0
19
0
1
1
23
19
9
11
15
15
10
10
25
26
2
2
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Binary Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
///\ingroup auxdat |
33 | 33 |
/// |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 | 36 |
///This class implements the \e binary \e heap data structure. |
37 | 37 |
/// |
38 | 38 |
///A \e heap is a data structure for storing items with specified values |
39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
40 | 40 |
///priority is efficient. \c Comp specifies the ordering of the priorities. |
41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
42 | 42 |
///item, etc. |
43 | 43 |
/// |
44 | 44 |
///\tparam PR Type of the priority of the items. |
45 | 45 |
///\tparam IM A read and writable item map with int values, used internally |
46 | 46 |
///to handle the cross references. |
47 | 47 |
///\tparam Comp A functor class for the ordering of the priorities. |
48 | 48 |
///The default is \c std::less<PR>. |
49 | 49 |
/// |
50 | 50 |
///\sa FibHeap |
51 | 51 |
///\sa Dijkstra |
52 | 52 |
template <typename PR, typename IM, typename Comp = std::less<PR> > |
53 | 53 |
class BinHeap { |
54 | 54 |
|
55 | 55 |
public: |
56 | 56 |
///\e |
57 | 57 |
typedef IM ItemIntMap; |
58 | 58 |
///\e |
59 | 59 |
typedef PR Prio; |
60 | 60 |
///\e |
61 | 61 |
typedef typename ItemIntMap::Key Item; |
62 | 62 |
///\e |
63 | 63 |
typedef std::pair<Item,Prio> Pair; |
64 | 64 |
///\e |
65 | 65 |
typedef Comp Compare; |
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the items states. |
68 | 68 |
/// |
69 | 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
70 | 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
71 | 71 |
/// heap's point of view, but may be useful to the user. |
72 | 72 |
/// |
73 | 73 |
/// The item-int map must be initialized in such way that it assigns |
74 | 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 75 |
enum State { |
76 |
IN_HEAP = 0, ///< \e |
|
77 |
PRE_HEAP = -1, ///< \e |
|
78 |
|
|
76 |
IN_HEAP = 0, ///< = 0. |
|
77 |
PRE_HEAP = -1, ///< = -1. |
|
78 |
POST_HEAP = -2 ///< = -2. |
|
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
private: |
82 | 82 |
std::vector<Pair> _data; |
83 | 83 |
Compare _comp; |
84 | 84 |
ItemIntMap &_iim; |
85 | 85 |
|
86 | 86 |
public: |
87 | 87 |
/// \brief The constructor. |
88 | 88 |
/// |
89 | 89 |
/// The constructor. |
90 | 90 |
/// \param map should be given to the constructor, since it is used |
91 | 91 |
/// internally to handle the cross references. The value of the map |
92 | 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
93 | 93 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
94 | 94 |
|
95 | 95 |
/// \brief The constructor. |
96 | 96 |
/// |
97 | 97 |
/// The constructor. |
98 | 98 |
/// \param map should be given to the constructor, since it is used |
99 | 99 |
/// internally to handle the cross references. The value of the map |
100 | 100 |
/// should be PRE_HEAP (-1) for each element. |
101 | 101 |
/// |
102 | 102 |
/// \param comp The comparator function object. |
103 | 103 |
BinHeap(ItemIntMap &map, const Compare &comp) |
104 | 104 |
: _iim(map), _comp(comp) {} |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
/// The number of items stored in the heap. |
108 | 108 |
/// |
109 | 109 |
/// \brief Returns the number of items stored in the heap. |
110 | 110 |
int size() const { return _data.size(); } |
111 | 111 |
|
112 | 112 |
/// \brief Checks if the heap stores no items. |
113 | 113 |
/// |
114 | 114 |
/// Returns \c true if and only if the heap stores no items. |
115 | 115 |
bool empty() const { return _data.empty(); } |
116 | 116 |
|
117 | 117 |
/// \brief Make empty this heap. |
118 | 118 |
/// |
119 | 119 |
/// Make empty this heap. It does not change the cross reference map. |
120 | 120 |
/// If you want to reuse what is not surely empty you should first clear |
121 | 121 |
/// the heap and after that you should set the cross reference map for |
122 | 122 |
/// each item to \c PRE_HEAP. |
123 | 123 |
void clear() { |
124 | 124 |
_data.clear(); |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
private: |
128 | 128 |
static int parent(int i) { return (i-1)/2; } |
129 | 129 |
|
130 | 130 |
static int second_child(int i) { return 2*i+2; } |
131 | 131 |
bool less(const Pair &p1, const Pair &p2) const { |
132 | 132 |
return _comp(p1.second, p2.second); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
int bubble_up(int hole, Pair p) { |
136 | 136 |
int par = parent(hole); |
137 | 137 |
while( hole>0 && less(p,_data[par]) ) { |
138 | 138 |
move(_data[par],hole); |
139 | 139 |
hole = par; |
140 | 140 |
par = parent(hole); |
141 | 141 |
} |
142 | 142 |
move(p, hole); |
143 | 143 |
return hole; |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
int bubble_down(int hole, Pair p, int length) { |
147 | 147 |
int child = second_child(hole); |
148 | 148 |
while(child < length) { |
149 | 149 |
if( less(_data[child-1], _data[child]) ) { |
150 | 150 |
--child; |
151 | 151 |
} |
152 | 152 |
if( !less(_data[child], p) ) |
153 | 153 |
goto ok; |
154 | 154 |
move(_data[child], hole); |
155 | 155 |
hole = child; |
156 | 156 |
child = second_child(hole); |
157 | 157 |
} |
158 | 158 |
child--; |
159 | 159 |
if( child<length && less(_data[child], p) ) { |
160 | 160 |
move(_data[child], hole); |
161 | 161 |
hole=child; |
162 | 162 |
} |
163 | 163 |
ok: |
164 | 164 |
move(p, hole); |
165 | 165 |
return hole; |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
void move(const Pair &p, int i) { |
169 | 169 |
_data[i] = p; |
170 | 170 |
_iim.set(p.first, i); |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
public: |
174 | 174 |
/// \brief Insert a pair of item and priority into the heap. |
175 | 175 |
/// |
176 | 176 |
/// Adds \c p.first to the heap with priority \c p.second. |
177 | 177 |
/// \param p The pair to insert. |
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 | 181 |
bubble_up(n, p); |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
/// \brief Insert an item into the heap with the given heap. |
185 | 185 |
/// |
186 | 186 |
/// Adds \c i to the heap with priority \c p. |
187 | 187 |
/// \param i The item to insert. |
188 | 188 |
/// \param p The priority of the item. |
189 | 189 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
190 | 190 |
|
191 | 191 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
192 | 192 |
/// |
193 | 193 |
/// This method returns the item with minimum priority relative to \c |
194 | 194 |
/// Compare. |
195 | 195 |
/// \pre The heap must be nonempty. |
196 | 196 |
Item top() const { |
197 | 197 |
return _data[0].first; |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
/// \brief Returns the minimum priority relative to \c Compare. |
201 | 201 |
/// |
202 | 202 |
/// It returns the minimum priority relative to \c Compare. |
203 | 203 |
/// \pre The heap must be nonempty. |
204 | 204 |
Prio prio() const { |
205 | 205 |
return _data[0].second; |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
209 | 209 |
/// |
210 | 210 |
/// This method deletes the item with minimum priority relative to \c |
211 | 211 |
/// Compare from the heap. |
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 | 217 |
bubble_down(0, _data[n], n); |
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
/// \brief Deletes \c i from the heap. |
223 | 223 |
/// |
224 | 224 |
/// This method deletes item \c i from the heap. |
225 | 225 |
/// \param i The item to erase. |
226 | 226 |
/// \pre The item should be in the heap. |
227 | 227 |
void erase(const Item &i) { |
228 | 228 |
int h = _iim[i]; |
229 | 229 |
int n = _data.size()-1; |
230 | 230 |
_iim.set(_data[h].first, POST_HEAP); |
231 | 231 |
if( h < n ) { |
232 | 232 |
if ( bubble_up(h, _data[n]) == h) { |
233 | 233 |
bubble_down(h, _data[n], n); |
234 | 234 |
} |
235 | 235 |
} |
236 | 236 |
_data.pop_back(); |
237 | 237 |
} |
238 | 238 |
|
239 | 239 |
|
240 | 240 |
/// \brief Returns the priority of \c i. |
241 | 241 |
/// |
242 | 242 |
/// This function returns the priority of item \c i. |
243 | 243 |
/// \param i The item. |
244 | 244 |
/// \pre \c i must be in the heap. |
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
247 | 247 |
return _data[idx].second; |
248 | 248 |
} |
249 | 249 |
|
250 | 250 |
/// \brief \c i gets to the heap with priority \c p independently |
251 | 251 |
/// if \c i was already there. |
252 | 252 |
/// |
253 | 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
254 | 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
255 | 255 |
/// \param i The item. |
256 | 256 |
/// \param p The priority. |
257 | 257 |
void set(const Item &i, const Prio &p) { |
258 | 258 |
int idx = _iim[i]; |
259 | 259 |
if( idx < 0 ) { |
260 | 260 |
push(i,p); |
261 | 261 |
} |
262 | 262 |
else if( _comp(p, _data[idx].second) ) { |
263 | 263 |
bubble_up(idx, Pair(i,p)); |
264 | 264 |
} |
265 | 265 |
else { |
266 | 266 |
bubble_down(idx, Pair(i,p), _data.size()); |
267 | 267 |
} |
268 | 268 |
} |
269 | 269 |
|
270 | 270 |
/// \brief Decreases the priority of \c i to \c p. |
271 | 271 |
/// |
272 | 272 |
/// This method decreases the priority of item \c i to \c p. |
273 | 273 |
/// \param i The item. |
274 | 274 |
/// \param p The priority. |
275 | 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
276 | 276 |
/// p relative to \c Compare. |
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 | 279 |
bubble_up(idx, Pair(i,p)); |
280 | 280 |
} |
281 | 281 |
|
282 | 282 |
/// \brief Increases the priority of \c i to \c p. |
283 | 283 |
/// |
284 | 284 |
/// This method sets the priority of item \c i to \c p. |
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 | 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
288 | 288 |
/// p relative to \c Compare. |
289 | 289 |
void increase(const Item &i, const Prio &p) { |
290 | 290 |
int idx = _iim[i]; |
291 | 291 |
bubble_down(idx, Pair(i,p), _data.size()); |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
/// \brief Returns if \c item is in, has already been in, or has |
295 | 295 |
/// never been in the heap. |
296 | 296 |
/// |
297 | 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
298 | 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
299 | 299 |
/// otherwise. In the latter case it is possible that \c item will |
300 | 300 |
/// get back to the heap again. |
301 | 301 |
/// \param i The item. |
302 | 302 |
State state(const Item &i) const { |
303 | 303 |
int s = _iim[i]; |
304 | 304 |
if( s>=0 ) |
305 | 305 |
s=0; |
306 | 306 |
return State(s); |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
/// \brief Sets the state of the \c item in the heap. |
310 | 310 |
/// |
311 | 311 |
/// Sets the state of the \c item in the heap. It can be used to |
312 | 312 |
/// manually clear the heap when it is important to achive the |
313 | 313 |
/// better time complexity. |
314 | 314 |
/// \param i The item. |
315 | 315 |
/// \param st The state. It should not be \c IN_HEAP. |
316 | 316 |
void state(const Item& i, State st) { |
317 | 317 |
switch (st) { |
318 | 318 |
case POST_HEAP: |
319 | 319 |
case PRE_HEAP: |
320 | 320 |
if (state(i) == IN_HEAP) { |
321 | 321 |
erase(i); |
322 | 322 |
} |
323 | 323 |
_iim[i] = st; |
324 | 324 |
break; |
325 | 325 |
case IN_HEAP: |
326 | 326 |
break; |
327 | 327 |
} |
328 | 328 |
} |
329 | 329 |
|
330 | 330 |
/// \brief Replaces an item in the heap. |
331 | 331 |
/// |
332 | 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
333 | 333 |
/// be in the heap, while the \c j should be out of the heap. The |
334 | 334 |
/// \c i item will out of the heap and \c j will be in the heap |
335 | 335 |
/// with the same prioriority as prevoiusly the \c i item. |
336 | 336 |
void replace(const Item& i, const Item& j) { |
337 | 337 |
int idx = _iim[i]; |
338 | 338 |
_iim.set(i, _iim[j]); |
339 | 339 |
_iim.set(j, idx); |
340 | 340 |
_data[idx].first = j; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
}; // class BinHeap |
344 | 344 |
|
345 | 345 |
} // namespace lemon |
346 | 346 |
|
347 | 347 |
#endif // LEMON_BIN_HEAP_H |
... | ... |
@@ -93,1241 +93,1241 @@ |
93 | 93 |
bool operator<(const GraphItem&) const { return false; } |
94 | 94 |
|
95 | 95 |
template<typename _GraphItem> |
96 | 96 |
