0
19
0
1
1
23
19
9
11
15
15
10
10
25
26
2
2
... | ... |
@@ -60,35 +60,35 @@ |
60 | 60 |
///\e |
61 | 61 |
typedef typename ItemIntMap::Key Item; |
62 | 62 |
///\e |
63 | 63 |
typedef std::pair<Item,Prio> Pair; |
64 | 64 |
///\e |
65 | 65 |
typedef Comp Compare; |
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the items states. |
68 | 68 |
/// |
69 | 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
70 | 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
71 | 71 |
/// heap's point of view, but may be useful to the user. |
72 | 72 |
/// |
73 | 73 |
/// The item-int map must be initialized in such way that it assigns |
74 | 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 75 |
enum State { |
76 |
IN_HEAP = 0, ///< \e |
|
77 |
PRE_HEAP = -1, ///< \e |
|
78 |
|
|
76 |
IN_HEAP = 0, ///< = 0. |
|
77 |
PRE_HEAP = -1, ///< = -1. |
|
78 |
POST_HEAP = -2 ///< = -2. |
|
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
private: |
82 | 82 |
std::vector<Pair> _data; |
83 | 83 |
Compare _comp; |
84 | 84 |
ItemIntMap &_iim; |
85 | 85 |
|
86 | 86 |
public: |
87 | 87 |
/// \brief The constructor. |
88 | 88 |
/// |
89 | 89 |
/// The constructor. |
90 | 90 |
/// \param map should be given to the constructor, since it is used |
91 | 91 |
/// internally to handle the cross references. The value of the map |
92 | 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
93 | 93 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
94 | 94 |
... | ... |
@@ -589,33 +589,33 @@ |
589 | 589 |
/// |
590 | 590 |
/// This class describes the interface of iterable directed |
591 | 591 |
/// graphs. It extends \ref BaseDigraphComponent with the core |
592 | 592 |
/// iterable interface. |
593 | 593 |
/// This concept is part of the Digraph concept. |
594 | 594 |
template <typename BAS = BaseDigraphComponent> |
595 | 595 |
class IterableDigraphComponent : public BAS { |
596 | 596 |
|
597 | 597 |
public: |
598 | 598 |
|
599 | 599 |
typedef BAS Base; |
600 | 600 |
typedef typename Base::Node Node; |
601 | 601 |
typedef typename Base::Arc Arc; |
602 | 602 |
|
603 | 603 |
typedef IterableDigraphComponent Digraph; |
604 | 604 |
|
605 |
/// \name Base |
|
605 |
/// \name Base Iteration |
|
606 | 606 |
/// |
607 | 607 |
/// This interface provides functions for iteration on digraph items. |
608 | 608 |
/// |
609 | 609 |
/// @{ |
610 | 610 |
|
611 | 611 |
/// \brief Return the first node. |
612 | 612 |
/// |
613 | 613 |
/// This function gives back the first node in the iteration order. |
614 | 614 |
void first(Node&) const {} |
615 | 615 |
|
616 | 616 |
/// \brief Return the next node. |
617 | 617 |
/// |
618 | 618 |
/// This function gives back the next node in the iteration order. |
619 | 619 |
void next(Node&) const {} |
620 | 620 |
|
621 | 621 |
/// \brief Return the first arc. |
... | ... |
@@ -641,33 +641,33 @@ |
641 | 641 |
void nextIn(Arc&) const {} |
642 | 642 |
|
643 | 643 |
/// \brief Return the first arc outgoing form the given node. |
644 | 644 |
/// |
645 | 645 |
/// This function gives back the first arc outgoing form the |
646 | 646 |
/// given node. |
647 | 647 |
void firstOut(Arc&, const Node&) const {} |
648 | 648 |
|
649 | 649 |
/// \brief Return the next arc outgoing form the given node. |
650 | 650 |
/// |
651 | 651 |
/// This function gives back the next arc outgoing form the |
652 | 652 |
/// given node. |
653 | 653 |
void nextOut(Arc&) const {} |
654 | 654 |
|
655 | 655 |
/// @} |
656 | 656 |
|
657 |
/// \name Class |
|
657 |
/// \name Class Based Iteration |
|
658 | 658 |
/// |
659 | 659 |
/// This interface provides iterator classes for digraph items. |
660 | 660 |
/// |
661 | 661 |
/// @{ |
662 | 662 |
|
663 | 663 |
/// \brief This iterator goes through each node. |
664 | 664 |
/// |
665 | 665 |
/// This iterator goes through each node. |
666 | 666 |
/// |
667 | 667 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
668 | 668 |
|
669 | 669 |
/// \brief This iterator goes through each arc. |
670 | 670 |
/// |
671 | 671 |
/// This iterator goes through each arc. |
672 | 672 |
/// |
673 | 673 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
... | ... |
@@ -766,33 +766,33 @@ |
766 | 766 |
/// This class describes the interface of iterable undirected |
767 | 767 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
768 | 768 |
/// iterable interface of undirected graphs. |
769 | 769 |
/// This concept is part of the Graph concept. |
770 | 770 |
template <typename BAS = BaseGraphComponent> |
771 | 771 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> { |
772 | 772 |
public: |
773 | 773 |
|
774 | 774 |
typedef BAS Base; |
775 | 775 |
typedef typename Base::Node Node; |
776 | 776 |
typedef typename Base::Arc Arc; |
777 | 777 |
typedef typename Base::Edge Edge; |
778 | 778 |
|
779 | 779 |
|
780 | 780 |
typedef IterableGraphComponent Graph; |
781 | 781 |
|
782 |
/// \name Base |
|
782 |
/// \name Base Iteration |
|
783 | 783 |
/// |
784 | 784 |
/// This interface provides functions for iteration on edges. |
785 | 785 |
/// |
786 | 786 |
/// @{ |
787 | 787 |
|
788 | 788 |
using IterableDigraphComponent<Base>::first; |
789 | 789 |
using IterableDigraphComponent<Base>::next; |
790 | 790 |
|
791 | 791 |
/// \brief Return the first edge. |
792 | 792 |
/// |
793 | 793 |
/// This function gives back the first edge in the iteration order. |
794 | 794 |
void first(Edge&) const {} |
795 | 795 |
|
796 | 796 |
/// \brief Return the next edge. |
797 | 797 |
/// |
798 | 798 |
/// This function gives back the next edge in the iteration order. |
... | ... |
@@ -805,33 +805,33 @@ |
805 | 805 |
/// source node of the directed arc representing the edge is the |
806 | 806 |
/// given node. |
807 | 807 |
void firstInc(Edge&, bool&, const Node&) const {} |
808 | 808 |
|
809 | 809 |
/// \brief Gives back the next of the edges from the |
810 | 810 |
/// given node. |
811 | 811 |
/// |
812 | 812 |
/// This function gives back the next edge incident to the given |
813 | 813 |
/// node. The bool parameter should be used as \c firstInc() use it. |
814 | 814 |
void nextInc(Edge&, bool&) const {} |
815 | 815 |
|
816 | 816 |
using IterableDigraphComponent<Base>::baseNode; |
817 | 817 |
using IterableDigraphComponent<Base>::runningNode; |
818 | 818 |
|
819 | 819 |
/// @} |
820 | 820 |
|
821 |
/// \name Class |
|
821 |
/// \name Class Based Iteration |
|
822 | 822 |
/// |
823 | 823 |
/// This interface provides iterator classes for edges. |
824 | 824 |
/// |
825 | 825 |
/// @{ |
826 | 826 |
|
827 | 827 |
/// \brief This iterator goes through each edge. |
828 | 828 |
/// |
829 | 829 |
/// This iterator goes through each edge. |
830 | 830 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
831 | 831 |
|
832 | 832 |
/// \brief This iterator goes trough the incident edges of a |
833 | 833 |
/// node. |
834 | 834 |
/// |
835 | 835 |
/// This iterator goes trough the incident edges of a certain |
836 | 836 |
/// node of a graph. |
837 | 837 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
... | ... |
@@ -58,35 +58,35 @@ |
58 | 58 |
typedef IM ItemIntMap; |
59 | 59 |
/// Type of the priorities. |
60 | 60 |
typedef PR Prio; |
61 | 61 |
/// Type of the items stored in the heap. |
62 | 62 |
typedef typename ItemIntMap::Key Item; |
63 | 63 |
|
64 | 64 |
/// \brief Type to represent the states of the items. |
65 | 65 |
/// |
66 | 66 |
/// Each item has a state associated to it. It can be "in heap", |
67 | 67 |
/// "pre heap" or "post heap". The later two are indifferent |
68 | 68 |
/// from the point of view of the heap, but may be useful for |
69 | 69 |
/// the user. |
70 | 70 |
/// |
71 | 71 |
/// The item-int map must be initialized in such way that it assigns |
72 | 72 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
73 | 73 |
enum State { |
74 |
IN_HEAP = 0, ///< The "in heap" state constant. |
|
75 |
PRE_HEAP = -1, ///< The "pre heap" state constant. |
|
76 |
|
|
74 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
|
75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
77 | 77 |
}; |
78 | 78 |
|
79 | 79 |
/// \brief The constructor. |
80 | 80 |
/// |
81 | 81 |
/// The constructor. |
82 | 82 |
/// \param map A map that assigns \c int values to keys of type |
83 | 83 |
/// \c Item. It is used internally by the heap implementations to |
84 | 84 |
/// handle the cross references. The assigned value must be |
85 | 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
86 | 86 |
explicit Heap(ItemIntMap &map) {} |
87 | 87 |
|
88 | 88 |
/// \brief The number of items stored in the heap. |
89 | 89 |
/// |
90 | 90 |
/// Returns the number of items stored in the heap. |
91 | 91 |
int size() const { return 0; } |
92 | 92 |
... | ... |
@@ -193,33 +193,33 @@ |
193 | 193 |
_reached = Traits::createReachedMap(*G); |
194 | 194 |
} |
195 | 195 |
if(!_processed) { |
196 | 196 |
local_processed = true; |
197 | 197 |
_processed = Traits::createProcessedMap(*G); |
198 | 198 |
} |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
protected: |
202 | 202 |
|
203 | 203 |
Dfs() {} |
204 | 204 |
|
205 | 205 |
public: |
206 | 206 |
|
207 | 207 |
typedef Dfs Create; |
208 | 208 |
|
209 |
///\name Named |
|
209 |
///\name Named Template Parameters |
|
210 | 210 |
|
211 | 211 |
///@{ |
212 | 212 |
|
213 | 213 |
template <class T> |
214 | 214 |
struct SetPredMapTraits : public Traits { |
215 | 215 |
typedef T PredMap; |
216 | 216 |
static PredMap *createPredMap(const Digraph &) |
217 | 217 |
{ |
218 | 218 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
219 | 219 |
return 0; // ignore warnings |
220 | 220 |
} |
221 | 221 |
}; |
222 | 222 |
///\brief \ref named-templ-param "Named parameter" for setting |
223 | 223 |
///\c PredMap type. |
224 | 224 |
/// |
225 | 225 |
///\ref named-templ-param "Named parameter" for setting |
... | ... |
@@ -273,33 +273,33 @@ |
273 | 273 |
_processed = Traits::createProcessedMap(*G); |
274 | 274 |
} |
275 | 275 |
if (!_heap_cross_ref) { |
276 | 276 |
local_heap_cross_ref = true; |
277 | 277 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
278 | 278 |
} |
279 | 279 |
if (!_heap) { |
280 | 280 |
local_heap = true; |
281 | 281 |
_heap = Traits::createHeap(*_heap_cross_ref); |
282 | 282 |
} |
283 | 283 |
} |
284 | 284 |
|
285 | 285 |
public: |
286 | 286 |
|
287 | 287 |
typedef Dijkstra Create; |
288 | 288 |
|
289 |
///\name Named |
|
289 |
///\name Named Template Parameters |
|
290 | 290 |
|
291 | 291 |
///@{ |
292 | 292 |
|
293 | 293 |
template <class T> |
294 | 294 |
struct SetPredMapTraits : public Traits { |
295 | 295 |
typedef T PredMap; |
296 | 296 |
static PredMap *createPredMap(const Digraph &) |
297 | 297 |
{ |
298 | 298 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
299 | 299 |
return 0; // ignore warnings |
300 | 300 |
} |
301 | 301 |
}; |
302 | 302 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 303 |
///\c PredMap type. |
304 | 304 |
/// |
305 | 305 |
///\ref named-templ-param "Named parameter" for setting |
... | ... |
