| ... | ... |
@@ -264,394 +264,394 @@ |
| 264 | 264 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 265 | 265 |
return 0; // ignore warnings |
| 266 | 266 |
} |
| 267 | 267 |
}; |
| 268 | 268 |
|
| 269 | 269 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 270 | 270 |
/// Elevator type |
| 271 | 271 |
/// |
| 272 | 272 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 273 | 273 |
/// type. If this named parameter is used, then an external |
| 274 | 274 |
/// elevator object must be passed to the algorithm using the |
| 275 | 275 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 276 | 276 |
/// \ref run() or \ref init(). |
| 277 | 277 |
/// \sa SetStandardElevator |
| 278 | 278 |
template <typename T> |
| 279 | 279 |
struct SetElevator |
| 280 | 280 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 281 | 281 |
SetElevatorTraits<T> > {
|
| 282 | 282 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 283 | 283 |
SetElevatorTraits<T> > Create; |
| 284 | 284 |
}; |
| 285 | 285 |
|
| 286 | 286 |
template <typename T> |
| 287 | 287 |
struct SetStandardElevatorTraits : public Traits {
|
| 288 | 288 |
typedef T Elevator; |
| 289 | 289 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 290 | 290 |
return new Elevator(digraph, max_level); |
| 291 | 291 |
} |
| 292 | 292 |
}; |
| 293 | 293 |
|
| 294 | 294 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 295 | 295 |
/// Elevator type with automatic allocation |
| 296 | 296 |
/// |
| 297 | 297 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 298 | 298 |
/// type with automatic allocation. |
| 299 | 299 |
/// The Elevator should have standard constructor interface to be |
| 300 | 300 |
/// able to automatically created by the algorithm (i.e. the |
| 301 | 301 |
/// digraph and the maximum level should be passed to it). |
| 302 | 302 |
/// However an external elevator object could also be passed to the |
| 303 | 303 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 304 | 304 |
/// before calling \ref run() or \ref init(). |
| 305 | 305 |
/// \sa SetElevator |
| 306 | 306 |
template <typename T> |
| 307 | 307 |
struct SetStandardElevator |
| 308 | 308 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 309 | 309 |
SetStandardElevatorTraits<T> > {
|
| 310 | 310 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 311 | 311 |
SetStandardElevatorTraits<T> > Create; |
| 312 | 312 |
}; |
| 313 | 313 |
|
| 314 | 314 |
/// @} |
| 315 | 315 |
|
| 316 | 316 |
protected: |
| 317 | 317 |
|
| 318 | 318 |
Circulation() {}
|
| 319 | 319 |
|
| 320 | 320 |
public: |
| 321 | 321 |
|
| 322 | 322 |
/// Constructor. |
| 323 | 323 |
|
| 324 | 324 |
/// The constructor of the class. |
| 325 | 325 |
/// |
| 326 | 326 |
/// \param graph The digraph the algorithm runs on. |
| 327 | 327 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 328 | 328 |
/// \param upper The upper bounds (capacities) for the flow values |
| 329 | 329 |
/// on the arcs. |
| 330 | 330 |
/// \param supply The signed supply values of the nodes. |
| 331 | 331 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 332 | 332 |
const UpperMap &upper, const SupplyMap &supply) |
| 333 | 333 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 334 | 334 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 335 | 335 |
_excess(NULL) {}
|
| 336 | 336 |
|
| 337 | 337 |
/// Destructor. |
| 338 | 338 |
~Circulation() {
|
| 339 | 339 |
destroyStructures(); |
| 340 | 340 |
} |
| 341 | 341 |
|
| 342 | 342 |
|
| 343 | 343 |
private: |
| 344 | 344 |
|
| 345 | 345 |
bool checkBoundMaps() {
|
| 346 | 346 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 347 | 347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 348 | 348 |
} |
| 349 | 349 |
return true; |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
void createStructures() {
|
| 353 | 353 |
_node_num = _el = countNodes(_g); |
| 354 | 354 |
|
| 355 | 355 |
if (!_flow) {
|
| 356 | 356 |