struct Constraints { |
97 | 97 |
void constraints() { |
98 | 98 |
_GraphItem i1; |
99 | 99 |
_GraphItem i2 = i1; |
100 | 100 |
_GraphItem i3 = INVALID; |
101 | 101 |
|
102 | 102 |
i1 = i2 = i3; |
103 | 103 |
|
104 | 104 |
bool b; |
105 | 105 |
b = (ia == ib) && (ia != ib); |
106 | 106 |
b = (ia == INVALID) && (ib != INVALID); |
107 | 107 |
b = (ia < ib); |
108 | 108 |
} |
109 | 109 |
|
110 | 110 |
const _GraphItem &ia; |
111 | 111 |
const _GraphItem &ib; |
112 | 112 |
}; |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
/// \brief Base skeleton class for directed graphs. |
116 | 116 |
/// |
117 | 117 |
/// This class describes the base interface of directed graph types. |
118 | 118 |
/// All digraph %concepts have to conform to this class. |
119 | 119 |
/// It just provides types for nodes and arcs and functions |
120 | 120 |
/// to get the source and the target nodes of arcs. |
121 | 121 |
class BaseDigraphComponent { |
122 | 122 |
public: |
123 | 123 |
|
124 | 124 |
typedef BaseDigraphComponent Digraph; |
125 | 125 |
|
126 | 126 |
/// \brief Node class of the digraph. |
127 | 127 |
/// |
128 | 128 |
/// This class represents the nodes of the digraph. |
129 | 129 |
typedef GraphItem<'n'> Node; |
130 | 130 |
|
131 | 131 |
/// \brief Arc class of the digraph. |
132 | 132 |
/// |
133 | 133 |
/// This class represents the arcs of the digraph. |
134 | 134 |
typedef GraphItem<'a'> Arc; |
135 | 135 |
|
136 | 136 |
/// \brief Return the source node of an arc. |
137 | 137 |
/// |
138 | 138 |
/// This function returns the source node of an arc. |
139 | 139 |
Node source(const Arc&) const { return INVALID; } |
140 | 140 |
|
141 | 141 |
/// \brief Return the target node of an arc. |
142 | 142 |
/// |
143 | 143 |
/// This function returns the target node of an arc. |
144 | 144 |
Node target(const Arc&) const { return INVALID; } |
145 | 145 |
|
146 | 146 |
/// \brief Return the opposite node on the given arc. |
147 | 147 |
/// |
148 | 148 |
/// This function returns the opposite node on the given arc. |
149 | 149 |
Node oppositeNode(const Node&, const Arc&) const { |
150 | 150 |
return INVALID; |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
template <typename _Digraph> |
154 | 154 |
struct Constraints { |
155 | 155 |
typedef typename _Digraph::Node Node; |
156 | 156 |
typedef typename _Digraph::Arc Arc; |
157 | 157 |
|
158 | 158 |
void constraints() { |
159 | 159 |
checkConcept<GraphItem<'n'>, Node>(); |
160 | 160 |
checkConcept<GraphItem<'a'>, Arc>(); |
161 | 161 |
{ |
162 | 162 |
Node n; |
163 | 163 |
Arc e(INVALID); |
164 | 164 |
n = digraph.source(e); |
165 | 165 |
n = digraph.target(e); |
166 | 166 |
n = digraph.oppositeNode(n, e); |
167 | 167 |
} |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
const _Digraph& digraph; |
171 | 171 |
}; |
172 | 172 |
}; |
173 | 173 |
|
174 | 174 |
/// \brief Base skeleton class for undirected graphs. |
175 | 175 |
/// |
176 | 176 |
/// This class describes the base interface of undirected graph types. |
177 | 177 |
/// All graph %concepts have to conform to this class. |
178 | 178 |
/// It extends the interface of \ref BaseDigraphComponent with an |
179 | 179 |
/// \c Edge type and functions to get the end nodes of edges, |
180 | 180 |
/// to convert from arcs to edges and to get both direction of edges. |
181 | 181 |
class BaseGraphComponent : public BaseDigraphComponent { |
182 | 182 |
public: |
183 | 183 |
typedef BaseDigraphComponent::Node Node; |
184 | 184 |
typedef BaseDigraphComponent::Arc Arc; |
185 | 185 |
|
186 | 186 |
/// \brief Undirected edge class of the graph. |
187 | 187 |
/// |
188 | 188 |
/// This class represents the undirected edges of the graph. |
189 | 189 |
/// Undirected graphs can be used as directed graphs, each edge is |
190 | 190 |
/// represented by two opposite directed arcs. |
191 | 191 |
class Edge : public GraphItem<'e'> { |
192 | 192 |
public: |
193 | 193 |
typedef GraphItem<'e'> Parent; |
194 | 194 |
|
195 | 195 |
/// \brief Default constructor. |
196 | 196 |
/// |
197 | 197 |
/// Default constructor. |
198 | 198 |
/// \warning The default constructor is not required to set |
199 | 199 |
/// the item to some well-defined value. So you should consider it |
200 | 200 |
/// as uninitialized. |
201 | 201 |
Edge() {} |
202 | 202 |
|
203 | 203 |
/// \brief Copy constructor. |
204 | 204 |
/// |
205 | 205 |
/// Copy constructor. |
206 | 206 |
Edge(const Edge &) : Parent() {} |
207 | 207 |
|
208 | 208 |
/// \brief Constructor for conversion from \c INVALID. |
209 | 209 |
/// |
210 | 210 |
/// Constructor for conversion from \c INVALID. |
211 | 211 |
/// It initializes the item to be invalid. |
212 | 212 |
/// \sa Invalid for more details. |
213 | 213 |
Edge(Invalid) {} |
214 | 214 |
|
215 | 215 |
/// \brief Constructor for conversion from an arc. |
216 | 216 |
/// |
217 | 217 |
/// Constructor for conversion from an arc. |
218 | 218 |
/// Besides the core graph item functionality each arc should |
219 | 219 |
/// be convertible to the represented edge. |
220 | 220 |
Edge(const Arc&) {} |
221 | 221 |
|
222 | 222 |
/// \brief Assign an arc to an edge. |
223 | 223 |
/// |
224 | 224 |
/// This function assigns an arc to an edge. |
225 | 225 |
/// Besides the core graph item functionality each arc should |
226 | 226 |
/// be convertible to the represented edge. |
227 | 227 |
Edge& operator=(const Arc&) { return *this; } |
228 | 228 |
}; |
229 | 229 |
|
230 | 230 |
/// \brief Return one end node of an edge. |
231 | 231 |
/// |
232 | 232 |
/// This function returns one end node of an edge. |
233 | 233 |
Node u(const Edge&) const { return INVALID; } |
234 | 234 |
|
235 | 235 |
/// \brief Return the other end node of an edge. |
236 | 236 |
/// |
237 | 237 |
/// This function returns the other end node of an edge. |
238 | 238 |
Node v(const Edge&) const { return INVALID; } |
239 | 239 |
|
240 | 240 |
/// \brief Return a directed arc related to an edge. |
241 | 241 |
/// |
242 | 242 |
/// This function returns a directed arc from its direction and the |
243 | 243 |
/// represented edge. |
244 | 244 |
Arc direct(const Edge&, bool) const { return INVALID; } |
245 | 245 |
|
246 | 246 |
/// \brief Return a directed arc related to an edge. |
247 | 247 |
/// |
248 | 248 |
/// This function returns a directed arc from its source node and the |
249 | 249 |
/// represented edge. |
250 | 250 |
Arc direct(const Edge&, const Node&) const { return INVALID; } |
251 | 251 |
|
252 | 252 |
/// \brief Return the direction of the arc. |
253 | 253 |
/// |
254 | 254 |
/// Returns the direction of the arc. Each arc represents an |
255 | 255 |
/// edge with a direction. It gives back the |
256 | 256 |
/// direction. |
257 | 257 |
bool direction(const Arc&) const { return true; } |
258 | 258 |
|
259 | 259 |
/// \brief Return the opposite arc. |
260 | 260 |
/// |
261 | 261 |
/// This function returns the opposite arc, i.e. the arc representing |
262 | 262 |
/// the same edge and has opposite direction. |
263 | 263 |
Arc oppositeArc(const Arc&) const { return INVALID; } |
264 | 264 |
|
265 | 265 |
template <typename _Graph> |
266 | 266 |
struct Constraints { |
267 | 267 |
typedef typename _Graph::Node Node; |
268 | 268 |
typedef typename _Graph::Arc Arc; |
269 | 269 |
typedef typename _Graph::Edge Edge; |
270 | 270 |
|
271 | 271 |
void constraints() { |
272 | 272 |
checkConcept<BaseDigraphComponent, _Graph>(); |
273 | 273 |
checkConcept<GraphItem<'e'>, Edge>(); |
274 | 274 |
{ |
275 | 275 |
Node n; |
276 | 276 |
Edge ue(INVALID); |
277 | 277 |
Arc e; |
278 | 278 |
n = graph.u(ue); |
279 | 279 |
n = graph.v(ue); |
280 | 280 |
e = graph.direct(ue, true); |
281 | 281 |
e = graph.direct(ue, false); |
282 | 282 |
e = graph.direct(ue, n); |
283 | 283 |
e = graph.oppositeArc(e); |
284 | 284 |
ue = e; |
285 | 285 |
bool d = graph.direction(e); |
286 | 286 |
ignore_unused_variable_warning(d); |
287 | 287 |
} |
288 | 288 |
} |
289 | 289 |
|
290 | 290 |
const _Graph& graph; |
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
}; |
294 | 294 |
|
295 | 295 |
/// \brief Skeleton class for \e idable directed graphs. |
296 | 296 |
/// |
297 | 297 |
/// This class describes the interface of \e idable directed graphs. |
298 | 298 |
/// It extends \ref BaseDigraphComponent with the core ID functions. |
299 | 299 |
/// The ids of the items must be unique and immutable. |
300 | 300 |
/// This concept is part of the Digraph concept. |
301 | 301 |
template <typename BAS = BaseDigraphComponent> |
302 | 302 |
class IDableDigraphComponent : public BAS { |
303 | 303 |
public: |
304 | 304 |
|
305 | 305 |
typedef BAS Base; |
306 | 306 |
typedef typename Base::Node Node; |
307 | 307 |
typedef typename Base::Arc Arc; |
308 | 308 |
|
309 | 309 |
/// \brief Return a unique integer id for the given node. |
310 | 310 |
/// |
311 | 311 |
/// This function returns a unique integer id for the given node. |
312 | 312 |
int id(const Node&) const { return -1; } |
313 | 313 |
|
314 | 314 |
/// \brief Return the node by its unique id. |
315 | 315 |
/// |
316 | 316 |
/// This function returns the node by its unique id. |
317 | 317 |
/// If the digraph does not contain a node with the given id, |
318 | 318 |
/// then the result of the function is undefined. |
319 | 319 |
Node nodeFromId(int) const { return INVALID; } |
320 | 320 |
|
321 | 321 |
/// \brief Return a unique integer id for the given arc. |
322 | 322 |
/// |
323 | 323 |
/// This function returns a unique integer id for the given arc. |
324 | 324 |
int id(const Arc&) const { return -1; } |
325 | 325 |
|
326 | 326 |
/// \brief Return the arc by its unique id. |
327 | 327 |
/// |
328 | 328 |
/// This function returns the arc by its unique id. |
329 | 329 |
/// If the digraph does not contain an arc with the given id, |
330 | 330 |
/// then the result of the function is undefined. |
331 | 331 |
Arc arcFromId(int) const { return INVALID; } |
332 | 332 |
|
333 | 333 |
/// \brief Return an integer greater or equal to the maximum |
334 | 334 |
/// node id. |
335 | 335 |
/// |
336 | 336 |
/// This function returns an integer greater or equal to the |
337 | 337 |
/// maximum node id. |
338 | 338 |
int maxNodeId() const { return -1; } |
339 | 339 |
|
340 | 340 |
/// \brief Return an integer greater or equal to the maximum |
341 | 341 |
/// arc id. |
342 | 342 |
/// |
343 | 343 |
/// This function returns an integer greater or equal to the |
344 | 344 |
/// maximum arc id. |
345 | 345 |
int maxArcId() const { return -1; } |
346 | 346 |
|
347 | 347 |
template <typename _Digraph> |
348 | 348 |
struct Constraints { |
349 | 349 |
|
350 | 350 |
void constraints() { |
351 | 351 |
checkConcept<Base, _Digraph >(); |
352 | 352 |
typename _Digraph::Node node; |
353 | 353 |
int nid = digraph.id(node); |
354 | 354 |
nid = digraph.id(node); |
355 | 355 |
node = digraph.nodeFromId(nid); |
356 | 356 |
typename _Digraph::Arc arc; |
357 | 357 |
int eid = digraph.id(arc); |
358 | 358 |
eid = digraph.id(arc); |
359 | 359 |
arc = digraph.arcFromId(eid); |
360 | 360 |
|
361 | 361 |
nid = digraph.maxNodeId(); |
362 | 362 |
ignore_unused_variable_warning(nid); |
363 | 363 |
eid = digraph.maxArcId(); |
364 | 364 |
ignore_unused_variable_warning(eid); |
365 | 365 |
} |
366 | 366 |
|
367 | 367 |
const _Digraph& digraph; |
368 | 368 |
}; |
369 | 369 |
}; |
370 | 370 |
|
371 | 371 |
/// \brief Skeleton class for \e idable undirected graphs. |
372 | 372 |
/// |
373 | 373 |
/// This class describes the interface of \e idable undirected |
374 | 374 |
/// graphs. It extends \ref IDableDigraphComponent with the core ID |
375 | 375 |
/// functions of undirected graphs. |
376 | 376 |
/// The ids of the items must be unique and immutable. |
377 | 377 |
/// This concept is part of the Graph concept. |
378 | 378 |
template <typename BAS = BaseGraphComponent> |
379 | 379 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> { |
380 | 380 |
public: |
381 | 381 |
|
382 | 382 |
typedef BAS Base; |
383 | 383 |
typedef typename Base::Edge Edge; |
384 | 384 |
|
385 | 385 |
using IDableDigraphComponent<Base>::id; |
386 | 386 |
|
387 | 387 |
/// \brief Return a unique integer id for the given edge. |
388 | 388 |
/// |
389 | 389 |
/// This function returns a unique integer id for the given edge. |
390 | 390 |
int id(const Edge&) const { return -1; } |