@@ -24,54 +24,59 @@ |
24 | 24 |
#include <vector> |
25 | 25 |
#include <limits> |
26 | 26 |
#include <lemon/maps.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
/// \ingroup dimacs_group |
29 | 29 |
/// \file |
30 | 30 |
/// \brief DIMACS file format reader. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \addtogroup dimacs_group |
35 | 35 |
/// @{ |
36 | 36 |
|
37 | 37 |
/// DIMACS file type descriptor. |
38 | 38 |
struct DimacsDescriptor |
39 | 39 |
{ |
40 |
///File type enum |
|
41 |
enum Type |
|
42 |
{ |
|
43 |
NONE, MIN, MAX, SP, MAT |
|
44 |
|
|
40 |
///\brief DIMACS file type enum |
|
41 |
/// |
|
42 |
///DIMACS file type enum. |
|
43 |
enum Type { |
|
44 |
NONE, ///< Undefined type. |
|
45 |
MIN, ///< DIMACS file type for minimum cost flow problems. |
|
46 |
MAX, ///< DIMACS file type for maximum flow problems. |
|
47 |
SP, ///< DIMACS file type for shostest path problems. |
|
48 |
MAT ///< DIMACS file type for plain graphs and matching problems. |
|
49 |
}; |
|
45 | 50 |
///The file type |
46 | 51 |
Type type; |
47 | 52 |
///The number of nodes in the graph |
48 | 53 |
int nodeNum; |
49 | 54 |
///The number of edges in the graph |
50 | 55 |
int edgeNum; |
51 | 56 |
int lineShift; |
52 |
/// |
|
57 |
///Constructor. It sets the type to \c NONE. |
|
53 | 58 |
DimacsDescriptor() : type(NONE) {} |
54 | 59 |
}; |
55 | 60 |
|
56 | 61 |
///Discover the type of a DIMACS file |
57 | 62 |
|
58 |
///It starts seeking the beginning of the file for the problem type |
|
59 |
///and size info. The found data is returned in a special struct |
|
60 |
///that can be evaluated and passed to the appropriate reader |
|
61 |
///function. |
|
63 |
///This function starts seeking the beginning of the given file for the |
|
64 |
///problem type and size info. |
|
65 |
///The found data is returned in a special struct that can be evaluated |
|
66 |
///and passed to the appropriate reader function. |
|
62 | 67 |
DimacsDescriptor dimacsType(std::istream& is) |
63 | 68 |
{ |
64 | 69 |
DimacsDescriptor r; |
65 | 70 |
std::string problem,str; |
66 | 71 |
char c; |
67 | 72 |
r.lineShift=0; |
68 | 73 |
while (is >> c) |
69 | 74 |
switch(c) |
70 | 75 |
{ |
71 | 76 |
case 'p': |
72 | 77 |
if(is >> problem >> r.nodeNum >> r.edgeNum) |
73 | 78 |
{ |
74 | 79 |
getline(is, str); |
75 | 80 |
r.lineShift++; |
76 | 81 |
if(problem=="min") r.type=DimacsDescriptor::MIN; |
77 | 82 |
else if(problem=="max") r.type=DimacsDescriptor::MAX; |
... | ... |
@@ -83,34 +88,33 @@ |
83 | 88 |
else |
84 | 89 |
{ |
85 | 90 |
throw FormatError("Missing or wrong problem type declaration."); |
86 | 91 |
} |
87 | 92 |
break; |
88 | 93 |
case 'c': |
89 | 94 |
getline(is, str); |
90 | 95 |
r.lineShift++; |
91 | 96 |
break; |
92 | 97 |
default: |
93 | 98 |
throw FormatError("Unknown DIMACS declaration."); |
94 | 99 |
} |
95 | 100 |
throw FormatError("Missing problem type declaration."); |
96 | 101 |
} |
97 | 102 |
|
98 | 103 |
|
99 |
|
|
100 |
/// DIMACS minimum cost flow reader function. |
|
104 |
/// \brief DIMACS minimum cost flow reader function. |
|
101 | 105 |
/// |
102 | 106 |
/// This function reads a minimum cost flow instance from DIMACS format, |
103 | 107 |
/// i.e. from a DIMACS file having a line starting with |
104 | 108 |
/// \code |
105 | 109 |
/// p min |
106 | 110 |
/// \endcode |
107 | 111 |
/// At the beginning, \c g is cleared by \c g.clear(). The supply |
108 | 112 |
/// amount of the nodes are written to the \c supply node map |
109 | 113 |
/// (they are signed values). The lower bounds, capacities and costs |
110 | 114 |
/// of the arcs are written to the \c lower, \c capacity and \c cost |
111 | 115 |
/// arc maps. |
112 | 116 |
/// |
113 | 117 |
/// If the capacity of an arc is less than the lower bound, it will |
114 | 118 |
/// be set to "infinite" instead. The actual value of "infinite" is |
115 | 119 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
116 | 120 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
... | ... |
@@ -240,33 +244,33 @@ |
240 | 244 |
e = g.addArc(nodes[i], nodes[j]); |
241 | 245 |
if (_cap >= 0) |
242 | 246 |
capacity.set(e, _cap); |
243 | 247 |
else |
244 | 248 |
capacity.set(e, infty); |
245 | 249 |
} |
246 | 250 |
else { |
247 | 251 |
is >> i >> j; |
248 | 252 |
getline(is, str); |
249 | 253 |
g.addArc(nodes[i], nodes[j]); |
250 | 254 |
} |
251 | 255 |
break; |
252 | 256 |
} |
253 | 257 |
} |
254 | 258 |
} |
255 | 259 |
|
256 |
/// DIMACS maximum flow reader function. |
|
260 |
/// \brief DIMACS maximum flow reader function. |
|
257 | 261 |
/// |
258 | 262 |
/// This function reads a maximum flow instance from DIMACS format, |
259 | 263 |
/// i.e. from a DIMACS file having a line starting with |
260 | 264 |
/// \code |
261 | 265 |
/// p max |
262 | 266 |
/// \endcode |
263 | 267 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
264 | 268 |
/// capacities are written to the \c capacity arc map and \c s and |
265 | 269 |
/// \c t are set to the source and the target nodes. |
266 | 270 |
/// |
267 | 271 |
/// If the capacity of an arc is negative, it will |
268 | 272 |
/// be set to "infinite" instead. The actual value of "infinite" is |
269 | 273 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
270 | 274 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
271 | 275 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
272 | 276 |
/// a non-zero value, that value will be used as "infinite". |
... | ... |
@@ -274,59 +278,59 @@ |
274 | 278 |
/// If the file type was previously evaluated by dimacsType(), then |
275 | 279 |
/// the descriptor struct should be given by the \c dest parameter. |
276 | 280 |
template<typename Digraph, typename CapacityMap> |
277 | 281 |
void readDimacsMax(std::istream& is, |
278 | 282 |
Digraph &g, |
279 | 283 |
CapacityMap& capacity, |
280 | 284 |
typename Digraph::Node &s, |
281 | 285 |
typename Digraph::Node &t, |
282 | 286 |
typename CapacityMap::Value infty = 0, |
283 | 287 |
DimacsDescriptor desc=DimacsDescriptor()) { |
284 | 288 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
285 | 289 |
if(desc.type!=DimacsDescriptor::MAX) |
286 | 290 |
throw FormatError("Problem type mismatch"); |
287 | 291 |
_readDimacs(is,g,capacity,s,t,infty,desc); |
288 | 292 |
} |
289 | 293 |
|
290 |
/// DIMACS shortest path reader function. |
|
294 |
/// \brief DIMACS shortest path reader function. |
|
291 | 295 |
/// |
292 | 296 |
/// This function reads a shortest path instance from DIMACS format, |
293 | 297 |
/// i.e. from a DIMACS file having a line starting with |
294 | 298 |
/// \code |
295 | 299 |
/// p sp |
296 | 300 |
/// \endcode |
297 | 301 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
298 | 302 |
/// lengths are written to the \c length arc map and \c s is set to the |
299 | 303 |
/// source node. |
300 | 304 |
/// |
301 | 305 |
/// If the file type was previously evaluated by dimacsType(), then |
302 | 306 |
/// the descriptor struct should be given by the \c dest parameter. |
303 | 307 |
template<typename Digraph, typename LengthMap> |
304 | 308 |
void readDimacsSp(std::istream& is, |
305 | 309 |
Digraph &g, |
306 | 310 |
LengthMap& length, |
307 | 311 |
typename Digraph::Node &s, |
308 | 312 |
DimacsDescriptor desc=DimacsDescriptor()) { |
309 | 313 |
typename Digraph::Node t; |
310 | 314 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
311 | 315 |
if(desc.type!=DimacsDescriptor::SP) |
312 | 316 |
throw FormatError("Problem type mismatch"); |
313 | 317 |
_readDimacs(is, g, length, s, t, 0, desc); |
314 | 318 |
} |
315 | 319 |
|
316 |
/// DIMACS capacitated digraph reader function. |
|
320 |
/// \brief DIMACS capacitated digraph reader function. |
|
317 | 321 |
/// |
318 | 322 |
/// This function reads an arc capacitated digraph instance from |
319 | 323 |
/// DIMACS 'max' or 'sp' format. |
320 | 324 |
/// At the beginning, \c g is cleared by \c g.clear() |
321 | 325 |
/// and the arc capacities/lengths are written to the \c capacity |
322 | 326 |
/// arc map. |
323 | 327 |
/// |
324 | 328 |
/// In case of the 'max' format, if the capacity of an arc is negative, |
325 | 329 |
/// it will |
326 | 330 |
/// be set to "infinite" instead. The actual value of "infinite" is |
327 | 331 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
328 | 332 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
329 | 333 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
330 | 334 |
/// a non-zero value, that value will be used as "infinite". |
331 | 335 |
/// |
332 | 336 |
/// If the file type was previously evaluated by dimacsType(), then |
... | ... |
@@ -346,37 +350,37 @@ |
346 | 350 |
|
347 | 351 |
template<typename Graph> |
348 | 352 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
349 | 353 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
350 | 354 |
dummy<0> = 0) |
351 | 355 |
{ |
352 | 356 |
g.addEdge(s,t); |
353 | 357 |
} |
354 | 358 |
template<typename Graph> |
355 | 359 |
typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
356 | 360 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
357 | 361 |
dummy<1> = 1) |
358 | 362 |
{ |
359 | 363 |
g.addArc(s,t); |
360 | 364 |
} |
361 | 365 |
|
362 |
/// DIMACS plain (di)graph reader function. |
|
366 |
/// \brief DIMACS plain (di)graph reader function. |
|
363 | 367 |
/// |
364 |
/// This function reads a (di)graph without any designated nodes and |
|
365 |
/// maps from DIMACS format, i.e. from DIMACS files having a line |
|
366 |
/// |
|
368 |
/// This function reads a plain (di)graph without any designated nodes |
|
369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
370 |
/// DIMACS files having a line starting with |
|
367 | 371 |
/// \code |
368 | 372 |
/// p mat |
369 | 373 |
/// \endcode |
370 | 374 |
/// At the beginning, \c g is cleared by \c g.clear(). |
371 | 375 |
/// |
372 | 376 |
/// If the file type was previously evaluated by dimacsType(), then |
373 | 377 |
/// the descriptor struct should be given by the \c dest parameter. |
374 | 378 |
template<typename Graph> |
375 | 379 |
void readDimacsMat(std::istream& is, Graph &g, |
376 | 380 |
DimacsDescriptor desc=DimacsDescriptor()) |
377 | 381 |
{ |
378 | 382 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
379 | 383 |
if(desc.type!=DimacsDescriptor::MAT) |
380 | 384 |
throw FormatError("Problem type mismatch"); |
381 | 385 |
|
382 | 386 |
g.clear(); |
... | ... |
@@ -255,48 +255,44 @@ |
255 | 255 |
|
256 | 256 |
bool dontPrint; |
257 | 257 |
|
258 | 258 |
public: |
259 | 259 |
///Node shapes |
260 | 260 |
|
261 | 261 |
///Node shapes. |
262 | 262 |
/// |
263 | 263 |
enum NodeShapes { |
264 | 264 |
/// = 0 |
265 | 265 |
///\image html nodeshape_0.png |
266 | 266 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
267 | 267 |
CIRCLE=0, |
268 | 268 |
/// = 1 |
269 | 269 |
///\image html nodeshape_1.png |
270 | 270 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
271 |
/// |
|
272 | 271 |
SQUARE=1, |
273 | 272 |
/// = 2 |
274 | 273 |
