gravatar
ladanyi@tmit.bme.hu
ladanyi@tmit.bme.hu
Do not distribute lemon/config.h and fix its bad include by core.h (#280)
0 2 0
default
2 files changed with 3 insertions and 2 deletions:
↑ Collapse diff ↑
Ignore white space 4096 line context
1 1
EXTRA_DIST += \
2 2
	lemon/lemon.pc.in \
3 3
	lemon/CMakeLists.txt
4 4

	
5 5
pkgconfig_DATA += lemon/lemon.pc
6 6

	
7 7
lib_LTLIBRARIES += lemon/libemon.la
8 8

	
9 9
lemon_libemon_la_SOURCES = \
10 10
        lemon/arg_parser.cc \
11 11
        lemon/base.cc \
12 12
        lemon/color.cc \
13 13
        lemon/random.cc \
14 14
	lemon/bits/windows.cc
15 15

	
16 16
#lemon_libemon_la_CXXFLAGS = $(GLPK_CFLAGS) $(CPLEX_CFLAGS) $(SOPLEX_CXXFLAGS)
17 17
#lemon_libemon_la_LDFLAGS = $(GLPK_LIBS) $(CPLEX_LIBS) $(SOPLEX_LIBS)
18 18

	
19
nodist_lemon_HEADERS = lemon/config.h
20

	
19 21
lemon_HEADERS += \
20 22
        lemon/arg_parser.h \
21 23
	lemon/assert.h \
22 24
        lemon/bfs.h \
23 25
        lemon/bin_heap.h \
24 26
        lemon/color.h \
25 27
	lemon/concept_check.h \
26
	lemon/config.h \
27 28
        lemon/counter.h \
28 29
	lemon/core.h \
29 30
        lemon/dfs.h \
30 31
        lemon/dijkstra.h \
31 32
        lemon/dim2.h \
32 33
	lemon/error.h \
33 34
        lemon/graph_to_eps.h \
34 35
	lemon/kruskal.h \
35 36
	lemon/lgf_reader.h \
36 37
	lemon/lgf_writer.h \
37 38
	lemon/list_graph.h \
38 39
	lemon/maps.h \
39 40
	lemon/math.h \
40 41
	lemon/path.h \
41 42
        lemon/random.h \
42 43
	lemon/smart_graph.h \
43 44
        lemon/time_measure.h \
44 45
        lemon/tolerance.h \
45 46
	lemon/unionfind.h \
46 47
	lemon/bits/windows.h
47 48

	
48 49
bits_HEADERS += \
49 50
	lemon/bits/alteration_notifier.h \
50 51
	lemon/bits/array_map.h \
51 52
	lemon/bits/base_extender.h \
52 53
        lemon/bits/bezier.h \
53 54
	lemon/bits/default_map.h \
54 55
        lemon/bits/enable_if.h \
55 56
	lemon/bits/graph_extender.h \
56 57
	lemon/bits/map_extender.h \
57 58
	lemon/bits/path_dump.h \
58 59
	lemon/bits/traits.h \
59 60
	lemon/bits/vector_map.h
60 61

	
61 62
concept_HEADERS += \
62 63
	lemon/concepts/digraph.h \
63 64
	lemon/concepts/graph.h \
64 65
	lemon/concepts/graph_components.h \
65 66
	lemon/concepts/heap.h \
66 67
	lemon/concepts/maps.h \
67 68
	lemon/concepts/path.h
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CORE_H
20 20
#define LEMON_CORE_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25
#include <lemon/core.h>
25
#include <lemon/config.h>
26 26
#include <lemon/bits/enable_if.h>
27 27
#include <lemon/bits/traits.h>
28 28
#include <lemon/assert.h>
29 29

	
30 30
///\file
31 31
///\brief LEMON core utilities.
32 32
///
33 33
///This header file contains core utilities for LEMON.
34 34
///It is automatically included by all graph types, therefore it usually
35 35
///do not have to be included directly.
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Dummy type to make it easier to create invalid iterators.
40 40
  ///
41 41
  /// Dummy type to make it easier to create invalid iterators.
42 42
  /// See \ref INVALID for the usage.
43 43
  struct Invalid {
44 44
  public:
45 45
    bool operator==(Invalid) { return true;  }
46 46
    bool operator!=(Invalid) { return false; }
47 47
    bool operator< (Invalid) { return false; }
48 48
  };
49 49

	
50 50
  /// \brief Invalid iterators.
51 51
  ///
52 52
  /// \ref Invalid is a global type that converts to each iterator
53 53
  /// in such a way that the value of the target iterator will be invalid.
54 54
#ifdef LEMON_ONLY_TEMPLATES
55 55
  const Invalid INVALID = Invalid();
56 56
#else
57 57
  extern const Invalid INVALID;
58 58
#endif
59 59

	
60 60
  /// \addtogroup gutils
61 61
  /// @{
62 62

	
63 63
  ///Create convenience typedefs for the digraph types and iterators
64 64

	
65 65
  ///This \c \#define creates convenient type definitions for the following
66 66
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
67 67
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
68 68
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
69 69
  ///
70 70
  ///\note If the graph type is a dependent type, ie. the graph type depend
71 71
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
72 72
  ///macro.
73 73
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
74 74
  typedef Digraph::Node Node;                                           \
75 75
  typedef Digraph::NodeIt NodeIt;                                       \
76 76
  typedef Digraph::Arc Arc;                                             \
77 77
  typedef Digraph::ArcIt ArcIt;                                         \
78 78
  typedef Digraph::InArcIt InArcIt;                                     \
79 79
  typedef Digraph::OutArcIt OutArcIt;                                   \
80 80
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
81 81
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
82 82
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
83 83
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
84 84
  typedef Digraph::ArcMap<int> IntArcMap;                               \
85 85
  typedef Digraph::ArcMap<double> DoubleArcMap
86 86

	
87 87
  ///Create convenience typedefs for the digraph types and iterators
88 88

	
89 89
  ///\see DIGRAPH_TYPEDEFS
90 90
  ///
91 91
  ///\note Use this macro, if the graph type is a dependent type,
92 92
  ///ie. the graph type depend on a template parameter.
93 93
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
94 94
  typedef typename Digraph::Node Node;                                  \
95 95
  typedef typename Digraph::NodeIt NodeIt;                              \
96 96
  typedef typename Digraph::Arc Arc;                                    \
97 97
  typedef typename Digraph::ArcIt ArcIt;                                \
98 98
  typedef typename Digraph::InArcIt InArcIt;                            \
99 99
  typedef typename Digraph::OutArcIt OutArcIt;                          \
100 100
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
101 101
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
102 102
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
103 103
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
104 104
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
105 105
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
106 106

	
107 107
  ///Create convenience typedefs for the graph types and iterators
108 108

	
109 109
  ///This \c \#define creates the same convenient type definitions as defined
110 110
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
111 111
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
112 112
  ///\c DoubleEdgeMap.
113 113
  ///
114 114
  ///\note If the graph type is a dependent type, ie. the graph type depend
115 115
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
116 116
  ///macro.
117 117
#define GRAPH_TYPEDEFS(Graph)                                           \
118 118
  DIGRAPH_TYPEDEFS(Graph);                                              \
119 119
  typedef Graph::Edge Edge;                                             \
120 120
  typedef Graph::EdgeIt EdgeIt;                                         \
121 121
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
122 122
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
123 123
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
124 124
  typedef Graph::EdgeMap<double> DoubleEdgeMap
125 125

	
126 126
  ///Create convenience typedefs for the graph types and iterators
127 127

	
128 128
  ///\see GRAPH_TYPEDEFS
129 129
  ///
130 130
  ///\note Use this macro, if the graph type is a dependent type,
131 131
  ///ie. the graph type depend on a template parameter.
132 132
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
133 133
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
134 134
  typedef typename Graph::Edge Edge;                                    \
135 135
  typedef typename Graph::EdgeIt EdgeIt;                                \
136 136
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
137 137
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
138 138
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
139 139
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
140 140

	
141 141
  /// \brief Function to count the items in a graph.
142 142
  ///
143 143
  /// This function counts the items (nodes, arcs etc.) in a graph.
144 144
  /// The complexity of the function is linear because
145 145
  /// it iterates on all of the items.
146 146
  template <typename Graph, typename Item>
147 147
  inline int countItems(const Graph& g) {
148 148
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
149 149
    int num = 0;
150 150
    for (ItemIt it(g); it != INVALID; ++it) {
151 151
      ++num;
152 152
    }
153 153
    return num;
154 154
  }
155 155

	
156 156
  // Node counting:
157 157

	
158 158
  namespace _core_bits {
159 159

	
160 160
    template <typename Graph, typename Enable = void>
161 161
    struct CountNodesSelector {
162 162
      static int count(const Graph &g) {
163 163
        return countItems<Graph, typename Graph::Node>(g);
164 164
      }
165 165
    };
166 166

	
167 167
    template <typename Graph>
168 168
    struct CountNodesSelector<
169 169
      Graph, typename
170 170
      enable_if<typename Graph::NodeNumTag, void>::type>
171 171
    {
172 172
      static int count(const Graph &g) {
173 173
        return g.nodeNum();
174 174
      }
175 175
    };
176 176
  }
177 177

