|
|
35 |
|
|
36 |
/// \brief Implementation of an algorithm for finding arc-disjoint
|
|
37 |
/// paths between two nodes having minimum total length.
|
|
38 |
///
|
|
39 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for
|
|
40 |
/// finding arc-disjoint paths having minimum total length (cost)
|
|
41 |
/// from a given source node to a given target node in a directed
|
|
42 |
/// digraph.
|
|
43 |
///
|
|
44 |
/// In fact, this implementation is the specialization of the
|
|
45 |
/// \ref CapacityScaling "successive shortest path" algorithm.
|
|
46 |
///
|
|
47 |
/// \tparam Digraph The directed digraph type the algorithm runs on.
|
|
48 |
/// \tparam LengthMap The type of the length (cost) map.
|
|
49 |
///
|
|
50 |
/// \warning Length values should be \e non-negative \e integers.
|
|
51 |
///
|
|
52 |
/// \note For finding node-disjoint paths this algorithm can be used
|
|
53 |
/// with \ref SplitDigraphAdaptor.
|
|
54 |
///
|
|
55 |
/// \author Attila Bernath and Peter Kovacs
|
|
56 |
|
|
57 |
template < typename Digraph,
|
|
58 |
typename LengthMap = typename Digraph::template ArcMap<int> >
|
|
59 |
class Suurballe
|
|
60 |
{
|
|
61 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
|
62 |
|
|
63 |
typedef typename LengthMap::Value Length;
|
|
64 |
typedef ConstMap<Arc, int> ConstArcMap;
|
|
65 |
typedef typename Digraph::template NodeMap<Arc> PredMap;
|
|
66 |
|
|
67 |
public:
|
|
68 |
|
|
69 |
/// The type of the flow map.
|
|
70 |
typedef typename Digraph::template ArcMap<int> FlowMap;
|
|
71 |
/// The type of the potential map.
|
|
72 |
typedef typename Digraph::template NodeMap<Length> PotentialMap;
|
|
73 |
/// The type of the path structures.
|
|
74 |
typedef SimplePath<Digraph> Path;
|
|
75 |
|
|
76 |
private:
|
|
77 |
|
|
78 |
/// \brief Special implementation of the \ref Dijkstra algorithm
|
|
79 |
/// for finding shortest paths in the residual network.
|
|
80 |
///
|
|
81 |
/// \ref ResidualDijkstra is a special implementation of the
|
|
82 |
/// \ref Dijkstra algorithm for finding shortest paths in the
|
|
83 |
/// residual network of the digraph with respect to the reduced arc
|
|
84 |
/// lengths and modifying the node potentials according to the
|
|
85 |
/// distance of the nodes.
|
|
86 |
class ResidualDijkstra
|
|
87 |
{
|
|
88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef;
|
|
89 |
typedef BinHeap<Length, HeapCrossRef> Heap;
|
|
90 |
|
|
91 |
private:
|
|
92 |
|
|
93 |
// The directed digraph the algorithm runs on
|
|
94 |
const Digraph &_graph;
|
|
95 |
|
|
96 |
// The main maps
|
|
97 |
const FlowMap &_flow;
|
|
98 |
const LengthMap &_length;
|
|
99 |
PotentialMap &_potential;
|
|
100 |
|
|
101 |
// The distance map
|
|
102 |
PotentialMap _dist;
|
|
103 |
// The pred arc map
|
|
104 |
PredMap &_pred;
|
|
105 |
// The processed (i.e. permanently labeled) nodes
|
|
106 |
std::vector<Node> _proc_nodes;
|
|
107 |
|
|
108 |
Node _s;
|
|
109 |
Node _t;
|
|
110 |
|
|
111 |
public:
|
|
112 |
|
|
113 |
/// Constructor.
|
|
114 |
ResidualDijkstra( const Digraph &digraph,
|
|
115 |
const FlowMap &flow,
|
|
116 |
const LengthMap &length,
|
|
117 |
PotentialMap &potential,
|
|
118 |
PredMap &pred,
|
|
119 |
Node s, Node t ) :
|
|
120 |
_graph(digraph), _flow(flow), _length(length), _potential(potential),
|
|
121 |
_dist(digraph), _pred(pred), _s(s), _t(t) {}
|
|
122 |
|
|
123 |
/// \brief Runs the algorithm. Returns \c true if a path is found
|
|
124 |
/// from the source node to the target node.
