0
3
2
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_PLANARITY_H |
|
| 20 |
#define LEMON_PLANARITY_H |
|
| 21 |
|
|
| 22 |
/// \ingroup planar |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Planarity checking, embedding, drawing and coloring |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <list> |
|
| 28 |
|
|
| 29 |
#include <lemon/dfs.h> |
|
| 30 |
#include <lemon/bfs.h> |
|
| 31 |
#include <lemon/radix_sort.h> |
|
| 32 |
#include <lemon/maps.h> |
|
| 33 |
#include <lemon/path.h> |
|
| 34 |
#include <lemon/bucket_heap.h> |
|
| 35 |
#include <lemon/adaptors.h> |
|
| 36 |
#include <lemon/edge_set.h> |
|
| 37 |
#include <lemon/color.h> |
|
| 38 |
#include <lemon/dim2.h> |
|
| 39 |
|
|
| 40 |
namespace lemon {
|
|
| 41 |
|
|
| 42 |
namespace _planarity_bits {
|
|
| 43 |
|
|
| 44 |
template <typename Graph> |
|
| 45 |
struct PlanarityVisitor : DfsVisitor<Graph> {
|
|
| 46 |
|
|
| 47 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 48 |
|
|
| 49 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 50 |
|
|
| 51 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
| 52 |
|
|
| 53 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
| 54 |
typedef std::vector<Node> OrderList; |
|
| 55 |
|
|
| 56 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
| 57 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
| 58 |
|
|
| 59 |
PlanarityVisitor(const Graph& graph, |
|
| 60 |
PredMap& pred_map, TreeMap& tree_map, |
|
| 61 |
OrderMap& order_map, OrderList& order_list, |
|
| 62 |
AncestorMap& ancestor_map, LowMap& low_map) |
|
| 63 |
: _graph(graph), _pred_map(pred_map), _tree_map(tree_map), |
|
| 64 |
_order_map(order_map), _order_list(order_list), |
|
| 65 |
_ancestor_map(ancestor_map), _low_map(low_map) {}
|
|
| 66 |
|
|
| 67 |
void reach(const Node& node) {
|
|
| 68 |
_order_map[node] = _order_list.size(); |
|
| 69 |
_low_map[node] = _order_list.size(); |
|
| 70 |
_ancestor_map[node] = _order_list.size(); |
|
| 71 |
_order_list.push_back(node); |
|
| 72 |
} |
|
| 73 |
|
|
| 74 |
void discover(const Arc& arc) {
|
|
| 75 |
Node source = _graph.source(arc); |
|
| 76 |
Node target = _graph.target(arc); |
|
| 77 |
|
|
| 78 |
_tree_map[arc] = true; |
|
| 79 |
_pred_map[target] = arc; |
|
| 80 |
} |
|
| 81 |
|
|
| 82 |
void examine(const Arc& arc) {
|
|
| 83 |
Node source = _graph.source(arc); |
|
| 84 |
Node target = _graph.target(arc); |
|
| 85 |
|
|
| 86 |
if (_order_map[target] < _order_map[source] && !_tree_map[arc]) {
|
|
| 87 |
if (_low_map[source] > _order_map[target]) {
|
|
| 88 |
_low_map[source] = _order_map[target]; |
|
| 89 |
} |
|
| 90 |
if (_ancestor_map[source] > _order_map[target]) {
|
|
| 91 |
_ancestor_map[source] = _order_map[target]; |
|
| 92 |
} |
|
| 93 |
} |
|
| 94 |
} |
|
| 95 |
|
|
| 96 |
void backtrack(const Arc& arc) {
|
|
| 97 |
Node source = _graph.source(arc); |
|
| 98 |
Node target = _graph.target(arc); |
|
| 99 |
|
|
| 100 |
if (_low_map[source] > _low_map[target]) {
|
|
| 101 |
_low_map[source] = _low_map[target]; |
|
| 102 |
} |
|
| 103 |
} |
|
| 104 |
|
|
| 105 |
const Graph& _graph; |
|
| 106 |
PredMap& _pred_map; |
|
| 107 |
TreeMap& _tree_map; |
|
| 108 |
OrderMap& _order_map; |
|
| 109 |
OrderList& _order_list; |
|
| 110 |
AncestorMap& _ancestor_map; |
|
| 111 |
LowMap& _low_map; |
|
| 112 |
}; |
|
| 113 |
|
|
| 114 |
template <typename Graph, bool embedding = true> |
|
| 115 |
struct NodeDataNode {
|
|
| 116 |
int prev, next; |
|
| 117 |
int visited; |
|
| 118 |
typename Graph::Arc first; |
|
| 119 |
bool inverted; |
|
| 120 |
}; |
|
| 121 |
|
|
| 122 |
template <typename Graph> |
|
| 123 |
struct NodeDataNode<Graph, false> {
|
|
| 124 |
int prev, next; |
|
| 125 |
int visited; |
|
| 126 |
}; |
|
| 127 |
|
|
| 128 |
template <typename Graph> |
|
| 129 |
struct ChildListNode {
|
|
| 130 |
typedef typename Graph::Node Node; |
|
| 131 |
Node first; |
|
| 132 |
Node prev, next; |
|
| 133 |
}; |
|
| 134 |
|
|
| 135 |
template <typename Graph> |
|
| 136 |
struct ArcListNode {
|
|
| 137 |
typename Graph::Arc prev, next; |
|
| 138 |
}; |
|
| 139 |
|
|
| 140 |
} |
|
| 141 |
|
|
| 142 |
/// \ingroup planar |
|
| 143 |
/// |
|
| 144 |
/// \brief Planarity checking of an undirected simple graph |
|
| 145 |
/// |
|
| 146 |
/// This class implements the Boyer-Myrvold algorithm for planarity |
|
| 147 |
/// checking of an undirected graph. This class is a simplified |
|
| 148 |
/// version of the PlanarEmbedding algorithm class because neither |
|
| 149 |
/// the embedding nor the kuratowski subdivisons are not computed. |
|
| 150 |
template <typename Graph> |
|
| 151 |
class PlanarityChecking {
|
|
| 152 |
private: |
|
| 153 |
|
|
| 154 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 155 |
|
|
| 156 |
const Graph& _graph; |
|
| 157 |
|
|
| 158 |
private: |
|
| 159 |
|
|
| 160 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 161 |
|
|
| 162 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
| 163 |
|
|
| 164 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
| 165 |
typedef std::vector<Node> OrderList; |
|
| 166 |
|
|
| 167 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
| 168 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
| 169 |
|
|
| 170 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
| 171 |
typedef std::vector<NodeDataNode> NodeData; |
|
| 172 |
|
|
| 173 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
| 174 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
| 175 |
|
|
| 176 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
| 177 |
|
|
| 178 |
typedef typename Graph::template NodeMap<bool> EmbedArc; |
|
| 179 |
|
|
| 180 |
public: |
|
| 181 |
|
|
| 182 |
/// \brief Constructor |
|
| 183 |
/// |
|
| 184 |
/// \note The graph should be simple, i.e. parallel and loop arc |
|
| 185 |
/// free. |
|
| 186 |
PlanarityChecking(const Graph& graph) : _graph(graph) {}
|
|
| 187 |
|
|
| 188 |
/// \brief Runs the algorithm. |
|
| 189 |
/// |
|
| 190 |
/// Runs the algorithm. |
|
| 191 |
/// \return %True when the graph is planar. |
|
| 192 |
bool run() {
|
|
| 193 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
| 194 |
|
|
| 195 |
PredMap pred_map(_graph, INVALID); |
|
| 196 |
TreeMap tree_map(_graph, false); |
|
| 197 |
|
|
| 198 |
OrderMap order_map(_graph, -1); |
|
| 199 |
OrderList order_list; |
|
| 200 |
|
|
| 201 |
AncestorMap ancestor_map(_graph, -1); |
|
| 202 |
LowMap low_map(_graph, -1); |
|
| 203 |
|
|
| 204 |
Visitor visitor(_graph, pred_map, tree_map, |
|
| 205 |
order_map, order_list, ancestor_map, low_map); |
|
| 206 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
| 207 |
visit.run(); |
|
| 208 |
|
|
| 209 |
ChildLists child_lists(_graph); |
|
| 210 |
createChildLists(tree_map, order_map, low_map, child_lists); |
|
| 211 |
|
|
| 212 |
NodeData node_data(2 * order_list.size()); |
|
| 213 |
|
|
| 214 |
EmbedArc embed_arc(_graph, false); |
|
| 215 |
|
|
| 216 |
MergeRoots merge_roots(_graph); |
|
| 217 |
|
|
| 218 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
|
| 219 |
|
|
| 220 |
Node node = order_list[i]; |
|
| 221 |
|
|
| 222 |
Node source = node; |
|
| 223 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 224 |
Node target = _graph.target(e); |
|
| 225 |
|
|
| 226 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 227 |
initFace(target, node_data, order_map, order_list); |
|
| 228 |
} |
|
| 229 |
} |
|
| 230 |
|
|
| 231 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 232 |
Node target = _graph.target(e); |
|
| 233 |
|
|
| 234 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 235 |
embed_arc[target] = true; |
|
| 236 |
walkUp(target, source, i, pred_map, low_map, |
|
| 237 |
order_map, order_list, node_data, merge_roots); |
|
| 238 |
} |
|
| 239 |
} |
|
| 240 |
|
|
| 241 |
for (typename MergeRoots::Value::iterator it = |
|
| 242 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
|
|
| 243 |
int rn = *it; |
|
| 244 |
walkDown(rn, i, node_data, order_list, child_lists, |
|
| 245 |
ancestor_map, low_map, embed_arc, merge_roots); |
|
| 246 |
} |
|
| 247 |
merge_roots[node].clear(); |
|
| 248 |
|
|
| 249 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 250 |
Node target = _graph.target(e); |
|
| 251 |
|
|
| 252 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 253 |
if (embed_arc[target]) {
|
|
| 254 |
return false; |
|
| 255 |
} |
|
| 256 |
} |
|
| 257 |
} |
|
| 258 |
} |
|
| 259 |
|
|
| 260 |
return true; |
|
| 261 |
} |
|
| 262 |
|
|
| 263 |
private: |
|
| 264 |
|
|
| 265 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
| 266 |
const LowMap& low_map, ChildLists& child_lists) {
|
|
| 267 |
|
|
| 268 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 269 |
Node source = n; |
|
| 270 |
|
|
| 271 |
std::vector<Node> targets; |
|
| 272 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 273 |
Node target = _graph.target(e); |
|
| 274 |
|
|
| 275 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 276 |
targets.push_back(target); |
|
| 277 |
} |
|
| 278 |
} |
|
| 279 |
|
|
| 280 |
if (targets.size() == 0) {
|
|
| 281 |
child_lists[source].first = INVALID; |
|
| 282 |
} else if (targets.size() == 1) {
|
|
| 283 |
child_lists[source].first = targets[0]; |
|
| 284 |
child_lists[targets[0]].prev = INVALID; |
|
| 285 |
child_lists[targets[0]].next = INVALID; |
|
| 286 |
} else {
|
|
| 287 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
| 288 |
for (int i = 1; i < int(targets.size()); ++i) {
|
|
| 289 |
child_lists[targets[i]].prev = targets[i - 1]; |
|
| 290 |
child_lists[targets[i - 1]].next = targets[i]; |
|
| 291 |
} |
|
| 292 |
child_lists[targets.back()].next = INVALID; |
|
| 293 |
child_lists[targets.front()].prev = INVALID; |
|
| 294 |
child_lists[source].first = targets.front(); |
|
| 295 |
} |
|
| 296 |
} |
|
| 297 |
} |
|
| 298 |
|
|
| 299 |
void walkUp(const Node& node, Node root, int rorder, |
|
| 300 |
const PredMap& pred_map, const LowMap& low_map, |
|
| 301 |
const OrderMap& order_map, const OrderList& order_list, |
|
| 302 |
NodeData& node_data, MergeRoots& merge_roots) {
|
|
| 303 |
|
|
| 304 |
int na, nb; |
|
| 305 |
bool da, db; |
|
| 306 |
|
|
| 307 |
na = nb = order_map[node]; |
|
| 308 |
da = true; db = false; |
|
| 309 |
|
|
| 310 |
while (true) {
|
|
| 311 |
|
|
| 312 |
if (node_data[na].visited == rorder) break; |
|
| 313 |
if (node_data[nb].visited == rorder) break; |
|
| 314 |
|
|
| 315 |
node_data[na].visited = rorder; |
|
| 316 |
node_data[nb].visited = rorder; |
|
| 317 |
|
|
| 318 |
int rn = -1; |
|
| 319 |
|
|
| 320 |
if (na >= int(order_list.size())) {
|
|
| 321 |
rn = na; |
|
| 322 |
} else if (nb >= int(order_list.size())) {
|
|
| 323 |
rn = nb; |
|
| 324 |
} |
|
| 325 |
|
|
| 326 |
if (rn == -1) {
|
|
| 327 |
int nn; |
|
| 328 |
|
|
| 329 |
nn = da ? node_data[na].prev : node_data[na].next; |
|
| 330 |
da = node_data[nn].prev != na; |
|
| 331 |
na = nn; |
|
| 332 |
|
|
| 333 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
|
| 334 |
db = node_data[nn].prev != nb; |
|
| 335 |
nb = nn; |
|
| 336 |
|
|
| 337 |
} else {
|
|
| 338 |
|
|
| 339 |
Node rep = order_list[rn - order_list.size()]; |
|
| 340 |
Node parent = _graph.source(pred_map[rep]); |
|
| 341 |
|
|
| 342 |
if (low_map[rep] < rorder) {
|
|
| 343 |
merge_roots[parent].push_back(rn); |
|
| 344 |
} else {
|
|
| 345 |
merge_roots[parent].push_front(rn); |
|
| 346 |
} |
|
| 347 |
|
|
| 348 |
if (parent != root) {
|
|
| 349 |
na = nb = order_map[parent]; |
|
| 350 |
da = true; db = false; |
|
| 351 |
} else {
|
|
| 352 |
break; |
|
| 353 |
} |
|
| 354 |
} |
|
| 355 |
} |
|
| 356 |
} |
|
| 357 |
|
|
| 358 |
void walkDown(int rn, int rorder, NodeData& node_data, |
|
| 359 |
OrderList& order_list, ChildLists& child_lists, |
|
| 360 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
| 361 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 362 |
|
|
| 363 |
std::vector<std::pair<int, bool> > merge_stack; |
|
| 364 |
|
|
| 365 |
for (int di = 0; di < 2; ++di) {
|
|
| 366 |
bool rd = di == 0; |
|
| 367 |
int pn = rn; |
|
| 368 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
| 369 |
|
|
| 370 |
while (n != rn) {
|
|
| 371 |
|
|
| 372 |
Node node = order_list[n]; |
|
| 373 |
|
|
| 374 |
if (embed_arc[node]) {
|
|
| 375 |
|
|
| 376 |
// Merging components on the critical path |
|
| 377 |
while (!merge_stack.empty()) {
|
|
| 378 |
|
|
| 379 |
// Component root |
|
| 380 |
int cn = merge_stack.back().first; |
|
| 381 |
bool cd = merge_stack.back().second; |
|
| 382 |
merge_stack.pop_back(); |
|
| 383 |
|
|
| 384 |
// Parent of component |
|
| 385 |
int dn = merge_stack.back().first; |
|
| 386 |
bool dd = merge_stack.back().second; |
|
| 387 |
merge_stack.pop_back(); |
|
| 388 |
|
|
| 389 |
Node parent = order_list[dn]; |
|
| 390 |
|
|
| 391 |
// Erasing from merge_roots |
|
| 392 |
merge_roots[parent].pop_front(); |
|
| 393 |
|
|
| 394 |
Node child = order_list[cn - order_list.size()]; |
|
| 395 |
|
|
| 396 |
// Erasing from child_lists |
|
| 397 |
if (child_lists[child].prev != INVALID) {
|
|
| 398 |
child_lists[child_lists[child].prev].next = |
|
| 399 |