391 | 391 |
|
392 | 392 |
/// \brief Return the edge by its unique id. |
393 | 393 |
/// |
394 | 394 |
/// This function returns the edge by its unique id. |
395 | 395 |
/// If the graph does not contain an edge with the given id, |
396 | 396 |
/// then the result of the function is undefined. |
397 | 397 |
Edge edgeFromId(int) const { return INVALID; } |
398 | 398 |
|
399 | 399 |
/// \brief Return an integer greater or equal to the maximum |
400 | 400 |
/// edge id. |
401 | 401 |
/// |
402 | 402 |
/// This function returns an integer greater or equal to the |
403 | 403 |
/// maximum edge id. |
404 | 404 |
int maxEdgeId() const { return -1; } |
405 | 405 |
|
406 | 406 |
template <typename _Graph> |
407 | 407 |
struct Constraints { |
408 | 408 |
|
409 | 409 |
void constraints() { |
410 | 410 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
411 | 411 |
typename _Graph::Edge edge; |
412 | 412 |
int ueid = graph.id(edge); |
413 | 413 |
ueid = graph.id(edge); |
414 | 414 |
edge = graph.edgeFromId(ueid); |
415 | 415 |
ueid = graph.maxEdgeId(); |
416 | 416 |
ignore_unused_variable_warning(ueid); |
417 | 417 |
} |
418 | 418 |
|
419 | 419 |
const _Graph& graph; |
420 | 420 |
}; |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
424 | 424 |
/// |
425 | 425 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
426 | 426 |
/// \c EdgeIt subtypes of digraph and graph types. |
427 | 427 |
template <typename GR, typename Item> |
428 | 428 |
class GraphItemIt : public Item { |
429 | 429 |
public: |
430 | 430 |
/// \brief Default constructor. |
431 | 431 |
/// |
432 | 432 |
/// Default constructor. |
433 | 433 |
/// \warning The default constructor is not required to set |
434 | 434 |
/// the iterator to some well-defined value. So you should consider it |
435 | 435 |
/// as uninitialized. |
436 | 436 |
GraphItemIt() {} |
437 | 437 |
|
438 | 438 |
/// \brief Copy constructor. |
439 | 439 |
/// |
440 | 440 |
/// Copy constructor. |
441 | 441 |
GraphItemIt(const GraphItemIt& it) : Item(it) {} |
442 | 442 |
|
443 | 443 |
/// \brief Constructor that sets the iterator to the first item. |
444 | 444 |
/// |
445 | 445 |
/// Constructor that sets the iterator to the first item. |
446 | 446 |
explicit GraphItemIt(const GR&) {} |
447 | 447 |
|
448 | 448 |
/// \brief Constructor for conversion from \c INVALID. |
449 | 449 |
/// |
450 | 450 |
/// Constructor for conversion from \c INVALID. |
451 | 451 |
/// It initializes the iterator to be invalid. |
452 | 452 |
/// \sa Invalid for more details. |
453 | 453 |
GraphItemIt(Invalid) {} |
454 | 454 |
|
455 | 455 |
/// \brief Assignment operator. |
456 | 456 |
/// |
457 | 457 |
/// Assignment operator for the iterator. |
458 | 458 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; } |
459 | 459 |
|
460 | 460 |
/// \brief Increment the iterator. |
461 | 461 |
/// |
462 | 462 |
/// This operator increments the iterator, i.e. assigns it to the |
463 | 463 |
/// next item. |
464 | 464 |
GraphItemIt& operator++() { return *this; } |
465 | 465 |
|
466 | 466 |
/// \brief Equality operator |
467 | 467 |
/// |
468 | 468 |
/// Equality operator. |
469 | 469 |
/// Two iterators are equal if and only if they point to the |
470 | 470 |
/// same object or both are invalid. |
471 | 471 |
bool operator==(const GraphItemIt&) const { return true;} |
472 | 472 |
|
473 | 473 |
/// \brief Inequality operator |
474 | 474 |
/// |
475 | 475 |
/// Inequality operator. |
476 | 476 |
/// Two iterators are equal if and only if they point to the |
477 | 477 |
/// same object or both are invalid. |
478 | 478 |
bool operator!=(const GraphItemIt&) const { return true;} |
479 | 479 |
|
480 | 480 |
template<typename _GraphItemIt> |
481 | 481 |
struct Constraints { |
482 | 482 |
void constraints() { |
483 | 483 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
484 | 484 |
_GraphItemIt it1(g); |
485 | 485 |
_GraphItemIt it2; |
486 | 486 |
_GraphItemIt it3 = it1; |
487 | 487 |
_GraphItemIt it4 = INVALID; |
488 | 488 |
|
489 | 489 |
it2 = ++it1; |
490 | 490 |
++it2 = it1; |
491 | 491 |
++(++it1); |
492 | 492 |
|
493 | 493 |
Item bi = it1; |
494 | 494 |
bi = it2; |
495 | 495 |
} |
496 | 496 |
const GR& g; |
497 | 497 |
}; |
498 | 498 |
}; |
499 | 499 |
|
500 | 500 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
501 | 501 |
/// \c IncEdgeIt types. |
502 | 502 |
/// |
503 | 503 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
504 | 504 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
505 | 505 |
/// |
506 | 506 |
/// \note Since these iterator classes do not inherit from the same |
507 | 507 |
/// base class, there is an additional template parameter (selector) |
508 | 508 |
/// \c sel. For \c InArcIt you should instantiate it with character |
509 | 509 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
510 | 510 |
template <typename GR, |
511 | 511 |
typename Item = typename GR::Arc, |
512 | 512 |
typename Base = typename GR::Node, |
513 | 513 |
char sel = '0'> |
514 | 514 |
class GraphIncIt : public Item { |
515 | 515 |
public: |
516 | 516 |
/// \brief Default constructor. |
517 | 517 |
/// |
518 | 518 |
/// Default constructor. |
519 | 519 |
/// \warning The default constructor is not required to set |
520 | 520 |
/// the iterator to some well-defined value. So you should consider it |
521 | 521 |
/// as uninitialized. |
522 | 522 |
GraphIncIt() {} |
523 | 523 |
|
524 | 524 |
/// \brief Copy constructor. |
525 | 525 |
/// |
526 | 526 |
/// Copy constructor. |
527 | 527 |
GraphIncIt(const GraphIncIt& it) : Item(it) {} |
528 | 528 |
|
529 | 529 |
/// \brief Constructor that sets the iterator to the first |
530 | 530 |
/// incoming or outgoing arc. |
531 | 531 |
/// |
532 | 532 |
/// Constructor that sets the iterator to the first arc |
533 | 533 |
/// incoming to or outgoing from the given node. |
534 | 534 |
explicit GraphIncIt(const GR&, const Base&) {} |
535 | 535 |
|
536 | 536 |
/// \brief Constructor for conversion from \c INVALID. |
537 | 537 |
/// |
538 | 538 |
/// Constructor for conversion from \c INVALID. |
539 | 539 |
/// It initializes the iterator to be invalid. |
540 | 540 |
/// \sa Invalid for more details. |
541 | 541 |
GraphIncIt(Invalid) {} |
542 | 542 |
|
543 | 543 |
/// \brief Assignment operator. |
544 | 544 |
/// |
545 | 545 |
/// Assignment operator for the iterator. |
546 | 546 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; } |
547 | 547 |
|
548 | 548 |
/// \brief Increment the iterator. |
549 | 549 |
/// |
550 | 550 |
/// This operator increments the iterator, i.e. assigns it to the |
551 | 551 |
/// next arc incoming to or outgoing from the given node. |
552 | 552 |
GraphIncIt& operator++() { return *this; } |
553 | 553 |
|
554 | 554 |
/// \brief Equality operator |
555 | 555 |
/// |
556 | 556 |
/// Equality operator. |
557 | 557 |
/// Two iterators are equal if and only if they point to the |
558 | 558 |
/// same object or both are invalid. |
559 | 559 |
bool operator==(const GraphIncIt&) const { return true;} |
560 | 560 |
|
561 | 561 |
/// \brief Inequality operator |
562 | 562 |
/// |
563 | 563 |
/// Inequality operator. |
564 | 564 |
/// Two iterators are equal if and only if they point to the |
565 | 565 |
/// same object or both are invalid. |
566 | 566 |
bool operator!=(const GraphIncIt&) const { return true;} |
567 | 567 |
|
568 | 568 |
template <typename _GraphIncIt> |
569 | 569 |
struct Constraints { |
570 | 570 |
void constraints() { |
571 | 571 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
572 | 572 |
_GraphIncIt it1(graph, node); |
573 | 573 |
_GraphIncIt it2; |
574 | 574 |
_GraphIncIt it3 = it1; |
575 | 575 |
_GraphIncIt it4 = INVALID; |
576 | 576 |
|
577 | 577 |
it2 = ++it1; |
578 | 578 |
++it2 = it1; |
579 | 579 |
++(++it1); |
580 | 580 |
Item e = it1; |
581 | 581 |
e = it2; |
582 | 582 |
} |
583 | 583 |
const Base& node; |
584 | 584 |
const GR& graph; |
585 | 585 |
}; |
586 | 586 |
}; |
587 | 587 |
|
588 | 588 |
/// \brief Skeleton class for iterable directed graphs. |
589 | 589 |
/// |
590 | 590 |
/// This class describes the interface of iterable directed |
591 | 591 |
/// graphs. It extends \ref BaseDigraphComponent with the core |
592 | 592 |
/// iterable interface. |
593 | 593 |
/// This concept is part of the Digraph concept. |
594 | 594 |
template <typename BAS = BaseDigraphComponent> |
595 | 595 |
class IterableDigraphComponent : public BAS { |
596 | 596 |
|
597 | 597 |
public: |
598 | 598 |
|
599 | 599 |
typedef BAS Base; |
600 | 600 |
typedef typename Base::Node Node; |
601 | 601 |
typedef typename Base::Arc Arc; |
602 | 602 |
|
603 | 603 |
typedef IterableDigraphComponent Digraph; |
604 | 604 |
|
605 |
/// \name Base |
|
605 |
/// \name Base Iteration |
|
606 | 606 |
/// |
607 | 607 |
/// This interface provides functions for iteration on digraph items. |
608 | 608 |
/// |
609 | 609 |
/// @{ |
610 | 610 |
|
611 | 611 |
/// \brief Return the first node. |
612 | 612 |
/// |
613 | 613 |
/// This function gives back the first node in the iteration order. |
614 | 614 |
void first(Node&) const {} |
615 | 615 |
|
616 | 616 |
/// \brief Return the next node. |
617 | 617 |
/// |
618 | 618 |
/// This function gives back the next node in the iteration order. |
619 | 619 |
void next(Node&) const {} |
620 | 620 |
|
621 | 621 |
/// \brief Return the first arc. |
622 | 622 |
/// |
623 | 623 |
/// This function gives back the first arc in the iteration order. |
624 | 624 |
void first(Arc&) const {} |
625 | 625 |
|
626 | 626 |
/// \brief Return the next arc. |
627 | 627 |
/// |
628 | 628 |
/// This function gives back the next arc in the iteration order. |
629 | 629 |
void next(Arc&) const {} |
630 | 630 |
|
631 | 631 |
/// \brief Return the first arc incomming to the given node. |
632 | 632 |
/// |
633 | 633 |
/// This function gives back the first arc incomming to the |
634 | 634 |
/// given node. |
635 | 635 |
void firstIn(Arc&, const Node&) const {} |
636 | 636 |
|
637 | 637 |
/// \brief Return the next arc incomming to the given node. |
638 | 638 |
/// |
639 | 639 |
/// This function gives back the next arc incomming to the |
640 | 640 |
/// given node. |
641 | 641 |
void nextIn(Arc&) const {} |
642 | 642 |
|
643 | 643 |
/// \brief Return the first arc outgoing form the given node. |
644 | 644 |
/// |
645 | 645 |
/// This function gives back the first arc outgoing form the |
646 | 646 |
/// given node. |
647 | 647 |
void firstOut(Arc&, const Node&) const {} |
648 | 648 |
|
649 | 649 |
/// \brief Return the next arc outgoing form the given node. |
650 | 650 |
/// |
651 | 651 |
/// This function gives back the next arc outgoing form the |
652 | 652 |
/// given node. |
653 | 653 |
void nextOut(Arc&) const {} |
654 | 654 |
|
655 | 655 |
/// @} |
656 | 656 |
|
657 |
/// \name Class |
|
657 |
/// \name Class Based Iteration |
|
658 | 658 |
/// |
659 | 659 |
/// This interface provides iterator classes for digraph items. |
660 | 660 |
/// |
661 | 661 |
/// @{ |
662 | 662 |
|
663 | 663 |
/// \brief This iterator goes through each node. |
664 | 664 |
/// |
665 | 665 |
/// This iterator goes through each node. |
666 | 666 |
/// |
667 | 667 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
668 | 668 |
|
669 | 669 |
/// \brief This iterator goes through each arc. |
670 | 670 |
/// |
671 | 671 |
/// This iterator goes through each arc. |
672 | 672 |
/// |
673 | 673 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
674 | 674 |
|
675 | 675 |
/// \brief This iterator goes trough the incoming arcs of a node. |
676 | 676 |
/// |
677 | 677 |
/// This iterator goes trough the \e incoming arcs of a certain node |
678 | 678 |
/// of a digraph. |
679 | 679 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
680 | 680 |
|
681 | 681 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
682 | 682 |
/// |
683 | 683 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
684 | 684 |
/// of a digraph. |
685 | 685 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
686 | 686 |
|
687 | 687 |
/// \brief The base node of the iterator. |
688 | 688 |
/// |
689 | 689 |
/// This function gives back the base node of the iterator. |
690 | 690 |
/// It is always the target node of the pointed arc. |
691 | 691 |
Node baseNode(const InArcIt&) const { return INVALID; } |