|
|
125 |
bool run() {
|
|
126 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
|
|
127 |
Heap heap(heap_cross_ref);
|
|
128 |
heap.push(_s, 0);
|
|
129 |
_pred[_s] = INVALID;
|
|
130 |
_proc_nodes.clear();
|
|
131 |
|
|
132 |
// Processing nodes
|
|
133 |
while (!heap.empty() && heap.top() != _t) {
|
|
134 |
Node u = heap.top(), v;
|
|
135 |
Length d = heap.prio() + _potential[u], nd;
|
|
136 |
_dist[u] = heap.prio();
|
|
137 |
heap.pop();
|
|
138 |
_proc_nodes.push_back(u);
|
|
139 |
|
|
140 |
// Traversing outgoing arcs
|
|
141 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
|
142 |
if (_flow[e] == 0) {
|
|
143 |
v = _graph.target(e);
|
|
144 |
switch(heap.state(v)) {
|
|
145 |
case Heap::PRE_HEAP:
|
|
146 |
heap.push(v, d + _length[e] - _potential[v]);
|
|
147 |
_pred[v] = e;
|
|
148 |
break;
|
|
149 |
case Heap::IN_HEAP:
|
|
150 |
nd = d + _length[e] - _potential[v];
|
|
151 |
if (nd < heap[v]) {
|
|
152 |
heap.decrease(v, nd);
|
|
153 |
_pred[v] = e;
|
|
154 |
}
|
|
155 |
break;
|
|
156 |
case Heap::POST_HEAP:
|
|
157 |
break;
|
|
158 |
}
|
|
159 |
}
|
|
160 |
}
|
|
161 |
|
|
162 |
// Traversing incoming arcs
|
|
163 |
for (InArcIt e(_graph, u); e != INVALID; ++e) {
|
|
164 |
if (_flow[e] == 1) {
|
|
165 |
v = _graph.source(e);
|
|
166 |
switch(heap.state(v)) {
|
|
167 |
case Heap::PRE_HEAP:
|
|
168 |
heap.push(v, d - _length[e] - _potential[v]);
|
|
169 |
_pred[v] = e;
|
|
170 |
break;
|
|
171 |
case Heap::IN_HEAP:
|
|
172 |
nd = d - _length[e] - _potential[v];
|
|
173 |
if (nd < heap[v]) {
|
|
174 |
heap.decrease(v, nd);
|
|
175 |
_pred[v] = e;
|
|
176 |
}
|
|
177 |
break;
|
|
178 |
case Heap::POST_HEAP:
|
|
179 |
break;
|
|
180 |
}
|
|
181 |
}
|
|
182 |
}
|
|
183 |
}
|
|
184 |
if (heap.empty()) return false;
|
|
185 |
|
|
186 |
// Updating potentials of processed nodes
|
|
187 |
Length t_dist = heap.prio();
|
|
188 |
for (int i = 0; i < int(_proc_nodes.size()); ++i)
|
|
189 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
|
|
190 |
return true;
|
|
191 |
}
|
|
192 |
|
|
193 |
}; //class ResidualDijkstra
|
|
194 |
|
|
195 |
private:
|
|
196 |
|
|
197 |
// The directed digraph the algorithm runs on
|
|
198 |
const Digraph &_graph;
|
|
199 |
// The length map
|
|
200 |
const LengthMap &_length;
|
|
201 |
|
|
202 |
// Arc map of the current flow
|
|
203 |
FlowMap *_flow;
|
|
204 |
bool _local_flow;
|
|
205 |
// Node map of the current potentials
|
|
206 |
PotentialMap *_potential;
|
|
207 |
bool _local_potential;
|
|
208 |
|
|
209 |
// The source node
|
|
210 |
Node _source;
|
|
211 |
// The target node
|
|
212 |
Node _target;
|
|
213 |
|
|
214 |
// Container to store the found paths
|
|
215 |
std::vector< SimplePath<Digraph> > paths;
|
|
216 |
int _path_num;
|
|
217 |
|
|
218 |
// The pred arc map
|
|
219 |
PredMap _pred;
|
|
220 |
// Implementation of the Dijkstra algorithm for finding augmenting
|
|
221 |
// shortest paths in the residual network
|
|
222 |
ResidualDijkstra *_dijkstra;
|
|
223 |
|
|
224 |
public:
|
|
225 |
|
|
226 |
/// \brief Constructor.