child_lists[child].next; |
|
| 400 |
} else {
|
|
| 401 |
child_lists[parent].first = child_lists[child].next; |
|
| 402 |
} |
|
| 403 |
|
|
| 404 |
if (child_lists[child].next != INVALID) {
|
|
| 405 |
child_lists[child_lists[child].next].prev = |
|
| 406 |
child_lists[child].prev; |
|
| 407 |
} |
|
| 408 |
|
|
| 409 |
// Merging external faces |
|
| 410 |
{
|
|
| 411 |
int en = cn; |
|
| 412 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
| 413 |
cd = node_data[cn].next == en; |
|
| 414 |
|
|
| 415 |
} |
|
| 416 |
|
|
| 417 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
| 418 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
| 419 |
|
|
| 420 |
} |
|
| 421 |
|
|
| 422 |
bool d = pn == node_data[n].prev; |
|
| 423 |
|
|
| 424 |
if (node_data[n].prev == node_data[n].next && |
|
| 425 |
node_data[n].inverted) {
|
|
| 426 |
d = !d; |
|
| 427 |
} |
|
| 428 |
|
|
| 429 |
// Embedding arc into external face |
|
| 430 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
| 431 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
| 432 |
pn = rn; |
|
| 433 |
|
|
| 434 |
embed_arc[order_list[n]] = false; |
|
| 435 |
} |
|
| 436 |
|
|
| 437 |
if (!merge_roots[node].empty()) {
|
|
| 438 |
|
|
| 439 |
bool d = pn == node_data[n].prev; |
|
| 440 |
|
|
| 441 |
merge_stack.push_back(std::make_pair(n, d)); |
|
| 442 |
|
|
| 443 |
int rn = merge_roots[node].front(); |
|
| 444 |
|
|
| 445 |
int xn = node_data[rn].next; |
|
| 446 |
Node xnode = order_list[xn]; |
|
| 447 |
|
|
| 448 |
int yn = node_data[rn].prev; |
|
| 449 |
Node ynode = order_list[yn]; |
|
| 450 |
|
|
| 451 |
bool rd; |
|
| 452 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 453 |
rd = true; |
|
| 454 |
} else if (!external(ynode, rorder, child_lists, |
|
| 455 |
ancestor_map, low_map)) {
|
|
| 456 |
rd = false; |
|
| 457 |
} else if (pertinent(xnode, embed_arc, merge_roots)) {
|
|
| 458 |
rd = true; |
|
| 459 |
} else {
|
|
| 460 |
rd = false; |
|
| 461 |
} |
|
| 462 |
|
|
| 463 |
merge_stack.push_back(std::make_pair(rn, rd)); |
|
| 464 |
|
|
| 465 |
pn = rn; |
|
| 466 |
n = rd ? xn : yn; |
|
| 467 |
|
|
| 468 |
} else if (!external(node, rorder, child_lists, |
|
| 469 |
ancestor_map, low_map)) {
|
|
| 470 |
int nn = (node_data[n].next != pn ? |
|
| 471 |
node_data[n].next : node_data[n].prev); |
|
| 472 |
|
|
| 473 |
bool nd = n == node_data[nn].prev; |
|
| 474 |
|
|
| 475 |
if (nd) node_data[nn].prev = pn; |
|
| 476 |
else node_data[nn].next = pn; |
|
| 477 |
|
|
| 478 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
| 479 |
else node_data[pn].next = nn; |
|
| 480 |
|
|
| 481 |
node_data[nn].inverted = |
|
| 482 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
|
| 483 |
|
|
| 484 |
n = nn; |
|
| 485 |
} |
|
| 486 |
else break; |
|
| 487 |
|
|
| 488 |
} |
|
| 489 |
|
|
| 490 |
if (!merge_stack.empty() || n == rn) {
|
|
| 491 |
break; |
|
| 492 |
} |
|
| 493 |
} |
|
| 494 |
} |
|
| 495 |
|
|
| 496 |
void initFace(const Node& node, NodeData& node_data, |
|
| 497 |
const OrderMap& order_map, const OrderList& order_list) {
|
|
| 498 |
int n = order_map[node]; |
|
| 499 |
int rn = n + order_list.size(); |
|
| 500 |
|
|
| 501 |
node_data[n].next = node_data[n].prev = rn; |
|
| 502 |
node_data[rn].next = node_data[rn].prev = n; |
|
| 503 |
|
|
| 504 |
node_data[n].visited = order_list.size(); |
|
| 505 |
node_data[rn].visited = order_list.size(); |
|
| 506 |
|
|
| 507 |
} |
|
| 508 |
|
|
| 509 |
bool external(const Node& node, int rorder, |
|
| 510 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 511 |
LowMap& low_map) {
|
|
| 512 |
Node child = child_lists[node].first; |
|
| 513 |
|
|
| 514 |
if (child != INVALID) {
|
|
| 515 |
if (low_map[child] < rorder) return true; |
|
| 516 |
} |
|
| 517 |
|
|
| 518 |
if (ancestor_map[node] < rorder) return true; |
|
| 519 |
|
|
| 520 |
return false; |
|
| 521 |
} |
|
| 522 |
|
|
| 523 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
| 524 |
const MergeRoots& merge_roots) {
|
|
| 525 |
return !merge_roots[node].empty() || embed_arc[node]; |
|
| 526 |
} |
|
| 527 |
|
|
| 528 |
}; |
|
| 529 |
|
|
| 530 |
/// \ingroup planar |
|
| 531 |
/// |
|
| 532 |
/// \brief Planar embedding of an undirected simple graph |
|
| 533 |
/// |
|
| 534 |
/// This class implements the Boyer-Myrvold algorithm for planar |
|
| 535 |
/// embedding of an undirected graph. The planar embedding is an |
|
| 536 |
/// ordering of the outgoing edges of the nodes, which is a possible |
|
| 537 |
/// configuration to draw the graph in the plane. If there is not |
|
| 538 |
/// such ordering then the graph contains a \f$ K_5 \f$ (full graph |
|
| 539 |
/// with 5 nodes) or a \f$ K_{3,3} \f$ (complete bipartite graph on
|
|
| 540 |
/// 3 ANode and 3 BNode) subdivision. |
|
| 541 |
/// |
|
| 542 |
/// The current implementation calculates either an embedding or a |
|
| 543 |
/// Kuratowski subdivision. The running time of the algorithm is |
|
| 544 |
/// \f$ O(n) \f$. |
|
| 545 |
template <typename Graph> |
|
| 546 |
class PlanarEmbedding {
|
|
| 547 |
private: |
|
| 548 |
|
|
| 549 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 550 |
|
|
| 551 |
const Graph& _graph; |
|
| 552 |
typename Graph::template ArcMap<Arc> _embedding; |
|
| 553 |
|
|
| 554 |
typename Graph::template EdgeMap<bool> _kuratowski; |
|
| 555 |
|
|
| 556 |
private: |
|
| 557 |
|
|
| 558 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
| 559 |
|
|
| 560 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
| 561 |
|
|
| 562 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
| 563 |
typedef std::vector<Node> OrderList; |
|
| 564 |
|
|
| 565 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
| 566 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
| 567 |
|
|
| 568 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
| 569 |
typedef std::vector<NodeDataNode> NodeData; |
|
| 570 |
|
|
| 571 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
| 572 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
| 573 |
|
|
| 574 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
| 575 |
|
|
| 576 |
typedef typename Graph::template NodeMap<Arc> EmbedArc; |
|
| 577 |
|
|
| 578 |
typedef _planarity_bits::ArcListNode<Graph> ArcListNode; |
|
| 579 |
typedef typename Graph::template ArcMap<ArcListNode> ArcLists; |
|
| 580 |
|
|
| 581 |
typedef typename Graph::template NodeMap<bool> FlipMap; |
|
| 582 |
|
|
| 583 |
typedef typename Graph::template NodeMap<int> TypeMap; |
|
| 584 |
|
|
| 585 |
enum IsolatorNodeType {
|
|
| 586 |
HIGHX = 6, LOWX = 7, |
|
| 587 |
HIGHY = 8, LOWY = 9, |
|
| 588 |
ROOT = 10, PERTINENT = 11, |
|
| 589 |
INTERNAL = 12 |
|
| 590 |
}; |
|
| 591 |
|
|
| 592 |
public: |
|
| 593 |
|
|
| 594 |
/// \brief The map for store of embedding |
|
| 595 |
typedef typename Graph::template ArcMap<Arc> EmbeddingMap; |
|
| 596 |
|
|
| 597 |
/// \brief Constructor |
|
| 598 |
/// |
|
| 599 |
/// \note The graph should be simple, i.e. parallel and loop arc |
|
| 600 |
/// free. |
|
| 601 |
PlanarEmbedding(const Graph& graph) |
|
| 602 |
: _graph(graph), _embedding(_graph), _kuratowski(graph, false) {}
|
|
| 603 |
|
|
| 604 |
/// \brief Runs the algorithm. |
|
| 605 |
/// |
|
| 606 |
/// Runs the algorithm. |
|
| 607 |
/// \param kuratowski If the parameter is false, then the |
|
| 608 |
/// algorithm does not compute a Kuratowski subdivision. |
|
| 609 |
///\return %True when the graph is planar. |
|
| 610 |
bool run(bool kuratowski = true) {
|
|
| 611 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
| 612 |
|
|
| 613 |
PredMap pred_map(_graph, INVALID); |
|
| 614 |
TreeMap tree_map(_graph, false); |
|
| 615 |
|
|
| 616 |
OrderMap order_map(_graph, -1); |
|
| 617 |
OrderList order_list; |
|
| 618 |
|
|
| 619 |
AncestorMap ancestor_map(_graph, -1); |
|
| 620 |
LowMap low_map(_graph, -1); |
|
| 621 |
|
|
| 622 |
Visitor visitor(_graph, pred_map, tree_map, |
|
| 623 |
order_map, order_list, ancestor_map, low_map); |
|
| 624 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
| 625 |
visit.run(); |
|
| 626 |
|
|
| 627 |
ChildLists child_lists(_graph); |
|
| 628 |
createChildLists(tree_map, order_map, low_map, child_lists); |
|
| 629 |
|
|
| 630 |
NodeData node_data(2 * order_list.size()); |
|
| 631 |
|
|
| 632 |
EmbedArc embed_arc(_graph, INVALID); |
|
| 633 |
|
|
| 634 |
MergeRoots merge_roots(_graph); |
|
| 635 |
|
|
| 636 |
ArcLists arc_lists(_graph); |
|
| 637 |
|
|
| 638 |
FlipMap flip_map(_graph, false); |
|
| 639 |
|
|
| 640 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
|
| 641 |
|
|
| 642 |
Node node = order_list[i]; |
|
| 643 |
|
|
| 644 |
node_data[i].first = INVALID; |
|
| 645 |
|
|
| 646 |
Node source = node; |
|
| 647 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 648 |
Node target = _graph.target(e); |
|
| 649 |
|
|
| 650 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 651 |
initFace(target, arc_lists, node_data, |
|
| 652 |
pred_map, order_map, order_list); |
|
| 653 |
} |
|
| 654 |
} |
|
| 655 |
|
|
| 656 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 657 |
Node target = _graph.target(e); |
|
| 658 |
|
|
| 659 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 660 |
embed_arc[target] = e; |
|
| 661 |
walkUp(target, source, i, pred_map, low_map, |
|
| 662 |
order_map, order_list, node_data, merge_roots); |
|
| 663 |
} |
|
| 664 |
} |
|
| 665 |
|
|
| 666 |
for (typename MergeRoots::Value::iterator it = |
|
| 667 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
|
|
| 668 |
int rn = *it; |
|
| 669 |
walkDown(rn, i, node_data, arc_lists, flip_map, order_list, |
|
| 670 |
child_lists, ancestor_map, low_map, embed_arc, merge_roots); |
|
| 671 |
} |
|
| 672 |
merge_roots[node].clear(); |
|
| 673 |
|
|
| 674 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 675 |
Node target = _graph.target(e); |
|
| 676 |
|
|
| 677 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
|
| 678 |
if (embed_arc[target] != INVALID) {
|
|
| 679 |
if (kuratowski) {
|
|
| 680 |
isolateKuratowski(e, node_data, arc_lists, flip_map, |
|
| 681 |
order_map, order_list, pred_map, child_lists, |
|
| 682 |
ancestor_map, low_map, |
|
| 683 |
embed_arc, merge_roots); |
|
| 684 |
} |
|
| 685 |
return false; |
|
| 686 |
} |
|
| 687 |
} |
|
| 688 |
} |
|
| 689 |
} |
|
| 690 |
|
|
| 691 |
for (int i = 0; i < int(order_list.size()); ++i) {
|
|
| 692 |
|
|
| 693 |
mergeRemainingFaces(order_list[i], node_data, order_list, order_map, |
|
| 694 |
child_lists, arc_lists); |
|
| 695 |
storeEmbedding(order_list[i], node_data, order_map, pred_map, |
|
| 696 |
arc_lists, flip_map); |
|
| 697 |
} |
|
| 698 |
|
|
| 699 |
return true; |
|
| 700 |
} |
|
| 701 |
|
|
| 702 |
/// \brief Gives back the successor of an arc |
|
| 703 |
/// |
|
| 704 |
/// Gives back the successor of an arc. This function makes |
|
| 705 |
/// possible to query the cyclic order of the outgoing arcs from |
|
| 706 |
/// a node. |
|
| 707 |
Arc next(const Arc& arc) const {
|
|
| 708 |
return _embedding[arc]; |
|
| 709 |
} |
|
| 710 |
|
|
| 711 |
/// \brief Gives back the calculated embedding map |
|
| 712 |
/// |
|
| 713 |
/// The returned map contains the successor of each arc in the |
|
| 714 |
/// graph. |
|
| 715 |
const EmbeddingMap& embedding() const {
|
|
| 716 |
return _embedding; |
|
| 717 |
} |
|
| 718 |
|
|
| 719 |
/// \brief Gives back true if the undirected arc is in the |
|
| 720 |
/// kuratowski subdivision |
|
| 721 |
/// |
|
| 722 |
/// Gives back true if the undirected arc is in the kuratowski |
|
| 723 |
/// subdivision |
|
| 724 |
/// \note The \c run() had to be called with true value. |
|
| 725 |
bool kuratowski(const Edge& edge) {
|
|
| 726 |
return _kuratowski[edge]; |
|
| 727 |
} |
|
| 728 |
|
|
| 729 |
private: |
|
| 730 |
|
|
| 731 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
| 732 |
const LowMap& low_map, ChildLists& child_lists) {
|
|
| 733 |
|
|
| 734 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 735 |
Node source = n; |
|
| 736 |
|
|
| 737 |
std::vector<Node> targets; |
|
| 738 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 739 |
Node target = _graph.target(e); |
|
| 740 |
|
|
| 741 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
|
| 742 |
targets.push_back(target); |
|
| 743 |
} |
|
| 744 |
} |
|
| 745 |
|
|
| 746 |
if (targets.size() == 0) {
|
|
| 747 |
child_lists[source].first = INVALID; |
|
| 748 |
} else if (targets.size() == 1) {
|
|
| 749 |
child_lists[source].first = targets[0]; |
|
| 750 |
child_lists[targets[0]].prev = INVALID; |
|
| 751 |
child_lists[targets[0]].next = INVALID; |
|
| 752 |
} else {
|
|
| 753 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
| 754 |
for (int i = 1; i < int(targets.size()); ++i) {
|
|
| 755 |
child_lists[targets[i]].prev = targets[i - 1]; |
|
| 756 |
child_lists[targets[i - 1]].next = targets[i]; |
|
| 757 |
} |
|
| 758 |
child_lists[targets.back()].next = INVALID; |
|
| 759 |
child_lists[targets.front()].prev = INVALID; |
|
| 760 |
child_lists[source].first = targets.front(); |
|
| 761 |
} |
|
| 762 |
} |
|
| 763 |
} |
|
| 764 |
|
|
| 765 |