_flow = Traits::createFlowMap(_g); |
| 357 | 357 |
_local_flow = true; |
| 358 | 358 |
} |
| 359 | 359 |
if (!_level) {
|
| 360 | 360 |
_level = Traits::createElevator(_g, _node_num); |
| 361 | 361 |
_local_level = true; |
| 362 | 362 |
} |
| 363 | 363 |
if (!_excess) {
|
| 364 | 364 |
_excess = new ExcessMap(_g); |
| 365 | 365 |
} |
| 366 | 366 |
} |
| 367 | 367 |
|
| 368 | 368 |
void destroyStructures() {
|
| 369 | 369 |
if (_local_flow) {
|
| 370 | 370 |
delete _flow; |
| 371 | 371 |
} |
| 372 | 372 |
if (_local_level) {
|
| 373 | 373 |
delete _level; |
| 374 | 374 |
} |
| 375 | 375 |
if (_excess) {
|
| 376 | 376 |
delete _excess; |
| 377 | 377 |
} |
| 378 | 378 |
} |
| 379 | 379 |
|
| 380 | 380 |
public: |
| 381 | 381 |
|
| 382 | 382 |
/// Sets the lower bound map. |
| 383 | 383 |
|
| 384 | 384 |
/// Sets the lower bound map. |
| 385 | 385 |
/// \return <tt>(*this)</tt> |
| 386 | 386 |
Circulation& lowerMap(const LowerMap& map) {
|
| 387 | 387 |
_lo = ↦ |
| 388 | 388 |
return *this; |
| 389 | 389 |
} |
| 390 | 390 |
|
| 391 | 391 |
/// Sets the upper bound (capacity) map. |
| 392 | 392 |
|
| 393 | 393 |
/// Sets the upper bound (capacity) map. |
| 394 | 394 |
/// \return <tt>(*this)</tt> |
| 395 | 395 |
Circulation& upperMap(const UpperMap& map) {
|
| 396 | 396 |
_up = ↦ |
| 397 | 397 |
return *this; |
| 398 | 398 |
} |
| 399 | 399 |
|
| 400 | 400 |
/// Sets the supply map. |
| 401 | 401 |
|
| 402 | 402 |
/// Sets the supply map. |
| 403 | 403 |
/// \return <tt>(*this)</tt> |
| 404 | 404 |
Circulation& supplyMap(const SupplyMap& map) {
|
| 405 | 405 |
_supply = ↦ |
| 406 | 406 |
return *this; |
| 407 | 407 |
} |
| 408 | 408 |
|
| 409 | 409 |
/// \brief Sets the flow map. |
| 410 | 410 |
/// |
| 411 | 411 |
/// Sets the flow map. |
| 412 | 412 |
/// If you don't use this function before calling \ref run() or |
| 413 | 413 |
/// \ref init(), an instance will be allocated automatically. |
| 414 | 414 |
/// The destructor deallocates this automatically allocated map, |
| 415 | 415 |
/// of course. |
| 416 | 416 |
/// \return <tt>(*this)</tt> |
| 417 | 417 |
Circulation& flowMap(FlowMap& map) {
|
| 418 | 418 |
if (_local_flow) {
|
| 419 | 419 |
delete _flow; |
| 420 | 420 |
_local_flow = false; |
| 421 | 421 |
} |
| 422 | 422 |
_flow = ↦ |
| 423 | 423 |
return *this; |
| 424 | 424 |
} |
| 425 | 425 |
|
| 426 | 426 |
/// \brief Sets the elevator used by algorithm. |
| 427 | 427 |
/// |
| 428 | 428 |
/// Sets the elevator used by algorithm. |
| 429 | 429 |
/// If you don't use this function before calling \ref run() or |
| 430 | 430 |
/// \ref init(), an instance will be allocated automatically. |
| 431 | 431 |
/// The destructor deallocates this automatically allocated elevator, |
| 432 | 432 |
/// of course. |
| 433 | 433 |
/// \return <tt>(*this)</tt> |
| 434 | 434 |
Circulation& elevator(Elevator& elevator) {
|
| 435 | 435 |
if (_local_level) {
|
| 436 | 436 |
delete _level; |
| 437 | 437 |
_local_level = false; |
| 438 | 438 |
} |
| 439 | 439 |
_level = &elevator; |
| 440 | 440 |
return *this; |
| 441 | 441 |
} |
| 442 | 442 |
|
| 443 | 443 |
/// \brief Returns a const reference to the elevator. |
| 444 | 444 |
/// |
| 445 | 445 |
/// Returns a const reference to the elevator. |
| 446 | 446 |
/// |
| 447 | 447 |
/// \pre Either \ref run() or \ref init() must be called before |
| 448 | 448 |
/// using this function. |
| 449 | 449 |
const Elevator& elevator() const {
|
| 450 | 450 |
return *_level; |
| 451 | 451 |
} |
| 452 | 452 |
|
| 453 | 453 |
/// \brief Sets the tolerance used by algorithm. |
| 454 | 454 |
/// |
| 455 | 455 |
/// Sets the tolerance used by algorithm. |
| 456 |
Circulation& tolerance(const Tolerance& tolerance) |
|
| 456 |
Circulation& tolerance(const Tolerance& tolerance) {
|
|
| 457 | 457 |
_tol = tolerance; |
| 458 | 458 |
return *this; |
| 459 | 459 |
} |
| 460 | 460 |
|
| 461 | 461 |
/// \brief Returns a const reference to the tolerance. |
| 462 | 462 |
/// |