|
|
227 |
///
|
|
228 |
/// Constructor.
|
|
229 |
///
|
|
230 |
/// \param digraph The directed digraph the algorithm runs on.
|
|
231 |
/// \param length The length (cost) values of the arcs.
|
|
232 |
/// \param s The source node.
|
|
233 |
/// \param t The target node.
|
|
234 |
Suurballe( const Digraph &digraph,
|
|
235 |
const LengthMap &length,
|
|
236 |
Node s, Node t ) :
|
|
237 |
_graph(digraph), _length(length), _flow(0), _local_flow(false),
|
|
238 |
_potential(0), _local_potential(false), _source(s), _target(t),
|
|
239 |
_pred(digraph) {}
|
|
240 |
|
|
241 |
/// Destructor.
|
|
242 |
~Suurballe() {
|
|
243 |
if (_local_flow) delete _flow;
|
|
244 |
if (_local_potential) delete _potential;
|
|
245 |
delete _dijkstra;
|
|
246 |
}
|
|
247 |
|
|
248 |
/// \brief Sets the flow map.
|
|
249 |
///
|
|
250 |
/// Sets the flow map.
|
|
251 |
///
|
|
252 |
/// The found flow contains only 0 and 1 values. It is the union of
|
|
253 |
/// the found arc-disjoint paths.
|
|
254 |
///
|
|
255 |
/// \return \c (*this)
|
|
256 |
Suurballe& flowMap(FlowMap &map) {
|
|
257 |
if (_local_flow) {
|
|
258 |
delete _flow;
|
|
259 |
_local_flow = false;
|
|
260 |
}
|
|
261 |
_flow = ↦
|
|
262 |
return *this;
|
|
263 |
}
|
|
264 |
|
|
265 |
/// \brief Sets the potential map.
|
|
266 |
///
|
|
267 |
/// Sets the potential map.
|
|
268 |
///
|
|
269 |
/// The potentials provide the dual solution of the underlying
|
|
270 |
/// minimum cost flow problem.
|
|
271 |
///
|
|
272 |
/// \return \c (*this)
|
|
273 |
Suurballe& potentialMap(PotentialMap &map) {
|
|
274 |
if (_local_potential) {
|
|
275 |
delete _potential;
|
|
276 |
_local_potential = false;
|
|
277 |
}
|
|
278 |
_potential = ↦
|
|
279 |
return *this;
|
|
280 |
}
|
|
281 |
|
|
282 |
/// \name Execution control
|
|
283 |
/// The simplest way to execute the algorithm is to call the run()
|
|
284 |
/// function.
|
|
285 |
/// \n
|
|
286 |
/// If you only need the flow that is the union of the found
|
|
287 |
/// arc-disjoint paths, you may call init() and findFlow().
|
|
288 |
|
|
289 |
/// @{
|
|
290 |
|
|
291 |
/// \brief Runs the algorithm.
|
|
292 |
///
|
|
293 |
/// Runs the algorithm.
|
|
294 |
///
|
|
295 |
/// \param k The number of paths to be found.
|
|
296 |
///
|
|
297 |
/// \return \c k if there are at least \c k arc-disjoint paths
|
|
298 |
/// from \c s to \c t. Otherwise it returns the number of
|
|
299 |
/// arc-disjoint paths found.
|
|
300 |
///
|
|
301 |
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a
|
|
302 |
/// shortcut of the following code.
|
|
303 |
/// \code
|
|
304 |
/// s.init();
|
|
305 |
/// s.findFlow(k);
|
|
306 |
/// s.findPaths();
|
|
307 |
/// \endcode
|
|
308 |
int run(int k = 2) {
|
|
309 |
init();
|
|
310 |
findFlow(k);
|
|
311 |
findPaths();
|
|
312 |
return _path_num;
|
|
313 |
}
|
|
314 |
|
|
315 |
/// \brief Initializes the algorithm.