	
178 178
  /// \brief Function to count the nodes in the graph.
179 179
  ///
180 180
  /// This function counts the nodes in the graph.
181 181
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
182 182
  /// graph structures it is specialized to run in <em>O</em>(1).
183 183
  ///
184 184
  /// \note If the graph contains a \c nodeNum() member function and a
185 185
  /// \c NodeNumTag tag then this function calls directly the member
186 186
  /// function to query the cardinality of the node set.
187 187
  template <typename Graph>
188 188
  inline int countNodes(const Graph& g) {
189 189
    return _core_bits::CountNodesSelector<Graph>::count(g);
190 190
  }
191 191

	
192 192
  // Arc counting:
193 193

	
194 194
  namespace _core_bits {
195 195

	
196 196
    template <typename Graph, typename Enable = void>
197 197
    struct CountArcsSelector {
198 198
      static int count(const Graph &g) {
199 199
        return countItems<Graph, typename Graph::Arc>(g);
200 200
      }
201 201
    };
202 202

	
203 203
    template <typename Graph>
204 204
    struct CountArcsSelector<
205 205
      Graph,
206 206
      typename enable_if<typename Graph::ArcNumTag, void>::type>
207 207
    {
208 208
      static int count(const Graph &g) {
209 209
        return g.arcNum();
210 210
      }
211 211
    };
212 212
  }
213 213

	
214 214
  /// \brief Function to count the arcs in the graph.
215 215
  ///
216 216
  /// This function counts the arcs in the graph.
217 217
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
218 218
  /// graph structures it is specialized to run in <em>O</em>(1).
219 219
  ///
220 220
  /// \note If the graph contains a \c arcNum() member function and a
221 221
  /// \c ArcNumTag tag then this function calls directly the member
222 222
  /// function to query the cardinality of the arc set.
223 223
  template <typename Graph>
224 224
  inline int countArcs(const Graph& g) {
225 225
    return _core_bits::CountArcsSelector<Graph>::count(g);
226 226
  }
227 227

	
228 228
  // Edge counting:
229 229

	
230 230
  namespace _core_bits {
231 231

	
232 232
    template <typename Graph, typename Enable = void>
233 233
    struct CountEdgesSelector {
234 234
      static int count(const Graph &g) {
235 235
        return countItems<Graph, typename Graph::Edge>(g);
236 236
      }
237 237
    };
238 238

	
239 239
    template <typename Graph>
240 240
    struct CountEdgesSelector<
241 241
      Graph,
242 242
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
243 243
    {
244 244
      static int count(const Graph &g) {
245 245
        return g.edgeNum();
246 246
      }
247 247
    };
248 248
  }
249 249

	
250 250
  /// \brief Function to count the edges in the graph.
251 251
  ///
252 252
  /// This function counts the edges in the graph.
253 253
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
254 254
  /// graph structures it is specialized to run in <em>O</em>(1).
255 255
  ///
256 256
  /// \note If the graph contains a \c edgeNum() member function and a
257 257
  /// \c EdgeNumTag tag then this function calls directly the member
258 258
  /// function to query the cardinality of the edge set.
259 259
  template <typename Graph>
260 260
  inline int countEdges(const Graph& g) {
261 261
    return _core_bits::CountEdgesSelector<Graph>::count(g);
262 262

	
263 263
  }
264 264

	
265 265

	
266 266
  template <typename Graph, typename DegIt>
267 267
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
268 268
    int num = 0;
269 269
    for (DegIt it(_g, _n); it != INVALID; ++it) {
270 270
      ++num;
271 271
    }
272 272
    return num;
273 273
  }
274 274

	
275 275
  /// \brief Function to count the number of the out-arcs from node \c n.
276 276
  ///
277 277
  /// This function counts the number of the out-arcs from node \c n
278 278
  /// in the graph \c g.
279 279
  template <typename Graph>
280 280
  inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
281 281
    return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
282 282
  }
283 283

	
284 284
  /// \brief Function to count the number of the in-arcs to node \c n.
285 285
  ///
286 286
  /// This function counts the number of the in-arcs to node \c n
287 287
  /// in the graph \c g.
288 288
  template <typename Graph>
289 289
  inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
290 290
    return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
291 291
  }
292 292

	
293 293
  /// \brief Function to count the number of the inc-edges to node \c n.
294 294
  ///
295 295
  /// This function counts the number of the inc-edges to node \c n
296 296
  /// in the undirected graph \c g.
297 297
  template <typename Graph>
298 298
  inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
299 299
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
300 300
  }
301 301

	
302 302
  namespace _core_bits {
303 303

	
304 304
    template <typename Digraph, typename Item, typename RefMap>
305 305
    class MapCopyBase {
306 306
    public:
307 307
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
308 308

	
309 309
      virtual ~MapCopyBase() {}
310 310
    };
311 311

	
312 312
    template <typename Digraph, typename Item, typename RefMap,
313 313
              typename FromMap, typename ToMap>
314 314
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
315 315
    public:
316 316

	
317 317
      MapCopy(const FromMap& map, ToMap& tmap)
318 318
        : _map(map), _tmap(tmap) {}
319 319

	
320 320
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
321 321
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
322 322
        for (ItemIt it(digraph); it != INVALID; ++it) {
323 323
          _tmap.set(refMap[it], _map[it]);
324 324
        }
325 325
      }
326 326

	
327 327
    private:
328 328
      const FromMap& _map;
329 329
      ToMap& _tmap;
330 330
    };
331 331

	
332 332
    template <typename Digraph, typename Item, typename RefMap, typename It>
333 333
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
334 334
    public:
335 335

	
336 336
      ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
337 337

	
338 338
      virtual void copy(const Digraph&, const RefMap& refMap) {
339 339
        _it = refMap[_item];
340 340
      }
341 341

	
342 342
    private:
343 343
      Item _item;
344 344
      It& _it;
345 345
    };
346 346

	
347 347
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
348 348
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
349 349
    public:
350 350

	
351 351
      RefCopy(Ref& map) : _map(map) {}
352 352

	
353 353
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
354 354
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
355 355
        for (ItemIt it(digraph); it != INVALID; ++it) {
356 356
          _map.set(it, refMap[it]);
357 357
        }
358 358
      }
359 359

	
360 360
    private:
361 361
      Ref& _map;
362 362
    };
363 363

	
364 364
    template <typename Digraph, typename Item, typename RefMap,
365 365
              typename CrossRef>
366 366
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
367 367
    public:
368 368

	
369 369
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
370 370

	
371 371
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
372 372
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
373 373
        for (ItemIt it(digraph); it != INVALID; ++it) {
374 374
          _cmap.set(refMap[it], it);
375 375
        }
376 376
      }
377 377

	
378 378
    private:
379 379
      CrossRef& _cmap;
380 380
    };
381 381

	
382 382
    template <typename Digraph, typename Enable = void>
383 383
    struct DigraphCopySelector {
384 384
      template <typename From, typename NodeRefMap, typename ArcRefMap>
385 385
      static void copy(const From& from, Digraph &to,
386 386
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
387 387
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
388 388
          nodeRefMap[it] = to.addNode();
389 389
        }
390 390
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
391 391
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
392 392
                                    nodeRefMap[from.target(it)]);
393 393
        }
394 394
      }
395 395
    };
396 396

	
397 397
    template <typename Digraph>
398 398
    struct DigraphCopySelector<
399 399
      Digraph,
400 400
      typename enable_if<typename Digraph::BuildTag, void>::type>
401 401
    {
402 402
      template <typename From, typename NodeRefMap, typename ArcRefMap>
403 403
      static void copy(const From& from, Digraph &to,
404 404
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
405 405
        to.build(from, nodeRefMap, arcRefMap);
406 406
      }
407 407
    };
408 408

	
409 409
    template <typename Graph, typename Enable = void>
410 410
    struct GraphCopySelector {
411 411
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
412 412
      static void copy(const From& from, Graph &to,
413 413
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
414 414
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
415 415
          nodeRefMap[it] = to.addNode();
416 416
        }
417 417
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
418 418
          edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
419 419
                                      nodeRefMap[from.v(it)]);
420 420
        }
421 421
      }
422 422
    };
423 423

	
424 424
    template <typename Graph>
425 425
    struct GraphCopySelector<
426 426
      Graph,
427 427
      typename enable_if<typename Graph::BuildTag, void>::type>
428 428
    {
429 429
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
430 430
      static void copy(const From& from, Graph &to,
431 431
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
432 432
        to.build(from, nodeRefMap, edgeRefMap);
433 433
      }
434 434
    };
435 435