| 463 | 463 |
/// Returns a const reference to the tolerance. |
| 464 | 464 |
const Tolerance& tolerance() const {
|
| 465 |
return |
|
| 465 |
return _tol; |
|
| 466 | 466 |
} |
| 467 | 467 |
|
| 468 | 468 |
/// \name Execution Control |
| 469 | 469 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 470 | 470 |
/// If you need more control on the initial solution or the execution, |
| 471 | 471 |
/// first you have to call one of the \ref init() functions, then |
| 472 | 472 |
/// the \ref start() function. |
| 473 | 473 |
|
| 474 | 474 |
///@{
|
| 475 | 475 |
|
| 476 | 476 |
/// Initializes the internal data structures. |
| 477 | 477 |
|
| 478 | 478 |
/// Initializes the internal data structures and sets all flow values |
| 479 | 479 |
/// to the lower bound. |
| 480 | 480 |
void init() |
| 481 | 481 |
{
|
| 482 | 482 |
LEMON_DEBUG(checkBoundMaps(), |
| 483 | 483 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 484 | 484 |
|
| 485 | 485 |
createStructures(); |
| 486 | 486 |
|
| 487 | 487 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 488 | 488 |
(*_excess)[n] = (*_supply)[n]; |
| 489 | 489 |
} |
| 490 | 490 |
|
| 491 | 491 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 492 | 492 |
_flow->set(e, (*_lo)[e]); |
| 493 | 493 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
| 494 | 494 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
| 495 | 495 |
} |
| 496 | 496 |
|
| 497 | 497 |
// global relabeling tested, but in general case it provides |
| 498 | 498 |
// worse performance for random digraphs |
| 499 | 499 |
_level->initStart(); |
| 500 | 500 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 501 | 501 |
_level->initAddItem(n); |
| 502 | 502 |
_level->initFinish(); |
| 503 | 503 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 504 | 504 |
if(_tol.positive((*_excess)[n])) |
| 505 | 505 |
_level->activate(n); |
| 506 | 506 |
} |
| 507 | 507 |
|
| 508 | 508 |
/// Initializes the internal data structures using a greedy approach. |
| 509 | 509 |
|
| 510 | 510 |
/// Initializes the internal data structures using a greedy approach |
| 511 | 511 |
/// to construct the initial solution. |
| 512 | 512 |
void greedyInit() |
| 513 | 513 |
{
|
| 514 | 514 |
LEMON_DEBUG(checkBoundMaps(), |
| 515 | 515 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 516 | 516 |
|
| 517 | 517 |
createStructures(); |
| 518 | 518 |
|
| 519 | 519 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 520 | 520 |
(*_excess)[n] = (*_supply)[n]; |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 524 | 524 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
|
| 525 | 525 |
_flow->set(e, (*_up)[e]); |
| 526 | 526 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
| 527 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 528 | 528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 529 | 529 |
_flow->set(e, (*_lo)[e]); |
| 530 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 531 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 532 | 532 |
} else {
|
| 533 | 533 |
Value fc = -(*_excess)[_g.target(e)]; |
| 534 | 534 |
_flow->set(e, fc); |
| 535 | 535 |
(*_excess)[_g.target(e)] = 0; |
| 536 | 536 |
(*_excess)[_g.source(e)] -= fc; |
| 537 | 537 |
} |
| 538 | 538 |
} |
| 539 | 539 |
|
| 540 | 540 |
_level->initStart(); |
| 541 | 541 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 542 | 542 |
_level->initAddItem(n); |
| 543 | 543 |
_level->initFinish(); |
| 544 | 544 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 545 | 545 |
if(_tol.positive((*_excess)[n])) |
| 546 | 546 |
_level->activate(n); |
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
///Executes the algorithm |
| 550 | 550 |
|
| 551 | 551 |
///This function executes the algorithm. |
| 552 | 552 |
/// |
| 553 | 553 |
///\return \c true if a feasible circulation is found. |
| 554 | 554 |
/// |
| 555 | 555 |
///\sa barrier() |
| 556 | 556 |
///\sa barrierMap() |
| 557 | 557 |
bool start() |