|
|
316 |
///
|
|
317 |
/// Initializes the algorithm.
|
|
318 |
void init() {
|
|
319 |
// Initializing maps
|
|
320 |
if (!_flow) {
|
|
321 |
_flow = new FlowMap(_graph);
|
|
322 |
_local_flow = true;
|
|
323 |
}
|
|
324 |
if (!_potential) {
|
|
325 |
_potential = new PotentialMap(_graph);
|
|
326 |
_local_potential = true;
|
|
327 |
}
|
|
328 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
|
|
329 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
|
|
330 |
|
|
331 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length,
|
|
332 |
*_potential, _pred,
|
|
333 |
_source, _target );
|
|
334 |
}
|
|
335 |
|
|
336 |
/// \brief Executes the successive shortest path algorithm to find
|
|
337 |
/// an optimal flow.
|
|
338 |
///
|
|
339 |
/// Executes the successive shortest path algorithm to find a
|
|
340 |
/// minimum cost flow, which is the union of \c k or less
|
|
341 |
/// arc-disjoint paths.
|
|
342 |
///
|
|
343 |
/// \return \c k if there are at least \c k arc-disjoint paths
|
|
344 |
/// from \c s to \c t. Otherwise it returns the number of
|
|
345 |
/// arc-disjoint paths found.
|
|
346 |
///
|
|
347 |
/// \pre \ref init() must be called before using this function.
|
|
348 |
int findFlow(int k = 2) {
|
|
349 |
// Finding shortest paths
|
|
350 |
_path_num = 0;
|
|
351 |
while (_path_num < k) {
|
|
352 |
// Running Dijkstra
|
|
353 |
if (!_dijkstra->run()) break;
|
|
354 |
++_path_num;
|
|
355 |
|
|
356 |
// Setting the flow along the found shortest path
|
|
357 |
Node u = _target;
|
|
358 |
Arc e;
|
|
359 |
while ((e = _pred[u]) != INVALID) {
|
|
360 |
if (u == _graph.target(e)) {
|
|
361 |
(*_flow)[e] = 1;
|
|
362 |
u = _graph.source(e);
|
|
363 |
} else {
|
|
364 |
(*_flow)[e] = 0;
|
|
365 |
u = _graph.target(e);
|
|
366 |
}
|
|
367 |
}
|
|
368 |
}
|
|
369 |
return _path_num;
|
|
370 |
}
|
|
371 |
|
|
372 |
/// \brief Computes the paths from the flow.
|
|
373 |
///
|
|
374 |
/// Computes the paths from the flow.
|
|
375 |
///
|
|
376 |
/// \pre \ref init() and \ref findFlow() must be called before using
|
|
377 |
/// this function.
|
|
378 |
void findPaths() {
|
|
379 |
// Creating the residual flow map (the union of the paths not
|
|
380 |
// found so far)
|
|
381 |
FlowMap res_flow(_graph);
|
|
382 |
for(ArcIt a(_graph);a!=INVALID;++a) res_flow[a]=(*_flow)[a];
|
|
383 |
|
|
384 |
paths.clear();
|
|
385 |
paths.resize(_path_num);
|
|
386 |
for (int i = 0; i < _path_num; ++i) {
|
|
387 |
Node n = _source;
|
|
388 |
while (n != _target) {
|
|
389 |
OutArcIt e(_graph, n);
|
|
390 |
for ( ; res_flow[e] == 0; ++e) ;
|
|
391 |
n = _graph.target(e);
|
|
392 |
paths[i].addBack(e);
|
|
393 |
res_flow[e] = 0;
|
|
394 |
}
|
|
395 |
}
|
|
396 |
}
|
|
397 |
|
|
398 |
/// @}
|
|
399 |
|
|
400 |
/// \name Query Functions
|
|
401 |
/// The result of the algorithm can be obtained using these
|
|
402 |
/// functions.
|
|
403 |
/// \n The algorithm should be executed before using them.