	
436 436
  }
437 437

	
438 438
  /// \brief Class to copy a digraph.
439 439
  ///
440 440
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
441 441
  /// simplest way of using it is through the \c digraphCopy() function.
442 442
  ///
443 443
  /// This class not only make a copy of a digraph, but it can create
444 444
  /// references and cross references between the nodes and arcs of
445 445
  /// the two digraphs, and it can copy maps to use with the newly created
446 446
  /// digraph.
447 447
  ///
448 448
  /// To make a copy from a digraph, first an instance of DigraphCopy
449 449
  /// should be created, then the data belongs to the digraph should
450 450
  /// assigned to copy. In the end, the \c run() member should be
451 451
  /// called.
452 452
  ///
453 453
  /// The next code copies a digraph with several data:
454 454
  ///\code
455 455
  ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
456 456
  ///  // Create references for the nodes
457 457
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
458 458
  ///  cg.nodeRef(nr);
459 459
  ///  // Create cross references (inverse) for the arcs
460 460
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
461 461
  ///  cg.arcCrossRef(acr);
462 462
  ///  // Copy an arc map
463 463
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
464 464
  ///  NewGraph::ArcMap<double> namap(new_graph);
465 465
  ///  cg.arcMap(oamap, namap);
466 466
  ///  // Copy a node
467 467
  ///  OrigGraph::Node on;
468 468
  ///  NewGraph::Node nn;
469 469
  ///  cg.node(on, nn);
470 470
  ///  // Execute copying
471 471
  ///  cg.run();
472 472
  ///\endcode
473 473
  template <typename From, typename To>
474 474
  class DigraphCopy {
475 475
  private:
476 476

	
477 477
    typedef typename From::Node Node;
478 478
    typedef typename From::NodeIt NodeIt;
479 479
    typedef typename From::Arc Arc;
480 480
    typedef typename From::ArcIt ArcIt;
481 481

	
482 482
    typedef typename To::Node TNode;
483 483
    typedef typename To::Arc TArc;
484 484

	
485 485
    typedef typename From::template NodeMap<TNode> NodeRefMap;
486 486
    typedef typename From::template ArcMap<TArc> ArcRefMap;
487 487

	
488 488
  public:
489 489

	
490 490
    /// \brief Constructor of DigraphCopy.
491 491
    ///
492 492
    /// Constructor of DigraphCopy for copying the content of the
493 493
    /// \c from digraph into the \c to digraph.
494 494
    DigraphCopy(const From& from, To& to)
495 495
      : _from(from), _to(to) {}
496 496

	
497 497
    /// \brief Destructor of DigraphCopy
498 498
    ///
499 499
    /// Destructor of DigraphCopy.
500 500
    ~DigraphCopy() {
501 501
      for (int i = 0; i < int(_node_maps.size()); ++i) {
502 502
        delete _node_maps[i];
503 503
      }
504 504
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
505 505
        delete _arc_maps[i];
506 506
      }
507 507

	
508 508
    }
509 509

	
510 510
    /// \brief Copy the node references into the given map.
511 511
    ///
512 512
    /// This function copies the node references into the given map.
513 513
    /// The parameter should be a map, whose key type is the Node type of
514 514
    /// the source digraph, while the value type is the Node type of the
515 515
    /// destination digraph.
516 516
    template <typename NodeRef>
517 517
    DigraphCopy& nodeRef(NodeRef& map) {
518 518
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
519 519
                           NodeRefMap, NodeRef>(map));
520 520
      return *this;
521 521
    }
522 522

	
523 523
    /// \brief Copy the node cross references into the given map.
524 524
    ///
525 525
    /// This function copies the node cross references (reverse references)
526 526
    /// into the given map. The parameter should be a map, whose key type
527 527
    /// is the Node type of the destination digraph, while the value type is
528 528
    /// the Node type of the source digraph.
529 529
    template <typename NodeCrossRef>
530 530
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
531 531
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
532 532
                           NodeRefMap, NodeCrossRef>(map));
533 533
      return *this;
534 534
    }
535 535

	
536 536
    /// \brief Make a copy of the given node map.
537 537
    ///
538 538
    /// This function makes a copy of the given node map for the newly
539 539
    /// created digraph.
540 540
    /// The key type of the new map \c tmap should be the Node type of the
541 541
    /// destination digraph, and the key type of the original map \c map
542 542
    /// should be the Node type of the source digraph.
543 543
    template <typename FromMap, typename ToMap>
544 544
    DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
545 545
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
546 546
                           NodeRefMap, FromMap, ToMap>(map, tmap));
547 547
      return *this;
548 548
    }
549 549

	
550 550
    /// \brief Make a copy of the given node.
551 551
    ///
552 552
    /// This function makes a copy of the given node.
553 553
    DigraphCopy& node(const Node& node, TNode& tnode) {
554 554
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
555 555
                           NodeRefMap, TNode>(node, tnode));
556 556
      return *this;
557 557
    }
558 558

	
559 559
    /// \brief Copy the arc references into the given map.
560 560
    ///
561 561
    /// This function copies the arc references into the given map.
562 562
    /// The parameter should be a map, whose key type is the Arc type of
563 563
    /// the source digraph, while the value type is the Arc type of the
564 564
    /// destination digraph.
565 565
    template <typename ArcRef>
566 566
    DigraphCopy& arcRef(ArcRef& map) {
567 567
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
568 568
                          ArcRefMap, ArcRef>(map));
569 569
      return *this;
570 570
    }
571 571

	
572 572
    /// \brief Copy the arc cross references into the given map.
573 573
    ///
574 574
    /// This function copies the arc cross references (reverse references)
575 575
    /// into the given map. The parameter should be a map, whose key type
576 576
    /// is the Arc type of the destination digraph, while the value type is
577 577
    /// the Arc type of the source digraph.
578 578
    template <typename ArcCrossRef>
579 579
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
580 580
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
581 581
                          ArcRefMap, ArcCrossRef>(map));
582 582
      return *this;
583 583
    }
584 584

	
585 585
    /// \brief Make a copy of the given arc map.
586 586
    ///
587 587
    /// This function makes a copy of the given arc map for the newly
588 588
    /// created digraph.
589 589
    /// The key type of the new map \c tmap should be the Arc type of the
590 590
    /// destination digraph, and the key type of the original map \c map
591 591
    /// should be the Arc type of the source digraph.
592 592
    template <typename FromMap, typename ToMap>
593 593
    DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
594 594
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
595 595
                          ArcRefMap, FromMap, ToMap>(map, tmap));
596 596
      return *this;
597 597
    }
598 598

	
599 599
    /// \brief Make a copy of the given arc.
600 600
    ///
601 601
    /// This function makes a copy of the given arc.
602 602
    DigraphCopy& arc(const Arc& arc, TArc& tarc) {
603 603
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
604 604
                          ArcRefMap, TArc>(arc, tarc));
605 605
      return *this;
606 606
    }
607 607

	
608 608
    /// \brief Execute copying.
609 609
    ///
610 610
    /// This function executes the copying of the digraph along with the
611 611
    /// copying of the assigned data.
612 612
    void run() {
613 613
      NodeRefMap nodeRefMap(_from);
614 614
      ArcRefMap arcRefMap(_from);
615 615
      _core_bits::DigraphCopySelector<To>::
616 616
        copy(_from, _to, nodeRefMap, arcRefMap);
617 617
      for (int i = 0; i < int(_node_maps.size()); ++i) {
618 618
        _node_maps[i]->copy(_from, nodeRefMap);
619 619
      }
620 620
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
621 621
        _arc_maps[i]->copy(_from, arcRefMap);
622 622
      }
623 623
    }
624 624

	
625 625
  protected:
626 626

	
627 627
    const From& _from;
628 628
    To& _to;
629 629

	
630 630
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
631 631
      _node_maps;
632 632

	
633 633
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
634 634
      _arc_maps;
635 635

	
636 636
  };
637 637

	
638 638
  /// \brief Copy a digraph to another digraph.
639 639
  ///
640 640
  /// This function copies a digraph to another digraph.
641 641
  /// The complete usage of it is detailed in the DigraphCopy class, but
642 642
  /// a short example shows a basic work:
643 643
  ///\code
644 644
  /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
645 645
  ///\endcode
646 646
  ///
647 647
  /// After the copy the \c nr map will contain the mapping from the
648 648
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
649 649
  /// \c acr will contain the mapping from the arcs of the \c to digraph
650 650
  /// to the arcs of the \c from digraph.
651 651
  ///
652 652
  /// \see DigraphCopy
653 653
  template <typename From, typename To>
654 654
  DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
655 655
    return DigraphCopy<From, To>(from, to);
656 656
  }
657 657

	
658 658
  /// \brief Class to copy a graph.
659 659
  ///
660 660
  /// Class to copy a graph to another graph (duplicate a graph). The
661 661
  /// simplest way of using it is through the \c graphCopy() function.
662 662
  ///
663 663
  /// This class not only make a copy of a graph, but it can create
664 664
  /// references and cross references between the nodes, edges and arcs of
665 665
  /// the two graphs, and it can copy maps for using with the newly created
666 666
  /// graph.
667 667
  ///
668 668
  /// To make a copy from a graph, first an instance of GraphCopy
669 669
  /// should be created, then the data belongs to the graph should
670 670
  /// assigned to copy. In the end, the \c run() member should be
671 671
  /// called.
672 672
  ///
673 673
  /// The next code copies a graph with several data:
674 674
  ///\code
675 675
  ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
676 676
  ///  // Create references for the nodes
677 677
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
678 678
  ///  cg.nodeRef(nr);
679 679
  ///  // Create cross references (inverse) for the edges
680 680
  ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
681 681
  ///  cg.edgeCrossRef(ecr);
682 682
  ///  // Copy an edge map
683 683
  ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
684 684
  ///  NewGraph::EdgeMap<double> nemap(new_graph);
685 685
  ///  cg.edgeMap(oemap, nemap);
686 686
  ///  // Copy a node
687 687
  ///  OrigGraph::Node on;
688 688
  ///  NewGraph::Node nn;
689 689
  ///  cg.node(on, nn);
690 690
  ///  // Execute copying
691 691
  ///  cg.run();
692 692
  ///\endcode
693 693
  template <typename From, typename To>
694 694
  class GraphCopy {
695 695
  private:
696 696

