↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24 24
///\brief Binary Heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32 32
  ///\ingroup auxdat
33 33
  ///
34 34
  ///\brief A Binary Heap implementation.
35 35
  ///
36 36
  ///This class implements the \e binary \e heap data structure. 
37 37
  /// 
38 38
  ///A \e heap is a data structure for storing items with specified values
39 39
  ///called \e priorities in such a way that finding the item with minimum
40 40
  ///priority is efficient. \c Comp specifies the ordering of the priorities.
41 41
  ///In a heap one can change the priority of an item, add or erase an
42 42
  ///item, etc.
43 43
  ///
44 44
  ///\tparam PR Type of the priority of the items.
45 45
  ///\tparam IM A read and writable item map with int values, used internally
46 46
  ///to handle the cross references.
47 47
  ///\tparam Comp A functor class for the ordering of the priorities.
48 48
  ///The default is \c std::less<PR>.
49 49
  ///
50 50
  ///\sa FibHeap
51 51
  ///\sa Dijkstra
52 52
  template <typename PR, typename IM, typename Comp = std::less<PR> >
53 53
  class BinHeap {
54 54

	
55 55
  public:
56 56
    ///\e
57 57
    typedef IM ItemIntMap;
58 58
    ///\e
59 59
    typedef PR Prio;
60 60
    ///\e
61 61
    typedef typename ItemIntMap::Key Item;
62 62
    ///\e
63 63
    typedef std::pair<Item,Prio> Pair;
64 64
    ///\e
65 65
    typedef Comp Compare;
66 66

	
67 67
    /// \brief Type to represent the items states.
68 68
    ///
69 69
    /// Each Item element have a state associated to it. It may be "in heap",
70 70
    /// "pre heap" or "post heap". The latter two are indifferent from the
71 71
    /// heap's point of view, but may be useful to the user.
72 72
    ///
73 73
    /// The item-int map must be initialized in such way that it assigns
74 74
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
75 75
    enum State {
76
      IN_HEAP = 0,    ///< \e
77
      PRE_HEAP = -1,  ///< \e
78
      POST_HEAP = -2  ///< \e
76
      IN_HEAP = 0,    ///< = 0.
77
      PRE_HEAP = -1,  ///< = -1.
78
      POST_HEAP = -2  ///< = -2.
79 79
    };
80 80

	
81 81
  private:
82 82
    std::vector<Pair> _data;
83 83
    Compare _comp;
84 84
    ItemIntMap &_iim;
85 85

	
86 86
  public:
87 87
    /// \brief The constructor.
88 88
    ///
89 89
    /// The constructor.
90 90
    /// \param map should be given to the constructor, since it is used
91 91
    /// internally to handle the cross references. The value of the map
92 92
    /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
93 93
    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
94 94

	
95 95
    /// \brief The constructor.
96 96
    ///
97 97
    /// The constructor.
98 98
    /// \param map should be given to the constructor, since it is used
99 99
    /// internally to handle the cross references. The value of the map
100 100
    /// should be PRE_HEAP (-1) for each element.
101 101
    ///
102 102
    /// \param comp The comparator function object.
103 103
    BinHeap(ItemIntMap &map, const Compare &comp)
104 104
      : _iim(map), _comp(comp) {}
105 105

	
106 106

	
107 107
    /// The number of items stored in the heap.
108 108
    ///
109 109
    /// \brief Returns the number of items stored in the heap.
110 110
    int size() const { return _data.size(); }
111 111

	
112 112
    /// \brief Checks if the heap stores no items.
113 113
    ///
114 114
    /// Returns \c true if and only if the heap stores no items.
115 115
    bool empty() const { return _data.empty(); }
116 116

	
117 117
    /// \brief Make empty this heap.
118 118
    ///
119 119
    /// Make empty this heap. It does not change the cross reference map.
120 120
    /// If you want to reuse what is not surely empty you should first clear
121 121
    /// the heap and after that you should set the cross reference map for
122 122
    /// each item to \c PRE_HEAP.
123 123
    void clear() {
124 124
      _data.clear();
125 125
    }
126 126

	
127 127
  private:
128 128
    static int parent(int i) { return (i-1)/2; }
129 129

	
130 130
    static int second_child(int i) { return 2*i+2; }
131 131
    bool less(const Pair &p1, const Pair &p2) const {
132 132
      return _comp(p1.second, p2.second);
133 133
    }
134 134

	
135 135
    int bubble_up(int hole, Pair p) {
136 136
      int par = parent(hole);
137 137
      while( hole>0 && less(p,_data[par]) ) {
138 138
        move(_data[par],hole);
139 139
        hole = par;
140 140
        par = parent(hole);
141 141
      }
142 142
      move(p, hole);
143 143
      return hole;
144 144
    }
145 145

	
146 146
    int bubble_down(int hole, Pair p, int length) {
147 147
      int child = second_child(hole);
148 148
      while(child < length) {
149 149
        if( less(_data[child-1], _data[child]) ) {
150 150
          --child;
151 151
        }
152 152
        if( !less(_data[child], p) )
153 153
          goto ok;
154 154
        move(_data[child], hole);
155 155
        hole = child;
156 156
        child = second_child(hole);
157 157
      }
158 158
      child--;
159 159
      if( child<length && less(_data[child], p) ) {
160 160
        move(_data[child], hole);
161 161
        hole=child;
162 162
      }
163 163
    ok:
164 164
      move(p, hole);
165 165
      return hole;
166 166
    }
167 167

	
168 168
    void move(const Pair &p, int i) {
169 169
      _data[i] = p;
170 170
      _iim.set(p.first, i);
171 171
    }
172 172

	
173 173
  public:
174 174
    /// \brief Insert a pair of item and priority into the heap.
175 175
    ///
176 176
    /// Adds \c p.first to the heap with priority \c p.second.
177 177
    /// \param p The pair to insert.
178 178
    void push(const Pair &p) {
179 179
      int n = _data.size();
180 180
      _data.resize(n+1);
181 181
      bubble_up(n, p);
182 182
    }
183 183

	
184 184
    /// \brief Insert an item into the heap with the given heap.
185 185
    ///
186 186
    /// Adds \c i to the heap with priority \c p.
187 187
    /// \param i The item to insert.
188 188
    /// \param p The priority of the item.
189 189
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
190 190

	
191 191
    /// \brief Returns the item with minimum priority relative to \c Compare.
192 192
    ///
193 193
    /// This method returns the item with minimum priority relative to \c
194 194
    /// Compare.
195 195
    /// \pre The heap must be nonempty.
196 196
    Item top() const {
197 197
      return _data[0].first;
198 198
    }
199 199

	
200 200
    /// \brief Returns the minimum priority relative to \c Compare.
201 201
    ///
202 202
    /// It returns the minimum priority relative to \c Compare.
203 203
    /// \pre The heap must be nonempty.
204 204
    Prio prio() const {
205 205
      return _data[0].second;
206 206
    }
Ignore white space 6 line context
... ...
@@ -477,473 +477,473 @@
477 477
      /// same object or both are invalid.
478 478
      bool operator!=(const GraphItemIt&) const { return true;}
479 479

	
480 480
      template<typename _GraphItemIt>
481 481
      struct Constraints {
482 482
        void constraints() {
483 483
          checkConcept<GraphItem<>, _GraphItemIt>();
484 484
          _GraphItemIt it1(g);
485 485
          _GraphItemIt it2;
486 486
          _GraphItemIt it3 = it1;
487 487
          _GraphItemIt it4 = INVALID;
488 488

	
489 489
          it2 = ++it1;
490 490
          ++it2 = it1;
491 491
          ++(++it1);
492 492

	
493 493
          Item bi = it1;
494 494
          bi = it2;
495 495
        }
496 496
        const GR& g;
497 497
      };
498 498
    };
499 499

	
500 500
    /// \brief Concept class for \c InArcIt, \c OutArcIt and 
501 501
    /// \c IncEdgeIt types.
502 502
    ///
503 503
    /// This class describes the concept of \c InArcIt, \c OutArcIt 
504 504
    /// and \c IncEdgeIt subtypes of digraph and graph types.
505 505
    ///
506 506
    /// \note Since these iterator classes do not inherit from the same
507 507
    /// base class, there is an additional template parameter (selector)
508 508
    /// \c sel. For \c InArcIt you should instantiate it with character 
509 509
    /// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'.
510 510
    template <typename GR,
511 511
              typename Item = typename GR::Arc,
512 512
              typename Base = typename GR::Node,
513 513
              char sel = '0'>
514 514
    class GraphIncIt : public Item {
515 515
    public:
516 516
      /// \brief Default constructor.
517 517
      ///
518 518
      /// Default constructor.
519 519
      /// \warning The default constructor is not required to set
520 520
      /// the iterator to some well-defined value. So you should consider it
521 521
      /// as uninitialized.
522 522
      GraphIncIt() {}
523 523

	
524 524
      /// \brief Copy constructor.
525 525
      ///
526 526
      /// Copy constructor.
527 527
      GraphIncIt(const GraphIncIt& it) : Item(it) {}
528 528

	
529 529
      /// \brief Constructor that sets the iterator to the first 
530 530
      /// incoming or outgoing arc.
531 531
      ///
532 532
      /// Constructor that sets the iterator to the first arc 
533 533
      /// incoming to or outgoing from the given node.
534 534
      explicit GraphIncIt(const GR&, const Base&) {}
535 535

	
536 536
      /// \brief Constructor for conversion from \c INVALID.
537 537
      ///
538 538
      /// Constructor for conversion from \c INVALID.
539 539
      /// It initializes the iterator to be invalid.
540 540
      /// \sa Invalid for more details.
541 541
      GraphIncIt(Invalid) {}
542 542

	
543 543
      /// \brief Assignment operator.
544 544
      ///
545 545
      /// Assignment operator for the iterator.
546 546
      GraphIncIt& operator=(const GraphIncIt&) { return *this; }
547 547

	
548 548
      /// \brief Increment the iterator.
549 549
      ///
550 550
      /// This operator increments the iterator, i.e. assigns it to the
551 551
      /// next arc incoming to or outgoing from the given node.
552 552
      GraphIncIt& operator++() { return *this; }
553 553

	
554 554
      /// \brief Equality operator
555 555
      ///
556 556
      /// Equality operator.
557 557
      /// Two iterators are equal if and only if they point to the
558 558
      /// same object or both are invalid.
559 559
      bool operator==(const GraphIncIt&) const { return true;}
560 560

	
561 561
      /// \brief Inequality operator
562 562
      ///
563 563
      /// Inequality operator.
564 564
      /// Two iterators are equal if and only if they point to the
565 565
      /// same object or both are invalid.
566 566
      bool operator!=(const GraphIncIt&) const { return true;}
567 567

	
568 568
      template <typename _GraphIncIt>
569 569
      struct Constraints {
570 570
        void constraints() {
571 571
          checkConcept<GraphItem<sel>, _GraphIncIt>();
572 572
          _GraphIncIt it1(graph, node);
573 573
          _GraphIncIt it2;
574 574
          _GraphIncIt it3 = it1;
575 575
          _GraphIncIt it4 = INVALID;
576 576

	
577 577
          it2 = ++it1;
578 578
          ++it2 = it1;
579 579
          ++(++it1);
580 580
          Item e = it1;
581 581
          e = it2;
582 582
        }
583 583
        const Base& node;
584 584
        const GR& graph;
585 585
      };
586 586
    };
587 587

	
588 588
    /// \brief Skeleton class for iterable directed graphs.
589 589
    ///
590 590
    /// This class describes the interface of iterable directed
591 591
    /// graphs. It extends \ref BaseDigraphComponent with the core
592 592
    /// iterable interface.
593 593
    /// This concept is part of the Digraph concept.
594 594
    template <typename BAS = BaseDigraphComponent>
595 595
    class IterableDigraphComponent : public BAS {
596 596

	
597 597
    public:
598 598

	
599 599
      typedef BAS Base;
600 600
      typedef typename Base::Node Node;
601 601
      typedef typename Base::Arc Arc;
602 602

	
603 603
      typedef IterableDigraphComponent Digraph;
604 604

	
605
      /// \name Base iteration
605
      /// \name Base Iteration
606 606
      ///
607 607
      /// This interface provides functions for iteration on digraph items.
608 608
      ///
609 609
      /// @{
610 610

	
611 611
      /// \brief Return the first node.
612 612
      ///
613 613
      /// This function gives back the first node in the iteration order.
614 614
      void first(Node&) const {}
615 615

	
616 616
      /// \brief Return the next node.
617 617
      ///
618 618
      /// This function gives back the next node in the iteration order.
619 619
      void next(Node&) const {}
620 620

	
621 621
      /// \brief Return the first arc.
622 622
      ///
623 623
      /// This function gives back the first arc in the iteration order.
624 624
      void first(Arc&) const {}
625 625

	
626 626
      /// \brief Return the next arc.
627 627
      ///
628 628
      /// This function gives back the next arc in the iteration order.
629 629
      void next(Arc&) const {}
630 630

	
631 631
      /// \brief Return the first arc incomming to the given node.
632 632
      ///
633 633
      /// This function gives back the first arc incomming to the
634 634
      /// given node.
635 635
      void firstIn(Arc&, const Node&) const {}
636 636

	
637 637
      /// \brief Return the next arc incomming to the given node.
638 638
      ///
639 639
      /// This function gives back the next arc incomming to the
640 640
      /// given node.
641 641
      void nextIn(Arc&) const {}
642 642

	
643 643
      /// \brief Return the first arc outgoing form the given node.
644 644
      ///
645 645
      /// This function gives back the first arc outgoing form the
646 646
      /// given node.
647 647
      void firstOut(Arc&, const Node&) const {}
648 648

	
649 649
      /// \brief Return the next arc outgoing form the given node.
650 650
      ///
651 651
      /// This function gives back the next arc outgoing form the
652 652
      /// given node.
653 653
      void nextOut(Arc&) const {}
654 654

	
655 655
      /// @}
656 656

	
657
      /// \name Class based iteration
657
      /// \name Class Based Iteration
658 658
      ///
659 659
      /// This interface provides iterator classes for digraph items.
660 660
      ///
661 661
      /// @{
662 662

	
663 663
      /// \brief This iterator goes through each node.
664 664
      ///
665 665
      /// This iterator goes through each node.
666 666
      ///
667 667
      typedef GraphItemIt<Digraph, Node> NodeIt;
668 668

	
669 669
      /// \brief This iterator goes through each arc.
670 670
      ///
671 671
      /// This iterator goes through each arc.
672 672
      ///
673 673
      typedef GraphItemIt<Digraph, Arc> ArcIt;
674 674

	
675 675
      /// \brief This iterator goes trough the incoming arcs of a node.
676 676
      ///
677 677
      /// This iterator goes trough the \e incoming arcs of a certain node
678 678
      /// of a digraph.
679 679
      typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt;
680 680

	
681 681
      /// \brief This iterator goes trough the outgoing arcs of a node.
682 682
      ///
683 683
      /// This iterator goes trough the \e outgoing arcs of a certain node
684 684
      /// of a digraph.
685 685
      typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt;
686 686

	
687 687
      /// \brief The base node of the iterator.
688 688
      ///
689 689
      /// This function gives back the base node of the iterator.
690 690
      /// It is always the target node of the pointed arc.
691 691
      Node baseNode(const InArcIt&) const { return INVALID; }
692 692

	
693 693
      /// \brief The running node of the iterator.
694 694
      ///
695 695
      /// This function gives back the running node of the iterator.
696 696
      /// It is always the source node of the pointed arc.
697 697
      Node runningNode(const InArcIt&) const { return INVALID; }
698 698

	
699 699
      /// \brief The base node of the iterator.
700 700
      ///
701 701
      /// This function gives back the base node of the iterator.
702 702
      /// It is always the source node of the pointed arc.
703 703
      Node baseNode(const OutArcIt&) const { return INVALID; }
704 704

	
705 705
      /// \brief The running node of the iterator.
706 706
      ///
707 707
      /// This function gives back the running node of the iterator.
708 708
      /// It is always the target node of the pointed arc.
709 709
      Node runningNode(const OutArcIt&) const { return INVALID; }
710 710

	
711 711
      /// @}
712 712

	
713 713
      template <typename _Digraph>
714 714
      struct Constraints {
715 715
        void constraints() {
716 716
          checkConcept<Base, _Digraph>();
717 717

	
718 718
          {
719 719
            typename _Digraph::Node node(INVALID);
720 720
            typename _Digraph::Arc arc(INVALID);
721 721
            {
722 722
              digraph.first(node);
723 723
              digraph.next(node);
724 724
            }
725 725
            {
726 726
              digraph.first(arc);
727 727
              digraph.next(arc);
728 728
            }
729 729
            {
730 730
              digraph.firstIn(arc, node);
731 731
              digraph.nextIn(arc);
732 732
            }
733 733
            {
734 734
              digraph.firstOut(arc, node);
735 735
              digraph.nextOut(arc);
736 736
            }
737 737
          }
738 738

	
739 739
          {
740 740
            checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>,
741 741
              typename _Digraph::ArcIt >();
742 742
            checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>,
743 743
              typename _Digraph::NodeIt >();
744 744
            checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
745 745
              typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>();
746 746
            checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
747 747
              typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>();
748 748

	
749 749
            typename _Digraph::Node n;
750 750
            const typename _Digraph::InArcIt iait(INVALID);
751 751
            const typename _Digraph::OutArcIt oait(INVALID);
752 752
            n = digraph.baseNode(iait);
753 753
            n = digraph.runningNode(iait);
754 754
            n = digraph.baseNode(oait);
755 755
            n = digraph.runningNode(oait);
756 756
            ignore_unused_variable_warning(n);
757 757
          }
758 758
        }
759 759

	
760 760
        const _Digraph& digraph;
761 761
      };
762 762
    };
763 763

	
764 764
    /// \brief Skeleton class for iterable undirected graphs.
765 765
    ///
766 766
    /// This class describes the interface of iterable undirected
767 767
    /// graphs. It extends \ref IterableDigraphComponent with the core
768 768
    /// iterable interface of undirected graphs.
769 769
    /// This concept is part of the Graph concept.
770 770
    template <typename BAS = BaseGraphComponent>
771 771
    class IterableGraphComponent : public IterableDigraphComponent<BAS> {
772 772
    public:
773 773

	
774 774
      typedef BAS Base;
775 775
      typedef typename Base::Node Node;
776 776
      typedef typename Base::Arc Arc;
777 777
      typedef typename Base::Edge Edge;
778 778

	
779 779

	
780 780
      typedef IterableGraphComponent Graph;
781 781

	
782
      /// \name Base iteration
782
      /// \name Base Iteration
783 783
      ///
784 784
      /// This interface provides functions for iteration on edges.
785 785
      ///
786 786
      /// @{
787 787

	
788 788
      using IterableDigraphComponent<Base>::first;
789 789
      using IterableDigraphComponent<Base>::next;
790 790

	
791 791
      /// \brief Return the first edge.
792 792
      ///
793 793
      /// This function gives back the first edge in the iteration order.
794 794
      void first(Edge&) const {}
795 795

	
796 796
      /// \brief Return the next edge.
797 797
      ///
798 798
      /// This function gives back the next edge in the iteration order.
799 799
      void next(Edge&) const {}
800 800

	
801 801
      /// \brief Return the first edge incident to the given node.
802 802
      ///
803 803
      /// This function gives back the first edge incident to the given 
804 804
      /// node. The bool parameter gives back the direction for which the
805 805
      /// source node of the directed arc representing the edge is the 
806 806
      /// given node.
807 807
      void firstInc(Edge&, bool&, const Node&) const {}
808 808

	
809 809
      /// \brief Gives back the next of the edges from the
810 810
      /// given node.
811 811
      ///
812 812
      /// This function gives back the next edge incident to the given 
813 813
      /// node. The bool parameter should be used as \c firstInc() use it.
814 814
      void nextInc(Edge&, bool&) const {}
815 815

	
816 816
      using IterableDigraphComponent<Base>::baseNode;
817 817
      using IterableDigraphComponent<Base>::runningNode;
818 818

	
819 819
      /// @}
820 820

	
821
      /// \name Class based iteration
821
      /// \name Class Based Iteration
822 822
      ///
823 823
      /// This interface provides iterator classes for edges.
824 824
      ///
825 825
      /// @{
826 826

	
827 827
      /// \brief This iterator goes through each edge.
828 828
      ///
829 829
      /// This iterator goes through each edge.
830 830
      typedef GraphItemIt<Graph, Edge> EdgeIt;
831 831

	
832 832
      /// \brief This iterator goes trough the incident edges of a
833 833
      /// node.
834 834
      ///
835 835
      /// This iterator goes trough the incident edges of a certain
836 836
      /// node of a graph.
837 837
      typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt;
838 838

	
839 839
      /// \brief The base node of the iterator.
840 840
      ///
841 841
      /// This function gives back the base node of the iterator.
842 842
      Node baseNode(const IncEdgeIt&) const { return INVALID; }
843 843

	
844 844
      /// \brief The running node of the iterator.
845 845
      ///
846 846
      /// This function gives back the running node of the iterator.
847 847
      Node runningNode(const IncEdgeIt&) const { return INVALID; }
848 848

	
849 849
      /// @}
850 850

	
851 851
      template <typename _Graph>
852 852
      struct Constraints {
853 853
        void constraints() {
854 854
          checkConcept<IterableDigraphComponent<Base>, _Graph>();
855 855

	
856 856
          {
857 857
            typename _Graph::Node node(INVALID);
858 858
            typename _Graph::Edge edge(INVALID);
859 859
            bool dir;
860 860
            {
861 861
              graph.first(edge);
862 862
              graph.next(edge);
863 863
            }
864 864
            {
865 865
              graph.firstInc(edge, dir, node);
866 866
              graph.nextInc(edge, dir);
867 867
            }
868 868

	
869 869
          }
870 870

	
871 871
          {
872 872
            checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>,
873 873
              typename _Graph::EdgeIt >();
874 874
            checkConcept<GraphIncIt<_Graph, typename _Graph::Edge,
875 875
              typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>();
876 876

	
877 877
            typename _Graph::Node n;
878 878
            const typename _Graph::IncEdgeIt ieit(INVALID);
879 879
            n = graph.baseNode(ieit);
880 880
            n = graph.runningNode(ieit);
881 881
          }
882 882
        }
883 883

	
884 884
        const _Graph& graph;
885 885
      };
886 886
    };
887 887

	
888 888
    /// \brief Skeleton class for alterable directed graphs.
889 889
    ///
890 890
    /// This class describes the interface of alterable directed
891 891
    /// graphs. It extends \ref BaseDigraphComponent with the alteration
892 892
    /// notifier interface. It implements
893 893
    /// an observer-notifier pattern for each digraph item. More
894 894
    /// obsevers can be registered into the notifier and whenever an
895 895
    /// alteration occured in the digraph all the observers will be
896 896
    /// notified about it.
897 897
    template <typename BAS = BaseDigraphComponent>
898 898
    class AlterableDigraphComponent : public BAS {
899 899
    public:
900 900

	
901 901
      typedef BAS Base;
902 902
      typedef typename Base::Node Node;
903 903
      typedef typename Base::Arc Arc;
904 904

	
905 905

	
906 906
      /// Node alteration notifier class.
907 907
      typedef AlterationNotifier<AlterableDigraphComponent, Node>
908 908
      NodeNotifier;
909 909
      /// Arc alteration notifier class.
910 910
      typedef AlterationNotifier<AlterableDigraphComponent, Arc>
911 911
      ArcNotifier;
912 912

	
913 913
      /// \brief Return the node alteration notifier.
914 914
      ///
915 915
      /// This function gives back the node alteration notifier.
916 916
      NodeNotifier& notifier(Node) const {
917 917
         return NodeNotifier();
918 918
      }
919 919

	
920 920
      /// \brief Return the arc alteration notifier.
921 921
      ///
922 922
      /// This function gives back the arc alteration notifier.
923 923
      ArcNotifier& notifier(Arc) const {
924 924
        return ArcNotifier();
925 925
      }
926 926

	
927 927
      template <typename _Digraph>
928 928
      struct Constraints {
929 929
        void constraints() {
930 930
          checkConcept<Base, _Digraph>();
931 931
          typename _Digraph::NodeNotifier& nn
932 932
            = digraph.notifier(typename _Digraph::Node());
933 933

	
934 934
          typename _Digraph::ArcNotifier& en
935 935
            = digraph.notifier(typename _Digraph::Arc());
936 936

	
937 937
          ignore_unused_variable_warning(nn);
938 938
          ignore_unused_variable_warning(en);
939 939
        }
940 940

	
941 941
        const _Digraph& digraph;
942 942
      };
943 943
    };
944 944

	
945 945
    /// \brief Skeleton class for alterable undirected graphs.
946 946
    ///
947 947
    /// This class describes the interface of alterable undirected
948 948
    /// graphs. It extends \ref AlterableDigraphComponent with the alteration
949 949
    /// notifier interface of undirected graphs. It implements
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup concept
20 20
///\file
21 21
///\brief The concept of heaps.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_HEAP_H
24 24
#define LEMON_CONCEPTS_HEAP_H
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concept_check.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  namespace concepts {
32 32

	
33 33
    /// \addtogroup concept
34 34
    /// @{
35 35

	
36 36
    /// \brief The heap concept.
37 37
    ///
38 38
    /// Concept class describing the main interface of heaps. A \e heap
39 39
    /// is a data structure for storing items with specified values called
40 40
    /// \e priorities in such a way that finding the item with minimum
41 41
    /// priority is efficient. In a heap one can change the priority of an
42 42
    /// item, add or erase an item, etc.
43 43
    ///
44 44
    /// \tparam PR Type of the priority of the items.
45 45
    /// \tparam IM A read and writable item map with int values, used
46 46
    /// internally to handle the cross references.
47 47
    /// \tparam Comp A functor class for the ordering of the priorities.
48 48
    /// The default is \c std::less<PR>.
49 49
#ifdef DOXYGEN
50 50
    template <typename PR, typename IM, typename Comp = std::less<PR> >
51 51
#else
52 52
    template <typename PR, typename IM>
53 53
#endif
54 54
    class Heap {
55 55
    public:
56 56

	
57 57
      /// Type of the item-int map.
58 58
      typedef IM ItemIntMap;
59 59
      /// Type of the priorities.
60 60
      typedef PR Prio;
61 61
      /// Type of the items stored in the heap.
62 62
      typedef typename ItemIntMap::Key Item;
63 63

	
64 64
      /// \brief Type to represent the states of the items.
65 65
      ///
66 66
      /// Each item has a state associated to it. It can be "in heap",
67 67
      /// "pre heap" or "post heap". The later two are indifferent
68 68
      /// from the point of view of the heap, but may be useful for
69 69
      /// the user.
70 70
      ///
71 71
      /// The item-int map must be initialized in such way that it assigns
72 72
      /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
73 73
      enum State {
74
        IN_HEAP = 0,    ///< The "in heap" state constant.
75
        PRE_HEAP = -1,  ///< The "pre heap" state constant.
76
        POST_HEAP = -2  ///< The "post heap" state constant.
74
        IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
75
        PRE_HEAP = -1,  ///< = -1. The "pre heap" state constant.
76
        POST_HEAP = -2  ///< = -2. The "post heap" state constant.
77 77
      };
78 78

	
79 79
      /// \brief The constructor.
80 80
      ///
81 81
      /// The constructor.
82 82
      /// \param map A map that assigns \c int values to keys of type
83 83
      /// \c Item. It is used internally by the heap implementations to
84 84
      /// handle the cross references. The assigned value must be
85 85
      /// \c PRE_HEAP (<tt>-1</tt>) for every item.
86 86
      explicit Heap(ItemIntMap &map) {}
87 87

	
88 88
      /// \brief The number of items stored in the heap.
89 89
      ///
90 90
      /// Returns the number of items stored in the heap.
91 91
      int size() const { return 0; }
92 92

	
93 93
      /// \brief Checks if the heap is empty.
94 94
      ///
95 95
      /// Returns \c true if the heap is empty.
96 96
      bool empty() const { return false; }
97 97

	
98 98
      /// \brief Makes the heap empty.
99 99
      ///
100 100
      /// Makes the heap empty.
101 101
      void clear();
102 102

	
103 103
      /// \brief Inserts an item into the heap with the given priority.
104 104
      ///
105 105
      /// Inserts the given item into the heap with the given priority.
106 106
      /// \param i The item to insert.
107 107
      /// \param p The priority of the item.
108 108
      void push(const Item &i, const Prio &p) {}
109 109

	
110 110
      /// \brief Returns the item having minimum priority.
111 111
      ///
112 112
      /// Returns the item having minimum priority.
113 113
      /// \pre The heap must be non-empty.
114 114
      Item top() const {}
115 115

	
116 116
      /// \brief The minimum priority.
117 117
      ///
118 118
      /// Returns the minimum priority.
119 119
      /// \pre The heap must be non-empty.
120 120
      Prio prio() const {}
121 121

	
122 122
      /// \brief Removes the item having minimum priority.
123 123
      ///
124 124
      /// Removes the item having minimum priority.
125 125
      /// \pre The heap must be non-empty.
126 126
      void pop() {}
127 127

	
128 128
      /// \brief Removes an item from the heap.
129 129
      ///
130 130
      /// Removes the given item from the heap if it is already stored.
131 131
      /// \param i The item to delete.
132 132
      void erase(const Item &i) {}
133 133

	
134 134
      /// \brief The priority of an item.
135 135
      ///
136 136
      /// Returns the priority of the given item.
137 137
      /// \param i The item.
138 138
      /// \pre \c i must be in the heap.
139 139
      Prio operator[](const Item &i) const {}
140 140

	
141 141
      /// \brief Sets the priority of an item or inserts it, if it is
142 142
      /// not stored in the heap.
143 143
      ///
144 144
      /// This method sets the priority of the given item if it is
145 145
      /// already stored in the heap.
146 146
      /// Otherwise it inserts the given item with the given priority.
147 147
      ///
148 148
      /// \param i The item.
149 149
      /// \param p The priority.
150 150
      void set(const Item &i, const Prio &p) {}
151 151

	
152 152
      /// \brief Decreases the priority of an item to the given value.
153 153
      ///
154 154
      /// Decreases the priority of an item to the given value.
155 155
      /// \param i The item.
156 156
      /// \param p The priority.
157 157
      /// \pre \c i must be stored in the heap with priority at least \c p.
158 158
      void decrease(const Item &i, const Prio &p) {}
159 159

	
160 160
      /// \brief Increases the priority of an item to the given value.
161 161
      ///
162 162
      /// Increases the priority of an item to the given value.
163 163
      /// \param i The item.
164 164
      /// \param p The priority.
165 165
      /// \pre \c i must be stored in the heap with priority at most \c p.
166 166
      void increase(const Item &i, const Prio &p) {}
167 167

	
168 168
      /// \brief Returns if an item is in, has already been in, or has
169 169
      /// never been in the heap.
170 170
      ///
171 171
      /// This method returns \c PRE_HEAP if the given item has never
172 172
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
173 173
      /// and \c POST_HEAP otherwise.
174 174
      /// In the latter case it is possible that the item will get back
175 175
      /// to the heap again.
176 176
      /// \param i The item.
177 177
      State state(const Item &i) const {}
178 178

	
179 179
      /// \brief Sets the state of an item in the heap.
180 180
      ///
181 181
      /// Sets the state of the given item in the heap. It can be used
182 182
      /// to manually clear the heap when it is important to achive the
183 183
      /// better time complexity.
184 184
      /// \param i The item.
185 185
      /// \param st The state. It should not be \c IN_HEAP.
186 186
      void state(const Item& i, State st) {}
187 187

	
188 188

	
189 189
      template <typename _Heap>
190 190
      struct Constraints {
191 191
      public:
192 192
        void constraints() {
193 193
          typedef typename _Heap::Item OwnItem;
194 194
          typedef typename _Heap::Prio OwnPrio;
195 195
          typedef typename _Heap::State OwnState;
196 196

	
197 197
          Item item;
198 198
          Prio prio;
199 199
          item=Item();
200 200
          prio=Prio();
201 201
          ignore_unused_variable_warning(item);
202 202
          ignore_unused_variable_warning(prio);
203 203

	
204 204
          OwnItem own_item;
Ignore white space 6 line context
... ...
@@ -81,257 +81,257 @@
81 81
    ///The type of the map that indicates which nodes are reached.
82 82

	
83 83
    ///The type of the map that indicates which nodes are reached.
84 84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 85
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86 86
    ///Instantiates a \c ReachedMap.
87 87

	
88 88
    ///This function instantiates a \ref ReachedMap.
89 89
    ///\param g is the digraph, to which
90 90
    ///we would like to define the \ref ReachedMap.
91 91
    static ReachedMap *createReachedMap(const Digraph &g)
92 92
    {
93 93
      return new ReachedMap(g);
94 94
    }
95 95

	
96 96
    ///The type of the map that stores the distances of the nodes.
97 97

	
98 98
    ///The type of the map that stores the distances of the nodes.
99 99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100 100
    typedef typename Digraph::template NodeMap<int> DistMap;
101 101
    ///Instantiates a \c DistMap.
102 102

	
103 103
    ///This function instantiates a \ref DistMap.
104 104
    ///\param g is the digraph, to which we would like to define the
105 105
    ///\ref DistMap.
106 106
    static DistMap *createDistMap(const Digraph &g)
107 107
    {
108 108
      return new DistMap(g);
109 109
    }
110 110
  };
111 111

	
112 112
  ///%DFS algorithm class.
113 113

	
114 114
  ///\ingroup search
115 115
  ///This class provides an efficient implementation of the %DFS algorithm.
116 116
  ///
117 117
  ///There is also a \ref dfs() "function-type interface" for the DFS
118 118
  ///algorithm, which is convenient in the simplier cases and it can be
119 119
  ///used easier.
120 120
  ///
121 121
  ///\tparam GR The type of the digraph the algorithm runs on.
122 122
  ///The default type is \ref ListDigraph.
123 123
#ifdef DOXYGEN
124 124
  template <typename GR,
125 125
            typename TR>
126 126
#else
127 127
  template <typename GR=ListDigraph,
128 128
            typename TR=DfsDefaultTraits<GR> >
129 129
#endif
130 130
  class Dfs {
131 131
  public:
132 132

	
133 133
    ///The type of the digraph the algorithm runs on.
134 134
    typedef typename TR::Digraph Digraph;
135 135

	
136 136
    ///\brief The type of the map that stores the predecessor arcs of the
137 137
    ///DFS paths.
138 138
    typedef typename TR::PredMap PredMap;
139 139
    ///The type of the map that stores the distances of the nodes.
140 140
    typedef typename TR::DistMap DistMap;
141 141
    ///The type of the map that indicates which nodes are reached.
142 142
    typedef typename TR::ReachedMap ReachedMap;
143 143
    ///The type of the map that indicates which nodes are processed.
144 144
    typedef typename TR::ProcessedMap ProcessedMap;
145 145
    ///The type of the paths.
146 146
    typedef PredMapPath<Digraph, PredMap> Path;
147 147

	
148 148
    ///The \ref DfsDefaultTraits "traits class" of the algorithm.
149 149
    typedef TR Traits;
150 150

	
151 151
  private:
152 152

	
153 153
    typedef typename Digraph::Node Node;
154 154
    typedef typename Digraph::NodeIt NodeIt;
155 155
    typedef typename Digraph::Arc Arc;
156 156
    typedef typename Digraph::OutArcIt OutArcIt;
157 157

	
158 158
    //Pointer to the underlying digraph.
159 159
    const Digraph *G;
160 160
    //Pointer to the map of predecessor arcs.
161 161
    PredMap *_pred;
162 162
    //Indicates if _pred is locally allocated (true) or not.
163 163
    bool local_pred;
164 164
    //Pointer to the map of distances.
165 165
    DistMap *_dist;
166 166
    //Indicates if _dist is locally allocated (true) or not.
167 167
    bool local_dist;
168 168
    //Pointer to the map of reached status of the nodes.
169 169
    ReachedMap *_reached;
170 170
    //Indicates if _reached is locally allocated (true) or not.
171 171
    bool local_reached;
172 172
    //Pointer to the map of processed status of the nodes.
173 173
    ProcessedMap *_processed;
174 174
    //Indicates if _processed is locally allocated (true) or not.
175 175
    bool local_processed;
176 176

	
177 177
    std::vector<typename Digraph::OutArcIt> _stack;
178 178
    int _stack_head;
179 179

	
180 180
    //Creates the maps if necessary.
181 181
    void create_maps()
182 182
    {
183 183
      if(!_pred) {
184 184
        local_pred = true;
185 185
        _pred = Traits::createPredMap(*G);
186 186
      }
187 187
      if(!_dist) {
188 188
        local_dist = true;
189 189
        _dist = Traits::createDistMap(*G);
190 190
      }
191 191
      if(!_reached) {
192 192
        local_reached = true;
193 193
        _reached = Traits::createReachedMap(*G);
194 194
      }
195 195
      if(!_processed) {
196 196
        local_processed = true;
197 197
        _processed = Traits::createProcessedMap(*G);
198 198
      }
199 199
    }
200 200

	
201 201
  protected:
202 202

	
203 203
    Dfs() {}
204 204

	
205 205
  public:
206 206

	
207 207
    typedef Dfs Create;
208 208

	
209
    ///\name Named template parameters
209
    ///\name Named Template Parameters
210 210

	
211 211
    ///@{
212 212

	
213 213
    template <class T>
214 214
    struct SetPredMapTraits : public Traits {
215 215
      typedef T PredMap;
216 216
      static PredMap *createPredMap(const Digraph &)
217 217
      {
218 218
        LEMON_ASSERT(false, "PredMap is not initialized");
219 219
        return 0; // ignore warnings
220 220
      }
221 221
    };
222 222
    ///\brief \ref named-templ-param "Named parameter" for setting
223 223
    ///\c PredMap type.
224 224
    ///
225 225
    ///\ref named-templ-param "Named parameter" for setting
226 226
    ///\c PredMap type.
227 227
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
228 228
    template <class T>
229 229
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
230 230
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
231 231
    };
232 232

	
233 233
    template <class T>
234 234
    struct SetDistMapTraits : public Traits {
235 235
      typedef T DistMap;
236 236
      static DistMap *createDistMap(const Digraph &)
237 237
      {
238 238
        LEMON_ASSERT(false, "DistMap is not initialized");
239 239
        return 0; // ignore warnings
240 240
      }
241 241
    };
242 242
    ///\brief \ref named-templ-param "Named parameter" for setting
243 243
    ///\c DistMap type.
244 244
    ///
245 245
    ///\ref named-templ-param "Named parameter" for setting
246 246
    ///\c DistMap type.
247 247
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
248 248
    template <class T>
249 249
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
250 250
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
251 251
    };
252 252

	
253 253
    template <class T>
254 254
    struct SetReachedMapTraits : public Traits {
255 255
      typedef T ReachedMap;
256 256
      static ReachedMap *createReachedMap(const Digraph &)
257 257
      {
258 258
        LEMON_ASSERT(false, "ReachedMap is not initialized");
259 259
        return 0; // ignore warnings
260 260
      }
261 261
    };
262 262
    ///\brief \ref named-templ-param "Named parameter" for setting
263 263
    ///\c ReachedMap type.
264 264
    ///
265 265
    ///\ref named-templ-param "Named parameter" for setting
266 266
    ///\c ReachedMap type.
267 267
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
268 268
    template <class T>
269 269
    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
270 270
      typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
271 271
    };
272 272

	
273 273
    template <class T>
274 274
    struct SetProcessedMapTraits : public Traits {
275 275
      typedef T ProcessedMap;
276 276
      static ProcessedMap *createProcessedMap(const Digraph &)
277 277
      {
278 278
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
279 279
        return 0; // ignore warnings
280 280
      }
281 281
    };
282 282
    ///\brief \ref named-templ-param "Named parameter" for setting
283 283
    ///\c ProcessedMap type.
284 284
    ///
285 285
    ///\ref named-templ-param "Named parameter" for setting
286 286
    ///\c ProcessedMap type.
287 287
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
288 288
    template <class T>
289 289
    struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
290 290
      typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
291 291
    };
292 292

	
293 293
    struct SetStandardProcessedMapTraits : public Traits {
294 294
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
295 295
      static ProcessedMap *createProcessedMap(const Digraph &g)
296 296
      {
297 297
        return new ProcessedMap(g);
298 298
      }
299 299
    };
300 300
    ///\brief \ref named-templ-param "Named parameter" for setting
301 301
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
302 302
    ///
303 303
    ///\ref named-templ-param "Named parameter" for setting
304 304
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
305 305
    ///If you don't set it explicitly, it will be automatically allocated.
306 306
    struct SetStandardProcessedMap :
307 307
      public Dfs< Digraph, SetStandardProcessedMapTraits > {
308 308
      typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
309 309
    };
310 310

	
311 311
    ///@}
312 312

	
313 313
  public:
314 314

	
315 315
    ///Constructor.
316 316

	
317 317
    ///Constructor.
318 318
    ///\param g The digraph the algorithm runs on.
319 319
    Dfs(const Digraph &g) :
320 320
      G(&g),
321 321
      _pred(NULL), local_pred(false),
322 322
      _dist(NULL), local_dist(false),
323 323
      _reached(NULL), local_reached(false),
324 324
      _processed(NULL), local_processed(false)
325 325
    { }
326 326

	
327 327
    ///Destructor.
328 328
    ~Dfs()
329 329
    {
330 330
      if(local_pred) delete _pred;
331 331
      if(local_dist) delete _dist;
332 332
      if(local_reached) delete _reached;
333 333
      if(local_processed) delete _processed;
334 334
    }
335 335

	
336 336
    ///Sets the map that stores the predecessor arcs.
337 337

	
Ignore white space 256 line context
... ...
@@ -161,257 +161,257 @@
161 161
    static DistMap *createDistMap(const Digraph &g)
162 162
    {
163 163
      return new DistMap(g);
164 164
    }
165 165
  };
166 166

	
167 167
  ///%Dijkstra algorithm class.
168 168

	
169 169
  /// \ingroup shortest_path
170 170
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
171 171
  ///
172 172
  ///The arc lengths are passed to the algorithm using a
173 173
  ///\ref concepts::ReadMap "ReadMap",
174 174
  ///so it is easy to change it to any kind of length.
175 175
  ///The type of the length is determined by the
176 176
  ///\ref concepts::ReadMap::Value "Value" of the length map.
177 177
  ///It is also possible to change the underlying priority heap.
178 178
  ///
179 179
  ///There is also a \ref dijkstra() "function-type interface" for the
180 180
  ///%Dijkstra algorithm, which is convenient in the simplier cases and
181 181
  ///it can be used easier.
182 182
  ///
183 183
  ///\tparam GR The type of the digraph the algorithm runs on.
184 184
  ///The default type is \ref ListDigraph.
185 185
  ///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
186 186
  ///the lengths of the arcs.
187 187
  ///It is read once for each arc, so the map may involve in
188 188
  ///relatively time consuming process to compute the arc lengths if
189 189
  ///it is necessary. The default map type is \ref
190 190
  ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
191 191
#ifdef DOXYGEN
192 192
  template <typename GR, typename LEN, typename TR>
193 193
#else
194 194
  template <typename GR=ListDigraph,
195 195
            typename LEN=typename GR::template ArcMap<int>,
196 196
            typename TR=DijkstraDefaultTraits<GR,LEN> >
197 197
#endif
198 198
  class Dijkstra {
199 199
  public:
200 200

	
201 201
    ///The type of the digraph the algorithm runs on.
202 202
    typedef typename TR::Digraph Digraph;
203 203