|
|
404 |
|
|
405 |
/// @{
|
|
406 |
|
|
407 |
/// \brief Returns a const reference to the arc map storing the
|
|
408 |
/// found flow.
|
|
409 |
///
|
|
410 |
/// Returns a const reference to the arc map storing the flow that
|
|
411 |
/// is the union of the found arc-disjoint paths.
|
|
412 |
///
|
|
413 |
/// \pre \ref run() or findFlow() must be called before using this
|
|
414 |
/// function.
|
|
415 |
const FlowMap& flowMap() const {
|
|
416 |
return *_flow;
|
|
417 |
}
|
|
418 |
|
|
419 |
/// \brief Returns a const reference to the node map storing the
|
|
420 |
/// found potentials (the dual solution).
|
|
421 |
///
|
|
422 |
/// Returns a const reference to the node map storing the found
|
|
423 |
/// potentials that provide the dual solution of the underlying
|
|
424 |
/// minimum cost flow problem.
|
|
425 |
///
|
|
426 |
/// \pre \ref run() or findFlow() must be called before using this
|
|
427 |
/// function.
|
|
428 |
const PotentialMap& potentialMap() const {
|
|
429 |
return *_potential;
|
|
430 |
}
|
|
431 |
|
|
432 |
/// \brief Returns the flow on the given arc.
|
|
433 |
///
|
|
434 |
/// Returns the flow on the given arc.
|
|
435 |
/// It is \c 1 if the arc is involved in one of the found paths,
|
|
436 |
/// otherwise it is \c 0.
|
|
437 |
///
|
|
438 |
/// \pre \ref run() or findFlow() must be called before using this
|
|
439 |
/// function.
|
|
440 |
int flow(const Arc& arc) const {
|
|
441 |
return (*_flow)[arc];
|
|
442 |
}
|
|
443 |
|
|
444 |
/// \brief Returns the potential of the given node.
|
|
445 |
///
|
|
446 |
/// Returns the potential of the given node.
|
|
447 |
///
|
|
448 |
/// \pre \ref run() or findFlow() must be called before using this
|
|
449 |
/// function.
|
|
450 |
Length potential(const Node& node) const {
|
|
451 |
return (*_potential)[node];
|
|
452 |
}
|
|
453 |
|
|
454 |
/// \brief Returns the total length (cost) of the found paths (flow).
|
|
455 |
///
|
|
456 |
/// Returns the total length (cost) of the found paths (flow).
|
|
457 |
/// The complexity of the function is \f$ O(e) \f$.
|
|
458 |
///
|
|
459 |
/// \pre \ref run() or findFlow() must be called before using this
|
|
460 |
/// function.
|
|
461 |
Length totalLength() const {
|
|
462 |
Length c = 0;
|
|
463 |
for (ArcIt e(_graph); e != INVALID; ++e)
|
|
464 |
c += (*_flow)[e] * _length[e];
|
|
465 |
return c;
|
|
466 |
}
|
|
467 |
|
|
468 |
/// \brief Returns the number of the found paths.
|
|
469 |
///
|
|
470 |
/// Returns the number of the found paths.
|
|
471 |
///
|
|
472 |
/// \pre \ref run() or findFlow() must be called before using this
|
|
473 |
/// function.
|
|
474 |
int pathNum() const {
|
|
475 |
return _path_num;
|
|
476 |
}
|
|
477 |
|
|
478 |
/// \brief Returns a const reference to the specified path.
|
|
479 |
///
|
|
480 |
/// Returns a const reference to the specified path.
|
|
481 |
///
|
|
482 |
/// \param i The function returns the \c i-th path.
|
|
483 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
|
|
484 |
///
|
|
485 |
/// \pre \ref run() or findPaths() must be called before using this
|
|
486 |
/// function.
|
|
487 |
Path path(int i) const {
|
|
488 |
return paths[i];
|
|
489 |
}
|
|
490 |
|
|
491 |
/// @}
|
|
492 |
|
|
493 |
}; //class Suurballe
|
|
494 |
|
|
495 |
///@}
|
|
496 |
|
|
497 |
} //namespace lemon
|
|
498 |
|
|
499 |
#endif //LEMON_SUURBALLE_H
|