| 558 | 558 |
{
|
| 559 | 559 |
|
| 560 | 560 |
Node act; |
| 561 | 561 |
Node bact=INVALID; |
| 562 | 562 |
Node last_activated=INVALID; |
| 563 | 563 |
while((act=_level->highestActive())!=INVALID) {
|
| 564 | 564 |
int actlevel=(*_level)[act]; |
| 565 | 565 |
int mlevel=_node_num; |
| 566 | 566 |
Value exc=(*_excess)[act]; |
| 567 | 567 |
|
| 568 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 569 | 569 |
Node v = _g.target(e); |
| 570 | 570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
| 571 | 571 |
if(!_tol.positive(fc)) continue; |
| 572 | 572 |
if((*_level)[v]<actlevel) {
|
| 573 | 573 |
if(!_tol.less(fc, exc)) {
|
| 574 | 574 |
_flow->set(e, (*_flow)[e] + exc); |
| 575 | 575 |
(*_excess)[v] += exc; |
| 576 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 577 | 577 |
_level->activate(v); |
| 578 | 578 |
(*_excess)[act] = 0; |
| 579 | 579 |
_level->deactivate(act); |
| 580 | 580 |
goto next_l; |
| 581 | 581 |
} |
| 582 | 582 |
else {
|
| 583 | 583 |
_flow->set(e, (*_up)[e]); |
| 584 | 584 |
(*_excess)[v] += fc; |
| 585 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 586 | 586 |
_level->activate(v); |
| 587 | 587 |
exc-=fc; |
| 588 | 588 |
} |
| 589 | 589 |
} |
| 590 | 590 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 591 | 591 |
} |
| 592 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 593 | 593 |
Node v = _g.source(e); |
| 594 | 594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
| 595 | 595 |
if(!_tol.positive(fc)) continue; |
| 596 | 596 |
if((*_level)[v]<actlevel) {
|
| 597 | 597 |
if(!_tol.less(fc, exc)) {
|
| 598 | 598 |
_flow->set(e, (*_flow)[e] - exc); |
| 599 | 599 |
(*_excess)[v] += exc; |
| 600 | 600 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 601 | 601 |
_level->activate(v); |
| 602 | 602 |
(*_excess)[act] = 0; |
| 603 | 603 |
_level->deactivate(act); |
| 604 | 604 |
goto next_l; |
| 605 | 605 |
} |
| 606 | 606 |
else {
|
| 607 | 607 |
_flow->set(e, (*_lo)[e]); |
| 608 | 608 |
(*_excess)[v] += fc; |
| 609 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 610 | 610 |
_level->activate(v); |
| 611 | 611 |
exc-=fc; |
| 612 | 612 |
} |
| 613 | 613 |
} |
| 614 | 614 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 615 | 615 |
} |
| 616 | 616 |
|
| 617 | 617 |
(*_excess)[act] = exc; |
| 618 | 618 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 619 | 619 |
else if(mlevel==_node_num) {
|
| 620 | 620 |
_level->liftHighestActiveToTop(); |
| 621 | 621 |
_el = _node_num; |
| 622 | 622 |
return false; |
| 623 | 623 |
} |
| 624 | 624 |
else {
|
| 625 | 625 |
_level->liftHighestActive(mlevel+1); |
| 626 | 626 |
if(_level->onLevel(actlevel)==0) {
|
| 627 | 627 |
_el = actlevel; |
| 628 | 628 |
return false; |
| 629 | 629 |
} |
| 630 | 630 |
} |
| 631 | 631 |
next_l: |
| 632 | 632 |
; |
| 633 | 633 |
} |
| 634 | 634 |
return true; |
| 635 | 635 |
} |
| 636 | 636 |
|
| 637 | 637 |
/// Runs the algorithm. |
| 638 | 638 |
|
| 639 | 639 |
/// This function runs the algorithm. |
| 640 | 640 |
/// |
| 641 | 641 |
/// \return \c true if a feasible circulation is found. |
| 642 | 642 |
/// |
| 643 | 643 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 644 | 644 |
/// the following code. |
| 645 | 645 |
/// \code |
| 646 | 646 |
/// c.greedyInit(); |
| 647 | 647 |
/// c.start(); |
| 648 | 648 |
/// \endcode |
| 649 | 649 |
bool run() {
|
| 650 | 650 |
greedyInit(); |
| 651 | 651 |
return start(); |
| 652 | 652 |
} |
| 653 | 653 |
|
| 654 | 654 |
/// @} |
| 655 | 655 |
|
| 656 | 656 |
/// \name Query Functions |
| 657 | 657 |
/// The results of the circulation algorithm can be obtained using |
| ... | ... |
@@ -185,394 +185,394 @@ |
| 185 | 185 |
if (_excess) {
|
| 186 | 186 |
delete _excess; |
| 187 | 187 |
} |
| 188 | 188 |
} |
| 189 | 189 |
|
| 190 | 190 |
public: |
| 191 | 191 |
|
| 192 | 192 |
typedef Preflow Create; |
| 193 | 193 |
|
| 194 | 194 |
///\name Named Template Parameters |
| 195 | 195 |
|
| 196 | 196 |