void walkUp(const Node& node, Node root, int rorder, |
|
| 766 |
const PredMap& pred_map, const LowMap& low_map, |
|
| 767 |
const OrderMap& order_map, const OrderList& order_list, |
|
| 768 |
NodeData& node_data, MergeRoots& merge_roots) {
|
|
| 769 |
|
|
| 770 |
int na, nb; |
|
| 771 |
bool da, db; |
|
| 772 |
|
|
| 773 |
na = nb = order_map[node]; |
|
| 774 |
da = true; db = false; |
|
| 775 |
|
|
| 776 |
while (true) {
|
|
| 777 |
|
|
| 778 |
if (node_data[na].visited == rorder) break; |
|
| 779 |
if (node_data[nb].visited == rorder) break; |
|
| 780 |
|
|
| 781 |
node_data[na].visited = rorder; |
|
| 782 |
node_data[nb].visited = rorder; |
|
| 783 |
|
|
| 784 |
int rn = -1; |
|
| 785 |
|
|
| 786 |
if (na >= int(order_list.size())) {
|
|
| 787 |
rn = na; |
|
| 788 |
} else if (nb >= int(order_list.size())) {
|
|
| 789 |
rn = nb; |
|
| 790 |
} |
|
| 791 |
|
|
| 792 |
if (rn == -1) {
|
|
| 793 |
int nn; |
|
| 794 |
|
|
| 795 |
nn = da ? node_data[na].prev : node_data[na].next; |
|
| 796 |
da = node_data[nn].prev != na; |
|
| 797 |
na = nn; |
|
| 798 |
|
|
| 799 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
|
| 800 |
db = node_data[nn].prev != nb; |
|
| 801 |
nb = nn; |
|
| 802 |
|
|
| 803 |
} else {
|
|
| 804 |
|
|
| 805 |
Node rep = order_list[rn - order_list.size()]; |
|
| 806 |
Node parent = _graph.source(pred_map[rep]); |
|
| 807 |
|
|
| 808 |
if (low_map[rep] < rorder) {
|
|
| 809 |
merge_roots[parent].push_back(rn); |
|
| 810 |
} else {
|
|
| 811 |
merge_roots[parent].push_front(rn); |
|
| 812 |
} |
|
| 813 |
|
|
| 814 |
if (parent != root) {
|
|
| 815 |
na = nb = order_map[parent]; |
|
| 816 |
da = true; db = false; |
|
| 817 |
} else {
|
|
| 818 |
break; |
|
| 819 |
} |
|
| 820 |
} |
|
| 821 |
} |
|
| 822 |
} |
|
| 823 |
|
|
| 824 |
void walkDown(int rn, int rorder, NodeData& node_data, |
|
| 825 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
| 826 |
OrderList& order_list, ChildLists& child_lists, |
|
| 827 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
| 828 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 829 |
|
|
| 830 |
std::vector<std::pair<int, bool> > merge_stack; |
|
| 831 |
|
|
| 832 |
for (int di = 0; di < 2; ++di) {
|
|
| 833 |
bool rd = di == 0; |
|
| 834 |
int pn = rn; |
|
| 835 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
| 836 |
|
|
| 837 |
while (n != rn) {
|
|
| 838 |
|
|
| 839 |
Node node = order_list[n]; |
|
| 840 |
|
|
| 841 |
if (embed_arc[node] != INVALID) {
|
|
| 842 |
|
|
| 843 |
// Merging components on the critical path |
|
| 844 |
while (!merge_stack.empty()) {
|
|
| 845 |
|
|
| 846 |
// Component root |
|
| 847 |
int cn = merge_stack.back().first; |
|
| 848 |
bool cd = merge_stack.back().second; |
|
| 849 |
merge_stack.pop_back(); |
|
| 850 |
|
|
| 851 |
// Parent of component |
|
| 852 |
int dn = merge_stack.back().first; |
|
| 853 |
bool dd = merge_stack.back().second; |
|
| 854 |
merge_stack.pop_back(); |
|
| 855 |
|
|
| 856 |
Node parent = order_list[dn]; |
|
| 857 |
|
|
| 858 |
// Erasing from merge_roots |
|
| 859 |
merge_roots[parent].pop_front(); |
|
| 860 |
|
|
| 861 |
Node child = order_list[cn - order_list.size()]; |
|
| 862 |
|
|
| 863 |
// Erasing from child_lists |
|
| 864 |
if (child_lists[child].prev != INVALID) {
|
|
| 865 |
child_lists[child_lists[child].prev].next = |
|
| 866 |
child_lists[child].next; |
|
| 867 |
} else {
|
|
| 868 |
child_lists[parent].first = child_lists[child].next; |
|
| 869 |
} |
|
| 870 |
|
|
| 871 |
if (child_lists[child].next != INVALID) {
|
|
| 872 |
child_lists[child_lists[child].next].prev = |
|
| 873 |
child_lists[child].prev; |
|
| 874 |
} |
|
| 875 |
|
|
| 876 |
// Merging arcs + flipping |
|
| 877 |
Arc de = node_data[dn].first; |
|
| 878 |
Arc ce = node_data[cn].first; |
|
| 879 |
|
|
| 880 |
flip_map[order_list[cn - order_list.size()]] = cd != dd; |
|
| 881 |
if (cd != dd) {
|
|
| 882 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
| 883 |
ce = arc_lists[ce].prev; |
|
| 884 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
| 885 |
} |
|
| 886 |
|
|
| 887 |
{
|
|
| 888 |
Arc dne = arc_lists[de].next; |
|
| 889 |
Arc cne = arc_lists[ce].next; |
|
| 890 |
|
|
| 891 |
arc_lists[de].next = cne; |
|
| 892 |
arc_lists[ce].next = dne; |
|
| 893 |
|
|
| 894 |
arc_lists[dne].prev = ce; |
|
| 895 |
arc_lists[cne].prev = de; |
|
| 896 |
} |
|
| 897 |
|
|
| 898 |
if (dd) {
|
|
| 899 |
node_data[dn].first = ce; |
|
| 900 |
} |
|
| 901 |
|
|
| 902 |
// Merging external faces |
|
| 903 |
{
|
|
| 904 |
int en = cn; |
|
| 905 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
| 906 |
cd = node_data[cn].next == en; |
|
| 907 |
|
|
| 908 |
if (node_data[cn].prev == node_data[cn].next && |
|
| 909 |
node_data[cn].inverted) {
|
|
| 910 |
cd = !cd; |
|
| 911 |
} |
|
| 912 |
} |
|
| 913 |
|
|
| 914 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
| 915 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
| 916 |
|
|
| 917 |
} |
|
| 918 |
|
|
| 919 |
bool d = pn == node_data[n].prev; |
|
| 920 |
|
|
| 921 |
if (node_data[n].prev == node_data[n].next && |
|
| 922 |
node_data[n].inverted) {
|
|
| 923 |
d = !d; |
|
| 924 |
} |
|
| 925 |
|
|
| 926 |
// Add new arc |
|
| 927 |
{
|
|
| 928 |
Arc arc = embed_arc[node]; |
|
| 929 |
Arc re = node_data[rn].first; |
|
| 930 |
|
|
| 931 |
arc_lists[arc_lists[re].next].prev = arc; |
|
| 932 |
arc_lists[arc].next = arc_lists[re].next; |
|
| 933 |
arc_lists[arc].prev = re; |
|
| 934 |
arc_lists[re].next = arc; |
|
| 935 |
|
|
| 936 |
if (!rd) {
|
|
| 937 |
node_data[rn].first = arc; |
|
| 938 |
} |
|
| 939 |
|
|
| 940 |
Arc rev = _graph.oppositeArc(arc); |
|
| 941 |
Arc e = node_data[n].first; |
|
| 942 |
|
|
| 943 |
arc_lists[arc_lists[e].next].prev = rev; |
|
| 944 |
arc_lists[rev].next = arc_lists[e].next; |
|
| 945 |
arc_lists[rev].prev = e; |
|
| 946 |
arc_lists[e].next = rev; |
|
| 947 |
|
|
| 948 |
if (d) {
|
|
| 949 |
node_data[n].first = rev; |
|
| 950 |
} |
|
| 951 |
|
|
| 952 |
} |
|
| 953 |
|
|
| 954 |
// Embedding arc into external face |
|
| 955 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
| 956 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
| 957 |
pn = rn; |
|
| 958 |
|
|
| 959 |
embed_arc[order_list[n]] = INVALID; |
|
| 960 |
} |
|
| 961 |
|
|
| 962 |
if (!merge_roots[node].empty()) {
|
|
| 963 |
|
|
| 964 |
bool d = pn == node_data[n].prev; |
|
| 965 |
if (node_data[n].prev == node_data[n].next && |
|
| 966 |
node_data[n].inverted) {
|
|
| 967 |
d = !d; |
|
| 968 |
} |
|
| 969 |
|
|
| 970 |
merge_stack.push_back(std::make_pair(n, d)); |
|
| 971 |
|
|
| 972 |
int rn = merge_roots[node].front(); |
|
| 973 |
|
|
| 974 |
int xn = node_data[rn].next; |
|
| 975 |
Node xnode = order_list[xn]; |
|
| 976 |
|
|
| 977 |
int yn = node_data[rn].prev; |
|
| 978 |
Node ynode = order_list[yn]; |
|
| 979 |
|
|
| 980 |
bool rd; |
|
| 981 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 982 |
rd = true; |
|
| 983 |
} else if (!external(ynode, rorder, child_lists, |
|
| 984 |
ancestor_map, low_map)) {
|
|
| 985 |
rd = false; |
|
| 986 |
} else if (pertinent(xnode, embed_arc, merge_roots)) {
|
|
| 987 |
rd = true; |
|
| 988 |
} else {
|
|
| 989 |
rd = false; |
|
| 990 |
} |
|
| 991 |
|
|
| 992 |
merge_stack.push_back(std::make_pair(rn, rd)); |
|
| 993 |
|
|
| 994 |
pn = rn; |
|
| 995 |
n = rd ? xn : yn; |
|
| 996 |
|
|
| 997 |
} else if (!external(node, rorder, child_lists, |
|
| 998 |
ancestor_map, low_map)) {
|
|
| 999 |
int nn = (node_data[n].next != pn ? |
|
| 1000 |
node_data[n].next : node_data[n].prev); |
|
| 1001 |
|
|
| 1002 |
bool nd = n == node_data[nn].prev; |
|
| 1003 |
|
|
| 1004 |
if (nd) node_data[nn].prev = pn; |
|
| 1005 |
else node_data[nn].next = pn; |
|
| 1006 |
|
|
| 1007 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
| 1008 |
else node_data[pn].next = nn; |
|
| 1009 |
|
|
| 1010 |
node_data[nn].inverted = |
|
| 1011 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
|
| 1012 |
|
|
| 1013 |
n = nn; |
|
| 1014 |
} |
|
| 1015 |
else break; |
|
| 1016 |
|
|
| 1017 |
} |
|
| 1018 |
|
|
| 1019 |
if (!merge_stack.empty() || n == rn) {
|
|
| 1020 |
break; |
|
| 1021 |
} |
|
| 1022 |
} |
|
| 1023 |
} |
|
| 1024 |
|
|
| 1025 |
void initFace(const Node& node, ArcLists& arc_lists, |
|
| 1026 |
NodeData& node_data, const PredMap& pred_map, |
|
| 1027 |
const OrderMap& order_map, const OrderList& order_list) {
|
|
| 1028 |
int n = order_map[node]; |
|
| 1029 |
int rn = n + order_list.size(); |
|
| 1030 |
|
|
| 1031 |
node_data[n].next = node_data[n].prev = rn; |
|
| 1032 |
node_data[rn].next = node_data[rn].prev = n; |
|
| 1033 |
|
|
| 1034 |
node_data[n].visited = order_list.size(); |
|
| 1035 |
node_data[rn].visited = order_list.size(); |
|
| 1036 |
|
|
| 1037 |
node_data[n].inverted = false; |
|
| 1038 |
node_data[rn].inverted = false; |
|
| 1039 |
|
|
| 1040 |
Arc arc = pred_map[node]; |
|
| 1041 |
Arc rev = _graph.oppositeArc(arc); |
|
| 1042 |
|
|
| 1043 |
node_data[rn].first = arc; |
|
| 1044 |
node_data[n].first = rev; |
|
| 1045 |
|
|
| 1046 |
arc_lists[arc].prev = arc; |
|
| 1047 |
arc_lists[arc].next = arc; |
|
| 1048 |
|
|
| 1049 |
arc_lists[rev].prev = rev; |
|
| 1050 |
arc_lists[rev].next = rev; |
|
| 1051 |
|
|
| 1052 |
} |
|
| 1053 |
|
|
| 1054 |
void mergeRemainingFaces(const Node& node, NodeData& node_data, |
|
| 1055 |
OrderList& order_list, OrderMap& order_map, |
|
| 1056 |
ChildLists& child_lists, ArcLists& arc_lists) {
|
|
| 1057 |
while (child_lists[node].first != INVALID) {
|
|
| 1058 |
int dd = order_map[node]; |
|
| 1059 |
Node child = child_lists[node].first; |
|
| 1060 |
int cd = order_map[child] + order_list.size(); |
|
| 1061 |
child_lists[node].first = child_lists[child].next; |
|
| 1062 |
|
|
| 1063 |
Arc de = node_data[dd].first; |
|
| 1064 |
Arc ce = node_data[cd].first; |
|
| 1065 |
|
|
| 1066 |
if (de != INVALID) {
|
|
| 1067 |
Arc dne = arc_lists[de].next; |
|
| 1068 |
Arc cne = arc_lists[ce].next; |
|
| 1069 |
|
|
| 1070 |
arc_lists[de].next = cne; |
|
| 1071 |
arc_lists[ce].next = dne; |
|
| 1072 |
|
|
| 1073 |
arc_lists[dne].prev = ce; |
|
| 1074 |
arc_lists[cne].prev = de; |
|
| 1075 |
} |
|
| 1076 |
|
|
| 1077 |
node_data[dd].first = ce; |
|
| 1078 |
|
|
| 1079 |
} |
|
| 1080 |
} |
|
| 1081 |
|
|
| 1082 |
void storeEmbedding(const Node& node, NodeData& node_data, |
|
| 1083 |
OrderMap& order_map, PredMap& pred_map, |
|
| 1084 |
ArcLists& arc_lists, FlipMap& flip_map) {
|
|
| 1085 |
|
|
| 1086 |
if (node_data[order_map[node]].first == INVALID) return; |
|
| 1087 |
|
|
| 1088 |
if (pred_map[node] != INVALID) {
|
|
| 1089 |
Node source = _graph.source(pred_map[node]); |
|
| 1090 |
flip_map[node] = flip_map[node] != flip_map[source]; |
|
| 1091 |
} |
|
| 1092 |
|
|
| 1093 |
Arc first = node_data[order_map[node]].first; |
|
| 1094 |
Arc prev = first; |
|
| 1095 |
|
|
| 1096 |
Arc arc = flip_map[node] ? |
|
| 1097 |
arc_lists[prev].prev : arc_lists[prev].next; |
|
| 1098 |
|
|
| 1099 |
_embedding[prev] = arc; |
|
| 1100 |
|
|
| 1101 |
while (arc != first) {
|
|
| 1102 |
Arc next = arc_lists[arc].prev == prev ? |
|
| 1103 |
arc_lists[arc].next : arc_lists[arc].prev; |
|
| 1104 |
prev = arc; arc = next; |
|
| 1105 |
_embedding[prev] = arc; |
|
| 1106 |
} |
|
| 1107 |
} |
|
| 1108 |
|
|
| 1109 |
|
|
| 1110 |
bool external(const Node& node, int rorder, |
|
| 1111 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 1112 |
LowMap& low_map) {
|
|
| 1113 |
Node child = child_lists[node].first; |
|
| 1114 |
|
|
| 1115 |
if (child != INVALID) {
|
|
| 1116 |
if (low_map[child] < rorder) return true; |
|
| 1117 |
} |
|
| 1118 |
|
|
| 1119 |
if (ancestor_map[node] < rorder) return true; |
|
| 1120 |
|
|
| 1121 |
return false; |
|
| 1122 |
} |
|
| 1123 |
|
|
| 1124 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
| 1125 |
const MergeRoots& merge_roots) {
|
|
| 1126 |
return !merge_roots[node].empty() || embed_arc[node] != INVALID; |
|
| 1127 |
} |
|
| 1128 |
|
|
| 1129 |
int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists, |
|
| 1130 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
|
| 1131 |
int low_point; |
|
| 1132 |
|
|
| 1133 |
Node child = child_lists[node].first; |
|
| 1134 |
|
|
| 1135 |
if (child != INVALID) {
|
|
| 1136 |
low_point = low_map[child]; |
|
| 1137 |
} else {
|
|
| 1138 |
low_point = order_map[node]; |
|
| 1139 |
} |
|
| 1140 |
|
|
| 1141 |
if (low_point > ancestor_map[node]) {
|
|
| 1142 |
low_point = ancestor_map[node]; |
|
| 1143 |
} |
|
| 1144 |
|
|
| 1145 |
return low_point; |
|
| 1146 |
} |
|
| 1147 |
|
|
| 1148 |
int findComponentRoot(Node root, Node node, ChildLists& child_lists, |
|
| 1149 |
OrderMap& order_map, OrderList& order_list) {
|
|
| 1150 |
|
|
| 1151 |
int order = order_map[root]; |
|
| 1152 |
int norder = order_map[node]; |
|
| 1153 |
|
|
| 1154 |
Node child = child_lists[root].first; |
|
| 1155 |
while (child != INVALID) {
|
|
| 1156 |
int corder = order_map[child]; |
|
| 1157 |
if (corder > order && corder < norder) {
|
|
| 1158 |
order = corder; |
|
| 1159 |
} |
|
| 1160 |
child = child_lists[child].next; |
|
| 1161 |
} |
|
| 1162 |
