gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Remove unnecessary integer requirement in Suurballe (#323)
0 1 0
default
1 file changed with 2 insertions and 5 deletions:
↑ Collapse diff ↑
Show white space 128 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_SUURBALLE_H
20 20
#define LEMON_SUURBALLE_H
21 21

	
22 22
///\ingroup shortest_path
23 23
///\file
24 24
///\brief An algorithm for finding arc-disjoint paths between two
25 25
/// nodes having minimum total length.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/bin_heap.h>
30 30
#include <lemon/path.h>
31 31
#include <lemon/list_graph.h>
32 32
#include <lemon/maps.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup shortest_path
37 37
  /// @{
38 38

	
39 39
  /// \brief Algorithm for finding arc-disjoint paths between two nodes
40 40
  /// having minimum total length.
41 41
  ///
42 42
  /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
43 43
  /// finding arc-disjoint paths having minimum total length (cost)
44 44
  /// from a given source node to a given target node in a digraph.
45 45
  ///
46 46
  /// Note that this problem is a special case of the \ref min_cost_flow
47 47
  /// "minimum cost flow problem". This implementation is actually an
48 48
  /// efficient specialized version of the \ref CapacityScaling
49 49
  /// "Successive Shortest Path" algorithm directly for this problem.
50 50
  /// Therefore this class provides query functions for flow values and
51 51
  /// node potentials (the dual solution) just like the minimum cost flow
52 52
  /// algorithms.
53 53
  ///
54 54
  /// \tparam GR The digraph type the algorithm runs on.
55 55
  /// \tparam LEN The type of the length map.
56 56
  /// The default value is <tt>GR::ArcMap<int></tt>.
57 57
  ///
58
  /// \warning Length values should be \e non-negative \e integers.
58
  /// \warning Length values should be \e non-negative.
59 59
  ///
60 60
  /// \note For finding node-disjoint paths this algorithm can be used
61 61
  /// along with the \ref SplitNodes adaptor.
62 62
#ifdef DOXYGEN
63 63
  template <typename GR, typename LEN>
64 64
#else
65 65
  template < typename GR,
66 66
             typename LEN = typename GR::template ArcMap<int> >
67 67
#endif
68 68
  class Suurballe
69 69
  {
70 70
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
71 71

	
72 72
    typedef ConstMap<Arc, int> ConstArcMap;
73 73
    typedef typename GR::template NodeMap<Arc> PredMap;
74 74

	
75 75
  public:
76 76

	
77 77
    /// The type of the digraph the algorithm runs on.
78 78
    typedef GR Digraph;
79 79
    /// The type of the length map.
80 80
    typedef LEN LengthMap;
81 81
    /// The type of the lengths.
82 82
    typedef typename LengthMap::Value Length;
83 83
#ifdef DOXYGEN
84 84
    /// The type of the flow map.
85 85
    typedef GR::ArcMap<int> FlowMap;
86 86
    /// The type of the potential map.
87 87
    typedef GR::NodeMap<Length> PotentialMap;
88 88
#else
89 89
    /// The type of the flow map.
90 90
    typedef typename Digraph::template ArcMap<int> FlowMap;
91 91
    /// The type of the potential map.
92 92
    typedef typename Digraph::template NodeMap<Length> PotentialMap;
93 93
#endif
94 94

	
95 95
    /// The type of the path structures.
96 96
    typedef SimplePath<GR> Path;
97 97

	
98 98
  private:
99 99

	
100 100
    // ResidualDijkstra is a special implementation of the
101 101
    // Dijkstra algorithm for finding shortest paths in the
102 102
    // residual network with respect to the reduced arc lengths
103 103
    // and modifying the node potentials according to the
104 104
    // distance of the nodes.
105 105
    class ResidualDijkstra
106 106
    {
107 107
      typedef typename Digraph::template NodeMap<int> HeapCrossRef;
108 108
      typedef BinHeap<Length, HeapCrossRef> Heap;
109 109

	
110 110
    private:
111 111

	
112 112
      // The digraph the algorithm runs on
113 113
      const Digraph &_graph;
114 114

	
115 115
      // The main maps
116 116
      const FlowMap &_flow;
117 117
      const LengthMap &_length;
118 118
      PotentialMap &_potential;
119 119

	
120 120
      // The distance map
121 121
      PotentialMap _dist;
122 122
      // The pred arc map
... ...
@@ -191,132 +191,129 @@
191 191
                nd = d - _length[e] - _potential[v];
192 192
                if (nd < heap[v]) {
193 193
                  heap.decrease(v, nd);
194 194
                  _pred[v] = e;
195 195
                }
196 196
                break;
197 197
              case Heap::POST_HEAP:
198 198
                break;
199 199
              }
200 200
            }
201 201
          }
202 202
        }
203 203
        if (heap.empty()) return false;
204 204