///@{
|
| 197 | 197 |
|
| 198 | 198 |
template <typename T> |
| 199 | 199 |
struct SetFlowMapTraits : public Traits {
|
| 200 | 200 |
typedef T FlowMap; |
| 201 | 201 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 202 | 202 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 203 | 203 |
return 0; // ignore warnings |
| 204 | 204 |
} |
| 205 | 205 |
}; |
| 206 | 206 |
|
| 207 | 207 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 208 | 208 |
/// FlowMap type |
| 209 | 209 |
/// |
| 210 | 210 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 211 | 211 |
/// type. |
| 212 | 212 |
template <typename T> |
| 213 | 213 |
struct SetFlowMap |
| 214 | 214 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
|
| 215 | 215 |
typedef Preflow<Digraph, CapacityMap, |
| 216 | 216 |
SetFlowMapTraits<T> > Create; |
| 217 | 217 |
}; |
| 218 | 218 |
|
| 219 | 219 |
template <typename T> |
| 220 | 220 |
struct SetElevatorTraits : public Traits {
|
| 221 | 221 |
typedef T Elevator; |
| 222 | 222 |
static Elevator *createElevator(const Digraph&, int) {
|
| 223 | 223 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 224 | 224 |
return 0; // ignore warnings |
| 225 | 225 |
} |
| 226 | 226 |
}; |
| 227 | 227 |
|
| 228 | 228 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 229 | 229 |
/// Elevator type |
| 230 | 230 |
/// |
| 231 | 231 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 232 | 232 |
/// type. If this named parameter is used, then an external |
| 233 | 233 |
/// elevator object must be passed to the algorithm using the |
| 234 | 234 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 235 | 235 |
/// \ref run() or \ref init(). |
| 236 | 236 |
/// \sa SetStandardElevator |
| 237 | 237 |
template <typename T> |
| 238 | 238 |
struct SetElevator |
| 239 | 239 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
|
| 240 | 240 |
typedef Preflow<Digraph, CapacityMap, |
| 241 | 241 |
SetElevatorTraits<T> > Create; |
| 242 | 242 |
}; |
| 243 | 243 |
|
| 244 | 244 |
template <typename T> |
| 245 | 245 |
struct SetStandardElevatorTraits : public Traits {
|
| 246 | 246 |
typedef T Elevator; |
| 247 | 247 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 248 | 248 |
return new Elevator(digraph, max_level); |
| 249 | 249 |
} |
| 250 | 250 |
}; |
| 251 | 251 |
|
| 252 | 252 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 253 | 253 |
/// Elevator type with automatic allocation |
| 254 | 254 |
/// |
| 255 | 255 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 256 | 256 |
/// type with automatic allocation. |
| 257 | 257 |
/// The Elevator should have standard constructor interface to be |
| 258 | 258 |
/// able to automatically created by the algorithm (i.e. the |
| 259 | 259 |
/// digraph and the maximum level should be passed to it). |
| 260 | 260 |
/// However an external elevator object could also be passed to the |
| 261 | 261 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 262 | 262 |
/// before calling \ref run() or \ref init(). |
| 263 | 263 |
/// \sa SetElevator |
| 264 | 264 |
template <typename T> |
| 265 | 265 |
struct SetStandardElevator |
| 266 | 266 |
: public Preflow<Digraph, CapacityMap, |
| 267 | 267 |
SetStandardElevatorTraits<T> > {
|
| 268 | 268 |
typedef Preflow<Digraph, CapacityMap, |
| 269 | 269 |
SetStandardElevatorTraits<T> > Create; |
| 270 | 270 |
}; |
| 271 | 271 |
|
| 272 | 272 |
/// @} |
| 273 | 273 |
|
| 274 | 274 |
protected: |
| 275 | 275 |
|
| 276 | 276 |
Preflow() {}
|
| 277 | 277 |
|
| 278 | 278 |
public: |
| 279 | 279 |
|
| 280 | 280 |
|
| 281 | 281 |
/// \brief The constructor of the class. |
| 282 | 282 |
/// |
| 283 | 283 |
/// The constructor of the class. |
| 284 | 284 |
/// \param digraph The digraph the algorithm runs on. |
| 285 | 285 |
/// \param capacity The capacity of the arcs. |
| 286 | 286 |
/// \param source The source node. |
| 287 | 287 |
/// \param target The target node. |