	
697 697
    typedef typename From::Node Node;
698 698
    typedef typename From::NodeIt NodeIt;
699 699
    typedef typename From::Arc Arc;
700 700
    typedef typename From::ArcIt ArcIt;
701 701
    typedef typename From::Edge Edge;
702 702
    typedef typename From::EdgeIt EdgeIt;
703 703

	
704 704
    typedef typename To::Node TNode;
705 705
    typedef typename To::Arc TArc;
706 706
    typedef typename To::Edge TEdge;
707 707

	
708 708
    typedef typename From::template NodeMap<TNode> NodeRefMap;
709 709
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
710 710

	
711 711
    struct ArcRefMap {
712 712
      ArcRefMap(const From& from, const To& to,
713 713
                const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
714 714
        : _from(from), _to(to),
715 715
          _edge_ref(edge_ref), _node_ref(node_ref) {}
716 716

	
717 717
      typedef typename From::Arc Key;
718 718
      typedef typename To::Arc Value;
719 719

	
720 720
      Value operator[](const Key& key) const {
721 721
        bool forward = _from.u(key) != _from.v(key) ?
722 722
          _node_ref[_from.source(key)] ==
723 723
          _to.source(_to.direct(_edge_ref[key], true)) :
724 724
          _from.direction(key);
725 725
        return _to.direct(_edge_ref[key], forward);
726 726
      }
727 727

	
728 728
      const From& _from;
729 729
      const To& _to;
730 730
      const EdgeRefMap& _edge_ref;
731 731
      const NodeRefMap& _node_ref;
732 732
    };
733 733

	
734 734
  public:
735 735

	
736 736
    /// \brief Constructor of GraphCopy.
737 737
    ///
738 738
    /// Constructor of GraphCopy for copying the content of the
739 739
    /// \c from graph into the \c to graph.
740 740
    GraphCopy(const From& from, To& to)
741 741
      : _from(from), _to(to) {}
742 742

	
743 743
    /// \brief Destructor of GraphCopy
744 744
    ///
745 745
    /// Destructor of GraphCopy.
746 746
    ~GraphCopy() {
747 747
      for (int i = 0; i < int(_node_maps.size()); ++i) {
748 748
        delete _node_maps[i];
749 749
      }
750 750
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
751 751
        delete _arc_maps[i];
752 752
      }
753 753
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
754 754
        delete _edge_maps[i];
755 755
      }
756 756
    }
757 757

	
758 758
    /// \brief Copy the node references into the given map.
759 759
    ///
760 760
    /// This function copies the node references into the given map.
761 761
    /// The parameter should be a map, whose key type is the Node type of
762 762
    /// the source graph, while the value type is the Node type of the
763 763
    /// destination graph.
764 764
    template <typename NodeRef>
765 765
    GraphCopy& nodeRef(NodeRef& map) {
766 766
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
767 767
                           NodeRefMap, NodeRef>(map));
768 768
      return *this;
769 769
    }
770 770

	
771 771
    /// \brief Copy the node cross references into the given map.
772 772
    ///
773 773
    /// This function copies the node cross references (reverse references)
774 774
    /// into the given map. The parameter should be a map, whose key type
775 775
    /// is the Node type of the destination graph, while the value type is
776 776
    /// the Node type of the source graph.
777 777
    template <typename NodeCrossRef>
778 778
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
779 779
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
780 780
                           NodeRefMap, NodeCrossRef>(map));
781 781
      return *this;
782 782
    }
783 783

	
784 784
    /// \brief Make a copy of the given node map.
785 785
    ///
786 786
    /// This function makes a copy of the given node map for the newly
787 787
    /// created graph.
788 788
    /// The key type of the new map \c tmap should be the Node type of the
789 789
    /// destination graph, and the key type of the original map \c map
790 790
    /// should be the Node type of the source graph.
791 791
    template <typename FromMap, typename ToMap>
792 792
    GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
793 793
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
794 794
                           NodeRefMap, FromMap, ToMap>(map, tmap));
795 795
      return *this;
796 796
    }
797 797

	
798 798
    /// \brief Make a copy of the given node.
799 799
    ///
800 800
    /// This function makes a copy of the given node.
801 801
    GraphCopy& node(const Node& node, TNode& tnode) {
802 802
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
803 803
                           NodeRefMap, TNode>(node, tnode));
804 804
      return *this;
805 805
    }
806 806

	
807 807
    /// \brief Copy the arc references into the given map.
808 808
    ///
809 809
    /// This function copies the arc references into the given map.
810 810
    /// The parameter should be a map, whose key type is the Arc type of
811 811
    /// the source graph, while the value type is the Arc type of the
812 812
    /// destination graph.
813 813
    template <typename ArcRef>
814 814
    GraphCopy& arcRef(ArcRef& map) {
815 815
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
816 816
                          ArcRefMap, ArcRef>(map));
817 817
      return *this;
818 818
    }
819 819

	
820 820
    /// \brief Copy the arc cross references into the given map.
821 821
    ///
822 822
    /// This function copies the arc cross references (reverse references)
823 823
    /// into the given map. The parameter should be a map, whose key type
824 824
    /// is the Arc type of the destination graph, while the value type is
825 825
    /// the Arc type of the source graph.
826 826
    template <typename ArcCrossRef>
827 827
    GraphCopy& arcCrossRef(ArcCrossRef& map) {
828 828
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
829 829
                          ArcRefMap, ArcCrossRef>(map));
830 830
      return *this;
831 831
    }
832 832

	
833 833
    /// \brief Make a copy of the given arc map.
834 834
    ///
835 835
    /// This function makes a copy of the given arc map for the newly
836 836
    /// created graph.
837 837
    /// The key type of the new map \c tmap should be the Arc type of the
838 838
    /// destination graph, and the key type of the original map \c map
839 839
    /// should be the Arc type of the source graph.
840 840
    template <typename FromMap, typename ToMap>
841 841
    GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
842 842
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
843 843
                          ArcRefMap, FromMap, ToMap>(map, tmap));
844 844
      return *this;
845 845
    }
846 846

	
847 847
    /// \brief Make a copy of the given arc.
848 848
    ///
849 849
    /// This function makes a copy of the given arc.
850 850
    GraphCopy& arc(const Arc& arc, TArc& tarc) {
851 851
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
852 852
                          ArcRefMap, TArc>(arc, tarc));
853 853
      return *this;
854 854
    }
855 855

	
856 856
    /// \brief Copy the edge references into the given map.
857 857
    ///
858 858
    /// This function copies the edge references into the given map.
859 859
    /// The parameter should be a map, whose key type is the Edge type of
860 860
    /// the source graph, while the value type is the Edge type of the
861 861
    /// destination graph.
862 862
    template <typename EdgeRef>
863 863
    GraphCopy& edgeRef(EdgeRef& map) {
864 864
      _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
865 865
                           EdgeRefMap, EdgeRef>(map));
866 866
      return *this;
867 867
    }
868 868

	
869 869
    /// \brief Copy the edge cross references into the given map.
870 870
    ///
871 871
    /// This function copies the edge cross references (reverse references)
872 872
    /// into the given map. The parameter should be a map, whose key type
873 873
    /// is the Edge type of the destination graph, while the value type is
874 874
    /// the Edge type of the source graph.
875 875
    template <typename EdgeCrossRef>
876 876
    GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
877 877
      _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
878 878
                           Edge, EdgeRefMap, EdgeCrossRef>(map));
879 879
      return *this;
880 880
    }
881 881

	
882 882
    /// \brief Make a copy of the given edge map.
883 883
    ///
884 884
    /// This function makes a copy of the given edge map for the newly
885 885
    /// created graph.
886 886
    /// The key type of the new map \c tmap should be the Edge type of the
887 887
    /// destination graph, and the key type of the original map \c map
888 888
    /// should be the Edge type of the source graph.
889 889
    template <typename FromMap, typename ToMap>
890 890
    GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
891 891
      _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
892 892
                           EdgeRefMap, FromMap, ToMap>(map, tmap));
893 893
      return *this;
894 894
    }
895 895

	
896 896
    /// \brief Make a copy of the given edge.
897 897
    ///
898 898
    /// This function makes a copy of the given edge.
899 899
    GraphCopy& edge(const Edge& edge, TEdge& tedge) {
900 900
      _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
901 901
                           EdgeRefMap, TEdge>(edge, tedge));
902 902
      return *this;
903 903
    }
904 904