692 | 692 |
|
693 | 693 |
/// \brief The running node of the iterator. |
694 | 694 |
/// |
695 | 695 |
/// This function gives back the running node of the iterator. |
696 | 696 |
/// It is always the source node of the pointed arc. |
697 | 697 |
Node runningNode(const InArcIt&) const { return INVALID; } |
698 | 698 |
|
699 | 699 |
/// \brief The base node of the iterator. |
700 | 700 |
/// |
701 | 701 |
/// This function gives back the base node of the iterator. |
702 | 702 |
/// It is always the source node of the pointed arc. |
703 | 703 |
Node baseNode(const OutArcIt&) const { return INVALID; } |
704 | 704 |
|
705 | 705 |
/// \brief The running node of the iterator. |
706 | 706 |
/// |
707 | 707 |
/// This function gives back the running node of the iterator. |
708 | 708 |
/// It is always the target node of the pointed arc. |
709 | 709 |
Node runningNode(const OutArcIt&) const { return INVALID; } |
710 | 710 |
|
711 | 711 |
/// @} |
712 | 712 |
|
713 | 713 |
template <typename _Digraph> |
714 | 714 |
struct Constraints { |
715 | 715 |
void constraints() { |
716 | 716 |
checkConcept<Base, _Digraph>(); |
717 | 717 |
|
718 | 718 |
{ |
719 | 719 |
typename _Digraph::Node node(INVALID); |
720 | 720 |
typename _Digraph::Arc arc(INVALID); |
721 | 721 |
{ |
722 | 722 |
digraph.first(node); |
723 | 723 |
digraph.next(node); |
724 | 724 |
} |
725 | 725 |
{ |
726 | 726 |
digraph.first(arc); |
727 | 727 |
digraph.next(arc); |
728 | 728 |
} |
729 | 729 |
{ |
730 | 730 |
digraph.firstIn(arc, node); |
731 | 731 |
digraph.nextIn(arc); |
732 | 732 |
} |
733 | 733 |
{ |
734 | 734 |
digraph.firstOut(arc, node); |
735 | 735 |
digraph.nextOut(arc); |
736 | 736 |
} |
737 | 737 |
} |
738 | 738 |
|
739 | 739 |
{ |
740 | 740 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
741 | 741 |
typename _Digraph::ArcIt >(); |
742 | 742 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
743 | 743 |
typename _Digraph::NodeIt >(); |
744 | 744 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
745 | 745 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
746 | 746 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
747 | 747 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
748 | 748 |
|
749 | 749 |
typename _Digraph::Node n; |
750 | 750 |
const typename _Digraph::InArcIt iait(INVALID); |
751 | 751 |
const typename _Digraph::OutArcIt oait(INVALID); |
752 | 752 |
n = digraph.baseNode(iait); |
753 | 753 |
n = digraph.runningNode(iait); |
754 | 754 |
n = digraph.baseNode(oait); |
755 | 755 |
n = digraph.runningNode(oait); |
756 | 756 |
ignore_unused_variable_warning(n); |
757 | 757 |
} |
758 | 758 |
} |
759 | 759 |
|
760 | 760 |
const _Digraph& digraph; |
761 | 761 |
}; |
762 | 762 |
}; |
763 | 763 |
|
764 | 764 |
/// \brief Skeleton class for iterable undirected graphs. |
765 | 765 |
/// |
766 | 766 |
/// This class describes the interface of iterable undirected |
767 | 767 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
768 | 768 |
/// iterable interface of undirected graphs. |
769 | 769 |
/// This concept is part of the Graph concept. |
770 | 770 |
template <typename BAS = BaseGraphComponent> |
771 | 771 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> { |
772 | 772 |
public: |
773 | 773 |
|
774 | 774 |
typedef BAS Base; |
775 | 775 |
typedef typename Base::Node Node; |
776 | 776 |
typedef typename Base::Arc Arc; |
777 | 777 |
typedef typename Base::Edge Edge; |
778 | 778 |
|
779 | 779 |
|
780 | 780 |
typedef IterableGraphComponent Graph; |
781 | 781 |
|
782 |
/// \name Base |
|
782 |
/// \name Base Iteration |
|
783 | 783 |
/// |
784 | 784 |
/// This interface provides functions for iteration on edges. |
785 | 785 |
/// |
786 | 786 |
/// @{ |
787 | 787 |
|
788 | 788 |
using IterableDigraphComponent<Base>::first; |
789 | 789 |
using IterableDigraphComponent<Base>::next; |
790 | 790 |
|
791 | 791 |
/// \brief Return the first edge. |
792 | 792 |
/// |
793 | 793 |
/// This function gives back the first edge in the iteration order. |
794 | 794 |
void first(Edge&) const {} |
795 | 795 |
|
796 | 796 |
/// \brief Return the next edge. |
797 | 797 |
/// |
798 | 798 |
/// This function gives back the next edge in the iteration order. |
799 | 799 |
void next(Edge&) const {} |
800 | 800 |
|
801 | 801 |
/// \brief Return the first edge incident to the given node. |
802 | 802 |
/// |
803 | 803 |
/// This function gives back the first edge incident to the given |
804 | 804 |
/// node. The bool parameter gives back the direction for which the |
805 | 805 |
/// source node of the directed arc representing the edge is the |
806 | 806 |
/// given node. |
807 | 807 |
void firstInc(Edge&, bool&, const Node&) const {} |
808 | 808 |
|
809 | 809 |
/// \brief Gives back the next of the edges from the |
810 | 810 |
/// given node. |
811 | 811 |
/// |
812 | 812 |
/// This function gives back the next edge incident to the given |
813 | 813 |
/// node. The bool parameter should be used as \c firstInc() use it. |
814 | 814 |
void nextInc(Edge&, bool&) const {} |
815 | 815 |
|
816 | 816 |
using IterableDigraphComponent<Base>::baseNode; |
817 | 817 |
using IterableDigraphComponent<Base>::runningNode; |
818 | 818 |
|
819 | 819 |
/// @} |
820 | 820 |
|
821 |
/// \name Class |
|
821 |
/// \name Class Based Iteration |
|
822 | 822 |
/// |
823 | 823 |
/// This interface provides iterator classes for edges. |
824 | 824 |
/// |
825 | 825 |
/// @{ |
826 | 826 |
|
827 | 827 |
/// \brief This iterator goes through each edge. |
828 | 828 |
/// |
829 | 829 |
/// This iterator goes through each edge. |
830 | 830 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
831 | 831 |
|
832 | 832 |
/// \brief This iterator goes trough the incident edges of a |
833 | 833 |
/// node. |
834 | 834 |
/// |
835 | 835 |
/// This iterator goes trough the incident edges of a certain |
836 | 836 |
/// node of a graph. |
837 | 837 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
838 | 838 |
|
839 | 839 |
/// \brief The base node of the iterator. |
840 | 840 |
/// |
841 | 841 |
/// This function gives back the base node of the iterator. |
842 | 842 |
Node baseNode(const IncEdgeIt&) const { return INVALID; } |
843 | 843 |
|
844 | 844 |
/// \brief The running node of the iterator. |
845 | 845 |
/// |
846 | 846 |
/// This function gives back the running node of the iterator. |
847 | 847 |
Node runningNode(const IncEdgeIt&) const { return INVALID; } |
848 | 848 |
|
849 | 849 |
/// @} |
850 | 850 |
|
851 | 851 |
template <typename _Graph> |
852 | 852 |
struct Constraints { |
853 | 853 |
void constraints() { |
854 | 854 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
855 | 855 |
|
856 | 856 |
{ |
857 | 857 |
typename _Graph::Node node(INVALID); |
858 | 858 |
typename _Graph::Edge edge(INVALID); |
859 | 859 |
bool dir; |
860 | 860 |
{ |
861 | 861 |
graph.first(edge); |
862 | 862 |
graph.next(edge); |
863 | 863 |
} |
864 | 864 |
{ |
865 | 865 |
graph.firstInc(edge, dir, node); |
866 | 866 |
graph.nextInc(edge, dir); |
867 | 867 |
} |
868 | 868 |
|
869 | 869 |
} |
870 | 870 |
|
871 | 871 |
{ |
872 | 872 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
873 | 873 |
typename _Graph::EdgeIt >(); |
874 | 874 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
875 | 875 |
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>(); |
876 | 876 |
|
877 | 877 |
typename _Graph::Node n; |
878 | 878 |
const typename _Graph::IncEdgeIt ieit(INVALID); |
879 | 879 |
n = graph.baseNode(ieit); |
880 | 880 |
n = graph.runningNode(ieit); |
881 | 881 |
} |
882 | 882 |
} |
883 | 883 |
|
884 | 884 |
const _Graph& graph; |
885 | 885 |
}; |
886 | 886 |
}; |
887 | 887 |
|
888 | 888 |
/// \brief Skeleton class for alterable directed graphs. |
889 | 889 |
/// |
890 | 890 |
/// This class describes the interface of alterable directed |
891 | 891 |
/// graphs. It extends \ref BaseDigraphComponent with the alteration |
892 | 892 |
/// notifier interface. It implements |
893 | 893 |
/// an observer-notifier pattern for each digraph item. More |
894 | 894 |
/// obsevers can be registered into the notifier and whenever an |
895 | 895 |
/// alteration occured in the digraph all the observers will be |
896 | 896 |
/// notified about it. |
897 | 897 |
template <typename BAS = BaseDigraphComponent> |
898 | 898 |
class AlterableDigraphComponent : public BAS { |
899 | 899 |
public: |
900 | 900 |
|
901 | 901 |
typedef BAS Base; |
902 | 902 |
typedef typename Base::Node Node; |
903 | 903 |
typedef typename Base::Arc Arc; |
904 | 904 |
|
905 | 905 |
|
906 | 906 |
/// Node alteration notifier class. |
907 | 907 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
908 | 908 |
NodeNotifier; |
909 | 909 |
/// Arc alteration notifier class. |
910 | 910 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
911 | 911 |
ArcNotifier; |
912 | 912 |
|
913 | 913 |
/// \brief Return the node alteration notifier. |
914 | 914 |
/// |
915 | 915 |
/// This function gives back the node alteration notifier. |
916 | 916 |
NodeNotifier& notifier(Node) const { |
917 | 917 |
return NodeNotifier(); |
918 | 918 |
} |
919 | 919 |
|
920 | 920 |
/// \brief Return the arc alteration notifier. |
921 | 921 |
/// |
922 | 922 |
/// This function gives back the arc alteration notifier. |
923 | 923 |
ArcNotifier& notifier(Arc) const { |
924 | 924 |
return ArcNotifier(); |
925 | 925 |
} |
926 | 926 |
|
927 | 927 |
template <typename _Digraph> |
928 | 928 |
struct Constraints { |
929 | 929 |
void constraints() { |
930 | 930 |
checkConcept<Base, _Digraph>(); |
931 | 931 |
typename _Digraph::NodeNotifier& nn |
932 | 932 |
= digraph.notifier(typename _Digraph::Node()); |
933 | 933 |
|
934 | 934 |
typename _Digraph::ArcNotifier& en |
935 | 935 |
= digraph.notifier(typename _Digraph::Arc()); |
936 | 936 |
|
937 | 937 |
ignore_unused_variable_warning(nn); |
938 | 938 |
ignore_unused_variable_warning(en); |
939 | 939 |
} |
940 | 940 |
|
941 | 941 |
const _Digraph& digraph; |
942 | 942 |
}; |
943 | 943 |
}; |
944 | 944 |
|
945 | 945 |
/// \brief Skeleton class for alterable undirected graphs. |
946 | 946 |
/// |
947 | 947 |
/// This class describes the interface of alterable undirected |
948 | 948 |
/// graphs. It extends \ref AlterableDigraphComponent with the alteration |
949 | 949 |
/// notifier interface of undirected graphs. It implements |
950 | 950 |
/// an observer-notifier pattern for the edges. More |
951 | 951 |
/// obsevers can be registered into the notifier and whenever an |
952 | 952 |
/// alteration occured in the graph all the observers will be |
953 | 953 |
/// notified about it. |
954 | 954 |
template <typename BAS = BaseGraphComponent> |
955 | 955 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> { |
956 | 956 |
public: |
957 | 957 |
|
958 | 958 |
typedef BAS Base; |
959 | 959 |
typedef typename Base::Edge Edge; |
960 | 960 |
|
961 | 961 |
|
962 | 962 |
/// Edge alteration notifier class. |
963 | 963 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
964 | 964 |
EdgeNotifier; |
965 | 965 |
|
966 | 966 |
/// \brief Return the edge alteration notifier. |
967 | 967 |
/// |
968 | 968 |
/// This function gives back the edge alteration notifier. |
969 | 969 |
EdgeNotifier& notifier(Edge) const { |
970 | 970 |
return EdgeNotifier(); |
971 | 971 |
} |
972 | 972 |
|
973 | 973 |
template <typename _Graph> |
974 | 974 |
struct Constraints { |
975 | 975 |
void constraints() { |
976 | 976 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
977 | 977 |
typename _Graph::EdgeNotifier& uen |
978 | 978 |
= graph.notifier(typename _Graph::Edge()); |
979 | 979 |
ignore_unused_variable_warning(uen); |
980 | 980 |
} |
981 | 981 |
|
982 | 982 |
const _Graph& graph; |
983 | 983 |
}; |
984 | 984 |
}; |
985 | 985 |
|
986 | 986 |
/// \brief Concept class for standard graph maps. |
987 | 987 |
/// |
988 | 988 |
/// This class describes the concept of standard graph maps, i.e. |
989 | 989 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
990 | 990 |
/// graph types, which can be used for associating data to graph items. |
991 | 991 |
/// The standard graph maps must conform to the ReferenceMap concept. |
992 | 992 |
template <typename GR, typename K, typename V> |
993 | 993 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> { |
994 | 994 |
public: |
995 | 995 |
|