return order + order_list.size(); |
|
| 1163 |
} |
|
| 1164 |
|
|
| 1165 |
Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data, |
|
| 1166 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 1167 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
|
| 1168 |
while (!pertinent(wnode, embed_arc, merge_roots)) {
|
|
| 1169 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
|
| 1170 |
} |
|
| 1171 |
return wnode; |
|
| 1172 |
} |
|
| 1173 |
|
|
| 1174 |
|
|
| 1175 |
Node findExternal(Node node, int rorder, OrderMap& order_map, |
|
| 1176 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 1177 |
LowMap& low_map, NodeData& node_data) {
|
|
| 1178 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
|
| 1179 |
while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 1180 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
|
| 1181 |
} |
|
| 1182 |
return wnode; |
|
| 1183 |
} |
|
| 1184 |
|
|
| 1185 |
void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, |
|
| 1186 |
OrderList& order_list, OrderMap& order_map, |
|
| 1187 |
NodeData& node_data, ArcLists& arc_lists, |
|
| 1188 |
EmbedArc& embed_arc, MergeRoots& merge_roots, |
|
| 1189 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
| 1190 |
LowMap& low_map) {
|
|
| 1191 |
|
|
| 1192 |
Node cnode = node; |
|
| 1193 |
Node pred = INVALID; |
|
| 1194 |
|
|
| 1195 |
while (true) {
|
|
| 1196 |
|
|
| 1197 |
bool pert = pertinent(cnode, embed_arc, merge_roots); |
|
| 1198 |
bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map); |
|
| 1199 |
|
|
| 1200 |
if (pert && ext) {
|
|
| 1201 |
if (!merge_roots[cnode].empty()) {
|
|
| 1202 |
int cn = merge_roots[cnode].back(); |
|
| 1203 |
|
|
| 1204 |
if (low_map[order_list[cn - order_list.size()]] < rorder) {
|
|
| 1205 |
Arc arc = node_data[cn].first; |
|
| 1206 |
_kuratowski.set(arc, true); |
|
| 1207 |
|
|
| 1208 |
pred = cnode; |
|
| 1209 |
cnode = _graph.target(arc); |
|
| 1210 |
|
|
| 1211 |
continue; |
|
| 1212 |
} |
|
| 1213 |
} |
|
| 1214 |
wnode = znode = cnode; |
|
| 1215 |
return; |
|
| 1216 |
|
|
| 1217 |
} else if (pert) {
|
|
| 1218 |
wnode = cnode; |
|
| 1219 |
|
|
| 1220 |
while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 1221 |
Arc arc = node_data[order_map[cnode]].first; |
|
| 1222 |
|
|
| 1223 |
if (_graph.target(arc) == pred) {
|
|
| 1224 |
arc = arc_lists[arc].next; |
|
| 1225 |
} |
|
| 1226 |
_kuratowski.set(arc, true); |
|
| 1227 |
|
|
| 1228 |
Node next = _graph.target(arc); |
|
| 1229 |
pred = cnode; cnode = next; |
|
| 1230 |
} |
|
| 1231 |
|
|
| 1232 |
znode = cnode; |
|
| 1233 |
return; |
|
| 1234 |
|
|
| 1235 |
} else if (ext) {
|
|
| 1236 |
znode = cnode; |
|
| 1237 |
|
|
| 1238 |
while (!pertinent(cnode, embed_arc, merge_roots)) {
|
|
| 1239 |
Arc arc = node_data[order_map[cnode]].first; |
|
| 1240 |
|
|
| 1241 |
if (_graph.target(arc) == pred) {
|
|
| 1242 |
arc = arc_lists[arc].next; |
|
| 1243 |
} |
|
| 1244 |
_kuratowski.set(arc, true); |
|
| 1245 |
|
|
| 1246 |
Node next = _graph.target(arc); |
|
| 1247 |
pred = cnode; cnode = next; |
|
| 1248 |
} |
|
| 1249 |
|
|
| 1250 |
wnode = cnode; |
|
| 1251 |
return; |
|
| 1252 |
|
|
| 1253 |
} else {
|
|
| 1254 |
Arc arc = node_data[order_map[cnode]].first; |
|
| 1255 |
|
|
| 1256 |
if (_graph.target(arc) == pred) {
|
|
| 1257 |
arc = arc_lists[arc].next; |
|
| 1258 |
} |
|
| 1259 |
_kuratowski.set(arc, true); |
|
| 1260 |
|
|
| 1261 |
Node next = _graph.target(arc); |
|
| 1262 |
pred = cnode; cnode = next; |
|
| 1263 |
} |
|
| 1264 |
|
|
| 1265 |
} |
|
| 1266 |
|
|
| 1267 |
} |
|
| 1268 |
|
|
| 1269 |
void orientComponent(Node root, int rn, OrderMap& order_map, |
|
| 1270 |
PredMap& pred_map, NodeData& node_data, |
|
| 1271 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
| 1272 |
TypeMap& type_map) {
|
|
| 1273 |
node_data[order_map[root]].first = node_data[rn].first; |
|
| 1274 |
type_map[root] = 1; |
|
| 1275 |
|
|
| 1276 |
std::vector<Node> st, qu; |
|
| 1277 |
|
|
| 1278 |
st.push_back(root); |
|
| 1279 |
while (!st.empty()) {
|
|
| 1280 |
Node node = st.back(); |
|
| 1281 |
st.pop_back(); |
|
| 1282 |
qu.push_back(node); |
|
| 1283 |
|
|
| 1284 |
Arc arc = node_data[order_map[node]].first; |
|
| 1285 |
|
|
| 1286 |
if (type_map[_graph.target(arc)] == 0) {
|
|
| 1287 |
st.push_back(_graph.target(arc)); |
|
| 1288 |
type_map[_graph.target(arc)] = 1; |
|
| 1289 |
} |
|
| 1290 |
|
|
| 1291 |
Arc last = arc, pred = arc; |
|
| 1292 |
arc = arc_lists[arc].next; |
|
| 1293 |
while (arc != last) {
|
|
| 1294 |
|
|
| 1295 |
if (type_map[_graph.target(arc)] == 0) {
|
|
| 1296 |
st.push_back(_graph.target(arc)); |
|
| 1297 |
type_map[_graph.target(arc)] = 1; |
|
| 1298 |
} |
|
| 1299 |
|
|
| 1300 |
Arc next = arc_lists[arc].next != pred ? |
|
| 1301 |
arc_lists[arc].next : arc_lists[arc].prev; |
|
| 1302 |
pred = arc; arc = next; |
|
| 1303 |
} |
|
| 1304 |
|
|
| 1305 |
} |
|
| 1306 |
|
|
| 1307 |
type_map[root] = 2; |
|
| 1308 |
flip_map[root] = false; |
|
| 1309 |
|
|
| 1310 |
for (int i = 1; i < int(qu.size()); ++i) {
|
|
| 1311 |
|
|
| 1312 |
Node node = qu[i]; |
|
| 1313 |
|
|
| 1314 |
while (type_map[node] != 2) {
|
|
| 1315 |
st.push_back(node); |
|
| 1316 |
type_map[node] = 2; |
|
| 1317 |
node = _graph.source(pred_map[node]); |
|
| 1318 |
} |
|
| 1319 |
|
|
| 1320 |
bool flip = flip_map[node]; |
|
| 1321 |
|
|
| 1322 |
while (!st.empty()) {
|
|
| 1323 |
node = st.back(); |
|
| 1324 |
st.pop_back(); |
|
| 1325 |
|
|
| 1326 |
flip_map[node] = flip != flip_map[node]; |
|
| 1327 |
flip = flip_map[node]; |
|
| 1328 |
|
|
| 1329 |
if (flip) {
|
|
| 1330 |
Arc arc = node_data[order_map[node]].first; |
|
| 1331 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
| 1332 |
arc = arc_lists[arc].prev; |
|
| 1333 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
| 1334 |
node_data[order_map[node]].first = arc; |
|
| 1335 |
} |
|
| 1336 |
} |
|
| 1337 |
} |
|
| 1338 |
|
|
| 1339 |
for (int i = 0; i < int(qu.size()); ++i) {
|
|
| 1340 |
|
|
| 1341 |
Arc arc = node_data[order_map[qu[i]]].first; |
|
| 1342 |
Arc last = arc, pred = arc; |
|
| 1343 |
|
|
| 1344 |
arc = arc_lists[arc].next; |
|
| 1345 |
while (arc != last) {
|
|
| 1346 |
|
|
| 1347 |
if (arc_lists[arc].next == pred) {
|
|
| 1348 |
std::swap(arc_lists[arc].next, arc_lists[arc].prev); |
|
| 1349 |
} |
|
| 1350 |
pred = arc; arc = arc_lists[arc].next; |
|
| 1351 |
} |
|
| 1352 |
|
|
| 1353 |
} |
|
| 1354 |
} |
|
| 1355 |
|
|
| 1356 |
void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode, |
|
| 1357 |
OrderMap& order_map, NodeData& node_data, |
|
| 1358 |
TypeMap& type_map) {
|
|
| 1359 |
Node node = _graph.target(node_data[order_map[root]].first); |
|
| 1360 |
|
|
| 1361 |
while (node != ynode) {
|
|
| 1362 |
type_map[node] = HIGHY; |
|
| 1363 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1364 |
} |
|
| 1365 |
|
|
| 1366 |
while (node != wnode) {
|
|
| 1367 |
type_map[node] = LOWY; |
|
| 1368 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1369 |
} |
|
| 1370 |
|
|
| 1371 |
node = _graph.target(node_data[order_map[wnode]].first); |
|
| 1372 |
|
|
| 1373 |
while (node != xnode) {
|
|
| 1374 |
type_map[node] = LOWX; |
|
| 1375 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1376 |
} |
|
| 1377 |
type_map[node] = LOWX; |
|
| 1378 |
|
|
| 1379 |
node = _graph.target(node_data[order_map[xnode]].first); |
|
| 1380 |
while (node != root) {
|
|
| 1381 |
type_map[node] = HIGHX; |
|
| 1382 |
node = _graph.target(node_data[order_map[node]].first); |
|
| 1383 |
} |
|
| 1384 |
|
|
| 1385 |
type_map[wnode] = PERTINENT; |
|
| 1386 |
type_map[root] = ROOT; |
|
| 1387 |
} |
|
| 1388 |
|
|
| 1389 |
void findInternalPath(std::vector<Arc>& ipath, |
|
| 1390 |
Node wnode, Node root, TypeMap& type_map, |
|
| 1391 |
OrderMap& order_map, NodeData& node_data, |
|
| 1392 |
ArcLists& arc_lists) {
|
|
| 1393 |
std::vector<Arc> st; |
|
| 1394 |
|
|
| 1395 |
Node node = wnode; |
|
| 1396 |
|
|
| 1397 |
while (node != root) {
|
|
| 1398 |
Arc arc = arc_lists[node_data[order_map[node]].first].next; |
|
| 1399 |
st.push_back(arc); |
|
| 1400 |
node = _graph.target(arc); |
|
| 1401 |
} |
|
| 1402 |
|
|
| 1403 |
while (true) {
|
|
| 1404 |
Arc arc = st.back(); |
|
| 1405 |
if (type_map[_graph.target(arc)] == LOWX || |
|
| 1406 |
type_map[_graph.target(arc)] == HIGHX) {
|
|
| 1407 |
break; |
|
| 1408 |
} |
|
| 1409 |
if (type_map[_graph.target(arc)] == 2) {
|
|
| 1410 |
type_map[_graph.target(arc)] = 3; |
|
| 1411 |
|
|
| 1412 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
| 1413 |
st.push_back(arc); |
|
| 1414 |
} else {
|
|
| 1415 |
st.pop_back(); |
|
| 1416 |
arc = arc_lists[arc].next; |
|
| 1417 |
|
|
| 1418 |
while (_graph.oppositeArc(arc) == st.back()) {
|
|
| 1419 |
arc = st.back(); |
|
| 1420 |
st.pop_back(); |
|
| 1421 |
arc = arc_lists[arc].next; |
|
| 1422 |
} |
|
| 1423 |
st.push_back(arc); |
|
| 1424 |
} |
|
| 1425 |
} |
|
| 1426 |
|
|
| 1427 |
for (int i = 0; i < int(st.size()); ++i) {
|
|
| 1428 |
if (type_map[_graph.target(st[i])] != LOWY && |
|
| 1429 |
type_map[_graph.target(st[i])] != HIGHY) {
|
|
| 1430 |
for (; i < int(st.size()); ++i) {
|
|
| 1431 |
ipath.push_back(st[i]); |
|
| 1432 |
} |
|
| 1433 |
} |
|
| 1434 |
} |
|
| 1435 |
} |
|
| 1436 |
|
|
| 1437 |
void setInternalFlags(std::vector<Arc>& ipath, TypeMap& type_map) {
|
|
| 1438 |
for (int i = 1; i < int(ipath.size()); ++i) {
|
|
| 1439 |
type_map[_graph.source(ipath[i])] = INTERNAL; |
|
| 1440 |
} |
|
| 1441 |
} |
|
| 1442 |
|
|
| 1443 |
void findPilePath(std::vector<Arc>& ppath, |
|
| 1444 |
Node root, TypeMap& type_map, OrderMap& order_map, |
|
| 1445 |
NodeData& node_data, ArcLists& arc_lists) {
|
|
| 1446 |
std::vector<Arc> st; |
|
| 1447 |
|
|
| 1448 |
st.push_back(_graph.oppositeArc(node_data[order_map[root]].first)); |
|
| 1449 |
st.push_back(node_data[order_map[root]].first); |
|
| 1450 |
|
|
| 1451 |
while (st.size() > 1) {
|
|
| 1452 |
Arc arc = st.back(); |
|
| 1453 |
if (type_map[_graph.target(arc)] == INTERNAL) {
|
|
| 1454 |
break; |
|
| 1455 |
} |
|
| 1456 |
if (type_map[_graph.target(arc)] == 3) {
|
|
| 1457 |
type_map[_graph.target(arc)] = 4; |
|
| 1458 |
|
|
| 1459 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
| 1460 |
st.push_back(arc); |
|
| 1461 |
} else {
|
|
| 1462 |
st.pop_back(); |
|
| 1463 |
arc = arc_lists[arc].next; |
|
| 1464 |
|
|
| 1465 |
while (!st.empty() && _graph.oppositeArc(arc) == st.back()) {
|
|
| 1466 |
arc = st.back(); |
|
| 1467 |
st.pop_back(); |
|
| 1468 |
arc = arc_lists[arc].next; |
|
| 1469 |
} |
|
| 1470 |
st.push_back(arc); |
|
| 1471 |
} |
|
| 1472 |
} |
|
| 1473 |
|
|
| 1474 |
for (int i = 1; i < int(st.size()); ++i) {
|
|
| 1475 |
ppath.push_back(st[i]); |
|
| 1476 |
} |
|
| 1477 |
} |
|
| 1478 |
|
|
| 1479 |
|
|
| 1480 |
int markExternalPath(Node node, OrderMap& order_map, |
|
| 1481 |
ChildLists& child_lists, PredMap& pred_map, |
|
| 1482 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
|
| 1483 |
int lp = lowPoint(node, order_map, child_lists, |
|
| 1484 |
ancestor_map, low_map); |
|
| 1485 |
|
|
| 1486 |
if (ancestor_map[node] != lp) {
|
|
| 1487 |
node = child_lists[node].first; |
|
| 1488 |
_kuratowski[pred_map[node]] = true; |
|
| 1489 |
|
|
| 1490 |
while (ancestor_map[node] != lp) {
|
|
| 1491 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 1492 |
Node tnode = _graph.target(e); |
|
| 1493 |
if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
|
|
| 1494 |
node = tnode; |
|
| 1495 |
_kuratowski[e] = true; |
|
| 1496 |
break; |
|
| 1497 |
} |
|
| 1498 |
} |
|
| 1499 |
} |
|
| 1500 |
} |
|
| 1501 |
|
|
| 1502 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
|
| 1503 |
if (order_map[_graph.target(e)] == lp) {
|
|
| 1504 |
_kuratowski[e] = true; |
|
| 1505 |
break; |
|
| 1506 |
} |
|
| 1507 |
} |
|
| 1508 |
|
|
| 1509 |
return lp; |
|
| 1510 |
} |
|
| 1511 |
|
|
| 1512 |
void markPertinentPath(Node node, OrderMap& order_map, |
|
| 1513 |
NodeData& node_data, ArcLists& arc_lists, |
|
| 1514 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 1515 |
while (embed_arc[node] == INVALID) {
|
|
| 1516 |
int n = merge_roots[node].front(); |
|
| 1517 |
Arc arc = node_data[n].first; |
|
| 1518 |
|
|
| 1519 |
_kuratowski.set(arc, true); |
|
| 1520 |
|
|
| 1521 |
Node pred = node; |
|
| 1522 |
node = _graph.target(arc); |
|
| 1523 |
while (!pertinent(node, embed_arc, merge_roots)) {
|
|
| 1524 |
arc = node_data[order_map[node]].first; |
|
| 1525 |
if (_graph.target(arc) == pred) {
|
|
| 1526 |
arc = arc_lists[arc].next; |
|
| 1527 |
} |
|
| 1528 |
_kuratowski.set(arc, true); |
|
| 1529 |
pred = node; |
|
| 1530 |
node = _graph.target(arc); |
|
| 1531 |
} |
|
| 1532 |
} |
|
| 1533 |
_kuratowski.set(embed_arc[node], true); |
|
| 1534 |
} |
|
| 1535 |
|
|
| 1536 |
void markPredPath(Node node, Node snode, PredMap& pred_map) {
|
|
| 1537 |
while (node != snode) {
|
|
| 1538 |
_kuratowski.set(pred_map[node], true); |
|
| 1539 |
node = _graph.source(pred_map[node]); |
|
| 1540 |
} |
|
| 1541 |
} |
|
| 1542 |
|
|
| 1543 |
void markFacePath(Node ynode, Node xnode, |
|
| 1544 |
OrderMap& order_map, NodeData& node_data) {