	
204 204
    ///The type of the length of the arcs.
205 205
    typedef typename TR::LengthMap::Value Value;
206 206
    ///The type of the map that stores the arc lengths.
207 207
    typedef typename TR::LengthMap LengthMap;
208 208
    ///\brief The type of the map that stores the predecessor arcs of the
209 209
    ///shortest paths.
210 210
    typedef typename TR::PredMap PredMap;
211 211
    ///The type of the map that stores the distances of the nodes.
212 212
    typedef typename TR::DistMap DistMap;
213 213
    ///The type of the map that indicates which nodes are processed.
214 214
    typedef typename TR::ProcessedMap ProcessedMap;
215 215
    ///The type of the paths.
216 216
    typedef PredMapPath<Digraph, PredMap> Path;
217 217
    ///The cross reference type used for the current heap.
218 218
    typedef typename TR::HeapCrossRef HeapCrossRef;
219 219
    ///The heap type used by the algorithm.
220 220
    typedef typename TR::Heap Heap;
221 221
    ///\brief The \ref DijkstraDefaultOperationTraits "operation traits class"
222 222
    ///of the algorithm.
223 223
    typedef typename TR::OperationTraits OperationTraits;
224 224

	
225 225
    ///The \ref DijkstraDefaultTraits "traits class" of the algorithm.
226 226
    typedef TR Traits;
227 227

	
228 228
  private:
229 229

	
230 230
    typedef typename Digraph::Node Node;
231 231
    typedef typename Digraph::NodeIt NodeIt;
232 232
    typedef typename Digraph::Arc Arc;
233 233
    typedef typename Digraph::OutArcIt OutArcIt;
234 234

	
235 235
    //Pointer to the underlying digraph.
236 236
    const Digraph *G;
237 237
    //Pointer to the length map.
238 238
    const LengthMap *_length;
239 239
    //Pointer to the map of predecessors arcs.
240 240
    PredMap *_pred;
241 241
    //Indicates if _pred is locally allocated (true) or not.
242 242
    bool local_pred;
243 243
    //Pointer to the map of distances.
244 244
    DistMap *_dist;
245 245
    //Indicates if _dist is locally allocated (true) or not.
246 246
    bool local_dist;
247 247
    //Pointer to the map of processed status of the nodes.
248 248
    ProcessedMap *_processed;
249 249
    //Indicates if _processed is locally allocated (true) or not.
250 250
    bool local_processed;
251 251
    //Pointer to the heap cross references.
252 252
    HeapCrossRef *_heap_cross_ref;
253 253
    //Indicates if _heap_cross_ref is locally allocated (true) or not.
254 254
    bool local_heap_cross_ref;
255 255
    //Pointer to the heap.
256 256
    Heap *_heap;
257 257
    //Indicates if _heap is locally allocated (true) or not.
258 258
    bool local_heap;
259 259

	
260 260
    //Creates the maps if necessary.
261 261
    void create_maps()
262 262
    {
263 263
      if(!_pred) {
264 264
        local_pred = true;
265 265
        _pred = Traits::createPredMap(*G);
266 266
      }
267 267
      if(!_dist) {
268 268
        local_dist = true;
269 269
        _dist = Traits::createDistMap(*G);
270 270
      }
271 271
      if(!_processed) {
272 272
        local_processed = true;
273 273
        _processed = Traits::createProcessedMap(*G);
274 274
      }
275 275
      if (!_heap_cross_ref) {
276 276
        local_heap_cross_ref = true;
277 277
        _heap_cross_ref = Traits::createHeapCrossRef(*G);
278 278
      }
279 279
      if (!_heap) {
280 280
        local_heap = true;
281 281
        _heap = Traits::createHeap(*_heap_cross_ref);
282 282
      }
283 283
    }
284 284

	
285 285
  public:
286 286

	
287 287
    typedef Dijkstra Create;
288 288

	
289
    ///\name Named template parameters
289
    ///\name Named Template Parameters
290 290

	
291 291
    ///@{
292 292

	
293 293
    template <class T>
294 294
    struct SetPredMapTraits : public Traits {
295 295
      typedef T PredMap;
296 296
      static PredMap *createPredMap(const Digraph &)
297 297
      {
298 298
        LEMON_ASSERT(false, "PredMap is not initialized");
299 299
        return 0; // ignore warnings
300 300
      }
301 301
    };
302 302
    ///\brief \ref named-templ-param "Named parameter" for setting
303 303
    ///\c PredMap type.
304 304
    ///
305 305
    ///\ref named-templ-param "Named parameter" for setting
306 306
    ///\c PredMap type.
307 307
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
308 308
    template <class T>
309 309
    struct SetPredMap
310 310
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
311 311
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
312 312
    };
313 313

	
314 314
    template <class T>
315 315
    struct SetDistMapTraits : public Traits {
316 316
      typedef T DistMap;
317 317
      static DistMap *createDistMap(const Digraph &)
318 318
      {
319 319
        LEMON_ASSERT(false, "DistMap is not initialized");
320 320
        return 0; // ignore warnings
321 321
      }
322 322
    };
323 323
    ///\brief \ref named-templ-param "Named parameter" for setting
324 324
    ///\c DistMap type.
325 325
    ///
326 326
    ///\ref named-templ-param "Named parameter" for setting
327 327
    ///\c DistMap type.
328 328
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
329 329
    template <class T>
330 330
    struct SetDistMap
331 331
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
332 332
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
333 333
    };
334 334

	
335 335
    template <class T>
336 336
    struct SetProcessedMapTraits : public Traits {
337 337
      typedef T ProcessedMap;
338 338
      static ProcessedMap *createProcessedMap(const Digraph &)
339 339
      {
340 340
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
341 341
        return 0; // ignore warnings
342 342
      }
343 343
    };
344 344
    ///\brief \ref named-templ-param "Named parameter" for setting
345 345
    ///\c ProcessedMap type.
346 346
    ///
347 347
    ///\ref named-templ-param "Named parameter" for setting
348 348
    ///\c ProcessedMap type.
349 349
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
350 350
    template <class T>
351 351
    struct SetProcessedMap
352 352
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
353 353
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
354 354
    };
355 355

	
356 356
    struct SetStandardProcessedMapTraits : public Traits {
357 357
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
358 358
      static ProcessedMap *createProcessedMap(const Digraph &g)
359 359
      {
360 360
        return new ProcessedMap(g);
361 361
      }
362 362
    };
363 363
    ///\brief \ref named-templ-param "Named parameter" for setting
364 364
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
365 365
    ///
366 366
    ///\ref named-templ-param "Named parameter" for setting
367 367
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
368 368
    ///If you don't set it explicitly, it will be automatically allocated.
369 369
    struct SetStandardProcessedMap
370 370
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
371 371
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
372 372
      Create;
373 373
    };
374 374

	
375 375
    template <class H, class CR>
376 376
    struct SetHeapTraits : public Traits {
377 377
      typedef CR HeapCrossRef;
378 378
      typedef H Heap;
379 379
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
380 380
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
381 381
        return 0; // ignore warnings
382 382
      }
383 383
      static Heap *createHeap(HeapCrossRef &)
384 384
      {
385 385
        LEMON_ASSERT(false, "Heap is not initialized");
386 386
        return 0; // ignore warnings
387 387
      }
388 388
    };
389 389
    ///\brief \ref named-templ-param "Named parameter" for setting
390 390
    ///heap and cross reference types
391 391
    ///
392 392
    ///\ref named-templ-param "Named parameter" for setting heap and cross
393 393
    ///reference types. If this named parameter is used, then external
394 394
    ///heap and cross reference objects must be passed to the algorithm
395 395
    ///using the \ref heap() function before calling \ref run(Node) "run()"
396 396
    ///or \ref init().
397 397
    ///\sa SetStandardHeap
398 398
    template <class H, class CR = typename Digraph::template NodeMap<int> >
399 399
    struct SetHeap
400 400
      : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
401 401
      typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
402 402
    };
403 403

	
404 404
    template <class H, class CR>
405 405
    struct SetStandardHeapTraits : public Traits {
406 406
      typedef CR HeapCrossRef;
407 407
      typedef H Heap;
408 408
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
409 409
        return new HeapCrossRef(G);
410 410
      }
411 411
      static Heap *createHeap(HeapCrossRef &R)
412 412
      {
413 413
        return new Heap(R);
414 414
      }
415 415
    };
416 416
    ///\brief \ref named-templ-param "Named parameter" for setting
417 417
    ///heap and cross reference types with automatic allocation
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DIMACS_H
20 20
#define LEMON_DIMACS_H
21 21

	
22 22
#include <iostream>
23 23
#include <string>
24 24
#include <vector>
25 25
#include <limits>
26 26
#include <lemon/maps.h>
27 27
#include <lemon/error.h>
28 28
/// \ingroup dimacs_group
29 29
/// \file
30 30
/// \brief DIMACS file format reader.
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  /// \addtogroup dimacs_group
35 35
  /// @{
36 36

	
37 37
  /// DIMACS file type descriptor.
38 38
  struct DimacsDescriptor
39 39
  {
40
    ///File type enum
41
    enum Type
42
      {
43
        NONE, MIN, MAX, SP, MAT
44
      };
40
    ///\brief DIMACS file type enum
41
    ///
42
    ///DIMACS file type enum.
43
    enum Type {
44
      NONE,  ///< Undefined type.
45
      MIN,   ///< DIMACS file type for minimum cost flow problems.
46
      MAX,   ///< DIMACS file type for maximum flow problems.
47
      SP,    ///< DIMACS file type for shostest path problems.
48
      MAT    ///< DIMACS file type for plain graphs and matching problems.
49
    };
45 50
    ///The file type
46 51
    Type type;
47 52
    ///The number of nodes in the graph
48 53
    int nodeNum;
49 54
    ///The number of edges in the graph
50 55
    int edgeNum;
51 56
    int lineShift;
52
    /// Constructor. Sets the type to NONE.
57
    ///Constructor. It sets the type to \c NONE.
53 58
    DimacsDescriptor() : type(NONE) {}
54 59
  };
55 60

	
56 61
  ///Discover the type of a DIMACS file
57 62

	
58
  ///It starts seeking the beginning of the file for the problem type
59
  ///and size info. The found data is returned in a special struct
60
  ///that can be evaluated and passed to the appropriate reader
61
  ///function.
63
  ///This function starts seeking the beginning of the given file for the
64
  ///problem type and size info. 
65
  ///The found data is returned in a special struct that can be evaluated
66
  ///and passed to the appropriate reader function.
62 67
  DimacsDescriptor dimacsType(std::istream& is)
63 68
  {
64 69
    DimacsDescriptor r;
65 70
    std::string problem,str;
66 71
    char c;
67 72
    r.lineShift=0;
68 73
    while (is >> c)
69 74
      switch(c)
70 75
        {
71 76
        case 'p':
72 77
          if(is >> problem >> r.nodeNum >> r.edgeNum)
73 78
            {
74 79
              getline(is, str);
75 80
              r.lineShift++;
76 81
              if(problem=="min") r.type=DimacsDescriptor::MIN;
77 82
              else if(problem=="max") r.type=DimacsDescriptor::MAX;
78 83
              else if(problem=="sp") r.type=DimacsDescriptor::SP;
79 84
              else if(problem=="mat") r.type=DimacsDescriptor::MAT;
80 85
              else throw FormatError("Unknown problem type");
81 86
              return r;
82 87
            }
83 88
          else
84 89
            {
85 90
              throw FormatError("Missing or wrong problem type declaration.");
86 91
            }
87 92
          break;
88 93
        case 'c':
89 94
          getline(is, str);
90 95
          r.lineShift++;
91 96
          break;
92 97
        default:
93 98
          throw FormatError("Unknown DIMACS declaration.");
94 99
        }
95 100
    throw FormatError("Missing problem type declaration.");
96 101
  }
97 102

	
98 103

	
99

	
100
  /// DIMACS minimum cost flow reader function.
104
  /// \brief DIMACS minimum cost flow reader function.
101 105
  ///
102 106
  /// This function reads a minimum cost flow instance from DIMACS format,
103 107
  /// i.e. from a DIMACS file having a line starting with
104 108
  /// \code
105 109
  ///   p min
106 110
  /// \endcode
107 111
  /// At the beginning, \c g is cleared by \c g.clear(). The supply
108 112
  /// amount of the nodes are written to the \c supply node map
109 113
  /// (they are signed values). The lower bounds, capacities and costs
110 114
  /// of the arcs are written to the \c lower, \c capacity and \c cost
111 115
  /// arc maps.
112 116
  ///
113 117
  /// If the capacity of an arc is less than the lower bound, it will
114 118
  /// be set to "infinite" instead. The actual value of "infinite" is
115 119
  /// contolled by the \c infty parameter. If it is 0 (the default value),
116 120
  /// \c std::numeric_limits<Capacity>::infinity() will be used if available,
117 121
  /// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to
118 122
  /// a non-zero value, that value will be used as "infinite".
119 123
  ///
120 124
  /// If the file type was previously evaluated by dimacsType(), then
121 125
  /// the descriptor struct should be given by the \c dest parameter.
122 126
  template <typename Digraph, typename LowerMap,
123 127
            typename CapacityMap, typename CostMap,
124 128
            typename SupplyMap>
125 129
  void readDimacsMin(std::istream& is,
126 130
                     Digraph &g,
127 131
                     LowerMap& lower,
128 132
                     CapacityMap& capacity,
129 133
                     CostMap& cost,
130 134
                     SupplyMap& supply,
131 135
                     typename CapacityMap::Value infty = 0,
132 136
                     DimacsDescriptor desc=DimacsDescriptor())
133 137
  {
134 138
    g.clear();
135 139
    std::vector<typename Digraph::Node> nodes;
136 140
    typename Digraph::Arc e;
137 141
    std::string problem, str;
138 142
    char c;
139 143
    int i, j;
140 144
    if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is);
141 145
    if(desc.type!=DimacsDescriptor::MIN)
142 146
      throw FormatError("Problem type mismatch");
143 147

	
144 148
    nodes.resize(desc.nodeNum + 1);
145 149
    for (int k = 1; k <= desc.nodeNum; ++k) {
146 150
      nodes[k] = g.addNode();
147 151
      supply.set(nodes[k], 0);
148 152
    }
149 153

	
150 154
    typename SupplyMap::Value sup;
151 155
    typename CapacityMap::Value low;
152 156
    typename CapacityMap::Value cap;
153 157
    typename CostMap::Value co;
154 158
    typedef typename CapacityMap::Value Capacity;
155 159
    if(infty==0)
156 160
      infty = std::numeric_limits<Capacity>::has_infinity ?
157 161
        std::numeric_limits<Capacity>::infinity() :
158 162
        std::numeric_limits<Capacity>::max();
159 163

	
160 164
    while (is >> c) {
161 165
      switch (c) {
162 166
      case 'c': // comment line
163 167
        getline(is, str);
164 168
        break;
165 169
      case 'n': // node definition line
166 170
        is >> i >> sup;
167 171
        getline(is, str);
168 172
        supply.set(nodes[i], sup);
169 173
        break;
170 174
      case 'a': // arc definition line
171 175
        is >> i >> j >> low >> cap >> co;
172 176
        getline(is, str);
173 177
        e = g.addArc(nodes[i], nodes[j]);
174 178
        lower.set(e, low);
175 179
        if (cap >= low)
176 180
          capacity.set(e, cap);
177 181
        else
178 182
          capacity.set(e, infty);
179 183
        cost.set(e, co);
180 184
        break;
181 185
      }
182 186
    }
183 187
  }
184 188

	
185 189
  template<typename Digraph, typename CapacityMap>
186 190
  void _readDimacs(std::istream& is,
187 191
                   Digraph &g,
188 192
                   CapacityMap& capacity,
189 193
                   typename Digraph::Node &s,
190 194
                   typename Digraph::Node &t,
191 195
                   typename CapacityMap::Value infty = 0,
192 196
                   DimacsDescriptor desc=DimacsDescriptor()) {
193 197
    g.clear();
194 198
    s=t=INVALID;
195 199
    std::vector<typename Digraph::Node> nodes;
196 200
    typename Digraph::Arc e;
197 201
    char c, d;
198 202
    int i, j;
199 203
    typename CapacityMap::Value _cap;
200 204
    std::string str;
201 205
    nodes.resize(desc.nodeNum + 1);
202 206
    for (int k = 1; k <= desc.nodeNum; ++k) {
203 207
      nodes[k] = g.addNode();
204 208
    }
205 209
    typedef typename CapacityMap::Value Capacity;
206 210

	
207 211
    if(infty==0)
208 212
      infty = std::numeric_limits<Capacity>::has_infinity ?
209 213
        std::numeric_limits<Capacity>::infinity() :
210 214
        std::numeric_limits<Capacity>::max();
211 215
 
212 216
    while (is >> c) {
213 217
      switch (c) {
214 218
      case 'c': // comment line
215 219
        getline(is, str);
216 220
        break;
217 221
      case 'n': // node definition line
218 222
        if (desc.type==DimacsDescriptor::SP) { // shortest path problem
219 223
          is >> i;
220 224
          getline(is, str);
221 225
          s = nodes[i];
222 226
        }
223 227
        if (desc.type==DimacsDescriptor::MAX) { // max flow problem
224 228
          is >> i >> d;
225 229
          getline(is, str);
226 230
          if (d == 's') s = nodes[i];
227 231
          if (d == 't') t = nodes[i];
228 232
        }
229 233
        break;
230 234
      case 'a': // arc definition line
231 235
        if (desc.type==DimacsDescriptor::SP) {
232 236
          is >> i >> j >> _cap;
233 237
          getline(is, str);
234 238
          e = g.addArc(nodes[i], nodes[j]);
235 239
          capacity.set(e, _cap);
236 240
        } 
237 241
        else if (desc.type==DimacsDescriptor::MAX) {
238 242
          is >> i >> j >> _cap;
239 243
          getline(is, str);
240 244
          e = g.addArc(nodes[i], nodes[j]);
241 245
          if (_cap >= 0)
242 246
            capacity.set(e, _cap);
243 247
          else
244 248
            capacity.set(e, infty);
245 249
        }
246 250
        else {
247 251
          is >> i >> j;
248 252
          getline(is, str);
249 253
          g.addArc(nodes[i], nodes[j]);
250 254
        }
251 255
        break;
252 256
      }
253 257
    }
254 258
  }
255 259

	
256
  /// DIMACS maximum flow reader function.
260
  /// \brief DIMACS maximum flow reader function.
257 261
  ///
258 262
  /// This function reads a maximum flow instance from DIMACS format,
259 263
  /// i.e. from a DIMACS file having a line starting with
260 264
  /// \code
261 265
  ///   p max
262 266
  /// \endcode
263 267
  /// At the beginning, \c g is cleared by \c g.clear(). The arc
264 268
  /// capacities are written to the \c capacity arc map and \c s and
265 269
  /// \c t are set to the source and the target nodes.
266 270
  ///
267 271
  /// If the capacity of an arc is negative, it will
268 272
  /// be set to "infinite" instead. The actual value of "infinite" is
269 273
  /// contolled by the \c infty parameter. If it is 0 (the default value),
270 274
  /// \c std::numeric_limits<Capacity>::infinity() will be used if available,
271 275
  /// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to
272 276
  /// a non-zero value, that value will be used as "infinite".
273 277
  ///
274 278
  /// If the file type was previously evaluated by dimacsType(), then
275 279
  /// the descriptor struct should be given by the \c dest parameter.
276 280
  template<typename Digraph, typename CapacityMap>
277 281
  void readDimacsMax(std::istream& is,
278 282
                     Digraph &g,
279 283
                     CapacityMap& capacity,
280 284
                     typename Digraph::Node &s,
281 285
                     typename Digraph::Node &t,
282 286
                     typename CapacityMap::Value infty = 0,
283 287
                     DimacsDescriptor desc=DimacsDescriptor()) {
284 288
    if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is);
285 289
    if(desc.type!=DimacsDescriptor::MAX)
286 290
      throw FormatError("Problem type mismatch");
287 291
    _readDimacs(is,g,capacity,s,t,infty,desc);
288 292
  }
289 293

	
290
  /// DIMACS shortest path reader function.
294
  /// \brief DIMACS shortest path reader function.
291 295
  ///
292 296
  /// This function reads a shortest path instance from DIMACS format,
293 297
  /// i.e. from a DIMACS file having a line starting with
294 298
  /// \code
295 299
  ///   p sp
296 300
  /// \endcode
297 301
  /// At the beginning, \c g is cleared by \c g.clear(). The arc
298 302
  /// lengths are written to the \c length arc map and \c s is set to the
299 303
  /// source node.
300 304
  ///
301 305
  /// If the file type was previously evaluated by dimacsType(), then
302 306
  /// the descriptor struct should be given by the \c dest parameter.
303 307
  template<typename Digraph, typename LengthMap>
304 308
  void readDimacsSp(std::istream& is,
305 309
                    Digraph &g,
306 310
                    LengthMap& length,
307 311
                    typename Digraph::Node &s,
308 312
                    DimacsDescriptor desc=DimacsDescriptor()) {
309 313
    typename Digraph::Node t;
310 314
    if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is);
311 315
    if(desc.type!=DimacsDescriptor::SP)
312 316
      throw FormatError("Problem type mismatch");
313 317
    _readDimacs(is, g, length, s, t, 0, desc);
314 318
  }
315 319

	
316
  /// DIMACS capacitated digraph reader function.
320
  /// \brief DIMACS capacitated digraph reader function.
317 321
  ///
318 322
  /// This function reads an arc capacitated digraph instance from
319 323
  /// DIMACS 'max' or 'sp' format.
320 324
  /// At the beginning, \c g is cleared by \c g.clear()
321 325
  /// and the arc capacities/lengths are written to the \c capacity
322 326
  /// arc map.
323 327
  ///
324 328
  /// In case of the 'max' format, if the capacity of an arc is negative,
325 329
  /// it will
326 330
  /// be set to "infinite" instead. The actual value of "infinite" is
327 331
  /// contolled by the \c infty parameter. If it is 0 (the default value),
328 332
  /// \c std::numeric_limits<Capacity>::infinity() will be used if available,
329 333
  /// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to
330 334
  /// a non-zero value, that value will be used as "infinite".
331 335
  ///
332 336
  /// If the file type was previously evaluated by dimacsType(), then
333 337
  /// the descriptor struct should be given by the \c dest parameter.
334 338
  template<typename Digraph, typename CapacityMap>
335 339
  void readDimacsCap(std::istream& is,
336 340
                     Digraph &g,
337 341
                     CapacityMap& capacity,
338 342
                     typename CapacityMap::Value infty = 0,
339 343
                     DimacsDescriptor desc=DimacsDescriptor()) {
340 344
    typename Digraph::Node u,v;
341 345
    if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is);
342 346
    if(desc.type!=DimacsDescriptor::MAX || desc.type!=DimacsDescriptor::SP)
343 347
      throw FormatError("Problem type mismatch");
344 348
    _readDimacs(is, g, capacity, u, v, infty, desc);
345 349
  }
346 350

	
347 351
  template<typename Graph>
348 352
  typename enable_if<lemon::UndirectedTagIndicator<Graph>,void>::type
349 353
  _addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t,
350 354
              dummy<0> = 0)
351 355
  {
352 356
    g.addEdge(s,t);
353 357
  }
354 358
  template<typename Graph>
355 359
  typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type
356 360
  _addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t,
357 361
              dummy<1> = 1)
358 362
  {
359 363
    g.addArc(s,t);
360 364
  }
361 365
  
362
  /// DIMACS plain (di)graph reader function.
366
  /// \brief DIMACS plain (di)graph reader function.
363 367
  ///
364
  /// This function reads a (di)graph without any designated nodes and
365
  /// maps from DIMACS format, i.e. from DIMACS files having a line
366
  /// starting with
368
  /// This function reads a plain (di)graph without any designated nodes
369
  /// and maps (e.g. a matching instance) from DIMACS format, i.e. from 
370
  /// DIMACS files having a line starting with
367 371
  /// \code
368 372
  ///   p mat
369 373
  /// \endcode
370 374
  /// At the beginning, \c g is cleared by \c g.clear().
371 375
  ///
372 376
  /// If the file type was previously evaluated by dimacsType(), then
373 377
  /// the descriptor struct should be given by the \c dest parameter.
374 378
  template<typename Graph>
375 379
  void readDimacsMat(std::istream& is, Graph &g,
376 380
                     DimacsDescriptor desc=DimacsDescriptor())
377 381
  {
378 382
    if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is);
379 383
    if(desc.type!=DimacsDescriptor::MAT)
380 384
      throw FormatError("Problem type mismatch");
381 385

	
382 386
    g.clear();
383 387
    std::vector<typename Graph::Node> nodes;
384 388
    char c;
385 389
    int i, j;
386 390
    std::string str;
387 391
    nodes.resize(desc.nodeNum + 1);
388 392
    for (int k = 1; k <= desc.nodeNum; ++k) {
389 393
      nodes[k] = g.addNode();
390 394
    }
391 395
    
392 396
    while (is >> c) {
393 397
      switch (c) {
394 398
      case 'c': // comment line
395 399
        getline(is, str);
396 400
        break;
397 401
      case 'n': // node definition line
398 402
        break;
399 403
      case 'a': // arc definition line
400 404
        is >> i >> j;
401 405
        getline(is, str);
402 406
        _addArcEdge(g,nodes[i], nodes[j]);
403 407
        break;
404 408
      }
405 409
    }
406 410
  }
407 411

	
408 412
  /// DIMACS plain digraph writer function.
409 413
  ///
410 414
  /// This function writes a digraph without any designated nodes and
411 415
  /// maps into DIMACS format, i.e. into DIMACS file having a line
412 416
  /// starting with
413 417
  /// \code
414 418
  ///   p mat
415 419
  /// \endcode
416 420
  /// If \c comment is not empty, then it will be printed in the first line
417 421
  /// prefixed by 'c'.
418 422
  template<typename Digraph>
419 423
  void writeDimacsMat(std::ostream& os, const Digraph &g,
420 424
                      std::string comment="") {
421 425
    typedef typename Digraph::NodeIt NodeIt;
422 426
    typedef typename Digraph::ArcIt ArcIt;
423 427

	
424 428
    if(!comment.empty())
425 429
      os << "c " << comment << std::endl;
426 430
    os << "p mat " << g.nodeNum() << " " << g.arcNum() << std::endl;
427 431

	
428 432
    typename Digraph::template NodeMap<int> nodes(g);
429 433
    int i = 1;
430 434
    for(NodeIt v(g); v != INVALID; ++v) {
431 435
      nodes.set(v, i);
432 436
      ++i;
433 437
    }
434 438
    for(ArcIt e(g); e != INVALID; ++e) {
435 439
      os << "a " << nodes[g.source(e)] << " " << nodes[g.target(e)]
436 440
         << std::endl;
437 441
    }
438 442
  }
439 443

	
440 444
  /// @}
441 445

	
442 446
} //namespace lemon
443 447

	
444 448
#endif //LEMON_DIMACS_H
Ignore white space 6 line context
... ...
@@ -143,272 +143,268 @@
143 143
  ///\param ost Reference to the output stream.
144 144
  ///By default it is <tt>std::cout</tt>.
145 145
  ///\param pros If it is \c true, then the \c ostream referenced by \c os
146 146
  ///will be explicitly deallocated by the destructor.
147 147
  DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout,
148 148
                          bool pros = false) :
149 149
    g(gr), os(ost),
150 150
    _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
151 151
    _nodeColors(WHITE), _arcColors(BLACK),
152 152
    _arcWidths(1.0), _arcWidthScale(0.003),
153 153
    _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
154 154
    _nodeBorderQuotient(.1),
155 155
    _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
156 156
    _showNodes(true), _showArcs(true),
157 157
    _enableParallel(false), _parArcDist(1),
158 158
    _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
159 159
    _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
160 160
    _undirected(lemon::UndirectedTagIndicator<GR>::value),
161 161
    _pleaseRemoveOsStream(pros), _scaleToA4(false),
162 162
    _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
163 163
    _autoNodeScale(false),
164 164
    _autoArcWidthScale(false),
165 165
    _absoluteNodeSizes(false),
166 166
    _absoluteArcWidths(false),
167 167
    _negY(false),
168 168
    _preScale(true)
169 169
  {}
170 170
};
171 171

	
172 172
///Auxiliary class to implement the named parameters of \ref graphToEps()
173 173

	
174 174
///Auxiliary class to implement the named parameters of \ref graphToEps().
175 175
///
176 176
///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
177 177
template<class T> class GraphToEps : public T
178 178
{
179 179
  // Can't believe it is required by the C++ standard
180 180
  using T::g;
181 181
  using T::os;
182 182

	
183 183
  using T::_coords;
184 184
  using T::_nodeSizes;
185 185
  using T::_nodeShapes;
186 186
  using T::_nodeColors;
187 187
  using T::_arcColors;
188 188
  using T::_arcWidths;
189 189

	
190 190
  using T::_arcWidthScale;
191 191
  using T::_nodeScale;
192 192
  using T::_xBorder;
193 193
  using T::_yBorder;
194 194
  using T::_scale;
195 195
  using T::_nodeBorderQuotient;
196 196

	
197 197
  using T::_drawArrows;
198 198
  using T::_arrowLength;
199 199
  using T::_arrowWidth;
200 200

	
201 201
  using T::_showNodes;
202 202
  using T::_showArcs;
203 203

	
204 204
  using T::_enableParallel;
205 205
  using T::_parArcDist;
206 206

	
207 207
  using T::_showNodeText;
208 208
  using T::_nodeTexts;
209 209
  using T::_nodeTextSize;
210 210

	
211 211
  using T::_showNodePsText;
212 212
  using T::_nodePsTexts;
213 213
  using T::_nodePsTextsPreamble;
214 214

	
215 215
  using T::_undirected;
216 216

	
217 217
  using T::_pleaseRemoveOsStream;
218 218

	
219 219
  using T::_scaleToA4;
220 220

	
221 221
  using T::_title;
222 222
  using T::_copyright;
223 223

	
224 224
  using T::NodeTextColorType;
225 225
  using T::CUST_COL;
226 226
  using T::DIST_COL;
227 227
  using T::DIST_BW;
228 228
  using T::_nodeTextColorType;
229 229
  using T::_nodeTextColors;
230 230

	
231 231
  using T::_autoNodeScale;
232 232
  using T::_autoArcWidthScale;
233 233

	
234 234
  using T::_absoluteNodeSizes;
235 235
  using T::_absoluteArcWidths;
236 236

	
237 237

	
238 238
  using T::_negY;
239 239
  using T::_preScale;
240 240

	
241 241
  // dradnats ++C eht yb deriuqer si ti eveileb t'naC
242 242

	
243 243
  typedef typename T::Graph Graph;
244 244
  typedef typename Graph::Node Node;
245 245
  typedef typename Graph::NodeIt NodeIt;
246 246
  typedef typename Graph::Arc Arc;
247 247
  typedef typename Graph::ArcIt ArcIt;
248 248
  typedef typename Graph::InArcIt InArcIt;
249 249
  typedef typename Graph::OutArcIt OutArcIt;
250 250

	
251 251
  static const int INTERPOL_PREC;
252 252
  static const double A4HEIGHT;
253 253
  static const double A4WIDTH;
254 254
  static const double A4BORDER;
255 255

	
256 256
  bool dontPrint;
257 257

	
258 258
public:
259 259
  ///Node shapes
260 260

	
261 261
  ///Node shapes.
262 262
  ///
263 263
  enum NodeShapes {
264 264
    /// = 0
265 265
    ///\image html nodeshape_0.png
266 266
    ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
267 267
    CIRCLE=0,
268 268
    /// = 1
269 269
    ///\image html nodeshape_1.png
270 270
    ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
271
    ///
272 271
    SQUARE=1,
273 272
    /// = 2
274 273
    ///\image html nodeshape_2.png
275 274
    ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
276
    ///
277 275
    DIAMOND=2,
278 276
    /// = 3
279 277
    ///\image html nodeshape_3.png
280
    ///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm
281
    ///
278
    ///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm
282 279
    MALE=3,
283 280
    /// = 4
284 281
    ///\image html nodeshape_4.png
285
    ///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm
286
    ///
282
    ///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm
287 283
    FEMALE=4
288 284
  };
289 285

	
290 286
private:
291 287
  class arcLess {
292 288
    const Graph &g;
293 289
  public:
294 290
    arcLess(const Graph &_g) : g(_g) {}
295 291
    bool operator()(Arc a,Arc b) const
296 292
    {
297 293
      Node ai=std::min(g.source(a),g.target(a));
298 294
      Node aa=std::max(g.source(a),g.target(a));
299 295
      Node bi=std::min(g.source(b),g.target(b));
300 296
      Node ba=std::max(g.source(b),g.target(b));
301 297
      return ai<bi ||
302 298
        (ai==bi && (aa < ba ||
303 299
                    (aa==ba && ai==g.source(a) && bi==g.target(b))));
304 300
    }
305 301
  };
306 302
  bool isParallel(Arc e,Arc f) const
307 303
  {
308 304
    return (g.source(e)==g.source(f)&&
309 305
            g.target(e)==g.target(f)) ||
310 306
      (g.source(e)==g.target(f)&&
311 307
       g.target(e)==g.source(f));
312 308
  }
313 309
  template<class TT>
314 310
  static std::string psOut(const dim2::Point<TT> &p)
315 311
    {
316 312
      std::ostringstream os;
317 313
      os << p.x << ' ' << p.y;
318 314
      return os.str();
319 315
    }
320 316
  static std::string psOut(const Color &c)
321 317
    {
322 318
      std::ostringstream os;
323 319
      os << c.red() << ' ' << c.green() << ' ' << c.blue();
324 320
      return os.str();
325 321
    }
326 322

	
327 323
public:
328 324
  GraphToEps(const T &t) : T(t), dontPrint(false) {};
329 325

	
330 326
  template<class X> struct CoordsTraits : public T {
331 327
  typedef X CoordsMapType;
332 328
    const X &_coords;
333 329
    CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
334 330
  };
335 331
  ///Sets the map of the node coordinates
336 332

	
337 333
  ///Sets the map of the node coordinates.
338 334
  ///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or
339 335
  ///\ref dim2::Point "dim2::Point<int>" values.
340 336
  template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
341 337
    dontPrint=true;
342 338
    return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
343 339
  }
344 340
  template<class X> struct NodeSizesTraits : public T {
345 341
    const X &_nodeSizes;
346 342
    NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
347 343
  };
348 344
  ///Sets the map of the node sizes
349 345

	
350 346
  ///Sets the map of the node sizes.
351 347
  ///\param x must be a node map with \c double (or convertible) values.
352 348
  template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
353 349
  {
354 350
    dontPrint=true;
355 351
    return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
356 352
  }
357 353
  template<class X> struct NodeShapesTraits : public T {
358 354
    const X &_nodeShapes;
359 355
    NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
360 356
  };
361 357
  ///Sets the map of the node shapes
362 358

	
363 359
  ///Sets the map of the node shapes.
364 360
  ///The available shape values
365 361
  ///can be found in \ref NodeShapes "enum NodeShapes".
366 362
  ///\param x must be a node map with \c int (or convertible) values.
367 363
  ///\sa NodeShapes
368 364
  template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
369 365
  {
370 366
    dontPrint=true;
371 367
    return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
372 368
  }
373 369
  template<class X> struct NodeTextsTraits : public T {
374 370
    const X &_nodeTexts;
375 371
    NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
376 372
  };
377 373
  ///Sets the text printed on the nodes
378 374

	
379 375
  ///Sets the text printed on the nodes.
380 376
  ///\param x must be a node map with type that can be pushed to a standard
381 377
  ///\c ostream.
382 378
  template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
383 379
  {
384 380
    dontPrint=true;
385 381
    _showNodeText=true;
386 382
    return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
387 383
  }
388 384
  template<class X> struct NodePsTextsTraits : public T {
389 385
    const X &_nodePsTexts;
390 386
    NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
391 387
  };
392 388
  ///Inserts a PostScript block to the nodes
393 389

	
394 390
  ///With this command it is possible to insert a verbatim PostScript
395 391
  ///block to the nodes.
396 392
  ///The PS current point will be moved to the center of the node before
397 393
  ///the PostScript block inserted.
398 394
  ///
399 395
  ///Before and after the block a newline character is inserted so you
400 396
  ///don't have to bother with the separators.
401 397
  ///
402 398
  ///\param x must be a node map with type that can be pushed to a standard
403 399
  ///\c ostream.
404 400
  ///
405 401
  ///\sa nodePsTextsPreamble()
406 402
  template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
407 403
  {
408 404
    dontPrint=true;
409 405
    _showNodePsText=true;
410 406
    return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
411 407
  }
412 408
  template<class X> struct ArcWidthsTraits : public T {
413 409
    const X &_arcWidths;
414 410
    ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
Ignore white space 6 line context
... ...
@@ -123,207 +123,205 @@
123 123

	
124 124
    template <typename In>
125 125
    struct MapInputIndicator<In,
126 126
      typename exists<typename In::Value>::type> {
127 127
      static const bool value = true;
128 128
    };
129 129

	
130 130
    template <typename In, typename Enable = void>
131 131
    struct SequenceOutputIndicator {
132 132
      static const bool value = false;
133 133
    };
134 134

	
135 135
    template <typename Out>
136 136
    struct SequenceOutputIndicator<Out,
137 137
      typename exists<typename Out::value_type>::type> {
138 138
      static const bool value = true;
139 139
    };
140 140

	
141 141
    template <typename Out, typename Enable = void>
142 142
    struct MapOutputIndicator {
143 143
      static const bool value = false;
144 144
    };
145 145

	
146 146
    template <typename Out>
147 147
    struct MapOutputIndicator<Out,
148 148
      typename exists<typename Out::Value>::type> {
149 149
      static const bool value = true;
150 150
    };
151 151

	
152 152
    template <typename In, typename InEnable = void>
153 153
    struct KruskalValueSelector {};
154 154

	
155 155
    template <typename In>
156 156
    struct KruskalValueSelector<In,
157 157
      typename enable_if<SequenceInputIndicator<In>, void>::type>
158 158
    {
159 159
      typedef typename In::value_type::second_type Value;
160 160
    };
161 161

	
162 162
    template <typename In>
163 163
    struct KruskalValueSelector<In,
164 164
      typename enable_if<MapInputIndicator<In>, void>::type>
165 165
    {
166 166
      typedef typename In::Value Value;
167 167
    };
168 168

	
169 169
    template <typename Graph, typename In, typename Out,
170 170
              typename InEnable = void>
171 171
    struct KruskalInputSelector {};
172 172

	
173 173
    template <typename Graph, typename In, typename Out,
174 174
              typename InEnable = void>
175 175
    struct KruskalOutputSelector {};
176 176

	
177 177
    template <typename Graph, typename In, typename Out>
178 178
    struct KruskalInputSelector<Graph, In, Out,
179 179
      typename enable_if<SequenceInputIndicator<In>, void>::type >
180 180
    {
181 181
      typedef typename In::value_type::second_type Value;
182 182

	
183 183
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
184 184
        return KruskalOutputSelector<Graph, In, Out>::
185 185
          kruskal(graph, in, out);
186 186
      }
187 187

	
188 188
    };
189 189

	
190 190
    template <typename Graph, typename In, typename Out>
191 191
    struct KruskalInputSelector<Graph, In, Out,
192 192
      typename enable_if<MapInputIndicator<In>, void>::type >
193 193
    {
194 194
      typedef typename In::Value Value;
195 195
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
196 196
        typedef typename In::Key MapArc;
197 197
        typedef typename In::Value Value;
198 198
        typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt;
199 199
        typedef std::vector<std::pair<MapArc, Value> > Sequence;
200 200
        Sequence seq;
201 201

	
202 202
        for (MapArcIt it(graph); it != INVALID; ++it) {
203 203
          seq.push_back(std::make_pair(it, in[it]));
204 204
        }
205 205

	
206 206
        std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
207 207
        return KruskalOutputSelector<Graph, Sequence, Out>::
208 208
          kruskal(graph, seq, out);
209 209
      }
210 210
    };
211 211

	
212 212
    template <typename T>
213 213
    struct RemoveConst {
214 214
      typedef T type;
215 215
    };
216 216

	
217 217
    template <typename T>
218 218
    struct RemoveConst<const T> {
219 219
      typedef T type;
220 220
    };
221 221

	
222 222
    template <typename Graph, typename In, typename Out>
223 223
    struct KruskalOutputSelector<Graph, In, Out,
224 224
      typename enable_if<SequenceOutputIndicator<Out>, void>::type >
225 225
    {
226 226
      typedef typename In::value_type::second_type Value;
227 227

	
228 228
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
229 229
        typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map;
230 230
        Map map(out);
231 231
        return _kruskal_bits::kruskal(graph, in, map);
232 232
      }
233 233

	
234 234
    };
235 235

	
236 236
    template <typename Graph, typename In, typename Out>
237 237
    struct KruskalOutputSelector<Graph, In, Out,
238 238
      typename enable_if<MapOutputIndicator<Out>, void>::type >
239 239
    {
240 240
      typedef typename In::value_type::second_type Value;
241 241

	
242 242
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
243 243
        return _kruskal_bits::kruskal(graph, in, out);
244 244
      }
245 245
    };
246 246

	
247 247
  }
248 248

	
249 249
  /// \ingroup spantree
250 250
  ///
251
  /// \brief Kruskal algorithm to find a minimum cost spanning tree of
251
  /// \brief Kruskal's algorithm for finding a minimum cost spanning tree of
252 252
  /// a graph.
253 253
  ///
254 254
  /// This function runs Kruskal's algorithm to find a minimum cost
255
  /// spanning tree.
255
  /// spanning tree of a graph.
256 256
  /// Due to some C++ hacking, it accepts various input and output types.
257 257
  ///
258 258
  /// \param g The graph the algorithm runs on.
259 259
  /// It can be either \ref concepts::Digraph "directed" or
260 260
  /// \ref concepts::Graph "undirected".
261 261
  /// If the graph is directed, the algorithm consider it to be
262 262
  /// undirected by disregarding the direction of the arcs.
263 263
  ///
264 264
  /// \param in This object is used to describe the arc/edge costs.
265 265
  /// It can be one of the following choices.
266 266
  /// - An STL compatible 'Forward Container' with
267
  /// <tt>std::pair<GR::Arc,X></tt> or
268
  /// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where
269
  /// \c X is the type of the costs. The pairs indicates the arcs/edges
267
  /// <tt>std::pair<GR::Arc,C></tt> or
268
  /// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where
269
  /// \c C is the type of the costs. The pairs indicates the arcs/edges
270 270
  /// along with the assigned cost. <em>They must be in a
271 271
  /// cost-ascending order.</em>
272 272
  /// - Any readable arc/edge map. The values of the map indicate the
273 273
  /// arc/edge costs.
274 274
  ///
275 275
  /// \retval out Here we also have a choice.
276
  /// - It can be a writable \c bool arc/edge map. After running the
277
  /// algorithm it will contain the found minimum cost spanning
276
  /// - It can be a writable arc/edge map with \c bool value type. After
277
  /// running the algorithm it will contain the found minimum cost spanning
278 278
  /// tree: the value of an arc/edge will be set to \c true if it belongs
279 279
  /// to the tree, otherwise it will be set to \c false. The value of
280 280
  /// each arc/edge will be set exactly once.
281 281
  /// - It can also be an iteraror of an STL Container with
282 282
  /// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its
283 283
  /// <tt>value_type</tt>.  The algorithm copies the elements of the
284 284
  /// found tree into this sequence.  For example, if we know that the
285 285
  /// spanning tree of the graph \c g has say 53 arcs, then we can
286 286
  /// put its arcs into an STL vector \c tree with a code like this.
287 287
  ///\code
288 288
  /// std::vector<Arc> tree(53);
289 289
  /// kruskal(g,cost,tree.begin());
290 290
  ///\endcode
291 291
  /// Or if we don't know in advance the size of the tree, we can
292 292
  /// write this.
293 293
  ///\code
294 294
  /// std::vector<Arc> tree;
295 295
  /// kruskal(g,cost,std::back_inserter(tree));
296 296
  ///\endcode
297 297
  ///
298 298
  /// \return The total cost of the found spanning tree.
299 299
  ///
300 300
  /// \note If the input graph is not (weakly) connected, a spanning
301 301
  /// forest is calculated instead of a spanning tree.
302 302