| 288 | 288 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
| 289 | 289 |
Node source, Node target) |
| 290 | 290 |
: _graph(digraph), _capacity(&capacity), |
| 291 | 291 |
_node_num(0), _source(source), _target(target), |
| 292 | 292 |
_flow(0), _local_flow(false), |
| 293 | 293 |
_level(0), _local_level(false), |
| 294 | 294 |
_excess(0), _tolerance(), _phase() {}
|
| 295 | 295 |
|
| 296 | 296 |
/// \brief Destructor. |
| 297 | 297 |
/// |
| 298 | 298 |
/// Destructor. |
| 299 | 299 |
~Preflow() {
|
| 300 | 300 |
destroyStructures(); |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
/// \brief Sets the capacity map. |
| 304 | 304 |
/// |
| 305 | 305 |
/// Sets the capacity map. |
| 306 | 306 |
/// \return <tt>(*this)</tt> |
| 307 | 307 |
Preflow& capacityMap(const CapacityMap& map) {
|
| 308 | 308 |
_capacity = ↦ |
| 309 | 309 |
return *this; |
| 310 | 310 |
} |
| 311 | 311 |
|
| 312 | 312 |
/// \brief Sets the flow map. |
| 313 | 313 |
/// |
| 314 | 314 |
/// Sets the flow map. |
| 315 | 315 |
/// If you don't use this function before calling \ref run() or |
| 316 | 316 |
/// \ref init(), an instance will be allocated automatically. |
| 317 | 317 |
/// The destructor deallocates this automatically allocated map, |
| 318 | 318 |
/// of course. |
| 319 | 319 |
/// \return <tt>(*this)</tt> |
| 320 | 320 |
Preflow& flowMap(FlowMap& map) {
|
| 321 | 321 |
if (_local_flow) {
|
| 322 | 322 |
delete _flow; |
| 323 | 323 |
_local_flow = false; |
| 324 | 324 |
} |
| 325 | 325 |
_flow = ↦ |
| 326 | 326 |
return *this; |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
/// \brief Sets the source node. |
| 330 | 330 |
/// |
| 331 | 331 |
/// Sets the source node. |
| 332 | 332 |
/// \return <tt>(*this)</tt> |
| 333 | 333 |
Preflow& source(const Node& node) {
|
| 334 | 334 |
_source = node; |
| 335 | 335 |
return *this; |
| 336 | 336 |
} |
| 337 | 337 |
|
| 338 | 338 |
/// \brief Sets the target node. |
| 339 | 339 |
/// |
| 340 | 340 |
/// Sets the target node. |
| 341 | 341 |
/// \return <tt>(*this)</tt> |
| 342 | 342 |
Preflow& target(const Node& node) {
|
| 343 | 343 |
_target = node; |
| 344 | 344 |
return *this; |
| 345 | 345 |
} |
| 346 | 346 |
|
| 347 | 347 |
/// \brief Sets the elevator used by algorithm. |
| 348 | 348 |
/// |
| 349 | 349 |
/// Sets the elevator used by algorithm. |
| 350 | 350 |
/// If you don't use this function before calling \ref run() or |
| 351 | 351 |
/// \ref init(), an instance will be allocated automatically. |
| 352 | 352 |
/// The destructor deallocates this automatically allocated elevator, |
| 353 | 353 |
/// of course. |
| 354 | 354 |
/// \return <tt>(*this)</tt> |
| 355 | 355 |
Preflow& elevator(Elevator& elevator) {
|
| 356 | 356 |
if (_local_level) {
|
| 357 | 357 |
delete _level; |
| 358 | 358 |
_local_level = false; |
| 359 | 359 |
} |
| 360 | 360 |
_level = &elevator; |
| 361 | 361 |
return *this; |
| 362 | 362 |
} |
| 363 | 363 |
|
| 364 | 364 |
/// \brief Returns a const reference to the elevator. |
| 365 | 365 |
/// |
| 366 | 366 |
/// Returns a const reference to the elevator. |
| 367 | 367 |
/// |
| 368 | 368 |
/// \pre Either \ref run() or \ref init() must be called before |
| 369 | 369 |
/// using this function. |
| 370 | 370 |
const Elevator& elevator() const {
|
| 371 | 371 |
return *_level; |
| 372 | 372 |
} |
| 373 | 373 |
|
| 374 | 374 |
/// \brief Sets the tolerance used by algorithm. |
| 375 | 375 |
/// |
| 376 | 376 |
/// Sets the tolerance used by algorithm. |
| 377 |
Preflow& tolerance(const Tolerance& tolerance) |
|
| 377 |
Preflow& tolerance(const Tolerance& tolerance) {
|
|
| 378 | 378 |
_tolerance = tolerance; |
| 379 | 379 |
return *this; |
| 380 | 380 |
} |
| 381 | 381 |
|
| 382 | 382 |
/// \brief Returns a const reference to the tolerance. |
| 383 | 383 |
/// |
| 384 | 384 |
/// Returns a const reference to the tolerance. |
| 385 | 385 |
const Tolerance& tolerance() const {
|
| 386 |
return |
|
| 386 |
return _tolerance; |