|
|
| 1545 |
Arc arc = node_data[order_map[ynode]].first; |
|
| 1546 |
Node node = _graph.target(arc); |
|
| 1547 |
_kuratowski.set(arc, true); |
|
| 1548 |
|
|
| 1549 |
while (node != xnode) {
|
|
| 1550 |
arc = node_data[order_map[node]].first; |
|
| 1551 |
_kuratowski.set(arc, true); |
|
| 1552 |
node = _graph.target(arc); |
|
| 1553 |
} |
|
| 1554 |
} |
|
| 1555 |
|
|
| 1556 |
void markInternalPath(std::vector<Arc>& path) {
|
|
| 1557 |
for (int i = 0; i < int(path.size()); ++i) {
|
|
| 1558 |
_kuratowski.set(path[i], true); |
|
| 1559 |
} |
|
| 1560 |
} |
|
| 1561 |
|
|
| 1562 |
void markPilePath(std::vector<Arc>& path) {
|
|
| 1563 |
for (int i = 0; i < int(path.size()); ++i) {
|
|
| 1564 |
_kuratowski.set(path[i], true); |
|
| 1565 |
} |
|
| 1566 |
} |
|
| 1567 |
|
|
| 1568 |
void isolateKuratowski(Arc arc, NodeData& node_data, |
|
| 1569 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
| 1570 |
OrderMap& order_map, OrderList& order_list, |
|
| 1571 |
PredMap& pred_map, ChildLists& child_lists, |
|
| 1572 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
| 1573 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
|
| 1574 |
|
|
| 1575 |
Node root = _graph.source(arc); |
|
| 1576 |
Node enode = _graph.target(arc); |
|
| 1577 |
|
|
| 1578 |
int rorder = order_map[root]; |
|
| 1579 |
|
|
| 1580 |
TypeMap type_map(_graph, 0); |
|
| 1581 |
|
|
| 1582 |
int rn = findComponentRoot(root, enode, child_lists, |
|
| 1583 |
order_map, order_list); |
|
| 1584 |
|
|
| 1585 |
Node xnode = order_list[node_data[rn].next]; |
|
| 1586 |
Node ynode = order_list[node_data[rn].prev]; |
|
| 1587 |
|
|
| 1588 |
// Minor-A |
|
| 1589 |
{
|
|
| 1590 |
while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
|
|
| 1591 |
|
|
| 1592 |
if (!merge_roots[xnode].empty()) {
|
|
| 1593 |
root = xnode; |
|
| 1594 |
rn = merge_roots[xnode].front(); |
|
| 1595 |
} else {
|
|
| 1596 |
root = ynode; |
|
| 1597 |
rn = merge_roots[ynode].front(); |
|
| 1598 |
} |
|
| 1599 |
|
|
| 1600 |
xnode = order_list[node_data[rn].next]; |
|
| 1601 |
ynode = order_list[node_data[rn].prev]; |
|
| 1602 |
} |
|
| 1603 |
|
|
| 1604 |
if (root != _graph.source(arc)) {
|
|
| 1605 |
orientComponent(root, rn, order_map, pred_map, |
|
| 1606 |
node_data, arc_lists, flip_map, type_map); |
|
| 1607 |
markFacePath(root, root, order_map, node_data); |
|
| 1608 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1609 |
pred_map, ancestor_map, low_map); |
|
| 1610 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1611 |
pred_map, ancestor_map, low_map); |
|
| 1612 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1613 |
Node lwnode = findPertinent(ynode, order_map, node_data, |
|
| 1614 |
embed_arc, merge_roots); |
|
| 1615 |
|
|
| 1616 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
| 1617 |
embed_arc, merge_roots); |
|
| 1618 |
|
|
| 1619 |
return; |
|
| 1620 |
} |
|
| 1621 |
} |
|
| 1622 |
|
|
| 1623 |
orientComponent(root, rn, order_map, pred_map, |
|
| 1624 |
node_data, arc_lists, flip_map, type_map); |
|
| 1625 |
|
|
| 1626 |
Node wnode = findPertinent(ynode, order_map, node_data, |
|
| 1627 |
embed_arc, merge_roots); |
|
| 1628 |
setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map); |
|
| 1629 |
|
|
| 1630 |
|
|
| 1631 |
//Minor-B |
|
| 1632 |
if (!merge_roots[wnode].empty()) {
|
|
| 1633 |
int cn = merge_roots[wnode].back(); |
|
| 1634 |
Node rep = order_list[cn - order_list.size()]; |
|
| 1635 |
if (low_map[rep] < rorder) {
|
|
| 1636 |
markFacePath(root, root, order_map, node_data); |
|
| 1637 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1638 |
pred_map, ancestor_map, low_map); |
|
| 1639 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1640 |
pred_map, ancestor_map, low_map); |
|
| 1641 |
|
|
| 1642 |
Node lwnode, lznode; |
|
| 1643 |
markCommonPath(wnode, rorder, lwnode, lznode, order_list, |
|
| 1644 |
order_map, node_data, arc_lists, embed_arc, |
|
| 1645 |
merge_roots, child_lists, ancestor_map, low_map); |
|
| 1646 |
|
|
| 1647 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
| 1648 |
embed_arc, merge_roots); |
|
| 1649 |
int zlp = markExternalPath(lznode, order_map, child_lists, |
|
| 1650 |
pred_map, ancestor_map, low_map); |
|
| 1651 |
|
|
| 1652 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1653 |
if (zlp < minlp) minlp = zlp; |
|
| 1654 |
|
|
| 1655 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
| 1656 |
if (zlp > maxlp) maxlp = zlp; |
|
| 1657 |
|
|
| 1658 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
| 1659 |
|
|
| 1660 |
return; |
|
| 1661 |
} |
|
| 1662 |
} |
|
| 1663 |
|
|
| 1664 |
Node pxnode, pynode; |
|
| 1665 |
std::vector<Arc> ipath; |
|
| 1666 |
findInternalPath(ipath, wnode, root, type_map, order_map, |
|
| 1667 |
node_data, arc_lists); |
|
| 1668 |
setInternalFlags(ipath, type_map); |
|
| 1669 |
pynode = _graph.source(ipath.front()); |
|
| 1670 |
pxnode = _graph.target(ipath.back()); |
|
| 1671 |
|
|
| 1672 |
wnode = findPertinent(pynode, order_map, node_data, |
|
| 1673 |
embed_arc, merge_roots); |
|
| 1674 |
|
|
| 1675 |
// Minor-C |
|
| 1676 |
{
|
|
| 1677 |
if (type_map[_graph.source(ipath.front())] == HIGHY) {
|
|
| 1678 |
if (type_map[_graph.target(ipath.back())] == HIGHX) {
|
|
| 1679 |
markFacePath(xnode, pxnode, order_map, node_data); |
|
| 1680 |
} |
|
| 1681 |
markFacePath(root, xnode, order_map, node_data); |
|
| 1682 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1683 |
embed_arc, merge_roots); |
|
| 1684 |
markInternalPath(ipath); |
|
| 1685 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1686 |
pred_map, ancestor_map, low_map); |
|
| 1687 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1688 |
pred_map, ancestor_map, low_map); |
|
| 1689 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1690 |
return; |
|
| 1691 |
} |
|
| 1692 |
|
|
| 1693 |
if (type_map[_graph.target(ipath.back())] == HIGHX) {
|
|
| 1694 |
markFacePath(ynode, root, order_map, node_data); |
|
| 1695 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1696 |
embed_arc, merge_roots); |
|
| 1697 |
markInternalPath(ipath); |
|
| 1698 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1699 |
pred_map, ancestor_map, low_map); |
|
| 1700 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1701 |
pred_map, ancestor_map, low_map); |
|
| 1702 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1703 |
return; |
|
| 1704 |
} |
|
| 1705 |
} |
|
| 1706 |
|
|
| 1707 |
std::vector<Arc> ppath; |
|
| 1708 |
findPilePath(ppath, root, type_map, order_map, node_data, arc_lists); |
|
| 1709 |
|
|
| 1710 |
// Minor-D |
|
| 1711 |
if (!ppath.empty()) {
|
|
| 1712 |
markFacePath(ynode, xnode, order_map, node_data); |
|
| 1713 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1714 |
embed_arc, merge_roots); |
|
| 1715 |
markPilePath(ppath); |
|
| 1716 |
markInternalPath(ipath); |
|
| 1717 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1718 |
pred_map, ancestor_map, low_map); |
|
| 1719 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1720 |
pred_map, ancestor_map, low_map); |
|
| 1721 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1722 |
return; |
|
| 1723 |
} |
|
| 1724 |
|
|
| 1725 |
// Minor-E* |
|
| 1726 |
{
|
|
| 1727 |
|
|
| 1728 |
if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
|
| 1729 |
Node znode = findExternal(pynode, rorder, order_map, |
|
| 1730 |
child_lists, ancestor_map, |
|
| 1731 |
low_map, node_data); |
|
| 1732 |
|
|
| 1733 |
if (type_map[znode] == LOWY) {
|
|
| 1734 |
markFacePath(root, xnode, order_map, node_data); |
|
| 1735 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1736 |
embed_arc, merge_roots); |
|
| 1737 |
markInternalPath(ipath); |
|
| 1738 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1739 |
pred_map, ancestor_map, low_map); |
|
| 1740 |
int zlp = markExternalPath(znode, order_map, child_lists, |
|
| 1741 |
pred_map, ancestor_map, low_map); |
|
| 1742 |
markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map); |
|
| 1743 |
} else {
|
|
| 1744 |
markFacePath(ynode, root, order_map, node_data); |
|
| 1745 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1746 |
embed_arc, merge_roots); |
|
| 1747 |
markInternalPath(ipath); |
|
| 1748 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1749 |
pred_map, ancestor_map, low_map); |
|
| 1750 |
int zlp = markExternalPath(znode, order_map, child_lists, |
|
| 1751 |
pred_map, ancestor_map, low_map); |
|
| 1752 |
markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map); |
|
| 1753 |
} |
|
| 1754 |
return; |
|
| 1755 |
} |
|
| 1756 |
|
|
| 1757 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
| 1758 |
pred_map, ancestor_map, low_map); |
|
| 1759 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
| 1760 |
pred_map, ancestor_map, low_map); |
|
| 1761 |
int wlp = markExternalPath(wnode, order_map, child_lists, |
|
| 1762 |
pred_map, ancestor_map, low_map); |
|
| 1763 |
|
|
| 1764 |
if (wlp > xlp && wlp > ylp) {
|
|
| 1765 |
markFacePath(root, root, order_map, node_data); |
|
| 1766 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
| 1767 |
return; |
|
| 1768 |
} |
|
| 1769 |
|
|
| 1770 |
markInternalPath(ipath); |
|
| 1771 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
| 1772 |
embed_arc, merge_roots); |
|
| 1773 |
|
|
| 1774 |
if (xlp > ylp && xlp > wlp) {
|
|
| 1775 |
markFacePath(root, pynode, order_map, node_data); |
|
| 1776 |
markFacePath(wnode, xnode, order_map, node_data); |
|
| 1777 |
markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map); |
|
| 1778 |
return; |
|
| 1779 |
} |
|
| 1780 |
|
|
| 1781 |
if (ylp > xlp && ylp > wlp) {
|
|
| 1782 |
markFacePath(pxnode, root, order_map, node_data); |
|
| 1783 |
markFacePath(ynode, wnode, order_map, node_data); |
|
| 1784 |
markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map); |
|
| 1785 |
return; |
|
| 1786 |
} |
|
| 1787 |
|
|
| 1788 |
if (pynode != ynode) {
|
|
| 1789 |
markFacePath(pxnode, wnode, order_map, node_data); |
|
| 1790 |
|
|
| 1791 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1792 |
if (wlp < minlp) minlp = wlp; |
|
| 1793 |
|
|
| 1794 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
| 1795 |
if (wlp > maxlp) maxlp = wlp; |
|
| 1796 |
|
|
| 1797 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
| 1798 |
return; |
|
| 1799 |
} |
|
| 1800 |
|
|
| 1801 |
if (pxnode != xnode) {
|
|
| 1802 |
markFacePath(wnode, pynode, order_map, node_data); |
|
| 1803 |
|
|
| 1804 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1805 |
if (wlp < minlp) minlp = wlp; |
|
| 1806 |
|
|
| 1807 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
| 1808 |
if (wlp > maxlp) maxlp = wlp; |
|
| 1809 |
|
|
| 1810 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
| 1811 |
return; |
|
| 1812 |
} |
|
| 1813 |
|
|
| 1814 |
markFacePath(root, root, order_map, node_data); |
|
| 1815 |
int minlp = xlp < ylp ? xlp : ylp; |
|
| 1816 |
if (wlp < minlp) minlp = wlp; |
|
| 1817 |
markPredPath(root, order_list[minlp], pred_map); |
|
| 1818 |
return; |
|
| 1819 |
} |
|
| 1820 |
|
|
| 1821 |
} |
|
| 1822 |
|
|
| 1823 |
}; |
|
| 1824 |
|
|
| 1825 |
namespace _planarity_bits {
|
|
| 1826 |
|
|
| 1827 |
template <typename Graph, typename EmbeddingMap> |
|
| 1828 |
void makeConnected(Graph& graph, EmbeddingMap& embedding) {
|
|
| 1829 |
DfsVisitor<Graph> null_visitor; |
|
| 1830 |
DfsVisit<Graph, DfsVisitor<Graph> > dfs(graph, null_visitor); |
|
| 1831 |
dfs.init(); |
|
| 1832 |
|
|
| 1833 |
typename Graph::Node u = INVALID; |
|
| 1834 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1835 |
if (!dfs.reached(n)) {
|
|
| 1836 |
dfs.addSource(n); |
|
| 1837 |
dfs.start(); |
|
| 1838 |
if (u == INVALID) {
|
|
| 1839 |
u = n; |
|
| 1840 |
} else {
|
|
| 1841 |
typename Graph::Node v = n; |
|
| 1842 |
|
|
| 1843 |
typename Graph::Arc ue = typename Graph::OutArcIt(graph, u); |
|
| 1844 |
typename Graph::Arc ve = typename Graph::OutArcIt(graph, v); |
|
| 1845 |
|
|
| 1846 |
typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true); |
|
| 1847 |
|
|
| 1848 |
if (ue != INVALID) {
|
|
| 1849 |
embedding[e] = embedding[ue]; |
|
| 1850 |
embedding[ue] = e; |
|
| 1851 |
} else {
|
|
| 1852 |
embedding[e] = e; |
|
| 1853 |
} |
|
| 1854 |
|
|
| 1855 |
if (ve != INVALID) {
|
|
| 1856 |
embedding[graph.oppositeArc(e)] = embedding[ve]; |
|
| 1857 |
embedding[ve] = graph.oppositeArc(e); |
|
| 1858 |
} else {
|
|
| 1859 |
embedding[graph.oppositeArc(e)] = graph.oppositeArc(e); |
|
| 1860 |
} |
|
| 1861 |
} |
|
| 1862 |
} |
|
| 1863 |
} |
|
| 1864 |
} |
|
| 1865 |
|
|
| 1866 |
template <typename Graph, typename EmbeddingMap> |
|
| 1867 |
void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) {
|
|
| 1868 |
typename Graph::template ArcMap<bool> processed(graph); |
|
| 1869 |
|
|
| 1870 |
std::vector<typename Graph::Arc> arcs; |
|
| 1871 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
|
|
| 1872 |
arcs.push_back(e); |
|
| 1873 |
} |
|
| 1874 |
|
|
| 1875 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
| 1876 |
|
|
| 1877 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