	
303 303
#ifdef DOXYGEN
304
  template <class Graph, class In, class Out>
305
  Value kruskal(GR const& g, const In& in, Out& out)
304
  template <typename Graph, typename In, typename Out>
305
  Value kruskal(const Graph& g, const In& in, Out& out)
306 306
#else
307 307
  template <class Graph, class In, class Out>
308 308
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
309 309
  kruskal(const Graph& graph, const In& in, Out& out)
310 310
#endif
311 311
  {
312 312
    return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
313 313
      kruskal(graph, in, out);
314 314
  }
315 315

	
316 316

	
317

	
318

	
319 317
  template <class Graph, class In, class Out>
320 318
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
321 319
  kruskal(const Graph& graph, const In& in, const Out& out)
322 320
  {
323 321
    return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
324 322
      kruskal(graph, in, out);
325 323
  }
326 324

	
327 325
} //namespace lemon
328 326

	
329 327
#endif //LEMON_KRUSKAL_H
Ignore white space 6 line context
... ...
@@ -468,391 +468,391 @@
468 468
    std::string _arcs_caption;
469 469
    std::string _attributes_caption;
470 470

	
471 471
    typedef std::map<std::string, Node> NodeIndex;
472 472
    NodeIndex _node_index;
473 473
    typedef std::map<std::string, Arc> ArcIndex;
474 474
    ArcIndex _arc_index;
475 475

	
476 476
    typedef std::vector<std::pair<std::string,
477 477
      _reader_bits::MapStorageBase<Node>*> > NodeMaps;
478 478
    NodeMaps _node_maps;
479 479

	
480 480
    typedef std::vector<std::pair<std::string,
481 481
      _reader_bits::MapStorageBase<Arc>*> >ArcMaps;
482 482
    ArcMaps _arc_maps;
483 483

	
484 484
    typedef std::multimap<std::string, _reader_bits::ValueStorageBase*>
485 485
      Attributes;
486 486
    Attributes _attributes;
487 487

	
488 488
    bool _use_nodes;
489 489
    bool _use_arcs;
490 490

	
491 491
    bool _skip_nodes;
492 492
    bool _skip_arcs;
493 493

	
494 494
    int line_num;
495 495
    std::istringstream line;
496 496

	
497 497
  public:
498 498

	
499 499
    /// \brief Constructor
500 500
    ///
501 501
    /// Construct a directed graph reader, which reads from the given
502 502
    /// input stream.
503 503
    DigraphReader(Digraph& digraph, std::istream& is = std::cin)
504 504
      : _is(&is), local_is(false), _digraph(digraph),
505 505
        _use_nodes(false), _use_arcs(false),
506 506
        _skip_nodes(false), _skip_arcs(false) {}
507 507

	
508 508
    /// \brief Constructor
509 509
    ///
510 510
    /// Construct a directed graph reader, which reads from the given
511 511
    /// file.
512 512
    DigraphReader(Digraph& digraph, const std::string& fn)
513 513
      : _is(new std::ifstream(fn.c_str())), local_is(true),
514 514
        _filename(fn), _digraph(digraph),
515 515
        _use_nodes(false), _use_arcs(false),
516 516
        _skip_nodes(false), _skip_arcs(false) {
517 517
      if (!(*_is)) {
518 518
        delete _is;
519 519
        throw IoError("Cannot open file", fn);
520 520
      }
521 521
    }
522 522

	
523 523
    /// \brief Constructor
524 524
    ///
525 525
    /// Construct a directed graph reader, which reads from the given
526 526
    /// file.
527 527
    DigraphReader(Digraph& digraph, const char* fn)
528 528
      : _is(new std::ifstream(fn)), local_is(true),
529 529
        _filename(fn), _digraph(digraph),
530 530
        _use_nodes(false), _use_arcs(false),
531 531
        _skip_nodes(false), _skip_arcs(false) {
532 532
      if (!(*_is)) {
533 533
        delete _is;
534 534
        throw IoError("Cannot open file", fn);
535 535
      }
536 536
    }
537 537

	
538 538
    /// \brief Destructor
539 539
    ~DigraphReader() {
540 540
      for (typename NodeMaps::iterator it = _node_maps.begin();
541 541
           it != _node_maps.end(); ++it) {
542 542
        delete it->second;
543 543
      }
544 544

	
545 545
      for (typename ArcMaps::iterator it = _arc_maps.begin();
546 546
           it != _arc_maps.end(); ++it) {
547 547
        delete it->second;
548 548
      }
549 549

	
550 550
      for (typename Attributes::iterator it = _attributes.begin();
551 551
           it != _attributes.end(); ++it) {
552 552
        delete it->second;
553 553
      }
554 554

	
555 555
      if (local_is) {
556 556
        delete _is;
557 557
      }
558 558

	
559 559
    }
560 560

	
561 561
  private:
562 562

	
563 563
    template <typename DGR>
564 564
    friend DigraphReader<DGR> digraphReader(DGR& digraph, std::istream& is);
565 565
    template <typename DGR>
566 566
    friend DigraphReader<DGR> digraphReader(DGR& digraph, 
567 567
                                            const std::string& fn);
568 568
    template <typename DGR>
569 569
    friend DigraphReader<DGR> digraphReader(DGR& digraph, const char *fn);
570 570

	
571 571
    DigraphReader(DigraphReader& other)
572 572
      : _is(other._is), local_is(other.local_is), _digraph(other._digraph),
573 573
        _use_nodes(other._use_nodes), _use_arcs(other._use_arcs),
574 574
        _skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) {
575 575

	
576 576
      other._is = 0;
577 577
      other.local_is = false;
578 578

	
579 579
      _node_index.swap(other._node_index);
580 580
      _arc_index.swap(other._arc_index);
581 581

	
582 582
      _node_maps.swap(other._node_maps);
583 583
      _arc_maps.swap(other._arc_maps);
584 584
      _attributes.swap(other._attributes);
585 585

	
586 586
      _nodes_caption = other._nodes_caption;
587 587
      _arcs_caption = other._arcs_caption;
588 588
      _attributes_caption = other._attributes_caption;
589 589

	
590 590
    }
591 591

	
592 592
    DigraphReader& operator=(const DigraphReader&);
593 593

	
594 594
  public:
595 595

	
596
    /// \name Reading rules
596
    /// \name Reading Rules
597 597
    /// @{
598 598

	
599 599
    /// \brief Node map reading rule
600 600
    ///
601 601
    /// Add a node map reading rule to the reader.
602 602
    template <typename Map>
603 603
    DigraphReader& nodeMap(const std::string& caption, Map& map) {
604 604
      checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>();
605 605
      _reader_bits::MapStorageBase<Node>* storage =
606 606
        new _reader_bits::MapStorage<Node, Map>(map);
607 607
      _node_maps.push_back(std::make_pair(caption, storage));
608 608
      return *this;
609 609
    }
610 610

	
611 611
    /// \brief Node map reading rule
612 612
    ///
613 613
    /// Add a node map reading rule with specialized converter to the
614 614
    /// reader.
615 615
    template <typename Map, typename Converter>
616 616
    DigraphReader& nodeMap(const std::string& caption, Map& map,
617 617
                           const Converter& converter = Converter()) {
618 618
      checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>();
619 619
      _reader_bits::MapStorageBase<Node>* storage =
620 620
        new _reader_bits::MapStorage<Node, Map, Converter>(map, converter);
621 621
      _node_maps.push_back(std::make_pair(caption, storage));
622 622
      return *this;
623 623
    }
624 624

	
625 625
    /// \brief Arc map reading rule
626 626
    ///
627 627
    /// Add an arc map reading rule to the reader.
628 628
    template <typename Map>
629 629
    DigraphReader& arcMap(const std::string& caption, Map& map) {
630 630
      checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>();
631 631
      _reader_bits::MapStorageBase<Arc>* storage =
632 632
        new _reader_bits::MapStorage<Arc, Map>(map);
633 633
      _arc_maps.push_back(std::make_pair(caption, storage));
634 634
      return *this;
635 635
    }
636 636

	
637 637
    /// \brief Arc map reading rule
638 638
    ///
639 639
    /// Add an arc map reading rule with specialized converter to the
640 640
    /// reader.
641 641
    template <typename Map, typename Converter>
642 642
    DigraphReader& arcMap(const std::string& caption, Map& map,
643 643
                          const Converter& converter = Converter()) {
644 644
      checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>();
645 645
      _reader_bits::MapStorageBase<Arc>* storage =
646 646
        new _reader_bits::MapStorage<Arc, Map, Converter>(map, converter);
647 647
      _arc_maps.push_back(std::make_pair(caption, storage));
648 648
      return *this;
649 649
    }
650 650

	
651 651
    /// \brief Attribute reading rule
652 652
    ///
653 653
    /// Add an attribute reading rule to the reader.
654 654
    template <typename Value>
655 655
    DigraphReader& attribute(const std::string& caption, Value& value) {
656 656
      _reader_bits::ValueStorageBase* storage =
657 657
        new _reader_bits::ValueStorage<Value>(value);
658 658
      _attributes.insert(std::make_pair(caption, storage));
659 659
      return *this;
660 660
    }
661 661

	
662 662
    /// \brief Attribute reading rule
663 663
    ///
664 664
    /// Add an attribute reading rule with specialized converter to the
665 665
    /// reader.
666 666
    template <typename Value, typename Converter>
667 667
    DigraphReader& attribute(const std::string& caption, Value& value,
668 668
                             const Converter& converter = Converter()) {
669 669
      _reader_bits::ValueStorageBase* storage =
670 670
        new _reader_bits::ValueStorage<Value, Converter>(value, converter);
671 671
      _attributes.insert(std::make_pair(caption, storage));
672 672
      return *this;
673 673
    }
674 674

	
675 675
    /// \brief Node reading rule
676 676
    ///
677 677
    /// Add a node reading rule to reader.
678 678
    DigraphReader& node(const std::string& caption, Node& node) {
679 679
      typedef _reader_bits::MapLookUpConverter<Node> Converter;
680 680
      Converter converter(_node_index);
681 681
      _reader_bits::ValueStorageBase* storage =
682 682
        new _reader_bits::ValueStorage<Node, Converter>(node, converter);
683 683
      _attributes.insert(std::make_pair(caption, storage));
684 684
      return *this;
685 685
    }
686 686

	
687 687
    /// \brief Arc reading rule
688 688
    ///
689 689
    /// Add an arc reading rule to reader.
690 690
    DigraphReader& arc(const std::string& caption, Arc& arc) {
691 691
      typedef _reader_bits::MapLookUpConverter<Arc> Converter;
692 692
      Converter converter(_arc_index);
693 693
      _reader_bits::ValueStorageBase* storage =
694 694
        new _reader_bits::ValueStorage<Arc, Converter>(arc, converter);
695 695
      _attributes.insert(std::make_pair(caption, storage));
696 696
      return *this;
697 697
    }
698 698

	
699 699
    /// @}
700 700

	
701
    /// \name Select section by name
701
    /// \name Select Section by Name
702 702
    /// @{
703 703

	
704 704
    /// \brief Set \c \@nodes section to be read
705 705
    ///
706 706
    /// Set \c \@nodes section to be read
707 707
    DigraphReader& nodes(const std::string& caption) {
708 708
      _nodes_caption = caption;
709 709
      return *this;
710 710
    }
711 711

	
712 712
    /// \brief Set \c \@arcs section to be read
713 713
    ///
714 714
    /// Set \c \@arcs section to be read
715 715
    DigraphReader& arcs(const std::string& caption) {
716 716
      _arcs_caption = caption;
717 717
      return *this;
718 718
    }
719 719

	
720 720
    /// \brief Set \c \@attributes section to be read
721 721
    ///
722 722
    /// Set \c \@attributes section to be read
723 723
    DigraphReader& attributes(const std::string& caption) {
724 724
      _attributes_caption = caption;
725 725
      return *this;
726 726
    }
727 727

	
728 728
    /// @}
729 729

	
730
    /// \name Using previously constructed node or arc set
730
    /// \name Using Previously Constructed Node or Arc Set
731 731
    /// @{
732 732

	
733 733
    /// \brief Use previously constructed node set
734 734
    ///
735 735
    /// Use previously constructed node set, and specify the node
736 736
    /// label map.
737 737
    template <typename Map>
738 738
    DigraphReader& useNodes(const Map& map) {
739 739
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
740 740
      LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member");
741 741
      _use_nodes = true;
742 742
      _writer_bits::DefaultConverter<typename Map::Value> converter;
743 743
      for (NodeIt n(_digraph); n != INVALID; ++n) {
744 744
        _node_index.insert(std::make_pair(converter(map[n]), n));
745 745
      }
746 746
      return *this;
747 747
    }
748 748

	
749 749
    /// \brief Use previously constructed node set
750 750
    ///
751 751
    /// Use previously constructed node set, and specify the node
752 752
    /// label map and a functor which converts the label map values to
753 753
    /// \c std::string.
754 754
    template <typename Map, typename Converter>
755 755
    DigraphReader& useNodes(const Map& map,
756 756
                            const Converter& converter = Converter()) {
757 757
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
758 758
      LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member");
759 759
      _use_nodes = true;
760 760
      for (NodeIt n(_digraph); n != INVALID; ++n) {
761 761
        _node_index.insert(std::make_pair(converter(map[n]), n));
762 762
      }
763 763
      return *this;
764 764
    }
765 765

	
766 766
    /// \brief Use previously constructed arc set
767 767
    ///
768 768
    /// Use previously constructed arc set, and specify the arc
769 769
    /// label map.
770 770
    template <typename Map>
771 771
    DigraphReader& useArcs(const Map& map) {
772 772
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
773 773
      LEMON_ASSERT(!_use_arcs, "Multiple usage of useArcs() member");
774 774
      _use_arcs = true;
775 775
      _writer_bits::DefaultConverter<typename Map::Value> converter;
776 776
      for (ArcIt a(_digraph); a != INVALID; ++a) {
777 777
        _arc_index.insert(std::make_pair(converter(map[a]), a));
778 778
      }
779 779
      return *this;
780 780
    }
781 781

	
782 782
    /// \brief Use previously constructed arc set
783 783
    ///
784 784
    /// Use previously constructed arc set, and specify the arc
785 785
    /// label map and a functor which converts the label map values to
786 786
    /// \c std::string.
787 787
    template <typename Map, typename Converter>
788 788
    DigraphReader& useArcs(const Map& map,
789 789
                           const Converter& converter = Converter()) {
790 790
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
791 791
      LEMON_ASSERT(!_use_arcs, "Multiple usage of useArcs() member");
792 792
      _use_arcs = true;
793 793
      for (ArcIt a(_digraph); a != INVALID; ++a) {
794 794
        _arc_index.insert(std::make_pair(converter(map[a]), a));
795 795
      }
796 796
      return *this;
797 797
    }
798 798

	
799 799
    /// \brief Skips the reading of node section
800 800
    ///
801 801
    /// Omit the reading of the node section. This implies that each node
802 802
    /// map reading rule will be abandoned, and the nodes of the graph
803 803
    /// will not be constructed, which usually cause that the arc set
804 804
    /// could not be read due to lack of node name resolving.
805 805
    /// Therefore \c skipArcs() function should also be used, or
806 806
    /// \c useNodes() should be used to specify the label of the nodes.
807 807
    DigraphReader& skipNodes() {
808 808
      LEMON_ASSERT(!_skip_nodes, "Skip nodes already set");
809 809
      _skip_nodes = true;
810 810
      return *this;
811 811
    }
812 812

	
813 813
    /// \brief Skips the reading of arc section
814 814
    ///
815 815
    /// Omit the reading of the arc section. This implies that each arc
816 816
    /// map reading rule will be abandoned, and the arcs of the graph
817 817
    /// will not be constructed.
818 818
    DigraphReader& skipArcs() {
819 819
      LEMON_ASSERT(!_skip_arcs, "Skip arcs already set");
820 820
      _skip_arcs = true;
821 821
      return *this;
822 822
    }
823 823

	
824 824
    /// @}
825 825

	
826 826
  private:
827 827

	
828 828
    bool readLine() {
829 829
      std::string str;
830 830
      while(++line_num, std::getline(*_is, str)) {
831 831
        line.clear(); line.str(str);
832 832
        char c;
833 833
        if (line >> std::ws >> c && c != '#') {
834 834
          line.putback(c);
835 835
          return true;
836 836
        }
837 837
      }
838 838
      return false;
839 839
    }
840 840

	
841 841
    bool readSuccess() {
842 842
      return static_cast<bool>(*_is);
843 843
    }
844 844

	
845 845
    void skipSection() {
846 846
      char c;
847 847
      while (readSuccess() && line >> c && c != '@') {
848 848
        readLine();
849 849
      }
850 850
      if (readSuccess()) {
851 851
        line.putback(c);
852 852
      }
853 853
    }
854 854

	
855 855
    void readNodes() {
856 856

	
857 857
      std::vector<int> map_index(_node_maps.size());
858 858
      int map_num, label_index;
... ...
@@ -991,257 +991,257 @@
991 991
            label_index = jt->second;
992 992
          } else {
993 993
            label_index = -1;
994 994
          }
995 995
        }
996 996
        map_num = maps.size();
997 997
      }
998 998

	
999 999
      while (readLine() && line >> c && c != '@') {
1000 1000
        line.putback(c);
1001 1001

	
1002 1002
        std::string source_token;
1003 1003
        std::string target_token;
1004 1004

	
1005 1005
        if (!_reader_bits::readToken(line, source_token))
1006 1006
          throw FormatError("Source not found");
1007 1007

	
1008 1008
        if (!_reader_bits::readToken(line, target_token))
1009 1009
          throw FormatError("Target not found");
1010 1010

	
1011 1011
        std::vector<std::string> tokens(map_num);
1012 1012
        for (int i = 0; i < map_num; ++i) {
1013 1013
          if (!_reader_bits::readToken(line, tokens[i])) {
1014 1014
            std::ostringstream msg;
1015 1015
            msg << "Column not found (" << i + 1 << ")";
1016 1016
            throw FormatError(msg.str());
1017 1017
          }
1018 1018
        }
1019 1019
        if (line >> std::ws >> c)
1020 1020
          throw FormatError("Extra character at the end of line");
1021 1021

	
1022 1022
        Arc a;
1023 1023
        if (!_use_arcs) {
1024 1024

	
1025 1025
          typename NodeIndex::iterator it;
1026 1026

	
1027 1027
          it = _node_index.find(source_token);
1028 1028
          if (it == _node_index.end()) {
1029 1029
            std::ostringstream msg;
1030 1030
            msg << "Item not found: " << source_token;
1031 1031
            throw FormatError(msg.str());
1032 1032
          }
1033 1033
          Node source = it->second;
1034 1034

	
1035 1035
          it = _node_index.find(target_token);
1036 1036
          if (it == _node_index.end()) {
1037 1037
            std::ostringstream msg;
1038 1038
            msg << "Item not found: " << target_token;
1039 1039
            throw FormatError(msg.str());
1040 1040
          }
1041 1041
          Node target = it->second;
1042 1042

	
1043 1043
          a = _digraph.addArc(source, target);
1044 1044
          if (label_index != -1)
1045 1045
            _arc_index.insert(std::make_pair(tokens[label_index], a));
1046 1046
        } else {
1047 1047
          if (label_index == -1)
1048 1048
            throw FormatError("Label map not found");
1049 1049
          typename std::map<std::string, Arc>::iterator it =
1050 1050
            _arc_index.find(tokens[label_index]);
1051 1051
          if (it == _arc_index.end()) {
1052 1052
            std::ostringstream msg;
1053 1053
            msg << "Arc with label not found: " << tokens[label_index];
1054 1054
            throw FormatError(msg.str());
1055 1055
          }
1056 1056
          a = it->second;
1057 1057
        }
1058 1058

	
1059 1059
        for (int i = 0; i < static_cast<int>(_arc_maps.size()); ++i) {
1060 1060
          _arc_maps[i].second->set(a, tokens[map_index[i]]);
1061 1061
        }
1062 1062

	
1063 1063
      }
1064 1064
      if (readSuccess()) {
1065 1065
        line.putback(c);
1066 1066
      }
1067 1067
    }
1068 1068

	
1069 1069
    void readAttributes() {
1070 1070

	
1071 1071
      std::set<std::string> read_attr;
1072 1072

	
1073 1073
      char c;
1074 1074
      while (readLine() && line >> c && c != '@') {
1075 1075
        line.putback(c);
1076 1076

	
1077 1077
        std::string attr, token;
1078 1078
        if (!_reader_bits::readToken(line, attr))
1079 1079
          throw FormatError("Attribute name not found");
1080 1080
        if (!_reader_bits::readToken(line, token))
1081 1081
          throw FormatError("Attribute value not found");
1082 1082
        if (line >> c)
1083 1083
          throw FormatError("Extra character at the end of line");
1084 1084

	
1085 1085
        {
1086 1086
          std::set<std::string>::iterator it = read_attr.find(attr);
1087 1087
          if (it != read_attr.end()) {
1088 1088
            std::ostringstream msg;
1089 1089
            msg << "Multiple occurence of attribute: " << attr;
1090 1090
            throw FormatError(msg.str());
1091 1091
          }
1092 1092
          read_attr.insert(attr);
1093 1093
        }
1094 1094

	
1095 1095
        {
1096 1096
          typename Attributes::iterator it = _attributes.lower_bound(attr);
1097 1097
          while (it != _attributes.end() && it->first == attr) {
1098 1098
            it->second->set(token);
1099 1099
            ++it;
1100 1100
          }
1101 1101
        }
1102 1102

	
1103 1103
      }
1104 1104
      if (readSuccess()) {
1105 1105
        line.putback(c);
1106 1106
      }
1107 1107
      for (typename Attributes::iterator it = _attributes.begin();
1108 1108
           it != _attributes.end(); ++it) {
1109 1109
        if (read_attr.find(it->first) == read_attr.end()) {
1110 1110
          std::ostringstream msg;
1111 1111
          msg << "Attribute not found: " << it->first;
1112 1112
          throw FormatError(msg.str());
1113 1113
        }
1114 1114
      }
1115 1115
    }
1116 1116

	
1117 1117
  public:
1118 1118

	
1119
    /// \name Execution of the reader
1119
    /// \name Execution of the Reader
1120 1120
    /// @{
1121 1121

	
1122 1122
    /// \brief Start the batch processing
1123 1123
    ///
1124 1124
    /// This function starts the batch processing
1125 1125
    void run() {
1126 1126
      LEMON_ASSERT(_is != 0, "This reader assigned to an other reader");
1127 1127

	
1128 1128
      bool nodes_done = _skip_nodes;
1129 1129
      bool arcs_done = _skip_arcs;
1130 1130
      bool attributes_done = false;
1131 1131

	
1132 1132
      line_num = 0;
1133 1133
      readLine();
1134 1134
      skipSection();
1135 1135

	
1136 1136
      while (readSuccess()) {
1137 1137
        try {
1138 1138
          char c;
1139 1139
          std::string section, caption;
1140 1140
          line >> c;
1141 1141
          _reader_bits::readToken(line, section);
1142 1142
          _reader_bits::readToken(line, caption);
1143 1143

	
1144 1144
          if (line >> c)
1145 1145
            throw FormatError("Extra character at the end of line");
1146 1146

	
1147 1147
          if (section == "nodes" && !nodes_done) {
1148 1148
            if (_nodes_caption.empty() || _nodes_caption == caption) {
1149 1149
              readNodes();
1150 1150
              nodes_done = true;
1151 1151
            }
1152 1152
          } else if ((section == "arcs" || section == "edges") &&
1153 1153
                     !arcs_done) {
1154 1154
            if (_arcs_caption.empty() || _arcs_caption == caption) {
1155 1155
              readArcs();
1156 1156
              arcs_done = true;
1157 1157
            }
1158 1158
          } else if (section == "attributes" && !attributes_done) {
1159 1159
            if (_attributes_caption.empty() || _attributes_caption == caption) {
1160 1160
              readAttributes();
1161 1161
              attributes_done = true;
1162 1162
            }
1163 1163
          } else {
1164 1164
            readLine();
1165 1165
            skipSection();
1166 1166
          }
1167 1167
        } catch (FormatError& error) {
1168 1168
          error.line(line_num);
1169 1169
          error.file(_filename);
1170 1170
          throw;
1171 1171
        }
1172 1172
      }
1173 1173

	
1174 1174
      if (!nodes_done) {
1175 1175
        throw FormatError("Section @nodes not found");
1176 1176
      }
1177 1177

	
1178 1178
      if (!arcs_done) {
1179 1179
        throw FormatError("Section @arcs not found");
1180 1180
      }
1181 1181

	
1182 1182
      if (!attributes_done && !_attributes.empty()) {
1183 1183
        throw FormatError("Section @attributes not found");
1184 1184
      }
1185 1185

	
1186 1186
    }
1187 1187

	
1188 1188
    /// @}
1189 1189

	
1190 1190
  };
1191 1191

	
1192 1192
  /// \brief Return a \ref DigraphReader class
1193 1193
  ///
1194 1194
  /// This function just returns a \ref DigraphReader class.
1195 1195
  /// \relates DigraphReader
1196 1196
  template <typename Digraph>
1197 1197
  DigraphReader<Digraph> digraphReader(Digraph& digraph, std::istream& is) {
1198 1198
    DigraphReader<Digraph> tmp(digraph, is);
1199 1199
    return tmp;
1200 1200
  }
1201 1201

	
1202 1202
  /// \brief Return a \ref DigraphReader class
1203 1203
  ///
1204 1204
  /// This function just returns a \ref DigraphReader class.
1205 1205
  /// \relates DigraphReader
1206 1206
  template <typename Digraph>
1207 1207
  DigraphReader<Digraph> digraphReader(Digraph& digraph,
1208 1208
                                       const std::string& fn) {
1209 1209
    DigraphReader<Digraph> tmp(digraph, fn);
1210 1210
    return tmp;
1211 1211
  }
1212 1212

	
1213 1213
  /// \brief Return a \ref DigraphReader class
1214 1214
  ///
1215 1215
  /// This function just returns a \ref DigraphReader class.
1216 1216
  /// \relates DigraphReader
1217 1217
  template <typename Digraph>
1218 1218
  DigraphReader<Digraph> digraphReader(Digraph& digraph, const char* fn) {
1219 1219
    DigraphReader<Digraph> tmp(digraph, fn);
1220 1220
    return tmp;
1221 1221
  }
1222 1222

	
1223 1223
  template <typename Graph>
1224 1224
  class GraphReader;
1225 1225
 
1226 1226
  template <typename Graph>
1227 1227
  GraphReader<Graph> graphReader(Graph& graph, 
1228 1228
                                 std::istream& is = std::cin);
1229 1229
  template <typename Graph>
1230 1230
  GraphReader<Graph> graphReader(Graph& graph, const std::string& fn);
1231 1231
  template <typename Graph>
1232 1232
  GraphReader<Graph> graphReader(Graph& graph, const char *fn);
1233 1233

	
1234 1234
  /// \ingroup lemon_io
1235 1235
  ///
1236 1236
  /// \brief \ref lgf-format "LGF" reader for undirected graphs
1237 1237
  ///
1238 1238
  /// This utility reads an \ref lgf-format "LGF" file.
1239 1239
  ///
1240 1240
  /// It can be used almost the same way as \c DigraphReader.
1241 1241
  /// The only difference is that this class can handle edges and
1242 1242
  /// edge maps as well as arcs and arc maps.
1243 1243
  ///
1244 1244
  /// The columns in the \c \@edges (or \c \@arcs) section are the
1245 1245
  /// edge maps. However, if there are two maps with the same name
1246 1246
  /// prefixed with \c '+' and \c '-', then these can be read into an
1247 1247
  /// arc map.  Similarly, an attribute can be read into an arc, if
... ...
@@ -1264,437 +1264,437 @@
1264 1264

	
1265 1265
    std::string _nodes_caption;
1266 1266
    std::string _edges_caption;
1267 1267
    std::string _attributes_caption;
1268 1268

	
1269 1269
    typedef std::map<std::string, Node> NodeIndex;
1270 1270
    NodeIndex _node_index;
1271 1271
    typedef std::map<std::string, Edge> EdgeIndex;
1272 1272
    EdgeIndex _edge_index;
1273 1273

	
1274 1274
    typedef std::vector<std::pair<std::string,
1275 1275
      _reader_bits::MapStorageBase<Node>*> > NodeMaps;
1276 1276
    NodeMaps _node_maps;
1277 1277

	
1278 1278
    typedef std::vector<std::pair<std::string,
1279 1279
      _reader_bits::MapStorageBase<Edge>*> > EdgeMaps;
1280 1280
    EdgeMaps _edge_maps;
1281 1281

	
1282 1282
    typedef std::multimap<std::string, _reader_bits::ValueStorageBase*>
1283 1283
      Attributes;
1284 1284
    Attributes _attributes;
1285 1285

	
1286 1286
    bool _use_nodes;
1287 1287
    bool _use_edges;
1288 1288

	
1289 1289
    bool _skip_nodes;
1290 1290
    bool _skip_edges;
1291 1291

	
1292 1292
    int line_num;
1293 1293
    std::istringstream line;
1294 1294

	
1295 1295
  public:
1296 1296

	
1297 1297
    /// \brief Constructor
1298 1298
    ///
1299 1299
    /// Construct an undirected graph reader, which reads from the given
1300 1300
    /// input stream.
1301 1301
    GraphReader(Graph& graph, std::istream& is = std::cin)
1302 1302
      : _is(&is), local_is(false), _graph(graph),
1303 1303
        _use_nodes(false), _use_edges(false),
1304 1304
        _skip_nodes(false), _skip_edges(false) {}
1305 1305

	
1306 1306
    /// \brief Constructor
1307 1307
    ///
1308 1308
    /// Construct an undirected graph reader, which reads from the given
1309 1309
    /// file.
1310 1310
    GraphReader(Graph& graph, const std::string& fn)
1311 1311
      : _is(new std::ifstream(fn.c_str())), local_is(true),
1312 1312
        _filename(fn), _graph(graph),
1313 1313
        _use_nodes(false), _use_edges(false),
1314 1314
        _skip_nodes(false), _skip_edges(false) {
1315 1315
      if (!(*_is)) {
1316 1316
        delete _is;
1317 1317
        throw IoError("Cannot open file", fn);
1318 1318
      }
1319 1319
    }
1320 1320

	
1321 1321
    /// \brief Constructor
1322 1322
    ///
1323 1323
    /// Construct an undirected graph reader, which reads from the given
1324 1324
    /// file.
1325 1325
    GraphReader(Graph& graph, const char* fn)
1326 1326
      : _is(new std::ifstream(fn)), local_is(true),
1327 1327
        _filename(fn), _graph(graph),
1328 1328
        _use_nodes(false), _use_edges(false),
1329 1329
        _skip_nodes(false), _skip_edges(false) {
1330 1330
      if (!(*_is)) {
1331 1331
        delete _is;
1332 1332
        throw IoError("Cannot open file", fn);
1333 1333
      }
1334 1334
    }
1335 1335

	
1336 1336
    /// \brief Destructor
1337 1337
    ~GraphReader() {
1338 1338
      for (typename NodeMaps::iterator it = _node_maps.begin();
1339 1339
           it != _node_maps.end(); ++it) {
1340 1340
        delete it->second;
1341 1341
      }
1342 1342

	
1343 1343
      for (typename EdgeMaps::iterator it = _edge_maps.begin();
1344 1344
           it != _edge_maps.end(); ++it) {
1345 1345
        delete it->second;
1346 1346
      }
1347 1347

	
1348 1348
      for (typename Attributes::iterator it = _attributes.begin();
1349 1349
           it != _attributes.end(); ++it) {
1350 1350
        delete it->second;
1351 1351
      }
1352 1352

	
1353 1353
      if (local_is) {
1354 1354
        delete _is;
1355 1355
      }
1356 1356

	
1357 1357
    }
1358 1358

	
1359 1359
  private:
1360 1360
    template <typename Graph>
1361 1361
    friend GraphReader<Graph> graphReader(Graph& graph, std::istream& is);
1362 1362
    template <typename Graph>
1363 1363
    friend GraphReader<Graph> graphReader(Graph& graph, const std::string& fn); 
1364 1364
    template <typename Graph>
1365 1365
    friend GraphReader<Graph> graphReader(Graph& graph, const char *fn);
1366 1366

	
1367 1367
    GraphReader(GraphReader& other)
1368 1368
      : _is(other._is), local_is(other.local_is), _graph(other._graph),
1369 1369
        _use_nodes(other._use_nodes), _use_edges(other._use_edges),
1370 1370
        _skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) {
1371 1371

	
1372 1372
      other._is = 0;
1373 1373
      other.local_is = false;
1374 1374

	
1375 1375
      _node_index.swap(other._node_index);
1376 1376
      _edge_index.swap(other._edge_index);
1377 1377

	
1378 1378
      _node_maps.swap(other._node_maps);
1379 1379
      _edge_maps.swap(other._edge_maps);
1380 1380
      _attributes.swap(other._attributes);
1381 1381

	
1382 1382
      _nodes_caption = other._nodes_caption;
1383 1383
      _edges_caption = other._edges_caption;
1384 1384
      _attributes_caption = other._attributes_caption;
1385 1385

	
1386 1386
    }
1387 1387

	
1388 1388
    GraphReader& operator=(const GraphReader&);
1389 1389

	
1390 1390
  public:
1391 1391

	
1392
    /// \name Reading rules
1392
    /// \name Reading Rules
1393 1393
    /// @{
1394 1394

	
1395 1395
    /// \brief Node map reading rule
1396 1396
    ///
1397 1397
    /// Add a node map reading rule to the reader.
1398 1398
    template <typename Map>
1399 1399
    GraphReader& nodeMap(const std::string& caption, Map& map) {
1400 1400
      checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>();
1401 1401
      _reader_bits::MapStorageBase<Node>* storage =
1402 1402
        new _reader_bits::MapStorage<Node, Map>(map);
1403 1403
      _node_maps.push_back(std::make_pair(caption, storage));
1404 1404
      return *this;
1405 1405
    }
1406 1406

	
1407 1407
    /// \brief Node map reading rule
1408 1408
    ///
1409 1409
    /// Add a node map reading rule with specialized converter to the
1410 1410
    /// reader.
1411 1411
    template <typename Map, typename Converter>
1412 1412
    GraphReader& nodeMap(const std::string& caption, Map& map,
1413 1413
                           const Converter& converter = Converter()) {
1414 1414
      checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>();
1415 1415
      _reader_bits::MapStorageBase<Node>* storage =
1416 1416
        new _reader_bits::MapStorage<Node, Map, Converter>(map, converter);
1417 1417
      _node_maps.push_back(std::make_pair(caption, storage));
1418 1418
      return *this;
1419 1419
    }
1420 1420

	
1421 1421
    /// \brief Edge map reading rule
1422 1422
    ///
1423 1423
    /// Add an edge map reading rule to the reader.
1424 1424
    template <typename Map>
1425 1425
    GraphReader& edgeMap(const std::string& caption, Map& map) {
1426 1426
      checkConcept<concepts::WriteMap<Edge, typename Map::Value>, Map>();
1427 1427
      _reader_bits::MapStorageBase<Edge>* storage =
1428 1428
        new _reader_bits::MapStorage<Edge, Map>(map);
1429 1429
      _edge_maps.push_back(std::make_pair(caption, storage));
1430 1430
      return *this;
1431 1431
    }
1432 1432

	
1433 1433
    /// \brief Edge map reading rule
1434 1434
    ///
1435 1435
    /// Add an edge map reading rule with specialized converter to the
1436 1436
    /// reader.
1437 1437
    template <typename Map, typename Converter>
1438 1438
    GraphReader& edgeMap(const std::string& caption, Map& map,
1439 1439
                          const Converter& converter = Converter()) {
1440 1440
      checkConcept<concepts::WriteMap<Edge, typename Map::Value>, Map>();
1441 1441
      _reader_bits::MapStorageBase<Edge>* storage =
1442 1442
        new _reader_bits::MapStorage<Edge, Map, Converter>(map, converter);
1443 1443
      _edge_maps.push_back(std::make_pair(caption, storage));
1444 1444
      return *this;
1445 1445
    }
1446 1446

	
1447 1447
    /// \brief Arc map reading rule
1448 1448
    ///
1449 1449
    /// Add an arc map reading rule to the reader.
1450 1450
    template <typename Map>
1451 1451
    GraphReader& arcMap(const std::string& caption, Map& map) {
1452 1452
      checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>();
1453 1453
      _reader_bits::MapStorageBase<Edge>* forward_storage =
1454 1454
        new _reader_bits::GraphArcMapStorage<Graph, true, Map>(_graph, map);
1455 1455
      _edge_maps.push_back(std::make_pair('+' + caption, forward_storage));
1456 1456
      _reader_bits::MapStorageBase<Edge>* backward_storage =
1457 1457
        new _reader_bits::GraphArcMapStorage<Graph, false, Map>(_graph, map);
1458 1458
      _edge_maps.push_back(std::make_pair('-' + caption, backward_storage));
1459 1459
      return *this;
1460 1460
    }
1461 1461

	
1462 1462
    /// \brief Arc map reading rule
1463 1463
    ///
1464 1464
    /// Add an arc map reading rule with specialized converter to the
1465 1465
    /// reader.
1466 1466
    template <typename Map, typename Converter>
1467 1467
    GraphReader& arcMap(const std::string& caption, Map& map,
1468 1468
                          const Converter& converter = Converter()) {
1469 1469
      checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>();
1470 1470
      _reader_bits::MapStorageBase<Edge>* forward_storage =
1471 1471
        new _reader_bits::GraphArcMapStorage<Graph, true, Map, Converter>
1472 1472
        (_graph, map, converter);
1473 1473
      _edge_maps.push_back(std::make_pair('+' + caption, forward_storage));
1474 1474
      _reader_bits::MapStorageBase<Edge>* backward_storage =
1475 1475
        new _reader_bits::GraphArcMapStorage<Graph, false, Map, Converter>
1476 1476
        (_graph, map, converter);
1477 1477
      _edge_maps.push_back(std::make_pair('-' + caption, backward_storage));
1478 1478
      return *this;
1479 1479
    }
1480 1480

	
1481 1481
    /// \brief Attribute reading rule
1482 1482
    ///
1483 1483
    /// Add an attribute reading rule to the reader.
1484 1484
    template <typename Value>
1485 1485
    GraphReader& attribute(const std::string& caption, Value& value) {
1486 1486
      _reader_bits::ValueStorageBase* storage =
1487 1487
        new _reader_bits::ValueStorage<Value>(value);
1488 1488
      _attributes.insert(std::make_pair(caption, storage));
1489 1489
      return *this;
1490 1490
    }
1491 1491

	
1492 1492
    /// \brief Attribute reading rule
1493 1493
    ///
1494 1494
    /// Add an attribute reading rule with specialized converter to the
1495 1495
    /// reader.
1496 1496
    template <typename Value, typename Converter>
1497 1497
    GraphReader& attribute(const std::string& caption, Value& value,
1498 1498
                             const Converter& converter = Converter()) {
1499 1499
      _reader_bits::ValueStorageBase* storage =
1500 1500
        new _reader_bits::ValueStorage<Value, Converter>(value, converter);
1501 1501
      _attributes.insert(std::make_pair(caption, storage));
1502 1502
      return *this;
1503 1503
    }
1504 1504

	
1505 1505
    /// \brief Node reading rule
1506 1506
    ///
1507 1507
    /// Add a node reading rule to reader.
1508 1508
    GraphReader& node(const std::string& caption, Node& node) {
1509 1509
      typedef _reader_bits::MapLookUpConverter<Node> Converter;
1510 1510
      Converter converter(_node_index);
1511 1511
      _reader_bits::ValueStorageBase* storage =
1512 1512
        new _reader_bits::ValueStorage<Node, Converter>(node, converter);
1513 1513
      _attributes.insert(std::make_pair(caption, storage));
1514 1514
      return *this;
1515 1515
    }
1516 1516

	
1517 1517
    /// \brief Edge reading rule
1518 1518
    ///
1519 1519
    /// Add an edge reading rule to reader.
1520 1520
    GraphReader& edge(const std::string& caption, Edge& edge) {
1521 1521
      typedef _reader_bits::MapLookUpConverter<Edge> Converter;
1522 1522
      Converter converter(_edge_index);
1523 1523
      _reader_bits::ValueStorageBase* storage =
1524 1524
        new _reader_bits::ValueStorage<Edge, Converter>(edge, converter);
1525 1525
      _attributes.insert(std::make_pair(caption, storage));
1526 1526
      return *this;
1527 1527
    }
1528 1528

	
1529 1529
    /// \brief Arc reading rule
1530 1530
    ///
1531 1531
    /// Add an arc reading rule to reader.
1532 1532
    GraphReader& arc(const std::string& caption, Arc& arc) {
1533 1533
      typedef _reader_bits::GraphArcLookUpConverter<Graph> Converter;
1534 1534
      Converter converter(_graph, _edge_index);
1535 1535
      _reader_bits::ValueStorageBase* storage =
1536 1536
        new _reader_bits::ValueStorage<Arc, Converter>(arc, converter);
1537 1537
      _attributes.insert(std::make_pair(caption, storage));
1538 1538
      return *this;
1539 1539
    }
1540 1540

	
1541 1541
    /// @}
1542 1542

	
1543
    /// \name Select section by name
1543
    /// \name Select Section by Name
1544 1544
    /// @{
1545 1545

	
1546 1546
    /// \brief Set \c \@nodes section to be read
1547 1547
    ///
1548 1548
    /// Set \c \@nodes section to be read.
1549 1549
    GraphReader& nodes(const std::string& caption) {
1550 1550
      _nodes_caption = caption;
1551 1551
      return *this;
1552 1552
    }
1553 1553

	
1554 1554
    /// \brief Set \c \@edges section to be read
1555 1555
    ///
1556 1556
    /// Set \c \@edges section to be read.
1557 1557
    GraphReader& edges(const std::string& caption) {
1558 1558
      _edges_caption = caption;
1559 1559
      return *this;
1560 1560
    }
1561 1561

	
1562 1562
    /// \brief Set \c \@attributes section to be read
1563 1563
    ///
1564 1564
    /// Set \c \@attributes section to be read.
1565 1565
    GraphReader& attributes(const std::string& caption) {
1566 1566
      _attributes_caption = caption;
1567 1567
      return *this;
1568 1568
    }
1569 1569

	
1570 1570
    /// @}
1571 1571

	
1572
    /// \name Using previously constructed node or edge set
1572
    /// \name Using Previously Constructed Node or Edge Set
1573 1573
    /// @{
1574 1574

	
1575 1575
    /// \brief Use previously constructed node set
1576 1576
    ///
1577 1577
    /// Use previously constructed node set, and specify the node
1578 1578
    /// label map.
1579 1579
    template <typename Map>
1580 1580
    GraphReader& useNodes(const Map& map) {
1581 1581
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
1582 1582
      LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member");
1583 1583
      _use_nodes = true;
1584 1584
      _writer_bits::DefaultConverter<typename Map::Value> converter;
1585 1585
      for (NodeIt n(_graph); n != INVALID; ++n) {
1586 1586
        _node_index.insert(std::make_pair(converter(map[n]), n));
1587 1587
      }
1588 1588
      return *this;
1589 1589
    }
1590 1590

	
1591 1591
    /// \brief Use previously constructed node set
1592 1592
    ///
1593 1593
    /// Use previously constructed node set, and specify the node
1594 1594
    /// label map and a functor which converts the label map values to
1595 1595
    /// \c std::string.
1596 1596
    template <typename Map, typename Converter>
1597 1597
    GraphReader& useNodes(const Map& map,
1598 1598
                            const Converter& converter = Converter()) {
1599 1599
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
1600 1600
      LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member");
1601 1601
      _use_nodes = true;
1602 1602
      for (NodeIt n(_graph); n != INVALID; ++n) {
1603 1603
        _node_index.insert(std::make_pair(converter(map[n]), n));
1604 1604
      }
1605 1605
      return *this;
1606 1606
    }
1607 1607