///\image html nodeshape_2.png |
275 | 274 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
276 |
/// |
|
277 | 275 |
DIAMOND=2, |
278 | 276 |
/// = 3 |
279 | 277 |
///\image html nodeshape_3.png |
280 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
|
281 |
/// |
|
278 |
///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm |
|
282 | 279 |
MALE=3, |
283 | 280 |
/// = 4 |
284 | 281 |
///\image html nodeshape_4.png |
285 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
|
286 |
/// |
|
282 |
///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm |
|
287 | 283 |
FEMALE=4 |
288 | 284 |
}; |
289 | 285 |
|
290 | 286 |
private: |
291 | 287 |
class arcLess { |
292 | 288 |
const Graph &g; |
293 | 289 |
public: |
294 | 290 |
arcLess(const Graph &_g) : g(_g) {} |
295 | 291 |
bool operator()(Arc a,Arc b) const |
296 | 292 |
{ |
297 | 293 |
Node ai=std::min(g.source(a),g.target(a)); |
298 | 294 |
Node aa=std::max(g.source(a),g.target(a)); |
299 | 295 |
Node bi=std::min(g.source(b),g.target(b)); |
300 | 296 |
Node ba=std::max(g.source(b),g.target(b)); |
301 | 297 |
return ai<bi || |
302 | 298 |
(ai==bi && (aa < ba || |
... | ... |
@@ -235,95 +235,93 @@ |
235 | 235 |
|
236 | 236 |
template <typename Graph, typename In, typename Out> |
237 | 237 |
struct KruskalOutputSelector<Graph, In, Out, |
238 | 238 |
typename enable_if<MapOutputIndicator<Out>, void>::type > |
239 | 239 |
{ |
240 | 240 |
typedef typename In::value_type::second_type Value; |
241 | 241 |
|
242 | 242 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
243 | 243 |
return _kruskal_bits::kruskal(graph, in, out); |
244 | 244 |
} |
245 | 245 |
}; |
246 | 246 |
|
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
/// \ingroup spantree |
250 | 250 |
/// |
251 |
/// \brief Kruskal algorithm |
|
251 |
/// \brief Kruskal's algorithm for finding a minimum cost spanning tree of |
|
252 | 252 |
/// a graph. |
253 | 253 |
/// |
254 | 254 |
/// This function runs Kruskal's algorithm to find a minimum cost |
255 |
/// spanning tree. |
|
255 |
/// spanning tree of a graph. |
|
256 | 256 |
/// Due to some C++ hacking, it accepts various input and output types. |
257 | 257 |
/// |
258 | 258 |
/// \param g The graph the algorithm runs on. |
259 | 259 |
/// It can be either \ref concepts::Digraph "directed" or |
260 | 260 |
/// \ref concepts::Graph "undirected". |
261 | 261 |
/// If the graph is directed, the algorithm consider it to be |
262 | 262 |
/// undirected by disregarding the direction of the arcs. |
263 | 263 |
/// |
264 | 264 |
/// \param in This object is used to describe the arc/edge costs. |
265 | 265 |
/// It can be one of the following choices. |
266 | 266 |
/// - An STL compatible 'Forward Container' with |
267 |
/// <tt>std::pair<GR::Arc,X></tt> or |
|
268 |
/// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where |
|
269 |
/// |
|
267 |
/// <tt>std::pair<GR::Arc,C></tt> or |
|
268 |
/// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where |
|
269 |
/// \c C is the type of the costs. The pairs indicates the arcs/edges |
|
270 | 270 |
/// along with the assigned cost. <em>They must be in a |
271 | 271 |
/// cost-ascending order.</em> |
272 | 272 |
/// - Any readable arc/edge map. The values of the map indicate the |
273 | 273 |
/// arc/edge costs. |
274 | 274 |
/// |
275 | 275 |
/// \retval out Here we also have a choice. |
276 |
/// - It can be a writable \c bool arc/edge map. After running the |
|
277 |
/// algorithm it will contain the found minimum cost spanning |
|
276 |
/// - It can be a writable arc/edge map with \c bool value type. After |
|
277 |
/// running the algorithm it will contain the found minimum cost spanning |
|
278 | 278 |
/// tree: the value of an arc/edge will be set to \c true if it belongs |
279 | 279 |
/// to the tree, otherwise it will be set to \c false. The value of |
280 | 280 |
/// each arc/edge will be set exactly once. |
281 | 281 |
/// - It can also be an iteraror of an STL Container with |
282 | 282 |
/// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its |
283 | 283 |
/// <tt>value_type</tt>. The algorithm copies the elements of the |
284 | 284 |
/// found tree into this sequence. For example, if we know that the |
285 | 285 |
/// spanning tree of the graph \c g has say 53 arcs, then we can |
286 | 286 |
/// put its arcs into an STL vector \c tree with a code like this. |
287 | 287 |
///\code |
288 | 288 |
/// std::vector<Arc> tree(53); |
289 | 289 |
/// kruskal(g,cost,tree.begin()); |
290 | 290 |
///\endcode |
291 | 291 |
/// Or if we don't know in advance the size of the tree, we can |
292 | 292 |
/// write this. |
293 | 293 |
///\code |
294 | 294 |
/// std::vector<Arc> tree; |
295 | 295 |
/// kruskal(g,cost,std::back_inserter(tree)); |
296 | 296 |
///\endcode |
297 | 297 |
/// |
298 | 298 |
/// \return The total cost of the found spanning tree. |
299 | 299 |
/// |
300 | 300 |
/// \note If the input graph is not (weakly) connected, a spanning |
301 | 301 |
/// forest is calculated instead of a spanning tree. |
302 | 302 |
|
303 | 303 |
#ifdef DOXYGEN |
304 |
template <class Graph, class In, class Out> |
|
305 |
Value kruskal(GR const& g, const In& in, Out& out) |
|
304 |
template <typename Graph, typename In, typename Out> |
|
305 |
Value kruskal(const Graph& g, const In& in, Out& out) |
|
306 | 306 |
#else |
307 | 307 |
template <class Graph, class In, class Out> |
308 | 308 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
309 | 309 |
kruskal(const Graph& graph, const In& in, Out& out) |
310 | 310 |
#endif |
311 | 311 |
{ |
312 | 312 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
313 | 313 |
kruskal(graph, in, out); |
314 | 314 |
} |
315 | 315 |
|
316 | 316 |
|
317 |
|
|
318 |
|
|
319 | 317 |
template <class Graph, class In, class Out> |
320 | 318 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
321 | 319 |
kruskal(const Graph& graph, const In& in, const Out& out) |
322 | 320 |
{ |
323 | 321 |
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
324 | 322 |
kruskal(graph, in, out); |
325 | 323 |
} |
326 | 324 |
|
327 | 325 |
} //namespace lemon |
328 | 326 |
|
329 | 327 |
#endif //LEMON_KRUSKAL_H |
... | ... |
@@ -580,33 +580,33 @@ |
580 | 580 |
_arc_index.swap(other._arc_index); |
581 | 581 |
|
582 | 582 |
_node_maps.swap(other._node_maps); |
583 | 583 |
_arc_maps.swap(other._arc_maps); |
584 | 584 |
_attributes.swap(other._attributes); |
585 | 585 |
|
586 | 586 |
_nodes_caption = other._nodes_caption; |
587 | 587 |
_arcs_caption = other._arcs_caption; |
588 | 588 |
_attributes_caption = other._attributes_caption; |
589 | 589 |
|
590 | 590 |
} |
591 | 591 |
|
592 | 592 |
DigraphReader& operator=(const DigraphReader&); |
593 | 593 |
|
594 | 594 |
public: |
595 | 595 |
|
596 |
/// \name Reading |
|
596 |
/// \name Reading Rules |
|
597 | 597 |
/// @{ |
598 | 598 |
|
599 | 599 |
/// \brief Node map reading rule |
600 | 600 |
/// |
601 | 601 |
/// Add a node map reading rule to the reader. |
602 | 602 |
template <typename Map> |
603 | 603 |
DigraphReader& nodeMap(const std::string& caption, Map& map) { |
604 | 604 |
checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>(); |
605 | 605 |
_reader_bits::MapStorageBase<Node>* storage = |
606 | 606 |
new _reader_bits::MapStorage<Node, Map>(map); |
607 | 607 |
_node_maps.push_back(std::make_pair(caption, storage)); |
608 | 608 |
return *this; |
609 | 609 |
} |
610 | 610 |
|
611 | 611 |
/// \brief Node map reading rule |
612 | 612 |
/// |
... | ... |
@@ -685,62 +685,62 @@ |
685 | 685 |
} |
686 | 686 |
|
687 | 687 |
/// \brief Arc reading rule |
688 | 688 |
/// |
689 | 689 |
/// Add an arc reading rule to reader. |
690 | 690 |
DigraphReader& arc(const std::string& caption, Arc& arc) { |
691 | 691 |
typedef _reader_bits::MapLookUpConverter<Arc> Converter; |
692 | 692 |
Converter converter(_arc_index); |
693 | 693 |
_reader_bits::ValueStorageBase* storage = |
694 | 694 |
new _reader_bits::ValueStorage<Arc, Converter>(arc, converter); |
695 | 695 |
_attributes.insert(std::make_pair(caption, storage)); |
696 | 696 |
return *this; |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
/// @} |
700 | 700 |
|
701 |
/// \name Select |
|
701 |
/// \name Select Section by Name |
|
702 | 702 |
/// @{ |
703 | 703 |
|
704 | 704 |
/// \brief Set \c \@nodes section to be read |
705 | 705 |
/// |
706 | 706 |
/// Set \c \@nodes section to be read |
707 | 707 |
DigraphReader& nodes(const std::string& caption) { |
708 | 708 |
_nodes_caption = caption; |
709 | 709 |
return *this; |
710 | 710 |
} |
711 | 711 |
|
712 | 712 |
/// \brief Set \c \@arcs section to be read |
713 | 713 |
/// |
714 | 714 |
/// Set \c \@arcs section to be read |
715 | 715 |
DigraphReader& arcs(const std::string& caption) { |
716 | 716 |
_arcs_caption = caption; |
717 | 717 |
return *this; |
718 | 718 |
} |
719 | 719 |
|
720 | 720 |
/// \brief Set \c \@attributes section to be read |
721 | 721 |
/// |
722 | 722 |
/// Set \c \@attributes section to be read |
723 | 723 |
DigraphReader& attributes(const std::string& caption) { |
724 | 724 |
_attributes_caption = caption; |
725 | 725 |
return *this; |
726 | 726 |
} |
727 | 727 |
|
728 | 728 |
/// @} |
729 | 729 |
|
730 |
/// \name Using |
|
730 |
/// \name Using Previously Constructed Node or Arc Set |
|
731 | 731 |
/// @{ |
732 | 732 |
|
733 | 733 |
/// \brief Use previously constructed node set |
734 | 734 |
/// |
735 | 735 |
/// Use previously constructed node set, and specify the node |
736 | 736 |
/// label map. |
737 | 737 |
template <typename Map> |
738 | 738 |
DigraphReader& useNodes(const Map& map) { |
739 | 739 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
740 | 740 |
LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member"); |
741 | 741 |
_use_nodes = true; |
742 | 742 |
_writer_bits::DefaultConverter<typename Map::Value> converter; |
743 | 743 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
744 | 744 |
_node_index.insert(std::make_pair(converter(map[n]), n)); |
745 | 745 |
} |
746 | 746 |
return *this; |
... | ... |
@@ -1103,33 +1103,33 @@ |
1103 | 1103 |
} |
1104 | 1104 |
if (readSuccess()) { |
1105 | 1105 |
line.putback(c); |
1106 | 1106 |
} |
1107 | 1107 |
for (typename Attributes::iterator it = _attributes.begin(); |
1108 | 1108 |
it != _attributes.end(); ++it) { |
1109 | 1109 |
if (read_attr.find(it->first) == read_attr.end()) { |
1110 | 1110 |
std::ostringstream msg; |
1111 | 1111 |
msg << "Attribute not found: " << it->first; |
1112 | 1112 |
throw FormatError(msg.str()); |
1113 | 1113 |
} |
1114 | 1114 |
} |
1115 | 1115 |
} |
1116 | 1116 |
|
1117 | 1117 |
public: |
1118 | 1118 |
|
1119 |
/// \name Execution of the |
|
1119 |
/// \name Execution of the Reader |
|
1120 | 1120 |
/// @{ |
1121 | 1121 |
|
1122 | 1122 |
/// \brief Start the batch processing |
1123 | 1123 |
/// |
1124 | 1124 |
/// This function starts the batch processing |
1125 | 1125 |
void run() { |
1126 | 1126 |
LEMON_ASSERT(_is != 0, "This reader assigned to an other reader"); |