996 | 996 |
typedef ReadWriteMap<K, V> Parent; |
997 | 997 |
|
998 | 998 |
/// The graph type of the map. |
999 | 999 |
typedef GR Graph; |
1000 | 1000 |
/// The key type of the map. |
1001 | 1001 |
typedef K Key; |
1002 | 1002 |
/// The value type of the map. |
1003 | 1003 |
typedef V Value; |
1004 | 1004 |
/// The reference type of the map. |
1005 | 1005 |
typedef Value& Reference; |
1006 | 1006 |
/// The const reference type of the map. |
1007 | 1007 |
typedef const Value& ConstReference; |
1008 | 1008 |
|
1009 | 1009 |
// The reference map tag. |
1010 | 1010 |
typedef True ReferenceMapTag; |
1011 | 1011 |
|
1012 | 1012 |
/// \brief Construct a new map. |
1013 | 1013 |
/// |
1014 | 1014 |
/// Construct a new map for the graph. |
1015 | 1015 |
explicit GraphMap(const Graph&) {} |
1016 | 1016 |
/// \brief Construct a new map with default value. |
1017 | 1017 |
/// |
1018 | 1018 |
/// Construct a new map for the graph and initalize the values. |
1019 | 1019 |
GraphMap(const Graph&, const Value&) {} |
1020 | 1020 |
|
1021 | 1021 |
private: |
1022 | 1022 |
/// \brief Copy constructor. |
1023 | 1023 |
/// |
1024 | 1024 |
/// Copy Constructor. |
1025 | 1025 |
GraphMap(const GraphMap&) : Parent() {} |
1026 | 1026 |
|
1027 | 1027 |
/// \brief Assignment operator. |
1028 | 1028 |
/// |
1029 | 1029 |
/// Assignment operator. It does not mofify the underlying graph, |
1030 | 1030 |
/// it just iterates on the current item set and set the map |
1031 | 1031 |
/// with the value returned by the assigned map. |
1032 | 1032 |
template <typename CMap> |
1033 | 1033 |
GraphMap& operator=(const CMap&) { |
1034 | 1034 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
1035 | 1035 |
return *this; |
1036 | 1036 |
} |
1037 | 1037 |
|
1038 | 1038 |
public: |
1039 | 1039 |
template<typename _Map> |
1040 | 1040 |
struct Constraints { |
1041 | 1041 |
void constraints() { |
1042 | 1042 |
checkConcept |
1043 | 1043 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
1044 | 1044 |
_Map m1(g); |
1045 | 1045 |
_Map m2(g,t); |
1046 | 1046 |
|
1047 | 1047 |
// Copy constructor |
1048 | 1048 |
// _Map m3(m); |
1049 | 1049 |
|
1050 | 1050 |
// Assignment operator |
1051 | 1051 |
// ReadMap<Key, Value> cmap; |
1052 | 1052 |
// m3 = cmap; |
1053 | 1053 |
|
1054 | 1054 |
ignore_unused_variable_warning(m1); |
1055 | 1055 |
ignore_unused_variable_warning(m2); |
1056 | 1056 |
// ignore_unused_variable_warning(m3); |
1057 | 1057 |
} |
1058 | 1058 |
|
1059 | 1059 |
const _Map &m; |
1060 | 1060 |
const Graph &g; |
1061 | 1061 |
const typename GraphMap::Value &t; |
1062 | 1062 |
}; |
1063 | 1063 |
|
1064 | 1064 |
}; |
1065 | 1065 |
|
1066 | 1066 |
/// \brief Skeleton class for mappable directed graphs. |
1067 | 1067 |
/// |
1068 | 1068 |
/// This class describes the interface of mappable directed graphs. |
1069 | 1069 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
1070 | 1070 |
/// map classes, namely \c NodeMap and \c ArcMap. |
1071 | 1071 |
/// This concept is part of the Digraph concept. |
1072 | 1072 |
template <typename BAS = BaseDigraphComponent> |
1073 | 1073 |
class MappableDigraphComponent : public BAS { |
1074 | 1074 |
public: |
1075 | 1075 |
|
1076 | 1076 |
typedef BAS Base; |
1077 | 1077 |
typedef typename Base::Node Node; |
1078 | 1078 |
typedef typename Base::Arc Arc; |
1079 | 1079 |
|
1080 | 1080 |
typedef MappableDigraphComponent Digraph; |
1081 | 1081 |
|
1082 | 1082 |
/// \brief Standard graph map for the nodes. |
1083 | 1083 |
/// |
1084 | 1084 |
/// Standard graph map for the nodes. |
1085 | 1085 |
/// It conforms to the ReferenceMap concept. |
1086 | 1086 |
template <typename V> |
1087 | 1087 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> { |
1088 | 1088 |
public: |
1089 | 1089 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
1090 | 1090 |
|
1091 | 1091 |
/// \brief Construct a new map. |
1092 | 1092 |
/// |
1093 | 1093 |
/// Construct a new map for the digraph. |
1094 | 1094 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
1095 | 1095 |
: Parent(digraph) {} |
1096 | 1096 |
|
1097 | 1097 |
/// \brief Construct a new map with default value. |
1098 | 1098 |
/// |
1099 | 1099 |
/// Construct a new map for the digraph and initalize the values. |
1100 | 1100 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
1101 | 1101 |
: Parent(digraph, value) {} |
1102 | 1102 |
|
1103 | 1103 |
private: |
1104 | 1104 |
/// \brief Copy constructor. |
1105 | 1105 |
/// |
1106 | 1106 |
/// Copy Constructor. |
1107 | 1107 |
NodeMap(const NodeMap& nm) : Parent(nm) {} |
1108 | 1108 |
|
1109 | 1109 |
/// \brief Assignment operator. |
1110 | 1110 |
/// |
1111 | 1111 |
/// Assignment operator. |
1112 | 1112 |
template <typename CMap> |
1113 | 1113 |
NodeMap& operator=(const CMap&) { |
1114 | 1114 |
checkConcept<ReadMap<Node, V>, CMap>(); |
1115 | 1115 |
return *this; |
1116 | 1116 |
} |
1117 | 1117 |
|
1118 | 1118 |
}; |
1119 | 1119 |
|
1120 | 1120 |
/// \brief Standard graph map for the arcs. |
1121 | 1121 |
/// |
1122 | 1122 |
/// Standard graph map for the arcs. |
1123 | 1123 |
/// It conforms to the ReferenceMap concept. |
1124 | 1124 |
template <typename V> |
1125 | 1125 |
class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> { |
1126 | 1126 |
public: |
1127 | 1127 |
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent; |
1128 | 1128 |
|
1129 | 1129 |
/// \brief Construct a new map. |
1130 | 1130 |
/// |
1131 | 1131 |
/// Construct a new map for the digraph. |
1132 | 1132 |
explicit ArcMap(const MappableDigraphComponent& digraph) |
1133 | 1133 |
: Parent(digraph) {} |
1134 | 1134 |
|
1135 | 1135 |
/// \brief Construct a new map with default value. |
1136 | 1136 |
/// |
1137 | 1137 |
/// Construct a new map for the digraph and initalize the values. |
1138 | 1138 |
ArcMap(const MappableDigraphComponent& digraph, const V& value) |
1139 | 1139 |
: Parent(digraph, value) {} |
1140 | 1140 |
|
1141 | 1141 |
private: |
1142 | 1142 |
/// \brief Copy constructor. |
1143 | 1143 |
/// |
1144 | 1144 |
/// Copy Constructor. |
1145 | 1145 |
ArcMap(const ArcMap& nm) : Parent(nm) {} |
1146 | 1146 |
|
1147 | 1147 |
/// \brief Assignment operator. |
1148 | 1148 |
/// |
1149 | 1149 |
/// Assignment operator. |
1150 | 1150 |
template <typename CMap> |
1151 | 1151 |
ArcMap& operator=(const CMap&) { |
1152 | 1152 |
checkConcept<ReadMap<Arc, V>, CMap>(); |
1153 | 1153 |
return *this; |
1154 | 1154 |
} |
1155 | 1155 |
|
1156 | 1156 |
}; |
1157 | 1157 |
|
1158 | 1158 |
|
1159 | 1159 |
template <typename _Digraph> |
1160 | 1160 |
struct Constraints { |
1161 | 1161 |
|
1162 | 1162 |
struct Dummy { |
1163 | 1163 |
int value; |
1164 | 1164 |
Dummy() : value(0) {} |
1165 | 1165 |
Dummy(int _v) : value(_v) {} |
1166 | 1166 |
}; |
1167 | 1167 |
|
1168 | 1168 |
void constraints() { |
1169 | 1169 |
checkConcept<Base, _Digraph>(); |
1170 | 1170 |
{ // int map test |
1171 | 1171 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
1172 | 1172 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
1173 | 1173 |
IntNodeMap >(); |
1174 | 1174 |
} { // bool map test |
1175 | 1175 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
1176 | 1176 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
1177 | 1177 |
BoolNodeMap >(); |
1178 | 1178 |
} { // Dummy map test |
1179 | 1179 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
1180 | 1180 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
1181 | 1181 |
DummyNodeMap >(); |
1182 | 1182 |
} |
1183 | 1183 |
|
1184 | 1184 |
{ // int map test |
1185 | 1185 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
1186 | 1186 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
1187 | 1187 |
IntArcMap >(); |
1188 | 1188 |
} { // bool map test |
1189 | 1189 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
1190 | 1190 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
1191 | 1191 |
BoolArcMap >(); |
1192 | 1192 |
} { // Dummy map test |
1193 | 1193 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
1194 | 1194 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
1195 | 1195 |
DummyArcMap >(); |
1196 | 1196 |
} |
1197 | 1197 |
} |
1198 | 1198 |
|
1199 | 1199 |
const _Digraph& digraph; |
1200 | 1200 |
}; |
1201 | 1201 |
}; |
1202 | 1202 |
|
1203 | 1203 |
/// \brief Skeleton class for mappable undirected graphs. |
1204 | 1204 |
/// |
1205 | 1205 |
/// This class describes the interface of mappable undirected graphs. |
1206 | 1206 |
/// It extends \ref MappableDigraphComponent with the standard graph |
1207 | 1207 |
/// map class for edges (\c EdgeMap). |
1208 | 1208 |
/// This concept is part of the Graph concept. |
1209 | 1209 |
template <typename BAS = BaseGraphComponent> |
1210 | 1210 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> { |
1211 | 1211 |
public: |
1212 | 1212 |
|
1213 | 1213 |
typedef BAS Base; |
1214 | 1214 |
typedef typename Base::Edge Edge; |
1215 | 1215 |
|
1216 | 1216 |
typedef MappableGraphComponent Graph; |
1217 | 1217 |
|
1218 | 1218 |
/// \brief Standard graph map for the edges. |
1219 | 1219 |
/// |
1220 | 1220 |
/// Standard graph map for the edges. |
1221 | 1221 |
/// It conforms to the ReferenceMap concept. |
1222 | 1222 |
template <typename V> |
1223 | 1223 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> { |
1224 | 1224 |
public: |
1225 | 1225 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
1226 | 1226 |
|
1227 | 1227 |
/// \brief Construct a new map. |
1228 | 1228 |
/// |
1229 | 1229 |
/// Construct a new map for the graph. |
1230 | 1230 |
explicit EdgeMap(const MappableGraphComponent& graph) |
1231 | 1231 |
: Parent(graph) {} |
1232 | 1232 |
|
1233 | 1233 |
/// \brief Construct a new map with default value. |
1234 | 1234 |
/// |
1235 | 1235 |
/// Construct a new map for the graph and initalize the values. |
1236 | 1236 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
1237 | 1237 |
: Parent(graph, value) {} |
1238 | 1238 |
|
1239 | 1239 |
private: |
1240 | 1240 |
/// \brief Copy constructor. |
1241 | 1241 |
/// |
1242 | 1242 |
/// Copy Constructor. |
1243 | 1243 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {} |
1244 | 1244 |
|
1245 | 1245 |
/// \brief Assignment operator. |
1246 | 1246 |
/// |
1247 | 1247 |
/// Assignment operator. |
1248 | 1248 |
template <typename CMap> |
1249 | 1249 |
EdgeMap& operator=(const CMap&) { |
1250 | 1250 |
checkConcept<ReadMap<Edge, V>, CMap>(); |
1251 | 1251 |
return *this; |
1252 | 1252 |
} |
1253 | 1253 |
|
1254 | 1254 |
}; |
1255 | 1255 |
|
1256 | 1256 |
|
1257 | 1257 |
template <typename _Graph> |
1258 | 1258 |
struct Constraints { |
1259 | 1259 |
|
1260 | 1260 |
struct Dummy { |
1261 | 1261 |
int value; |
1262 | 1262 |
Dummy() : value(0) {} |
1263 | 1263 |
Dummy(int _v) : value(_v) {} |
1264 | 1264 |
}; |
1265 | 1265 |
|
1266 | 1266 |
void constraints() { |
1267 | 1267 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
1268 | 1268 |
|
1269 | 1269 |
{ // int map test |
1270 | 1270 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
1271 | 1271 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
1272 | 1272 |
IntEdgeMap >(); |
1273 | 1273 |
} { // bool map test |
1274 | 1274 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
1275 | 1275 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
1276 | 1276 |
BoolEdgeMap >(); |
1277 | 1277 |
} { // Dummy map test |
1278 | 1278 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
1279 | 1279 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
1280 | 1280 |
DummyEdgeMap >(); |
1281 | 1281 |
} |
1282 | 1282 |
} |
1283 | 1283 |
|
1284 | 1284 |
const _Graph& graph; |
1285 | 1285 |
}; |
1286 | 1286 |
}; |
1287 | 1287 |
|
1288 | 1288 |
/// \brief Skeleton class for extendable directed graphs. |
1289 | 1289 |
/// |
1290 | 1290 |
/// This class describes the interface of extendable directed graphs. |
1291 | 1291 |
/// It extends \ref BaseDigraphComponent with functions for adding |
1292 | 1292 |
/// nodes and arcs to the digraph. |
1293 | 1293 |
/// This concept requires \ref AlterableDigraphComponent. |
1294 | 1294 |
template <typename BAS = BaseDigraphComponent> |
1295 | 1295 |
class ExtendableDigraphComponent : public BAS { |
1296 | 1296 |
public: |
1297 | 1297 |
typedef BAS Base; |
1298 | 1298 |
|
1299 | 1299 |
typedef typename Base::Node Node; |
1300 | 1300 |