	
905 905
    /// \brief Execute copying.
906 906
    ///
907 907
    /// This function executes the copying of the graph along with the
908 908
    /// copying of the assigned data.
909 909
    void run() {
910 910
      NodeRefMap nodeRefMap(_from);
911 911
      EdgeRefMap edgeRefMap(_from);
912 912
      ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
913 913
      _core_bits::GraphCopySelector<To>::
914 914
        copy(_from, _to, nodeRefMap, edgeRefMap);
915 915
      for (int i = 0; i < int(_node_maps.size()); ++i) {
916 916
        _node_maps[i]->copy(_from, nodeRefMap);
917 917
      }
918 918
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
919 919
        _edge_maps[i]->copy(_from, edgeRefMap);
920 920
      }
921 921
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
922 922
        _arc_maps[i]->copy(_from, arcRefMap);
923 923
      }
924 924
    }
925 925

	
926 926
  private:
927 927

	
928 928
    const From& _from;
929 929
    To& _to;
930 930

	
931 931
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
932 932
      _node_maps;
933 933

	
934 934
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
935 935
      _arc_maps;
936 936

	
937 937
    std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
938 938
      _edge_maps;
939 939

	
940 940
  };
941 941

	
942 942
  /// \brief Copy a graph to another graph.
943 943
  ///
944 944
  /// This function copies a graph to another graph.
945 945
  /// The complete usage of it is detailed in the GraphCopy class,
946 946
  /// but a short example shows a basic work:
947 947
  ///\code
948 948
  /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
949 949
  ///\endcode
950 950
  ///
951 951
  /// After the copy the \c nr map will contain the mapping from the
952 952
  /// nodes of the \c from graph to the nodes of the \c to graph and
953 953
  /// \c ecr will contain the mapping from the edges of the \c to graph
954 954
  /// to the edges of the \c from graph.
955 955
  ///
956 956
  /// \see GraphCopy
957 957
  template <typename From, typename To>
958 958
  GraphCopy<From, To>
959 959
  graphCopy(const From& from, To& to) {
960 960
    return GraphCopy<From, To>(from, to);
961 961
  }
962 962

	
963 963
  namespace _core_bits {
964 964

	
965 965
    template <typename Graph, typename Enable = void>
966 966
    struct FindArcSelector {
967 967
      typedef typename Graph::Node Node;
968 968
      typedef typename Graph::Arc Arc;
969 969
      static Arc find(const Graph &g, Node u, Node v, Arc e) {
970 970
        if (e == INVALID) {
971 971
          g.firstOut(e, u);
972 972
        } else {
973 973
          g.nextOut(e);
974 974
        }
975 975
        while (e != INVALID && g.target(e) != v) {
976 976
          g.nextOut(e);
977 977
        }
978 978
        return e;
979 979
      }
980 980
    };
981 981

	
982 982
    template <typename Graph>
983 983
    struct FindArcSelector<
984 984
      Graph,
985 985
      typename enable_if<typename Graph::FindArcTag, void>::type>
986 986
    {
987 987
      typedef typename Graph::Node Node;
988 988
      typedef typename Graph::Arc Arc;
989 989
      static Arc find(const Graph &g, Node u, Node v, Arc prev) {
990 990
        return g.findArc(u, v, prev);
991 991
      }
992 992
    };
993 993
  }
994 994

	
995 995
  /// \brief Find an arc between two nodes of a digraph.
996 996
  ///
997 997
  /// This function finds an arc from node \c u to node \c v in the
998 998
  /// digraph \c g.
999 999
  ///
1000 1000
  /// If \c prev is \ref INVALID (this is the default value), then
1001 1001
  /// it finds the first arc from \c u to \c v. Otherwise it looks for
1002 1002
  /// the next arc from \c u to \c v after \c prev.
1003 1003
  /// \return The found arc or \ref INVALID if there is no such an arc.
1004 1004
  ///
1005 1005
  /// Thus you can iterate through each arc from \c u to \c v as it follows.
1006 1006
  ///\code
1007 1007
  /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1008 1008
  ///   ...
1009 1009
  /// }
1010 1010
  ///\endcode
1011 1011
  ///
1012 1012
  /// \note \ref ConArcIt provides iterator interface for the same
1013 1013
  /// functionality.
1014 1014
  ///
1015 1015
  ///\sa ConArcIt
1016 1016
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1017 1017
  template <typename Graph>
1018 1018
  inline typename Graph::Arc
1019 1019
  findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1020 1020
          typename Graph::Arc prev = INVALID) {
1021 1021
    return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1022 1022
  }
1023 1023

	
1024 1024
  /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1025 1025
  ///
1026 1026
  /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1027 1027
  /// a higher level interface for the \ref findArc() function. You can
1028 1028
  /// use it the following way:
1029 1029
  ///\code
1030 1030
  /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1031 1031
  ///   ...
1032 1032
  /// }
1033 1033
  ///\endcode
1034 1034
  ///
1035 1035
  ///\sa findArc()
1036 1036
  ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1037 1037
  template <typename _Graph>
1038 1038
  class ConArcIt : public _Graph::Arc {
1039 1039
  public:
1040 1040

	
1041 1041
    typedef _Graph Graph;
1042 1042
    typedef typename Graph::Arc Parent;
1043 1043

	
1044 1044
    typedef typename Graph::Arc Arc;
1045 1045
    typedef typename Graph::Node Node;
1046 1046

	
1047 1047
    /// \brief Constructor.
1048 1048
    ///
1049 1049
    /// Construct a new ConArcIt iterating on the arcs that
1050 1050
    /// connects nodes \c u and \c v.
1051 1051
    ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
1052 1052
      Parent::operator=(findArc(_graph, u, v));
1053 1053
    }
1054 1054

	
1055 1055
    /// \brief Constructor.
1056 1056
    ///
1057 1057
    /// Construct a new ConArcIt that continues the iterating from arc \c a.
1058 1058
    ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
1059 1059

	
1060 1060
    /// \brief Increment operator.
1061 1061
    ///
1062 1062
    /// It increments the iterator and gives back the next arc.
1063 1063
    ConArcIt& operator++() {
1064 1064
      Parent::operator=(findArc(_graph, _graph.source(*this),
1065 1065
                                _graph.target(*this), *this));
1066 1066
      return *this;
1067 1067
    }
1068 1068
  private:
1069 1069
    const Graph& _graph;
1070 1070
  };
1071 1071

	
1072 1072
  namespace _core_bits {
1073 1073

	
1074 1074
    template <typename Graph, typename Enable = void>
1075 1075
    struct FindEdgeSelector {
1076 1076
      typedef typename Graph::Node Node;
1077 1077
      typedef typename Graph::Edge Edge;
1078 1078
      static Edge find(const Graph &g, Node u, Node v, Edge e) {
1079 1079
        bool b;
1080 1080
        if (u != v) {
1081 1081
          if (e == INVALID) {
1082 1082
            g.firstInc(e, b, u);
1083 1083
          } else {
1084 1084
            b = g.u(e) == u;
1085 1085
            g.nextInc(e, b);
1086 1086
          }
1087 1087
          while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1088 1088
            g.nextInc(e, b);
1089 1089
          }
1090 1090
        } else {
1091 1091
          if (e == INVALID) {
1092 1092
            g.firstInc(e, b, u);
1093 1093
          } else {
1094 1094
            b = true;
1095 1095
            g.nextInc(e, b);
1096 1096
          }
1097 1097
          while (e != INVALID && (!b || g.v(e) != v)) {
1098 1098
            g.nextInc(e, b);
1099 1099
          }
1100 1100
        }
1101 1101
        return e;
1102 1102
      }
1103 1103
    };
1104 1104

	
1105 1105
    template <typename Graph>
1106 1106
    struct FindEdgeSelector<
1107 1107
      Graph,
1108 1108
      typename enable_if<typename Graph::FindEdgeTag, void>::type>
1109 1109
    {
1110 1110
      typedef typename Graph::Node Node;
1111 1111
      typedef typename Graph::Edge Edge;
1112 1112
      static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1113 1113
        return g.findEdge(u, v, prev);
1114 1114
      }
1115 1115
    };
1116 1116
  }
1117 1117

	
1118 1118
  /// \brief Find an edge between two nodes of a graph.
1119 1119
  ///
1120 1120
  /// This function finds an edge from node \c u to node \c v in graph \c g.
1121 1121
  /// If node \c u and node \c v is equal then each loop edge
1122 1122
  /// will be enumerated once.
1123 1123
  ///
1124 1124
  /// If \c prev is \ref INVALID (this is the default value), then
1125 1125
  /// it finds the first edge from \c u to \c v. Otherwise it looks for
1126 1126
  /// the next edge from \c u to \c v after \c prev.
1127 1127
  /// \return The found edge or \ref INVALID if there is no such an edge.
1128 1128
  ///
1129 1129
  /// Thus you can iterate through each edge between \c u and \c v
1130 1130
  /// as it follows.
1131 1131
  ///\code
1132 1132
  /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1133 1133
  ///   ...
1134 1134
  /// }
1135 1135
  ///\endcode
1136 1136
  ///
1137 1137
  /// \note \ref ConEdgeIt provides iterator interface for the same
1138 1138
  /// functionality.
1139 1139
  ///
1140 1140
  ///\sa ConEdgeIt
1141 1141
  template <typename Graph>
1142 1142
  inline typename Graph::Edge
1143 1143
  findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1144 1144
            typename Graph::Edge p = INVALID) {
1145 1145
    return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1146 1146
  }
1147 1147