	
1608 1608
    /// \brief Use previously constructed edge set
1609 1609
    ///
1610 1610
    /// Use previously constructed edge set, and specify the edge
1611 1611
    /// label map.
1612 1612
    template <typename Map>
1613 1613
    GraphReader& useEdges(const Map& map) {
1614 1614
      checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>();
1615 1615
      LEMON_ASSERT(!_use_edges, "Multiple usage of useEdges() member");
1616 1616
      _use_edges = true;
1617 1617
      _writer_bits::DefaultConverter<typename Map::Value> converter;
1618 1618
      for (EdgeIt a(_graph); a != INVALID; ++a) {
1619 1619
        _edge_index.insert(std::make_pair(converter(map[a]), a));
1620 1620
      }
1621 1621
      return *this;
1622 1622
    }
1623 1623

	
1624 1624
    /// \brief Use previously constructed edge set
1625 1625
    ///
1626 1626
    /// Use previously constructed edge set, and specify the edge
1627 1627
    /// label map and a functor which converts the label map values to
1628 1628
    /// \c std::string.
1629 1629
    template <typename Map, typename Converter>
1630 1630
    GraphReader& useEdges(const Map& map,
1631 1631
                            const Converter& converter = Converter()) {
1632 1632
      checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>();
1633 1633
      LEMON_ASSERT(!_use_edges, "Multiple usage of useEdges() member");
1634 1634
      _use_edges = true;
1635 1635
      for (EdgeIt a(_graph); a != INVALID; ++a) {
1636 1636
        _edge_index.insert(std::make_pair(converter(map[a]), a));
1637 1637
      }
1638 1638
      return *this;
1639 1639
    }
1640 1640

	
1641 1641
    /// \brief Skip the reading of node section
1642 1642
    ///
1643 1643
    /// Omit the reading of the node section. This implies that each node
1644 1644
    /// map reading rule will be abandoned, and the nodes of the graph
1645 1645
    /// will not be constructed, which usually cause that the edge set
1646 1646
    /// could not be read due to lack of node name
1647 1647
    /// could not be read due to lack of node name resolving.
1648 1648
    /// Therefore \c skipEdges() function should also be used, or
1649 1649
    /// \c useNodes() should be used to specify the label of the nodes.
1650 1650
    GraphReader& skipNodes() {
1651 1651
      LEMON_ASSERT(!_skip_nodes, "Skip nodes already set");
1652 1652
      _skip_nodes = true;
1653 1653
      return *this;
1654 1654
    }
1655 1655

	
1656 1656
    /// \brief Skip the reading of edge section
1657 1657
    ///
1658 1658
    /// Omit the reading of the edge section. This implies that each edge
1659 1659
    /// map reading rule will be abandoned, and the edges of the graph
1660 1660
    /// will not be constructed.
1661 1661
    GraphReader& skipEdges() {
1662 1662
      LEMON_ASSERT(!_skip_edges, "Skip edges already set");
1663 1663
      _skip_edges = true;
1664 1664
      return *this;
1665 1665
    }
1666 1666

	
1667 1667
    /// @}
1668 1668

	
1669 1669
  private:
1670 1670

	
1671 1671
    bool readLine() {
1672 1672
      std::string str;
1673 1673
      while(++line_num, std::getline(*_is, str)) {
1674 1674
        line.clear(); line.str(str);
1675 1675
        char c;
1676 1676
        if (line >> std::ws >> c && c != '#') {
1677 1677
          line.putback(c);
1678 1678
          return true;
1679 1679
        }
1680 1680
      }
1681 1681
      return false;
1682 1682
    }
1683 1683

	
1684 1684
    bool readSuccess() {
1685 1685
      return static_cast<bool>(*_is);
1686 1686
    }
1687 1687

	
1688 1688
    void skipSection() {
1689 1689
      char c;
1690 1690
      while (readSuccess() && line >> c && c != '@') {
1691 1691
        readLine();
1692 1692
      }
1693 1693
      if (readSuccess()) {
1694 1694
        line.putback(c);
1695 1695
      }
1696 1696
    }
1697 1697

	
1698 1698
    void readNodes() {
1699 1699

	
1700 1700
      std::vector<int> map_index(_node_maps.size());
... ...
@@ -1834,842 +1834,842 @@
1834 1834
            label_index = jt->second;
1835 1835
          } else {
1836 1836
            label_index = -1;
1837 1837
          }
1838 1838
        }
1839 1839
        map_num = maps.size();
1840 1840
      }
1841 1841

	
1842 1842
      while (readLine() && line >> c && c != '@') {
1843 1843
        line.putback(c);
1844 1844

	
1845 1845
        std::string source_token;
1846 1846
        std::string target_token;
1847 1847

	
1848 1848
        if (!_reader_bits::readToken(line, source_token))
1849 1849
          throw FormatError("Node u not found");
1850 1850

	
1851 1851
        if (!_reader_bits::readToken(line, target_token))
1852 1852
          throw FormatError("Node v not found");
1853 1853

	
1854 1854
        std::vector<std::string> tokens(map_num);
1855 1855
        for (int i = 0; i < map_num; ++i) {
1856 1856
          if (!_reader_bits::readToken(line, tokens[i])) {
1857 1857
            std::ostringstream msg;
1858 1858
            msg << "Column not found (" << i + 1 << ")";
1859 1859
            throw FormatError(msg.str());
1860 1860
          }
1861 1861
        }
1862 1862
        if (line >> std::ws >> c)
1863 1863
          throw FormatError("Extra character at the end of line");
1864 1864

	
1865 1865
        Edge e;
1866 1866
        if (!_use_edges) {
1867 1867

	
1868 1868
          typename NodeIndex::iterator it;
1869 1869

	
1870 1870
          it = _node_index.find(source_token);
1871 1871
          if (it == _node_index.end()) {
1872 1872
            std::ostringstream msg;
1873 1873
            msg << "Item not found: " << source_token;
1874 1874
            throw FormatError(msg.str());
1875 1875
          }
1876 1876
          Node source = it->second;
1877 1877

	
1878 1878
          it = _node_index.find(target_token);
1879 1879
          if (it == _node_index.end()) {
1880 1880
            std::ostringstream msg;
1881 1881
            msg << "Item not found: " << target_token;
1882 1882
            throw FormatError(msg.str());
1883 1883
          }
1884 1884
          Node target = it->second;
1885 1885

	
1886 1886
          e = _graph.addEdge(source, target);
1887 1887
          if (label_index != -1)
1888 1888
            _edge_index.insert(std::make_pair(tokens[label_index], e));
1889 1889
        } else {
1890 1890
          if (label_index == -1)
1891 1891
            throw FormatError("Label map not found");
1892 1892
          typename std::map<std::string, Edge>::iterator it =
1893 1893
            _edge_index.find(tokens[label_index]);
1894 1894
          if (it == _edge_index.end()) {
1895 1895
            std::ostringstream msg;
1896 1896
            msg << "Edge with label not found: " << tokens[label_index];
1897 1897
            throw FormatError(msg.str());
1898 1898
          }
1899 1899
          e = it->second;
1900 1900
        }
1901 1901

	
1902 1902
        for (int i = 0; i < static_cast<int>(_edge_maps.size()); ++i) {
1903 1903
          _edge_maps[i].second->set(e, tokens[map_index[i]]);
1904 1904
        }
1905 1905

	
1906 1906
      }
1907 1907
      if (readSuccess()) {
1908 1908
        line.putback(c);
1909 1909
      }
1910 1910
    }
1911 1911

	
1912 1912
    void readAttributes() {
1913 1913

	
1914 1914
      std::set<std::string> read_attr;
1915 1915

	
1916 1916
      char c;
1917 1917
      while (readLine() && line >> c && c != '@') {
1918 1918
        line.putback(c);
1919 1919

	
1920 1920
        std::string attr, token;
1921 1921
        if (!_reader_bits::readToken(line, attr))
1922 1922
          throw FormatError("Attribute name not found");
1923 1923
        if (!_reader_bits::readToken(line, token))
1924 1924
          throw FormatError("Attribute value not found");
1925 1925
        if (line >> c)
1926 1926
          throw FormatError("Extra character at the end of line");
1927 1927

	
1928 1928
        {
1929 1929
          std::set<std::string>::iterator it = read_attr.find(attr);
1930 1930
          if (it != read_attr.end()) {
1931 1931
            std::ostringstream msg;
1932 1932
            msg << "Multiple occurence of attribute: " << attr;
1933 1933
            throw FormatError(msg.str());
1934 1934
          }
1935 1935
          read_attr.insert(attr);
1936 1936
        }
1937 1937

	
1938 1938
        {
1939 1939
          typename Attributes::iterator it = _attributes.lower_bound(attr);
1940 1940
          while (it != _attributes.end() && it->first == attr) {
1941 1941
            it->second->set(token);
1942 1942
            ++it;
1943 1943
          }
1944 1944
        }
1945 1945

	
1946 1946
      }
1947 1947
      if (readSuccess()) {
1948 1948
        line.putback(c);
1949 1949
      }
1950 1950
      for (typename Attributes::iterator it = _attributes.begin();
1951 1951
           it != _attributes.end(); ++it) {
1952 1952
        if (read_attr.find(it->first) == read_attr.end()) {
1953 1953
          std::ostringstream msg;
1954 1954
          msg << "Attribute not found: " << it->first;
1955 1955
          throw FormatError(msg.str());
1956 1956
        }
1957 1957
      }
1958 1958
    }
1959 1959

	
1960 1960
  public:
1961 1961

	
1962
    /// \name Execution of the reader
1962
    /// \name Execution of the Reader
1963 1963
    /// @{
1964 1964

	
1965 1965
    /// \brief Start the batch processing
1966 1966
    ///
1967 1967
    /// This function starts the batch processing
1968 1968
    void run() {
1969 1969

	
1970 1970
      LEMON_ASSERT(_is != 0, "This reader assigned to an other reader");
1971 1971

	
1972 1972
      bool nodes_done = _skip_nodes;
1973 1973
      bool edges_done = _skip_edges;
1974 1974
      bool attributes_done = false;
1975 1975

	
1976 1976
      line_num = 0;
1977 1977
      readLine();
1978 1978
      skipSection();
1979 1979

	
1980 1980
      while (readSuccess()) {
1981 1981
        try {
1982 1982
          char c;
1983 1983
          std::string section, caption;
1984 1984
          line >> c;
1985 1985
          _reader_bits::readToken(line, section);
1986 1986
          _reader_bits::readToken(line, caption);
1987 1987

	
1988 1988
          if (line >> c)
1989 1989
            throw FormatError("Extra character at the end of line");
1990 1990

	
1991 1991
          if (section == "nodes" && !nodes_done) {
1992 1992
            if (_nodes_caption.empty() || _nodes_caption == caption) {
1993 1993
              readNodes();
1994 1994
              nodes_done = true;
1995 1995
            }
1996 1996
          } else if ((section == "edges" || section == "arcs") &&
1997 1997
                     !edges_done) {
1998 1998
            if (_edges_caption.empty() || _edges_caption == caption) {
1999 1999
              readEdges();
2000 2000
              edges_done = true;
2001 2001
            }
2002 2002
          } else if (section == "attributes" && !attributes_done) {
2003 2003
            if (_attributes_caption.empty() || _attributes_caption == caption) {
2004 2004
              readAttributes();
2005 2005
              attributes_done = true;
2006 2006
            }
2007 2007
          } else {
2008 2008
            readLine();
2009 2009
            skipSection();
2010 2010
          }
2011 2011
        } catch (FormatError& error) {
2012 2012
          error.line(line_num);
2013 2013
          error.file(_filename);
2014 2014
          throw;
2015 2015
        }
2016 2016
      }
2017 2017

	
2018 2018
      if (!nodes_done) {
2019 2019
        throw FormatError("Section @nodes not found");
2020 2020
      }
2021 2021

	
2022 2022
      if (!edges_done) {
2023 2023
        throw FormatError("Section @edges not found");
2024 2024
      }
2025 2025

	
2026 2026
      if (!attributes_done && !_attributes.empty()) {
2027 2027
        throw FormatError("Section @attributes not found");
2028 2028
      }
2029 2029

	
2030 2030
    }
2031 2031

	
2032 2032
    /// @}
2033 2033

	
2034 2034
  };
2035 2035

	
2036 2036
  /// \brief Return a \ref GraphReader class
2037 2037
  ///
2038 2038
  /// This function just returns a \ref GraphReader class.
2039 2039
  /// \relates GraphReader
2040 2040
  template <typename Graph>
2041 2041
  GraphReader<Graph> graphReader(Graph& graph, std::istream& is) {
2042 2042
    GraphReader<Graph> tmp(graph, is);
2043 2043
    return tmp;
2044 2044
  }
2045 2045

	
2046 2046
  /// \brief Return a \ref GraphReader class
2047 2047
  ///
2048 2048
  /// This function just returns a \ref GraphReader class.
2049 2049
  /// \relates GraphReader
2050 2050
  template <typename Graph>
2051 2051
  GraphReader<Graph> graphReader(Graph& graph, const std::string& fn) {
2052 2052
    GraphReader<Graph> tmp(graph, fn);
2053 2053
    return tmp;
2054 2054
  }
2055 2055

	
2056 2056
  /// \brief Return a \ref GraphReader class
2057 2057
  ///
2058 2058
  /// This function just returns a \ref GraphReader class.
2059 2059
  /// \relates GraphReader
2060 2060
  template <typename Graph>
2061 2061
  GraphReader<Graph> graphReader(Graph& graph, const char* fn) {
2062 2062
    GraphReader<Graph> tmp(graph, fn);
2063 2063
    return tmp;
2064 2064
  }
2065 2065

	
2066 2066
  class SectionReader;
2067 2067

	
2068 2068
  SectionReader sectionReader(std::istream& is);
2069 2069
  SectionReader sectionReader(const std::string& fn);
2070 2070
  SectionReader sectionReader(const char* fn);
2071 2071

	
2072 2072
  /// \ingroup lemon_io
2073 2073
  ///
2074 2074
  /// \brief Section reader class
2075 2075
  ///
2076 2076
  /// In the \ref lgf-format "LGF" file extra sections can be placed,
2077 2077
  /// which contain any data in arbitrary format. Such sections can be
2078 2078
  /// read with this class. A reading rule can be added to the class
2079 2079
  /// with two different functions. With the \c sectionLines() function a
2080 2080
  /// functor can process the section line-by-line, while with the \c
2081 2081
  /// sectionStream() member the section can be read from an input
2082 2082
  /// stream.
2083 2083
  class SectionReader {
2084 2084
  private:
2085 2085

	
2086 2086
    std::istream* _is;
2087 2087
    bool local_is;
2088 2088
    std::string _filename;
2089 2089

	
2090 2090
    typedef std::map<std::string, _reader_bits::Section*> Sections;
2091 2091
    Sections _sections;
2092 2092

	
2093 2093
    int line_num;
2094 2094
    std::istringstream line;
2095 2095

	
2096 2096
  public:
2097 2097

	
2098 2098
    /// \brief Constructor
2099 2099
    ///
2100 2100
    /// Construct a section reader, which reads from the given input
2101 2101
    /// stream.
2102 2102
    SectionReader(std::istream& is)
2103 2103
      : _is(&is), local_is(false) {}
2104 2104

	
2105 2105
    /// \brief Constructor
2106 2106
    ///
2107 2107
    /// Construct a section reader, which reads from the given file.
2108 2108
    SectionReader(const std::string& fn)
2109 2109
      : _is(new std::ifstream(fn.c_str())), local_is(true),
2110 2110
        _filename(fn) {
2111 2111
      if (!(*_is)) {
2112 2112
        delete _is;
2113 2113
        throw IoError("Cannot open file", fn);
2114 2114
      }
2115 2115
    }
2116 2116

	
2117 2117
    /// \brief Constructor
2118 2118
    ///
2119 2119
    /// Construct a section reader, which reads from the given file.
2120 2120
    SectionReader(const char* fn)
2121 2121
      : _is(new std::ifstream(fn)), local_is(true),
2122 2122
        _filename(fn) {
2123 2123
      if (!(*_is)) {
2124 2124
        delete _is;
2125 2125
        throw IoError("Cannot open file", fn);
2126 2126
      }
2127 2127
    }
2128 2128

	
2129 2129
    /// \brief Destructor
2130 2130
    ~SectionReader() {
2131 2131
      for (Sections::iterator it = _sections.begin();
2132 2132
           it != _sections.end(); ++it) {
2133 2133
        delete it->second;
2134 2134
      }
2135 2135

	
2136 2136
      if (local_is) {
2137 2137
        delete _is;
2138 2138
      }
2139 2139

	
2140 2140
    }
2141 2141

	
2142 2142
  private:
2143 2143

	
2144 2144
    friend SectionReader sectionReader(std::istream& is);
2145 2145
    friend SectionReader sectionReader(const std::string& fn);
2146 2146
    friend SectionReader sectionReader(const char* fn);
2147 2147

	
2148 2148
    SectionReader(SectionReader& other)
2149 2149
      : _is(other._is), local_is(other.local_is) {
2150 2150

	
2151 2151
      other._is = 0;
2152 2152
      other.local_is = false;
2153 2153

	
2154 2154
      _sections.swap(other._sections);
2155 2155
    }
2156 2156

	
2157 2157
    SectionReader& operator=(const SectionReader&);
2158 2158

	
2159 2159
  public:
2160 2160

	
2161
    /// \name Section readers
2161
    /// \name Section Readers
2162 2162
    /// @{
2163 2163

	
2164 2164
    /// \brief Add a section processor with line oriented reading
2165 2165
    ///
2166 2166
    /// The first parameter is the type descriptor of the section, the
2167 2167
    /// second is a functor, which takes just one \c std::string
2168 2168
    /// parameter. At the reading process, each line of the section
2169 2169
    /// will be given to the functor object. However, the empty lines
2170 2170
    /// and the comment lines are filtered out, and the leading
2171 2171
    /// whitespaces are trimmed from each processed string.
2172 2172
    ///
2173 2173
    /// For example let's see a section, which contain several
2174 2174
    /// integers, which should be inserted into a vector.
2175 2175
    ///\code
2176 2176
    ///  @numbers
2177 2177
    ///  12 45 23
2178 2178
    ///  4
2179 2179
    ///  23 6
2180 2180
    ///\endcode
2181 2181
    ///
2182 2182
    /// The functor is implemented as a struct:
2183 2183
    ///\code
2184 2184
    ///  struct NumberSection {
2185 2185
    ///    std::vector<int>& _data;
2186 2186
    ///    NumberSection(std::vector<int>& data) : _data(data) {}
2187 2187
    ///    void operator()(const std::string& line) {
2188 2188
    ///      std::istringstream ls(line);
2189 2189
    ///      int value;
2190 2190
    ///      while (ls >> value) _data.push_back(value);
2191 2191
    ///    }
2192 2192
    ///  };
2193 2193
    ///
2194 2194
    ///  // ...
2195 2195
    ///
2196 2196
    ///  reader.sectionLines("numbers", NumberSection(vec));
2197 2197
    ///\endcode
2198 2198
    template <typename Functor>
2199 2199
    SectionReader& sectionLines(const std::string& type, Functor functor) {
2200 2200
      LEMON_ASSERT(!type.empty(), "Type is empty.");
2201 2201
      LEMON_ASSERT(_sections.find(type) == _sections.end(),
2202 2202
                   "Multiple reading of section.");
2203 2203
      _sections.insert(std::make_pair(type,
2204 2204
        new _reader_bits::LineSection<Functor>(functor)));
2205 2205
      return *this;
2206 2206
    }
2207 2207

	
2208 2208

	
2209 2209
    /// \brief Add a section processor with stream oriented reading
2210 2210
    ///
2211 2211
    /// The first parameter is the type of the section, the second is
2212 2212
    /// a functor, which takes an \c std::istream& and an \c int&
2213 2213
    /// parameter, the latter regard to the line number of stream. The
2214 2214
    /// functor can read the input while the section go on, and the
2215 2215
    /// line number should be modified accordingly.
2216 2216
    template <typename Functor>
2217 2217
    SectionReader& sectionStream(const std::string& type, Functor functor) {
2218 2218
      LEMON_ASSERT(!type.empty(), "Type is empty.");
2219 2219
      LEMON_ASSERT(_sections.find(type) == _sections.end(),
2220 2220
                   "Multiple reading of section.");
2221 2221
      _sections.insert(std::make_pair(type,
2222 2222
         new _reader_bits::StreamSection<Functor>(functor)));
2223 2223
      return *this;
2224 2224
    }
2225 2225

	
2226 2226
    /// @}
2227 2227

	
2228 2228
  private:
2229 2229

	
2230 2230
    bool readLine() {
2231 2231
      std::string str;
2232 2232
      while(++line_num, std::getline(*_is, str)) {
2233 2233
        line.clear(); line.str(str);
2234 2234
        char c;
2235 2235
        if (line >> std::ws >> c && c != '#') {
2236 2236
          line.putback(c);
2237 2237
          return true;
2238 2238
        }
2239 2239
      }
2240 2240
      return false;
2241 2241
    }
2242 2242

	
2243 2243
    bool readSuccess() {
2244 2244
      return static_cast<bool>(*_is);
2245 2245
    }
2246 2246

	
2247 2247
    void skipSection() {
2248 2248
      char c;
2249 2249
      while (readSuccess() && line >> c && c != '@') {
2250 2250
        readLine();
2251 2251
      }
2252 2252
      if (readSuccess()) {
2253 2253
        line.putback(c);
2254 2254
      }
2255 2255
    }
2256 2256

	
2257 2257
  public:
2258 2258

	
2259 2259

	
2260
    /// \name Execution of the reader
2260
    /// \name Execution of the Reader
2261 2261
    /// @{
2262 2262

	
2263 2263
    /// \brief Start the batch processing
2264 2264
    ///
2265 2265
    /// This function starts the batch processing.
2266 2266
    void run() {
2267 2267

	
2268 2268
      LEMON_ASSERT(_is != 0, "This reader assigned to an other reader");
2269 2269

	
2270 2270
      std::set<std::string> extra_sections;
2271 2271

	
2272 2272
      line_num = 0;
2273 2273
      readLine();
2274 2274
      skipSection();
2275 2275

	
2276 2276
      while (readSuccess()) {
2277 2277
        try {
2278 2278
          char c;
2279 2279
          std::string section, caption;
2280 2280
          line >> c;
2281 2281
          _reader_bits::readToken(line, section);
2282 2282
          _reader_bits::readToken(line, caption);
2283 2283

	
2284 2284
          if (line >> c)
2285 2285
            throw FormatError("Extra character at the end of line");
2286 2286

	
2287 2287
          if (extra_sections.find(section) != extra_sections.end()) {
2288 2288
            std::ostringstream msg;
2289 2289
            msg << "Multiple occurence of section: " << section;
2290 2290
            throw FormatError(msg.str());
2291 2291
          }
2292 2292
          Sections::iterator it = _sections.find(section);
2293 2293
          if (it != _sections.end()) {
2294 2294
            extra_sections.insert(section);
2295 2295
            it->second->process(*_is, line_num);
2296 2296
          }
2297 2297
          readLine();
2298 2298
          skipSection();
2299 2299
        } catch (FormatError& error) {
2300 2300
          error.line(line_num);
2301 2301
          error.file(_filename);
2302 2302
          throw;
2303 2303
        }
2304 2304
      }
2305 2305
      for (Sections::iterator it = _sections.begin();
2306 2306
           it != _sections.end(); ++it) {
2307 2307
        if (extra_sections.find(it->first) == extra_sections.end()) {
2308 2308
          std::ostringstream os;
2309 2309
          os << "Cannot find section: " << it->first;
2310 2310
          throw FormatError(os.str());
2311 2311
        }
2312 2312
      }
2313 2313
    }
2314 2314

	
2315 2315
    /// @}
2316 2316

	
2317 2317
  };
2318 2318

	
2319 2319
  /// \brief Return a \ref SectionReader class
2320 2320
  ///
2321 2321
  /// This function just returns a \ref SectionReader class.
2322 2322
  /// \relates SectionReader
2323 2323
  inline SectionReader sectionReader(std::istream& is) {
2324 2324
    SectionReader tmp(is);
2325 2325
    return tmp;
2326 2326
  }
2327 2327

	
2328 2328
  /// \brief Return a \ref SectionReader class
2329 2329
  ///
2330 2330
  /// This function just returns a \ref SectionReader class.
2331 2331
  /// \relates SectionReader
2332 2332
  inline SectionReader sectionReader(const std::string& fn) {
2333 2333
    SectionReader tmp(fn);
2334 2334
    return tmp;
2335 2335
  }
2336 2336

	
2337 2337
  /// \brief Return a \ref SectionReader class
2338 2338
  ///
2339 2339
  /// This function just returns a \ref SectionReader class.
2340 2340
  /// \relates SectionReader
2341 2341
  inline SectionReader sectionReader(const char* fn) {
2342 2342
    SectionReader tmp(fn);
2343 2343
    return tmp;
2344 2344
  }
2345 2345

	
2346 2346
  /// \ingroup lemon_io
2347 2347
  ///
2348 2348
  /// \brief Reader for the contents of the \ref lgf-format "LGF" file
2349 2349
  ///
2350 2350
  /// This class can be used to read the sections, the map names and
2351 2351
  /// the attributes from a file. Usually, the LEMON programs know
2352 2352
  /// that, which type of graph, which maps and which attributes
2353 2353
  /// should be read from a file, but in general tools (like glemon)
2354 2354
  /// the contents of an LGF file should be guessed somehow. This class
2355 2355
  /// reads the graph and stores the appropriate information for
2356 2356
  /// reading the graph.
2357 2357
  ///
2358 2358
  ///\code
2359 2359
  /// LgfContents contents("graph.lgf");
2360 2360
  /// contents.run();
2361 2361
  ///
2362 2362
  /// // Does it contain any node section and arc section?
2363 2363
  /// if (contents.nodeSectionNum() == 0 || contents.arcSectionNum()) {
2364 2364
  ///   std::cerr << "Failure, cannot find graph." << std::endl;
2365 2365
  ///   return -1;
2366 2366
  /// }
2367 2367
  /// std::cout << "The name of the default node section: "
2368 2368
  ///           << contents.nodeSection(0) << std::endl;
2369 2369
  /// std::cout << "The number of the arc maps: "
2370 2370
  ///           << contents.arcMaps(0).size() << std::endl;
2371 2371
  /// std::cout << "The name of second arc map: "
2372 2372
  ///           << contents.arcMaps(0)[1] << std::endl;
2373 2373
  ///\endcode
2374 2374
  class LgfContents {
2375 2375
  private:
2376 2376

	
2377 2377
    std::istream* _is;
2378 2378
    bool local_is;
2379 2379

	
2380 2380
    std::vector<std::string> _node_sections;
2381 2381
    std::vector<std::string> _edge_sections;
2382 2382
    std::vector<std::string> _attribute_sections;
2383 2383
    std::vector<std::string> _extra_sections;
2384 2384

	
2385 2385
    std::vector<bool> _arc_sections;
2386 2386

	
2387 2387
    std::vector<std::vector<std::string> > _node_maps;
2388 2388
    std::vector<std::vector<std::string> > _edge_maps;
2389 2389

	
2390 2390
    std::vector<std::vector<std::string> > _attributes;
2391 2391

	
2392 2392

	
2393 2393
    int line_num;
2394 2394
    std::istringstream line;
2395 2395

	
2396 2396
  public:
2397 2397

	
2398 2398
    /// \brief Constructor
2399 2399
    ///
2400 2400
    /// Construct an \e LGF contents reader, which reads from the given
2401 2401
    /// input stream.
2402 2402
    LgfContents(std::istream& is)
2403 2403
      : _is(&is), local_is(false) {}
2404 2404

	
2405 2405
    /// \brief Constructor
2406 2406
    ///
2407 2407
    /// Construct an \e LGF contents reader, which reads from the given
2408 2408
    /// file.
2409 2409
    LgfContents(const std::string& fn)
2410 2410
      : _is(new std::ifstream(fn.c_str())), local_is(true) {
2411 2411
      if (!(*_is)) {
2412 2412
        delete _is;
2413 2413
        throw IoError("Cannot open file", fn);
2414 2414
      }
2415 2415
    }
2416 2416

	
2417 2417
    /// \brief Constructor
2418 2418
    ///
2419 2419
    /// Construct an \e LGF contents reader, which reads from the given
2420 2420
    /// file.
2421 2421
    LgfContents(const char* fn)
2422 2422
      : _is(new std::ifstream(fn)), local_is(true) {
2423 2423
      if (!(*_is)) {
2424 2424
        delete _is;
2425 2425
        throw IoError("Cannot open file", fn);
2426 2426
      }
2427 2427
    }
2428 2428

	
2429 2429
    /// \brief Destructor
2430 2430
    ~LgfContents() {
2431 2431
      if (local_is) delete _is;
2432 2432
    }
2433 2433

	
2434 2434
  private:
2435 2435

	
2436 2436
    LgfContents(const LgfContents&);
2437 2437
    LgfContents& operator=(const LgfContents&);
2438 2438

	
2439 2439
  public:
2440 2440

	
2441 2441

	
2442
    /// \name Node sections
2442
    /// \name Node Sections
2443 2443
    /// @{
2444 2444

	
2445 2445
    /// \brief Gives back the number of node sections in the file.
2446 2446
    ///
2447 2447
    /// Gives back the number of node sections in the file.
2448 2448
    int nodeSectionNum() const {
2449 2449
      return _node_sections.size();
2450 2450
    }
2451 2451

	
2452 2452
    /// \brief Returns the node section name at the given position.
2453 2453
    ///
2454 2454
    /// Returns the node section name at the given position.
2455 2455
    const std::string& nodeSection(int i) const {
2456 2456
      return _node_sections[i];
2457 2457
    }
2458 2458

	
2459 2459
    /// \brief Gives back the node maps for the given section.
2460 2460
    ///
2461 2461
    /// Gives back the node maps for the given section.
2462 2462
    const std::vector<std::string>& nodeMapNames(int i) const {
2463 2463
      return _node_maps[i];
2464 2464
    }
2465 2465

	
2466 2466
    /// @}
2467 2467

	
2468
    /// \name Arc/Edge sections
2468
    /// \name Arc/Edge Sections
2469 2469
    /// @{
2470 2470

	
2471 2471
    /// \brief Gives back the number of arc/edge sections in the file.
2472 2472
    ///
2473 2473
    /// Gives back the number of arc/edge sections in the file.
2474 2474
    /// \note It is synonym of \c edgeSectionNum().
2475 2475
    int arcSectionNum() const {
2476 2476
      return _edge_sections.size();
2477 2477
    }
2478 2478

	
2479 2479
    /// \brief Returns the arc/edge section name at the given position.
2480 2480
    ///
2481 2481
    /// Returns the arc/edge section name at the given position.
2482 2482
    /// \note It is synonym of \c edgeSection().
2483 2483
    const std::string& arcSection(int i) const {
2484 2484
      return _edge_sections[i];
2485 2485
    }
2486 2486

	
2487 2487
    /// \brief Gives back the arc/edge maps for the given section.
2488 2488
    ///
2489 2489
    /// Gives back the arc/edge maps for the given section.
2490 2490
    /// \note It is synonym of \c edgeMapNames().
2491 2491
    const std::vector<std::string>& arcMapNames(int i) const {
2492 2492
      return _edge_maps[i];
2493 2493
    }
2494 2494

	
2495 2495
    /// @}
2496 2496

	
2497 2497
    /// \name Synonyms
2498 2498
    /// @{
2499 2499

	
2500 2500
    /// \brief Gives back the number of arc/edge sections in the file.
2501 2501
    ///
2502 2502
    /// Gives back the number of arc/edge sections in the file.
2503 2503
    /// \note It is synonym of \c arcSectionNum().
2504 2504
    int edgeSectionNum() const {
2505 2505
      return _edge_sections.size();
2506 2506
    }
2507 2507

	
2508 2508
    /// \brief Returns the section name at the given position.
2509 2509
    ///
2510 2510
    /// Returns the section name at the given position.
2511 2511
    /// \note It is synonym of \c arcSection().
2512 2512
    const std::string& edgeSection(int i) const {
2513 2513
      return _edge_sections[i];
2514 2514
    }
2515 2515

	
2516 2516
    /// \brief Gives back the edge maps for the given section.
2517 2517
    ///
2518 2518
    /// Gives back the edge maps for the given section.
2519 2519
    /// \note It is synonym of \c arcMapNames().
2520 2520
    const std::vector<std::string>& edgeMapNames(int i) const {
2521 2521
      return _edge_maps[i];
2522 2522
    }
2523 2523

	
2524 2524
    /// @}
2525 2525

	
2526
    /// \name Attribute sections
2526
    /// \name Attribute Sections
2527 2527
    /// @{
2528 2528

	
2529 2529
    /// \brief Gives back the number of attribute sections in the file.
2530 2530
    ///
2531 2531
    /// Gives back the number of attribute sections in the file.
2532 2532
    int attributeSectionNum() const {
2533 2533
      return _attribute_sections.size();
2534 2534
    }
2535 2535

	
2536 2536
    /// \brief Returns the attribute section name at the given position.
2537 2537
    ///
2538 2538
    /// Returns the attribute section name at the given position.
2539 2539
    const std::string& attributeSectionNames(int i) const {
2540 2540
      return _attribute_sections[i];
2541 2541
    }
2542 2542

	
2543 2543
    /// \brief Gives back the attributes for the given section.
2544 2544
    ///
2545 2545
    /// Gives back the attributes for the given section.
2546 2546
    const std::vector<std::string>& attributes(int i) const {
2547 2547
      return _attributes[i];
2548 2548
    }
2549 2549

	
2550 2550
    /// @}
2551 2551

	
2552
    /// \name Extra sections
2552
    /// \name Extra Sections
2553 2553
    /// @{
2554 2554

	
2555 2555
    /// \brief Gives back the number of extra sections in the file.
2556 2556
    ///
2557 2557
    /// Gives back the number of extra sections in the file.
2558 2558
    int extraSectionNum() const {
2559 2559
      return _extra_sections.size();
2560 2560
    }
2561 2561

	
2562 2562
    /// \brief Returns the extra section type at the given position.
2563 2563
    ///
2564 2564
    /// Returns the section type at the given position.
2565 2565
    const std::string& extraSection(int i) const {
2566 2566
      return _extra_sections[i];
2567 2567
    }
2568 2568

	
2569 2569
    /// @}
2570 2570

	
2571 2571
  private:
2572 2572

	
2573 2573
    bool readLine() {
2574 2574
      std::string str;
2575 2575
      while(++line_num, std::getline(*_is, str)) {
2576 2576
        line.clear(); line.str(str);
2577 2577
        char c;
2578 2578
        if (line >> std::ws >> c && c != '#') {
2579 2579
          line.putback(c);
2580 2580
          return true;
2581 2581
        }
2582 2582
      }
2583 2583
      return false;
2584 2584
    }
2585 2585

	
2586 2586
    bool readSuccess() {
2587 2587
      return static_cast<bool>(*_is);
2588 2588
    }
2589 2589

	
2590 2590
    void skipSection() {
2591 2591
      char c;
2592 2592
      while (readSuccess() && line >> c && c != '@') {
2593 2593
        readLine();
2594 2594
      }
2595 2595
      if (readSuccess()) {
2596 2596
        line.putback(c);
2597 2597
      }
2598 2598
    }
2599 2599

	
2600 2600
    void readMaps(std::vector<std::string>& maps) {
2601 2601
      char c;
2602 2602
      if (!readLine() || !(line >> c) || c == '@') {
2603 2603
        if (readSuccess() && line) line.putback(c);
2604 2604
        return;
2605 2605
      }
2606 2606
      line.putback(c);
2607 2607
      std::string map;
2608 2608
      while (_reader_bits::readToken(line, map)) {
2609 2609
        maps.push_back(map);
2610 2610
      }
2611 2611
    }
2612 2612

	
2613 2613
    void readAttributes(std::vector<std::string>& attrs) {
2614 2614
      readLine();
2615 2615
      char c;
2616 2616
      while (readSuccess() && line >> c && c != '@') {
2617 2617
        line.putback(c);
2618 2618
        std::string attr;
2619 2619
        _reader_bits::readToken(line, attr);
2620 2620
        attrs.push_back(attr);
2621 2621
        readLine();
2622 2622
      }
2623 2623
      line.putback(c);
2624 2624
    }
2625 2625

	
2626 2626
  public:
2627 2627

	
2628
    /// \name Execution of the contents reader
2628
    /// \name Execution of the Contents Reader
2629 2629
    /// @{
2630 2630

	
2631 2631
    /// \brief Starts the reading
2632 2632
    ///
2633 2633
    /// This function starts the reading.
2634 2634
    void run() {
2635 2635

	
2636 2636
      readLine();
2637 2637
      skipSection();
2638 2638

	
2639 2639
      while (readSuccess()) {
2640 2640

	
2641 2641
        char c;
2642 2642
        line >> c;
2643 2643

	
2644 2644
        std::string section, caption;
2645 2645
        _reader_bits::readToken(line, section);
2646 2646
        _reader_bits::readToken(line, caption);
2647 2647

	
2648 2648
        if (section == "nodes") {
2649 2649
          _node_sections.push_back(caption);
2650 2650
          _node_maps.push_back(std::vector<std::string>());
2651 2651
          readMaps(_node_maps.back());
2652 2652
          readLine(); skipSection();
2653 2653
        } else if (section == "arcs" || section == "edges") {
2654 2654
          _edge_sections.push_back(caption);
2655 2655
          _arc_sections.push_back(section == "arcs");
2656 2656
          _edge_maps.push_back(std::vector<std::string>());
2657 2657
          readMaps(_edge_maps.back());
2658 2658
          readLine(); skipSection();
2659 2659
        } else if (section == "attributes") {
2660 2660
          _attribute_sections.push_back(caption);
2661 2661
          _attributes.push_back(std::vector<std::string>());
2662 2662
          readAttributes(_attributes.back());
2663 2663
        } else {
2664 2664
          _extra_sections.push_back(section);
2665 2665
          readLine(); skipSection();
2666 2666
        }
2667 2667
      }
2668 2668
    }
2669 2669

	
2670 2670
    /// @}
2671 2671

	
2672 2672
  };
2673 2673
}
2674 2674

	
2675 2675
#endif
Ignore white space 6 line context
... ...
@@ -413,1365 +413,1365 @@
413 413
    typedef GR Digraph;
414 414
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
415 415

	
416 416
  private:
417 417

	
418 418

	
419 419
    std::ostream* _os;
420 420
    bool local_os;
421 421

	
422 422
    const Digraph& _digraph;
423 423

	
424 424
    std::string _nodes_caption;
425 425
    std::string _arcs_caption;
426 426
    std::string _attributes_caption;
427 427

	
428 428
    typedef std::map<Node, std::string> NodeIndex;
429 429
    NodeIndex _node_index;
430 430
    typedef std::map<Arc, std::string> ArcIndex;
431 431
    ArcIndex _arc_index;
432 432

	
433 433
    typedef std::vector<std::pair<std::string,
434 434
      _writer_bits::MapStorageBase<Node>* > > NodeMaps;
435 435
    NodeMaps _node_maps;
436 436

	
437 437
    typedef std::vector<std::pair<std::string,
438 438
      _writer_bits::MapStorageBase<Arc>* > >ArcMaps;
439 439
    ArcMaps _arc_maps;
440 440

	
441 441
    typedef std::vector<std::pair<std::string,
442 442
      _writer_bits::ValueStorageBase*> > Attributes;
443 443
    Attributes _attributes;
444 444

	
445 445
    bool _skip_nodes;
446 446
    bool _skip_arcs;
447 447

	
448 448
  public:
449 449

	
450 450
    /// \brief Constructor
451 451
    ///
452 452
    /// Construct a directed graph writer, which writes to the given
453 453
    /// output stream.
454 454
    DigraphWriter(const Digraph& digraph, std::ostream& os = std::cout)
455 455
      : _os(&os), local_os(false), _digraph(digraph),
456 456
        _skip_nodes(false), _skip_arcs(false) {}
457 457

	
458 458
    /// \brief Constructor
459 459
    ///
460 460
    /// Construct a directed graph writer, which writes to the given
461 461
    /// output file.
462 462
    DigraphWriter(const Digraph& digraph, const std::string& fn)
463 463
      : _os(new std::ofstream(fn.c_str())), local_os(true), _digraph(digraph),
464 464
        _skip_nodes(false), _skip_arcs(false) {
465 465
      if (!(*_os)) {
466 466
        delete _os;
467 467
        throw IoError("Cannot write file", fn);
468 468
      }
469 469
    }
470 470

	
471 471
    /// \brief Constructor
472 472
    ///
473 473
    /// Construct a directed graph writer, which writes to the given
474 474
    /// output file.
475 475
    DigraphWriter(const Digraph& digraph, const char* fn)
476 476
      : _os(new std::ofstream(fn)), local_os(true), _digraph(digraph),
477 477
        _skip_nodes(false), _skip_arcs(false) {
478 478
      if (!(*_os)) {
479 479
        delete _os;
480 480
        throw IoError("Cannot write file", fn);
481 481
      }
482 482
    }
483 483

	
484 484
    /// \brief Destructor
485 485
    ~DigraphWriter() {
486 486
      for (typename NodeMaps::iterator it = _node_maps.begin();
487 487
           it != _node_maps.end(); ++it) {
488 488
        delete it->second;
489 489
      }
490 490

	
491 491
      for (typename ArcMaps::iterator it = _arc_maps.begin();
492 492
           it != _arc_maps.end(); ++it) {
493 493
        delete it->second;
494 494
      }
495 495

	
496 496
      for (typename Attributes::iterator it = _attributes.begin();
497 497
           it != _attributes.end(); ++it) {
498 498
        delete it->second;
499 499
      }
500 500

	
501 501
      if (local_os) {
502 502
        delete _os;
503 503
      }
504 504
    }
505 505

	
506 506
  private:
507 507

	
508 508
    template <typename DGR>
509 509
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, 
510 510
                                            std::ostream& os);
511 511
    template <typename DGR>
512 512
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph,
513 513
                                            const std::string& fn);
514 514
    template <typename DGR>
515 515
    friend DigraphWriter<DGR> digraphWriter(const DGR& digraph,
516 516
                                            const char *fn);
517 517

	
518 518
    DigraphWriter(DigraphWriter& other)
519 519
      : _os(other._os), local_os(other.local_os), _digraph(other._digraph),
520 520
        _skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) {
521 521

	
522 522
      other._os = 0;
523 523
      other.local_os = false;
524 524

	
525 525
      _node_index.swap(other._node_index);
526 526
      _arc_index.swap(other._arc_index);
527 527

	
528 528
      _node_maps.swap(other._node_maps);
529 529
      _arc_maps.swap(other._arc_maps);
530 530
      _attributes.swap(other._attributes);
531 531

	
532 532
      _nodes_caption = other._nodes_caption;
533 533
      _arcs_caption = other._arcs_caption;
534 534
      _attributes_caption = other._attributes_caption;
535 535
    }
536 536

	
537 537
    DigraphWriter& operator=(const DigraphWriter&);
538 538

	
539 539
  public:
540 540

	
541
    /// \name Writing rules
541
    /// \name Writing Rules
542 542
    /// @{
543 543

	
544 544
    /// \brief Node map writing rule
545 545
    ///
546 546
    /// Add a node map writing rule to the writer.
547 547
    template <typename Map>
548 548
    DigraphWriter& nodeMap(const std::string& caption, const Map& map) {
549 549
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
550 550
      _writer_bits::MapStorageBase<Node>* storage =
551 551
        new _writer_bits::MapStorage<Node, Map>(map);
552 552
      _node_maps.push_back(std::make_pair(caption, storage));
553 553
      return *this;
554 554
    }
555 555