typedef typename Base::Arc Arc; |
1301 | 1301 |
|
1302 | 1302 |
/// \brief Add a new node to the digraph. |
1303 | 1303 |
/// |
1304 | 1304 |
/// This function adds a new node to the digraph. |
1305 | 1305 |
Node addNode() { |
1306 | 1306 |
return INVALID; |
1307 | 1307 |
} |
1308 | 1308 |
|
1309 | 1309 |
/// \brief Add a new arc connecting the given two nodes. |
1310 | 1310 |
/// |
1311 | 1311 |
/// This function adds a new arc connecting the given two nodes |
1312 | 1312 |
/// of the digraph. |
1313 | 1313 |
Arc addArc(const Node&, const Node&) { |
1314 | 1314 |
return INVALID; |
1315 | 1315 |
} |
1316 | 1316 |
|
1317 | 1317 |
template <typename _Digraph> |
1318 | 1318 |
struct Constraints { |
1319 | 1319 |
void constraints() { |
1320 | 1320 |
checkConcept<Base, _Digraph>(); |
1321 | 1321 |
typename _Digraph::Node node_a, node_b; |
1322 | 1322 |
node_a = digraph.addNode(); |
1323 | 1323 |
node_b = digraph.addNode(); |
1324 | 1324 |
typename _Digraph::Arc arc; |
1325 | 1325 |
arc = digraph.addArc(node_a, node_b); |
1326 | 1326 |
} |
1327 | 1327 |
|
1328 | 1328 |
_Digraph& digraph; |
1329 | 1329 |
}; |
1330 | 1330 |
}; |
1331 | 1331 |
|
1332 | 1332 |
/// \brief Skeleton class for extendable undirected graphs. |
1333 | 1333 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of heaps. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
24 | 24 |
#define LEMON_CONCEPTS_HEAP_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 | 38 |
/// Concept class describing the main interface of heaps. A \e heap |
39 | 39 |
/// is a data structure for storing items with specified values called |
40 | 40 |
/// \e priorities in such a way that finding the item with minimum |
41 | 41 |
/// priority is efficient. In a heap one can change the priority of an |
42 | 42 |
/// item, add or erase an item, etc. |
43 | 43 |
/// |
44 | 44 |
/// \tparam PR Type of the priority of the items. |
45 | 45 |
/// \tparam IM A read and writable item map with int values, used |
46 | 46 |
/// internally to handle the cross references. |
47 | 47 |
/// \tparam Comp A functor class for the ordering of the priorities. |
48 | 48 |
/// The default is \c std::less<PR>. |
49 | 49 |
#ifdef DOXYGEN |
50 | 50 |
template <typename PR, typename IM, typename Comp = std::less<PR> > |
51 | 51 |
#else |
52 | 52 |
template <typename PR, typename IM> |
53 | 53 |
#endif |
54 | 54 |
class Heap { |
55 | 55 |
public: |
56 | 56 |
|
57 | 57 |
/// Type of the item-int map. |
58 | 58 |
typedef IM ItemIntMap; |
59 | 59 |
/// Type of the priorities. |
60 | 60 |
typedef PR Prio; |
61 | 61 |
/// Type of the items stored in the heap. |
62 | 62 |
typedef typename ItemIntMap::Key Item; |
63 | 63 |
|
64 | 64 |
/// \brief Type to represent the states of the items. |
65 | 65 |
/// |
66 | 66 |
/// Each item has a state associated to it. It can be "in heap", |
67 | 67 |
/// "pre heap" or "post heap". The later two are indifferent |
68 | 68 |
/// from the point of view of the heap, but may be useful for |
69 | 69 |
/// the user. |
70 | 70 |
/// |
71 | 71 |
/// The item-int map must be initialized in such way that it assigns |
72 | 72 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
73 | 73 |
enum State { |
74 |
IN_HEAP = 0, ///< The "in heap" state constant. |
|
75 |
PRE_HEAP = -1, ///< The "pre heap" state constant. |
|
76 |
|
|
74 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
|
75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
77 | 77 |
}; |
78 | 78 |
|
79 | 79 |
/// \brief The constructor. |
80 | 80 |
/// |
81 | 81 |
/// The constructor. |
82 | 82 |
/// \param map A map that assigns \c int values to keys of type |
83 | 83 |
/// \c Item. It is used internally by the heap implementations to |
84 | 84 |
/// handle the cross references. The assigned value must be |
85 | 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
86 | 86 |
explicit Heap(ItemIntMap &map) {} |
87 | 87 |
|
88 | 88 |
/// \brief The number of items stored in the heap. |
89 | 89 |
/// |
90 | 90 |
/// Returns the number of items stored in the heap. |
91 | 91 |
int size() const { return 0; } |
92 | 92 |
|
93 | 93 |
/// \brief Checks if the heap is empty. |
94 | 94 |
/// |
95 | 95 |
/// Returns \c true if the heap is empty. |
96 | 96 |
bool empty() const { return false; } |
97 | 97 |
|
98 | 98 |
/// \brief Makes the heap empty. |
99 | 99 |
/// |
100 | 100 |
/// Makes the heap empty. |
101 | 101 |
void clear(); |
102 | 102 |
|
103 | 103 |
/// \brief Inserts an item into the heap with the given priority. |
104 | 104 |
/// |
105 | 105 |
/// Inserts the given item into the heap with the given priority. |
106 | 106 |
/// \param i The item to insert. |
107 | 107 |
/// \param p The priority of the item. |
108 | 108 |
void push(const Item &i, const Prio &p) {} |
109 | 109 |
|
110 | 110 |
/// \brief Returns the item having minimum priority. |
111 | 111 |
/// |
112 | 112 |
/// Returns the item having minimum priority. |
113 | 113 |
/// \pre The heap must be non-empty. |
114 | 114 |
Item top() const {} |
115 | 115 |
|
116 | 116 |
/// \brief The minimum priority. |
117 | 117 |
/// |
118 | 118 |
/// Returns the minimum priority. |
119 | 119 |
/// \pre The heap must be non-empty. |
120 | 120 |
Prio prio() const {} |
121 | 121 |
|
122 | 122 |
/// \brief Removes the item having minimum priority. |
123 | 123 |
/// |
124 | 124 |
/// Removes the item having minimum priority. |
125 | 125 |
/// \pre The heap must be non-empty. |
126 | 126 |
void pop() {} |
127 | 127 |
|
128 | 128 |
/// \brief Removes an item from the heap. |
129 | 129 |
/// |
130 | 130 |
/// Removes the given item from the heap if it is already stored. |
131 | 131 |
/// \param i The item to delete. |
132 | 132 |
void erase(const Item &i) {} |
133 | 133 |
|
134 | 134 |
/// \brief The priority of an item. |
135 | 135 |
/// |
136 | 136 |
/// Returns the priority of the given item. |
137 | 137 |
/// \param i The item. |
138 | 138 |
/// \pre \c i must be in the heap. |
139 | 139 |
Prio operator[](const Item &i) const {} |
140 | 140 |
|
141 | 141 |
/// \brief Sets the priority of an item or inserts it, if it is |
142 | 142 |
/// not stored in the heap. |
143 | 143 |
/// |
144 | 144 |
/// This method sets the priority of the given item if it is |
145 | 145 |
/// already stored in the heap. |
146 | 146 |
/// Otherwise it inserts the given item with the given priority. |
147 | 147 |
/// |
148 | 148 |
/// \param i The item. |
149 | 149 |
/// \param p The priority. |
150 | 150 |
void set(const Item &i, const Prio &p) {} |
151 | 151 |
|
152 | 152 |
/// \brief Decreases the priority of an item to the given value. |
153 | 153 |
/// |
154 | 154 |
/// Decreases the priority of an item to the given value. |
155 | 155 |
/// \param i The item. |
156 | 156 |
/// \param p The priority. |
157 | 157 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
158 | 158 |
void decrease(const Item &i, const Prio &p) {} |
159 | 159 |
|
160 | 160 |
/// \brief Increases the priority of an item to the given value. |
161 | 161 |
/// |
162 | 162 |
/// Increases the priority of an item to the given value. |
163 | 163 |
/// \param i The item. |
164 | 164 |
/// \param p The priority. |
165 | 165 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
166 | 166 |
void increase(const Item &i, const Prio &p) {} |
167 | 167 |
|
168 | 168 |
/// \brief Returns if an item is in, has already been in, or has |
169 | 169 |
/// never been in the heap. |
170 | 170 |
/// |
171 | 171 |
/// This method returns \c PRE_HEAP if the given item has never |
172 | 172 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
173 | 173 |
/// and \c POST_HEAP otherwise. |
174 | 174 |
/// In the latter case it is possible that the item will get back |
175 | 175 |
/// to the heap again. |
176 | 176 |
/// \param i The item. |
177 | 177 |
State state(const Item &i) const {} |
178 | 178 |
|
179 | 179 |
/// \brief Sets the state of an item in the heap. |
180 | 180 |
/// |
181 | 181 |
/// Sets the state of the given item in the heap. It can be used |
182 | 182 |
/// to manually clear the heap when it is important to achive the |
183 | 183 |
/// better time complexity. |
184 | 184 |
/// \param i The item. |
185 | 185 |
/// \param st The state. It should not be \c IN_HEAP. |
186 | 186 |
void state(const Item& i, State st) {} |
187 | 187 |
|
188 | 188 |
|
189 | 189 |
template <typename _Heap> |
190 | 190 |
struct Constraints { |
191 | 191 |
public: |
192 | 192 |
void constraints() { |
193 | 193 |
typedef typename _Heap::Item OwnItem; |
194 | 194 |
typedef typename _Heap::Prio OwnPrio; |
195 | 195 |
typedef typename _Heap::State OwnState; |
196 | 196 |
|
197 | 197 |
Item item; |
198 | 198 |
Prio prio; |
199 | 199 |
item=Item(); |
200 | 200 |
prio=Prio(); |
201 | 201 |
ignore_unused_variable_warning(item); |
202 | 202 |
ignore_unused_variable_warning(prio); |
203 | 203 |
|
204 | 204 |
OwnItem own_item; |
205 | 205 |
OwnPrio own_prio; |
206 | 206 |
OwnState own_state; |
207 | 207 |
own_item=Item(); |
208 | 208 |
own_prio=Prio(); |
209 | 209 |
ignore_unused_variable_warning(own_item); |
210 | 210 |
ignore_unused_variable_warning(own_prio); |
211 | 211 |
ignore_unused_variable_warning(own_state); |
212 | 212 |
|
213 | 213 |
_Heap heap1(map); |
214 | 214 |
_Heap heap2 = heap1; |
215 | 215 |
ignore_unused_variable_warning(heap1); |
216 | 216 |
ignore_unused_variable_warning(heap2); |
217 | 217 |
|
218 | 218 |
int s = heap.size(); |
219 | 219 |
ignore_unused_variable_warning(s); |
220 | 220 |
bool e = heap.empty(); |
221 | 221 |
ignore_unused_variable_warning(e); |
222 | 222 |
|
223 | 223 |
prio = heap.prio(); |
224 | 224 |
item = heap.top(); |
225 | 225 |
prio = heap[item]; |
226 | 226 |
own_prio = heap.prio(); |
227 | 227 |
own_item = heap.top(); |
228 | 228 |
own_prio = heap[own_item]; |
229 | 229 |
|
230 | 230 |
heap.push(item, prio); |
231 | 231 |
heap.push(own_item, own_prio); |
232 | 232 |
heap.pop(); |
233 | 233 |
|
234 | 234 |
heap.set(item, prio); |
235 | 235 |
heap.decrease(item, prio); |
236 | 236 |
heap.increase(item, prio); |
237 | 237 |
heap.set(own_item, own_prio); |
238 | 238 |
heap.decrease(own_item, own_prio); |
239 | 239 |
heap.increase(own_item, own_prio); |
240 | 240 |
|
241 | 241 |
heap.erase(item); |
242 | 242 |
heap.erase(own_item); |
243 | 243 |
heap.clear(); |
244 | 244 |
|
245 | 245 |
own_state = heap.state(own_item); |
246 | 246 |
heap.state(own_item, own_state); |
247 | 247 |
|
248 | 248 |
own_state = _Heap::PRE_HEAP; |
249 | 249 |
own_state = _Heap::IN_HEAP; |
250 | 250 |
own_state = _Heap::POST_HEAP; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
_Heap& heap; |
254 | 254 |
ItemIntMap& map; |
255 | 255 |
}; |
256 | 256 |
}; |
257 | 257 |
|
258 | 258 |
/// @} |
259 | 259 |
} // namespace lemon |
260 | 260 |
} |
261 | 261 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct DfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 67 |
///Instantiates a \c ProcessedMap. |
68 | 68 |
|
69 | 69 |
///This function instantiates a \ref ProcessedMap. |
70 | 70 |
///\param g is the digraph, to which |
71 | 71 |
///we would like to define the \ref ProcessedMap. |
72 | 72 |
#ifdef DOXYGEN |
73 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 74 |
#else |
75 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 76 |
#endif |
77 | 77 |
{ |
78 | 78 |
return new ProcessedMap(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
///The type of the map that indicates which nodes are reached. |
82 | 82 |
|
83 | 83 |
///The type of the map that indicates which nodes are reached. |
84 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
85 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 86 |
///Instantiates a \c ReachedMap. |
87 | 87 |
|
88 | 88 |
///This function instantiates a \ref ReachedMap. |
89 | 89 |
///\param g is the digraph, to which |
90 | 90 |
///we would like to define the \ref ReachedMap. |
91 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 92 |
{ |
93 | 93 |
return new ReachedMap(g); |
94 | 94 |
} |
95 | 95 |
|
96 | 96 |
///The type of the map that stores the distances of the nodes. |
97 | 97 |
|
98 | 98 |
///The type of the map that stores the distances of the nodes. |
99 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
100 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 101 |
///Instantiates a \c DistMap. |