	
1148 1148
  /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1149 1149
  ///
1150 1150
  /// Iterator for iterating on parallel edges connecting the same nodes.
1151 1151
  /// It is a higher level interface for the findEdge() function. You can
1152 1152
  /// use it the following way:
1153 1153
  ///\code
1154 1154
  /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1155 1155
  ///   ...
1156 1156
  /// }
1157 1157
  ///\endcode
1158 1158
  ///
1159 1159
  ///\sa findEdge()
1160 1160
  template <typename _Graph>
1161 1161
  class ConEdgeIt : public _Graph::Edge {
1162 1162
  public:
1163 1163

	
1164 1164
    typedef _Graph Graph;
1165 1165
    typedef typename Graph::Edge Parent;
1166 1166

	
1167 1167
    typedef typename Graph::Edge Edge;
1168 1168
    typedef typename Graph::Node Node;
1169 1169

	
1170 1170
    /// \brief Constructor.
1171 1171
    ///
1172 1172
    /// Construct a new ConEdgeIt iterating on the edges that
1173 1173
    /// connects nodes \c u and \c v.
1174 1174
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1175 1175
      Parent::operator=(findEdge(_graph, _u, _v));
1176 1176
    }
1177 1177

	
1178 1178
    /// \brief Constructor.
1179 1179
    ///
1180 1180
    /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1181 1181
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
1182 1182

	
1183 1183
    /// \brief Increment operator.
1184 1184
    ///
1185 1185
    /// It increments the iterator and gives back the next edge.
1186 1186
    ConEdgeIt& operator++() {
1187 1187
      Parent::operator=(findEdge(_graph, _u, _v, *this));
1188 1188
      return *this;
1189 1189
    }
1190 1190
  private:
1191 1191
    const Graph& _graph;
1192 1192
    Node _u, _v;
1193 1193
  };
1194 1194

	
1195 1195

	
1196 1196
  ///Dynamic arc look-up between given endpoints.
1197 1197

	
1198 1198
  ///Using this class, you can find an arc in a digraph from a given
1199 1199
  ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1200 1200
  ///where <em>d</em> is the out-degree of the source node.
1201 1201
  ///
1202 1202
  ///It is possible to find \e all parallel arcs between two nodes with
1203 1203
  ///the \c operator() member.
1204 1204
  ///
1205 1205
  ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1206 1206
  ///\ref AllArcLookUp if your digraph is not changed so frequently.
1207 1207
  ///
1208 1208
  ///This class uses a self-adjusting binary search tree, the Splay tree
1209 1209
  ///of Sleator and Tarjan to guarantee the logarithmic amortized
1210 1210
  ///time bound for arc look-ups. This class also guarantees the
1211 1211
  ///optimal time bound in a constant factor for any distribution of
1212 1212
  ///queries.
1213 1213
  ///
1214 1214
  ///\tparam G The type of the underlying digraph.
1215 1215
  ///
1216 1216
  ///\sa ArcLookUp
1217 1217
  ///\sa AllArcLookUp
1218 1218
  template<class G>
1219 1219
  class DynArcLookUp
1220 1220
    : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
1221 1221
  {
1222 1222
  public:
1223 1223
    typedef typename ItemSetTraits<G, typename G::Arc>
1224 1224
    ::ItemNotifier::ObserverBase Parent;
1225 1225

	
1226 1226
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1227 1227
    typedef G Digraph;
1228 1228

	
1229 1229
  protected:
1230 1230

	
1231 1231
    class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
1232 1232
    public:
1233 1233

	
1234 1234
      typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
1235 1235

	
1236 1236
      AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
1237 1237

	
1238 1238
      virtual void add(const Node& node) {
1239 1239
        Parent::add(node);
1240 1240
        Parent::set(node, INVALID);
1241 1241
      }
1242 1242

	
1243 1243
      virtual void add(const std::vector<Node>& nodes) {
1244 1244
        Parent::add(nodes);
1245 1245
        for (int i = 0; i < int(nodes.size()); ++i) {
1246 1246
          Parent::set(nodes[i], INVALID);
1247 1247
        }
1248 1248
      }
1249 1249

	
1250 1250
      virtual void build() {
1251 1251
        Parent::build();
1252 1252
        Node it;
1253 1253
        typename Parent::Notifier* nf = Parent::notifier();
1254 1254
        for (nf->first(it); it != INVALID; nf->next(it)) {
1255 1255
          Parent::set(it, INVALID);
1256 1256
        }
1257 1257
      }
1258 1258
    };
1259 1259

	
1260 1260
    const Digraph &_g;
1261 1261
    AutoNodeMap _head;
1262 1262
    typename Digraph::template ArcMap<Arc> _parent;
1263 1263
    typename Digraph::template ArcMap<Arc> _left;
1264 1264
    typename Digraph::template ArcMap<Arc> _right;
1265 1265

	
1266 1266
    class ArcLess {
1267 1267
      const Digraph &g;
1268 1268
    public:
1269 1269
      ArcLess(const Digraph &_g) : g(_g) {}
1270 1270
      bool operator()(Arc a,Arc b) const
1271 1271
      {
1272 1272
        return g.target(a)<g.target(b);
1273 1273
      }
1274 1274
    };
1275 1275

	
1276 1276
  public:
1277 1277

	
1278 1278
    ///Constructor
1279 1279

	
1280 1280
    ///Constructor.
1281 1281
    ///
1282 1282
    ///It builds up the search database.
1283 1283
    DynArcLookUp(const Digraph &g)
1284 1284
      : _g(g),_head(g),_parent(g),_left(g),_right(g)
1285 1285
    {
1286 1286
      Parent::attach(_g.notifier(typename Digraph::Arc()));
1287 1287
      refresh();
1288 1288
    }
1289 1289

	
1290 1290
  protected:
1291 1291

	
1292 1292
    virtual void add(const Arc& arc) {
1293 1293
      insert(arc);
1294 1294
    }
1295 1295

	
1296 1296
    virtual void add(const std::vector<Arc>& arcs) {
1297 1297
      for (int i = 0; i < int(arcs.size()); ++i) {
1298 1298
        insert(arcs[i]);
1299 1299
      }
1300 1300
    }
1301 1301

	
1302 1302
    virtual void erase(const Arc& arc) {
1303 1303
      remove(arc);
1304 1304
    }
1305 1305

	
1306 1306
    virtual void erase(const std::vector<Arc>& arcs) {
1307 1307
      for (int i = 0; i < int(arcs.size()); ++i) {
1308 1308
        remove(arcs[i]);
1309 1309
      }
1310 1310
    }
1311 1311

	
1312 1312
    virtual void build() {
1313 1313
      refresh();
1314 1314
    }
1315 1315

	
1316 1316
    virtual void clear() {
1317 1317
      for(NodeIt n(_g);n!=INVALID;++n) {
1318 1318
        _head.set(n, INVALID);
1319 1319
      }
1320 1320
    }
1321 1321

	
1322 1322
    void insert(Arc arc) {
1323 1323
      Node s = _g.source(arc);
1324 1324
      Node t = _g.target(arc);
1325 1325
      _left.set(arc, INVALID);
1326 1326
      _right.set(arc, INVALID);
1327 1327

	
1328 1328
      Arc e = _head[s];
1329 1329
      if (e == INVALID) {
1330 1330
        _head.set(s, arc);
1331 1331
        _parent.set(arc, INVALID);
1332 1332
        return;
1333 1333
      }
1334 1334
      while (true) {
1335 1335
        if (t < _g.target(e)) {
1336 1336
          if (_left[e] == INVALID) {
1337 1337
            _left.set(e, arc);
1338 1338
            _parent.set(arc, e);
1339 1339
            splay(arc);
1340 1340
            return;
1341 1341
          } else {
1342 1342
            e = _left[e];
1343 1343
          }
1344 1344
        } else {
1345 1345
          if (_right[e] == INVALID) {
1346 1346
            _right.set(e, arc);
1347 1347
            _parent.set(arc, e);
1348 1348
            splay(arc);
1349 1349
            return;
1350 1350
          } else {
1351 1351
            e = _right[e];
1352 1352
          }
1353 1353
        }
1354 1354
      }
1355 1355
    }
1356 1356

	
1357 1357
    void remove(Arc arc) {
1358 1358
      if (_left[arc] == INVALID) {
1359 1359
        if (_right[arc] != INVALID) {
1360 1360
          _parent.set(_right[arc], _parent[arc]);
1361 1361
        }
1362 1362
        if (_parent[arc] != INVALID) {
1363 1363
          if (_left[_parent[arc]] == arc) {
1364 1364
            _left.set(_parent[arc], _right[arc]);
1365 1365
          } else {
1366 1366
            _right.set(_parent[arc], _right[arc]);
1367 1367
          }
1368 1368
        } else {
1369 1369
          _head.set(_g.source(arc), _right[arc]);
1370 1370
        }
1371 1371
      } else if (_right[arc] == INVALID) {
1372 1372
        _parent.set(_left[arc], _parent[arc]);
1373 1373
        if (_parent[arc] != INVALID) {
1374 1374
          if (_left[_parent[arc]] == arc) {
1375 1375
            _left.set(_parent[arc], _left[arc]);
1376 1376
          } else {
1377 1377
            _right.set(_parent[arc], _left[arc]);
1378 1378
          }
1379 1379
        } else {
1380 1380
          _head.set(_g.source(arc), _left[arc]);
1381 1381
        }
1382 1382
      } else {
1383 1383
        Arc e = _left[arc];
1384 1384
        if (_right[e] != INVALID) {
1385 1385
          e = _right[e];
1386 1386
          while (_right[e] != INVALID) {
1387 1387
            e = _right[e];
1388 1388
          }
1389 1389
          Arc s = _parent[e];
1390 1390
          _right.set(_parent[e], _left[e]);
1391 1391
          if (_left[e] != INVALID) {
1392 1392
            _parent.set(_left[e], _parent[e]);
1393 1393
          }
1394 1394