	
556 556
    /// \brief Node map writing rule
557 557
    ///
558 558
    /// Add a node map writing rule with specialized converter to the
559 559
    /// writer.
560 560
    template <typename Map, typename Converter>
561 561
    DigraphWriter& nodeMap(const std::string& caption, const Map& map,
562 562
                           const Converter& converter = Converter()) {
563 563
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
564 564
      _writer_bits::MapStorageBase<Node>* storage =
565 565
        new _writer_bits::MapStorage<Node, Map, Converter>(map, converter);
566 566
      _node_maps.push_back(std::make_pair(caption, storage));
567 567
      return *this;
568 568
    }
569 569

	
570 570
    /// \brief Arc map writing rule
571 571
    ///
572 572
    /// Add an arc map writing rule to the writer.
573 573
    template <typename Map>
574 574
    DigraphWriter& arcMap(const std::string& caption, const Map& map) {
575 575
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
576 576
      _writer_bits::MapStorageBase<Arc>* storage =
577 577
        new _writer_bits::MapStorage<Arc, Map>(map);
578 578
      _arc_maps.push_back(std::make_pair(caption, storage));
579 579
      return *this;
580 580
    }
581 581

	
582 582
    /// \brief Arc map writing rule
583 583
    ///
584 584
    /// Add an arc map writing rule with specialized converter to the
585 585
    /// writer.
586 586
    template <typename Map, typename Converter>
587 587
    DigraphWriter& arcMap(const std::string& caption, const Map& map,
588 588
                          const Converter& converter = Converter()) {
589 589
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
590 590
      _writer_bits::MapStorageBase<Arc>* storage =
591 591
        new _writer_bits::MapStorage<Arc, Map, Converter>(map, converter);
592 592
      _arc_maps.push_back(std::make_pair(caption, storage));
593 593
      return *this;
594 594
    }
595 595

	
596 596
    /// \brief Attribute writing rule
597 597
    ///
598 598
    /// Add an attribute writing rule to the writer.
599 599
    template <typename Value>
600 600
    DigraphWriter& attribute(const std::string& caption, const Value& value) {
601 601
      _writer_bits::ValueStorageBase* storage =
602 602
        new _writer_bits::ValueStorage<Value>(value);
603 603
      _attributes.push_back(std::make_pair(caption, storage));
604 604
      return *this;
605 605
    }
606 606

	
607 607
    /// \brief Attribute writing rule
608 608
    ///
609 609
    /// Add an attribute writing rule with specialized converter to the
610 610
    /// writer.
611 611
    template <typename Value, typename Converter>
612 612
    DigraphWriter& attribute(const std::string& caption, const Value& value,
613 613
                             const Converter& converter = Converter()) {
614 614
      _writer_bits::ValueStorageBase* storage =
615 615
        new _writer_bits::ValueStorage<Value, Converter>(value, converter);
616 616
      _attributes.push_back(std::make_pair(caption, storage));
617 617
      return *this;
618 618
    }
619 619

	
620 620
    /// \brief Node writing rule
621 621
    ///
622 622
    /// Add a node writing rule to the writer.
623 623
    DigraphWriter& node(const std::string& caption, const Node& node) {
624 624
      typedef _writer_bits::MapLookUpConverter<Node> Converter;
625 625
      Converter converter(_node_index);
626 626
      _writer_bits::ValueStorageBase* storage =
627 627
        new _writer_bits::ValueStorage<Node, Converter>(node, converter);
628 628
      _attributes.push_back(std::make_pair(caption, storage));
629 629
      return *this;
630 630
    }
631 631

	
632 632
    /// \brief Arc writing rule
633 633
    ///
634 634
    /// Add an arc writing rule to writer.
635 635
    DigraphWriter& arc(const std::string& caption, const Arc& arc) {
636 636
      typedef _writer_bits::MapLookUpConverter<Arc> Converter;
637 637
      Converter converter(_arc_index);
638 638
      _writer_bits::ValueStorageBase* storage =
639 639
        new _writer_bits::ValueStorage<Arc, Converter>(arc, converter);
640 640
      _attributes.push_back(std::make_pair(caption, storage));
641 641
      return *this;
642 642
    }
643 643

	
644
    /// \name Section captions
644
    /// \name Section Captions
645 645
    /// @{
646 646

	
647 647
    /// \brief Add an additional caption to the \c \@nodes section
648 648
    ///
649 649
    /// Add an additional caption to the \c \@nodes section.
650 650
    DigraphWriter& nodes(const std::string& caption) {
651 651
      _nodes_caption = caption;
652 652
      return *this;
653 653
    }
654 654

	
655 655
    /// \brief Add an additional caption to the \c \@arcs section
656 656
    ///
657 657
    /// Add an additional caption to the \c \@arcs section.
658 658
    DigraphWriter& arcs(const std::string& caption) {
659 659
      _arcs_caption = caption;
660 660
      return *this;
661 661
    }
662 662

	
663 663
    /// \brief Add an additional caption to the \c \@attributes section
664 664
    ///
665 665
    /// Add an additional caption to the \c \@attributes section.
666 666
    DigraphWriter& attributes(const std::string& caption) {
667 667
      _attributes_caption = caption;
668 668
      return *this;
669 669
    }
670 670

	
671
    /// \name Skipping section
671
    /// \name Skipping Section
672 672
    /// @{
673 673

	
674 674
    /// \brief Skip writing the node set
675 675
    ///
676 676
    /// The \c \@nodes section will not be written to the stream.
677 677
    DigraphWriter& skipNodes() {
678 678
      LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member");
679 679
      _skip_nodes = true;
680 680
      return *this;
681 681
    }
682 682

	
683 683
    /// \brief Skip writing arc set
684 684
    ///
685 685
    /// The \c \@arcs section will not be written to the stream.
686 686
    DigraphWriter& skipArcs() {
687 687
      LEMON_ASSERT(!_skip_arcs, "Multiple usage of skipArcs() member");
688 688
      _skip_arcs = true;
689 689
      return *this;
690 690
    }
691 691

	
692 692
    /// @}
693 693

	
694 694
  private:
695 695

	
696 696
    void writeNodes() {
697 697
      _writer_bits::MapStorageBase<Node>* label = 0;
698 698
      for (typename NodeMaps::iterator it = _node_maps.begin();
699 699
           it != _node_maps.end(); ++it) {
700 700
        if (it->first == "label") {
701 701
          label = it->second;
702 702
          break;
703 703
        }
704 704
      }
705 705

	
706 706
      *_os << "@nodes";
707 707
      if (!_nodes_caption.empty()) {
708 708
        _writer_bits::writeToken(*_os << ' ', _nodes_caption);
709 709
      }
710 710
      *_os << std::endl;
711 711

	
712 712
      if (label == 0) {
713 713
        *_os << "label" << '\t';
714 714
      }
715 715
      for (typename NodeMaps::iterator it = _node_maps.begin();
716 716
           it != _node_maps.end(); ++it) {
717 717
        _writer_bits::writeToken(*_os, it->first) << '\t';
718 718
      }
719 719
      *_os << std::endl;
720 720

	
721 721
      std::vector<Node> nodes;
722 722
      for (NodeIt n(_digraph); n != INVALID; ++n) {
723 723
        nodes.push_back(n);
724 724
      }
725 725

	
726 726
      if (label == 0) {
727 727
        IdMap<Digraph, Node> id_map(_digraph);
728 728
        _writer_bits::MapLess<IdMap<Digraph, Node> > id_less(id_map);
729 729
        std::sort(nodes.begin(), nodes.end(), id_less);
730 730
      } else {
731 731
        label->sort(nodes);
732 732
      }
733 733

	
734 734
      for (int i = 0; i < static_cast<int>(nodes.size()); ++i) {
735 735
        Node n = nodes[i];
736 736
        if (label == 0) {
737 737
          std::ostringstream os;
738 738
          os << _digraph.id(n);
739 739
          _writer_bits::writeToken(*_os, os.str());
740 740
          *_os << '\t';
741 741
          _node_index.insert(std::make_pair(n, os.str()));
742 742
        }
743 743
        for (typename NodeMaps::iterator it = _node_maps.begin();
744 744
             it != _node_maps.end(); ++it) {
745 745
          std::string value = it->second->get(n);
746 746
          _writer_bits::writeToken(*_os, value);
747 747
          if (it->first == "label") {
748 748
            _node_index.insert(std::make_pair(n, value));
749 749
          }
750 750
          *_os << '\t';
751 751
        }
752 752
        *_os << std::endl;
753 753
      }
754 754
    }
755 755

	
756 756
    void createNodeIndex() {
757 757
      _writer_bits::MapStorageBase<Node>* label = 0;
758 758
      for (typename NodeMaps::iterator it = _node_maps.begin();
759 759
           it != _node_maps.end(); ++it) {
760 760
        if (it->first == "label") {
761 761
          label = it->second;
762 762
          break;
763 763
        }
764 764
      }
765 765

	
766 766
      if (label == 0) {
767 767
        for (NodeIt n(_digraph); n != INVALID; ++n) {
768 768
          std::ostringstream os;
769 769
          os << _digraph.id(n);
770 770
          _node_index.insert(std::make_pair(n, os.str()));
771 771
        }
772 772
      } else {
773 773
        for (NodeIt n(_digraph); n != INVALID; ++n) {
774 774
          std::string value = label->get(n);
775 775
          _node_index.insert(std::make_pair(n, value));
776 776
        }
777 777
      }
778 778
    }
779 779

	
780 780
    void writeArcs() {
781 781
      _writer_bits::MapStorageBase<Arc>* label = 0;
782 782
      for (typename ArcMaps::iterator it = _arc_maps.begin();
783 783
           it != _arc_maps.end(); ++it) {
784 784
        if (it->first == "label") {
785 785
          label = it->second;
786 786
          break;
787 787
        }
788 788
      }
789 789

	
790 790
      *_os << "@arcs";
791 791
      if (!_arcs_caption.empty()) {
792 792
        _writer_bits::writeToken(*_os << ' ', _arcs_caption);
793 793
      }
794 794
      *_os << std::endl;
795 795

	
796 796
      *_os << '\t' << '\t';
797 797
      if (label == 0) {
798 798
        *_os << "label" << '\t';
799 799
      }
800 800
      for (typename ArcMaps::iterator it = _arc_maps.begin();
801 801
           it != _arc_maps.end(); ++it) {
802 802
        _writer_bits::writeToken(*_os, it->first) << '\t';
803 803
      }
804 804
      *_os << std::endl;
805 805

	
806 806
      std::vector<Arc> arcs;
807 807
      for (ArcIt n(_digraph); n != INVALID; ++n) {
808 808
        arcs.push_back(n);
809 809
      }
810 810

	
811 811
      if (label == 0) {
812 812
        IdMap<Digraph, Arc> id_map(_digraph);
813 813
        _writer_bits::MapLess<IdMap<Digraph, Arc> > id_less(id_map);
814 814
        std::sort(arcs.begin(), arcs.end(), id_less);
815 815
      } else {
816 816
        label->sort(arcs);
817 817
      }
818 818

	
819 819
      for (int i = 0; i < static_cast<int>(arcs.size()); ++i) {
820 820
        Arc a = arcs[i];
821 821
        _writer_bits::writeToken(*_os, _node_index.
822 822
                                 find(_digraph.source(a))->second);
823 823
        *_os << '\t';
824 824
        _writer_bits::writeToken(*_os, _node_index.
825 825
                                 find(_digraph.target(a))->second);
826 826
        *_os << '\t';
827 827
        if (label == 0) {
828 828
          std::ostringstream os;
829 829
          os << _digraph.id(a);
830 830
          _writer_bits::writeToken(*_os, os.str());
831 831
          *_os << '\t';
832 832
          _arc_index.insert(std::make_pair(a, os.str()));
833 833
        }
834 834
        for (typename ArcMaps::iterator it = _arc_maps.begin();
835 835
             it != _arc_maps.end(); ++it) {
836 836
          std::string value = it->second->get(a);
837 837
          _writer_bits::writeToken(*_os, value);
838 838
          if (it->first == "label") {
839 839
            _arc_index.insert(std::make_pair(a, value));
840 840
          }
841 841
          *_os << '\t';
842 842
        }
843 843
        *_os << std::endl;
844 844
      }
845 845
    }
846 846

	
847 847
    void createArcIndex() {
848 848
      _writer_bits::MapStorageBase<Arc>* label = 0;
849 849
      for (typename ArcMaps::iterator it = _arc_maps.begin();
850 850
           it != _arc_maps.end(); ++it) {
851 851
        if (it->first == "label") {
852 852
          label = it->second;
853 853
          break;
854 854
        }
855 855
      }
856 856

	
857 857
      if (label == 0) {
858 858
        for (ArcIt a(_digraph); a != INVALID; ++a) {
859 859
          std::ostringstream os;
860 860
          os << _digraph.id(a);
861 861
          _arc_index.insert(std::make_pair(a, os.str()));
862 862
        }
863 863
      } else {
864 864
        for (ArcIt a(_digraph); a != INVALID; ++a) {
865 865
          std::string value = label->get(a);
866 866
          _arc_index.insert(std::make_pair(a, value));
867 867
        }
868 868
      }
869 869
    }
870 870

	
871 871
    void writeAttributes() {
872 872
      if (_attributes.empty()) return;
873 873
      *_os << "@attributes";
874 874
      if (!_attributes_caption.empty()) {
875 875
        _writer_bits::writeToken(*_os << ' ', _attributes_caption);
876 876
      }
877 877
      *_os << std::endl;
878 878
      for (typename Attributes::iterator it = _attributes.begin();
879 879
           it != _attributes.end(); ++it) {
880 880
        _writer_bits::writeToken(*_os, it->first) << ' ';
881 881
        _writer_bits::writeToken(*_os, it->second->get());
882 882
        *_os << std::endl;
883 883
      }
884 884
    }
885 885

	
886 886
  public:
887 887

	
888
    /// \name Execution of the writer
888
    /// \name Execution of the Writer
889 889
    /// @{
890 890

	
891 891
    /// \brief Start the batch processing
892 892
    ///
893 893
    /// This function starts the batch processing.
894 894
    void run() {
895 895
      if (!_skip_nodes) {
896 896
        writeNodes();
897 897
      } else {
898 898
        createNodeIndex();
899 899
      }
900 900
      if (!_skip_arcs) {
901 901
        writeArcs();
902 902
      } else {
903 903
        createArcIndex();
904 904
      }
905 905
      writeAttributes();
906 906
    }
907 907

	
908 908
    /// \brief Give back the stream of the writer
909 909
    ///
910 910
    /// Give back the stream of the writer.
911 911
    std::ostream& ostream() {
912 912
      return *_os;
913 913
    }
914 914

	
915 915
    /// @}
916 916
  };
917 917

	
918 918
  /// \brief Return a \ref DigraphWriter class
919 919
  ///
920 920
  /// This function just returns a \ref DigraphWriter class.
921 921
  /// \relates DigraphWriter
922 922
  template <typename Digraph>
923 923
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
924 924
                                       std::ostream& os) {
925 925
    DigraphWriter<Digraph> tmp(digraph, os);
926 926
    return tmp;
927 927
  }
928 928

	
929 929
  /// \brief Return a \ref DigraphWriter class
930 930
  ///
931 931
  /// This function just returns a \ref DigraphWriter class.
932 932
  /// \relates DigraphWriter
933 933
  template <typename Digraph>
934 934
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
935 935
                                       const std::string& fn) {
936 936
    DigraphWriter<Digraph> tmp(digraph, fn);
937 937
    return tmp;
938 938
  }
939 939

	
940 940
  /// \brief Return a \ref DigraphWriter class
941 941
  ///
942 942
  /// This function just returns a \ref DigraphWriter class.
943 943
  /// \relates DigraphWriter
944 944
  template <typename Digraph>
945 945
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
946 946
                                       const char* fn) {
947 947
    DigraphWriter<Digraph> tmp(digraph, fn);
948 948
    return tmp;
949 949
  }
950 950

	
951 951
  template <typename Graph>
952 952
  class GraphWriter;
953 953

	
954 954
  template <typename Graph>
955 955
  GraphWriter<Graph> graphWriter(const Graph& graph,
956 956
                                 std::ostream& os = std::cout);
957 957
  template <typename Graph>
958 958
  GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn);
959 959
  template <typename Graph>
960 960
  GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn);
961 961

	
962 962
  /// \ingroup lemon_io
963 963
  ///
964 964
  /// \brief \ref lgf-format "LGF" writer for directed graphs
965 965
  ///
966 966
  /// This utility writes an \ref lgf-format "LGF" file.
967 967
  ///
968 968
  /// It can be used almost the same way as \c DigraphWriter.
969 969
  /// The only difference is that this class can handle edges and
970 970
  /// edge maps as well as arcs and arc maps.
971 971
  ///
972 972
  /// The arc maps are written into the file as two columns, the
973 973
  /// caption of the columns are the name of the map prefixed with \c
974 974
  /// '+' and \c '-'. The arcs are written into the \c \@attributes
975 975
  /// section as a \c '+' or a \c '-' prefix (depends on the direction
976 976
  /// of the arc) and the label of corresponding edge.
977 977
  template <typename GR>
978 978
  class GraphWriter {
979 979
  public:
980 980

	
981 981
    typedef GR Graph;
982 982
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
983 983

	
984 984
  private:
985 985

	
986 986

	
987 987
    std::ostream* _os;
988 988
    bool local_os;
989 989

	
990 990
    const Graph& _graph;
991 991

	
992 992
    std::string _nodes_caption;
993 993
    std::string _edges_caption;
994 994
    std::string _attributes_caption;
995 995

	
996 996
    typedef std::map<Node, std::string> NodeIndex;
997 997
    NodeIndex _node_index;
998 998
    typedef std::map<Edge, std::string> EdgeIndex;
999 999
    EdgeIndex _edge_index;
1000 1000

	
1001 1001
    typedef std::vector<std::pair<std::string,
1002 1002
      _writer_bits::MapStorageBase<Node>* > > NodeMaps;
1003 1003
    NodeMaps _node_maps;
1004 1004

	
1005 1005
    typedef std::vector<std::pair<std::string,
1006 1006
      _writer_bits::MapStorageBase<Edge>* > >EdgeMaps;
1007 1007
    EdgeMaps _edge_maps;
1008 1008

	
1009 1009
    typedef std::vector<std::pair<std::string,
1010 1010
      _writer_bits::ValueStorageBase*> > Attributes;
1011 1011
    Attributes _attributes;
1012 1012

	
1013 1013
    bool _skip_nodes;
1014 1014
    bool _skip_edges;
1015 1015

	
1016 1016
  public:
1017 1017

	
1018 1018
    /// \brief Constructor
1019 1019
    ///
1020 1020
    /// Construct a directed graph writer, which writes to the given
1021 1021
    /// output stream.
1022 1022
    GraphWriter(const Graph& graph, std::ostream& os = std::cout)
1023 1023
      : _os(&os), local_os(false), _graph(graph),
1024 1024
        _skip_nodes(false), _skip_edges(false) {}
1025 1025

	
1026 1026
    /// \brief Constructor
1027 1027
    ///
1028 1028
    /// Construct a directed graph writer, which writes to the given
1029 1029
    /// output file.
1030 1030
    GraphWriter(const Graph& graph, const std::string& fn)
1031 1031
      : _os(new std::ofstream(fn.c_str())), local_os(true), _graph(graph),
1032 1032
        _skip_nodes(false), _skip_edges(false) {
1033 1033
      if (!(*_os)) {
1034 1034
        delete _os;
1035 1035
        throw IoError("Cannot write file", fn);
1036 1036
      }
1037 1037
    }
1038 1038

	
1039 1039
    /// \brief Constructor
1040 1040
    ///
1041 1041
    /// Construct a directed graph writer, which writes to the given
1042 1042
    /// output file.
1043 1043
    GraphWriter(const Graph& graph, const char* fn)
1044 1044
      : _os(new std::ofstream(fn)), local_os(true), _graph(graph),
1045 1045
        _skip_nodes(false), _skip_edges(false) {
1046 1046
      if (!(*_os)) {
1047 1047
        delete _os;
1048 1048
        throw IoError("Cannot write file", fn);
1049 1049
      }
1050 1050
    }
1051 1051

	
1052 1052
    /// \brief Destructor
1053 1053
    ~GraphWriter() {
1054 1054
      for (typename NodeMaps::iterator it = _node_maps.begin();
1055 1055
           it != _node_maps.end(); ++it) {
1056 1056
        delete it->second;
1057 1057
      }
1058 1058

	
1059 1059
      for (typename EdgeMaps::iterator it = _edge_maps.begin();
1060 1060
           it != _edge_maps.end(); ++it) {
1061 1061
        delete it->second;
1062 1062
      }
1063 1063

	
1064 1064
      for (typename Attributes::iterator it = _attributes.begin();
1065 1065
           it != _attributes.end(); ++it) {
1066 1066
        delete it->second;
1067 1067
      }
1068 1068

	
1069 1069
      if (local_os) {
1070 1070
        delete _os;
1071 1071
      }
1072 1072
    }
1073 1073

	
1074 1074
  private:
1075 1075

	
1076 1076
    template <typename Graph>
1077 1077
    friend GraphWriter<Graph> graphWriter(const Graph& graph,
1078 1078
                                          std::ostream& os);
1079 1079
    template <typename Graph>
1080 1080
    friend GraphWriter<Graph> graphWriter(const Graph& graph,
1081 1081
                                          const std::string& fn);
1082 1082
    template <typename Graph>
1083 1083
    friend GraphWriter<Graph> graphWriter(const Graph& graph,
1084 1084
                                          const char *fn);
1085 1085
    
1086 1086
    GraphWriter(GraphWriter& other)
1087 1087
      : _os(other._os), local_os(other.local_os), _graph(other._graph),
1088 1088
        _skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) {
1089 1089

	
1090 1090
      other._os = 0;
1091 1091
      other.local_os = false;
1092 1092

	
1093 1093
      _node_index.swap(other._node_index);
1094 1094
      _edge_index.swap(other._edge_index);
1095 1095

	
1096 1096
      _node_maps.swap(other._node_maps);
1097 1097
      _edge_maps.swap(other._edge_maps);
1098 1098
      _attributes.swap(other._attributes);
1099 1099

	
1100 1100
      _nodes_caption = other._nodes_caption;
1101 1101
      _edges_caption = other._edges_caption;
1102 1102
      _attributes_caption = other._attributes_caption;
1103 1103
    }
1104 1104

	
1105 1105
    GraphWriter& operator=(const GraphWriter&);
1106 1106

	
1107 1107
  public:
1108 1108

	
1109
    /// \name Writing rules
1109
    /// \name Writing Rules
1110 1110
    /// @{
1111 1111

	
1112 1112
    /// \brief Node map writing rule
1113 1113
    ///
1114 1114
    /// Add a node map writing rule to the writer.
1115 1115
    template <typename Map>
1116 1116
    GraphWriter& nodeMap(const std::string& caption, const Map& map) {
1117 1117
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
1118 1118
      _writer_bits::MapStorageBase<Node>* storage =
1119 1119
        new _writer_bits::MapStorage<Node, Map>(map);
1120 1120
      _node_maps.push_back(std::make_pair(caption, storage));
1121 1121
      return *this;
1122 1122
    }
1123 1123

	
1124 1124
    /// \brief Node map writing rule
1125 1125
    ///
1126 1126
    /// Add a node map writing rule with specialized converter to the
1127 1127
    /// writer.
1128 1128
    template <typename Map, typename Converter>
1129 1129
    GraphWriter& nodeMap(const std::string& caption, const Map& map,
1130 1130
                           const Converter& converter = Converter()) {
1131 1131
      checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>();
1132 1132
      _writer_bits::MapStorageBase<Node>* storage =
1133 1133
        new _writer_bits::MapStorage<Node, Map, Converter>(map, converter);
1134 1134
      _node_maps.push_back(std::make_pair(caption, storage));
1135 1135
      return *this;
1136 1136
    }
1137 1137

	
1138 1138
    /// \brief Edge map writing rule
1139 1139
    ///
1140 1140
    /// Add an edge map writing rule to the writer.
1141 1141
    template <typename Map>
1142 1142
    GraphWriter& edgeMap(const std::string& caption, const Map& map) {
1143 1143
      checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>();
1144 1144
      _writer_bits::MapStorageBase<Edge>* storage =
1145 1145
        new _writer_bits::MapStorage<Edge, Map>(map);
1146 1146
      _edge_maps.push_back(std::make_pair(caption, storage));
1147 1147
      return *this;
1148 1148
    }
1149 1149

	
1150 1150
    /// \brief Edge map writing rule
1151 1151
    ///
1152 1152
    /// Add an edge map writing rule with specialized converter to the
1153 1153
    /// writer.
1154 1154
    template <typename Map, typename Converter>
1155 1155
    GraphWriter& edgeMap(const std::string& caption, const Map& map,
1156 1156
                          const Converter& converter = Converter()) {
1157 1157
      checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>();
1158 1158
      _writer_bits::MapStorageBase<Edge>* storage =
1159 1159
        new _writer_bits::MapStorage<Edge, Map, Converter>(map, converter);
1160 1160
      _edge_maps.push_back(std::make_pair(caption, storage));
1161 1161
      return *this;
1162 1162
    }
1163 1163

	
1164 1164
    /// \brief Arc map writing rule
1165 1165
    ///
1166 1166
    /// Add an arc map writing rule to the writer.
1167 1167
    template <typename Map>
1168 1168
    GraphWriter& arcMap(const std::string& caption, const Map& map) {
1169 1169
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
1170 1170
      _writer_bits::MapStorageBase<Edge>* forward_storage =
1171 1171
        new _writer_bits::GraphArcMapStorage<Graph, true, Map>(_graph, map);
1172 1172
      _edge_maps.push_back(std::make_pair('+' + caption, forward_storage));
1173 1173
      _writer_bits::MapStorageBase<Edge>* backward_storage =
1174 1174
        new _writer_bits::GraphArcMapStorage<Graph, false, Map>(_graph, map);
1175 1175
      _edge_maps.push_back(std::make_pair('-' + caption, backward_storage));
1176 1176
      return *this;
1177 1177
    }
1178 1178

	
1179 1179
    /// \brief Arc map writing rule
1180 1180
    ///
1181 1181
    /// Add an arc map writing rule with specialized converter to the
1182 1182
    /// writer.
1183 1183
    template <typename Map, typename Converter>
1184 1184
    GraphWriter& arcMap(const std::string& caption, const Map& map,
1185 1185
                          const Converter& converter = Converter()) {
1186 1186
      checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>();
1187 1187
      _writer_bits::MapStorageBase<Edge>* forward_storage =
1188 1188
        new _writer_bits::GraphArcMapStorage<Graph, true, Map, Converter>
1189 1189
        (_graph, map, converter);
1190 1190
      _edge_maps.push_back(std::make_pair('+' + caption, forward_storage));
1191 1191
      _writer_bits::MapStorageBase<Edge>* backward_storage =
1192 1192
        new _writer_bits::GraphArcMapStorage<Graph, false, Map, Converter>
1193 1193
        (_graph, map, converter);
1194 1194
      _edge_maps.push_back(std::make_pair('-' + caption, backward_storage));
1195 1195
      return *this;
1196 1196
    }
1197 1197

	
1198 1198
    /// \brief Attribute writing rule
1199 1199
    ///
1200 1200
    /// Add an attribute writing rule to the writer.
1201 1201
    template <typename Value>
1202 1202
    GraphWriter& attribute(const std::string& caption, const Value& value) {
1203 1203
      _writer_bits::ValueStorageBase* storage =
1204 1204
        new _writer_bits::ValueStorage<Value>(value);
1205 1205
      _attributes.push_back(std::make_pair(caption, storage));
1206 1206
      return *this;
1207 1207
    }
1208 1208

	
1209 1209
    /// \brief Attribute writing rule
1210 1210
    ///
1211 1211
    /// Add an attribute writing rule with specialized converter to the
1212 1212
    /// writer.
1213 1213
    template <typename Value, typename Converter>
1214 1214
    GraphWriter& attribute(const std::string& caption, const Value& value,
1215 1215
                             const Converter& converter = Converter()) {
1216 1216
      _writer_bits::ValueStorageBase* storage =
1217 1217
        new _writer_bits::ValueStorage<Value, Converter>(value, converter);
1218 1218
      _attributes.push_back(std::make_pair(caption, storage));
1219 1219
      return *this;
1220 1220
    }
1221 1221

	
1222 1222
    /// \brief Node writing rule
1223 1223
    ///
1224 1224
    /// Add a node writing rule to the writer.
1225 1225
    GraphWriter& node(const std::string& caption, const Node& node) {
1226 1226
      typedef _writer_bits::MapLookUpConverter<Node> Converter;
1227 1227
      Converter converter(_node_index);
1228 1228
      _writer_bits::ValueStorageBase* storage =
1229 1229
        new _writer_bits::ValueStorage<Node, Converter>(node, converter);
1230 1230
      _attributes.push_back(std::make_pair(caption, storage));
1231 1231
      return *this;
1232 1232
    }
1233 1233

	
1234 1234
    /// \brief Edge writing rule
1235 1235
    ///
1236 1236
    /// Add an edge writing rule to writer.
1237 1237
    GraphWriter& edge(const std::string& caption, const Edge& edge) {
1238 1238
      typedef _writer_bits::MapLookUpConverter<Edge> Converter;
1239 1239
      Converter converter(_edge_index);
1240 1240
      _writer_bits::ValueStorageBase* storage =
1241 1241
        new _writer_bits::ValueStorage<Edge, Converter>(edge, converter);
1242 1242
      _attributes.push_back(std::make_pair(caption, storage));
1243 1243
      return *this;
1244 1244
    }
1245 1245

	
1246 1246
    /// \brief Arc writing rule
1247 1247
    ///
1248 1248
    /// Add an arc writing rule to writer.
1249 1249
    GraphWriter& arc(const std::string& caption, const Arc& arc) {
1250 1250
      typedef _writer_bits::GraphArcLookUpConverter<Graph> Converter;
1251 1251
      Converter converter(_graph, _edge_index);
1252 1252
      _writer_bits::ValueStorageBase* storage =
1253 1253
        new _writer_bits::ValueStorage<Arc, Converter>(arc, converter);
1254 1254
      _attributes.push_back(std::make_pair(caption, storage));
1255 1255
      return *this;
1256 1256
    }
1257 1257

	
1258
    /// \name Section captions
1258
    /// \name Section Captions
1259 1259
    /// @{
1260 1260

	
1261 1261
    /// \brief Add an additional caption to the \c \@nodes section
1262 1262
    ///
1263 1263
    /// Add an additional caption to the \c \@nodes section.
1264 1264
    GraphWriter& nodes(const std::string& caption) {
1265 1265
      _nodes_caption = caption;
1266 1266
      return *this;
1267 1267
    }
1268 1268

	
1269 1269
    /// \brief Add an additional caption to the \c \@arcs section
1270 1270
    ///
1271 1271
    /// Add an additional caption to the \c \@arcs section.
1272 1272
    GraphWriter& edges(const std::string& caption) {
1273 1273
      _edges_caption = caption;
1274 1274
      return *this;
1275 1275
    }
1276 1276

	
1277 1277
    /// \brief Add an additional caption to the \c \@attributes section
1278 1278
    ///
1279 1279
    /// Add an additional caption to the \c \@attributes section.
1280 1280
    GraphWriter& attributes(const std::string& caption) {
1281 1281
      _attributes_caption = caption;
1282 1282
      return *this;
1283 1283
    }
1284 1284

	
1285
    /// \name Skipping section
1285
    /// \name Skipping Section
1286 1286
    /// @{
1287 1287

	
1288 1288
    /// \brief Skip writing the node set
1289 1289
    ///
1290 1290
    /// The \c \@nodes section will not be written to the stream.
1291 1291
    GraphWriter& skipNodes() {
1292 1292
      LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member");
1293 1293
      _skip_nodes = true;
1294 1294
      return *this;
1295 1295
    }
1296 1296

	
1297 1297
    /// \brief Skip writing edge set
1298 1298
    ///
1299 1299
    /// The \c \@edges section will not be written to the stream.
1300 1300
    GraphWriter& skipEdges() {
1301 1301
      LEMON_ASSERT(!_skip_edges, "Multiple usage of skipEdges() member");
1302 1302
      _skip_edges = true;
1303 1303
      return *this;
1304 1304
    }
1305 1305

	
1306 1306
    /// @}
1307 1307

	
1308 1308
  private:
1309 1309

	
1310 1310
    void writeNodes() {
1311 1311
      _writer_bits::MapStorageBase<Node>* label = 0;
1312 1312
      for (typename NodeMaps::iterator it = _node_maps.begin();
1313 1313
           it != _node_maps.end(); ++it) {
1314 1314
        if (it->first == "label") {
1315 1315
          label = it->second;
1316 1316
          break;
1317 1317
        }
1318 1318
      }
1319 1319

	
1320 1320
      *_os << "@nodes";
1321 1321
      if (!_nodes_caption.empty()) {
1322 1322
        _writer_bits::writeToken(*_os << ' ', _nodes_caption);
1323 1323
      }
1324 1324
      *_os << std::endl;
1325 1325

	
1326 1326
      if (label == 0) {
1327 1327
        *_os << "label" << '\t';
1328 1328
      }
1329 1329
      for (typename NodeMaps::iterator it = _node_maps.begin();
1330 1330
           it != _node_maps.end(); ++it) {
1331 1331
        _writer_bits::writeToken(*_os, it->first) << '\t';
1332 1332
      }
1333 1333
      *_os << std::endl;
1334 1334

	
1335 1335
      std::vector<Node> nodes;
1336 1336
      for (NodeIt n(_graph); n != INVALID; ++n) {
1337 1337
        nodes.push_back(n);
1338 1338
      }
1339 1339

	
1340 1340
      if (label == 0) {
1341 1341
        IdMap<Graph, Node> id_map(_graph);
1342 1342
        _writer_bits::MapLess<IdMap<Graph, Node> > id_less(id_map);
1343 1343
        std::sort(nodes.begin(), nodes.end(), id_less);
1344 1344
      } else {
1345 1345
        label->sort(nodes);
1346 1346
      }
1347 1347

	
1348 1348
      for (int i = 0; i < static_cast<int>(nodes.size()); ++i) {
1349 1349
        Node n = nodes[i];
1350 1350
        if (label == 0) {
1351 1351
          std::ostringstream os;
1352 1352
          os << _graph.id(n);
1353 1353
          _writer_bits::writeToken(*_os, os.str());
1354 1354
          *_os << '\t';
1355 1355
          _node_index.insert(std::make_pair(n, os.str()));
1356 1356
        }
1357 1357
        for (typename NodeMaps::iterator it = _node_maps.begin();
1358 1358
             it != _node_maps.end(); ++it) {
1359 1359
          std::string value = it->second->get(n);
1360 1360
          _writer_bits::writeToken(*_os, value);
1361 1361
          if (it->first == "label") {
1362 1362
            _node_index.insert(std::make_pair(n, value));
1363 1363
          }
1364 1364
          *_os << '\t';
1365 1365
        }
1366 1366
        *_os << std::endl;
1367 1367
      }
1368 1368
    }
1369 1369

	
1370 1370
    void createNodeIndex() {
1371 1371
      _writer_bits::MapStorageBase<Node>* label = 0;
1372 1372
      for (typename NodeMaps::iterator it = _node_maps.begin();
1373 1373
           it != _node_maps.end(); ++it) {
1374 1374
        if (it->first == "label") {
1375 1375
          label = it->second;
1376 1376
          break;
1377 1377
        }
1378 1378
      }
1379 1379

	
1380 1380
      if (label == 0) {
1381 1381
        for (NodeIt n(_graph); n != INVALID; ++n) {
1382 1382
          std::ostringstream os;
1383 1383
          os << _graph.id(n);
1384 1384
          _node_index.insert(std::make_pair(n, os.str()));
1385 1385
        }
1386 1386
      } else {
1387 1387
        for (NodeIt n(_graph); n != INVALID; ++n) {
1388 1388
          std::string value = label->get(n);
1389 1389
          _node_index.insert(std::make_pair(n, value));
1390 1390
        }
1391 1391
      }
1392 1392
    }
1393 1393

	
1394 1394
    void writeEdges() {
1395 1395
      _writer_bits::MapStorageBase<Edge>* label = 0;
1396 1396
      for (typename EdgeMaps::iterator it = _edge_maps.begin();
1397 1397
           it != _edge_maps.end(); ++it) {
1398 1398
        if (it->first == "label") {
1399 1399
          label = it->second;
1400 1400
          break;
1401 1401
        }
1402 1402
      }
1403 1403

	
1404 1404
      *_os << "@edges";
1405 1405
      if (!_edges_caption.empty()) {
1406 1406
        _writer_bits::writeToken(*_os << ' ', _edges_caption);
1407 1407
      }
1408 1408
      *_os << std::endl;
1409 1409

	
1410 1410
      *_os << '\t' << '\t';
1411 1411
      if (label == 0) {
1412 1412
        *_os << "label" << '\t';
1413 1413
      }
1414 1414
      for (typename EdgeMaps::iterator it = _edge_maps.begin();
1415 1415
           it != _edge_maps.end(); ++it) {
1416 1416
        _writer_bits::writeToken(*_os, it->first) << '\t';
1417 1417
      }
1418 1418
      *_os << std::endl;
1419 1419

	
1420 1420
      std::vector<Edge> edges;
1421 1421
      for (EdgeIt n(_graph); n != INVALID; ++n) {
1422 1422
        edges.push_back(n);
1423 1423
      }
1424 1424

	
1425 1425
      if (label == 0) {
1426 1426
        IdMap<Graph, Edge> id_map(_graph);
1427 1427
        _writer_bits::MapLess<IdMap<Graph, Edge> > id_less(id_map);
1428 1428
        std::sort(edges.begin(), edges.end(), id_less);
1429 1429
      } else {
1430 1430
        label->sort(edges);
1431 1431
      }
1432 1432

	
1433 1433
      for (int i = 0; i < static_cast<int>(edges.size()); ++i) {
1434 1434
        Edge e = edges[i];
1435 1435
        _writer_bits::writeToken(*_os, _node_index.
1436 1436
                                 find(_graph.u(e))->second);
1437 1437
        *_os << '\t';
1438 1438
        _writer_bits::writeToken(*_os, _node_index.
1439 1439
                                 find(_graph.v(e))->second);
1440 1440
        *_os << '\t';
1441 1441
        if (label == 0) {
1442 1442
          std::ostringstream os;
1443 1443
          os << _graph.id(e);
1444 1444
          _writer_bits::writeToken(*_os, os.str());
1445 1445
          *_os << '\t';
1446 1446
          _edge_index.insert(std::make_pair(e, os.str()));
1447 1447
        }
1448 1448
        for (typename EdgeMaps::iterator it = _edge_maps.begin();
1449 1449
             it != _edge_maps.end(); ++it) {
1450 1450
          std::string value = it->second->get(e);
1451 1451
          _writer_bits::writeToken(*_os, value);
1452 1452
          if (it->first == "label") {
1453 1453
            _edge_index.insert(std::make_pair(e, value));
1454 1454
          }
1455 1455
          *_os << '\t';
1456 1456
        }
1457 1457
        *_os << std::endl;
1458 1458
      }
1459 1459
    }
1460 1460

	
1461 1461
    void createEdgeIndex() {
1462 1462
      _writer_bits::MapStorageBase<Edge>* label = 0;
1463 1463
      for (typename EdgeMaps::iterator it = _edge_maps.begin();
1464 1464
           it != _edge_maps.end(); ++it) {
1465 1465
        if (it->first == "label") {
1466 1466
          label = it->second;
1467 1467
          break;
1468 1468
        }
1469 1469
      }
1470 1470

	
1471 1471
      if (label == 0) {
1472 1472
        for (EdgeIt e(_graph); e != INVALID; ++e) {
1473 1473
          std::ostringstream os;
1474 1474
          os << _graph.id(e);
1475 1475
          _edge_index.insert(std::make_pair(e, os.str()));
1476 1476
        }
1477 1477
      } else {
1478 1478
        for (EdgeIt e(_graph); e != INVALID; ++e) {
1479 1479
          std::string value = label->get(e);
1480 1480
          _edge_index.insert(std::make_pair(e, value));
1481 1481
        }
1482 1482
      }
1483 1483
    }
1484 1484

	
1485 1485
    void writeAttributes() {
1486 1486
      if (_attributes.empty()) return;
1487 1487
      *_os << "@attributes";
1488 1488
      if (!_attributes_caption.empty()) {
1489 1489
        _writer_bits::writeToken(*_os << ' ', _attributes_caption);
1490 1490
      }
1491 1491
      *_os << std::endl;
1492 1492
      for (typename Attributes::iterator it = _attributes.begin();
1493 1493
           it != _attributes.end(); ++it) {
1494 1494
        _writer_bits::writeToken(*_os, it->first) << ' ';
1495 1495
        _writer_bits::writeToken(*_os, it->second->get());
1496 1496
        *_os << std::endl;
1497 1497
      }
1498 1498
    }
1499 1499

	
1500 1500
  public:
1501 1501

	
1502
    /// \name Execution of the writer
1502
    /// \name Execution of the Writer
1503 1503
    /// @{
1504 1504

	
1505 1505
    /// \brief Start the batch processing
1506 1506
    ///
1507 1507
    /// This function starts the batch processing.
1508 1508
    void run() {
1509 1509
      if (!_skip_nodes) {
1510 1510
        writeNodes();
1511 1511
      } else {
1512 1512
        createNodeIndex();
1513 1513
      }
1514 1514
      if (!_skip_edges) {
1515 1515
        writeEdges();
1516 1516
      } else {
1517 1517
        createEdgeIndex();
1518 1518
      }
1519 1519
      writeAttributes();
1520 1520
    }
1521 1521

	
1522 1522
    /// \brief Give back the stream of the writer
1523 1523
    ///
1524 1524
    /// Give back the stream of the writer
1525 1525
    std::ostream& ostream() {
1526 1526
      return *_os;
1527 1527
    }
1528 1528

	
1529 1529
    /// @}
1530 1530
  };
1531 1531

	
1532 1532
  /// \brief Return a \ref GraphWriter class
1533 1533
  ///
1534 1534
  /// This function just returns a \ref GraphWriter class.
1535 1535
  /// \relates GraphWriter
1536 1536
  template <typename Graph>
1537 1537
  GraphWriter<Graph> graphWriter(const Graph& graph,
1538 1538
                                 std::ostream& os) {
1539 1539
    GraphWriter<Graph> tmp(graph, os);
1540 1540
    return tmp;
1541 1541
  }
1542 1542

	
1543 1543
  /// \brief Return a \ref GraphWriter class
1544 1544
  ///
1545 1545
  /// This function just returns a \ref GraphWriter class.
1546 1546
  /// \relates GraphWriter
1547 1547
  template <typename Graph>
1548 1548
  GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn) {
1549 1549
    GraphWriter<Graph> tmp(graph, fn);
1550 1550
    return tmp;
1551 1551
  }
1552 1552

	
1553 1553
  /// \brief Return a \ref GraphWriter class
1554 1554
  ///
1555 1555
  /// This function just returns a \ref GraphWriter class.
1556 1556
  /// \relates GraphWriter
1557 1557
  template <typename Graph>
1558 1558
  GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn) {
1559 1559
    GraphWriter<Graph> tmp(graph, fn);
1560 1560
    return tmp;
1561 1561
  }
1562 1562

	
1563 1563
  class SectionWriter;
1564 1564

	
1565 1565
  SectionWriter sectionWriter(std::istream& is);
1566 1566
  SectionWriter sectionWriter(const std::string& fn);
1567 1567
  SectionWriter sectionWriter(const char* fn);
1568 1568

	
1569 1569
  /// \ingroup lemon_io
1570 1570
  ///
1571 1571
  /// \brief Section writer class
1572 1572
  ///
1573 1573
  /// In the \ref lgf-format "LGF" file extra sections can be placed,
1574 1574
  /// which contain any data in arbitrary format. Such sections can be
1575 1575
  /// written with this class. A writing rule can be added to the
1576 1576
  /// class with two different functions. With the \c sectionLines()
1577 1577
  /// function a generator can write the section line-by-line, while
1578 1578
  /// with the \c sectionStream() member the section can be written to
1579 1579
  /// an output stream.
1580 1580
  class SectionWriter {
1581 1581
  private:
1582 1582