102 | 102 |
|
103 | 103 |
///This function instantiates a \ref DistMap. |
104 | 104 |
///\param g is the digraph, to which we would like to define the |
105 | 105 |
///\ref DistMap. |
106 | 106 |
static DistMap *createDistMap(const Digraph &g) |
107 | 107 |
{ |
108 | 108 |
return new DistMap(g); |
109 | 109 |
} |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
///%DFS algorithm class. |
113 | 113 |
|
114 | 114 |
///\ingroup search |
115 | 115 |
///This class provides an efficient implementation of the %DFS algorithm. |
116 | 116 |
/// |
117 | 117 |
///There is also a \ref dfs() "function-type interface" for the DFS |
118 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 119 |
///used easier. |
120 | 120 |
/// |
121 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 122 |
///The default type is \ref ListDigraph. |
123 | 123 |
#ifdef DOXYGEN |
124 | 124 |
template <typename GR, |
125 | 125 |
typename TR> |
126 | 126 |
#else |
127 | 127 |
template <typename GR=ListDigraph, |
128 | 128 |
typename TR=DfsDefaultTraits<GR> > |
129 | 129 |
#endif |
130 | 130 |
class Dfs { |
131 | 131 |
public: |
132 | 132 |
|
133 | 133 |
///The type of the digraph the algorithm runs on. |
134 | 134 |
typedef typename TR::Digraph Digraph; |
135 | 135 |
|
136 | 136 |
///\brief The type of the map that stores the predecessor arcs of the |
137 | 137 |
///DFS paths. |
138 | 138 |
typedef typename TR::PredMap PredMap; |
139 | 139 |
///The type of the map that stores the distances of the nodes. |
140 | 140 |
typedef typename TR::DistMap DistMap; |
141 | 141 |
///The type of the map that indicates which nodes are reached. |
142 | 142 |
typedef typename TR::ReachedMap ReachedMap; |
143 | 143 |
///The type of the map that indicates which nodes are processed. |
144 | 144 |
typedef typename TR::ProcessedMap ProcessedMap; |
145 | 145 |
///The type of the paths. |
146 | 146 |
typedef PredMapPath<Digraph, PredMap> Path; |
147 | 147 |
|
148 | 148 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
149 | 149 |
typedef TR Traits; |
150 | 150 |
|
151 | 151 |
private: |
152 | 152 |
|
153 | 153 |
typedef typename Digraph::Node Node; |
154 | 154 |
typedef typename Digraph::NodeIt NodeIt; |
155 | 155 |
typedef typename Digraph::Arc Arc; |
156 | 156 |
typedef typename Digraph::OutArcIt OutArcIt; |
157 | 157 |
|
158 | 158 |
//Pointer to the underlying digraph. |
159 | 159 |
const Digraph *G; |
160 | 160 |
//Pointer to the map of predecessor arcs. |
161 | 161 |
PredMap *_pred; |
162 | 162 |
//Indicates if _pred is locally allocated (true) or not. |
163 | 163 |
bool local_pred; |
164 | 164 |
//Pointer to the map of distances. |
165 | 165 |
DistMap *_dist; |
166 | 166 |
//Indicates if _dist is locally allocated (true) or not. |
167 | 167 |
bool local_dist; |
168 | 168 |
//Pointer to the map of reached status of the nodes. |
169 | 169 |
ReachedMap *_reached; |
170 | 170 |
//Indicates if _reached is locally allocated (true) or not. |
171 | 171 |
bool local_reached; |
172 | 172 |
//Pointer to the map of processed status of the nodes. |
173 | 173 |
ProcessedMap *_processed; |
174 | 174 |
//Indicates if _processed is locally allocated (true) or not. |
175 | 175 |
bool local_processed; |
176 | 176 |
|
177 | 177 |
std::vector<typename Digraph::OutArcIt> _stack; |
178 | 178 |
int _stack_head; |
179 | 179 |
|
180 | 180 |
//Creates the maps if necessary. |
181 | 181 |
void create_maps() |
182 | 182 |
{ |
183 | 183 |
if(!_pred) { |
184 | 184 |
local_pred = true; |
185 | 185 |
_pred = Traits::createPredMap(*G); |
186 | 186 |
} |
187 | 187 |
if(!_dist) { |
188 | 188 |
local_dist = true; |
189 | 189 |
_dist = Traits::createDistMap(*G); |
190 | 190 |
} |
191 | 191 |
if(!_reached) { |
192 | 192 |
local_reached = true; |
193 | 193 |
_reached = Traits::createReachedMap(*G); |
194 | 194 |
} |
195 | 195 |
if(!_processed) { |
196 | 196 |
local_processed = true; |
197 | 197 |
_processed = Traits::createProcessedMap(*G); |
198 | 198 |
} |
199 | 199 |
} |
200 | 200 |
|
201 | 201 |
protected: |
202 | 202 |
|
203 | 203 |
Dfs() {} |
204 | 204 |
|
205 | 205 |
public: |
206 | 206 |
|
207 | 207 |
typedef Dfs Create; |
208 | 208 |
|
209 |
///\name Named |
|
209 |
///\name Named Template Parameters |
|
210 | 210 |
|
211 | 211 |
///@{ |
212 | 212 |
|
213 | 213 |
template <class T> |
214 | 214 |
struct SetPredMapTraits : public Traits { |
215 | 215 |
typedef T PredMap; |
216 | 216 |
static PredMap *createPredMap(const Digraph &) |
217 | 217 |
{ |
218 | 218 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
219 | 219 |
return 0; // ignore warnings |
220 | 220 |
} |
221 | 221 |
}; |
222 | 222 |
///\brief \ref named-templ-param "Named parameter" for setting |
223 | 223 |
///\c PredMap type. |
224 | 224 |
/// |
225 | 225 |
///\ref named-templ-param "Named parameter" for setting |
226 | 226 |
///\c PredMap type. |
227 | 227 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
228 | 228 |
template <class T> |
229 | 229 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
230 | 230 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
231 | 231 |
}; |
232 | 232 |
|
233 | 233 |
template <class T> |
234 | 234 |
struct SetDistMapTraits : public Traits { |
235 | 235 |
typedef T DistMap; |
236 | 236 |
static DistMap *createDistMap(const Digraph &) |
237 | 237 |
{ |
238 | 238 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
239 | 239 |
return 0; // ignore warnings |
240 | 240 |
} |
241 | 241 |
}; |
242 | 242 |
///\brief \ref named-templ-param "Named parameter" for setting |
243 | 243 |
///\c DistMap type. |
244 | 244 |
/// |
245 | 245 |
///\ref named-templ-param "Named parameter" for setting |
246 | 246 |
///\c DistMap type. |
247 | 247 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
248 | 248 |
template <class T> |
249 | 249 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
250 | 250 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
251 | 251 |
}; |
252 | 252 |
|
253 | 253 |
template <class T> |
254 | 254 |
struct SetReachedMapTraits : public Traits { |
255 | 255 |
typedef T ReachedMap; |
256 | 256 |
static ReachedMap *createReachedMap(const Digraph &) |
257 | 257 |
{ |
258 | 258 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
259 | 259 |
return 0; // ignore warnings |
260 | 260 |
} |
261 | 261 |
}; |
262 | 262 |
///\brief \ref named-templ-param "Named parameter" for setting |
263 | 263 |
///\c ReachedMap type. |
264 | 264 |
/// |
265 | 265 |
///\ref named-templ-param "Named parameter" for setting |
266 | 266 |
///\c ReachedMap type. |
267 | 267 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
268 | 268 |
template <class T> |
269 | 269 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
270 | 270 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
271 | 271 |
}; |
272 | 272 |
|
273 | 273 |
template <class T> |
274 | 274 |
struct SetProcessedMapTraits : public Traits { |
275 | 275 |
typedef T ProcessedMap; |
276 | 276 |
static ProcessedMap *createProcessedMap(const Digraph &) |
277 | 277 |
{ |
278 | 278 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
279 | 279 |
return 0; // ignore warnings |
280 | 280 |
} |
281 | 281 |
}; |
282 | 282 |
///\brief \ref named-templ-param "Named parameter" for setting |
283 | 283 |
///\c ProcessedMap type. |
284 | 284 |
/// |
285 | 285 |
///\ref named-templ-param "Named parameter" for setting |
286 | 286 |
///\c ProcessedMap type. |
287 | 287 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
288 | 288 |
template <class T> |
289 | 289 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
290 | 290 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
struct SetStandardProcessedMapTraits : public Traits { |
294 | 294 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
295 | 295 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
296 | 296 |
{ |
297 | 297 |
return new ProcessedMap(g); |
298 | 298 |
} |
299 | 299 |
}; |
300 | 300 |
///\brief \ref named-templ-param "Named parameter" for setting |
301 | 301 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
302 | 302 |
/// |
303 | 303 |
///\ref named-templ-param "Named parameter" for setting |
304 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
305 | 305 |
///If you don't set it explicitly, it will be automatically allocated. |
306 | 306 |
struct SetStandardProcessedMap : |
307 | 307 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
308 | 308 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
///@} |
312 | 312 |
|
313 | 313 |
public: |
314 | 314 |
|
315 | 315 |
///Constructor. |
316 | 316 |
|
317 | 317 |
///Constructor. |
318 | 318 |
///\param g The digraph the algorithm runs on. |
319 | 319 |
Dfs(const Digraph &g) : |
320 | 320 |
G(&g), |
321 | 321 |
_pred(NULL), local_pred(false), |
322 | 322 |
_dist(NULL), local_dist(false), |
323 | 323 |
_reached(NULL), local_reached(false), |
324 | 324 |
_processed(NULL), local_processed(false) |
325 | 325 |
{ } |
326 | 326 |
|
327 | 327 |
///Destructor. |
328 | 328 |
~Dfs() |
329 | 329 |
{ |
330 | 330 |
if(local_pred) delete _pred; |
331 | 331 |
if(local_dist) delete _dist; |
332 | 332 |
if(local_reached) delete _reached; |
333 | 333 |
if(local_processed) delete _processed; |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
///Sets the map that stores the predecessor arcs. |
337 | 337 |
|
338 | 338 |
///Sets the map that stores the predecessor arcs. |
339 | 339 |
///If you don't use this function before calling \ref run(Node) "run()" |
340 | 340 |
///or \ref init(), an instance will be allocated automatically. |
341 | 341 |
///The destructor deallocates this automatically allocated map, |
342 | 342 |
///of course. |
343 | 343 |
///\return <tt> (*this) </tt> |
344 | 344 |
Dfs &predMap(PredMap &m) |
345 | 345 |
{ |
346 | 346 |
if(local_pred) { |
347 | 347 |
delete _pred; |
348 | 348 |
local_pred=false; |
349 | 349 |
} |
350 | 350 |
_pred = &m; |
351 | 351 |
return *this; |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
///Sets the map that indicates which nodes are reached. |
355 | 355 |
|
356 | 356 |
///Sets the map that indicates which nodes are reached. |
357 | 357 |
///If you don't use this function before calling \ref run(Node) "run()" |
358 | 358 |
///or \ref init(), an instance will be allocated automatically. |
359 | 359 |
///The destructor deallocates this automatically allocated map, |
360 | 360 |
///of course. |
361 | 361 |
///\return <tt> (*this) </tt> |
362 | 362 |
Dfs &reachedMap(ReachedMap &m) |
363 | 363 |
{ |
364 | 364 |
if(local_reached) { |
365 | 365 |
delete _reached; |
366 | 366 |
local_reached=false; |
367 | 367 |
} |
368 | 368 |
_reached = &m; |
369 | 369 |
return *this; |
370 | 370 |
} |
371 | 371 |
|
372 | 372 |
///Sets the map that indicates which nodes are processed. |
373 | 373 |
|
374 | 374 |
///Sets the map that indicates which nodes are processed. |
375 | 375 |
///If you don't use this function before calling \ref run(Node) "run()" |
376 | 376 |
///or \ref init(), an instance will be allocated automatically. |
377 | 377 |
///The destructor deallocates this automatically allocated map, |
378 | 378 |
///of course. |
379 | 379 |
///\return <tt> (*this) </tt> |
380 | 380 |
Dfs &processedMap(ProcessedMap &m) |
381 | 381 |
{ |
382 | 382 |
if(local_processed) { |
383 | 383 |
delete _processed; |
384 | 384 |
local_processed=false; |
385 | 385 |
} |
386 | 386 |
_processed = &m; |
387 | 387 |
return *this; |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
///Sets the map that stores the distances of the nodes. |
391 | 391 |
|
392 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 393 |
///the algorithm. |
394 | 394 |
///If you don't use this function before calling \ref run(Node) "run()" |
395 | 395 |
///or \ref init(), an instance will be allocated automatically. |
396 | 396 |
///The destructor deallocates this automatically allocated map, |
397 | 397 |
///of course. |
398 | 398 |
///\return <tt> (*this) </tt> |
399 | 399 |
Dfs &distMap(DistMap &m) |
400 | 400 |
{ |
401 | 401 |
if(local_dist) { |
402 | 402 |
delete _dist; |
403 | 403 |
local_dist=false; |
404 | 404 |
} |
405 | 405 |
_dist = &m; |
406 | 406 |
return *this; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
///\name Execution Control |
412 | 412 |
///The simplest way to execute the DFS algorithm is to use one of the |
413 | 413 |