|
| 1878 |
typename Graph::Arc pp = arcs[i]; |
|
| 1879 |
if (processed[pp]) continue; |
|
| 1880 |
|
|
| 1881 |
typename Graph::Arc e = embedding[graph.oppositeArc(pp)]; |
|
| 1882 |
processed[e] = true; |
|
| 1883 |
visited.set(graph.source(e), true); |
|
| 1884 |
|
|
| 1885 |
typename Graph::Arc p = e, l = e; |
|
| 1886 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1887 |
|
|
| 1888 |
while (e != l) {
|
|
| 1889 |
processed[e] = true; |
|
| 1890 |
|
|
| 1891 |
if (visited[graph.source(e)]) {
|
|
| 1892 |
|
|
| 1893 |
typename Graph::Arc n = |
|
| 1894 |
graph.direct(graph.addEdge(graph.source(p), |
|
| 1895 |
graph.target(e)), true); |
|
| 1896 |
embedding[n] = p; |
|
| 1897 |
embedding[graph.oppositeArc(pp)] = n; |
|
| 1898 |
|
|
| 1899 |
embedding[graph.oppositeArc(n)] = |
|
| 1900 |
embedding[graph.oppositeArc(e)]; |
|
| 1901 |
embedding[graph.oppositeArc(e)] = |
|
| 1902 |
graph.oppositeArc(n); |
|
| 1903 |
|
|
| 1904 |
p = n; |
|
| 1905 |
e = embedding[graph.oppositeArc(n)]; |
|
| 1906 |
} else {
|
|
| 1907 |
visited.set(graph.source(e), true); |
|
| 1908 |
pp = p; |
|
| 1909 |
p = e; |
|
| 1910 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1911 |
} |
|
| 1912 |
} |
|
| 1913 |
visited.setAll(false); |
|
| 1914 |
} |
|
| 1915 |
} |
|
| 1916 |
|
|
| 1917 |
|
|
| 1918 |
template <typename Graph, typename EmbeddingMap> |
|
| 1919 |
void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) {
|
|
| 1920 |
|
|
| 1921 |
typename Graph::template NodeMap<int> degree(graph); |
|
| 1922 |
|
|
| 1923 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1924 |
degree[n] = countIncEdges(graph, n); |
|
| 1925 |
} |
|
| 1926 |
|
|
| 1927 |
typename Graph::template ArcMap<bool> processed(graph); |
|
| 1928 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
| 1929 |
|
|
| 1930 |
std::vector<typename Graph::Arc> arcs; |
|
| 1931 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
|
|
| 1932 |
arcs.push_back(e); |
|
| 1933 |
} |
|
| 1934 |
|
|
| 1935 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
|
| 1936 |
typename Graph::Arc e = arcs[i]; |
|
| 1937 |
|
|
| 1938 |
if (processed[e]) continue; |
|
| 1939 |
processed[e] = true; |
|
| 1940 |
|
|
| 1941 |
typename Graph::Arc mine = e; |
|
| 1942 |
int mind = degree[graph.source(e)]; |
|
| 1943 |
|
|
| 1944 |
int face_size = 1; |
|
| 1945 |
|
|
| 1946 |
typename Graph::Arc l = e; |
|
| 1947 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1948 |
while (l != e) {
|
|
| 1949 |
processed[e] = true; |
|
| 1950 |
|
|
| 1951 |
++face_size; |
|
| 1952 |
|
|
| 1953 |
if (degree[graph.source(e)] < mind) {
|
|
| 1954 |
mine = e; |
|
| 1955 |
mind = degree[graph.source(e)]; |
|
| 1956 |
} |
|
| 1957 |
|
|
| 1958 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1959 |
} |
|
| 1960 |
|
|
| 1961 |
if (face_size < 4) {
|
|
| 1962 |
continue; |
|
| 1963 |
} |
|
| 1964 |
|
|
| 1965 |
typename Graph::Node s = graph.source(mine); |
|
| 1966 |
for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) {
|
|
| 1967 |
visited.set(graph.target(e), true); |
|
| 1968 |
} |
|
| 1969 |
|
|
| 1970 |
typename Graph::Arc oppe = INVALID; |
|
| 1971 |
|
|
| 1972 |
e = embedding[graph.oppositeArc(mine)]; |
|
| 1973 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1974 |
while (graph.target(e) != s) {
|
|
| 1975 |
if (visited[graph.source(e)]) {
|
|
| 1976 |
oppe = e; |
|
| 1977 |
break; |
|
| 1978 |
} |
|
| 1979 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1980 |
} |
|
| 1981 |
visited.setAll(false); |
|
| 1982 |
|
|
| 1983 |
if (oppe == INVALID) {
|
|
| 1984 |
|
|
| 1985 |
e = embedding[graph.oppositeArc(mine)]; |
|
| 1986 |
typename Graph::Arc pn = mine, p = e; |
|
| 1987 |
|
|
| 1988 |
e = embedding[graph.oppositeArc(e)]; |
|
| 1989 |
while (graph.target(e) != s) {
|
|
| 1990 |
typename Graph::Arc n = |
|
| 1991 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
| 1992 |
|
|
| 1993 |
embedding[n] = pn; |
|
| 1994 |
embedding[graph.oppositeArc(n)] = e; |
|
| 1995 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
| 1996 |
|
|
| 1997 |
pn = n; |
|
| 1998 |
|
|
| 1999 |
p = e; |
|
| 2000 |
e = embedding[graph.oppositeArc(e)]; |
|
| 2001 |
} |
|
| 2002 |
|
|
| 2003 |
embedding[graph.oppositeArc(e)] = pn; |
|
| 2004 |
|
|
| 2005 |
} else {
|
|
| 2006 |
|
|
| 2007 |
mine = embedding[graph.oppositeArc(mine)]; |
|
| 2008 |
s = graph.source(mine); |
|
| 2009 |
oppe = embedding[graph.oppositeArc(oppe)]; |
|
| 2010 |
typename Graph::Node t = graph.source(oppe); |
|
| 2011 |
|
|
| 2012 |
typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true); |
|
| 2013 |
embedding[ce] = mine; |
|
| 2014 |
embedding[graph.oppositeArc(ce)] = oppe; |
|
| 2015 |
|
|
| 2016 |
typename Graph::Arc pn = ce, p = oppe; |
|
| 2017 |
e = embedding[graph.oppositeArc(oppe)]; |
|
| 2018 |
while (graph.target(e) != s) {
|
|
| 2019 |
typename Graph::Arc n = |
|
| 2020 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
| 2021 |
|
|
| 2022 |
embedding[n] = pn; |
|
| 2023 |
embedding[graph.oppositeArc(n)] = e; |
|
| 2024 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
| 2025 |
|
|
| 2026 |
pn = n; |
|
| 2027 |
|
|
| 2028 |
p = e; |
|
| 2029 |
e = embedding[graph.oppositeArc(e)]; |
|
| 2030 |
|
|
| 2031 |
} |
|
| 2032 |
embedding[graph.oppositeArc(e)] = pn; |
|
| 2033 |
|
|
| 2034 |
pn = graph.oppositeArc(ce), p = mine; |
|
| 2035 |
e = embedding[graph.oppositeArc(mine)]; |
|
| 2036 |
while (graph.target(e) != t) {
|
|
| 2037 |
typename Graph::Arc n = |
|
| 2038 |
graph.direct(graph.addEdge(t, graph.source(e)), true); |
|
| 2039 |
|
|
| 2040 |
embedding[n] = pn; |
|
| 2041 |
embedding[graph.oppositeArc(n)] = e; |
|
| 2042 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
| 2043 |
|
|
| 2044 |
pn = n; |
|
| 2045 |
|
|
| 2046 |
p = e; |
|
| 2047 |
e = embedding[graph.oppositeArc(e)]; |
|
| 2048 |
|
|
| 2049 |
} |
|
| 2050 |
embedding[graph.oppositeArc(e)] = pn; |
|
| 2051 |
} |
|
| 2052 |
} |
|
| 2053 |
} |
|
| 2054 |
|
|
| 2055 |
} |
|
| 2056 |
|
|
| 2057 |
/// \ingroup planar |
|
| 2058 |
/// |
|
| 2059 |
/// \brief Schnyder's planar drawing algorithm |
|
| 2060 |
/// |
|
| 2061 |
/// The planar drawing algorithm calculates positions for the nodes |
|
| 2062 |
/// in the plane which coordinates satisfy that if the arcs are |
|
| 2063 |
/// represented with straight lines then they will not intersect |
|
| 2064 |
/// each other. |
|
| 2065 |
/// |
|
| 2066 |
/// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid, |
|
| 2067 |
/// i.e. each node will be located in the \c [0,n-2]x[0,n-2] square. |
|
| 2068 |
/// The time complexity of the algorithm is O(n). |
|
| 2069 |
template <typename Graph> |
|
| 2070 |
class PlanarDrawing {
|
|
| 2071 |
public: |
|
| 2072 |
|
|
| 2073 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 2074 |
|
|
| 2075 |
/// \brief The point type for store coordinates |
|
| 2076 |
typedef dim2::Point<int> Point; |
|
| 2077 |
/// \brief The map type for store coordinates |
|
| 2078 |
typedef typename Graph::template NodeMap<Point> PointMap; |
|
| 2079 |
|
|
| 2080 |
|
|
| 2081 |
/// \brief Constructor |
|
| 2082 |
/// |
|
| 2083 |
/// Constructor |
|
| 2084 |
/// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
| 2085 |
PlanarDrawing(const Graph& graph) |
|
| 2086 |
: _graph(graph), _point_map(graph) {}
|
|
| 2087 |
|
|
| 2088 |
private: |
|
| 2089 |
|
|
| 2090 |
template <typename AuxGraph, typename AuxEmbeddingMap> |
|
| 2091 |
void drawing(const AuxGraph& graph, |
|
| 2092 |
const AuxEmbeddingMap& next, |
|
| 2093 |
PointMap& point_map) {
|
|
| 2094 |
TEMPLATE_GRAPH_TYPEDEFS(AuxGraph); |
|
| 2095 |
|
|
| 2096 |
typename AuxGraph::template ArcMap<Arc> prev(graph); |
|
| 2097 |
|
|
| 2098 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2099 |
Arc e = OutArcIt(graph, n); |
|
| 2100 |
|
|
| 2101 |
Arc p = e, l = e; |
|
| 2102 |
|
|
| 2103 |
e = next[e]; |
|
| 2104 |
while (e != l) {
|
|
| 2105 |
prev[e] = p; |
|
| 2106 |
p = e; |
|
| 2107 |
e = next[e]; |
|
| 2108 |
} |
|
| 2109 |
prev[e] = p; |
|
| 2110 |
} |
|
| 2111 |
|
|
| 2112 |
Node anode, bnode, cnode; |
|
| 2113 |
|
|
| 2114 |
{
|
|
| 2115 |
Arc e = ArcIt(graph); |
|
| 2116 |
anode = graph.source(e); |
|
| 2117 |
bnode = graph.target(e); |
|
| 2118 |
cnode = graph.target(next[graph.oppositeArc(e)]); |
|
| 2119 |
} |
|
| 2120 |
|
|
| 2121 |
IterableBoolMap<AuxGraph, Node> proper(graph, false); |
|
| 2122 |
typename AuxGraph::template NodeMap<int> conn(graph, -1); |
|
| 2123 |
|
|
| 2124 |
conn[anode] = conn[bnode] = -2; |
|
| 2125 |
{
|
|
| 2126 |
for (OutArcIt e(graph, anode); e != INVALID; ++e) {
|
|
| 2127 |
Node m = graph.target(e); |
|
| 2128 |
if (conn[m] == -1) {
|
|
| 2129 |
conn[m] = 1; |
|
| 2130 |
} |
|
| 2131 |
} |
|
| 2132 |
conn[cnode] = 2; |
|
| 2133 |
|
|
| 2134 |
for (OutArcIt e(graph, bnode); e != INVALID; ++e) {
|
|
| 2135 |
Node m = graph.target(e); |
|
| 2136 |
if (conn[m] == -1) {
|
|
| 2137 |
conn[m] = 1; |
|
| 2138 |
} else if (conn[m] != -2) {
|
|
| 2139 |
conn[m] += 1; |
|
| 2140 |
Arc pe = graph.oppositeArc(e); |
|
| 2141 |
if (conn[graph.target(next[pe])] == -2) {
|
|
| 2142 |
conn[m] -= 1; |
|
| 2143 |
} |
|
| 2144 |
if (conn[graph.target(prev[pe])] == -2) {
|
|
| 2145 |
conn[m] -= 1; |
|
| 2146 |
} |
|
| 2147 |
|
|
| 2148 |
proper.set(m, conn[m] == 1); |
|
| 2149 |
} |
|
| 2150 |
} |
|
| 2151 |
} |
|
| 2152 |
|
|
| 2153 |
|
|
| 2154 |
typename AuxGraph::template ArcMap<int> angle(graph, -1); |
|
| 2155 |
|
|
| 2156 |
while (proper.trueNum() != 0) {
|
|
| 2157 |
Node n = typename IterableBoolMap<AuxGraph, Node>::TrueIt(proper); |
|
| 2158 |
proper.set(n, false); |
|
| 2159 |
conn[n] = -2; |
|
| 2160 |
|
|
| 2161 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 2162 |
Node m = graph.target(e); |
|
| 2163 |
if (conn[m] == -1) {
|
|
| 2164 |
conn[m] = 1; |
|
| 2165 |
} else if (conn[m] != -2) {
|
|
| 2166 |
conn[m] += 1; |
|
| 2167 |
Arc pe = graph.oppositeArc(e); |
|
| 2168 |
if (conn[graph.target(next[pe])] == -2) {
|
|
| 2169 |
conn[m] -= 1; |
|
| 2170 |
} |
|
| 2171 |
if (conn[graph.target(prev[pe])] == -2) {
|
|
| 2172 |
conn[m] -= 1; |
|
| 2173 |
} |
|
| 2174 |
|
|
| 2175 |
proper.set(m, conn[m] == 1); |
|
| 2176 |
} |
|
| 2177 |
} |
|
| 2178 |
|
|
| 2179 |
{
|
|
| 2180 |
Arc e = OutArcIt(graph, n); |
|
| 2181 |
Arc p = e, l = e; |
|
| 2182 |
|
|
| 2183 |
e = next[e]; |
|
| 2184 |
while (e != l) {
|
|
| 2185 |
|
|
| 2186 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
|
|
| 2187 |
Arc f = e; |
|
| 2188 |
angle[f] = 0; |
|
| 2189 |
f = next[graph.oppositeArc(f)]; |
|
| 2190 |
angle[f] = 1; |
|
| 2191 |
f = next[graph.oppositeArc(f)]; |
|
| 2192 |
angle[f] = 2; |
|
| 2193 |
} |
|
| 2194 |
|
|
| 2195 |
p = e; |
|
| 2196 |
e = next[e]; |
|
| 2197 |
} |
|
| 2198 |
|
|
| 2199 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
|
|
| 2200 |
Arc f = e; |
|
| 2201 |
angle[f] = 0; |
|
| 2202 |
f = next[graph.oppositeArc(f)]; |
|
| 2203 |
angle[f] = 1; |
|
| 2204 |
f = next[graph.oppositeArc(f)]; |
|
| 2205 |
angle[f] = 2; |
|
| 2206 |
} |
|
| 2207 |
} |
|
| 2208 |
} |
|
| 2209 |
|
|
| 2210 |
typename AuxGraph::template NodeMap<Node> apred(graph, INVALID); |
|
| 2211 |
typename AuxGraph::template NodeMap<Node> bpred(graph, INVALID); |
|
| 2212 |
typename AuxGraph::template NodeMap<Node> cpred(graph, INVALID); |
|
| 2213 |
|
|
| 2214 |
typename AuxGraph::template NodeMap<int> apredid(graph, -1); |
|
| 2215 |
typename AuxGraph::template NodeMap<int> bpredid(graph, -1); |
|
| 2216 |
typename AuxGraph::template NodeMap<int> cpredid(graph, -1); |
|
| 2217 |
|
|
| 2218 |
for (ArcIt e(graph); e != INVALID; ++e) {
|
|
| 2219 |
if (angle[e] == angle[next[e]]) {
|
|
| 2220 |
switch (angle[e]) {
|
|
| 2221 |
case 2: |
|
| 2222 |
apred[graph.target(e)] = graph.source(e); |
|
| 2223 |
apredid[graph.target(e)] = graph.id(graph.source(e)); |
|
| 2224 |
break; |
|
| 2225 |
case 1: |
|
| 2226 |
bpred[graph.target(e)] = graph.source(e); |
|
| 2227 |
bpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
| 2228 |
break; |
|
| 2229 |
case 0: |
|
| 2230 |
cpred[graph.target(e)] = graph.source(e); |
|
| 2231 |
cpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
| 2232 |
break; |
|
| 2233 |
} |
|
| 2234 |
} |
|
| 2235 |
} |
|
| 2236 |
|
|
| 2237 |
cpred[anode] = INVALID; |
|
| 2238 |
cpred[bnode] = INVALID; |
|
| 2239 |
|
|
| 2240 |
std::vector<Node> aorder, border, corder; |
|
| 2241 |
|
|
| 2242 |
{
|
|
| 2243 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
| 2244 |
std::vector<Node> st; |
|
| 2245 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2246 |
if (!processed[n] && n != bnode && n != cnode) {
|
|
| 2247 |
st.push_back(n); |
|
| 2248 |
processed[n] = true; |
|
| 2249 |
Node m = apred[n]; |
|
| 2250 |
while (m != INVALID && !processed[m]) {
|
|
| 2251 |
st.push_back(m); |
|
| 2252 |
processed[m] = true; |
|
| 2253 |
m = apred[m]; |
|
| 2254 |
} |
|
| 2255 |
while (!st.empty()) {
|
|
| 2256 |
aorder.push_back(st.back()); |
|
| 2257 |
st.pop_back(); |
|
| 2258 |
} |
|
| 2259 |
} |
|
| 2260 |
} |
|
| 2261 |
} |
|
| 2262 |
|
|
| 2263 |
{
|
|