1127 | 1127 |
|
1128 | 1128 |
bool nodes_done = _skip_nodes; |
1129 | 1129 |
bool arcs_done = _skip_arcs; |
1130 | 1130 |
bool attributes_done = false; |
1131 | 1131 |
|
1132 | 1132 |
line_num = 0; |
1133 | 1133 |
readLine(); |
1134 | 1134 |
skipSection(); |
1135 | 1135 |
|
... | ... |
@@ -1376,33 +1376,33 @@ |
1376 | 1376 |
_edge_index.swap(other._edge_index); |
1377 | 1377 |
|
1378 | 1378 |
_node_maps.swap(other._node_maps); |
1379 | 1379 |
_edge_maps.swap(other._edge_maps); |
1380 | 1380 |
_attributes.swap(other._attributes); |
1381 | 1381 |
|
1382 | 1382 |
_nodes_caption = other._nodes_caption; |
1383 | 1383 |
_edges_caption = other._edges_caption; |
1384 | 1384 |
_attributes_caption = other._attributes_caption; |
1385 | 1385 |
|
1386 | 1386 |
} |
1387 | 1387 |
|
1388 | 1388 |
GraphReader& operator=(const GraphReader&); |
1389 | 1389 |
|
1390 | 1390 |
public: |
1391 | 1391 |
|
1392 |
/// \name Reading |
|
1392 |
/// \name Reading Rules |
|
1393 | 1393 |
/// @{ |
1394 | 1394 |
|
1395 | 1395 |
/// \brief Node map reading rule |
1396 | 1396 |
/// |
1397 | 1397 |
/// Add a node map reading rule to the reader. |
1398 | 1398 |
template <typename Map> |
1399 | 1399 |
GraphReader& nodeMap(const std::string& caption, Map& map) { |
1400 | 1400 |
checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>(); |
1401 | 1401 |
_reader_bits::MapStorageBase<Node>* storage = |
1402 | 1402 |
new _reader_bits::MapStorage<Node, Map>(map); |
1403 | 1403 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1404 | 1404 |
return *this; |
1405 | 1405 |
} |
1406 | 1406 |
|
1407 | 1407 |
/// \brief Node map reading rule |
1408 | 1408 |
/// |
... | ... |
@@ -1527,62 +1527,62 @@ |
1527 | 1527 |
} |
1528 | 1528 |
|
1529 | 1529 |
/// \brief Arc reading rule |
1530 | 1530 |
/// |
1531 | 1531 |
/// Add an arc reading rule to reader. |
1532 | 1532 |
GraphReader& arc(const std::string& caption, Arc& arc) { |
1533 | 1533 |
typedef _reader_bits::GraphArcLookUpConverter<Graph> Converter; |
1534 | 1534 |
Converter converter(_graph, _edge_index); |
1535 | 1535 |
_reader_bits::ValueStorageBase* storage = |
1536 | 1536 |
new _reader_bits::ValueStorage<Arc, Converter>(arc, converter); |
1537 | 1537 |
_attributes.insert(std::make_pair(caption, storage)); |
1538 | 1538 |
return *this; |
1539 | 1539 |
} |
1540 | 1540 |
|
1541 | 1541 |
/// @} |
1542 | 1542 |
|
1543 |
/// \name Select |
|
1543 |
/// \name Select Section by Name |
|
1544 | 1544 |
/// @{ |
1545 | 1545 |
|
1546 | 1546 |
/// \brief Set \c \@nodes section to be read |
1547 | 1547 |
/// |
1548 | 1548 |
/// Set \c \@nodes section to be read. |
1549 | 1549 |
GraphReader& nodes(const std::string& caption) { |
1550 | 1550 |
_nodes_caption = caption; |
1551 | 1551 |
return *this; |
1552 | 1552 |
} |
1553 | 1553 |
|
1554 | 1554 |
/// \brief Set \c \@edges section to be read |
1555 | 1555 |
/// |
1556 | 1556 |
/// Set \c \@edges section to be read. |
1557 | 1557 |
GraphReader& edges(const std::string& caption) { |
1558 | 1558 |
_edges_caption = caption; |
1559 | 1559 |
return *this; |
1560 | 1560 |
} |
1561 | 1561 |
|
1562 | 1562 |
/// \brief Set \c \@attributes section to be read |
1563 | 1563 |
/// |
1564 | 1564 |
/// Set \c \@attributes section to be read. |
1565 | 1565 |
GraphReader& attributes(const std::string& caption) { |
1566 | 1566 |
_attributes_caption = caption; |
1567 | 1567 |
return *this; |
1568 | 1568 |
} |
1569 | 1569 |
|
1570 | 1570 |
/// @} |
1571 | 1571 |
|
1572 |
/// \name Using |
|
1572 |
/// \name Using Previously Constructed Node or Edge Set |
|
1573 | 1573 |
/// @{ |
1574 | 1574 |
|
1575 | 1575 |
/// \brief Use previously constructed node set |
1576 | 1576 |
/// |
1577 | 1577 |
/// Use previously constructed node set, and specify the node |
1578 | 1578 |
/// label map. |
1579 | 1579 |
template <typename Map> |
1580 | 1580 |
GraphReader& useNodes(const Map& map) { |
1581 | 1581 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1582 | 1582 |
LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member"); |
1583 | 1583 |
_use_nodes = true; |
1584 | 1584 |
_writer_bits::DefaultConverter<typename Map::Value> converter; |
1585 | 1585 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1586 | 1586 |
_node_index.insert(std::make_pair(converter(map[n]), n)); |
1587 | 1587 |
} |
1588 | 1588 |
return *this; |
... | ... |
@@ -1946,33 +1946,33 @@ |
1946 | 1946 |
} |
1947 | 1947 |
if (readSuccess()) { |
1948 | 1948 |
line.putback(c); |
1949 | 1949 |
} |
1950 | 1950 |
for (typename Attributes::iterator it = _attributes.begin(); |
1951 | 1951 |
it != _attributes.end(); ++it) { |
1952 | 1952 |
if (read_attr.find(it->first) == read_attr.end()) { |
1953 | 1953 |
std::ostringstream msg; |
1954 | 1954 |
msg << "Attribute not found: " << it->first; |
1955 | 1955 |
throw FormatError(msg.str()); |
1956 | 1956 |
} |
1957 | 1957 |
} |
1958 | 1958 |
} |
1959 | 1959 |
|
1960 | 1960 |
public: |
1961 | 1961 |
|
1962 |
/// \name Execution of the |
|
1962 |
/// \name Execution of the Reader |
|
1963 | 1963 |
/// @{ |
1964 | 1964 |
|
1965 | 1965 |
/// \brief Start the batch processing |
1966 | 1966 |
/// |
1967 | 1967 |
/// This function starts the batch processing |
1968 | 1968 |
void run() { |
1969 | 1969 |
|
1970 | 1970 |
LEMON_ASSERT(_is != 0, "This reader assigned to an other reader"); |
1971 | 1971 |
|
1972 | 1972 |
bool nodes_done = _skip_nodes; |
1973 | 1973 |
bool edges_done = _skip_edges; |
1974 | 1974 |
bool attributes_done = false; |
1975 | 1975 |
|
1976 | 1976 |
line_num = 0; |
1977 | 1977 |
readLine(); |
1978 | 1978 |
skipSection(); |
... | ... |
@@ -2145,33 +2145,33 @@ |
2145 | 2145 |
friend SectionReader sectionReader(const std::string& fn); |
2146 | 2146 |
friend SectionReader sectionReader(const char* fn); |
2147 | 2147 |
|
2148 | 2148 |
SectionReader(SectionReader& other) |
2149 | 2149 |
: _is(other._is), local_is(other.local_is) { |
2150 | 2150 |
|
2151 | 2151 |
other._is = 0; |
2152 | 2152 |
other.local_is = false; |
2153 | 2153 |
|
2154 | 2154 |
_sections.swap(other._sections); |
2155 | 2155 |
} |
2156 | 2156 |
|
2157 | 2157 |
SectionReader& operator=(const SectionReader&); |
2158 | 2158 |
|
2159 | 2159 |
public: |
2160 | 2160 |
|
2161 |
/// \name Section |
|
2161 |
/// \name Section Readers |
|
2162 | 2162 |
/// @{ |
2163 | 2163 |
|
2164 | 2164 |
/// \brief Add a section processor with line oriented reading |
2165 | 2165 |
/// |
2166 | 2166 |
/// The first parameter is the type descriptor of the section, the |
2167 | 2167 |
/// second is a functor, which takes just one \c std::string |
2168 | 2168 |
/// parameter. At the reading process, each line of the section |
2169 | 2169 |
/// will be given to the functor object. However, the empty lines |
2170 | 2170 |
/// and the comment lines are filtered out, and the leading |
2171 | 2171 |
/// whitespaces are trimmed from each processed string. |
2172 | 2172 |
/// |
2173 | 2173 |
/// For example let's see a section, which contain several |
2174 | 2174 |
/// integers, which should be inserted into a vector. |
2175 | 2175 |
///\code |
2176 | 2176 |
/// @numbers |
2177 | 2177 |
/// 12 45 23 |
... | ... |
@@ -2244,33 +2244,33 @@ |
2244 | 2244 |
return static_cast<bool>(*_is); |
2245 | 2245 |
} |
2246 | 2246 |
|
2247 | 2247 |
void skipSection() { |
2248 | 2248 |
char c; |
2249 | 2249 |
while (readSuccess() && line >> c && c != '@') { |
2250 | 2250 |
readLine(); |
2251 | 2251 |
} |
2252 | 2252 |
if (readSuccess()) { |
2253 | 2253 |
line.putback(c); |
2254 | 2254 |
} |
2255 | 2255 |
} |
2256 | 2256 |
|
2257 | 2257 |
public: |
2258 | 2258 |
|
2259 | 2259 |
|
2260 |
/// \name Execution of the |
|
2260 |
/// \name Execution of the Reader |
|
2261 | 2261 |
/// @{ |
2262 | 2262 |
|
2263 | 2263 |
/// \brief Start the batch processing |
2264 | 2264 |
/// |
2265 | 2265 |
/// This function starts the batch processing. |
2266 | 2266 |
void run() { |
2267 | 2267 |
|
2268 | 2268 |
LEMON_ASSERT(_is != 0, "This reader assigned to an other reader"); |
2269 | 2269 |
|
2270 | 2270 |
std::set<std::string> extra_sections; |
2271 | 2271 |
|
2272 | 2272 |
line_num = 0; |
2273 | 2273 |
readLine(); |
2274 | 2274 |
skipSection(); |
2275 | 2275 |
|
2276 | 2276 |
while (readSuccess()) { |
... | ... |
@@ -2426,59 +2426,59 @@ |
2426 | 2426 |
} |
2427 | 2427 |
} |
2428 | 2428 |
|
2429 | 2429 |
/// \brief Destructor |
2430 | 2430 |
~LgfContents() { |
2431 | 2431 |
if (local_is) delete _is; |
2432 | 2432 |
} |
2433 | 2433 |
|
2434 | 2434 |
private: |
2435 | 2435 |
|
2436 | 2436 |
LgfContents(const LgfContents&); |
2437 | 2437 |
LgfContents& operator=(const LgfContents&); |
2438 | 2438 |
|
2439 | 2439 |
public: |
2440 | 2440 |
|
2441 | 2441 |
|
2442 |
/// \name Node |
|
2442 |
/// \name Node Sections |
|
2443 | 2443 |
/// @{ |
2444 | 2444 |
|
2445 | 2445 |
/// \brief Gives back the number of node sections in the file. |
2446 | 2446 |
/// |
2447 | 2447 |
/// Gives back the number of node sections in the file. |
2448 | 2448 |
int nodeSectionNum() const { |
2449 | 2449 |
return _node_sections.size(); |
2450 | 2450 |
} |
2451 | 2451 |
|
2452 | 2452 |
/// \brief Returns the node section name at the given position. |
2453 | 2453 |
/// |
2454 | 2454 |
/// Returns the node section name at the given position. |
2455 | 2455 |
const std::string& nodeSection(int i) const { |
2456 | 2456 |
return _node_sections[i]; |
2457 | 2457 |
} |
2458 | 2458 |
|
2459 | 2459 |
/// \brief Gives back the node maps for the given section. |
2460 | 2460 |
/// |
2461 | 2461 |
/// Gives back the node maps for the given section. |
2462 | 2462 |
const std::vector<std::string>& nodeMapNames(int i) const { |
2463 | 2463 |
return _node_maps[i]; |
2464 | 2464 |
} |
2465 | 2465 |
|
2466 | 2466 |
/// @} |
2467 | 2467 |
|
2468 |
/// \name Arc/Edge |
|
2468 |
/// \name Arc/Edge Sections |
|
2469 | 2469 |
/// @{ |
2470 | 2470 |
|
2471 | 2471 |
/// \brief Gives back the number of arc/edge sections in the file. |
2472 | 2472 |
/// |
2473 | 2473 |
/// Gives back the number of arc/edge sections in the file. |
2474 | 2474 |
/// \note It is synonym of \c edgeSectionNum(). |
2475 | 2475 |
int arcSectionNum() const { |
2476 | 2476 |
return _edge_sections.size(); |
2477 | 2477 |
} |
2478 | 2478 |
|
2479 | 2479 |
/// \brief Returns the arc/edge section name at the given position. |
2480 | 2480 |
/// |
2481 | 2481 |
/// Returns the arc/edge section name at the given position. |
2482 | 2482 |
/// \note It is synonym of \c edgeSection(). |
2483 | 2483 |
const std::string& arcSection(int i) const { |
2484 | 2484 |
return _edge_sections[i]; |
... | ... |
@@ -2510,59 +2510,59 @@ |
2510 | 2510 |
/// Returns the section name at the given position. |
2511 | 2511 |
/// \note It is synonym of \c arcSection(). |
2512 | 2512 |
const std::string& edgeSection(int i) const { |
2513 | 2513 |
return _edge_sections[i]; |
2514 | 2514 |
} |
2515 | 2515 |
|
2516 | 2516 |
/// \brief Gives back the edge maps for the given section. |
2517 | 2517 |
/// |
2518 | 2518 |