	
1583 1583
    std::ostream* _os;
1584 1584
    bool local_os;
1585 1585

	
1586 1586
    typedef std::vector<std::pair<std::string, _writer_bits::Section*> >
1587 1587
    Sections;
1588 1588

	
1589 1589
    Sections _sections;
1590 1590

	
1591 1591
  public:
1592 1592

	
1593 1593
    /// \brief Constructor
1594 1594
    ///
1595 1595
    /// Construct a section writer, which writes to the given output
1596 1596
    /// stream.
1597 1597
    SectionWriter(std::ostream& os)
1598 1598
      : _os(&os), local_os(false) {}
1599 1599

	
1600 1600
    /// \brief Constructor
1601 1601
    ///
1602 1602
    /// Construct a section writer, which writes into the given file.
1603 1603
    SectionWriter(const std::string& fn)
1604 1604
      : _os(new std::ofstream(fn.c_str())), local_os(true) {
1605 1605
      if (!(*_os)) {
1606 1606
        delete _os;
1607 1607
        throw IoError("Cannot write file", fn);
1608 1608
      }
1609 1609
    }
1610 1610

	
1611 1611
    /// \brief Constructor
1612 1612
    ///
1613 1613
    /// Construct a section writer, which writes into the given file.
1614 1614
    SectionWriter(const char* fn)
1615 1615
      : _os(new std::ofstream(fn)), local_os(true) {
1616 1616
      if (!(*_os)) {
1617 1617
        delete _os;
1618 1618
        throw IoError("Cannot write file", fn);
1619 1619
      }
1620 1620
    }
1621 1621

	
1622 1622
    /// \brief Destructor
1623 1623
    ~SectionWriter() {
1624 1624
      for (Sections::iterator it = _sections.begin();
1625 1625
           it != _sections.end(); ++it) {
1626 1626
        delete it->second;
1627 1627
      }
1628 1628

	
1629 1629
      if (local_os) {
1630 1630
        delete _os;
1631 1631
      }
1632 1632

	
1633 1633
    }
1634 1634

	
1635 1635
  private:
1636 1636

	
1637 1637
    friend SectionWriter sectionWriter(std::ostream& os);
1638 1638
    friend SectionWriter sectionWriter(const std::string& fn);
1639 1639
    friend SectionWriter sectionWriter(const char* fn);
1640 1640

	
1641 1641
    SectionWriter(SectionWriter& other)
1642 1642
      : _os(other._os), local_os(other.local_os) {
1643 1643

	
1644 1644
      other._os = 0;
1645 1645
      other.local_os = false;
1646 1646

	
1647 1647
      _sections.swap(other._sections);
1648 1648
    }
1649 1649

	
1650 1650
    SectionWriter& operator=(const SectionWriter&);
1651 1651

	
1652 1652
  public:
1653 1653

	
1654
    /// \name Section writers
1654
    /// \name Section Writers
1655 1655
    /// @{
1656 1656

	
1657 1657
    /// \brief Add a section writer with line oriented writing
1658 1658
    ///
1659 1659
    /// The first parameter is the type descriptor of the section, the
1660 1660
    /// second is a generator with std::string values. At the writing
1661 1661
    /// process, the returned \c std::string will be written into the
1662 1662
    /// output file until it is an empty string.
1663 1663
    ///
1664 1664
    /// For example, an integer vector is written into a section.
1665 1665
    ///\code
1666 1666
    ///  @numbers
1667 1667
    ///  12 45 23 78
1668 1668
    ///  4 28 38 28
1669 1669
    ///  23 6 16
1670 1670
    ///\endcode
1671 1671
    ///
1672 1672
    /// The generator is implemented as a struct.
1673 1673
    ///\code
1674 1674
    ///  struct NumberSection {
1675 1675
    ///    std::vector<int>::const_iterator _it, _end;
1676 1676
    ///    NumberSection(const std::vector<int>& data)
1677 1677
    ///      : _it(data.begin()), _end(data.end()) {}
1678 1678
    ///    std::string operator()() {
1679 1679
    ///      int rem_in_line = 4;
1680 1680
    ///      std::ostringstream ls;
1681 1681
    ///      while (rem_in_line > 0 && _it != _end) {
1682 1682
    ///        ls << *(_it++) << ' ';
1683 1683
    ///        --rem_in_line;
1684 1684
    ///      }
1685 1685
    ///      return ls.str();
1686 1686
    ///    }
1687 1687
    ///  };
1688 1688
    ///
1689 1689
    ///  // ...
1690 1690
    ///
1691 1691
    ///  writer.sectionLines("numbers", NumberSection(vec));
1692 1692
    ///\endcode
1693 1693
    template <typename Functor>
1694 1694
    SectionWriter& sectionLines(const std::string& type, Functor functor) {
1695 1695
      LEMON_ASSERT(!type.empty(), "Type is empty.");
1696 1696
      _sections.push_back(std::make_pair(type,
1697 1697
        new _writer_bits::LineSection<Functor>(functor)));
1698 1698
      return *this;
1699 1699
    }
1700 1700

	
1701 1701

	
1702 1702
    /// \brief Add a section writer with stream oriented writing
1703 1703
    ///
1704 1704
    /// The first parameter is the type of the section, the second is
1705 1705
    /// a functor, which takes a \c std::ostream& parameter. The
1706 1706
    /// functor writes the section to the output stream.
1707 1707
    /// \warning The last line must be closed with end-line character.
1708 1708
    template <typename Functor>
1709 1709
    SectionWriter& sectionStream(const std::string& type, Functor functor) {
1710 1710
      LEMON_ASSERT(!type.empty(), "Type is empty.");
1711 1711
      _sections.push_back(std::make_pair(type,
1712 1712
         new _writer_bits::StreamSection<Functor>(functor)));
1713 1713
      return *this;
1714 1714
    }
1715 1715

	
1716 1716
    /// @}
1717 1717

	
1718 1718
  public:
1719 1719

	
1720 1720

	
1721
    /// \name Execution of the writer
1721
    /// \name Execution of the Writer
1722 1722
    /// @{
1723 1723

	
1724 1724
    /// \brief Start the batch processing
1725 1725
    ///
1726 1726
    /// This function starts the batch processing.
1727 1727
    void run() {
1728 1728

	
1729 1729
      LEMON_ASSERT(_os != 0, "This writer is assigned to an other writer");
1730 1730

	
1731 1731
      for (Sections::iterator it = _sections.begin();
1732 1732
           it != _sections.end(); ++it) {
1733 1733
        (*_os) << '@' << it->first << std::endl;
1734 1734
        it->second->process(*_os);
1735 1735
      }
1736 1736
    }
1737 1737

	
1738 1738
    /// \brief Give back the stream of the writer
1739 1739
    ///
1740 1740
    /// Returns the stream of the writer
1741 1741
    std::ostream& ostream() {
1742 1742
      return *_os;
1743 1743
    }
1744 1744

	
1745 1745
    /// @}
1746 1746

	
1747 1747
  };
1748 1748

	
1749 1749
  /// \brief Return a \ref SectionWriter class
1750 1750
  ///
1751 1751
  /// This function just returns a \ref SectionWriter class.
1752 1752
  /// \relates SectionWriter
1753 1753
  inline SectionWriter sectionWriter(std::ostream& os) {
1754 1754
    SectionWriter tmp(os);
1755 1755
    return tmp;
1756 1756
  }
1757 1757

	
1758 1758
  /// \brief Return a \ref SectionWriter class
1759 1759
  ///
1760 1760
  /// This function just returns a \ref SectionWriter class.
1761 1761
  /// \relates SectionWriter
1762 1762
  inline SectionWriter sectionWriter(const std::string& fn) {
1763 1763
    SectionWriter tmp(fn);
1764 1764
    return tmp;
1765 1765
  }
1766 1766

	
1767 1767
  /// \brief Return a \ref SectionWriter class
1768 1768
  ///
1769 1769
  /// This function just returns a \ref SectionWriter class.
1770 1770
  /// \relates SectionWriter
1771 1771
  inline SectionWriter sectionWriter(const char* fn) {
1772 1772
    SectionWriter tmp(fn);
1773 1773
    return tmp;
1774 1774
  }
1775 1775
}
1776 1776

	
1777 1777
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_LP_BASE_H
20 20
#define LEMON_LP_BASE_H
21 21

	
22 22
#include<iostream>
23 23
#include<vector>
24 24
#include<map>
25 25
#include<limits>
26 26
#include<lemon/math.h>
27 27

	
28 28
#include<lemon/error.h>
29 29
#include<lemon/assert.h>
30 30

	
31 31
#include<lemon/core.h>
32 32
#include<lemon/bits/solver_bits.h>
33 33

	
34 34
///\file
35 35
///\brief The interface of the LP solver interface.
36 36
///\ingroup lp_group
37 37
namespace lemon {
38 38

	
39 39
  ///Common base class for LP and MIP solvers
40 40

	
41 41
  ///Usually this class is not used directly, please use one of the concrete
42 42
  ///implementations of the solver interface.
43 43
  ///\ingroup lp_group
44 44
  class LpBase {
45 45

	
46 46
  protected:
47 47

	
48 48
    _solver_bits::VarIndex rows;
49 49
    _solver_bits::VarIndex cols;
50 50

	
51 51
  public:
52 52

	
53 53
    ///Possible outcomes of an LP solving procedure
54 54
    enum SolveExitStatus {
55
      ///This means that the problem has been successfully solved: either
55
      /// = 0. It means that the problem has been successfully solved: either
56 56
      ///an optimal solution has been found or infeasibility/unboundedness
57 57
      ///has been proved.
58 58
      SOLVED = 0,
59
      ///Any other case (including the case when some user specified
60
      ///limit has been exceeded)
59
      /// = 1. Any other case (including the case when some user specified
60
      ///limit has been exceeded).
61 61
      UNSOLVED = 1
62 62
    };
63 63

	
64 64
    ///Direction of the optimization
65 65
    enum Sense {
66 66
      /// Minimization
67 67
      MIN,
68 68
      /// Maximization
69 69
      MAX
70 70
    };
71 71

	
72 72
    ///Enum for \c messageLevel() parameter
73 73
    enum MessageLevel {
74
      /// no output (default value)
74
      /// No output (default value).
75 75
      MESSAGE_NOTHING,
76
      /// error messages only
76
      /// Error messages only.
77 77
      MESSAGE_ERROR,
78
      /// warnings
78
      /// Warnings.
79 79
      MESSAGE_WARNING,
80
      /// normal output
80
      /// Normal output.
81 81
      MESSAGE_NORMAL,
82
      /// verbose output
82
      /// Verbose output.
83 83
      MESSAGE_VERBOSE
84 84
    };
85 85
    
86 86

	
87 87
    ///The floating point type used by the solver
88 88
    typedef double Value;
89 89
    ///The infinity constant
90 90
    static const Value INF;
91 91
    ///The not a number constant
92 92
    static const Value NaN;
93 93

	
94 94
    friend class Col;
95 95
    friend class ColIt;
96 96
    friend class Row;
97 97
    friend class RowIt;
98 98

	
99 99
    ///Refer to a column of the LP.
100 100

	
101 101
    ///This type is used to refer to a column of the LP.
102 102
    ///
103 103
    ///Its value remains valid and correct even after the addition or erase of
104 104
    ///other columns.
105 105
    ///
106 106
    ///\note This class is similar to other Item types in LEMON, like
107 107
    ///Node and Arc types in digraph.
108 108
    class Col {
109 109
      friend class LpBase;
110 110
    protected:
111 111
      int _id;
112 112
      explicit Col(int id) : _id(id) {}
113 113
    public:
114 114
      typedef Value ExprValue;
115 115
      typedef True LpCol;
116 116
      /// Default constructor
117 117
      
118 118
      /// \warning The default constructor sets the Col to an
119 119
      /// undefined value.
120 120
      Col() {}
121 121
      /// Invalid constructor \& conversion.
122 122
      
123 123
      /// This constructor initializes the Col to be invalid.
124 124
      /// \sa Invalid for more details.      
125 125
      Col(const Invalid&) : _id(-1) {}
126 126
      /// Equality operator
127 127

	
128 128
      /// Two \ref Col "Col"s are equal if and only if they point to
129 129
      /// the same LP column or both are invalid.
130 130
      bool operator==(Col c) const  {return _id == c._id;}
131 131
      /// Inequality operator
132 132

	
133 133
      /// \sa operator==(Col c)
134 134
      ///
135 135
      bool operator!=(Col c) const  {return _id != c._id;}
136 136
      /// Artificial ordering operator.
137 137

	
138 138
      /// To allow the use of this object in std::map or similar
139 139
      /// associative container we require this.
140 140
      ///
141 141
      /// \note This operator only have to define some strict ordering of
142 142
      /// the items; this order has nothing to do with the iteration
143 143
      /// ordering of the items.
144 144
      bool operator<(Col c) const  {return _id < c._id;}
145 145
    };
146 146

	
147 147
    ///Iterator for iterate over the columns of an LP problem
148 148

	
149 149
    /// Its usage is quite simple, for example you can count the number
150 150
    /// of columns in an LP \c lp:
151 151
    ///\code
152 152
    /// int count=0;
153 153
    /// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count;
154 154
    ///\endcode
155 155
    class ColIt : public Col {
156 156
      const LpBase *_solver;
157 157
    public:
158 158
      /// Default constructor
159 159
      
160 160
      /// \warning The default constructor sets the iterator
161 161
      /// to an undefined value.
162 162
      ColIt() {}
163 163
      /// Sets the iterator to the first Col
164 164
      
165 165
      /// Sets the iterator to the first Col.
166 166
      ///
167 167
      ColIt(const LpBase &solver) : _solver(&solver)
168 168
      {
169 169
        _solver->cols.firstItem(_id);
170 170
      }
171 171
      /// Invalid constructor \& conversion
172 172
      
173 173
      /// Initialize the iterator to be invalid.
174 174
      /// \sa Invalid for more details.
175 175
      ColIt(const Invalid&) : Col(INVALID) {}
176 176
      /// Next column
177 177
      
178 178
      /// Assign the iterator to the next column.
179 179
      ///
180 180
      ColIt &operator++()
181 181
      {
182 182
        _solver->cols.nextItem(_id);
183 183
        return *this;
184 184
      }
185 185
    };
186 186

	
187 187
    /// \brief Returns the ID of the column.
188 188
    static int id(const Col& col) { return col._id; }
189 189
    /// \brief Returns the column with the given ID.
190 190
    ///
191 191
    /// \pre The argument should be a valid column ID in the LP problem.
192 192
    static Col colFromId(int id) { return Col(id); }
193 193

	
194 194
    ///Refer to a row of the LP.
195 195

	
196 196
    ///This type is used to refer to a row of the LP.
197 197
    ///
198 198
    ///Its value remains valid and correct even after the addition or erase of
199 199
    ///other rows.
200 200
    ///
201 201
    ///\note This class is similar to other Item types in LEMON, like
202 202
    ///Node and Arc types in digraph.
203 203
    class Row {
204 204
      friend class LpBase;
205 205
    protected:
206 206
      int _id;
207 207
      explicit Row(int id) : _id(id) {}
208 208
    public:
209 209
      typedef Value ExprValue;
210 210
      typedef True LpRow;
... ...
@@ -880,257 +880,257 @@
880 880
    };
881 881

	
882 882
    class ExprIterator {
883 883
    private:
884 884
      std::map<int, Value>::const_iterator _host_it;
885 885
      const _solver_bits::VarIndex& _index;
886 886
    public:
887 887

	
888 888
      typedef std::bidirectional_iterator_tag iterator_category;
889 889
      typedef std::ptrdiff_t difference_type;
890 890
      typedef const std::pair<int, Value> value_type;
891 891
      typedef value_type reference;
892 892

	
893 893
      class pointer {
894 894
      public:
895 895
        pointer(value_type& _value) : value(_value) {}
896 896
        value_type* operator->() { return &value; }
897 897
      private:
898 898
        value_type value;
899 899
      };
900 900

	
901 901
      ExprIterator(const std::map<int, Value>::const_iterator& host_it,
902 902
                   const _solver_bits::VarIndex& index)
903 903
        : _host_it(host_it), _index(index) {}
904 904

	
905 905
      reference operator*() {
906 906
        return std::make_pair(_index(_host_it->first), _host_it->second);
907 907
      }
908 908

	
909 909
      pointer operator->() {
910 910
        return pointer(operator*());
911 911
      }
912 912

	
913 913
      ExprIterator& operator++() { ++_host_it; return *this; }
914 914
      ExprIterator operator++(int) {
915 915
        ExprIterator tmp(*this); ++_host_it; return tmp;
916 916
      }
917 917

	
918 918
      ExprIterator& operator--() { --_host_it; return *this; }
919 919
      ExprIterator operator--(int) {
920 920
        ExprIterator tmp(*this); --_host_it; return tmp;
921 921
      }
922 922

	
923 923
      bool operator==(const ExprIterator& it) const {
924 924
        return _host_it == it._host_it;
925 925
      }
926 926

	
927 927
      bool operator!=(const ExprIterator& it) const {
928 928
        return _host_it != it._host_it;
929 929
      }
930 930

	
931 931
    };
932 932

	
933 933
  protected:
934 934

	
935 935
    //Abstract virtual functions
936 936

	
937 937
    virtual int _addColId(int col) { return cols.addIndex(col); }
938 938
    virtual int _addRowId(int row) { return rows.addIndex(row); }
939 939

	
940 940
    virtual void _eraseColId(int col) { cols.eraseIndex(col); }
941 941
    virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
942 942

	
943 943
    virtual int _addCol() = 0;
944 944
    virtual int _addRow() = 0;
945 945

	
946 946
    virtual void _eraseCol(int col) = 0;
947 947
    virtual void _eraseRow(int row) = 0;
948 948

	
949 949
    virtual void _getColName(int col, std::string& name) const = 0;
950 950
    virtual void _setColName(int col, const std::string& name) = 0;
951 951
    virtual int _colByName(const std::string& name) const = 0;
952 952

	
953 953
    virtual void _getRowName(int row, std::string& name) const = 0;
954 954
    virtual void _setRowName(int row, const std::string& name) = 0;
955 955
    virtual int _rowByName(const std::string& name) const = 0;
956 956

	
957 957
    virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
958 958
    virtual void _getRowCoeffs(int i, InsertIterator b) const = 0;
959 959

	
960 960
    virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
961 961
    virtual void _getColCoeffs(int i, InsertIterator b) const = 0;
962 962

	
963 963
    virtual void _setCoeff(int row, int col, Value value) = 0;
964 964
    virtual Value _getCoeff(int row, int col) const = 0;
965 965

	
966 966
    virtual void _setColLowerBound(int i, Value value) = 0;
967 967
    virtual Value _getColLowerBound(int i) const = 0;
968 968

	
969 969
    virtual void _setColUpperBound(int i, Value value) = 0;
970 970
    virtual Value _getColUpperBound(int i) const = 0;
971 971

	
972 972
    virtual void _setRowLowerBound(int i, Value value) = 0;
973 973
    virtual Value _getRowLowerBound(int i) const = 0;
974 974

	
975 975
    virtual void _setRowUpperBound(int i, Value value) = 0;
976 976
    virtual Value _getRowUpperBound(int i) const = 0;
977 977

	
978 978
    virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0;
979 979
    virtual void _getObjCoeffs(InsertIterator b) const = 0;
980 980

	
981 981
    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
982 982
    virtual Value _getObjCoeff(int i) const = 0;
983 983

	
984 984
    virtual void _setSense(Sense) = 0;
985 985
    virtual Sense _getSense() const = 0;
986 986

	
987 987
    virtual void _clear() = 0;
988 988

	
989 989
    virtual const char* _solverName() const = 0;
990 990

	
991 991
    virtual void _messageLevel(MessageLevel level) = 0;
992 992

	
993 993
    //Own protected stuff
994 994

	
995 995
    //Constant component of the objective function
996 996
    Value obj_const_comp;
997 997

	
998 998
    LpBase() : rows(), cols(), obj_const_comp(0) {}
999 999

	
1000 1000
  public:
1001 1001

	
1002 1002
    /// Virtual destructor
1003 1003
    virtual ~LpBase() {}
1004 1004

	
1005 1005
    ///Gives back the name of the solver.
1006 1006
    const char* solverName() const {return _solverName();}
1007 1007

	
1008
    ///\name Build up and modify the LP
1008
    ///\name Build Up and Modify the LP
1009 1009

	
1010 1010
    ///@{
1011 1011

	
1012 1012
    ///Add a new empty column (i.e a new variable) to the LP
1013 1013
    Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}
1014 1014

	
1015 1015
    ///\brief Adds several new columns (i.e variables) at once
1016 1016
    ///
1017 1017
    ///This magic function takes a container as its argument and fills
1018 1018
    ///its elements with new columns (i.e. variables)
1019 1019
    ///\param t can be
1020 1020
    ///- a standard STL compatible iterable container with
1021 1021
    ///\ref Col as its \c values_type like
1022 1022
    ///\code
1023 1023
    ///std::vector<LpBase::Col>
1024 1024
    ///std::list<LpBase::Col>
1025 1025
    ///\endcode
1026 1026
    ///- a standard STL compatible iterable container with
1027 1027
    ///\ref Col as its \c mapped_type like
1028 1028
    ///\code
1029 1029
    ///std::map<AnyType,LpBase::Col>
1030 1030
    ///\endcode
1031 1031
    ///- an iterable lemon \ref concepts::WriteMap "write map" like
1032 1032
    ///\code
1033 1033
    ///ListGraph::NodeMap<LpBase::Col>
1034 1034
    ///ListGraph::ArcMap<LpBase::Col>
1035 1035
    ///\endcode
1036 1036
    ///\return The number of the created column.
1037 1037
#ifdef DOXYGEN
1038 1038
    template<class T>
1039 1039
    int addColSet(T &t) { return 0;}
1040 1040
#else
1041 1041
    template<class T>
1042 1042
    typename enable_if<typename T::value_type::LpCol,int>::type
1043 1043
    addColSet(T &t,dummy<0> = 0) {
1044 1044
      int s=0;
1045 1045
      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
1046 1046
      return s;
1047 1047
    }
1048 1048
    template<class T>
1049 1049
    typename enable_if<typename T::value_type::second_type::LpCol,
1050 1050
                       int>::type
1051 1051
    addColSet(T &t,dummy<1> = 1) {
1052 1052
      int s=0;
1053 1053
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
1054 1054
        i->second=addCol();
1055 1055
        s++;
1056 1056
      }
1057 1057
      return s;
1058 1058
    }
1059 1059
    template<class T>
1060 1060
    typename enable_if<typename T::MapIt::Value::LpCol,
1061 1061
                       int>::type
1062 1062
    addColSet(T &t,dummy<2> = 2) {
1063 1063
      int s=0;
1064 1064
      for(typename T::MapIt i(t); i!=INVALID; ++i)
1065 1065
        {
1066 1066
          i.set(addCol());
1067 1067
          s++;
1068 1068
        }
1069 1069
      return s;
1070 1070
    }
1071 1071
#endif
1072 1072

	
1073 1073
    ///Set a column (i.e a dual constraint) of the LP
1074 1074

	
1075 1075
    ///\param c is the column to be modified
1076 1076
    ///\param e is a dual linear expression (see \ref DualExpr)
1077 1077
    ///a better one.
1078 1078
    void col(Col c, const DualExpr &e) {
1079 1079
      e.simplify();
1080 1080
      _setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows),
1081 1081
                    ExprIterator(e.comps.end(), rows));
1082 1082
    }
1083 1083

	
1084 1084
    ///Get a column (i.e a dual constraint) of the LP
1085 1085

	
1086 1086
    ///\param c is the column to get
1087 1087
    ///\return the dual expression associated to the column
1088 1088
    DualExpr col(Col c) const {
1089 1089
      DualExpr e;
1090 1090
      _getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows));
1091 1091
      return e;
1092 1092
    }
1093 1093

	
1094 1094
    ///Add a new column to the LP
1095 1095

	
1096 1096
    ///\param e is a dual linear expression (see \ref DualExpr)
1097 1097
    ///\param o is the corresponding component of the objective
1098 1098
    ///function. It is 0 by default.
1099 1099
    ///\return The created column.
1100 1100
    Col addCol(const DualExpr &e, Value o = 0) {
1101 1101
      Col c=addCol();
1102 1102
      col(c,e);
1103 1103
      objCoeff(c,o);
1104 1104
      return c;
1105 1105
    }
1106 1106

	
1107 1107
    ///Add a new empty row (i.e a new constraint) to the LP
1108 1108

	
1109 1109
    ///This function adds a new empty row (i.e a new constraint) to the LP.
1110 1110
    ///\return The created row
1111 1111
    Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}
1112 1112

	
1113 1113
    ///\brief Add several new rows (i.e constraints) at once
1114 1114
    ///
1115 1115
    ///This magic function takes a container as its argument and fills
1116 1116
    ///its elements with new row (i.e. variables)
1117 1117
    ///\param t can be
1118 1118
    ///- a standard STL compatible iterable container with
1119 1119
    ///\ref Row as its \c values_type like
1120 1120
    ///\code
1121 1121
    ///std::vector<LpBase::Row>
1122 1122
    ///std::list<LpBase::Row>
1123 1123
    ///\endcode
1124 1124
    ///- a standard STL compatible iterable container with
1125 1125
    ///\ref Row as its \c mapped_type like
1126 1126
    ///\code
1127 1127
    ///std::map<AnyType,LpBase::Row>
1128 1128
    ///\endcode
1129 1129
    ///- an iterable lemon \ref concepts::WriteMap "write map" like
1130 1130
    ///\code
1131 1131
    ///ListGraph::NodeMap<LpBase::Row>
1132 1132
    ///ListGraph::ArcMap<LpBase::Row>
1133 1133
    ///\endcode
1134 1134
    ///\return The number of rows created.
1135 1135
#ifdef DOXYGEN
1136 1136
    template<class T>
... ...
@@ -1663,427 +1663,426 @@
1663 1663
    return LpBase::Constr(f, e, f);
1664 1664
  }
1665 1665

	
1666 1666
  ///Create constraint
1667 1667

	
1668 1668
  ///\relates LpBase::Constr
1669 1669
  ///
1670 1670
  inline LpBase::Constr operator==(const LpBase::Expr &e,
1671 1671
                                   const LpBase::Expr &f) {
1672 1672
    return LpBase::Constr(0, f - e, 0);
1673 1673
  }
1674 1674

	
1675 1675
  ///Create constraint
1676 1676

	
1677 1677
  ///\relates LpBase::Constr
1678 1678
  ///
1679 1679
  inline LpBase::Constr operator<=(const LpBase::Value &n,
1680 1680
                                   const LpBase::Constr &c) {
1681 1681
    LpBase::Constr tmp(c);
1682 1682
    LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
1683 1683
    tmp.lowerBound()=n;
1684 1684
    return tmp;
1685 1685
  }
1686 1686
  ///Create constraint
1687 1687

	
1688 1688
  ///\relates LpBase::Constr
1689 1689
  ///
1690 1690
  inline LpBase::Constr operator<=(const LpBase::Constr &c,
1691 1691
                                   const LpBase::Value &n)
1692 1692
  {
1693 1693
    LpBase::Constr tmp(c);
1694 1694
    LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
1695 1695
    tmp.upperBound()=n;
1696 1696
    return tmp;
1697 1697
  }
1698 1698

	
1699 1699
  ///Create constraint
1700 1700

	
1701 1701
  ///\relates LpBase::Constr
1702 1702
  ///
1703 1703
  inline LpBase::Constr operator>=(const LpBase::Value &n,
1704 1704
                                   const LpBase::Constr &c) {
1705 1705
    LpBase::Constr tmp(c);
1706 1706
    LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
1707 1707
    tmp.upperBound()=n;
1708 1708
    return tmp;
1709 1709
  }
1710 1710
  ///Create constraint
1711 1711

	
1712 1712
  ///\relates LpBase::Constr
1713 1713
  ///
1714 1714
  inline LpBase::Constr operator>=(const LpBase::Constr &c,
1715 1715
                                   const LpBase::Value &n)
1716 1716
  {
1717 1717
    LpBase::Constr tmp(c);
1718 1718
    LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
1719 1719
    tmp.lowerBound()=n;
1720 1720
    return tmp;
1721 1721
  }
1722 1722

	
1723 1723
  ///Addition
1724 1724

	
1725 1725
  ///\relates LpBase::DualExpr
1726 1726
  ///
1727 1727
  inline LpBase::DualExpr operator+(const LpBase::DualExpr &a,
1728 1728
                                    const LpBase::DualExpr &b) {
1729 1729
    LpBase::DualExpr tmp(a);
1730 1730
    tmp+=b;
1731 1731
    return tmp;
1732 1732
  }
1733 1733
  ///Substraction
1734 1734

	
1735 1735
  ///\relates LpBase::DualExpr
1736 1736
  ///
1737 1737
  inline LpBase::DualExpr operator-(const LpBase::DualExpr &a,
1738 1738
                                    const LpBase::DualExpr &b) {
1739 1739
    LpBase::DualExpr tmp(a);
1740 1740
    tmp-=b;
1741 1741
    return tmp;
1742 1742
  }
1743 1743
  ///Multiply with constant
1744 1744

	
1745 1745
  ///\relates LpBase::DualExpr
1746 1746
  ///
1747 1747
  inline LpBase::DualExpr operator*(const LpBase::DualExpr &a,
1748 1748
                                    const LpBase::Value &b) {
1749 1749
    LpBase::DualExpr tmp(a);
1750 1750
    tmp*=b;
1751 1751
    return tmp;
1752 1752
  }
1753 1753

	
1754 1754
  ///Multiply with constant
1755 1755

	
1756 1756
  ///\relates LpBase::DualExpr
1757 1757
  ///
1758 1758
  inline LpBase::DualExpr operator*(const LpBase::Value &a,
1759 1759
                                    const LpBase::DualExpr &b) {
1760 1760
    LpBase::DualExpr tmp(b);
1761 1761
    tmp*=a;
1762 1762
    return tmp;
1763 1763
  }
1764 1764
  ///Divide with constant
1765 1765

	
1766 1766
  ///\relates LpBase::DualExpr
1767 1767
  ///
1768 1768
  inline LpBase::DualExpr operator/(const LpBase::DualExpr &a,
1769 1769
                                    const LpBase::Value &b) {
1770 1770
    LpBase::DualExpr tmp(a);
1771 1771
    tmp/=b;
1772 1772
    return tmp;
1773 1773
  }
1774 1774

	
1775 1775
  /// \ingroup lp_group
1776 1776
  ///
1777 1777
  /// \brief Common base class for LP solvers
1778 1778
  ///
1779 1779
  /// This class is an abstract base class for LP solvers. This class
1780 1780
  /// provides a full interface for set and modify an LP problem,
1781 1781
  /// solve it and retrieve the solution. You can use one of the
1782 1782
  /// descendants as a concrete implementation, or the \c Lp
1783 1783
  /// default LP solver. However, if you would like to handle LP
1784 1784
  /// solvers as reference or pointer in a generic way, you can use
1785 1785
  /// this class directly.
1786 1786
  class LpSolver : virtual public LpBase {
1787 1787
  public:
1788 1788

	
1789 1789
    /// The problem types for primal and dual problems
1790 1790
    enum ProblemType {
1791
      ///Feasible solution hasn't been found (but may exist).
1791
      /// = 0. Feasible solution hasn't been found (but may exist).
1792 1792
      UNDEFINED = 0,
1793
      ///The problem has no feasible solution
1793
      /// = 1. The problem has no feasible solution.
1794 1794
      INFEASIBLE = 1,
1795
      ///Feasible solution found
1795
      /// = 2. Feasible solution found.
1796 1796
      FEASIBLE = 2,
1797
      ///Optimal solution exists and found
1797
      /// = 3. Optimal solution exists and found.
1798 1798
      OPTIMAL = 3,
1799
      ///The cost function is unbounded
1799
      /// = 4. The cost function is unbounded.
1800 1800
      UNBOUNDED = 4
1801 1801
    };
1802 1802

	
1803 1803
    ///The basis status of variables
1804 1804
    enum VarStatus {
1805 1805
      /// The variable is in the basis
1806 1806
      BASIC, 
1807 1807
      /// The variable is free, but not basic
1808 1808
      FREE,
1809 1809
      /// The variable has active lower bound 
1810 1810
      LOWER,
1811 1811
      /// The variable has active upper bound
1812 1812
      UPPER,
1813 1813
      /// The variable is non-basic and fixed
1814 1814
      FIXED
1815 1815
    };
1816 1816

	
1817 1817
  protected:
1818 1818

	
1819 1819
    virtual SolveExitStatus _solve() = 0;
1820 1820

	
1821 1821
    virtual Value _getPrimal(int i) const = 0;
1822 1822
    virtual Value _getDual(int i) const = 0;
1823 1823

	
1824 1824
    virtual Value _getPrimalRay(int i) const = 0;
1825 1825
    virtual Value _getDualRay(int i) const = 0;
1826 1826

	
1827 1827
    virtual Value _getPrimalValue() const = 0;
1828 1828

	
1829 1829
    virtual VarStatus _getColStatus(int i) const = 0;
1830 1830
    virtual VarStatus _getRowStatus(int i) const = 0;
1831 1831

	
1832 1832
    virtual ProblemType _getPrimalType() const = 0;
1833 1833
    virtual ProblemType _getDualType() const = 0;
1834 1834

	
1835 1835
  public:
1836 1836

	
1837 1837
    ///Allocate a new LP problem instance
1838 1838
    virtual LpSolver* newSolver() const = 0;
1839 1839
    ///Make a copy of the LP problem
1840 1840
    virtual LpSolver* cloneSolver() const = 0;
1841 1841

	
1842 1842
    ///\name Solve the LP
1843 1843

	
1844 1844
    ///@{
1845 1845

	
1846 1846
    ///\e Solve the LP problem at hand
1847 1847
    ///
1848 1848
    ///\return The result of the optimization procedure. Possible
1849 1849
    ///values and their meanings can be found in the documentation of
1850 1850
    ///\ref SolveExitStatus.
1851 1851
    SolveExitStatus solve() { return _solve(); }
1852 1852

	
1853 1853
    ///@}
1854 1854

	
1855
    ///\name Obtain the solution
1855
    ///\name Obtain the Solution
1856 1856

	
1857 1857
    ///@{
1858 1858

	
1859 1859
    /// The type of the primal problem
1860 1860
    ProblemType primalType() const {
1861 1861
      return _getPrimalType();
1862 1862
    }
1863 1863

	
1864 1864
    /// The type of the dual problem
1865 1865
    ProblemType dualType() const {
1866 1866
      return _getDualType();
1867 1867
    }
1868 1868

	
1869 1869
    /// Return the primal value of the column
1870 1870

	
1871 1871
    /// Return the primal value of the column.
1872 1872
    /// \pre The problem is solved.
1873 1873
    Value primal(Col c) const { return _getPrimal(cols(id(c))); }
1874 1874

	
1875 1875
    /// Return the primal value of the expression
1876 1876

	
1877 1877
    /// Return the primal value of the expression, i.e. the dot
1878 1878
    /// product of the primal solution and the expression.
1879 1879
    /// \pre The problem is solved.
1880 1880
    Value primal(const Expr& e) const {
1881 1881
      double res = *e;
1882 1882
      for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
1883 1883
        res += *c * primal(c);
1884 1884
      }
1885 1885
      return res;
1886 1886
    }
1887 1887
    /// Returns a component of the primal ray
1888 1888
    
1889 1889
    /// The primal ray is solution of the modified primal problem,
1890 1890
    /// where we change each finite bound to 0, and we looking for a
1891 1891
    /// negative objective value in case of minimization, and positive
1892 1892
    /// objective value for maximization. If there is such solution,
1893 1893
    /// that proofs the unsolvability of the dual problem, and if a
1894 1894
    /// feasible primal solution exists, then the unboundness of
1895 1895
    /// primal problem.
1896 1896
    ///
1897 1897
    /// \pre The problem is solved and the dual problem is infeasible.
1898 1898
    /// \note Some solvers does not provide primal ray calculation
1899 1899
    /// functions.
1900 1900
    Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
1901 1901

	
1902 1902
    /// Return the dual value of the row
1903 1903

	
1904 1904
    /// Return the dual value of the row.
1905 1905
    /// \pre The problem is solved.
1906 1906
    Value dual(Row r) const { return _getDual(rows(id(r))); }
1907 1907

	
1908 1908
    /// Return the dual value of the dual expression
1909 1909

	
1910 1910
    /// Return the dual value of the dual expression, i.e. the dot
1911 1911
    /// product of the dual solution and the dual expression.
1912 1912
    /// \pre The problem is solved.
1913 1913
    Value dual(const DualExpr& e) const {
1914 1914
      double res = 0.0;
1915 1915
      for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
1916 1916
        res += *r * dual(r);
1917 1917
      }
1918 1918
      return res;
1919 1919
    }
1920 1920

	
1921 1921
    /// Returns a component of the dual ray
1922 1922
    
1923 1923
    /// The dual ray is solution of the modified primal problem, where
1924 1924
    /// we change each finite bound to 0 (i.e. the objective function
1925 1925
    /// coefficients in the primal problem), and we looking for a
1926 1926
    /// ositive objective value. If there is such solution, that
1927 1927
    /// proofs the unsolvability of the primal problem, and if a
1928 1928
    /// feasible dual solution exists, then the unboundness of
1929 1929
    /// dual problem.
1930 1930
    ///
1931 1931
    /// \pre The problem is solved and the primal problem is infeasible.
1932 1932
    /// \note Some solvers does not provide dual ray calculation
1933 1933
    /// functions.
1934 1934
    Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
1935 1935

	
1936 1936
    /// Return the basis status of the column
1937 1937

	
1938 1938
    /// \see VarStatus
1939 1939
    VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
1940 1940

	
1941 1941
    /// Return the basis status of the row
1942 1942

	
1943 1943
    /// \see VarStatus
1944 1944
    VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
1945 1945

	
1946 1946
    ///The value of the objective function
1947 1947

	
1948 1948
    ///\return
1949 1949
    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
1950 1950
    /// of the primal problem, depending on whether we minimize or maximize.
1951 1951
    ///- \ref NaN if no primal solution is found.
1952 1952
    ///- The (finite) objective value if an optimal solution is found.
1953 1953
    Value primal() const { return _getPrimalValue()+obj_const_comp;}
1954 1954
    ///@}
1955 1955

	
1956 1956
  protected:
1957 1957

	
1958 1958
  };
1959 1959

	
1960 1960

	
1961 1961
  /// \ingroup lp_group
1962 1962
  ///
1963 1963
  /// \brief Common base class for MIP solvers
1964 1964
  ///
1965 1965
  /// This class is an abstract base class for MIP solvers. This class
1966 1966
  /// provides a full interface for set and modify an MIP problem,
1967 1967
  /// solve it and retrieve the solution. You can use one of the
1968 1968
  /// descendants as a concrete implementation, or the \c Lp
1969 1969
  /// default MIP solver. However, if you would like to handle MIP
1970 1970
  /// solvers as reference or pointer in a generic way, you can use
1971 1971
  /// this class directly.
1972 1972
  class MipSolver : virtual public LpBase {
1973 1973
  public:
1974 1974

	
1975 1975
    /// The problem types for MIP problems
1976 1976
    enum ProblemType {
1977
      ///Feasible solution hasn't been found (but may exist).
1977
      /// = 0. Feasible solution hasn't been found (but may exist).
1978 1978
      UNDEFINED = 0,
1979
      ///The problem has no feasible solution
1979
      /// = 1. The problem has no feasible solution.
1980 1980
      INFEASIBLE = 1,
1981
      ///Feasible solution found
1981
      /// = 2. Feasible solution found.
1982 1982
      FEASIBLE = 2,
1983
      ///Optimal solution exists and found
1983
      /// = 3. Optimal solution exists and found.
1984 1984
      OPTIMAL = 3,
1985
      ///The cost function is unbounded
1986
      ///
1987
      ///The Mip or at least the relaxed problem is unbounded
1985
      /// = 4. The cost function is unbounded.
1986
      ///The Mip or at least the relaxed problem is unbounded.
1988 1987
      UNBOUNDED = 4
1989 1988
    };
1990 1989

	
1991 1990
    ///Allocate a new MIP problem instance
1992 1991
    virtual MipSolver* newSolver() const = 0;
1993 1992
    ///Make a copy of the MIP problem
1994 1993
    virtual MipSolver* cloneSolver() const = 0;
1995 1994

	
1996 1995
    ///\name Solve the MIP
1997 1996

	
1998 1997
    ///@{
1999 1998

	
2000 1999
    /// Solve the MIP problem at hand
2001 2000
    ///
2002 2001
    ///\return The result of the optimization procedure. Possible
2003 2002
    ///values and their meanings can be found in the documentation of
2004 2003
    ///\ref SolveExitStatus.
2005 2004
    SolveExitStatus solve() { return _solve(); }
2006 2005

	
2007 2006
    ///@}
2008 2007

	
2009
    ///\name Setting column type
2008
    ///\name Set Column Type
2010 2009
    ///@{
2011 2010

	
2012 2011
    ///Possible variable (column) types (e.g. real, integer, binary etc.)
2013 2012
    enum ColTypes {
2014
      ///Continuous variable (default)
2013
      /// = 0. Continuous variable (default).
2015 2014
      REAL = 0,
2016
      ///Integer variable
2015
      /// = 1. Integer variable.
2017 2016
      INTEGER = 1
2018 2017
    };
2019 2018

	
2020 2019
    ///Sets the type of the given column to the given type
2021 2020

	
2022 2021
    ///Sets the type of the given column to the given type.
2023 2022
    ///
2024 2023
    void colType(Col c, ColTypes col_type) {
2025 2024
      _setColType(cols(id(c)),col_type);
2026 2025
    }
2027 2026

	
2028 2027
    ///Gives back the type of the column.
2029 2028

	
2030 2029
    ///Gives back the type of the column.
2031 2030
    ///
2032 2031
    ColTypes colType(Col c) const {
2033 2032
      return _getColType(cols(id(c)));
2034 2033
    }
2035 2034
    ///@}
2036 2035

	
2037
    ///\name Obtain the solution
2036
    ///\name Obtain the Solution
2038 2037

	
2039 2038
    ///@{
2040 2039

	
2041 2040
    /// The type of the MIP problem
2042 2041
    ProblemType type() const {
2043 2042
      return _getType();
2044 2043
    }
2045 2044

	
2046 2045
    /// Return the value of the row in the solution
2047 2046

	
2048 2047
    ///  Return the value of the row in the solution.
2049 2048
    /// \pre The problem is solved.
2050 2049
    Value sol(Col c) const { return _getSol(cols(id(c))); }
2051 2050

	
2052 2051
    /// Return the value of the expression in the solution
2053 2052

	
2054 2053
    /// Return the value of the expression in the solution, i.e. the
2055 2054
    /// dot product of the solution and the expression.
2056 2055
    /// \pre The problem is solved.
2057 2056
    Value sol(const Expr& e) const {
2058 2057
      double res = *e;
2059 2058
      for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
2060 2059
        res += *c * sol(c);
2061 2060
      }
2062 2061
      return res;
2063 2062
    }
2064 2063
    ///The value of the objective function
2065 2064
    
2066 2065
    ///\return
2067 2066
    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
2068 2067
    /// of the problem, depending on whether we minimize or maximize.
2069 2068
    ///- \ref NaN if no primal solution is found.
2070 2069
    ///- The (finite) objective value if an optimal solution is found.
2071 2070
    Value solValue() const { return _getSolValue()+obj_const_comp;}
2072 2071
    ///@}
2073 2072