| 2264 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
| 2265 |
std::vector<Node> st; |
|
| 2266 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2267 |
if (!processed[n] && n != cnode && n != anode) {
|
|
| 2268 |
st.push_back(n); |
|
| 2269 |
processed[n] = true; |
|
| 2270 |
Node m = bpred[n]; |
|
| 2271 |
while (m != INVALID && !processed[m]) {
|
|
| 2272 |
st.push_back(m); |
|
| 2273 |
processed[m] = true; |
|
| 2274 |
m = bpred[m]; |
|
| 2275 |
} |
|
| 2276 |
while (!st.empty()) {
|
|
| 2277 |
border.push_back(st.back()); |
|
| 2278 |
st.pop_back(); |
|
| 2279 |
} |
|
| 2280 |
} |
|
| 2281 |
} |
|
| 2282 |
} |
|
| 2283 |
|
|
| 2284 |
{
|
|
| 2285 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
| 2286 |
std::vector<Node> st; |
|
| 2287 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2288 |
if (!processed[n] && n != anode && n != bnode) {
|
|
| 2289 |
st.push_back(n); |
|
| 2290 |
processed[n] = true; |
|
| 2291 |
Node m = cpred[n]; |
|
| 2292 |
while (m != INVALID && !processed[m]) {
|
|
| 2293 |
st.push_back(m); |
|
| 2294 |
processed[m] = true; |
|
| 2295 |
m = cpred[m]; |
|
| 2296 |
} |
|
| 2297 |
while (!st.empty()) {
|
|
| 2298 |
corder.push_back(st.back()); |
|
| 2299 |
st.pop_back(); |
|
| 2300 |
} |
|
| 2301 |
} |
|
| 2302 |
} |
|
| 2303 |
} |
|
| 2304 |
|
|
| 2305 |
typename AuxGraph::template NodeMap<int> atree(graph, 0); |
|
| 2306 |
for (int i = aorder.size() - 1; i >= 0; --i) {
|
|
| 2307 |
Node n = aorder[i]; |
|
| 2308 |
atree[n] = 1; |
|
| 2309 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 2310 |
if (apred[graph.target(e)] == n) {
|
|
| 2311 |
atree[n] += atree[graph.target(e)]; |
|
| 2312 |
} |
|
| 2313 |
} |
|
| 2314 |
} |
|
| 2315 |
|
|
| 2316 |
typename AuxGraph::template NodeMap<int> btree(graph, 0); |
|
| 2317 |
for (int i = border.size() - 1; i >= 0; --i) {
|
|
| 2318 |
Node n = border[i]; |
|
| 2319 |
btree[n] = 1; |
|
| 2320 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 2321 |
if (bpred[graph.target(e)] == n) {
|
|
| 2322 |
btree[n] += btree[graph.target(e)]; |
|
| 2323 |
} |
|
| 2324 |
} |
|
| 2325 |
} |
|
| 2326 |
|
|
| 2327 |
typename AuxGraph::template NodeMap<int> apath(graph, 0); |
|
| 2328 |
apath[bnode] = apath[cnode] = 1; |
|
| 2329 |
typename AuxGraph::template NodeMap<int> apath_btree(graph, 0); |
|
| 2330 |
apath_btree[bnode] = btree[bnode]; |
|
| 2331 |
for (int i = 1; i < int(aorder.size()); ++i) {
|
|
| 2332 |
Node n = aorder[i]; |
|
| 2333 |
apath[n] = apath[apred[n]] + 1; |
|
| 2334 |
apath_btree[n] = btree[n] + apath_btree[apred[n]]; |
|
| 2335 |
} |
|
| 2336 |
|
|
| 2337 |
typename AuxGraph::template NodeMap<int> bpath_atree(graph, 0); |
|
| 2338 |
bpath_atree[anode] = atree[anode]; |
|
| 2339 |
for (int i = 1; i < int(border.size()); ++i) {
|
|
| 2340 |
Node n = border[i]; |
|
| 2341 |
bpath_atree[n] = atree[n] + bpath_atree[bpred[n]]; |
|
| 2342 |
} |
|
| 2343 |
|
|
| 2344 |
typename AuxGraph::template NodeMap<int> cpath(graph, 0); |
|
| 2345 |
cpath[anode] = cpath[bnode] = 1; |
|
| 2346 |
typename AuxGraph::template NodeMap<int> cpath_atree(graph, 0); |
|
| 2347 |
cpath_atree[anode] = atree[anode]; |
|
| 2348 |
typename AuxGraph::template NodeMap<int> cpath_btree(graph, 0); |
|
| 2349 |
cpath_btree[bnode] = btree[bnode]; |
|
| 2350 |
for (int i = 1; i < int(corder.size()); ++i) {
|
|
| 2351 |
Node n = corder[i]; |
|
| 2352 |
cpath[n] = cpath[cpred[n]] + 1; |
|
| 2353 |
cpath_atree[n] = atree[n] + cpath_atree[cpred[n]]; |
|
| 2354 |
cpath_btree[n] = btree[n] + cpath_btree[cpred[n]]; |
|
| 2355 |
} |
|
| 2356 |
|
|
| 2357 |
typename AuxGraph::template NodeMap<int> third(graph); |
|
| 2358 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 2359 |
point_map[n].x = |
|
| 2360 |
bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1; |
|
| 2361 |
point_map[n].y = |
|
| 2362 |
cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1; |
|
| 2363 |
} |
|
| 2364 |
|
|
| 2365 |
} |
|
| 2366 |
|
|
| 2367 |
public: |
|
| 2368 |
|
|
| 2369 |
/// \brief Calculates the node positions |
|
| 2370 |
/// |
|
| 2371 |
/// This function calculates the node positions. |
|
| 2372 |
/// \return %True if the graph is planar. |
|
| 2373 |
bool run() {
|
|
| 2374 |
PlanarEmbedding<Graph> pe(_graph); |
|
| 2375 |
if (!pe.run()) return false; |
|
| 2376 |
|
|
| 2377 |
run(pe); |
|
| 2378 |
return true; |
|
| 2379 |
} |
|
| 2380 |
|
|
| 2381 |
/// \brief Calculates the node positions according to a |
|
| 2382 |
/// combinatorical embedding |
|
| 2383 |
/// |
|
| 2384 |
/// This function calculates the node locations. The \c embedding |
|
| 2385 |
/// parameter should contain a valid combinatorical embedding, i.e. |
|
| 2386 |
/// a valid cyclic order of the arcs. |
|
| 2387 |
template <typename EmbeddingMap> |
|
| 2388 |
void run(const EmbeddingMap& embedding) {
|
|
| 2389 |
typedef SmartEdgeSet<Graph> AuxGraph; |
|
| 2390 |
|
|
| 2391 |
if (3 * countNodes(_graph) - 6 == countEdges(_graph)) {
|
|
| 2392 |
drawing(_graph, embedding, _point_map); |
|
| 2393 |
return; |
|
| 2394 |
} |
|
| 2395 |
|
|
| 2396 |
AuxGraph aux_graph(_graph); |
|
| 2397 |
typename AuxGraph::template ArcMap<typename AuxGraph::Arc> |
|
| 2398 |
aux_embedding(aux_graph); |
|
| 2399 |
|
|
| 2400 |
{
|
|
| 2401 |
|
|
| 2402 |
typename Graph::template EdgeMap<typename AuxGraph::Edge> |
|
| 2403 |
ref(_graph); |
|
| 2404 |
|
|
| 2405 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 2406 |
ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e)); |
|
| 2407 |
} |
|
| 2408 |
|
|
| 2409 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 2410 |
Arc ee = embedding[_graph.direct(e, true)]; |
|
| 2411 |
aux_embedding[aux_graph.direct(ref[e], true)] = |
|
| 2412 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
| 2413 |
ee = embedding[_graph.direct(e, false)]; |
|
| 2414 |
aux_embedding[aux_graph.direct(ref[e], false)] = |
|
| 2415 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
| 2416 |
} |
|
| 2417 |
} |
|
| 2418 |
_planarity_bits::makeConnected(aux_graph, aux_embedding); |
|
| 2419 |
_planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding); |
|
| 2420 |
_planarity_bits::makeMaxPlanar(aux_graph, aux_embedding); |
|
| 2421 |
drawing(aux_graph, aux_embedding, _point_map); |
|
| 2422 |
} |
|
| 2423 |
|
|
| 2424 |
/// \brief The coordinate of the given node |
|
| 2425 |
/// |
|
| 2426 |
/// The coordinate of the given node. |
|
| 2427 |
Point operator[](const Node& node) const {
|
|
| 2428 |
return _point_map[node]; |
|
| 2429 |
} |
|
| 2430 |
|
|
| 2431 |
/// \brief Returns the grid embedding in a \e NodeMap. |
|
| 2432 |
/// |
|
| 2433 |
/// Returns the grid embedding in a \e NodeMap of \c dim2::Point<int> . |
|
| 2434 |
const PointMap& coords() const {
|
|
| 2435 |
return _point_map; |
|
| 2436 |
} |
|
| 2437 |
|
|
| 2438 |
private: |
|
| 2439 |
|
|
| 2440 |
const Graph& _graph; |
|
| 2441 |
PointMap _point_map; |
|
| 2442 |
|
|
| 2443 |
}; |
|
| 2444 |
|
|
| 2445 |
namespace _planarity_bits {
|
|
| 2446 |
|
|
| 2447 |
template <typename ColorMap> |
|
| 2448 |
class KempeFilter {
|
|
| 2449 |
public: |
|
| 2450 |
typedef typename ColorMap::Key Key; |
|
| 2451 |
typedef bool Value; |
|
| 2452 |
|
|
| 2453 |
KempeFilter(const ColorMap& color_map, |
|
| 2454 |
const typename ColorMap::Value& first, |
|
| 2455 |
const typename ColorMap::Value& second) |
|
| 2456 |
: _color_map(color_map), _first(first), _second(second) {}
|
|
| 2457 |
|
|
| 2458 |
Value operator[](const Key& key) const {
|
|
| 2459 |
return _color_map[key] == _first || _color_map[key] == _second; |
|
| 2460 |
} |
|
| 2461 |
|
|
| 2462 |
private: |
|
| 2463 |
const ColorMap& _color_map; |
|
| 2464 |
typename ColorMap::Value _first, _second; |
|
| 2465 |
}; |
|
| 2466 |
} |
|
| 2467 |
|
|
| 2468 |
/// \ingroup planar |
|
| 2469 |
/// |
|
| 2470 |
/// \brief Coloring planar graphs |
|
| 2471 |
/// |
|
| 2472 |
/// The graph coloring problem is the coloring of the graph nodes |
|
| 2473 |
/// that there are not adjacent nodes with the same color. The |
|
| 2474 |
/// planar graphs can be always colored with four colors, it is |
|
| 2475 |
/// proved by Appel and Haken and their proofs provide a quadratic |
|
| 2476 |
/// time algorithm for four coloring, but it could not be used to |
|
| 2477 |
/// implement efficient algorithm. The five and six coloring can be |
|
| 2478 |
/// made in linear time, but in this class the five coloring has |
|
| 2479 |
/// quadratic worst case time complexity. The two coloring (if |
|
| 2480 |
/// possible) is solvable with a graph search algorithm and it is |
|
| 2481 |
/// implemented in \ref bipartitePartitions() function in LEMON. To |
|
| 2482 |
/// decide whether the planar graph is three colorable is |
|
| 2483 |
/// NP-complete. |
|
| 2484 |
/// |
|
| 2485 |
/// This class contains member functions for calculate colorings |
|
| 2486 |
/// with five and six colors. The six coloring algorithm is a simple |
|
| 2487 |
/// greedy coloring on the backward minimum outgoing order of nodes. |
|
| 2488 |
/// This order can be computed as in each phase the node with least |
|
| 2489 |
/// outgoing arcs to unprocessed nodes is chosen. This order |
|
| 2490 |
/// guarantees that when a node is chosen for coloring it has at |
|
| 2491 |
/// most five already colored adjacents. The five coloring algorithm |
|
| 2492 |
/// use the same method, but if the greedy approach fails to color |
|
| 2493 |
/// with five colors, i.e. the node has five already different |
|
| 2494 |
/// colored neighbours, it swaps the colors in one of the connected |
|
| 2495 |
/// two colored sets with the Kempe recoloring method. |
|
| 2496 |
template <typename Graph> |
|
| 2497 |
class PlanarColoring {
|
|
| 2498 |
public: |
|
| 2499 |
|
|
| 2500 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
| 2501 |
|
|
| 2502 |
/// \brief The map type for store color indexes |
|
| 2503 |
typedef typename Graph::template NodeMap<int> IndexMap; |
|
| 2504 |
/// \brief The map type for store colors |
|
| 2505 |
typedef ComposeMap<Palette, IndexMap> ColorMap; |
|
| 2506 |
|
|
| 2507 |
/// \brief Constructor |
|
| 2508 |
/// |
|
| 2509 |
/// Constructor |
|
| 2510 |
/// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
| 2511 |
PlanarColoring(const Graph& graph) |
|
| 2512 |
: _graph(graph), _color_map(graph), _palette(0) {
|
|
| 2513 |
_palette.add(Color(1,0,0)); |
|
| 2514 |
_palette.add(Color(0,1,0)); |
|
| 2515 |
_palette.add(Color(0,0,1)); |
|
| 2516 |
_palette.add(Color(1,1,0)); |
|
| 2517 |
_palette.add(Color(1,0,1)); |
|
| 2518 |
_palette.add(Color(0,1,1)); |
|
| 2519 |
} |
|
| 2520 |
|
|
| 2521 |
/// \brief Returns the \e NodeMap of color indexes |
|
| 2522 |
/// |
|
| 2523 |
/// Returns the \e NodeMap of color indexes. The values are in the |
|
| 2524 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2525 |
IndexMap colorIndexMap() const {
|
|
| 2526 |
return _color_map; |
|
| 2527 |
} |
|
| 2528 |
|
|
| 2529 |
/// \brief Returns the \e NodeMap of colors |
|
| 2530 |
/// |
|
| 2531 |
/// Returns the \e NodeMap of colors. The values are five or six |
|
| 2532 |
/// distinct \ref lemon::Color "colors". |
|
| 2533 |
ColorMap colorMap() const {
|
|
| 2534 |
return composeMap(_palette, _color_map); |
|
| 2535 |
} |
|
| 2536 |
|
|
| 2537 |
/// \brief Returns the color index of the node |
|
| 2538 |
/// |
|
| 2539 |
/// Returns the color index of the node. The values are in the |
|
| 2540 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2541 |
int colorIndex(const Node& node) const {
|
|
| 2542 |
return _color_map[node]; |
|
| 2543 |
} |
|
| 2544 |
|
|
| 2545 |
/// \brief Returns the color of the node |
|
| 2546 |
/// |
|
| 2547 |
/// Returns the color of the node. The values are five or six |
|
| 2548 |
/// distinct \ref lemon::Color "colors". |
|
| 2549 |
Color color(const Node& node) const {
|
|
| 2550 |
return _palette[_color_map[node]]; |
|
| 2551 |
} |
|
| 2552 |
|
|
| 2553 |
|
|
| 2554 |
/// \brief Calculates a coloring with at most six colors |
|
| 2555 |
/// |
|
| 2556 |
/// This function calculates a coloring with at most six colors. The time |
|
| 2557 |
/// complexity of this variant is linear in the size of the graph. |
|
| 2558 |
/// \return %True when the algorithm could color the graph with six color. |
|
| 2559 |
/// If the algorithm fails, then the graph could not be planar. |
|
| 2560 |
/// \note This function can return true if the graph is not |
|
| 2561 |
/// planar but it can be colored with 6 colors. |
|
| 2562 |
bool runSixColoring() {
|
|
| 2563 |
|
|
| 2564 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
| 2565 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
| 2566 |
|
|
| 2567 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 2568 |
_color_map[n] = -2; |
|
| 2569 |
heap.push(n, countOutArcs(_graph, n)); |
|
| 2570 |
} |
|
| 2571 |
|
|
| 2572 |
std::vector<Node> order; |
|
| 2573 |
|
|
| 2574 |
while (!heap.empty()) {
|
|
| 2575 |
Node n = heap.top(); |
|
| 2576 |
heap.pop(); |
|
| 2577 |
_color_map[n] = -1; |
|
| 2578 |
order.push_back(n); |
|