/// Gives back the edge maps for the given section. |
2519 | 2519 |
/// \note It is synonym of \c arcMapNames(). |
2520 | 2520 |
const std::vector<std::string>& edgeMapNames(int i) const { |
2521 | 2521 |
return _edge_maps[i]; |
2522 | 2522 |
} |
2523 | 2523 |
|
2524 | 2524 |
/// @} |
2525 | 2525 |
|
2526 |
/// \name Attribute |
|
2526 |
/// \name Attribute Sections |
|
2527 | 2527 |
/// @{ |
2528 | 2528 |
|
2529 | 2529 |
/// \brief Gives back the number of attribute sections in the file. |
2530 | 2530 |
/// |
2531 | 2531 |
/// Gives back the number of attribute sections in the file. |
2532 | 2532 |
int attributeSectionNum() const { |
2533 | 2533 |
return _attribute_sections.size(); |
2534 | 2534 |
} |
2535 | 2535 |
|
2536 | 2536 |
/// \brief Returns the attribute section name at the given position. |
2537 | 2537 |
/// |
2538 | 2538 |
/// Returns the attribute section name at the given position. |
2539 | 2539 |
const std::string& attributeSectionNames(int i) const { |
2540 | 2540 |
return _attribute_sections[i]; |
2541 | 2541 |
} |
2542 | 2542 |
|
2543 | 2543 |
/// \brief Gives back the attributes for the given section. |
2544 | 2544 |
/// |
2545 | 2545 |
/// Gives back the attributes for the given section. |
2546 | 2546 |
const std::vector<std::string>& attributes(int i) const { |
2547 | 2547 |
return _attributes[i]; |
2548 | 2548 |
} |
2549 | 2549 |
|
2550 | 2550 |
/// @} |
2551 | 2551 |
|
2552 |
/// \name Extra |
|
2552 |
/// \name Extra Sections |
|
2553 | 2553 |
/// @{ |
2554 | 2554 |
|
2555 | 2555 |
/// \brief Gives back the number of extra sections in the file. |
2556 | 2556 |
/// |
2557 | 2557 |
/// Gives back the number of extra sections in the file. |
2558 | 2558 |
int extraSectionNum() const { |
2559 | 2559 |
return _extra_sections.size(); |
2560 | 2560 |
} |
2561 | 2561 |
|
2562 | 2562 |
/// \brief Returns the extra section type at the given position. |
2563 | 2563 |
/// |
2564 | 2564 |
/// Returns the section type at the given position. |
2565 | 2565 |
const std::string& extraSection(int i) const { |
2566 | 2566 |
return _extra_sections[i]; |
2567 | 2567 |
} |
2568 | 2568 |
|
... | ... |
@@ -2612,33 +2612,33 @@ |
2612 | 2612 |
|
2613 | 2613 |
void readAttributes(std::vector<std::string>& attrs) { |
2614 | 2614 |
readLine(); |
2615 | 2615 |
char c; |
2616 | 2616 |
while (readSuccess() && line >> c && c != '@') { |
2617 | 2617 |
line.putback(c); |
2618 | 2618 |
std::string attr; |
2619 | 2619 |
_reader_bits::readToken(line, attr); |
2620 | 2620 |
attrs.push_back(attr); |
2621 | 2621 |
readLine(); |
2622 | 2622 |
} |
2623 | 2623 |
line.putback(c); |
2624 | 2624 |
} |
2625 | 2625 |
|
2626 | 2626 |
public: |
2627 | 2627 |
|
2628 |
/// \name Execution of the |
|
2628 |
/// \name Execution of the Contents Reader |
|
2629 | 2629 |
/// @{ |
2630 | 2630 |
|
2631 | 2631 |
/// \brief Starts the reading |
2632 | 2632 |
/// |
2633 | 2633 |
/// This function starts the reading. |
2634 | 2634 |
void run() { |
2635 | 2635 |
|
2636 | 2636 |
readLine(); |
2637 | 2637 |
skipSection(); |
2638 | 2638 |
|
2639 | 2639 |
while (readSuccess()) { |
2640 | 2640 |
|
2641 | 2641 |
char c; |
2642 | 2642 |
line >> c; |
2643 | 2643 |
|
2644 | 2644 |
std::string section, caption; |
... | ... |
@@ -525,33 +525,33 @@ |
525 | 525 |
_node_index.swap(other._node_index); |
526 | 526 |
_arc_index.swap(other._arc_index); |
527 | 527 |
|
528 | 528 |
_node_maps.swap(other._node_maps); |
529 | 529 |
_arc_maps.swap(other._arc_maps); |
530 | 530 |
_attributes.swap(other._attributes); |
531 | 531 |
|
532 | 532 |
_nodes_caption = other._nodes_caption; |
533 | 533 |
_arcs_caption = other._arcs_caption; |
534 | 534 |
_attributes_caption = other._attributes_caption; |
535 | 535 |
} |
536 | 536 |
|
537 | 537 |
DigraphWriter& operator=(const DigraphWriter&); |
538 | 538 |
|
539 | 539 |
public: |
540 | 540 |
|
541 |
/// \name Writing |
|
541 |
/// \name Writing Rules |
|
542 | 542 |
/// @{ |
543 | 543 |
|
544 | 544 |
/// \brief Node map writing rule |
545 | 545 |
/// |
546 | 546 |
/// Add a node map writing rule to the writer. |
547 | 547 |
template <typename Map> |
548 | 548 |
DigraphWriter& nodeMap(const std::string& caption, const Map& map) { |
549 | 549 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
550 | 550 |
_writer_bits::MapStorageBase<Node>* storage = |
551 | 551 |
new _writer_bits::MapStorage<Node, Map>(map); |
552 | 552 |
_node_maps.push_back(std::make_pair(caption, storage)); |
553 | 553 |
return *this; |
554 | 554 |
} |
555 | 555 |
|
556 | 556 |
/// \brief Node map writing rule |
557 | 557 |
/// |
... | ... |
@@ -628,60 +628,60 @@ |
628 | 628 |
_attributes.push_back(std::make_pair(caption, storage)); |
629 | 629 |
return *this; |
630 | 630 |
} |
631 | 631 |
|
632 | 632 |
/// \brief Arc writing rule |
633 | 633 |
/// |
634 | 634 |
/// Add an arc writing rule to writer. |
635 | 635 |
DigraphWriter& arc(const std::string& caption, const Arc& arc) { |
636 | 636 |
typedef _writer_bits::MapLookUpConverter<Arc> Converter; |
637 | 637 |
Converter converter(_arc_index); |
638 | 638 |
_writer_bits::ValueStorageBase* storage = |
639 | 639 |
new _writer_bits::ValueStorage<Arc, Converter>(arc, converter); |
640 | 640 |
_attributes.push_back(std::make_pair(caption, storage)); |
641 | 641 |
return *this; |
642 | 642 |
} |
643 | 643 |
|
644 |
/// \name Section |
|
644 |
/// \name Section Captions |
|
645 | 645 |
/// @{ |
646 | 646 |
|
647 | 647 |
/// \brief Add an additional caption to the \c \@nodes section |
648 | 648 |
/// |
649 | 649 |
/// Add an additional caption to the \c \@nodes section. |
650 | 650 |
DigraphWriter& nodes(const std::string& caption) { |
651 | 651 |
_nodes_caption = caption; |
652 | 652 |
return *this; |
653 | 653 |
} |
654 | 654 |
|
655 | 655 |
/// \brief Add an additional caption to the \c \@arcs section |
656 | 656 |
/// |
657 | 657 |
/// Add an additional caption to the \c \@arcs section. |
658 | 658 |
DigraphWriter& arcs(const std::string& caption) { |
659 | 659 |
_arcs_caption = caption; |
660 | 660 |
return *this; |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
/// \brief Add an additional caption to the \c \@attributes section |
664 | 664 |
/// |
665 | 665 |
/// Add an additional caption to the \c \@attributes section. |
666 | 666 |
DigraphWriter& attributes(const std::string& caption) { |
667 | 667 |
_attributes_caption = caption; |
668 | 668 |
return *this; |
669 | 669 |
} |
670 | 670 |
|
671 |
/// \name Skipping |
|
671 |
/// \name Skipping Section |
|
672 | 672 |
/// @{ |
673 | 673 |
|
674 | 674 |
/// \brief Skip writing the node set |
675 | 675 |
/// |
676 | 676 |
/// The \c \@nodes section will not be written to the stream. |
677 | 677 |
DigraphWriter& skipNodes() { |
678 | 678 |
LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member"); |
679 | 679 |
_skip_nodes = true; |
680 | 680 |
return *this; |
681 | 681 |
} |
682 | 682 |
|
683 | 683 |
/// \brief Skip writing arc set |
684 | 684 |
/// |
685 | 685 |
/// The \c \@arcs section will not be written to the stream. |
686 | 686 |
DigraphWriter& skipArcs() { |
687 | 687 |
LEMON_ASSERT(!_skip_arcs, "Multiple usage of skipArcs() member"); |
... | ... |
@@ -872,33 +872,33 @@ |
872 | 872 |
if (_attributes.empty()) return; |
873 | 873 |
*_os << "@attributes"; |
874 | 874 |
if (!_attributes_caption.empty()) { |
875 | 875 |
_writer_bits::writeToken(*_os << ' ', _attributes_caption); |
876 | 876 |
} |
877 | 877 |
*_os << std::endl; |
878 | 878 |
for (typename Attributes::iterator it = _attributes.begin(); |
879 | 879 |
it != _attributes.end(); ++it) { |
880 | 880 |
_writer_bits::writeToken(*_os, it->first) << ' '; |
881 | 881 |
_writer_bits::writeToken(*_os, it->second->get()); |
882 | 882 |
*_os << std::endl; |
883 | 883 |
} |
884 | 884 |
} |
885 | 885 |
|
886 | 886 |
public: |
887 | 887 |
|
888 |
/// \name Execution of the |
|
888 |
/// \name Execution of the Writer |
|
889 | 889 |
/// @{ |
890 | 890 |
|
891 | 891 |
/// \brief Start the batch processing |
892 | 892 |
/// |
893 | 893 |
/// This function starts the batch processing. |
894 | 894 |
void run() { |
895 | 895 |
if (!_skip_nodes) { |
896 | 896 |
writeNodes(); |
897 | 897 |
} else { |
898 | 898 |
createNodeIndex(); |
899 | 899 |
} |
900 | 900 |
if (!_skip_arcs) { |
901 | 901 |
writeArcs(); |
902 | 902 |
} else { |
903 | 903 |
createArcIndex(); |
904 | 904 |
} |
... | ... |
@@ -1093,33 +1093,33 @@ |
1093 | 1093 |
_node_index.swap(other._node_index); |
1094 | 1094 |
_edge_index.swap(other._edge_index); |
1095 | 1095 |
|
1096 | 1096 |
_node_maps.swap(other._node_maps); |
1097 | 1097 |
_edge_maps.swap(other._edge_maps); |
1098 | 1098 |
_attributes.swap(other._attributes); |
1099 | 1099 |
|
1100 | 1100 |
_nodes_caption = other._nodes_caption; |
1101 | 1101 |
_edges_caption = other._edges_caption; |
1102 | 1102 |
_attributes_caption = other._attributes_caption; |
1103 | 1103 |
} |
1104 | 1104 |
|
1105 | 1105 |
GraphWriter& operator=(const GraphWriter&); |
1106 | 1106 |
|
1107 | 1107 |
public: |
1108 | 1108 |
|
1109 |
/// \name Writing |
|
1109 |
/// \name Writing Rules |
|
1110 | 1110 |
/// @{ |
1111 | 1111 |
|
1112 | 1112 |
/// \brief Node map writing rule |
1113 | 1113 |
/// |
1114 | 1114 |
/// Add a node map writing rule to the writer. |
1115 | 1115 |
template <typename Map> |
1116 | 1116 |
GraphWriter& nodeMap(const std::string& caption, const Map& map) { |
1117 | 1117 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1118 | 1118 |
_writer_bits::MapStorageBase<Node>* storage = |
1119 | 1119 |
new _writer_bits::MapStorage<Node, Map>(map); |
1120 | 1120 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1121 | 1121 |
return *this; |
1122 | 1122 |
} |
1123 | 1123 |
|
1124 | 1124 |
/// \brief Node map writing rule |
1125 | 1125 |
/// |
... | ... |
@@ -1242,60 +1242,60 @@ |
1242 | 1242 |
_attributes.push_back(std::make_pair(caption, storage)); |
1243 | 1243 |
return *this; |
1244 | 1244 |
} |
1245 | 1245 |
|
1246 | 1246 |
/// \brief Arc writing rule |
1247 | 1247 |
/// |
1248 | 1248 |
/// Add an arc writing rule to writer. |
1249 | 1249 |
GraphWriter& arc(const std::string& caption, const Arc& arc) { |
1250 | 1250 |
typedef _writer_bits::GraphArcLookUpConverter<Graph> Converter; |
1251 | 1251 |
Converter converter(_graph, _edge_index); |
1252 | 1252 |
_writer_bits::ValueStorageBase* storage = |
1253 | 1253 |
new _writer_bits::ValueStorage<Arc, Converter>(arc, converter); |
1254 | 1254 |
_attributes.push_back(std::make_pair(caption, storage)); |
1255 | 1255 |
return *this; |
1256 | 1256 |
} |
1257 | 1257 |
|
1258 |
/// \name Section |
|
1258 |
/// \name Section Captions |
|
1259 | 1259 |
/// @{ |
1260 | 1260 |
|
1261 | 1261 |
/// \brief Add an additional caption to the \c \@nodes section |
1262 | 1262 |
/// |
1263 | 1263 |
/// Add an additional caption to the \c \@nodes section. |
1264 | 1264 |
GraphWriter& nodes(const std::string& caption) { |
1265 | 1265 |
_nodes_caption = caption; |
1266 | 1266 |
return *this; |
1267 | 1267 |
} |