|
| 387 | 387 |
} |
| 388 | 388 |
|
| 389 | 389 |
/// \name Execution Control |
| 390 | 390 |
/// The simplest way to execute the preflow algorithm is to use |
| 391 | 391 |
/// \ref run() or \ref runMinCut().\n |
| 392 | 392 |
/// If you need more control on the initial solution or the execution, |
| 393 | 393 |
/// first you have to call one of the \ref init() functions, then |
| 394 | 394 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 395 | 395 |
|
| 396 | 396 |
///@{
|
| 397 | 397 |
|
| 398 | 398 |
/// \brief Initializes the internal data structures. |
| 399 | 399 |
/// |
| 400 | 400 |
/// Initializes the internal data structures and sets the initial |
| 401 | 401 |
/// flow to zero on each arc. |
| 402 | 402 |
void init() {
|
| 403 | 403 |
createStructures(); |
| 404 | 404 |
|
| 405 | 405 |
_phase = true; |
| 406 | 406 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 407 | 407 |
(*_excess)[n] = 0; |
| 408 | 408 |
} |
| 409 | 409 |
|
| 410 | 410 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 411 | 411 |
_flow->set(e, 0); |
| 412 | 412 |
} |
| 413 | 413 |
|
| 414 | 414 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 415 | 415 |
|
| 416 | 416 |
_level->initStart(); |
| 417 | 417 |
_level->initAddItem(_target); |
| 418 | 418 |
|
| 419 | 419 |
std::vector<Node> queue; |
| 420 | 420 |
reached[_source] = true; |
| 421 | 421 |
|
| 422 | 422 |
queue.push_back(_target); |
| 423 | 423 |
reached[_target] = true; |
| 424 | 424 |
while (!queue.empty()) {
|
| 425 | 425 |
_level->initNewLevel(); |
| 426 | 426 |
std::vector<Node> nqueue; |
| 427 | 427 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 428 | 428 |
Node n = queue[i]; |
| 429 | 429 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 430 | 430 |
Node u = _graph.source(e); |
| 431 | 431 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 432 | 432 |
reached[u] = true; |
| 433 | 433 |
_level->initAddItem(u); |
| 434 | 434 |
nqueue.push_back(u); |
| 435 | 435 |
} |
| 436 | 436 |
} |
| 437 | 437 |
} |
| 438 | 438 |
queue.swap(nqueue); |
| 439 | 439 |
} |
| 440 | 440 |
_level->initFinish(); |
| 441 | 441 |
|
| 442 | 442 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 443 | 443 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 444 | 444 |
Node u = _graph.target(e); |
| 445 | 445 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 446 | 446 |
_flow->set(e, (*_capacity)[e]); |
| 447 | 447 |
(*_excess)[u] += (*_capacity)[e]; |
| 448 | 448 |
if (u != _target && !_level->active(u)) {
|
| 449 | 449 |
_level->activate(u); |
| 450 | 450 |
} |
| 451 | 451 |
} |
| 452 | 452 |
} |
| 453 | 453 |
} |
| 454 | 454 |
|
| 455 | 455 |
/// \brief Initializes the internal data structures using the |
| 456 | 456 |
/// given flow map. |
| 457 | 457 |
/// |
| 458 | 458 |
/// Initializes the internal data structures and sets the initial |
| 459 | 459 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 460 | 460 |
/// flow or at least a preflow, i.e. at each node excluding the |
| 461 | 461 |
/// source node the incoming flow should greater or equal to the |
| 462 | 462 |
/// outgoing flow. |
| 463 | 463 |
/// \return \c false if the given \c flowMap is not a preflow. |
| 464 | 464 |
template <typename FlowMap> |
| 465 | 465 |
bool init(const FlowMap& flowMap) {
|
| 466 | 466 |
createStructures(); |
| 467 | 467 |
|
| 468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 469 | 469 |
_flow->set(e, flowMap[e]); |
| 470 | 470 |
} |
| 471 | 471 |
|
| 472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 473 | 473 |
Value excess = 0; |
| 474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 475 | 475 |
excess += (*_flow)[e]; |
| 476 | 476 |
} |
| 477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 478 | 478 |
excess -= (*_flow)[e]; |
| 479 | 479 |
} |
| 480 | 480 |
if (excess < 0 && n != _source) return false; |
| 481 | 481 |
(*_excess)[n] = excess; |
| 482 | 482 |
} |
| 483 | 483 |
|