| 2579 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 2580 |
Node t = _graph.runningNode(e); |
|
| 2581 |
if (_color_map[t] == -2) {
|
|
| 2582 |
heap.decrease(t, heap[t] - 1); |
|
| 2583 |
} |
|
| 2584 |
} |
|
| 2585 |
} |
|
| 2586 |
|
|
| 2587 |
for (int i = order.size() - 1; i >= 0; --i) {
|
|
| 2588 |
std::vector<bool> forbidden(6, false); |
|
| 2589 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
|
|
| 2590 |
Node t = _graph.runningNode(e); |
|
| 2591 |
if (_color_map[t] != -1) {
|
|
| 2592 |
forbidden[_color_map[t]] = true; |
|
| 2593 |
} |
|
| 2594 |
} |
|
| 2595 |
for (int k = 0; k < 6; ++k) {
|
|
| 2596 |
if (!forbidden[k]) {
|
|
| 2597 |
_color_map[order[i]] = k; |
|
| 2598 |
break; |
|
| 2599 |
} |
|
| 2600 |
} |
|
| 2601 |
if (_color_map[order[i]] == -1) {
|
|
| 2602 |
return false; |
|
| 2603 |
} |
|
| 2604 |
} |
|
| 2605 |
return true; |
|
| 2606 |
} |
|
| 2607 |
|
|
| 2608 |
private: |
|
| 2609 |
|
|
| 2610 |
bool recolor(const Node& u, const Node& v) {
|
|
| 2611 |
int ucolor = _color_map[u]; |
|
| 2612 |
int vcolor = _color_map[v]; |
|
| 2613 |
typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter; |
|
| 2614 |
KempeFilter filter(_color_map, ucolor, vcolor); |
|
| 2615 |
|
|
| 2616 |
typedef FilterNodes<const Graph, const KempeFilter> KempeGraph; |
|
| 2617 |
KempeGraph kempe_graph(_graph, filter); |
|
| 2618 |
|
|
| 2619 |
std::vector<Node> comp; |
|
| 2620 |
Bfs<KempeGraph> bfs(kempe_graph); |
|
| 2621 |
bfs.init(); |
|
| 2622 |
bfs.addSource(u); |
|
| 2623 |
while (!bfs.emptyQueue()) {
|
|
| 2624 |
Node n = bfs.nextNode(); |
|
| 2625 |
if (n == v) return false; |
|
| 2626 |
comp.push_back(n); |
|
| 2627 |
bfs.processNextNode(); |
|
| 2628 |
} |
|
| 2629 |
|
|
| 2630 |
int scolor = ucolor + vcolor; |
|
| 2631 |
for (int i = 0; i < static_cast<int>(comp.size()); ++i) {
|
|
| 2632 |
_color_map[comp[i]] = scolor - _color_map[comp[i]]; |
|
| 2633 |
} |
|
| 2634 |
|
|
| 2635 |
return true; |
|
| 2636 |
} |
|
| 2637 |
|
|
| 2638 |
template <typename EmbeddingMap> |
|
| 2639 |
void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) {
|
|
| 2640 |
std::vector<Node> nodes; |
|
| 2641 |
nodes.reserve(4); |
|
| 2642 |
|
|
| 2643 |
for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) {
|
|
| 2644 |
Node t = _graph.target(e); |
|
| 2645 |
if (_color_map[t] != -1) {
|
|
| 2646 |
nodes.push_back(t); |
|
| 2647 |
if (nodes.size() == 4) break; |
|
| 2648 |
} |
|
| 2649 |
} |
|
| 2650 |
|
|
| 2651 |
int color = _color_map[nodes[0]]; |
|
| 2652 |
if (recolor(nodes[0], nodes[2])) {
|
|
| 2653 |
_color_map[node] = color; |
|
| 2654 |
} else {
|
|
| 2655 |
color = _color_map[nodes[1]]; |
|
| 2656 |
recolor(nodes[1], nodes[3]); |
|
| 2657 |
_color_map[node] = color; |
|
| 2658 |
} |
|
| 2659 |
} |
|
| 2660 |
|
|
| 2661 |
public: |
|
| 2662 |
|
|
| 2663 |
/// \brief Calculates a coloring with at most five colors |
|
| 2664 |
/// |
|
| 2665 |
/// This function calculates a coloring with at most five |
|
| 2666 |
/// colors. The worst case time complexity of this variant is |
|
| 2667 |
/// quadratic in the size of the graph. |
|
| 2668 |
template <typename EmbeddingMap> |
|
| 2669 |
void runFiveColoring(const EmbeddingMap& embedding) {
|
|
| 2670 |
|
|
| 2671 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
| 2672 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
| 2673 |
|
|
| 2674 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 2675 |
_color_map[n] = -2; |
|
| 2676 |
heap.push(n, countOutArcs(_graph, n)); |
|
| 2677 |
} |
|
| 2678 |
|
|
| 2679 |
std::vector<Node> order; |
|
| 2680 |
|
|
| 2681 |
while (!heap.empty()) {
|
|
| 2682 |
Node n = heap.top(); |
|
| 2683 |
heap.pop(); |
|
| 2684 |
_color_map[n] = -1; |
|
| 2685 |
order.push_back(n); |
|
| 2686 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 2687 |
Node t = _graph.runningNode(e); |
|
| 2688 |
if (_color_map[t] == -2) {
|
|
| 2689 |
heap.decrease(t, heap[t] - 1); |
|
| 2690 |
} |
|
| 2691 |
} |
|
| 2692 |
} |
|
| 2693 |
|
|
| 2694 |
for (int i = order.size() - 1; i >= 0; --i) {
|
|
| 2695 |
std::vector<bool> forbidden(5, false); |
|
| 2696 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
|
|
| 2697 |
Node t = _graph.runningNode(e); |
|
| 2698 |
if (_color_map[t] != -1) {
|
|
| 2699 |
forbidden[_color_map[t]] = true; |
|
| 2700 |
} |
|
| 2701 |
} |
|
| 2702 |
for (int k = 0; k < 5; ++k) {
|
|
| 2703 |
if (!forbidden[k]) {
|
|
| 2704 |
_color_map[order[i]] = k; |
|
| 2705 |
break; |
|
| 2706 |
} |
|
| 2707 |
} |
|
| 2708 |
if (_color_map[order[i]] == -1) {
|
|
| 2709 |
kempeRecoloring(order[i], embedding); |
|
| 2710 |
} |
|
| 2711 |
} |
|
| 2712 |
} |
|
| 2713 |
|
|
| 2714 |
/// \brief Calculates a coloring with at most five colors |
|
| 2715 |
/// |
|
| 2716 |
/// This function calculates a coloring with at most five |
|
| 2717 |
/// colors. The worst case time complexity of this variant is |
|
| 2718 |
/// quadratic in the size of the graph. |
|
| 2719 |
/// \return %True when the graph is planar. |
|
| 2720 |
bool runFiveColoring() {
|
|
| 2721 |
PlanarEmbedding<Graph> pe(_graph); |
|
| 2722 |
if (!pe.run()) return false; |
|
| 2723 |
|
|
| 2724 |
runFiveColoring(pe.embeddingMap()); |
|
| 2725 |
return true; |
|
| 2726 |
} |
|
| 2727 |
|
|
| 2728 |
private: |
|
| 2729 |
|
|
| 2730 |
const Graph& _graph; |
|
| 2731 |
IndexMap _color_map; |
|
| 2732 |
Palette _palette; |
|
| 2733 |
}; |
|
| 2734 |
|
|
| 2735 |
} |
|
| 2736 |
|
|
| 2737 |
#endif |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <iostream> |
|
| 20 |
|
|
| 21 |
#include <lemon/planarity.h> |
|
| 22 |
|
|
| 23 |
#include <lemon/smart_graph.h> |
|
| 24 |
#include <lemon/lgf_reader.h> |
|
| 25 |
#include <lemon/connectivity.h> |
|
| 26 |
#include <lemon/dim2.h> |
|
| 27 |
|
|
| 28 |
#include "test_tools.h" |
|
| 29 |
|
|
| 30 |
using namespace lemon; |
|
| 31 |
using namespace lemon::dim2; |
|
| 32 |
|
|
| 33 |
const int lgfn = 4; |
|
| 34 |
const std::string lgf[lgfn] = {
|
|
| 35 |
"@nodes\n" |
|
| 36 |
"label\n" |
|
| 37 |
"0\n" |
|
| 38 |
"1\n" |
|
| 39 |
"2\n" |
|
| 40 |
"3\n" |
|
| 41 |
"4\n" |
|
| 42 |
"@edges\n" |
|
| 43 |
" label\n" |
|
| 44 |
"0 1 0\n" |
|
| 45 |
"0 2 0\n" |
|
| 46 |
"0 3 0\n" |
|
| 47 |
"0 4 0\n" |
|
| 48 |
"1 2 0\n" |
|
| 49 |
"1 3 0\n" |
|
| 50 |
"1 4 0\n" |
|
| 51 |
"2 3 0\n" |
|
| 52 |
"2 4 0\n" |
|
| 53 |
"3 4 0\n", |
|
| 54 |
|
|
| 55 |
"@nodes\n" |
|
| 56 |
"label\n" |
|
| 57 |
"0\n" |
|
| 58 |
"1\n" |
|
| 59 |
"2\n" |
|
| 60 |
"3\n" |
|
| 61 |
"4\n" |
|
| 62 |
"@edges\n" |
|
| 63 |
" label\n" |
|
| 64 |
"0 1 0\n" |
|
| 65 |
"0 2 0\n" |
|
| 66 |
"0 3 0\n" |
|
| 67 |
"0 4 0\n" |
|
| 68 |
"1 2 0\n" |
|
| 69 |
"1 3 0\n" |
|
| 70 |
"2 3 0\n" |
|
| 71 |
"2 4 0\n" |
|
| 72 |
"3 4 0\n", |
|
| 73 |
|
|
| 74 |
"@nodes\n" |
|
| 75 |
"label\n" |
|
| 76 |
"0\n" |
|
| 77 |
"1\n" |
|
| 78 |
"2\n" |
|
| 79 |
"3\n" |
|
| 80 |
"4\n" |
|
| 81 |
"5\n" |
|
| 82 |
"@edges\n" |
|
| 83 |
" label\n" |
|
| 84 |
"0 3 0\n" |
|
| 85 |
"0 4 0\n" |
|
| 86 |
"0 5 0\n" |
|
| 87 |
"1 3 0\n" |
|
| 88 |
"1 4 0\n" |
|
| 89 |
"1 5 0\n" |
|
| 90 |
"2 3 0\n" |
|
| 91 |
"2 4 0\n" |
|
| 92 |
"2 5 0\n", |
|
| 93 |
|
|
| 94 |
"@nodes\n" |
|
| 95 |
"label\n" |
|
| 96 |
"0\n" |
|
| 97 |
"1\n" |
|
| 98 |
"2\n" |
|
| 99 |
"3\n" |
|
| 100 |
"4\n" |
|
| 101 |
"5\n" |
|
| 102 |
"@edges\n" |
|
| 103 |
" label\n" |
|
| 104 |
"0 3 0\n" |
|
| 105 |
"0 4 0\n" |
|
| 106 |
"0 5 0\n" |
|
| 107 |
"1 3 0\n" |
|
| 108 |
"1 4 0\n" |
|
| 109 |
"1 5 0\n" |
|
| 110 |
"2 3 0\n" |
|
| 111 |
"2 5 0\n" |
|
| 112 |
}; |
|
| 113 |
|
|
| 114 |
|
|
| 115 |
|
|
| 116 |
typedef SmartGraph Graph; |
|
| 117 |
GRAPH_TYPEDEFS(Graph); |
|
| 118 |
|
|
| 119 |
typedef PlanarEmbedding<SmartGraph> PE; |
|
| 120 |
typedef PlanarDrawing<SmartGraph> PD; |
|
| 121 |
typedef PlanarColoring<SmartGraph> PC; |
|
| 122 |
|
|
| 123 |
void checkEmbedding(const Graph& graph, PE& pe) {
|
|
| 124 |
int face_num = 0; |
|
| 125 |
|
|
| 126 |
Graph::ArcMap<int> face(graph, -1); |
|
| 127 |
|
|
| 128 |
for (ArcIt a(graph); a != INVALID; ++a) {
|
|
| 129 |
if (face[a] == -1) {
|
|
| 130 |
Arc b = a; |
|
| 131 |
while (face[b] == -1) {
|
|
| 132 |
face[b] = face_num; |
|
| 133 |
b = pe.next(graph.oppositeArc(b)); |
|
| 134 |
} |
|
| 135 |
check(face[b] == face_num, "Wrong face"); |
|
| 136 |
++face_num; |
|
| 137 |
} |
|
| 138 |
} |
|
| 139 |
check(face_num + countNodes(graph) - countConnectedComponents(graph) == |
|
| 140 |
countEdges(graph) + 1, "Euler test does not passed"); |
|
| 141 |
} |
|
| 142 |
|
|
| 143 |
void checkKuratowski(const Graph& graph, PE& pe) {
|
|
| 144 |
std::map<int, int> degs; |
|
| 145 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 146 |
int deg = 0; |
|
| 147 |
for (IncEdgeIt e(graph, n); e != INVALID; ++e) {
|
|
| 148 |
if (pe.kuratowski(e)) {
|
|
| 149 |
++deg; |
|
| 150 |
} |
|
| 151 |
} |
|
| 152 |
++degs[deg]; |
|
| 153 |
} |
|
| 154 |
for (std::map<int, int>::iterator it = degs.begin(); it != degs.end(); ++it) {
|
|
| 155 |
check(it->first == 0 || it->first == 2 || |
|
| 156 |
(it->first == 3 && it->second == 6) || |
|
| 157 |
(it->first == 4 && it->second == 5), |
|
| 158 |
"Wrong degree in Kuratowski graph"); |
|
| 159 |
} |
|
| 160 |
|
|
| 161 |
// Not full test |
|
| 162 |
check((degs[3] == 0) != (degs[4] == 0), "Wrong Kuratowski graph"); |
|
| 163 |
} |
|
| 164 |
|
|
| 165 |
bool intersect(Point<int> e1, Point<int> e2, Point<int> f1, Point<int> f2) {
|
|
| 166 |
int l, r; |
|
| 167 |
if (std::min(e1.x, e2.x) > std::max(f1.x, f2.x)) return false; |
|
| 168 |
if (std::max(e1.x, e2.x) < std::min(f1.x, f2.x)) return false; |
|
| 169 |
if (std::min(e1.y, e2.y) > std::max(f1.y, f2.y)) return false; |
|
| 170 |
if (std::max(e1.y, e2.y) < std::min(f1.y, f2.y)) return false; |
|
| 171 |
|
|
| 172 |
l = (e2.x - e1.x) * (f1.y - e1.y) - (e2.y - e1.y) * (f1.x - e1.x); |
|
| 173 |
r = (e2.x - e1.x) * (f2.y - e1.y) - (e2.y - e1.y) * (f2.x - e1.x); |
|
| 174 |
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; |
|
| 175 |
l = (f2.x - f1.x) * (e1.y - f1.y) - (f2.y - f1.y) * (e1.x - f1.x); |
|
| 176 |
r = (f2.x - f1.x) * (e2.y - f1.y) - (f2.y - f1.y) * (e2.x - f1.x); |
|
| 177 |
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; |
|
| 178 |
return true; |
|
| 179 |
} |
|
| 180 |
|
|
| 181 |
bool collinear(Point<int> p, Point<int> q, Point<int> r) {
|
|
| 182 |
int v; |
|
| 183 |
v = (q.x - p.x) * (r.y - p.y) - (q.y - p.y) * (r.x - p.x); |
|
| 184 |
if (v != 0) return false; |
|
| 185 |
v = (q.x - p.x) * (r.x - p.x) + (q.y - p.y) * (r.y - p.y); |
|
| 186 |
if (v < 0) return false; |
|
| 187 |
return true; |
|
| 188 |
} |
|
| 189 |
|
|
| 190 |
void checkDrawing(const Graph& graph, PD& pd) {
|
|
| 191 |
for (Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 192 |
Graph::NodeIt m(n); |
|
| 193 |
for (++m; m != INVALID; ++m) {
|
|
| 194 |
check(pd[m] != pd[n], "Two nodes with identical coordinates"); |
|
| 195 |
} |
|
| 196 |
} |
|
| 197 |
|
|
| 198 |
for (Graph::EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 199 |
for (Graph::EdgeIt f(e); f != e; ++f) {
|
|
| 200 |
Point<int> e1 = pd[graph.u(e)]; |
|
| 201 |
Point<int> e2 = pd[graph.v(e)]; |
|
| 202 |
Point<int> f1 = pd[graph.u(f)]; |
|
| 203 |
Point<int> f2 = pd[graph.v(f)]; |
|
| 204 |
|
|
| 205 |
if (graph.u(e) == graph.u(f)) {
|
|
| 206 |
check(!collinear(e1, e2, f2), "Wrong drawing"); |
|
| 207 |
} else if (graph.u(e) == graph.v(f)) {
|
|
| 208 |
check(!collinear(e1, e2, f1), "Wrong drawing"); |
|
| 209 |
} else if (graph.v(e) == graph.u(f)) {
|
|
| 210 |
check(!collinear(e2, e1, f2), "Wrong drawing"); |
|
| 211 |
} else if (graph.v(e) == graph.v(f)) {
|
|
| 212 |
check(!collinear(e2, e1, f1), "Wrong drawing"); |
|
| 213 |
} else {
|
|
| 214 |
check(!intersect(e1, e2, f1, f2), "Wrong drawing"); |
|
| 215 |
} |
|
| 216 |
} |
|
| 217 |
} |
|
| 218 |
} |
|
| 219 |
|
|
| 220 |
void checkColoring(const Graph& graph, PC& pc, int num) {
|
|
| 221 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
|
| 222 |
check(pc.colorIndex(n) >= 0 && pc.colorIndex(n) < num, |
|
| 223 |
"Wrong coloring"); |
|
| 224 |
} |
|
| 225 |
for (EdgeIt e(graph); e != INVALID; ++e) {
|
|
| 226 |
check(pc.colorIndex(graph.u(e)) != pc.colorIndex(graph.v(e)), |
|
| 227 |
"Wrong coloring"); |
|
| 228 |
} |
|
| 229 |
} |
|
| 230 |
|
|
| 231 |
int main() {
|
|
| 232 |
|
|
| 233 |
for (int i = 0; i < lgfn; ++i) {
|
|
| 234 |
std::istringstream lgfs(lgf[i]); |
|
| 235 |
|
|
| 236 |
SmartGraph graph; |
|
| 237 |
graphReader(graph, lgfs).run(); |
|
| 238 |
|
|
| 239 |
check(simpleGraph(graph), "Test graphs must be simple"); |
|
| 240 |
|
|
| 241 |
PE pe(graph); |
|
| 242 |
if (pe.run()) {
|
|
| 243 |
checkEmbedding(graph, pe); |
|
| 244 |
|
|
| 245 |
PlanarDrawing<Graph> pd(graph); |
|
| 246 |
pd.run(pe.embedding()); |
|
| 247 |
checkDrawing(graph, pd); |
|
| 248 |
|
|
| 249 |
PlanarColoring<Graph> pc(graph); |
|
| 250 |
pc.runFiveColoring(pe.embedding()); |
|
| 251 |
checkColoring(graph, pc, 5); |
|
| 252 |
|
|
| 253 |
} else {
|
|
| 254 |
checkKuratowski(graph, pe); |
|
| 255 |
} |
|
| 256 |
} |
|
| 257 |
|
|
| 258 |
return 0; |
|
| 259 |
} |
0 comments (0 inline)