1268 | 1268 |
|
1269 | 1269 |
/// \brief Add an additional caption to the \c \@arcs section |
1270 | 1270 |
/// |
1271 | 1271 |
/// Add an additional caption to the \c \@arcs section. |
1272 | 1272 |
GraphWriter& edges(const std::string& caption) { |
1273 | 1273 |
_edges_caption = caption; |
1274 | 1274 |
return *this; |
1275 | 1275 |
} |
1276 | 1276 |
|
1277 | 1277 |
/// \brief Add an additional caption to the \c \@attributes section |
1278 | 1278 |
/// |
1279 | 1279 |
/// Add an additional caption to the \c \@attributes section. |
1280 | 1280 |
GraphWriter& attributes(const std::string& caption) { |
1281 | 1281 |
_attributes_caption = caption; |
1282 | 1282 |
return *this; |
1283 | 1283 |
} |
1284 | 1284 |
|
1285 |
/// \name Skipping |
|
1285 |
/// \name Skipping Section |
|
1286 | 1286 |
/// @{ |
1287 | 1287 |
|
1288 | 1288 |
/// \brief Skip writing the node set |
1289 | 1289 |
/// |
1290 | 1290 |
/// The \c \@nodes section will not be written to the stream. |
1291 | 1291 |
GraphWriter& skipNodes() { |
1292 | 1292 |
LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member"); |
1293 | 1293 |
_skip_nodes = true; |
1294 | 1294 |
return *this; |
1295 | 1295 |
} |
1296 | 1296 |
|
1297 | 1297 |
/// \brief Skip writing edge set |
1298 | 1298 |
/// |
1299 | 1299 |
/// The \c \@edges section will not be written to the stream. |
1300 | 1300 |
GraphWriter& skipEdges() { |
1301 | 1301 |
LEMON_ASSERT(!_skip_edges, "Multiple usage of skipEdges() member"); |
... | ... |
@@ -1486,33 +1486,33 @@ |
1486 | 1486 |
if (_attributes.empty()) return; |
1487 | 1487 |
*_os << "@attributes"; |
1488 | 1488 |
if (!_attributes_caption.empty()) { |
1489 | 1489 |
_writer_bits::writeToken(*_os << ' ', _attributes_caption); |
1490 | 1490 |
} |
1491 | 1491 |
*_os << std::endl; |
1492 | 1492 |
for (typename Attributes::iterator it = _attributes.begin(); |
1493 | 1493 |
it != _attributes.end(); ++it) { |
1494 | 1494 |
_writer_bits::writeToken(*_os, it->first) << ' '; |
1495 | 1495 |
_writer_bits::writeToken(*_os, it->second->get()); |
1496 | 1496 |
*_os << std::endl; |
1497 | 1497 |
} |
1498 | 1498 |
} |
1499 | 1499 |
|
1500 | 1500 |
public: |
1501 | 1501 |
|
1502 |
/// \name Execution of the |
|
1502 |
/// \name Execution of the Writer |
|
1503 | 1503 |
/// @{ |
1504 | 1504 |
|
1505 | 1505 |
/// \brief Start the batch processing |
1506 | 1506 |
/// |
1507 | 1507 |
/// This function starts the batch processing. |
1508 | 1508 |
void run() { |
1509 | 1509 |
if (!_skip_nodes) { |
1510 | 1510 |
writeNodes(); |
1511 | 1511 |
} else { |
1512 | 1512 |
createNodeIndex(); |
1513 | 1513 |
} |
1514 | 1514 |
if (!_skip_edges) { |
1515 | 1515 |
writeEdges(); |
1516 | 1516 |
} else { |
1517 | 1517 |
createEdgeIndex(); |
1518 | 1518 |
} |
... | ... |
@@ -1638,33 +1638,33 @@ |
1638 | 1638 |
friend SectionWriter sectionWriter(const std::string& fn); |
1639 | 1639 |
friend SectionWriter sectionWriter(const char* fn); |
1640 | 1640 |
|
1641 | 1641 |
SectionWriter(SectionWriter& other) |
1642 | 1642 |
: _os(other._os), local_os(other.local_os) { |
1643 | 1643 |
|
1644 | 1644 |
other._os = 0; |
1645 | 1645 |
other.local_os = false; |
1646 | 1646 |
|
1647 | 1647 |
_sections.swap(other._sections); |
1648 | 1648 |
} |
1649 | 1649 |
|
1650 | 1650 |
SectionWriter& operator=(const SectionWriter&); |
1651 | 1651 |
|
1652 | 1652 |
public: |
1653 | 1653 |
|
1654 |
/// \name Section |
|
1654 |
/// \name Section Writers |
|
1655 | 1655 |
/// @{ |
1656 | 1656 |
|
1657 | 1657 |
/// \brief Add a section writer with line oriented writing |
1658 | 1658 |
/// |
1659 | 1659 |
/// The first parameter is the type descriptor of the section, the |
1660 | 1660 |
/// second is a generator with std::string values. At the writing |
1661 | 1661 |
/// process, the returned \c std::string will be written into the |
1662 | 1662 |
/// output file until it is an empty string. |
1663 | 1663 |
/// |
1664 | 1664 |
/// For example, an integer vector is written into a section. |
1665 | 1665 |
///\code |
1666 | 1666 |
/// @numbers |
1667 | 1667 |
/// 12 45 23 78 |
1668 | 1668 |
/// 4 28 38 28 |
1669 | 1669 |
/// 23 6 16 |
1670 | 1670 |
///\endcode |
... | ... |
@@ -1705,33 +1705,33 @@ |
1705 | 1705 |
/// a functor, which takes a \c std::ostream& parameter. The |
1706 | 1706 |
/// functor writes the section to the output stream. |
1707 | 1707 |
/// \warning The last line must be closed with end-line character. |
1708 | 1708 |
template <typename Functor> |
1709 | 1709 |
SectionWriter& sectionStream(const std::string& type, Functor functor) { |
1710 | 1710 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
1711 | 1711 |
_sections.push_back(std::make_pair(type, |
1712 | 1712 |
new _writer_bits::StreamSection<Functor>(functor))); |
1713 | 1713 |
return *this; |
1714 | 1714 |
} |
1715 | 1715 |
|
1716 | 1716 |
/// @} |
1717 | 1717 |
|
1718 | 1718 |
public: |
1719 | 1719 |
|
1720 | 1720 |
|
1721 |
/// \name Execution of the |
|
1721 |
/// \name Execution of the Writer |
|
1722 | 1722 |
/// @{ |
1723 | 1723 |
|
1724 | 1724 |
/// \brief Start the batch processing |
1725 | 1725 |
/// |
1726 | 1726 |
/// This function starts the batch processing. |
1727 | 1727 |
void run() { |
1728 | 1728 |
|
1729 | 1729 |
LEMON_ASSERT(_os != 0, "This writer is assigned to an other writer"); |
1730 | 1730 |
|
1731 | 1731 |
for (Sections::iterator it = _sections.begin(); |
1732 | 1732 |
it != _sections.end(); ++it) { |
1733 | 1733 |
(*_os) << '@' << it->first << std::endl; |
1734 | 1734 |
it->second->process(*_os); |
1735 | 1735 |
} |
1736 | 1736 |
} |
1737 | 1737 |
... | ... |
@@ -39,60 +39,60 @@ |
39 | 39 |
///Common base class for LP and MIP solvers |
40 | 40 |
|
41 | 41 |
///Usually this class is not used directly, please use one of the concrete |
42 | 42 |
///implementations of the solver interface. |
43 | 43 |
///\ingroup lp_group |
44 | 44 |
class LpBase { |
45 | 45 |
|
46 | 46 |
protected: |
47 | 47 |
|
48 | 48 |
_solver_bits::VarIndex rows; |
49 | 49 |
_solver_bits::VarIndex cols; |
50 | 50 |
|
51 | 51 |
public: |
52 | 52 |
|
53 | 53 |
///Possible outcomes of an LP solving procedure |
54 | 54 |
enum SolveExitStatus { |
55 |
/// |
|
55 |
/// = 0. It means that the problem has been successfully solved: either |
|
56 | 56 |
///an optimal solution has been found or infeasibility/unboundedness |
57 | 57 |
///has been proved. |
58 | 58 |
SOLVED = 0, |
59 |
///Any other case (including the case when some user specified |
|
60 |
///limit has been exceeded) |
|
59 |
/// = 1. Any other case (including the case when some user specified |
|
60 |
///limit has been exceeded). |
|
61 | 61 |
UNSOLVED = 1 |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
///Direction of the optimization |
65 | 65 |
enum Sense { |
66 | 66 |
/// Minimization |
67 | 67 |
MIN, |
68 | 68 |
/// Maximization |
69 | 69 |
MAX |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///Enum for \c messageLevel() parameter |
73 | 73 |
enum MessageLevel { |
74 |
/// |
|
74 |
/// No output (default value). |
|
75 | 75 |
MESSAGE_NOTHING, |
76 |
/// |
|
76 |
/// Error messages only. |
|
77 | 77 |
MESSAGE_ERROR, |
78 |
/// |
|
78 |
/// Warnings. |
|
79 | 79 |
MESSAGE_WARNING, |
80 |
/// |
|
80 |
/// Normal output. |
|
81 | 81 |
MESSAGE_NORMAL, |
82 |
/// |
|
82 |
/// Verbose output. |
|
83 | 83 |
MESSAGE_VERBOSE |
84 | 84 |
}; |
85 | 85 |
|
86 | 86 |
|
87 | 87 |
///The floating point type used by the solver |
88 | 88 |
typedef double Value; |
89 | 89 |
///The infinity constant |
90 | 90 |
static const Value INF; |
91 | 91 |
///The not a number constant |
92 | 92 |
static const Value NaN; |
93 | 93 |
|
94 | 94 |
friend class Col; |
95 | 95 |
friend class ColIt; |
96 | 96 |
friend class Row; |
97 | 97 |
friend class RowIt; |
98 | 98 |
|
... | ... |
@@ -992,33 +992,33 @@ |
992 | 992 |
|
993 | 993 |
//Own protected stuff |
994 | 994 |
|
995 | 995 |
//Constant component of the objective function |
996 | 996 |
Value obj_const_comp; |
997 | 997 |
|
998 | 998 |
LpBase() : rows(), cols(), obj_const_comp(0) {} |
999 | 999 |
|
1000 | 1000 |
public: |
1001 | 1001 |
|
1002 | 1002 |
/// Virtual destructor |
1003 | 1003 |
virtual ~LpBase() {} |
1004 | 1004 |
|
1005 | 1005 |
///Gives back the name of the solver. |
1006 | 1006 |
const char* solverName() const {return _solverName();} |
1007 | 1007 |
|
1008 |
///\name Build |
|
1008 |
///\name Build Up and Modify the LP |
|
1009 | 1009 |
|
1010 | 1010 |
///@{ |
1011 | 1011 |
|
1012 | 1012 |
///Add a new empty column (i.e a new variable) to the LP |
1013 | 1013 |
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;} |
1014 | 1014 |
|
1015 | 1015 |
///\brief Adds several new columns (i.e variables) at once |
1016 | 1016 |
/// |
1017 | 1017 |
///This magic function takes a container as its argument and fills |
1018 | 1018 |
///its elements with new columns (i.e. variables) |
1019 | 1019 |
///\param t can be |
1020 | 1020 |
///- a standard STL compatible iterable container with |
1021 | 1021 |
///\ref Col as its \c values_type like |
1022 | 1022 |
///\code |
1023 | 1023 |
///std::vector<LpBase::Col> |
1024 | 1024 |
///std::list<LpBase::Col> |
... | ... |
@@ -1775,41 +1775,41 @@ |
1775 | 1775 |
/// \ingroup lp_group |
1776 | 1776 |
/// |
1777 | 1777 |
/// \brief Common base class for LP solvers |
1778 | 1778 |
/// |
1779 | 1779 |
/// This class is an abstract base class for LP solvers. This class |
1780 | 1780 |
/// provides a full interface for set and modify an LP problem, |
1781 | 1781 |
/// solve it and retrieve the solution. You can use one of the |
1782 | 1782 |
/// descendants as a concrete implementation, or the \c Lp |
1783 | 1783 |
/// default LP solver. However, if you would like to handle LP |
1784 | 1784 |
/// solvers as reference or pointer in a generic way, you can use |
1785 | 1785 |
/// this class directly. |
1786 | 1786 |
class LpSolver : virtual public LpBase { |
1787 | 1787 |
public: |
1788 | 1788 |
|
1789 | 1789 |
/// The problem types for primal and dual problems |
1790 | 1790 |
enum ProblemType { |
1791 |
///Feasible solution hasn't been found (but may exist). |
|
1791 |
/// = 0. Feasible solution hasn't been found (but may exist). |
|
1792 | 1792 |
UNDEFINED = 0, |
1793 |
///The problem has no feasible solution |
|
1793 |
/// = 1. The problem has no feasible solution. |
|
1794 | 1794 |
INFEASIBLE = 1, |
1795 |
///Feasible solution found |
|
1795 |
/// = 2. Feasible solution found. |
|
1796 | 1796 |
FEASIBLE = 2, |
1797 |
///Optimal solution exists and found |
|
1797 |
/// = 3. Optimal solution exists and found. |
|
1798 | 1798 |
OPTIMAL = 3, |
1799 |
///The cost function is unbounded |
|
1799 |
/// = 4. The cost function is unbounded. |
|
1800 | 1800 |
UNBOUNDED = 4 |
1801 | 1801 |
}; |
1802 | 1802 |
|
1803 | 1803 |
///The basis status of variables |
1804 | 1804 |
enum VarStatus { |
1805 | 1805 |
/// The variable is in the basis |
1806 | 1806 |
BASIC, |
1807 | 1807 |
/// The variable is free, but not basic |
1808 | 1808 |
FREE, |
1809 | 1809 |