| 484 | 484 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 485 | 485 |
|
| 486 | 486 |
_level->initStart(); |
| 487 | 487 |
_level->initAddItem(_target); |
| 488 | 488 |
|
| 489 | 489 |
std::vector<Node> queue; |
| 490 | 490 |
reached[_source] = true; |
| 491 | 491 |
|
| 492 | 492 |
queue.push_back(_target); |
| 493 | 493 |
reached[_target] = true; |
| 494 | 494 |
while (!queue.empty()) {
|
| 495 | 495 |
_level->initNewLevel(); |
| 496 | 496 |
std::vector<Node> nqueue; |
| 497 | 497 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 498 | 498 |
Node n = queue[i]; |
| 499 | 499 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 500 | 500 |
Node u = _graph.source(e); |
| 501 | 501 |
if (!reached[u] && |
| 502 | 502 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 503 | 503 |
reached[u] = true; |
| 504 | 504 |
_level->initAddItem(u); |
| 505 | 505 |
nqueue.push_back(u); |
| 506 | 506 |
} |
| 507 | 507 |
} |
| 508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 509 | 509 |
Node v = _graph.target(e); |
| 510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 511 | 511 |
reached[v] = true; |
| 512 | 512 |
_level->initAddItem(v); |
| 513 | 513 |
nqueue.push_back(v); |
| 514 | 514 |
} |
| 515 | 515 |
} |
| 516 | 516 |
} |
| 517 | 517 |
queue.swap(nqueue); |
| 518 | 518 |
} |
| 519 | 519 |
_level->initFinish(); |
| 520 | 520 |
|
| 521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 522 | 522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 523 | 523 |
if (_tolerance.positive(rem)) {
|
| 524 | 524 |
Node u = _graph.target(e); |
| 525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 526 | 526 |
_flow->set(e, (*_capacity)[e]); |
| 527 | 527 |
(*_excess)[u] += rem; |
| 528 | 528 |
if (u != _target && !_level->active(u)) {
|
| 529 | 529 |
_level->activate(u); |
| 530 | 530 |
} |
| 531 | 531 |
} |
| 532 | 532 |
} |
| 533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 534 | 534 |
Value rem = (*_flow)[e]; |
| 535 | 535 |
if (_tolerance.positive(rem)) {
|
| 536 | 536 |
Node v = _graph.source(e); |
| 537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 538 | 538 |
_flow->set(e, 0); |
| 539 | 539 |
(*_excess)[v] += rem; |
| 540 | 540 |
if (v != _target && !_level->active(v)) {
|
| 541 | 541 |
_level->activate(v); |
| 542 | 542 |
} |
| 543 | 543 |
} |
| 544 | 544 |
} |
| 545 | 545 |
return true; |
| 546 | 546 |
} |
| 547 | 547 |
|
| 548 | 548 |
/// \brief Starts the first phase of the preflow algorithm. |
| 549 | 549 |
/// |
| 550 | 550 |
/// The preflow algorithm consists of two phases, this method runs |
| 551 | 551 |
/// the first phase. After the first phase the maximum flow value |
| 552 | 552 |
/// and a minimum value cut can already be computed, although a |
| 553 | 553 |
/// maximum flow is not yet obtained. So after calling this method |
| 554 | 554 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 555 | 555 |
/// minCut() returns a minimum cut. |
| 556 | 556 |
/// \pre One of the \ref init() functions must be called before |
| 557 | 557 |
/// using this function. |
| 558 | 558 |
void startFirstPhase() {
|
| 559 | 559 |
_phase = true; |
| 560 | 560 |
|
| 561 | 561 |
Node n = _level->highestActive(); |
| 562 | 562 |
int level = _level->highestActiveLevel(); |
| 563 | 563 |
while (n != INVALID) {
|
| 564 | 564 |
int num = _node_num; |
| 565 | 565 |
|
| 566 | 566 |
while (num > 0 && n != INVALID) {
|
| 567 | 567 |
Value excess = (*_excess)[n]; |
| 568 | 568 |
int new_level = _level->maxLevel(); |
| 569 | 569 |
|
| 570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 571 | 571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 572 | 572 |
if (!_tolerance.positive(rem)) continue; |
| 573 | 573 |
Node v = _graph.target(e); |
| 574 | 574 |
if ((*_level)[v] < level) {
|
| 575 | 575 |
if (!_level->active(v) && v != _target) {
|
| 576 | 576 |
_level->activate(v); |
| 577 | 577 |
} |
| 578 | 578 |
if (!_tolerance.less(rem, excess)) {
|
0 comments (0 inline)