	
1395 1395
          _left.set(e, _left[arc]);
1396 1396
          _parent.set(_left[arc], e);
1397 1397
          _right.set(e, _right[arc]);
1398 1398
          _parent.set(_right[arc], e);
1399 1399

	
1400 1400
          _parent.set(e, _parent[arc]);
1401 1401
          if (_parent[arc] != INVALID) {
1402 1402
            if (_left[_parent[arc]] == arc) {
1403 1403
              _left.set(_parent[arc], e);
1404 1404
            } else {
1405 1405
              _right.set(_parent[arc], e);
1406 1406
            }
1407 1407
          }
1408 1408
          splay(s);
1409 1409
        } else {
1410 1410
          _right.set(e, _right[arc]);
1411 1411
          _parent.set(_right[arc], e);
1412 1412
          _parent.set(e, _parent[arc]);
1413 1413

	
1414 1414
          if (_parent[arc] != INVALID) {
1415 1415
            if (_left[_parent[arc]] == arc) {
1416 1416
              _left.set(_parent[arc], e);
1417 1417
            } else {
1418 1418
              _right.set(_parent[arc], e);
1419 1419
            }
1420 1420
          } else {
1421 1421
            _head.set(_g.source(arc), e);
1422 1422
          }
1423 1423
        }
1424 1424
      }
1425 1425
    }
1426 1426

	
1427 1427
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
1428 1428
    {
1429 1429
      int m=(a+b)/2;
1430 1430
      Arc me=v[m];
1431 1431
      if (a < m) {
1432 1432
        Arc left = refreshRec(v,a,m-1);
1433 1433
        _left.set(me, left);
1434 1434
        _parent.set(left, me);
1435 1435
      } else {
1436 1436
        _left.set(me, INVALID);
1437 1437
      }
1438 1438
      if (m < b) {
1439 1439
        Arc right = refreshRec(v,m+1,b);
1440 1440
        _right.set(me, right);
1441 1441
        _parent.set(right, me);
1442 1442
      } else {
1443 1443
        _right.set(me, INVALID);
1444 1444
      }
1445 1445
      return me;
1446 1446
    }
1447 1447

	
1448 1448
    void refresh() {
1449 1449
      for(NodeIt n(_g);n!=INVALID;++n) {
1450 1450
        std::vector<Arc> v;
1451 1451
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1452 1452
        if (!v.empty()) {
1453 1453
          std::sort(v.begin(),v.end(),ArcLess(_g));
1454 1454
          Arc head = refreshRec(v,0,v.size()-1);
1455 1455
          _head.set(n, head);
1456 1456
          _parent.set(head, INVALID);
1457 1457
        }
1458 1458
        else _head.set(n, INVALID);
1459 1459
      }
1460 1460
    }
1461 1461

	
1462 1462
    void zig(Arc v) {
1463 1463
      Arc w = _parent[v];
1464 1464
      _parent.set(v, _parent[w]);
1465 1465
      _parent.set(w, v);
1466 1466
      _left.set(w, _right[v]);
1467 1467
      _right.set(v, w);
1468 1468
      if (_parent[v] != INVALID) {
1469 1469
        if (_right[_parent[v]] == w) {
1470 1470
          _right.set(_parent[v], v);
1471 1471
        } else {
1472 1472
          _left.set(_parent[v], v);
1473 1473
        }
1474 1474
      }
1475 1475
      if (_left[w] != INVALID){
1476 1476
        _parent.set(_left[w], w);
1477 1477
      }
1478 1478
    }
1479 1479

	
1480 1480
    void zag(Arc v) {
1481 1481
      Arc w = _parent[v];
1482 1482
      _parent.set(v, _parent[w]);
1483 1483
      _parent.set(w, v);
1484 1484
      _right.set(w, _left[v]);
1485 1485
      _left.set(v, w);
1486 1486
      if (_parent[v] != INVALID){
1487 1487
        if (_left[_parent[v]] == w) {
1488 1488
          _left.set(_parent[v], v);
1489 1489
        } else {
1490 1490
          _right.set(_parent[v], v);
1491 1491
        }
1492 1492
      }
1493 1493
      if (_right[w] != INVALID){
1494 1494
        _parent.set(_right[w], w);
1495 1495
      }
1496 1496
    }
1497 1497

	
1498 1498
    void splay(Arc v) {
1499 1499
      while (_parent[v] != INVALID) {
1500 1500
        if (v == _left[_parent[v]]) {
1501 1501
          if (_parent[_parent[v]] == INVALID) {
1502 1502
            zig(v);
1503 1503
          } else {
1504 1504
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1505 1505
              zig(_parent[v]);
1506 1506
              zig(v);
1507 1507
            } else {
1508 1508
              zig(v);
1509 1509
              zag(v);
1510 1510
            }
1511 1511
          }
1512 1512
        } else {
1513 1513
          if (_parent[_parent[v]] == INVALID) {
1514 1514
            zag(v);
1515 1515
          } else {
1516 1516
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1517 1517
              zag(v);
1518 1518
              zig(v);
1519 1519
            } else {
1520 1520
              zag(_parent[v]);
1521 1521
              zag(v);
1522 1522
            }
1523 1523
          }
1524 1524
        }
1525 1525
      }
1526 1526
      _head[_g.source(v)] = v;
1527 1527
    }
1528 1528

	
1529 1529

	
1530 1530
  public:
1531 1531

	
1532 1532
    ///Find an arc between two nodes.
1533 1533

	
1534 1534
    ///Find an arc between two nodes.
1535 1535
    ///\param s The source node.
1536 1536
    ///\param t The target node.
1537 1537
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
1538 1538
    ///not given, the operator finds the first appropriate arc.
1539 1539
    ///\return An arc from \c s to \c t after \c p or
1540 1540
    ///\ref INVALID if there is no more.
1541 1541
    ///
1542 1542
    ///For example, you can count the number of arcs from \c u to \c v in the
1543 1543
    ///following way.
1544 1544
    ///\code
1545 1545
    ///DynArcLookUp<ListDigraph> ae(g);
1546 1546
    ///...
1547 1547
    ///int n = 0;
1548 1548
    ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1549 1549
    ///\endcode
1550 1550
    ///
1551 1551
    ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1552 1552
    ///amortized time, specifically, the time complexity of the lookups
1553 1553
    ///is equal to the optimal search tree implementation for the
1554 1554
    ///current query distribution in a constant factor.
1555 1555
    ///
1556 1556
    ///\note This is a dynamic data structure, therefore the data
1557 1557
    ///structure is updated after each graph alteration. Thus although
1558 1558
    ///this data structure is theoretically faster than \ref ArcLookUp
1559 1559
    ///and \ref AllArcLookUp, it often provides worse performance than
1560 1560
    ///them.
1561 1561
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
1562 1562
      if (p == INVALID) {
1563 1563
        Arc a = _head[s];
1564 1564
        if (a == INVALID) return INVALID;
1565 1565
        Arc r = INVALID;
1566 1566
        while (true) {
1567 1567
          if (_g.target(a) < t) {
1568 1568
            if (_right[a] == INVALID) {
1569 1569
              const_cast<DynArcLookUp&>(*this).splay(a);
1570 1570
              return r;
1571 1571
            } else {
1572 1572
              a = _right[a];
1573 1573
            }
1574 1574
          } else {
1575 1575
            if (_g.target(a) == t) {
1576 1576
              r = a;
1577 1577
            }
1578 1578
            if (_left[a] == INVALID) {
1579 1579
              const_cast<DynArcLookUp&>(*this).splay(a);
1580 1580
              return r;
1581 1581
            } else {
1582 1582
              a = _left[a];
1583 1583
            }
1584 1584
          }
1585 1585
        }
1586 1586
      } else {
1587 1587
        Arc a = p;
1588 1588
        if (_right[a] != INVALID) {
1589 1589
          a = _right[a];
1590 1590
          while (_left[a] != INVALID) {
1591 1591
            a = _left[a];
1592 1592
          }
1593 1593
          const_cast<DynArcLookUp&>(*this).splay(a);
1594 1594
        } else {
1595 1595
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
1596 1596
            a = _parent[a];
1597 1597
          }
1598 1598
          if (_parent[a] == INVALID) {
1599 1599
            return INVALID;
1600 1600
          } else {
1601 1601
            a = _parent[a];
1602 1602
            const_cast<DynArcLookUp&>(*this).splay(a);
1603 1603
          }
1604 1604
        }
1605 1605
        if (_g.target(a) == t) return a;
1606 1606
        else return INVALID;
1607 1607
      }
1608 1608
    }
1609 1609