	
2074 2073
  protected:
2075 2074

	
2076 2075
    virtual SolveExitStatus _solve() = 0;
2077 2076
    virtual ColTypes _getColType(int col) const = 0;
2078 2077
    virtual void _setColType(int col, ColTypes col_type) = 0;
2079 2078
    virtual ProblemType _getType() const = 0;
2080 2079
    virtual Value _getSol(int i) const = 0;
2081 2080
    virtual Value _getSolValue() const = 0;
2082 2081

	
2083 2082
  };
2084 2083

	
2085 2084

	
2086 2085

	
2087 2086
} //namespace lemon
2088 2087

	
2089 2088
#endif //LEMON_LP_BASE_H
Ignore white space 6 line context
... ...
@@ -2603,180 +2603,180 @@
2603 2603
  ///
2604 2604
  /// This map returns the out-degree of a node. Once it is constructed,
2605 2605
  /// the degrees are stored in a standard \c NodeMap, so each query is done
2606 2606
  /// in constant time. On the other hand, the values are updated automatically
2607 2607
  /// whenever the digraph changes.
2608 2608
  ///
2609 2609
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
2610 2610
  /// may provide alternative ways to modify the digraph.
2611 2611
  /// The correct behavior of OutDegMap is not guarantied if these additional
2612 2612
  /// features are used. For example the functions
2613 2613
  /// \ref ListDigraph::changeSource() "changeSource()",
2614 2614
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
2615 2615
  /// \ref ListDigraph::reverseArc() "reverseArc()"
2616 2616
  /// of \ref ListDigraph will \e not update the degree values correctly.
2617 2617
  ///
2618 2618
  /// \sa InDegMap
2619 2619
  template <typename GR>
2620 2620
  class OutDegMap
2621 2621
    : protected ItemSetTraits<GR, typename GR::Arc>
2622 2622
      ::ItemNotifier::ObserverBase {
2623 2623

	
2624 2624
  public:
2625 2625

	
2626 2626
    /// The digraph type
2627 2627
    typedef GR Digraph;
2628 2628
    /// The key type
2629 2629
    typedef typename Digraph::Node Key;
2630 2630
    /// The value type
2631 2631
    typedef int Value;
2632 2632

	
2633 2633
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
2634 2634
    ::ItemNotifier::ObserverBase Parent;
2635 2635

	
2636 2636
  private:
2637 2637

	
2638 2638
    class AutoNodeMap
2639 2639
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
2640 2640
    public:
2641 2641

	
2642 2642
      typedef typename ItemSetTraits<Digraph, Key>::
2643 2643
      template Map<int>::Type Parent;
2644 2644

	
2645 2645
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
2646 2646

	
2647 2647
      virtual void add(const Key& key) {
2648 2648
        Parent::add(key);
2649 2649
        Parent::set(key, 0);
2650 2650
      }
2651 2651
      virtual void add(const std::vector<Key>& keys) {
2652 2652
        Parent::add(keys);
2653 2653
        for (int i = 0; i < int(keys.size()); ++i) {
2654 2654
          Parent::set(keys[i], 0);
2655 2655
        }
2656 2656
      }
2657 2657
      virtual void build() {
2658 2658
        Parent::build();
2659 2659
        Key it;
2660 2660
        typename Parent::Notifier* nf = Parent::notifier();
2661 2661
        for (nf->first(it); it != INVALID; nf->next(it)) {
2662 2662
          Parent::set(it, 0);
2663 2663
        }
2664 2664
      }
2665 2665
    };
2666 2666

	
2667 2667
  public:
2668 2668

	
2669 2669
    /// \brief Constructor.
2670 2670
    ///
2671 2671
    /// Constructor for creating an out-degree map.
2672 2672
    explicit OutDegMap(const Digraph& graph)
2673 2673
      : _digraph(graph), _deg(graph) {
2674 2674
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
2675 2675

	
2676 2676
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2677 2677
        _deg[it] = countOutArcs(_digraph, it);
2678 2678
      }
2679 2679
    }
2680 2680

	
2681 2681
    /// \brief Gives back the out-degree of a Node.
2682 2682
    ///
2683 2683
    /// Gives back the out-degree of a Node.
2684 2684
    int operator[](const Key& key) const {
2685 2685
      return _deg[key];
2686 2686
    }
2687 2687

	
2688 2688
  protected:
2689 2689

	
2690 2690
    typedef typename Digraph::Arc Arc;
2691 2691

	
2692 2692
    virtual void add(const Arc& arc) {
2693 2693
      ++_deg[_digraph.source(arc)];
2694 2694
    }
2695 2695

	
2696 2696
    virtual void add(const std::vector<Arc>& arcs) {
2697 2697
      for (int i = 0; i < int(arcs.size()); ++i) {
2698 2698
        ++_deg[_digraph.source(arcs[i])];
2699 2699
      }
2700 2700
    }
2701 2701

	
2702 2702
    virtual void erase(const Arc& arc) {
2703 2703
      --_deg[_digraph.source(arc)];
2704 2704
    }
2705 2705

	
2706 2706
    virtual void erase(const std::vector<Arc>& arcs) {
2707 2707
      for (int i = 0; i < int(arcs.size()); ++i) {
2708 2708
        --_deg[_digraph.source(arcs[i])];
2709 2709
      }
2710 2710
    }
2711 2711

	
2712 2712
    virtual void build() {
2713 2713
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2714 2714
        _deg[it] = countOutArcs(_digraph, it);
2715 2715
      }
2716 2716
    }
2717 2717

	
2718 2718
    virtual void clear() {
2719 2719
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
2720 2720
        _deg[it] = 0;
2721 2721
      }
2722 2722
    }
2723 2723
  private:
2724 2724

	
2725 2725
    const Digraph& _digraph;
2726 2726
    AutoNodeMap _deg;
2727 2727
  };
2728 2728

	
2729 2729
  /// \brief Potential difference map
2730 2730
  ///
2731
  /// PotentialMap returns the difference between the potentials of the
2732
  /// source and target nodes of each arc in a digraph, i.e. it returns
2731
  /// PotentialDifferenceMap returns the difference between the potentials of
2732
  /// the source and target nodes of each arc in a digraph, i.e. it returns
2733 2733
  /// \code
2734 2734
  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
2735 2735
  /// \endcode
2736 2736
  /// \tparam GR The digraph type.
2737 2737
  /// \tparam POT A node map storing the potentials.
2738 2738
  template <typename GR, typename POT>
2739 2739
  class PotentialDifferenceMap {
2740 2740
  public:
2741 2741
    /// Key type
2742 2742
    typedef typename GR::Arc Key;
2743 2743
    /// Value type
2744 2744
    typedef typename POT::Value Value;
2745 2745

	
2746 2746
    /// \brief Constructor
2747 2747
    ///
2748 2748
    /// Contructor of the map.
2749 2749
    explicit PotentialDifferenceMap(const GR& gr,
2750 2750
                                    const POT& potential)
2751 2751
      : _digraph(gr), _potential(potential) {}
2752 2752

	
2753 2753
    /// \brief Returns the potential difference for the given arc.
2754 2754
    ///
2755 2755
    /// Returns the potential difference for the given arc, i.e.
2756 2756
    /// \code
2757 2757
    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
2758 2758
    /// \endcode
2759 2759
    Value operator[](const Key& arc) const {
2760 2760
      return _potential[_digraph.target(arc)] -
2761 2761
        _potential[_digraph.source(arc)];
2762 2762
    }
2763 2763

	
2764 2764
  private:
2765 2765
    const GR& _digraph;
2766 2766
    const POT& _potential;
2767 2767
  };
2768 2768

	
2769 2769
  /// \brief Returns a PotentialDifferenceMap.
2770 2770
  ///
2771 2771
  /// This function just returns a PotentialDifferenceMap.
2772 2772
  /// \relates PotentialDifferenceMap
2773 2773
  template <typename GR, typename POT>
2774 2774
  PotentialDifferenceMap<GR, POT>
2775 2775
  potentialDifferenceMap(const GR& gr, const POT& potential) {
2776 2776
    return PotentialDifferenceMap<GR, POT>(gr, potential);
2777 2777
  }
2778 2778

	
2779 2779
  /// @}
2780 2780
}
2781 2781

	
2782 2782
#endif // LEMON_MAPS_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MIN_COST_ARBORESCENCE_H
20 20
#define LEMON_MIN_COST_ARBORESCENCE_H
21 21

	
22 22
///\ingroup spantree
23 23
///\file
24 24
///\brief Minimum Cost Arborescence algorithm.
25 25

	
26 26
#include <vector>
27 27

	
28 28
#include <lemon/list_graph.h>
29 29
#include <lemon/bin_heap.h>
30 30
#include <lemon/assert.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34

	
35 35
  /// \brief Default traits class for MinCostArborescence class.
36 36
  ///
37 37
  /// Default traits class for MinCostArborescence class.
38 38
  /// \param GR Digraph type.
39 39
  /// \param CM Type of cost map.
40 40
  template <class GR, class CM>
41 41
  struct MinCostArborescenceDefaultTraits{
42 42

	
43 43
    /// \brief The digraph type the algorithm runs on.
44 44
    typedef GR Digraph;
45 45

	
46 46
    /// \brief The type of the map that stores the arc costs.
47 47
    ///
48 48
    /// The type of the map that stores the arc costs.
49 49
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
50 50
    typedef CM CostMap;
51 51

	
52 52
    /// \brief The value type of the costs.
53 53
    ///
54 54
    /// The value type of the costs.
55 55
    typedef typename CostMap::Value Value;
56 56

	
57 57
    /// \brief The type of the map that stores which arcs are in the
58 58
    /// arborescence.
59 59
    ///
60 60
    /// The type of the map that stores which arcs are in the
61 61
    /// arborescence.  It must meet the \ref concepts::WriteMap
62 62
    /// "WriteMap" concept.  Initially it will be set to false on each
63 63
    /// arc. After it will set all arborescence arcs once.
64 64
    typedef typename Digraph::template ArcMap<bool> ArborescenceMap;
65 65

	
66 66
    /// \brief Instantiates a \c ArborescenceMap.
67 67
    ///
68 68
    /// This function instantiates a \c ArborescenceMap.
69 69
    /// \param digraph is the graph, to which we would like to
70 70
    /// calculate the \c ArborescenceMap.
71 71
    static ArborescenceMap *createArborescenceMap(const Digraph &digraph){
72 72
      return new ArborescenceMap(digraph);
73 73
    }
74 74

	
75 75
    /// \brief The type of the \c PredMap
76 76
    ///
77 77
    /// The type of the \c PredMap. It is a node map with an arc value type.
78 78
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
79 79

	
80 80
    /// \brief Instantiates a \c PredMap.
81 81
    ///
82 82
    /// This function instantiates a \c PredMap.
83 83
    /// \param digraph The digraph to which we would like to define the
84 84
    /// \c PredMap.
85 85
    static PredMap *createPredMap(const Digraph &digraph){
86 86
      return new PredMap(digraph);
87 87
    }
88 88

	
89 89
  };
90 90

	
91 91
  /// \ingroup spantree
92 92
  ///
93
  /// \brief %MinCostArborescence algorithm class.
93
  /// \brief Minimum Cost Arborescence algorithm class.
94 94
  ///
95 95
  /// This class provides an efficient implementation of
96
  /// %MinCostArborescence algorithm. The arborescence is a tree
96
  /// Minimum Cost Arborescence algorithm. The arborescence is a tree
97 97
  /// which is directed from a given source node of the digraph. One or
98 98
  /// more sources should be given for the algorithm and it will calculate
99 99
  /// the minimum cost subgraph which are union of arborescences with the
100 100
  /// given sources and spans all the nodes which are reachable from the
101 101
  /// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e).
102 102
  ///
103 103
  /// The algorithm provides also an optimal dual solution, therefore
104 104
  /// the optimality of the solution can be checked.
105 105
  ///
106 106
  /// \param GR The digraph type the algorithm runs on. The default value
107 107
  /// is \ref ListDigraph.
108 108
  /// \param CM This read-only ArcMap determines the costs of the
109 109
  /// arcs. It is read once for each arc, so the map may involve in
110 110
  /// relatively time consuming process to compute the arc cost if
111 111
  /// it is necessary. The default map type is \ref
112 112
  /// concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
113 113
  /// \param TR Traits class to set various data types used
114 114
  /// by the algorithm. The default traits class is
115 115
  /// \ref MinCostArborescenceDefaultTraits
116 116
  /// "MinCostArborescenceDefaultTraits<GR, CM>".  See \ref
117 117
  /// MinCostArborescenceDefaultTraits for the documentation of a
118 118
  /// MinCostArborescence traits class.
119 119
#ifndef DOXYGEN
120 120
  template <typename GR = ListDigraph,
121 121
            typename CM = typename GR::template ArcMap<int>,
122 122
            typename TR =
123 123
              MinCostArborescenceDefaultTraits<GR, CM> >
124 124
#else
125 125
  template <typename GR, typename CM, typedef TR>
126 126
#endif
127 127
  class MinCostArborescence {
128 128
  public:
129 129

	
130 130
    /// The traits.
131 131
    typedef TR Traits;
132 132
    /// The type of the underlying digraph.
133 133
    typedef typename Traits::Digraph Digraph;
134 134
    /// The type of the map that stores the arc costs.
135 135
    typedef typename Traits::CostMap CostMap;
136 136
    ///The type of the costs of the arcs.
137 137
    typedef typename Traits::Value Value;
138 138
    ///The type of the predecessor map.
139 139
    typedef typename Traits::PredMap PredMap;
140 140
    ///The type of the map that stores which arcs are in the arborescence.
141 141
    typedef typename Traits::ArborescenceMap ArborescenceMap;
142 142

	
143 143
    typedef MinCostArborescence Create;
144 144

	
145 145
  private:
146 146

	
147 147
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
148 148

	
149 149
    struct CostArc {
150 150

	
151 151
      Arc arc;
152 152
      Value value;
153 153

	
154 154
      CostArc() {}
155 155
      CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {}
156 156

	
157 157
    };
158 158

	
159 159
    const Digraph *_digraph;
160 160
    const CostMap *_cost;
161 161

	
162 162
    PredMap *_pred;
163 163
    bool local_pred;
164 164

	
165 165
    ArborescenceMap *_arborescence;
166 166
    bool local_arborescence;
167 167

	
168 168
    typedef typename Digraph::template ArcMap<int> ArcOrder;
169 169
    ArcOrder *_arc_order;
170 170

	
171 171
    typedef typename Digraph::template NodeMap<int> NodeOrder;
172 172
    NodeOrder *_node_order;
173 173

	
174 174
    typedef typename Digraph::template NodeMap<CostArc> CostArcMap;
175 175
    CostArcMap *_cost_arcs;
176 176

	
177 177
    struct StackLevel {
178 178

	
179 179
      std::vector<CostArc> arcs;
180 180
      int node_level;
181 181

	
182 182
    };
183 183

	
184 184
    std::vector<StackLevel> level_stack;
185 185
    std::vector<Node> queue;
186 186

	
187 187
    typedef std::vector<typename Digraph::Node> DualNodeList;
188 188

	
189 189
    DualNodeList _dual_node_list;
190 190

	
191 191
    struct DualVariable {
192 192
      int begin, end;
193 193
      Value value;
194 194

	
195 195
      DualVariable(int _begin, int _end, Value _value)
196 196
        : begin(_begin), end(_end), value(_value) {}
197 197

	
198 198
    };
199 199

	
200 200
    typedef std::vector<DualVariable> DualVariables;
201 201

	
202 202
    DualVariables _dual_variables;
203 203

	
204 204
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
205 205

	
206 206
    HeapCrossRef *_heap_cross_ref;
207 207

	
208 208
    typedef BinHeap<int, HeapCrossRef> Heap;
209 209

	
210 210
    Heap *_heap;
211 211

	
212 212
  protected:
213 213

	
214 214
    MinCostArborescence() {}
215 215

	
216 216
  private:
217 217

	
218 218
    void createStructures() {
219 219
      if (!_pred) {
220 220
        local_pred = true;
221 221
        _pred = Traits::createPredMap(*_digraph);
222 222
      }
223 223
      if (!_arborescence) {
224 224
        local_arborescence = true;
... ...
@@ -265,497 +265,497 @@
265 265
      }
266 266
    }
267 267

	
268 268
    Arc prepare(Node node) {
269 269
      std::vector<Node> nodes;
270 270
      (*_node_order)[node] = _dual_node_list.size();
271 271
      StackLevel level;
272 272
      level.node_level = _dual_node_list.size();
273 273
      _dual_node_list.push_back(node);
274 274
      for (InArcIt it(*_digraph, node); it != INVALID; ++it) {
275 275
        Arc arc = it;
276 276
        Node source = _digraph->source(arc);
277 277
        Value value = (*_cost)[it];
278 278
        if (source == node || (*_node_order)[source] == -3) continue;
279 279
        if ((*_cost_arcs)[source].arc == INVALID) {
280 280
          (*_cost_arcs)[source].arc = arc;
281 281
          (*_cost_arcs)[source].value = value;
282 282
          nodes.push_back(source);
283 283
        } else {
284 284
          if ((*_cost_arcs)[source].value > value) {
285 285
            (*_cost_arcs)[source].arc = arc;
286 286
            (*_cost_arcs)[source].value = value;
287 287
          }
288 288
        }
289 289
      }
290 290
      CostArc minimum = (*_cost_arcs)[nodes[0]];
291 291
      for (int i = 1; i < int(nodes.size()); ++i) {
292 292
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
293 293
          minimum = (*_cost_arcs)[nodes[i]];
294 294
        }
295 295
      }
296 296
      (*_arc_order)[minimum.arc] = _dual_variables.size();
297 297
      DualVariable var(_dual_node_list.size() - 1,
298 298
                       _dual_node_list.size(), minimum.value);
299 299
      _dual_variables.push_back(var);
300 300
      for (int i = 0; i < int(nodes.size()); ++i) {
301 301
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
302 302
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
303 303
        (*_cost_arcs)[nodes[i]].arc = INVALID;
304 304
      }
305 305
      level_stack.push_back(level);
306 306
      return minimum.arc;
307 307
    }
308 308

	
309 309
    Arc contract(Node node) {
310 310
      int node_bottom = bottom(node);
311 311
      std::vector<Node> nodes;
312 312
      while (!level_stack.empty() &&
313 313
             level_stack.back().node_level >= node_bottom) {
314 314
        for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) {
315 315
          Arc arc = level_stack.back().arcs[i].arc;
316 316
          Node source = _digraph->source(arc);
317 317
          Value value = level_stack.back().arcs[i].value;
318 318
          if ((*_node_order)[source] >= node_bottom) continue;
319 319
          if ((*_cost_arcs)[source].arc == INVALID) {
320 320
            (*_cost_arcs)[source].arc = arc;
321 321
            (*_cost_arcs)[source].value = value;
322 322
            nodes.push_back(source);
323 323
          } else {
324 324
            if ((*_cost_arcs)[source].value > value) {
325 325
              (*_cost_arcs)[source].arc = arc;
326 326
              (*_cost_arcs)[source].value = value;
327 327
            }
328 328
          }
329 329
        }
330 330
        level_stack.pop_back();
331 331
      }
332 332
      CostArc minimum = (*_cost_arcs)[nodes[0]];
333 333
      for (int i = 1; i < int(nodes.size()); ++i) {
334 334
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
335 335
          minimum = (*_cost_arcs)[nodes[i]];
336 336
        }
337 337
      }
338 338
      (*_arc_order)[minimum.arc] = _dual_variables.size();
339 339
      DualVariable var(node_bottom, _dual_node_list.size(), minimum.value);
340 340
      _dual_variables.push_back(var);
341 341
      StackLevel level;
342 342
      level.node_level = node_bottom;
343 343
      for (int i = 0; i < int(nodes.size()); ++i) {
344 344
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
345 345
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
346 346
        (*_cost_arcs)[nodes[i]].arc = INVALID;
347 347
      }
348 348
      level_stack.push_back(level);
349 349
      return minimum.arc;
350 350
    }
351 351

	
352 352
    int bottom(Node node) {
353 353
      int k = level_stack.size() - 1;
354 354
      while (level_stack[k].node_level > (*_node_order)[node]) {
355 355
        --k;
356 356
      }
357 357
      return level_stack[k].node_level;
358 358
    }
359 359

	
360 360
    void finalize(Arc arc) {
361 361
      Node node = _digraph->target(arc);
362 362
      _heap->push(node, (*_arc_order)[arc]);
363 363
      _pred->set(node, arc);
364 364
      while (!_heap->empty()) {
365 365
        Node source = _heap->top();
366 366
        _heap->pop();
367 367
        (*_node_order)[source] = -1;
368 368
        for (OutArcIt it(*_digraph, source); it != INVALID; ++it) {
369 369
          if ((*_arc_order)[it] < 0) continue;
370 370
          Node target = _digraph->target(it);
371 371
          switch(_heap->state(target)) {
372 372
          case Heap::PRE_HEAP:
373 373
            _heap->push(target, (*_arc_order)[it]);
374 374
            _pred->set(target, it);
375 375
            break;
376 376
          case Heap::IN_HEAP:
377 377
            if ((*_arc_order)[it] < (*_heap)[target]) {
378 378
              _heap->decrease(target, (*_arc_order)[it]);
379 379
              _pred->set(target, it);
380 380
            }
381 381
            break;
382 382
          case Heap::POST_HEAP:
383 383
            break;
384 384
          }
385 385
        }
386 386
        _arborescence->set((*_pred)[source], true);
387 387
      }
388 388
    }
389 389

	
390 390

	
391 391
  public:
392 392

	
393
    /// \name Named template parameters
393
    /// \name Named Template Parameters
394 394

	
395 395
    /// @{
396 396

	
397 397
    template <class T>
398 398
    struct DefArborescenceMapTraits : public Traits {
399 399
      typedef T ArborescenceMap;
400 400
      static ArborescenceMap *createArborescenceMap(const Digraph &)
401 401
      {
402 402
        LEMON_ASSERT(false, "ArborescenceMap is not initialized");
403 403
        return 0; // ignore warnings
404 404
      }
405 405
    };
406 406

	
407 407
    /// \brief \ref named-templ-param "Named parameter" for
408 408
    /// setting ArborescenceMap type
409 409
    ///
410 410
    /// \ref named-templ-param "Named parameter" for setting
411 411
    /// ArborescenceMap type
412 412
    template <class T>
413 413
    struct DefArborescenceMap
414 414
      : public MinCostArborescence<Digraph, CostMap,
415 415
                                   DefArborescenceMapTraits<T> > {
416 416
    };
417 417

	
418 418
    template <class T>
419 419
    struct DefPredMapTraits : public Traits {
420 420
      typedef T PredMap;
421 421
      static PredMap *createPredMap(const Digraph &)
422 422
      {
423 423
        LEMON_ASSERT(false, "PredMap is not initialized");
424 424
      }
425 425
    };
426 426

	
427 427
    /// \brief \ref named-templ-param "Named parameter" for
428 428
    /// setting PredMap type
429 429
    ///
430 430
    /// \ref named-templ-param "Named parameter" for setting
431 431
    /// PredMap type
432 432
    template <class T>
433 433
    struct DefPredMap
434 434
      : public MinCostArborescence<Digraph, CostMap, DefPredMapTraits<T> > {
435 435
    };
436 436

	
437 437
    /// @}
438 438

	
439 439
    /// \brief Constructor.
440 440
    ///
441 441
    /// \param digraph The digraph the algorithm will run on.
442 442
    /// \param cost The cost map used by the algorithm.
443 443
    MinCostArborescence(const Digraph& digraph, const CostMap& cost)
444 444
      : _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false),
445 445
        _arborescence(0), local_arborescence(false),
446 446
        _arc_order(0), _node_order(0), _cost_arcs(0),
447 447
        _heap_cross_ref(0), _heap(0) {}
448 448

	
449 449
    /// \brief Destructor.
450 450
    ~MinCostArborescence() {
451 451
      destroyStructures();
452 452
    }
453 453

	
454 454
    /// \brief Sets the arborescence map.
455 455
    ///
456 456
    /// Sets the arborescence map.
457 457
    /// \return <tt>(*this)</tt>
458 458
    MinCostArborescence& arborescenceMap(ArborescenceMap& m) {
459 459
      if (local_arborescence) {
460 460
        delete _arborescence;
461 461
      }
462 462
      local_arborescence = false;
463 463
      _arborescence = &m;
464 464
      return *this;
465 465
    }
466 466

	
467 467
    /// \brief Sets the arborescence map.
468 468
    ///
469 469
    /// Sets the arborescence map.
470 470
    /// \return <tt>(*this)</tt>
471 471
    MinCostArborescence& predMap(PredMap& m) {
472 472
      if (local_pred) {
473 473
        delete _pred;
474 474
      }
475 475
      local_pred = false;
476 476
      _pred = &m;
477 477
      return *this;
478 478
    }
479 479

	
480 480
    /// \name Query Functions
481 481
    /// The result of the %MinCostArborescence algorithm can be obtained
482 482
    /// using these functions.\n
483 483
    /// Before the use of these functions,
484 484
    /// either run() or start() must be called.
485 485

	
486 486
    /// @{
487 487

	
488 488
    /// \brief Returns a reference to the arborescence map.
489 489
    ///
490 490
    /// Returns a reference to the arborescence map.
491 491
    const ArborescenceMap& arborescenceMap() const {
492 492
      return *_arborescence;
493 493
    }
494 494

	
495 495
    /// \brief Returns true if the arc is in the arborescence.
496 496
    ///
497 497
    /// Returns true if the arc is in the arborescence.
498 498
    /// \param arc The arc of the digraph.
499 499
    /// \pre \ref run() must be called before using this function.
500 500
    bool arborescence(Arc arc) const {
501 501
      return (*_pred)[_digraph->target(arc)] == arc;
502 502
    }
503 503

	
504 504
    /// \brief Returns a reference to the pred map.
505 505
    ///
506 506
    /// Returns a reference to the pred map.
507 507
    const PredMap& predMap() const {
508 508
      return *_pred;
509 509
    }
510 510

	
511 511
    /// \brief Returns the predecessor arc of the given node.
512 512
    ///
513 513
    /// Returns the predecessor arc of the given node.
514 514
    Arc pred(Node node) const {
515 515
      return (*_pred)[node];
516 516
    }
517 517

	
518 518
    /// \brief Returns the cost of the arborescence.
519 519
    ///
520 520
    /// Returns the cost of the arborescence.
521 521
    Value arborescenceValue() const {
522 522
      Value sum = 0;
523 523
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
524 524
        if (arborescence(it)) {
525 525
          sum += (*_cost)[it];
526 526
        }
527 527
      }
528 528
      return sum;
529 529
    }
530 530

	
531 531
    /// \brief Indicates that a node is reachable from the sources.
532 532
    ///
533 533
    /// Indicates that a node is reachable from the sources.
534 534
    bool reached(Node node) const {
535 535
      return (*_node_order)[node] != -3;
536 536
    }
537 537

	
538 538
    /// \brief Indicates that a node is processed.
539 539
    ///
540 540
    /// Indicates that a node is processed. The arborescence path exists
541 541
    /// from the source to the given node.
542 542
    bool processed(Node node) const {
543 543
      return (*_node_order)[node] == -1;
544 544
    }
545 545

	
546 546
    /// \brief Returns the number of the dual variables in basis.
547 547
    ///
548 548
    /// Returns the number of the dual variables in basis.
549 549
    int dualNum() const {
550 550
      return _dual_variables.size();
551 551
    }
552 552

	
553 553
    /// \brief Returns the value of the dual solution.
554 554
    ///
555 555
    /// Returns the value of the dual solution. It should be
556 556
    /// equal to the arborescence value.
557 557
    Value dualValue() const {
558 558
      Value sum = 0;
559 559
      for (int i = 0; i < int(_dual_variables.size()); ++i) {
560 560
        sum += _dual_variables[i].value;
561 561
      }
562 562
      return sum;
563 563
    }
564 564

	
565 565
    /// \brief Returns the number of the nodes in the dual variable.
566 566
    ///
567 567
    /// Returns the number of the nodes in the dual variable.
568 568
    int dualSize(int k) const {
569 569
      return _dual_variables[k].end - _dual_variables[k].begin;
570 570
    }
571 571

	
572 572
    /// \brief Returns the value of the dual variable.
573 573
    ///
574 574
    /// Returns the the value of the dual variable.
575 575
    const Value& dualValue(int k) const {
576 576
      return _dual_variables[k].value;
577 577
    }
578 578

	
579 579
    /// \brief Lemon iterator for get a dual variable.
580 580
    ///
581 581
    /// Lemon iterator for get a dual variable. This class provides
582 582
    /// a common style lemon iterator which gives back a subset of
583 583
    /// the nodes.
584 584
    class DualIt {
585 585
    public:
586 586

	
587 587
      /// \brief Constructor.
588 588
      ///
589 589
      /// Constructor for get the nodeset of the variable.
590 590
      DualIt(const MinCostArborescence& algorithm, int variable)
591 591
        : _algorithm(&algorithm)
592 592
      {
593 593
        _index = _algorithm->_dual_variables[variable].begin;
594 594
        _last = _algorithm->_dual_variables[variable].end;
595 595
      }
596 596

	
597 597
      /// \brief Conversion to node.
598 598
      ///
599 599
      /// Conversion to node.
600 600
      operator Node() const {
601 601
        return _algorithm->_dual_node_list[_index];
602 602
      }
603 603

	
604 604
      /// \brief Increment operator.
605 605
      ///
606 606
      /// Increment operator.
607 607
      DualIt& operator++() {
608 608
        ++_index;
609 609
        return *this;
610 610
      }
611 611

	
612 612
      /// \brief Validity checking
613 613
      ///
614 614
      /// Checks whether the iterator is invalid.
615 615
      bool operator==(Invalid) const {
616 616
        return _index == _last;
617 617
      }
618 618

	
619 619
      /// \brief Validity checking
620 620
      ///
621 621
      /// Checks whether the iterator is valid.
622 622
      bool operator!=(Invalid) const {
623 623
        return _index != _last;
624 624
      }
625 625

	
626 626
    private:
627 627
      const MinCostArborescence* _algorithm;
628 628
      int _index, _last;
629 629
    };
630 630

	
631 631
    /// @}
632 632

	
633
    /// \name Execution control
633
    /// \name Execution Control
634 634
    /// The simplest way to execute the algorithm is to use
635 635
    /// one of the member functions called \c run(...). \n
636 636
    /// If you need more control on the execution,
637 637
    /// first you must call \ref init(), then you can add several
638 638
    /// source nodes with \ref addSource().
639 639
    /// Finally \ref start() will perform the arborescence
640 640
    /// computation.
641 641

	
642 642
    ///@{
643 643

	
644 644
    /// \brief Initializes the internal data structures.
645 645
    ///
646 646
    /// Initializes the internal data structures.
647 647
    ///
648 648
    void init() {
649 649
      createStructures();
650 650
      _heap->clear();
651 651
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
652 652
        (*_cost_arcs)[it].arc = INVALID;
653 653
        (*_node_order)[it] = -3;
654 654
        (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
655 655
        _pred->set(it, INVALID);
656 656
      }
657 657
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
658 658
        _arborescence->set(it, false);
659 659
        (*_arc_order)[it] = -1;
660 660
      }
661 661
      _dual_node_list.clear();
662 662
      _dual_variables.clear();
663 663
    }
664 664

	
665 665
    /// \brief Adds a new source node.
666 666
    ///
667 667
    /// Adds a new source node to the algorithm.
668 668
    void addSource(Node source) {
669 669
      std::vector<Node> nodes;
670 670
      nodes.push_back(source);
671 671
      while (!nodes.empty()) {
672 672
        Node node = nodes.back();
673 673
        nodes.pop_back();
674 674
        for (OutArcIt it(*_digraph, node); it != INVALID; ++it) {
675 675
          Node target = _digraph->target(it);
676 676
          if ((*_node_order)[target] == -3) {
677 677
            (*_node_order)[target] = -2;
678 678
            nodes.push_back(target);
679 679
            queue.push_back(target);
680 680
          }
681 681
        }
682 682
      }
683 683
      (*_node_order)[source] = -1;
684 684
    }
685 685

	
686 686
    /// \brief Processes the next node in the priority queue.
687 687
    ///
688 688
    /// Processes the next node in the priority queue.
689 689
    ///
690 690
    /// \return The processed node.
691 691
    ///
692 692
    /// \warning The queue must not be empty!
693 693
    Node processNextNode() {
694 694
      Node node = queue.back();
695 695
      queue.pop_back();
696 696
      if ((*_node_order)[node] == -2) {
697 697
        Arc arc = prepare(node);
698 698
        Node source = _digraph->source(arc);
699 699
        while ((*_node_order)[source] != -1) {
700 700
          if ((*_node_order)[source] >= 0) {
701 701
            arc = contract(source);
702 702
          } else {
703 703
            arc = prepare(source);
704 704
          }
705 705
          source = _digraph->source(arc);
706 706
        }
707 707
        finalize(arc);
708 708
        level_stack.clear();
709 709
      }
710 710
      return node;
711 711
    }
712 712

	
713 713
    /// \brief Returns the number of the nodes to be processed.
714 714
    ///
715 715
    /// Returns the number of the nodes to be processed.
716 716
    int queueSize() const {
717 717
      return queue.size();
718 718
    }
719 719

	
720 720
    /// \brief Returns \c false if there are nodes to be processed.
721 721
    ///
722 722
    /// Returns \c false if there are nodes to be processed.
723 723
    bool emptyQueue() const {
724 724
      return queue.empty();
725 725
    }
726 726

	
727 727
    /// \brief Executes the algorithm.
728 728
    ///
729 729
    /// Executes the algorithm.
730 730
    ///
731 731
    /// \pre init() must be called and at least one node should be added
732 732
    /// with addSource() before using this function.
733 733
    ///
734 734
    ///\note mca.start() is just a shortcut of the following code.
735 735
    ///\code
736 736
    ///while (!mca.emptyQueue()) {
737 737
    ///  mca.processNextNode();
738 738
    ///}
739 739
    ///\endcode
740 740
    void start() {
741 741
      while (!emptyQueue()) {
742 742
        processNextNode();
743 743
      }
744 744
    }
745 745

	
746 746
    /// \brief Runs %MinCostArborescence algorithm from node \c s.
747 747
    ///
748 748
    /// This method runs the %MinCostArborescence algorithm from
749 749
    /// a root node \c s.
750 750
    ///
751 751
    /// \note mca.run(s) is just a shortcut of the following code.
752 752
    /// \code
753 753
    /// mca.init();
754 754
    /// mca.addSource(s);
755 755
    /// mca.start();
756 756
    /// \endcode
757 757
    void run(Node node) {
758 758
      init();
759 759
      addSource(node);
760 760
      start();
761 761
    }
Ignore white space 6 line context
... ...
@@ -534,472 +534,472 @@
534 534
    ///
535 535
    /// Constructor with constant seeding.
536 536
    Random() { core.initState(); }
537 537

	
538 538
    /// \brief Constructor with seed
539 539
    ///
540 540
    /// Constructor with seed. The current number type will be converted
541 541
    /// to the architecture word type.
542 542
    template <typename Number>
543 543
    Random(Number seed) {
544 544
      _random_bits::Initializer<Number, Word>::init(core, seed);
545 545
    }
546 546

	
547 547
    /// \brief Constructor with array seeding
548 548
    ///
549 549
    /// Constructor with array seeding. The given range should contain
550 550
    /// any number type and the numbers will be converted to the
551 551
    /// architecture word type.
552 552
    template <typename Iterator>
553 553
    Random(Iterator begin, Iterator end) {
554 554
      typedef typename std::iterator_traits<Iterator>::value_type Number;
555 555
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
556 556
    }
557 557

	
558 558
    /// \brief Copy constructor
559 559
    ///
560 560
    /// Copy constructor. The generated sequence will be identical to
561 561
    /// the other sequence. It can be used to save the current state
562 562
    /// of the generator and later use it to generate the same
563 563
    /// sequence.
564 564
    Random(const Random& other) {
565 565
      core.copyState(other.core);
566 566
    }
567 567

	
568 568
    /// \brief Assign operator
569 569
    ///
570 570
    /// Assign operator. The generated sequence will be identical to
571 571
    /// the other sequence. It can be used to save the current state
572 572
    /// of the generator and later use it to generate the same
573 573
    /// sequence.
574 574
    Random& operator=(const Random& other) {
575 575
      if (&other != this) {
576 576
        core.copyState(other.core);
577 577
      }
578 578
      return *this;
579 579
    }
580 580

	
581 581
    /// \brief Seeding random sequence
582 582
    ///
583 583
    /// Seeding the random sequence. The current number type will be
584 584
    /// converted to the architecture word type.
585 585
    template <typename Number>
586 586
    void seed(Number seed) {
587 587
      _random_bits::Initializer<Number, Word>::init(core, seed);
588 588
    }
589 589

	
590 590
    /// \brief Seeding random sequence
591 591
    ///
592 592
    /// Seeding the random sequence. The given range should contain
593 593
    /// any number type and the numbers will be converted to the
594 594
    /// architecture word type.
595 595
    template <typename Iterator>
596 596
    void seed(Iterator begin, Iterator end) {
597 597
      typedef typename std::iterator_traits<Iterator>::value_type Number;
598 598
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
599 599
    }
600 600

	
601 601
    /// \brief Seeding from file or from process id and time
602 602
    ///
603 603
    /// By default, this function calls the \c seedFromFile() member
604 604
    /// function with the <tt>/dev/urandom</tt> file. If it does not success,
605 605
    /// it uses the \c seedFromTime().
606 606
    /// \return Currently always \c true.
607 607
    bool seed() {
608 608
#ifndef WIN32
609 609
      if (seedFromFile("/dev/urandom", 0)) return true;
610 610
#endif
611 611
      if (seedFromTime()) return true;
612 612
      return false;
613 613
    }
614 614

	
615 615
    /// \brief Seeding from file
616 616
    ///
617 617
    /// Seeding the random sequence from file. The linux kernel has two
618 618
    /// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which
619 619
    /// could give good seed values for pseudo random generators (The
620 620
    /// difference between two devices is that the <tt>random</tt> may
621 621
    /// block the reading operation while the kernel can give good
622 622
    /// source of randomness, while the <tt>urandom</tt> does not
623 623
    /// block the input, but it could give back bytes with worse
624 624
    /// entropy).
625 625
    /// \param file The source file
626 626
    /// \param offset The offset, from the file read.
627 627
    /// \return \c true when the seeding successes.
628 628
#ifndef WIN32
629 629
    bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0)
630 630
#else
631 631
    bool seedFromFile(const std::string& file = "", int offset = 0)
632 632
#endif
633 633
    {
634 634
      std::ifstream rs(file.c_str());
635 635
      const int size = 4;
636 636
      Word buf[size];
637 637
      if (offset != 0 && !rs.seekg(offset)) return false;
638 638
      if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false;
639 639
      seed(buf, buf + size);
640 640
      return true;
641 641
    }
642 642

	
643 643
    /// \brief Seding from process id and time
644 644
    ///
645 645
    /// Seding from process id and time. This function uses the
646 646
    /// current process id and the current time for initialize the
647 647
    /// random sequence.
648 648
    /// \return Currently always \c true.
649 649
    bool seedFromTime() {
650 650
#ifndef WIN32
651 651
      timeval tv;
652 652
      gettimeofday(&tv, 0);
653 653
      seed(getpid() + tv.tv_sec + tv.tv_usec);
654 654
#else
655 655
      seed(bits::getWinRndSeed());
656 656
#endif
657 657
      return true;
658 658
    }
659 659

	
660 660
    /// @}
661 661

	
662
    ///\name Uniform distributions
662
    ///\name Uniform Distributions
663 663
    ///
664 664
    /// @{
665 665

	
666 666
    /// \brief Returns a random real number from the range [0, 1)
667 667
    ///
668 668
    /// It returns a random real number from the range [0, 1). The
669 669
    /// default Number type is \c double.
670 670
    template <typename Number>
671 671
    Number real() {
672 672
      return _random_bits::RealConversion<Number, Word>::convert(core);
673 673
    }
674 674

	
675 675
    double real() {
676 676
      return real<double>();
677 677
    }
678 678

	
679 679
    /// \brief Returns a random real number from the range [0, 1)
680 680
    ///
681 681
    /// It returns a random double from the range [0, 1).
682 682
    double operator()() {
683 683
      return real<double>();
684 684
    }
685 685

	
686 686
    /// \brief Returns a random real number from the range [0, b)
687 687
    ///
688 688
    /// It returns a random real number from the range [0, b).
689 689
    double operator()(double b) {
690 690
      return real<double>() * b;
691 691
    }
692 692

	
693 693
    /// \brief Returns a random real number from the range [a, b)
694 694
    ///
695 695
    /// It returns a random real number from the range [a, b).
696 696
    double operator()(double a, double b) {
697 697
      return real<double>() * (b - a) + a;
698 698
    }
699 699

	
700 700
    /// \brief Returns a random integer from a range
701 701
    ///
702 702
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
703 703
    template <typename Number>
704 704
    Number integer(Number b) {
705 705
      return _random_bits::Mapping<Number, Word>::map(core, b);
706 706
    }
707 707

	
708 708
    /// \brief Returns a random integer from a range
709 709
    ///
710 710
    /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
711 711
    template <typename Number>
712 712
    Number integer(Number a, Number b) {
713 713
      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
714 714
    }
715 715

	
716 716
    /// \brief Returns a random integer from a range
717 717
    ///
718 718
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
719 719
    template <typename Number>
720 720
    Number operator[](Number b) {
721 721
      return _random_bits::Mapping<Number, Word>::map(core, b);
722 722
    }
723 723

	
724 724
    /// \brief Returns a random non-negative integer
725 725
    ///
726 726
    /// It returns a random non-negative integer uniformly from the
727 727
    /// whole range of the current \c Number type. The default result
728 728
    /// type of this function is <tt>unsigned int</tt>.
729 729
    template <typename Number>
730 730
    Number uinteger() {
731 731
      return _random_bits::IntConversion<Number, Word>::convert(core);
732 732
    }
733 733

	
734 734
    unsigned int uinteger() {
735 735
      return uinteger<unsigned int>();
736 736
    }
737 737

	
738 738
    /// \brief Returns a random integer
739 739
    ///
740 740
    /// It returns a random integer uniformly from the whole range of
741 741
    /// the current \c Number type. The default result type of this
742 742
    /// function is \c int.
743 743
    template <typename Number>
744 744
    Number integer() {
745 745
      static const int nb = std::numeric_limits<Number>::digits +
746 746
        (std::numeric_limits<Number>::is_signed ? 1 : 0);
747 747
      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
748 748
    }
749 749

	
750 750
    int integer() {
751 751
      return integer<int>();
752 752
    }
753 753

	
754 754
    /// \brief Returns a random bool
755 755
    ///
756 756
    /// It returns a random bool. The generator holds a buffer for
757 757
    /// random bits. Every time when it become empty the generator makes
758 758
    /// a new random word and fill the buffer up.
759 759
    bool boolean() {
760 760
      return bool_producer.convert(core);
761 761
    }
762 762

	
763 763
    /// @}
764 764

	
765
    ///\name Non-uniform distributions
765
    ///\name Non-uniform Distributions
766 766
    ///
767 767
    ///@{
768 768

	
769 769
    /// \brief Returns a random bool with given probability of true result.
770 770
    ///
771 771
    /// It returns a random bool with given probability of true result.
772 772
    bool boolean(double p) {
773 773
      return operator()() < p;
774 774
    }
775 775

	
776 776
    /// Standard normal (Gauss) distribution
777 777

	
778 778
    /// Standard normal (Gauss) distribution.
779 779
    /// \note The Cartesian form of the Box-Muller
780 780
    /// transformation is used to generate a random normal distribution.
781 781
    double gauss()
782 782
    {
783 783
      double V1,V2,S;
784 784
      do {
785 785
        V1=2*real<double>()-1;
786 786
        V2=2*real<double>()-1;
787 787
        S=V1*V1+V2*V2;
788 788
      } while(S>=1);
789 789
      return std::sqrt(-2*std::log(S)/S)*V1;
790 790
    }
791 791
    /// Normal (Gauss) distribution with given mean and standard deviation
792 792