/// The variable has active lower bound |
1810 | 1810 |
LOWER, |
1811 | 1811 |
/// The variable has active upper bound |
1812 | 1812 |
UPPER, |
1813 | 1813 |
/// The variable is non-basic and fixed |
1814 | 1814 |
FIXED |
1815 | 1815 |
}; |
... | ... |
@@ -1839,33 +1839,33 @@ |
1839 | 1839 |
///Make a copy of the LP problem |
1840 | 1840 |
virtual LpSolver* cloneSolver() const = 0; |
1841 | 1841 |
|
1842 | 1842 |
///\name Solve the LP |
1843 | 1843 |
|
1844 | 1844 |
///@{ |
1845 | 1845 |
|
1846 | 1846 |
///\e Solve the LP problem at hand |
1847 | 1847 |
/// |
1848 | 1848 |
///\return The result of the optimization procedure. Possible |
1849 | 1849 |
///values and their meanings can be found in the documentation of |
1850 | 1850 |
///\ref SolveExitStatus. |
1851 | 1851 |
SolveExitStatus solve() { return _solve(); } |
1852 | 1852 |
|
1853 | 1853 |
///@} |
1854 | 1854 |
|
1855 |
///\name Obtain the |
|
1855 |
///\name Obtain the Solution |
|
1856 | 1856 |
|
1857 | 1857 |
///@{ |
1858 | 1858 |
|
1859 | 1859 |
/// The type of the primal problem |
1860 | 1860 |
ProblemType primalType() const { |
1861 | 1861 |
return _getPrimalType(); |
1862 | 1862 |
} |
1863 | 1863 |
|
1864 | 1864 |
/// The type of the dual problem |
1865 | 1865 |
ProblemType dualType() const { |
1866 | 1866 |
return _getDualType(); |
1867 | 1867 |
} |
1868 | 1868 |
|
1869 | 1869 |
/// Return the primal value of the column |
1870 | 1870 |
|
1871 | 1871 |
/// Return the primal value of the column. |
... | ... |
@@ -1961,93 +1961,92 @@ |
1961 | 1961 |
/// \ingroup lp_group |
1962 | 1962 |
/// |
1963 | 1963 |
/// \brief Common base class for MIP solvers |
1964 | 1964 |
/// |
1965 | 1965 |
/// This class is an abstract base class for MIP solvers. This class |
1966 | 1966 |
/// provides a full interface for set and modify an MIP problem, |
1967 | 1967 |
/// solve it and retrieve the solution. You can use one of the |
1968 | 1968 |
/// descendants as a concrete implementation, or the \c Lp |
1969 | 1969 |
/// default MIP solver. However, if you would like to handle MIP |
1970 | 1970 |
/// solvers as reference or pointer in a generic way, you can use |
1971 | 1971 |
/// this class directly. |
1972 | 1972 |
class MipSolver : virtual public LpBase { |
1973 | 1973 |
public: |
1974 | 1974 |
|
1975 | 1975 |
/// The problem types for MIP problems |
1976 | 1976 |
enum ProblemType { |
1977 |
///Feasible solution hasn't been found (but may exist). |
|
1977 |
/// = 0. Feasible solution hasn't been found (but may exist). |
|
1978 | 1978 |
UNDEFINED = 0, |
1979 |
///The problem has no feasible solution |
|
1979 |
/// = 1. The problem has no feasible solution. |
|
1980 | 1980 |
INFEASIBLE = 1, |
1981 |
///Feasible solution found |
|
1981 |
/// = 2. Feasible solution found. |
|
1982 | 1982 |
FEASIBLE = 2, |
1983 |
///Optimal solution exists and found |
|
1983 |
/// = 3. Optimal solution exists and found. |
|
1984 | 1984 |
OPTIMAL = 3, |
1985 |
///The cost function is unbounded |
|
1986 |
/// |
|
1987 |
///The |
|
1985 |
/// = 4. The cost function is unbounded. |
|
1986 |
///The Mip or at least the relaxed problem is unbounded. |
|
1988 | 1987 |
UNBOUNDED = 4 |
1989 | 1988 |
}; |
1990 | 1989 |
|
1991 | 1990 |
///Allocate a new MIP problem instance |
1992 | 1991 |
virtual MipSolver* newSolver() const = 0; |
1993 | 1992 |
///Make a copy of the MIP problem |
1994 | 1993 |
virtual MipSolver* cloneSolver() const = 0; |
1995 | 1994 |
|
1996 | 1995 |
///\name Solve the MIP |
1997 | 1996 |
|
1998 | 1997 |
///@{ |
1999 | 1998 |
|
2000 | 1999 |
/// Solve the MIP problem at hand |
2001 | 2000 |
/// |
2002 | 2001 |
///\return The result of the optimization procedure. Possible |
2003 | 2002 |
///values and their meanings can be found in the documentation of |
2004 | 2003 |
///\ref SolveExitStatus. |
2005 | 2004 |
SolveExitStatus solve() { return _solve(); } |
2006 | 2005 |
|
2007 | 2006 |
///@} |
2008 | 2007 |
|
2009 |
///\name |
|
2008 |
///\name Set Column Type |
|
2010 | 2009 |
///@{ |
2011 | 2010 |
|
2012 | 2011 |
///Possible variable (column) types (e.g. real, integer, binary etc.) |
2013 | 2012 |
enum ColTypes { |
2014 |
///Continuous variable (default) |
|
2013 |
/// = 0. Continuous variable (default). |
|
2015 | 2014 |
REAL = 0, |
2016 |
///Integer variable |
|
2015 |
/// = 1. Integer variable. |
|
2017 | 2016 |
INTEGER = 1 |
2018 | 2017 |
}; |
2019 | 2018 |
|
2020 | 2019 |
///Sets the type of the given column to the given type |
2021 | 2020 |
|
2022 | 2021 |
///Sets the type of the given column to the given type. |
2023 | 2022 |
/// |
2024 | 2023 |
void colType(Col c, ColTypes col_type) { |
2025 | 2024 |
_setColType(cols(id(c)),col_type); |
2026 | 2025 |
} |
2027 | 2026 |
|
2028 | 2027 |
///Gives back the type of the column. |
2029 | 2028 |
|
2030 | 2029 |
///Gives back the type of the column. |
2031 | 2030 |
/// |
2032 | 2031 |
ColTypes colType(Col c) const { |
2033 | 2032 |
return _getColType(cols(id(c))); |
2034 | 2033 |
} |
2035 | 2034 |
///@} |
2036 | 2035 |
|
2037 |
///\name Obtain the |
|
2036 |
///\name Obtain the Solution |
|
2038 | 2037 |
|
2039 | 2038 |
///@{ |
2040 | 2039 |
|
2041 | 2040 |
/// The type of the MIP problem |
2042 | 2041 |
ProblemType type() const { |
2043 | 2042 |
return _getType(); |
2044 | 2043 |
} |
2045 | 2044 |
|
2046 | 2045 |
/// Return the value of the row in the solution |
2047 | 2046 |
|
2048 | 2047 |
/// Return the value of the row in the solution. |
2049 | 2048 |
/// \pre The problem is solved. |
2050 | 2049 |
Value sol(Col c) const { return _getSol(cols(id(c))); } |
2051 | 2050 |
|
2052 | 2051 |
/// Return the value of the expression in the solution |
2053 | 2052 |
... | ... |
@@ -2715,34 +2715,34 @@ |
2715 | 2715 |
} |
2716 | 2716 |
} |
2717 | 2717 |
|
2718 | 2718 |
virtual void clear() { |
2719 | 2719 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2720 | 2720 |
_deg[it] = 0; |
2721 | 2721 |
} |
2722 | 2722 |
} |
2723 | 2723 |
private: |
2724 | 2724 |
|
2725 | 2725 |
const Digraph& _digraph; |
2726 | 2726 |
AutoNodeMap _deg; |
2727 | 2727 |
}; |
2728 | 2728 |
|
2729 | 2729 |
/// \brief Potential difference map |
2730 | 2730 |
/// |
2731 |
/// PotentialMap returns the difference between the potentials of the |
|
2732 |
/// source and target nodes of each arc in a digraph, i.e. it returns |
|
2731 |
/// PotentialDifferenceMap returns the difference between the potentials of |
|
2732 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
|
2733 | 2733 |
/// \code |
2734 | 2734 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2735 | 2735 |
/// \endcode |
2736 | 2736 |
/// \tparam GR The digraph type. |
2737 | 2737 |
/// \tparam POT A node map storing the potentials. |
2738 | 2738 |
template <typename GR, typename POT> |
2739 | 2739 |
class PotentialDifferenceMap { |
2740 | 2740 |
public: |
2741 | 2741 |
/// Key type |
2742 | 2742 |
typedef typename GR::Arc Key; |
2743 | 2743 |
/// Value type |
2744 | 2744 |
typedef typename POT::Value Value; |
2745 | 2745 |
|
2746 | 2746 |
/// \brief Constructor |
2747 | 2747 |
/// |
2748 | 2748 |
/// Contructor of the map. |
... | ... |
@@ -77,36 +77,36 @@ |
77 | 77 |
/// The type of the \c PredMap. It is a node map with an arc value type. |
78 | 78 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
79 | 79 |
|
80 | 80 |
/// \brief Instantiates a \c PredMap. |
81 | 81 |
/// |
82 | 82 |
/// This function instantiates a \c PredMap. |
83 | 83 |
/// \param digraph The digraph to which we would like to define the |
84 | 84 |
/// \c PredMap. |
85 | 85 |
static PredMap *createPredMap(const Digraph &digraph){ |
86 | 86 |
return new PredMap(digraph); |
87 | 87 |
} |
88 | 88 |
|
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
/// \ingroup spantree |
92 | 92 |
/// |
93 |
/// \brief |
|
93 |
/// \brief Minimum Cost Arborescence algorithm class. |
|
94 | 94 |
/// |
95 | 95 |
/// This class provides an efficient implementation of |
96 |
/// |
|
96 |
/// Minimum Cost Arborescence algorithm. The arborescence is a tree |
|
97 | 97 |
/// which is directed from a given source node of the digraph. One or |
98 | 98 |
/// more sources should be given for the algorithm and it will calculate |
99 | 99 |
/// the minimum cost subgraph which are union of arborescences with the |
100 | 100 |
/// given sources and spans all the nodes which are reachable from the |
101 | 101 |
/// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e). |
102 | 102 |
/// |
103 | 103 |
/// The algorithm provides also an optimal dual solution, therefore |
104 | 104 |
/// the optimality of the solution can be checked. |
105 | 105 |
/// |
106 | 106 |
/// \param GR The digraph type the algorithm runs on. The default value |
107 | 107 |
/// is \ref ListDigraph. |
108 | 108 |
/// \param CM This read-only ArcMap determines the costs of the |
109 | 109 |
/// arcs. It is read once for each arc, so the map may involve in |
110 | 110 |
/// relatively time consuming process to compute the arc cost if |
111 | 111 |
/// it is necessary. The default map type is \ref |
112 | 112 |
/// concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
... | ... |
@@ -377,33 +377,33 @@ |
377 | 377 |
if ((*_arc_order)[it] < (*_heap)[target]) { |
378 | 378 |
_heap->decrease(target, (*_arc_order)[it]); |
379 | 379 |
_pred->set(target, it); |
380 | 380 |
} |
381 | 381 |
break; |
382 | 382 |
case Heap::POST_HEAP: |
383 | 383 |
break; |
384 | 384 |
} |
385 | 385 |
} |
386 | 386 |
_arborescence->set((*_pred)[source], true); |
387 | 387 |
} |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
|
391 | 391 |
public: |
392 | 392 |
|
393 |
/// \name Named |
|
393 |
/// \name Named Template Parameters |
|
394 | 394 |
|
395 | 395 |
/// @{ |
396 | 396 |
|
397 | 397 |
template <class T> |
398 | 398 |
struct DefArborescenceMapTraits : public Traits { |
399 | 399 |
typedef T ArborescenceMap; |
400 | 400 |
static ArborescenceMap *createArborescenceMap(const Digraph &) |
401 | 401 |
{ |
402 | 402 |
LEMON_ASSERT(false, "ArborescenceMap is not initialized"); |
403 | 403 |
return 0; // ignore warnings |
404 | 404 |
} |
405 | 405 |
}; |
406 | 406 |
|
407 | 407 |
/// \brief \ref named-templ-param "Named parameter" for |
408 | 408 |
/// setting ArborescenceMap type |
409 | 409 |
/// |
... | ... |
@@ -617,33 +617,33 @@ |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
/// \brief Validity checking |
620 | 620 |
/// |
621 | 621 |
/// Checks whether the iterator is valid. |
622 | 622 |
bool operator!=(Invalid) const { |
623 | 623 |
return _index != _last; |
624 | 624 |
} |
625 | 625 |
|
626 | 626 |
private: |
627 | 627 |
const MinCostArborescence* _algorithm; |
628 | 628 |
int _index, _last; |
629 | 629 |
}; |
630 | 630 |
|
631 | 631 |
/// @} |
632 | 632 |
|
633 |
/// \name Execution |
|
633 |
/// \name Execution Control |
|
634 | 634 |
/// The simplest way to execute the algorithm is to use |
635 | 635 |
/// one of the member functions called \c run(...). \n |
636 | 636 |
/// If you need more control on the execution, |