	
205 205
        // Update potentials of processed nodes
206 206
        Length t_dist = heap.prio();
207 207
        for (int i = 0; i < int(_proc_nodes.size()); ++i)
208 208
          _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
209 209
        return true;
210 210
      }
211 211

	
212 212
    }; //class ResidualDijkstra
213 213

	
214 214
  private:
215 215

	
216 216
    // The digraph the algorithm runs on
217 217
    const Digraph &_graph;
218 218
    // The length map
219 219
    const LengthMap &_length;
220 220

	
221 221
    // Arc map of the current flow
222 222
    FlowMap *_flow;
223 223
    bool _local_flow;
224 224
    // Node map of the current potentials
225 225
    PotentialMap *_potential;
226 226
    bool _local_potential;
227 227

	
228 228
    // The source node
229 229
    Node _source;
230 230
    // The target node
231 231
    Node _target;
232 232

	
233 233
    // Container to store the found paths
234 234
    std::vector< SimplePath<Digraph> > paths;
235 235
    int _path_num;
236 236

	
237 237
    // The pred arc map
238 238
    PredMap _pred;
239 239
    // Implementation of the Dijkstra algorithm for finding augmenting
240 240
    // shortest paths in the residual network
241 241
    ResidualDijkstra *_dijkstra;
242 242

	
243 243
  public:
244 244

	
245 245
    /// \brief Constructor.
246 246
    ///
247 247
    /// Constructor.
248 248
    ///
249 249
    /// \param graph The digraph the algorithm runs on.
250 250
    /// \param length The length (cost) values of the arcs.
251 251
    Suurballe( const Digraph &graph,
252 252
               const LengthMap &length ) :
253 253
      _graph(graph), _length(length), _flow(0), _local_flow(false),
254 254
      _potential(0), _local_potential(false), _pred(graph)
255
    {
256
      LEMON_ASSERT(std::numeric_limits<Length>::is_integer,
257
        "The length type of Suurballe must be integer");
258
    }
255
    {}
259 256

	
260 257
    /// Destructor.
261 258
    ~Suurballe() {
262 259
      if (_local_flow) delete _flow;
263 260
      if (_local_potential) delete _potential;
264 261
      delete _dijkstra;
265 262
    }
266 263

	
267 264
    /// \brief Set the flow map.
268 265
    ///
269 266
    /// This function sets the flow map.
270 267
    /// If it is not used before calling \ref run() or \ref init(),
271 268
    /// an instance will be allocated automatically. The destructor
272 269
    /// deallocates this automatically allocated map, of course.
273 270
    ///
274 271
    /// The found flow contains only 0 and 1 values, since it is the
275 272
    /// union of the found arc-disjoint paths.
276 273
    ///
277 274
    /// \return <tt>(*this)</tt>
278 275
    Suurballe& flowMap(FlowMap &map) {
279 276
      if (_local_flow) {
280 277
        delete _flow;
281 278
        _local_flow = false;
282 279
      }
283 280
      _flow = &map;
284 281
      return *this;
285 282
    }
286 283

	
287 284
    /// \brief Set the potential map.
288 285
    ///
289 286
    /// This function sets the potential map.
290 287
    /// If it is not used before calling \ref run() or \ref init(),
291 288
    /// an instance will be allocated automatically. The destructor
292 289
    /// deallocates this automatically allocated map, of course.
293 290
    ///
294 291
    /// The node potentials provide the dual solution of the underlying
295 292
    /// \ref min_cost_flow "minimum cost flow problem".
296 293
    ///
297 294
    /// \return <tt>(*this)</tt>
298 295
    Suurballe& potentialMap(PotentialMap &map) {
299 296
      if (_local_potential) {
300 297
        delete _potential;
301 298
        _local_potential = false;
302 299
      }
303 300
      _potential = &map;
304 301
      return *this;
305 302
    }
306 303

	
307 304
    /// \name Execution Control
308 305
    /// The simplest way to execute the algorithm is to call the run()
309 306
    /// function.
310 307
    /// \n
311 308
    /// If you only need the flow that is the union of the found
312 309
    /// arc-disjoint paths, you may call init() and findFlow().
313 310

	
314 311
    /// @{
315 312

	
316 313
    /// \brief Run the algorithm.
317 314
    ///
318 315
    /// This function runs the algorithm.
319 316
    ///
320 317
    /// \param s The source node.
321 318
    /// \param t The target node.
322 319
    /// \param k The number of paths to be found.
0 comments (0 inline)