	
793 793
    /// Normal (Gauss) distribution with given mean and standard deviation.
794 794
    /// \sa gauss()
795 795
    double gauss(double mean,double std_dev)
796 796
    {
797 797
      return gauss()*std_dev+mean;
798 798
    }
799 799

	
800 800
    /// Lognormal distribution
801 801

	
802 802
    /// Lognormal distribution. The parameters are the mean and the standard
803 803
    /// deviation of <tt>exp(X)</tt>.
804 804
    ///
805 805
    double lognormal(double n_mean,double n_std_dev)
806 806
    {
807 807
      return std::exp(gauss(n_mean,n_std_dev));
808 808
    }
809 809
    /// Lognormal distribution
810 810

	
811 811
    /// Lognormal distribution. The parameter is an <tt>std::pair</tt> of
812 812
    /// the mean and the standard deviation of <tt>exp(X)</tt>.
813 813
    ///
814 814
    double lognormal(const std::pair<double,double> &params)
815 815
    {
816 816
      return std::exp(gauss(params.first,params.second));
817 817
    }
818 818
    /// Compute the lognormal parameters from mean and standard deviation
819 819

	
820 820
    /// This function computes the lognormal parameters from mean and
821 821
    /// standard deviation. The return value can direcly be passed to
822 822
    /// lognormal().
823 823
    std::pair<double,double> lognormalParamsFromMD(double mean,
824 824
                                                   double std_dev)
825 825
    {
826 826
      double fr=std_dev/mean;
827 827
      fr*=fr;
828 828
      double lg=std::log(1+fr);
829 829
      return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg));
830 830
    }
831 831
    /// Lognormal distribution with given mean and standard deviation
832 832

	
833 833
    /// Lognormal distribution with given mean and standard deviation.
834 834
    ///
835 835
    double lognormalMD(double mean,double std_dev)
836 836
    {
837 837
      return lognormal(lognormalParamsFromMD(mean,std_dev));
838 838
    }
839 839

	
840 840
    /// Exponential distribution with given mean
841 841

	
842 842
    /// This function generates an exponential distribution random number
843 843
    /// with mean <tt>1/lambda</tt>.
844 844
    ///
845 845
    double exponential(double lambda=1.0)
846 846
    {
847 847
      return -std::log(1.0-real<double>())/lambda;
848 848
    }
849 849

	
850 850
    /// Gamma distribution with given integer shape
851 851

	
852 852
    /// This function generates a gamma distribution random number.
853 853
    ///
854 854
    ///\param k shape parameter (<tt>k>0</tt> integer)
855 855
    double gamma(int k)
856 856
    {
857 857
      double s = 0;
858 858
      for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
859 859
      return s;
860 860
    }
861 861

	
862 862
    /// Gamma distribution with given shape and scale parameter
863 863

	
864 864
    /// This function generates a gamma distribution random number.
865 865
    ///
866 866
    ///\param k shape parameter (<tt>k>0</tt>)
867 867
    ///\param theta scale parameter
868 868
    ///
869 869
    double gamma(double k,double theta=1.0)
870 870
    {
871 871
      double xi,nu;
872 872
      const double delta = k-std::floor(k);
873 873
      const double v0=E/(E-delta);
874 874
      do {
875 875
        double V0=1.0-real<double>();
876 876
        double V1=1.0-real<double>();
877 877
        double V2=1.0-real<double>();
878 878
        if(V2<=v0)
879 879
          {
880 880
            xi=std::pow(V1,1.0/delta);
881 881
            nu=V0*std::pow(xi,delta-1.0);
882 882
          }
883 883
        else
884 884
          {
885 885
            xi=1.0-std::log(V1);
886 886
            nu=V0*std::exp(-xi);
887 887
          }
888 888
      } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
889 889
      return theta*(xi+gamma(int(std::floor(k))));
890 890
    }
891 891

	
892 892
    /// Weibull distribution
893 893

	
894 894
    /// This function generates a Weibull distribution random number.
895 895
    ///
896 896
    ///\param k shape parameter (<tt>k>0</tt>)
897 897
    ///\param lambda scale parameter (<tt>lambda>0</tt>)
898 898
    ///
899 899
    double weibull(double k,double lambda)
900 900
    {
901 901
      return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
902 902
    }
903 903

	
904 904
    /// Pareto distribution
905 905

	
906 906
    /// This function generates a Pareto distribution random number.
907 907
    ///
908 908
    ///\param k shape parameter (<tt>k>0</tt>)
909 909
    ///\param x_min location parameter (<tt>x_min>0</tt>)
910 910
    ///
911 911
    double pareto(double k,double x_min)
912 912
    {
913 913
      return exponential(gamma(k,1.0/x_min))+x_min;
914 914
    }
915 915

	
916 916
    /// Poisson distribution
917 917

	
918 918
    /// This function generates a Poisson distribution random number with
919 919
    /// parameter \c lambda.
920 920
    ///
921 921
    /// The probability mass function of this distribusion is
922 922
    /// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
923 923
    /// \note The algorithm is taken from the book of Donald E. Knuth titled
924 924
    /// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
925 925
    /// return value.
926 926

	
927 927
    int poisson(double lambda)
928 928
    {
929 929
      const double l = std::exp(-lambda);
930 930
      int k=0;
931 931
      double p = 1.0;
932 932
      do {
933 933
        k++;
934 934
        p*=real<double>();
935 935
      } while (p>=l);
936 936
      return k-1;
937 937
    }
938 938

	
939 939
    ///@}
940 940

	
941
    ///\name Two dimensional distributions
941
    ///\name Two Dimensional Distributions
942 942
    ///
943 943
    ///@{
944 944

	
945 945
    /// Uniform distribution on the full unit circle
946 946

	
947 947
    /// Uniform distribution on the full unit circle.
948 948
    ///
949 949
    dim2::Point<double> disc()
950 950
    {
951 951
      double V1,V2;
952 952
      do {
953 953
        V1=2*real<double>()-1;
954 954
        V2=2*real<double>()-1;
955 955

	
956 956
      } while(V1*V1+V2*V2>=1);
957 957
      return dim2::Point<double>(V1,V2);
958 958
    }
959 959
    /// A kind of two dimensional normal (Gauss) distribution
960 960

	
961 961
    /// This function provides a turning symmetric two-dimensional distribution.
962 962
    /// Both coordinates are of standard normal distribution, but they are not
963 963
    /// independent.
964 964
    ///
965 965
    /// \note The coordinates are the two random variables provided by
966 966
    /// the Box-Muller method.
967 967
    dim2::Point<double> gauss2()
968 968
    {
969 969
      double V1,V2,S;
970 970
      do {
971 971
        V1=2*real<double>()-1;
972 972
        V2=2*real<double>()-1;
973 973
        S=V1*V1+V2*V2;
974 974
      } while(S>=1);
975 975
      double W=std::sqrt(-2*std::log(S)/S);
976 976
      return dim2::Point<double>(W*V1,W*V2);
977 977
    }
978 978
    /// A kind of two dimensional exponential distribution
979 979

	
980 980
    /// This function provides a turning symmetric two-dimensional distribution.
981 981
    /// The x-coordinate is of conditionally exponential distribution
982 982
    /// with the condition that x is positive and y=0. If x is negative and
983 983
    /// y=0 then, -x is of exponential distribution. The same is true for the
984 984
    /// y-coordinate.
985 985
    dim2::Point<double> exponential2()
986 986
    {
987 987
      double V1,V2,S;
988 988
      do {
989 989
        V1=2*real<double>()-1;
990 990
        V2=2*real<double>()-1;
991 991
        S=V1*V1+V2*V2;
992 992
      } while(S>=1);
993 993
      double W=-std::log(S)/S;
994 994
      return dim2::Point<double>(W*V1,W*V2);
995 995
    }
996 996

	
997 997
    ///@}
998 998
  };
999 999

	
1000 1000

	
1001 1001
  extern Random rnd;
1002 1002

	
1003 1003
}
1004 1004

	
1005 1005
#endif
Ignore white space 6 line context
... ...
@@ -163,257 +163,257 @@
163 163
                }
164 164
                break;
165 165
              case Heap::POST_HEAP:
166 166
                break;
167 167
              }
168 168
            }
169 169
          }
170 170

	
171 171
          // Traverse incoming arcs
172 172
          for (InArcIt e(_graph, u); e != INVALID; ++e) {
173 173
            if (_flow[e] == 1) {
174 174
              v = _graph.source(e);
175 175
              switch(heap.state(v)) {
176 176
              case Heap::PRE_HEAP:
177 177
                heap.push(v, d - _length[e] - _potential[v]);
178 178
                _pred[v] = e;
179 179
                break;
180 180
              case Heap::IN_HEAP:
181 181
                nd = d - _length[e] - _potential[v];
182 182
                if (nd < heap[v]) {
183 183
                  heap.decrease(v, nd);
184 184
                  _pred[v] = e;
185 185
                }
186 186
                break;
187 187
              case Heap::POST_HEAP:
188 188
                break;
189 189
              }
190 190
            }
191 191
          }
192 192
        }
193 193
        if (heap.empty()) return false;
194 194

	
195 195
        // Update potentials of processed nodes
196 196
        Length t_dist = heap.prio();
197 197
        for (int i = 0; i < int(_proc_nodes.size()); ++i)
198 198
          _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
199 199
        return true;
200 200
      }
201 201

	
202 202
    }; //class ResidualDijkstra
203 203

	
204 204
  private:
205 205

	
206 206
    // The digraph the algorithm runs on
207 207
    const Digraph &_graph;
208 208
    // The length map
209 209
    const LengthMap &_length;
210 210

	
211 211
    // Arc map of the current flow
212 212
    FlowMap *_flow;
213 213
    bool _local_flow;
214 214
    // Node map of the current potentials
215 215
    PotentialMap *_potential;
216 216
    bool _local_potential;
217 217

	
218 218
    // The source node
219 219
    Node _source;
220 220
    // The target node
221 221
    Node _target;
222 222

	
223 223
    // Container to store the found paths
224 224
    std::vector< SimplePath<Digraph> > paths;
225 225
    int _path_num;
226 226

	
227 227
    // The pred arc map
228 228
    PredMap _pred;
229 229
    // Implementation of the Dijkstra algorithm for finding augmenting
230 230
    // shortest paths in the residual network
231 231
    ResidualDijkstra *_dijkstra;
232 232

	
233 233
  public:
234 234

	
235 235
    /// \brief Constructor.
236 236
    ///
237 237
    /// Constructor.
238 238
    ///
239 239
    /// \param digraph The digraph the algorithm runs on.
240 240
    /// \param length The length (cost) values of the arcs.
241 241
    /// \param s The source node.
242 242
    /// \param t The target node.
243 243
    Suurballe( const Digraph &digraph,
244 244
               const LengthMap &length,
245 245
               Node s, Node t ) :
246 246
      _graph(digraph), _length(length), _flow(0), _local_flow(false),
247 247
      _potential(0), _local_potential(false), _source(s), _target(t),
248 248
      _pred(digraph) {}
249 249

	
250 250
    /// Destructor.
251 251
    ~Suurballe() {
252 252
      if (_local_flow) delete _flow;
253 253
      if (_local_potential) delete _potential;
254 254
      delete _dijkstra;
255 255
    }
256 256

	
257 257
    /// \brief Set the flow map.
258 258
    ///
259 259
    /// This function sets the flow map.
260 260
    ///
261 261
    /// The found flow contains only 0 and 1 values. It is the union of
262 262
    /// the found arc-disjoint paths.
263 263
    ///
264 264
    /// \return <tt>(*this)</tt>
265 265
    Suurballe& flowMap(FlowMap &map) {
266 266
      if (_local_flow) {
267 267
        delete _flow;
268 268
        _local_flow = false;
269 269
      }
270 270
      _flow = &map;
271 271
      return *this;
272 272
    }
273 273

	
274 274
    /// \brief Set the potential map.
275 275
    ///
276 276
    /// This function sets the potential map.
277 277
    ///
278 278
    /// The potentials provide the dual solution of the underlying
279 279
    /// minimum cost flow problem.
280 280
    ///
281 281
    /// \return <tt>(*this)</tt>
282 282
    Suurballe& potentialMap(PotentialMap &map) {
283 283
      if (_local_potential) {
284 284
        delete _potential;
285 285
        _local_potential = false;
286 286
      }
287 287
      _potential = &map;
288 288
      return *this;
289 289
    }
290 290

	
291
    /// \name Execution control
291
    /// \name Execution Control
292 292
    /// The simplest way to execute the algorithm is to call the run()
293 293
    /// function.
294 294
    /// \n
295 295
    /// If you only need the flow that is the union of the found
296 296
    /// arc-disjoint paths, you may call init() and findFlow().
297 297

	
298 298
    /// @{
299 299

	
300 300
    /// \brief Run the algorithm.
301 301
    ///
302 302
    /// This function runs the algorithm.
303 303
    ///
304 304
    /// \param k The number of paths to be found.
305 305
    ///
306 306
    /// \return \c k if there are at least \c k arc-disjoint paths from
307 307
    /// \c s to \c t in the digraph. Otherwise it returns the number of
308 308
    /// arc-disjoint paths found.
309 309
    ///
310 310
    /// \note Apart from the return value, <tt>s.run(k)</tt> is just a
311 311
    /// shortcut of the following code.
312 312
    /// \code
313 313
    ///   s.init();
314 314
    ///   s.findFlow(k);
315 315
    ///   s.findPaths();
316 316
    /// \endcode
317 317
    int run(int k = 2) {
318 318
      init();
319 319
      findFlow(k);
320 320
      findPaths();
321 321
      return _path_num;
322 322
    }
323 323

	
324 324
    /// \brief Initialize the algorithm.
325 325
    ///
326 326
    /// This function initializes the algorithm.
327 327
    void init() {
328 328
      // Initialize maps
329 329
      if (!_flow) {
330 330
        _flow = new FlowMap(_graph);
331 331
        _local_flow = true;
332 332
      }
333 333
      if (!_potential) {
334 334
        _potential = new PotentialMap(_graph);
335 335
        _local_potential = true;
336 336
      }
337 337
      for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
338 338
      for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
339 339

	
340 340
      _dijkstra = new ResidualDijkstra( _graph, *_flow, _length,
341 341
                                        *_potential, _pred,
342 342
                                        _source, _target );
343 343
    }
344 344

	
345 345
    /// \brief Execute the successive shortest path algorithm to find
346 346
    /// an optimal flow.
347 347
    ///
348 348
    /// This function executes the successive shortest path algorithm to
349 349
    /// find a minimum cost flow, which is the union of \c k or less
350 350
    /// arc-disjoint paths.
351 351
    ///
352 352
    /// \return \c k if there are at least \c k arc-disjoint paths from
353 353
    /// \c s to \c t in the digraph. Otherwise it returns the number of
354 354
    /// arc-disjoint paths found.
355 355
    ///
356 356
    /// \pre \ref init() must be called before using this function.
357 357
    int findFlow(int k = 2) {
358 358
      // Find shortest paths
359 359
      _path_num = 0;
360 360
      while (_path_num < k) {
361 361
        // Run Dijkstra
362 362
        if (!_dijkstra->run()) break;
363 363
        ++_path_num;
364 364

	
365 365
        // Set the flow along the found shortest path
366 366
        Node u = _target;
367 367
        Arc e;
368 368
        while ((e = _pred[u]) != INVALID) {
369 369
          if (u == _graph.target(e)) {
370 370
            (*_flow)[e] = 1;
371 371
            u = _graph.source(e);
372 372
          } else {
373 373
            (*_flow)[e] = 0;
374 374
            u = _graph.target(e);
375 375
          }
376 376
        }
377 377
      }
378 378
      return _path_num;
379 379
    }
380 380

	
381 381
    /// \brief Compute the paths from the flow.
382 382
    ///
383 383
    /// This function computes the paths from the flow.
384 384
    ///
385 385
    /// \pre \ref init() and \ref findFlow() must be called before using
386 386
    /// this function.
387 387
    void findPaths() {
388 388
      // Create the residual flow map (the union of the paths not found
389 389
      // so far)
390 390
      FlowMap res_flow(_graph);
391 391
      for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
392 392

	
393 393
      paths.clear();
394 394
      paths.resize(_path_num);
395 395
      for (int i = 0; i < _path_num; ++i) {
396 396
        Node n = _source;
397 397
        while (n != _target) {
398 398
          OutArcIt e(_graph, n);
399 399
          for ( ; res_flow[e] == 0; ++e) ;
400 400
          n = _graph.target(e);
401 401
          paths[i].addBack(e);
402 402
          res_flow[e] = 0;
403 403
        }
404 404
      }
405 405
    }
406 406

	
407 407
    /// @}
408 408

	
409 409
    /// \name Query Functions
410 410
    /// The results of the algorithm can be obtained using these
411 411
    /// functions.
412 412
    /// \n The algorithm should be executed before using them.
413 413

	
414 414
    /// @{
415 415

	
416 416
    /// \brief Return a const reference to the arc map storing the
417 417
    /// found flow.
418 418
    ///
419 419
    /// This function returns a const reference to the arc map storing
Ignore white space 6 line context
... ...
@@ -162,365 +162,365 @@
162 162
    {
163 163
      TimeStamp t(*this);
164 164
      return t/=b;
165 165
    }
166 166
    ///The time ellapsed since the last call of stamp()
167 167
    TimeStamp ellapsed() const
168 168
    {
169 169
      TimeStamp t(NULL);
170 170
      return t-*this;
171 171
    }
172 172

	
173 173
    friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
174 174

	
175 175
    ///Gives back the user time of the process
176 176
    double userTime() const
177 177
    {
178 178
      return utime;
179 179
    }
180 180
    ///Gives back the system time of the process
181 181
    double systemTime() const
182 182
    {
183 183
      return stime;
184 184
    }
185 185
    ///Gives back the user time of the process' children
186 186

	
187 187
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
188 188
    ///
189 189
    double cUserTime() const
190 190
    {
191 191
      return cutime;
192 192
    }
193 193
    ///Gives back the user time of the process' children
194 194

	
195 195
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
196 196
    ///
197 197
    double cSystemTime() const
198 198
    {
199 199
      return cstime;
200 200
    }
201 201
    ///Gives back the real time
202 202
    double realTime() const {return rtime;}
203 203
  };
204 204

	
205 205
  inline TimeStamp operator*(double b,const TimeStamp &t)
206 206
  {
207 207
    return t*b;
208 208
  }
209 209

	
210 210
  ///Prints the time counters
211 211

	
212 212
  ///Prints the time counters in the following form:
213 213
  ///
214 214
  /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
215 215
  ///
216 216
  /// where the values are the
217 217
  /// \li \c u: user cpu time,
218 218
  /// \li \c s: system cpu time,
219 219
  /// \li \c cu: user cpu time of children,
220 220
  /// \li \c cs: system cpu time of children,
221 221
  /// \li \c real: real time.
222 222
  /// \relates TimeStamp
223 223
  /// \note On <tt>WIN32</tt> platform the cummulative values are not
224 224
  /// calculated.
225 225
  inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
226 226
  {
227 227
    os << "u: " << t.userTime() <<
228 228
      "s, s: " << t.systemTime() <<
229 229
      "s, cu: " << t.cUserTime() <<
230 230
      "s, cs: " << t.cSystemTime() <<
231 231
      "s, real: " << t.realTime() << "s";
232 232
    return os;
233 233
  }
234 234

	
235 235
  ///Class for measuring the cpu time and real time usage of the process
236 236

	
237 237
  ///Class for measuring the cpu time and real time usage of the process.
238 238
  ///It is quite easy-to-use, here is a short example.
239 239
  ///\code
240 240
  /// #include<lemon/time_measure.h>
241 241
  /// #include<iostream>
242 242
  ///
243 243
  /// int main()
244 244
  /// {
245 245
  ///
246 246
  ///   ...
247 247
  ///
248 248
  ///   Timer t;
249 249
  ///   doSomething();
250 250
  ///   std::cout << t << '\n';
251 251
  ///   t.restart();
252 252
  ///   doSomethingElse();
253 253
  ///   std::cout << t << '\n';
254 254
  ///
255 255
  ///   ...
256 256
  ///
257 257
  /// }
258 258
  ///\endcode
259 259
  ///
260 260
  ///The \ref Timer can also be \ref stop() "stopped" and
261 261
  ///\ref start() "started" again, so it is possible to compute collected
262 262
  ///running times.
263 263
  ///
264 264
  ///\warning Depending on the operation system and its actual configuration
265 265
  ///the time counters have a certain (10ms on a typical Linux system)
266 266
  ///granularity.
267 267
  ///Therefore this tool is not appropriate to measure very short times.
268 268
  ///Also, if you start and stop the timer very frequently, it could lead to
269 269
  ///distorted results.
270 270
  ///
271 271
  ///\note If you want to measure the running time of the execution of a certain
272 272
  ///function, consider the usage of \ref TimeReport instead.
273 273
  ///
274 274
  ///\sa TimeReport
275 275
  class Timer
276 276
  {
277 277
    int _running; //Timer is running iff _running>0; (_running>=0 always holds)
278 278
    TimeStamp start_time; //This is the relativ start-time if the timer
279 279
                          //is _running, the collected _running time otherwise.
280 280

	
281 281
    void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
282 282

	
283 283
  public:
284 284
    ///Constructor.
285 285

	
286 286
    ///\param run indicates whether or not the timer starts immediately.
287 287
    ///
288 288
    Timer(bool run=true) :_running(run) {_reset();}
289 289

	
290
    ///\name Control the state of the timer
290
    ///\name Control the State of the Timer
291 291
    ///Basically a Timer can be either running or stopped,
292 292
    ///but it provides a bit finer control on the execution.
293 293
    ///The \ref lemon::Timer "Timer" also counts the number of
294 294
    ///\ref lemon::Timer::start() "start()" executions, and it stops
295 295
    ///only after the same amount (or more) \ref lemon::Timer::stop()
296 296
    ///"stop()"s. This can be useful e.g. to compute the running time
297 297
    ///of recursive functions.
298 298

	
299 299
    ///@{
300 300

	
301 301
    ///Reset and stop the time counters
302 302

	
303 303
    ///This function resets and stops the time counters
304 304
    ///\sa restart()
305 305
    void reset()
306 306
    {
307 307
      _running=0;
308 308
      _reset();
309 309
    }
310 310

	
311 311
    ///Start the time counters
312 312

	
313 313
    ///This function starts the time counters.
314 314
    ///
315 315
    ///If the timer is started more than ones, it will remain running
316 316
    ///until the same amount of \ref stop() is called.
317 317
    ///\sa stop()
318 318
    void start()
319 319
    {
320 320
      if(_running) _running++;
321 321
      else {
322 322
        _running=1;
323 323
        TimeStamp t;
324 324
        t.stamp();
325 325
        start_time=t-start_time;
326 326
      }
327 327
    }
328 328

	
329 329

	
330 330
    ///Stop the time counters
331 331

	
332 332
    ///This function stops the time counters. If start() was executed more than
333 333
    ///once, then the same number of stop() execution is necessary the really
334 334
    ///stop the timer.
335 335
    ///
336 336
    ///\sa halt()
337 337
    ///\sa start()
338 338
    ///\sa restart()
339 339
    ///\sa reset()
340 340

	
341 341
    void stop()
342 342
    {
343 343
      if(_running && !--_running) {
344 344
        TimeStamp t;
345 345
        t.stamp();
346 346
        start_time=t-start_time;
347 347
      }
348 348
    }
349 349

	
350 350
    ///Halt (i.e stop immediately) the time counters
351 351

	
352 352
    ///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
353 353
    ///is a faster
354 354
    ///equivalent of the following.
355 355
    ///\code
356 356
    ///  while(t.running()) t.stop()
357 357
    ///\endcode
358 358
    ///
359 359
    ///
360 360
    ///\sa stop()
361 361
    ///\sa restart()
362 362
    ///\sa reset()
363 363

	
364 364
    void halt()
365 365
    {
366 366
      if(_running) {
367 367
        _running=0;
368 368
        TimeStamp t;
369 369
        t.stamp();
370 370
        start_time=t-start_time;
371 371
      }
372 372
    }
373 373

	
374 374
    ///Returns the running state of the timer
375 375

	
376 376
    ///This function returns the number of stop() exections that is
377 377
    ///necessary to really stop the timer.
378 378
    ///For example the timer
379 379
    ///is running if and only if the return value is \c true
380 380
    ///(i.e. greater than
381 381
    ///zero).
382 382
    int running()  { return _running; }
383 383

	
384 384

	
385 385
    ///Restart the time counters
386 386

	
387 387
    ///This function is a shorthand for
388 388
    ///a reset() and a start() calls.
389 389
    ///
390 390
    void restart()
391 391
    {
392 392
      reset();
393 393
      start();
394 394
    }
395 395

	
396 396
    ///@}
397 397

	
398
    ///\name Query Functions for the ellapsed time
398
    ///\name Query Functions for the Ellapsed Time
399 399

	
400 400
    ///@{
401 401

	
402 402
    ///Gives back the ellapsed user time of the process
403 403
    double userTime() const
404 404
    {
405 405
      return operator TimeStamp().userTime();
406 406
    }
407 407
    ///Gives back the ellapsed system time of the process
408 408
    double systemTime() const
409 409
    {
410 410
      return operator TimeStamp().systemTime();
411 411
    }
412 412
    ///Gives back the ellapsed user time of the process' children
413 413

	
414 414
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
415 415
    ///
416 416
    double cUserTime() const
417 417
    {
418 418
      return operator TimeStamp().cUserTime();
419 419
    }
420 420
    ///Gives back the ellapsed user time of the process' children
421 421

	
422 422
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
423 423
    ///
424 424
    double cSystemTime() const
425 425
    {
426 426
      return operator TimeStamp().cSystemTime();
427 427
    }
428 428
    ///Gives back the ellapsed real time
429 429
    double realTime() const
430 430
    {
431 431
      return operator TimeStamp().realTime();
432 432
    }
433 433
    ///Computes the ellapsed time
434 434

	
435 435
    ///This conversion computes the ellapsed time, therefore you can print
436 436
    ///the ellapsed time like this.
437 437
    ///\code
438 438
    ///  Timer t;
439 439
    ///  doSomething();
440 440
    ///  std::cout << t << '\n';
441 441
    ///\endcode
442 442
    operator TimeStamp () const
443 443
    {
444 444
      TimeStamp t;
445 445
      t.stamp();
446 446
      return _running?t-start_time:start_time;
447 447
    }
448 448

	
449 449

	
450 450
    ///@}
451 451
  };
452 452

	
453 453
  ///Same as Timer but prints a report on destruction.
454 454

	
455 455
  ///Same as \ref Timer but prints a report on destruction.
456 456
  ///This example shows its usage.
457 457
  ///\code
458 458
  ///  void myAlg(ListGraph &g,int n)
459 459
  ///  {
460 460
  ///    TimeReport tr("Running time of myAlg: ");
461 461
  ///    ... //Here comes the algorithm
462 462
  ///  }
463 463
  ///\endcode
464 464
  ///
465 465
  ///\sa Timer
466 466
  ///\sa NoTimeReport
467 467
  class TimeReport : public Timer
468 468
  {
469 469
    std::string _title;
470 470
    std::ostream &_os;
471 471
  public:
472 472
    ///Constructor
473 473

	
474 474
    ///Constructor.
475 475
    ///\param title This text will be printed before the ellapsed time.
476 476
    ///\param os The stream to print the report to.
477 477
    ///\param run Sets whether the timer should start immediately.
478 478
    TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
479 479
      : Timer(run), _title(title), _os(os){}
480 480
    ///Destructor that prints the ellapsed time
481 481
    ~TimeReport()
482 482
    {
483 483
      _os << _title << *this << std::endl;
484 484
    }
485 485
  };
486 486

	
487 487
  ///'Do nothing' version of TimeReport
488 488

	
489 489
  ///\sa TimeReport
490 490
  ///
491 491
  class NoTimeReport
492 492
  {
493 493
  public:
494 494
    ///\e
495 495
    NoTimeReport(std::string,std::ostream &,bool) {}
496 496
    ///\e
497 497
    NoTimeReport(std::string,std::ostream &) {}
498 498
    ///\e
499 499
    NoTimeReport(std::string) {}
500 500
    ///\e Do nothing.
501 501
    ~NoTimeReport() {}
502 502

	
503 503
    operator TimeStamp () const { return TimeStamp(); }
504 504
    void reset() {}
505 505
    void start() {}
506 506
    void stop() {}
507 507
    void halt() {}
508 508
    int running() { return 0; }
509 509
    void restart() {}
510 510
    double userTime() const { return 0; }
511 511
    double systemTime() const { return 0; }
512 512
    double cUserTime() const { return 0; }
513 513
    double cSystemTime() const { return 0; }
514 514
    double realTime() const { return 0; }
515 515
  };
516 516

	
517 517
  ///Tool to measure the running time more exactly.
518 518

	
519 519
  ///This function calls \c f several times and returns the average
520 520
  ///running time. The number of the executions will be choosen in such a way
521 521
  ///that the full real running time will be roughly between \c min_time
522 522
  ///and <tt>2*min_time</tt>.
523 523
  ///\param f the function object to be measured.
524 524
  ///\param min_time the minimum total running time.
525 525
  ///\retval num if it is not \c NULL, then the actual
526 526
  ///        number of execution of \c f will be written into <tt>*num</tt>.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup tools
20 20
///\file
21 21
///\brief DIMACS problem solver.
22 22
///
23 23
/// This program solves various problems given in DIMACS format.
24 24
///
25 25
/// See
26
/// \verbatim
27
///  dimacs-solver --help
28
/// \endverbatim
26
/// \code
27
///   dimacs-solver --help
28
/// \endcode
29 29
/// for more info on usage.
30
///
31 30

	
32 31
#include <iostream>
33 32
#include <fstream>
34 33
#include <cstring>
35 34

	
36 35
#include <lemon/smart_graph.h>
37 36
#include <lemon/dimacs.h>
38 37
#include <lemon/lgf_writer.h>
39 38
#include <lemon/time_measure.h>
40 39

	
41 40
#include <lemon/arg_parser.h>
42 41
#include <lemon/error.h>
43 42

	
44 43
#include <lemon/dijkstra.h>
45 44
#include <lemon/preflow.h>
46 45
#include <lemon/max_matching.h>
47 46

	
48 47
using namespace lemon;
49 48
typedef SmartDigraph Digraph;
50 49
DIGRAPH_TYPEDEFS(Digraph);
51 50
typedef SmartGraph Graph;
52 51

	
53 52
template<class Value>
54 53
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &,
55 54
              DimacsDescriptor &desc)
56 55
{
57 56
  bool report = !ap.given("q");
58 57
  Digraph g;
59 58
  Node s;
60 59
  Digraph::ArcMap<Value> len(g);
61 60
  Timer t;
62 61
  t.restart();
63 62
  readDimacsSp(is, g, len, s, desc);
64 63
  if(report) std::cerr << "Read the file: " << t << '\n';
65 64
  t.restart();
66 65
  Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len);
67 66
  if(report) std::cerr << "Setup Dijkstra class: " << t << '\n';
68 67
  t.restart();
69 68
  dij.run(s);
70 69
  if(report) std::cerr << "Run Dijkstra: " << t << '\n';
71 70
}
72 71

	
73 72
template<class Value>
74 73
void solve_max(ArgParser &ap, std::istream &is, std::ostream &,
75 74
               Value infty, DimacsDescriptor &desc)
76 75
{
77 76
  bool report = !ap.given("q");
78 77
  Digraph g;
79 78
  Node s,t;
80 79
  Digraph::ArcMap<Value> cap(g);
81 80
  Timer ti;
82 81
  ti.restart();
83 82
  readDimacsMax(is, g, cap, s, t, infty, desc);
84 83
  if(report) std::cerr << "Read the file: " << ti << '\n';
85 84
  ti.restart();
86 85
  Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t);
87 86
  if(report) std::cerr << "Setup Preflow class: " << ti << '\n';
88 87
  ti.restart();
89 88
  pre.run();
90 89
  if(report) std::cerr << "Run Preflow: " << ti << '\n';
91 90
  if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n';  
92 91
}
93 92

	
94 93
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &,
95 94
              DimacsDescriptor &desc)
96 95
{
97 96
  bool report = !ap.given("q");
98 97
  Graph g;
99 98
  Timer ti;
100 99
  ti.restart();
101 100
  readDimacsMat(is, g, desc);
102 101
  if(report) std::cerr << "Read the file: " << ti << '\n';
103 102
  ti.restart();
104 103
  MaxMatching<Graph> mat(g);
105 104
  if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n';
106 105
  ti.restart();
107 106
  mat.run();
108 107
  if(report) std::cerr << "Run MaxMatching: " << ti << '\n';
109 108
  if(report) std::cerr << "\nCardinality of max matching: "
110 109
                       << mat.matchingSize() << '\n';  
111 110
}
112 111

	
113 112

	
114 113
template<class Value>
115 114
void solve(ArgParser &ap, std::istream &is, std::ostream &os,
116 115
           DimacsDescriptor &desc)
117 116
{
118 117
  std::stringstream iss(static_cast<std::string>(ap["infcap"]));
119 118
  Value infty;
120 119
  iss >> infty;
121 120
  if(iss.fail())
122 121
    {
123 122
      std::cerr << "Cannot interpret '"
124 123
                << static_cast<std::string>(ap["infcap"]) << "' as infinite"
125 124
                << std::endl;
126 125
      exit(1);
127 126
    }
128 127
  
129 128
  switch(desc.type)
130 129
    {
131 130
    case DimacsDescriptor::MIN:
132 131
      std::cerr <<
133 132
        "\n\n Sorry, the min. cost flow solver is not yet available.\n";
134 133
      break;
135 134
    case DimacsDescriptor::MAX:
136 135
      solve_max<Value>(ap,is,os,infty,desc);
137 136
      break;
138 137
    case DimacsDescriptor::SP:
139 138
      solve_sp<Value>(ap,is,os,desc);
140 139
      break;
141 140
    case DimacsDescriptor::MAT:
142 141
      solve_mat(ap,is,os,desc);
143 142
      break;
144 143
    default:
145 144
      break;
146 145
    }
147 146
}
148 147

	
149 148
int main(int argc, const char *argv[]) {
150 149
  typedef SmartDigraph Digraph;
151 150

	
152 151
  typedef Digraph::Arc Arc;
153 152

	
154 153
  std::string inputName;
155 154
  std::string outputName;
156 155

	
157 156
  ArgParser ap(argc, argv);
158 157
  ap.other("[INFILE [OUTFILE]]",
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup tools
20 20
///\file
21 21
///\brief DIMACS to LGF converter.
22 22
///
23 23
/// This program converts various DIMACS formats to the LEMON Digraph Format
24 24
/// (LGF).
25 25
///
26 26
/// See
27
/// \verbatim
28
///  dimacs-to-lgf --help
29
/// \endverbatim
30
/// for more info on usage.
31
///
27
/// \code
28
///   dimacs-to-lgf --help
29
/// \endcode
30
/// for more info on the usage.
32 31

	
33 32
#include <iostream>
34 33
#include <fstream>
35 34
#include <cstring>
36 35

	
37 36
#include <lemon/smart_graph.h>
38 37
#include <lemon/dimacs.h>
39 38
#include <lemon/lgf_writer.h>
40 39

	
41 40
#include <lemon/arg_parser.h>
42 41
#include <lemon/error.h>
43 42

	
44 43
using namespace std;
45 44
using namespace lemon;
46 45

	
47 46

	
48 47
int main(int argc, const char *argv[]) {
49 48
  typedef SmartDigraph Digraph;
50 49

	
51 50
  typedef Digraph::Arc Arc;
52 51
  typedef Digraph::Node Node;
53 52
  typedef Digraph::ArcIt ArcIt;
54 53
  typedef Digraph::NodeIt NodeIt;
55 54
  typedef Digraph::ArcMap<double> DoubleArcMap;
56 55
  typedef Digraph::NodeMap<double> DoubleNodeMap;
57 56

	
58 57
  std::string inputName;
59 58
  std::string outputName;
60 59

	
61 60
  ArgParser ap(argc, argv);
62 61
  ap.other("[INFILE [OUTFILE]]",
63 62
           "If either the INFILE or OUTFILE file is missing the standard\n"
64 63
           "     input/output will be used instead.")
65 64
    .run();
66 65

	
67 66
  ifstream input;
68 67
  ofstream output;
69 68

	
70 69
  switch(ap.files().size())
71 70
    {
72 71
    case 2:
73 72
      output.open(ap.files()[1].c_str());
74 73
      if (!output) {
75 74
        throw IoError("Cannot open the file for writing", ap.files()[1]);
76 75
      }
77 76
    case 1:
78 77
      input.open(ap.files()[0].c_str());
79 78
      if (!input) {
80 79
        throw IoError("File cannot be found", ap.files()[0]);
81 80
      }
82 81
    case 0:
83 82
      break;
84 83
    default:
85 84
      cerr << ap.commandName() << ": too many arguments\n";
86 85
      return 1;
87 86
  }
88 87
  istream& is = (ap.files().size()<1 ? cin : input);
89 88
  ostream& os = (ap.files().size()<2 ? cout : output);
90 89

	
91 90
  DimacsDescriptor desc = dimacsType(is);
92 91
  switch(desc.type)
93 92
    {
94 93
    case DimacsDescriptor::MIN:
95 94
      {
96 95
        Digraph digraph;
97 96
        DoubleArcMap lower(digraph), capacity(digraph), cost(digraph);
98 97
        DoubleNodeMap supply(digraph);
99 98
        readDimacsMin(is, digraph, lower, capacity, cost, supply, 0, desc);
100 99
        DigraphWriter<Digraph>(digraph, os).
101 100
          nodeMap("supply", supply).
102 101
          arcMap("lower", lower).
103 102
          arcMap("capacity", capacity).
104 103
          arcMap("cost", cost).
105 104
          attribute("problem","min").
106 105
          run();
107 106
      }
108 107
      break;
109 108
    case DimacsDescriptor::MAX:
110 109
      {
111 110
        Digraph digraph;
112 111
        Node s, t;
113 112
        DoubleArcMap capacity(digraph);
114 113
        readDimacsMax(is, digraph, capacity, s, t, 0, desc);
115 114
        DigraphWriter<Digraph>(digraph, os).
116 115
          arcMap("capacity", capacity).
117 116
          node("source", s).
118 117
          node("target", t).
119 118
          attribute("problem","max").
120 119
          run();
121 120
      }
122 121
      break;
123 122
    case DimacsDescriptor::SP:
124 123
      {
125 124
        Digraph digraph;
126 125
        Node s;
127 126
        DoubleArcMap capacity(digraph);
128 127
        readDimacsSp(is, digraph, capacity, s, desc);
129 128
        DigraphWriter<Digraph>(digraph, os).
130 129
          arcMap("capacity", capacity).
131 130
          node("source", s).
132 131
          attribute("problem","sp").
133 132
          run();
134 133
      }
135 134
      break;
136 135
    case DimacsDescriptor::MAT:
137 136
      {
138 137
        Digraph digraph;
139 138
        readDimacsMat(is, digraph,desc);
140 139
        DigraphWriter<Digraph>(digraph, os).
141 140
          attribute("problem","mat").
142 141
          run();
143 142
      }
144 143
      break;
145 144
    default:
146 145
      break;
147 146
    }
148 147
  return 0;
149 148
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/// \ingroup tools
20 20
/// \file
21 21
/// \brief Special plane digraph generator.
22 22
///
23 23
/// Graph generator application for various types of plane graphs.
24 24
///
25 25
/// See
26
/// \verbatim
27
///  lgf-gen --help
28
/// \endverbatim
26
/// \code
27
///   lgf-gen --help
28
/// \endcode
29 29
/// for more info on the usage.
30
///
31

	
32 30

	
33 31
#include <algorithm>
34 32
#include <set>
35 33
#include <ctime>
36 34
#include <lemon/list_graph.h>
37 35
#include <lemon/random.h>
38 36
#include <lemon/dim2.h>
39 37
#include <lemon/bfs.h>
40 38
#include <lemon/counter.h>
41 39
#include <lemon/suurballe.h>
42 40
#include <lemon/graph_to_eps.h>
43 41
#include <lemon/lgf_writer.h>
44 42
#include <lemon/arg_parser.h>
45 43
#include <lemon/euler.h>
46 44
#include <lemon/math.h>
47 45
#include <lemon/kruskal.h>
48 46
#include <lemon/time_measure.h>
49 47

	
50 48
using namespace lemon;
51 49

	
52 50
typedef dim2::Point<double> Point;
53 51

	
54 52
GRAPH_TYPEDEFS(ListGraph);
55 53

	
56 54
bool progress=true;
57 55

	
58 56
int N;
59 57
// int girth;
60 58

	
61 59
ListGraph g;
62 60

	
63 61
std::vector<Node> nodes;
64 62
ListGraph::NodeMap<Point> coords(g);
65 63

	
66 64

	
67 65
double totalLen(){
68 66
  double tlen=0;
69 67
  for(EdgeIt e(g);e!=INVALID;++e)
70 68
    tlen+=sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare());
71 69
  return tlen;
72 70
}
73 71

	
74 72
int tsp_impr_num=0;
75 73

	
76 74
const double EPSILON=1e-8;
77 75
bool tsp_improve(Node u, Node v)
78 76
{
79 77
  double luv=std::sqrt((coords[v]-coords[u]).normSquare());
80 78
  Node u2=u;
81 79
  Node v2=v;
82 80
  do {
83 81
    Node n;
84 82
    for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e) { }
85 83
    u2=v2;
86 84
    v2=n;
87 85
    if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON>
88 86
       std::sqrt((coords[u]-coords[u2]).normSquare())+
89 87
       std::sqrt((coords[v]-coords[v2]).normSquare()))
90 88
      {
91 89
         g.erase(findEdge(g,u,v));
92 90
         g.erase(findEdge(g,u2,v2));
93 91
        g.addEdge(u2,u);
94 92
        g.addEdge(v,v2);
95 93
        tsp_impr_num++;
96 94
        return true;
97 95
      }
98 96
  } while(v2!=u);
99 97
  return false;
100 98
}
101 99

	
102 100
bool tsp_improve(Node u)
103 101
{
104 102
  for(IncEdgeIt e(g,u);e!=INVALID;++e)
105 103
    if(tsp_improve(u,g.runningNode(e))) return true;
106 104
  return false;
107 105
}
108 106

	
109 107
void tsp_improve()
110 108
{
111 109
  bool b;
112 110
  do {
113 111
    b=false;
114 112
    for(NodeIt n(g);n!=INVALID;++n)
115 113
      if(tsp_improve(n)) b=true;
116 114
  } while(b);
117 115
}
118 116

	
119 117
void tsp()
120 118
{
121 119
  for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]);
122 120
  tsp_improve();
123 121
}
124 122

	
125 123
class Line
126 124
{
127 125
public:
128 126
  Point a;
129 127
  Point b;
130 128
  Line(Point _a,Point _b) :a(_a),b(_b) {}
131 129
  Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {}
132 130
  Line(const Arc &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
133 131
  Line(const Edge &e) : a(coords[g.u(e)]),b(coords[g.v(e)]) {}
134 132
};
135 133

	
136 134
inline std::ostream& operator<<(std::ostream &os, const Line &l)
137 135
{
138 136
  os << l.a << "->" << l.b;
139 137
  return os;
140 138
}
141 139

	
142 140
bool cross(Line a, Line b)
143 141
{
144 142
  Point ao=rot90(a.b-a.a);
145 143
  Point bo=rot90(b.b-b.a);
146 144
  return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 &&
147 145
    (bo*(a.a-b.a))*(bo*(a.b-b.a))<0;
148 146
}
149 147

	
150 148
struct Parc
151 149
{
152 150
  Node a;
153 151
  Node b;
154 152
  double len;
155 153
};
156 154

	
157 155
bool pedgeLess(Parc a,Parc b)
158 156
{
159 157
  return a.len<b.len;
0 comments (0 inline)