637 | 637 |
/// first you must call \ref init(), then you can add several |
638 | 638 |
/// source nodes with \ref addSource(). |
639 | 639 |
/// Finally \ref start() will perform the arborescence |
640 | 640 |
/// computation. |
641 | 641 |
|
642 | 642 |
///@{ |
643 | 643 |
|
644 | 644 |
/// \brief Initializes the internal data structures. |
645 | 645 |
/// |
646 | 646 |
/// Initializes the internal data structures. |
647 | 647 |
/// |
648 | 648 |
void init() { |
649 | 649 |
createStructures(); |
... | ... |
@@ -646,33 +646,33 @@ |
646 | 646 |
/// current process id and the current time for initialize the |
647 | 647 |
/// random sequence. |
648 | 648 |
/// \return Currently always \c true. |
649 | 649 |
bool seedFromTime() { |
650 | 650 |
#ifndef WIN32 |
651 | 651 |
timeval tv; |
652 | 652 |
gettimeofday(&tv, 0); |
653 | 653 |
seed(getpid() + tv.tv_sec + tv.tv_usec); |
654 | 654 |
#else |
655 | 655 |
seed(bits::getWinRndSeed()); |
656 | 656 |
#endif |
657 | 657 |
return true; |
658 | 658 |
} |
659 | 659 |
|
660 | 660 |
/// @} |
661 | 661 |
|
662 |
///\name Uniform |
|
662 |
///\name Uniform Distributions |
|
663 | 663 |
/// |
664 | 664 |
/// @{ |
665 | 665 |
|
666 | 666 |
/// \brief Returns a random real number from the range [0, 1) |
667 | 667 |
/// |
668 | 668 |
/// It returns a random real number from the range [0, 1). The |
669 | 669 |
/// default Number type is \c double. |
670 | 670 |
template <typename Number> |
671 | 671 |
Number real() { |
672 | 672 |
return _random_bits::RealConversion<Number, Word>::convert(core); |
673 | 673 |
} |
674 | 674 |
|
675 | 675 |
double real() { |
676 | 676 |
return real<double>(); |
677 | 677 |
} |
678 | 678 |
|
... | ... |
@@ -749,33 +749,33 @@ |
749 | 749 |
|
750 | 750 |
int integer() { |
751 | 751 |
return integer<int>(); |
752 | 752 |
} |
753 | 753 |
|
754 | 754 |
/// \brief Returns a random bool |
755 | 755 |
/// |
756 | 756 |
/// It returns a random bool. The generator holds a buffer for |
757 | 757 |
/// random bits. Every time when it become empty the generator makes |
758 | 758 |
/// a new random word and fill the buffer up. |
759 | 759 |
bool boolean() { |
760 | 760 |
return bool_producer.convert(core); |
761 | 761 |
} |
762 | 762 |
|
763 | 763 |
/// @} |
764 | 764 |
|
765 |
///\name Non-uniform |
|
765 |
///\name Non-uniform Distributions |
|
766 | 766 |
/// |
767 | 767 |
///@{ |
768 | 768 |
|
769 | 769 |
/// \brief Returns a random bool with given probability of true result. |
770 | 770 |
/// |
771 | 771 |
/// It returns a random bool with given probability of true result. |
772 | 772 |
bool boolean(double p) { |
773 | 773 |
return operator()() < p; |
774 | 774 |
} |
775 | 775 |
|
776 | 776 |
/// Standard normal (Gauss) distribution |
777 | 777 |
|
778 | 778 |
/// Standard normal (Gauss) distribution. |
779 | 779 |
/// \note The Cartesian form of the Box-Muller |
780 | 780 |
/// transformation is used to generate a random normal distribution. |
781 | 781 |
double gauss() |
... | ... |
@@ -925,33 +925,33 @@ |
925 | 925 |
/// return value. |
926 | 926 |
|
927 | 927 |
int poisson(double lambda) |
928 | 928 |
{ |
929 | 929 |
const double l = std::exp(-lambda); |
930 | 930 |
int k=0; |
931 | 931 |
double p = 1.0; |
932 | 932 |
do { |
933 | 933 |
k++; |
934 | 934 |
p*=real<double>(); |
935 | 935 |
} while (p>=l); |
936 | 936 |
return k-1; |
937 | 937 |
} |
938 | 938 |
|
939 | 939 |
///@} |
940 | 940 |
|
941 |
///\name Two |
|
941 |
///\name Two Dimensional Distributions |
|
942 | 942 |
/// |
943 | 943 |
///@{ |
944 | 944 |
|
945 | 945 |
/// Uniform distribution on the full unit circle |
946 | 946 |
|
947 | 947 |
/// Uniform distribution on the full unit circle. |
948 | 948 |
/// |
949 | 949 |
dim2::Point<double> disc() |
950 | 950 |
{ |
951 | 951 |
double V1,V2; |
952 | 952 |
do { |
953 | 953 |
V1=2*real<double>()-1; |
954 | 954 |
V2=2*real<double>()-1; |
955 | 955 |
|
956 | 956 |
} while(V1*V1+V2*V2>=1); |
957 | 957 |
return dim2::Point<double>(V1,V2); |
... | ... |
@@ -275,33 +275,33 @@ |
275 | 275 |
/// |
276 | 276 |
/// This function sets the potential map. |
277 | 277 |
/// |
278 | 278 |
/// The potentials provide the dual solution of the underlying |
279 | 279 |
/// minimum cost flow problem. |
280 | 280 |
/// |
281 | 281 |
/// \return <tt>(*this)</tt> |
282 | 282 |
Suurballe& potentialMap(PotentialMap &map) { |
283 | 283 |
if (_local_potential) { |
284 | 284 |
delete _potential; |
285 | 285 |
_local_potential = false; |
286 | 286 |
} |
287 | 287 |
_potential = ↦ |
288 | 288 |
return *this; |
289 | 289 |
} |
290 | 290 |
|
291 |
/// \name Execution |
|
291 |
/// \name Execution Control |
|
292 | 292 |
/// The simplest way to execute the algorithm is to call the run() |
293 | 293 |
/// function. |
294 | 294 |
/// \n |
295 | 295 |
/// If you only need the flow that is the union of the found |
296 | 296 |
/// arc-disjoint paths, you may call init() and findFlow(). |
297 | 297 |
|
298 | 298 |
/// @{ |
299 | 299 |
|
300 | 300 |
/// \brief Run the algorithm. |
301 | 301 |
/// |
302 | 302 |
/// This function runs the algorithm. |
303 | 303 |
/// |
304 | 304 |
/// \param k The number of paths to be found. |
305 | 305 |
/// |
306 | 306 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
307 | 307 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
... | ... |
@@ -274,33 +274,33 @@ |
274 | 274 |
///\sa TimeReport |
275 | 275 |
class Timer |
276 | 276 |
{ |
277 | 277 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
278 | 278 |
TimeStamp start_time; //This is the relativ start-time if the timer |
279 | 279 |
//is _running, the collected _running time otherwise. |
280 | 280 |
|
281 | 281 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
282 | 282 |
|
283 | 283 |
public: |
284 | 284 |
///Constructor. |
285 | 285 |
|
286 | 286 |
///\param run indicates whether or not the timer starts immediately. |
287 | 287 |
/// |
288 | 288 |
Timer(bool run=true) :_running(run) {_reset();} |
289 | 289 |
|
290 |
///\name Control the |
|
290 |
///\name Control the State of the Timer |
|
291 | 291 |
///Basically a Timer can be either running or stopped, |
292 | 292 |
///but it provides a bit finer control on the execution. |
293 | 293 |
///The \ref lemon::Timer "Timer" also counts the number of |
294 | 294 |
///\ref lemon::Timer::start() "start()" executions, and it stops |
295 | 295 |
///only after the same amount (or more) \ref lemon::Timer::stop() |
296 | 296 |
///"stop()"s. This can be useful e.g. to compute the running time |
297 | 297 |
///of recursive functions. |
298 | 298 |
|
299 | 299 |
///@{ |
300 | 300 |
|
301 | 301 |
///Reset and stop the time counters |
302 | 302 |
|
303 | 303 |
///This function resets and stops the time counters |
304 | 304 |
///\sa restart() |
305 | 305 |
void reset() |
306 | 306 |
{ |
... | ... |
@@ -382,33 +382,33 @@ |
382 | 382 |
int running() { return _running; } |
383 | 383 |
|
384 | 384 |
|
385 | 385 |
///Restart the time counters |
386 | 386 |
|
387 | 387 |
///This function is a shorthand for |
388 | 388 |
///a reset() and a start() calls. |
389 | 389 |
/// |
390 | 390 |
void restart() |
391 | 391 |
{ |
392 | 392 |
reset(); |
393 | 393 |
start(); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
///@} |
397 | 397 |
|
398 |
///\name Query Functions for the |
|
398 |
///\name Query Functions for the Ellapsed Time |
|
399 | 399 |
|
400 | 400 |
///@{ |
401 | 401 |
|
402 | 402 |
///Gives back the ellapsed user time of the process |
403 | 403 |
double userTime() const |
404 | 404 |
{ |
405 | 405 |
return operator TimeStamp().userTime(); |
406 | 406 |
} |
407 | 407 |
///Gives back the ellapsed system time of the process |
408 | 408 |
double systemTime() const |
409 | 409 |
{ |
410 | 410 |
return operator TimeStamp().systemTime(); |
411 | 411 |
} |
412 | 412 |
///Gives back the ellapsed user time of the process' children |
413 | 413 |
|
414 | 414 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
... | ... |
@@ -10,37 +10,36 @@ |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS problem solver. |
22 | 22 |
/// |
23 | 23 |
/// This program solves various problems given in DIMACS format. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 |
/// \verbatim |
|
27 |
/// dimacs-solver --help |
|
28 |
/// \ |
|
26 |
/// \code |
|
27 |
/// dimacs-solver --help |
|
28 |
/// \endcode |
|
29 | 29 |
/// for more info on usage. |
30 |
/// |
|
31 | 30 |
|
32 | 31 |
#include <iostream> |
33 | 32 |
#include <fstream> |
34 | 33 |
#include <cstring> |
35 | 34 |
|
36 | 35 |
#include <lemon/smart_graph.h> |
37 | 36 |
#include <lemon/dimacs.h> |
38 | 37 |
#include <lemon/lgf_writer.h> |
39 | 38 |
#include <lemon/time_measure.h> |
40 | 39 |
|
41 | 40 |
#include <lemon/arg_parser.h> |
42 | 41 |
#include <lemon/error.h> |
43 | 42 |
|
44 | 43 |
#include <lemon/dijkstra.h> |
45 | 44 |
#include <lemon/preflow.h> |
46 | 45 |
#include <lemon/max_matching.h> |
... | ... |
@@ -11,37 +11,36 @@ |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS to LGF converter. |
22 | 22 |
/// |
23 | 23 |
/// This program converts various DIMACS formats to the LEMON Digraph Format |
24 | 24 |
/// (LGF). |
25 | 25 |
/// |
26 | 26 |
/// See |
27 |
/// \verbatim |
|
28 |
/// dimacs-to-lgf --help |
|
29 |
/// \endverbatim |
|
30 |
/// for more info on usage. |
|
31 |
/// |
|
27 |
/// \code |
|
28 |
/// dimacs-to-lgf --help |
|
29 |
/// \endcode |
|
30 |
/// for more info on the usage. |
|
32 | 31 |
|
33 | 32 |
#include <iostream> |
34 | 33 |
#include <fstream> |
35 | 34 |
#include <cstring> |
36 | 35 |
|
37 | 36 |
#include <lemon/smart_graph.h> |
38 | 37 |
#include <lemon/dimacs.h> |
39 | 38 |
#include <lemon/lgf_writer.h> |
40 | 39 |
|
41 | 40 |
#include <lemon/arg_parser.h> |
42 | 41 |
#include <lemon/error.h> |
43 | 42 |
|
44 | 43 |
using namespace std; |
45 | 44 |
using namespace lemon; |
46 | 45 |
|
47 | 46 |
... | ... |
@@ -10,38 +10,36 @@ |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup tools |
20 | 20 |
/// \file |
21 | 21 |
/// \brief Special plane digraph generator. |
22 | 22 |
/// |
23 | 23 |
/// Graph generator application for various types of plane graphs. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 |
/// \verbatim |
|
27 |
/// lgf-gen --help |
|
28 |
/// \ |
|
26 |
/// \code |
|
27 |
/// lgf-gen --help |
|
28 |
/// \endcode |
|
29 | 29 |
/// for more info on the usage. |
30 |
/// |
|
31 |
|
|
32 | 30 |
|
33 | 31 |
#include <algorithm> |
34 | 32 |
#include <set> |
35 | 33 |
#include <ctime> |
36 | 34 |
#include <lemon/list_graph.h> |
37 | 35 |
#include <lemon/random.h> |
38 | 36 |
#include <lemon/dim2.h> |
39 | 37 |
#include <lemon/bfs.h> |
40 | 38 |
#include <lemon/counter.h> |
41 | 39 |
#include <lemon/suurballe.h> |
42 | 40 |
#include <lemon/graph_to_eps.h> |
43 | 41 |
#include <lemon/lgf_writer.h> |
44 | 42 |
#include <lemon/arg_parser.h> |
45 | 43 |
#include <lemon/euler.h> |
46 | 44 |
#include <lemon/math.h> |
47 | 45 |
#include <lemon/kruskal.h> |
0 comments (0 inline)