	
1610 1610
  };
1611 1611

	
1612 1612
  ///Fast arc look-up between given endpoints.
1613 1613

	
1614 1614
  ///Using this class, you can find an arc in a digraph from a given
1615 1615
  ///source to a given target in time <em>O</em>(log<em>d</em>),
1616 1616
  ///where <em>d</em> is the out-degree of the source node.
1617 1617
  ///
1618 1618
  ///It is not possible to find \e all parallel arcs between two nodes.
1619 1619
  ///Use \ref AllArcLookUp for this purpose.
1620 1620
  ///
1621 1621
  ///\warning This class is static, so you should call refresh() (or at
1622 1622
  ///least refresh(Node)) to refresh this data structure whenever the
1623 1623
  ///digraph changes. This is a time consuming (superlinearly proportional
1624 1624
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1625 1625
  ///
1626 1626
  ///\tparam G The type of the underlying digraph.
1627 1627
  ///
1628 1628
  ///\sa DynArcLookUp
1629 1629
  ///\sa AllArcLookUp
1630 1630
  template<class G>
1631 1631
  class ArcLookUp
1632 1632
  {
1633 1633
  public:
1634 1634
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1635 1635
    typedef G Digraph;
1636 1636

	
1637 1637
  protected:
1638 1638
    const Digraph &_g;
1639 1639
    typename Digraph::template NodeMap<Arc> _head;
1640 1640
    typename Digraph::template ArcMap<Arc> _left;
1641 1641
    typename Digraph::template ArcMap<Arc> _right;
1642 1642

	
1643 1643
    class ArcLess {
1644 1644
      const Digraph &g;
1645 1645
    public:
1646 1646
      ArcLess(const Digraph &_g) : g(_g) {}
1647 1647
      bool operator()(Arc a,Arc b) const
1648 1648
      {
1649 1649
        return g.target(a)<g.target(b);
1650 1650
      }
1651 1651
    };
1652 1652

	
1653 1653
  public:
1654 1654

	
1655 1655
    ///Constructor
1656 1656

	
1657 1657
    ///Constructor.
1658 1658
    ///
1659 1659
    ///It builds up the search database, which remains valid until the digraph
1660 1660
    ///changes.
1661 1661
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1662 1662

	
1663 1663
  private:
1664 1664
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
1665 1665
    {
1666 1666
      int m=(a+b)/2;
1667 1667
      Arc me=v[m];
1668 1668
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1669 1669
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1670 1670
      return me;
1671 1671
    }
1672 1672
  public:
1673 1673
    ///Refresh the search data structure at a node.
1674 1674

	
1675 1675
    ///Build up the search database of node \c n.
1676 1676
    ///
1677 1677
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1678 1678
    ///is the number of the outgoing arcs of \c n.
1679 1679
    void refresh(Node n)
1680 1680
    {
1681 1681
      std::vector<Arc> v;
1682 1682
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1683 1683
      if(v.size()) {
1684 1684
        std::sort(v.begin(),v.end(),ArcLess(_g));
1685 1685
        _head[n]=refreshRec(v,0,v.size()-1);
1686 1686
      }
1687 1687
      else _head[n]=INVALID;
1688 1688
    }
1689 1689
    ///Refresh the full data structure.
1690 1690

	
1691 1691
    ///Build up the full search database. In fact, it simply calls
1692 1692
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
1693 1693
    ///
1694 1694
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1695 1695
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
1696 1696
    ///out-degree of the digraph.
1697 1697
    void refresh()
1698 1698
    {
1699 1699
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1700 1700
    }
1701 1701

	
1702 1702
    ///Find an arc between two nodes.
1703 1703

	
1704 1704
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1705 1705
    ///where <em>d</em> is the number of outgoing arcs of \c s.
1706 1706
    ///\param s The source node.
1707 1707
    ///\param t The target node.
1708 1708
    ///\return An arc from \c s to \c t if there exists,
1709 1709
    ///\ref INVALID otherwise.
1710 1710
    ///
1711 1711
    ///\warning If you change the digraph, refresh() must be called before using
1712 1712
    ///this operator. If you change the outgoing arcs of
1713 1713
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1714 1714
    Arc operator()(Node s, Node t) const
1715 1715
    {
1716 1716
      Arc e;
1717 1717
      for(e=_head[s];
1718 1718
          e!=INVALID&&_g.target(e)!=t;
1719 1719
          e = t < _g.target(e)?_left[e]:_right[e]) ;
1720 1720
      return e;
1721 1721
    }
1722 1722

	
1723 1723
  };
1724 1724

	
1725 1725
  ///Fast look-up of all arcs between given endpoints.
1726 1726

	
1727 1727
  ///This class is the same as \ref ArcLookUp, with the addition
1728 1728
  ///that it makes it possible to find all parallel arcs between given
1729 1729
  ///endpoints.
1730 1730
  ///
1731 1731
  ///\warning This class is static, so you should call refresh() (or at
1732 1732
  ///least refresh(Node)) to refresh this data structure whenever the
1733 1733
  ///digraph changes. This is a time consuming (superlinearly proportional
1734 1734
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1735 1735
  ///
1736 1736
  ///\tparam G The type of the underlying digraph.
1737 1737
  ///
1738 1738
  ///\sa DynArcLookUp
1739 1739
  ///\sa ArcLookUp
1740 1740
  template<class G>
1741 1741
  class AllArcLookUp : public ArcLookUp<G>
1742 1742
  {
1743 1743
    using ArcLookUp<G>::_g;
1744 1744
    using ArcLookUp<G>::_right;
1745 1745
    using ArcLookUp<G>::_left;
1746 1746
    using ArcLookUp<G>::_head;
1747 1747

	
1748 1748
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1749 1749
    typedef G Digraph;
1750 1750

	
1751 1751
    typename Digraph::template ArcMap<Arc> _next;
1752 1752

	
1753 1753
    Arc refreshNext(Arc head,Arc next=INVALID)
1754 1754
    {
1755 1755
      if(head==INVALID) return next;
1756 1756
      else {
1757 1757
        next=refreshNext(_right[head],next);
1758 1758
        _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1759 1759
          ? next : INVALID;
1760 1760
        return refreshNext(_left[head],head);
1761 1761
      }
1762 1762
    }
1763 1763

	
1764 1764
    void refreshNext()
1765 1765
    {
1766 1766
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1767 1767
    }
1768 1768

	
1769 1769
  public:
1770 1770
    ///Constructor
1771 1771

	
1772 1772
    ///Constructor.
1773 1773
    ///
1774 1774
    ///It builds up the search database, which remains valid until the digraph
1775 1775
    ///changes.
1776 1776
    AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
1777 1777

	
1778 1778
    ///Refresh the data structure at a node.
1779 1779

	
1780 1780
    ///Build up the search database of node \c n.
1781 1781
    ///
1782 1782
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1783 1783
    ///the number of the outgoing arcs of \c n.
1784 1784
    void refresh(Node n)
1785 1785
    {
1786 1786
      ArcLookUp<G>::refresh(n);
1787 1787
      refreshNext(_head[n]);
1788 1788
    }
1789 1789

	
1790 1790
    ///Refresh the full data structure.
1791 1791

	
1792 1792
    ///Build up the full search database. In fact, it simply calls
1793 1793
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
1794 1794
    ///
1795 1795
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1796 1796
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
1797 1797
    ///out-degree of the digraph.
1798 1798
    void refresh()
1799 1799
    {
1800 1800
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1801 1801
    }
1802 1802

	
1803 1803
    ///Find an arc between two nodes.
1804 1804

	
1805 1805
    ///Find an arc between two nodes.
1806 1806
    ///\param s The source node.
1807 1807
    ///\param t The target node.
1808 1808
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1809 1809
    ///not given, the operator finds the first appropriate arc.
1810 1810
    ///\return An arc from \c s to \c t after \c prev or
1811 1811
    ///\ref INVALID if there is no more.
1812 1812
    ///
1813 1813
    ///For example, you can count the number of arcs from \c u to \c v in the
1814 1814
    ///following way.
1815 1815
    ///\code
1816 1816
    ///AllArcLookUp<ListDigraph> ae(g);
1817 1817
    ///...
1818 1818
    ///int n = 0;
1819 1819
    ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1820 1820
    ///\endcode
1821 1821
    ///
1822 1822
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1823 1823
    ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1824 1824
    ///consecutive arcs are found in constant time.
1825 1825
    ///
1826 1826
    ///\warning If you change the digraph, refresh() must be called before using
1827 1827
    ///this operator. If you change the outgoing arcs of
1828 1828
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1829 1829
    ///
1830 1830
#ifdef DOXYGEN
1831 1831
    Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1832 1832
#else
1833 1833
    using ArcLookUp<G>::operator() ;
1834 1834
    Arc operator()(Node s, Node t, Arc prev) const
1835 1835
    {
1836 1836
      return prev==INVALID?(*this)(s,t):_next[prev];
1837 1837
    }
1838 1838
#endif
1839 1839

	
1840 1840
  };
1841 1841

	
1842 1842
  /// @}
1843 1843

	
1844 1844
} //namespace lemon
1845 1845

	
1846 1846
#endif
0 comments (0 inline)