///member functions called \ref run(Node) "run()".\n |
414 | 414 |
///If you need more control on the execution, first you have to call |
415 | 415 |
///\ref init(), then you can add a source node with \ref addSource() |
416 | 416 |
///and perform the actual computation with \ref start(). |
417 | 417 |
///This procedure can be repeated if there are nodes that have not |
418 | 418 |
///been reached. |
419 | 419 |
|
420 | 420 |
///@{ |
421 | 421 |
|
422 | 422 |
///\brief Initializes the internal data structures. |
423 | 423 |
/// |
424 | 424 |
///Initializes the internal data structures. |
425 | 425 |
void init() |
426 | 426 |
{ |
427 | 427 |
create_maps(); |
428 | 428 |
_stack.resize(countNodes(*G)); |
429 | 429 |
_stack_head=-1; |
430 | 430 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
431 | 431 |
_pred->set(u,INVALID); |
432 | 432 |
_reached->set(u,false); |
433 | 433 |
_processed->set(u,false); |
434 | 434 |
} |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
///Adds a new source node. |
438 | 438 |
|
439 | 439 |
///Adds a new source node to the set of nodes to be processed. |
440 | 440 |
/// |
441 | 441 |
///\pre The stack must be empty. Otherwise the algorithm gives |
442 | 442 |
///wrong results. (One of the outgoing arcs of all the source nodes |
443 | 443 |
///except for the last one will not be visited and distances will |
444 | 444 |
///also be wrong.) |
445 | 445 |
void addSource(Node s) |
446 | 446 |
{ |
447 | 447 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
448 | 448 |
if(!(*_reached)[s]) |
449 | 449 |
{ |
450 | 450 |
_reached->set(s,true); |
451 | 451 |
_pred->set(s,INVALID); |
452 | 452 |
OutArcIt e(*G,s); |
453 | 453 |
if(e!=INVALID) { |
454 | 454 |
_stack[++_stack_head]=e; |
455 | 455 |
_dist->set(s,_stack_head); |
456 | 456 |
} |
457 | 457 |
else { |
458 | 458 |
_processed->set(s,true); |
459 | 459 |
_dist->set(s,0); |
460 | 460 |
} |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
|
464 | 464 |
///Processes the next arc. |
465 | 465 |
|
466 | 466 |
///Processes the next arc. |
467 | 467 |
/// |
468 | 468 |
///\return The processed arc. |
469 | 469 |
/// |
470 | 470 |
///\pre The stack must not be empty. |
471 | 471 |
Arc processNextArc() |
472 | 472 |
{ |
473 | 473 |
Node m; |
474 | 474 |
Arc e=_stack[_stack_head]; |
475 | 475 |
if(!(*_reached)[m=G->target(e)]) { |
476 | 476 |
_pred->set(m,e); |
477 | 477 |
_reached->set(m,true); |
478 | 478 |
++_stack_head; |
479 | 479 |
_stack[_stack_head] = OutArcIt(*G, m); |
480 | 480 |
_dist->set(m,_stack_head); |
481 | 481 |
} |
482 | 482 |
else { |
483 | 483 |
m=G->source(e); |
484 | 484 |
++_stack[_stack_head]; |
485 | 485 |
} |
486 | 486 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
487 | 487 |
_processed->set(m,true); |
488 | 488 |
--_stack_head; |
489 | 489 |
if(_stack_head>=0) { |
490 | 490 |
m=G->source(_stack[_stack_head]); |
491 | 491 |
++_stack[_stack_head]; |
492 | 492 |
} |
493 | 493 |
} |
494 | 494 |
return e; |
495 | 495 |
} |
496 | 496 |
|
497 | 497 |
///Next arc to be processed. |
498 | 498 |
|
499 | 499 |
///Next arc to be processed. |
500 | 500 |
/// |
501 | 501 |
///\return The next arc to be processed or \c INVALID if the stack |
502 | 502 |
///is empty. |
503 | 503 |
OutArcIt nextArc() const |
504 | 504 |
{ |
505 | 505 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
///Returns \c false if there are nodes to be processed. |
509 | 509 |
|
510 | 510 |
///Returns \c false if there are nodes to be processed |
511 | 511 |
///in the queue (stack). |
512 | 512 |
bool emptyQueue() const { return _stack_head<0; } |
513 | 513 |
|
514 | 514 |
///Returns the number of the nodes to be processed. |
515 | 515 |
|
516 | 516 |
///Returns the number of the nodes to be processed |
517 | 517 |
///in the queue (stack). |
518 | 518 |
int queueSize() const { return _stack_head+1; } |
519 | 519 |
|
520 | 520 |
///Executes the algorithm. |
521 | 521 |
|
522 | 522 |
///Executes the algorithm. |
523 | 523 |
/// |
524 | 524 |
///This method runs the %DFS algorithm from the root node |
525 | 525 |
///in order to compute the DFS path to each node. |
526 | 526 |
/// |
527 | 527 |
/// The algorithm computes |
528 | 528 |
///- the %DFS tree, |
529 | 529 |
///- the distance of each node from the root in the %DFS tree. |
530 | 530 |
/// |
531 | 531 |
///\pre init() must be called and a root node should be |
532 | 532 |
///added with addSource() before using this function. |
533 | 533 |
/// |
534 | 534 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
535 | 535 |
///\code |
536 | 536 |
/// while ( !d.emptyQueue() ) { |
537 | 537 |
/// d.processNextArc(); |
538 | 538 |
/// } |
539 | 539 |
///\endcode |
540 | 540 |
void start() |
541 | 541 |
{ |
542 | 542 |
while ( !emptyQueue() ) processNextArc(); |
543 | 543 |
} |
544 | 544 |
|
545 | 545 |
///Executes the algorithm until the given target node is reached. |
546 | 546 |
|
547 | 547 |
///Executes the algorithm until the given target node is reached. |
548 | 548 |
/// |
549 | 549 |
///This method runs the %DFS algorithm from the root node |
550 | 550 |
///in order to compute the DFS path to \c t. |
551 | 551 |
/// |
552 | 552 |
///The algorithm computes |
553 | 553 |
///- the %DFS path to \c t, |
554 | 554 |
///- the distance of \c t from the root in the %DFS tree. |
555 | 555 |
/// |
556 | 556 |
///\pre init() must be called and a root node should be |
557 | 557 |
///added with addSource() before using this function. |
558 | 558 |
void start(Node t) |
559 | 559 |
{ |
560 | 560 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
561 | 561 |
processNextArc(); |
562 | 562 |
} |
563 | 563 |
|
564 | 564 |
///Executes the algorithm until a condition is met. |
565 | 565 |
|
566 | 566 |
///Executes the algorithm until a condition is met. |
567 | 567 |
/// |
568 | 568 |
///This method runs the %DFS algorithm from the root node |
569 | 569 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
570 | 570 |
/// |
571 | 571 |
///\param am A \c bool (or convertible) arc map. The algorithm |
572 | 572 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
573 | 573 |
/// |
574 | 574 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
575 | 575 |
///\c INVALID if no such arc was found. |
576 | 576 |
/// |
577 | 577 |
///\pre init() must be called and a root node should be |
578 | 578 |
///added with addSource() before using this function. |
579 | 579 |
/// |
580 | 580 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
581 | 581 |
///not a node map. |
582 | 582 |
template<class ArcBoolMap> |
583 | 583 |
Arc start(const ArcBoolMap &am) |
584 | 584 |
{ |
585 | 585 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
586 | 586 |
processNextArc(); |
587 | 587 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
588 | 588 |
} |
589 | 589 |
|
590 | 590 |
///Runs the algorithm from the given source node. |
591 | 591 |
|
592 | 592 |
///This method runs the %DFS algorithm from node \c s |
593 | 593 |
///in order to compute the DFS path to each node. |
594 | 594 |
/// |
595 | 595 |
///The algorithm computes |
596 | 596 |
///- the %DFS tree, |
597 | 597 |
///- the distance of each node from the root in the %DFS tree. |
598 | 598 |
/// |
599 | 599 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
600 | 600 |
///\code |
601 | 601 |
/// d.init(); |
602 | 602 |
/// d.addSource(s); |
603 | 603 |
/// d.start(); |
604 | 604 |
///\endcode |
605 | 605 |
void run(Node s) { |
606 | 606 |
init(); |
607 | 607 |
addSource(s); |
608 | 608 |
start(); |
609 | 609 |
} |
610 | 610 |
|
611 | 611 |
///Finds the %DFS path between \c s and \c t. |
612 | 612 |
|
613 | 613 |
///This method runs the %DFS algorithm from node \c s |
614 | 614 |
///in order to compute the DFS path to node \c t |
615 | 615 |
///(it stops searching when \c t is processed) |
616 | 616 |
/// |
617 | 617 |
///\return \c true if \c t is reachable form \c s. |
618 | 618 |
/// |
619 | 619 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
620 | 620 |
///just a shortcut of the following code. |
621 | 621 |
///\code |
622 | 622 |
/// d.init(); |
623 | 623 |
/// d.addSource(s); |
624 | 624 |
/// d.start(t); |
625 | 625 |
///\endcode |
626 | 626 |
bool run(Node s,Node t) { |
627 | 627 |
init(); |
628 | 628 |
addSource(s); |
629 | 629 |
start(t); |
630 | 630 |
return reached(t); |
631 | 631 |
} |
632 | 632 |
|
633 | 633 |
///Runs the algorithm to visit all nodes in the digraph. |
634 | 634 |
|
635 | 635 |
///This method runs the %DFS algorithm in order to compute the |
636 | 636 |
///%DFS path to each node. |
637 | 637 |
/// |
638 | 638 |
///The algorithm computes |
639 | 639 |
///- the %DFS tree (forest), |
640 | 640 |
///- the distance of each node from the root(s) in the %DFS tree. |
641 | 641 |
/// |
642 | 642 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
643 | 643 |
///\code |
644 | 644 |
/// d.init(); |
645 | 645 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
646 | 646 |
/// if (!d.reached(n)) { |
647 | 647 |
/// d.addSource(n); |
648 | 648 |
/// d.start(); |
649 | 649 |
/// } |
650 | 650 |
/// } |
651 | 651 |
///\endcode |
652 | 652 |
void run() { |
653 | 653 |
init(); |
654 | 654 |
for (NodeIt it(*G); it != INVALID; ++it) { |
655 | 655 |
if (!reached(it)) { |
656 | 656 |
addSource(it); |
657 | 657 |
start(); |
658 | 658 |
} |
659 | 659 |
} |
660 | 660 |
} |
661 | 661 |
|
662 | 662 |
///@} |
663 | 663 |
|
664 | 664 |
///\name Query Functions |
665 | 665 |
///The results of the DFS algorithm can be obtained using these |
666 | 666 |
///functions.\n |
667 | 667 |
///Either \ref run(Node) "run()" or \ref start() should be called |
668 | 668 |
///before using them. |
669 | 669 |
|
670 | 670 |
///@{ |
671 | 671 |
|
672 | 672 |
///The DFS path to a node. |
673 | 673 |
|
674 | 674 |
///Returns the DFS path to a node. |
675 | 675 |
/// |
676 | 676 |
///\warning \c t should be reached from the root(s). |
677 | 677 |
/// |
678 | 678 |
///\pre Either \ref run(Node) "run()" or \ref init() |
679 | 679 |
///must be called before using this function. |
680 | 680 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
681 | 681 |
|
682 | 682 |
///The distance of a node from the root(s). |
683 | 683 |
|
684 | 684 |
///Returns the distance of a node from the root(s). |
685 | 685 |
/// |
686 | 686 |
///\warning If node \c v is not reached from the root(s), then |
687 | 687 |
///the return value of this function is undefined. |
688 | 688 |
/// |
689 | 689 |
///\pre Either \ref run(Node) "run()" or \ref init() |
690 | 690 |
///must be called before using this function. |
691 | 691 |
int dist(Node v) const { return (*_dist)[v]; } |
692 | 692 |
|
693 | 693 |
///Returns the 'previous arc' of the %DFS tree for a node. |
694 | 694 |
|
695 | 695 |
///This function returns the 'previous arc' of the %DFS tree for the |
696 | 696 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
697 | 697 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
698 | 698 |
///root(s) or if \c v is a root. |
699 | 699 |
/// |
700 | 700 |
///The %DFS tree used here is equal to the %DFS tree used in |
701 | 701 |
///\ref predNode(). |
702 | 702 |
/// |
703 | 703 |
///\pre Either \ref run(Node) "run()" or \ref init() |
704 | 704 |
///must be called before using this function. |
705 | 705 |
Arc predArc(Node v) const { return (*_pred)[v];} |
706 | 706 |
|
707 | 707 |
///Returns the 'previous node' of the %DFS tree. |
708 | 708 |
|
709 | 709 |
///This function returns the 'previous node' of the %DFS |
710 | 710 |
///tree for the node \c v, i.e. it returns the last but one node |
711 | 711 |
///from a %DFS path from a root to \c v. It is \c INVALID |
712 | 712 |
///if \c v is not reached from the root(s) or if \c v is a root. |
713 | 713 |
/// |
714 | 714 |
///The %DFS tree used here is equal to the %DFS tree used in |
715 | 715 |
///\ref predArc(). |
716 | 716 |
/// |
717 | 717 |
///\pre Either \ref run(Node) "run()" or \ref init() |
718 | 718 |
///must be called before using this function. |
719 | 719 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
720 | 720 |
G->source((*_pred)[v]); } |
721 | 721 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename V> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \e |
44 | 44 |
typedef V Value; |
45 | 45 |
/// \brief Gives back the zero value of the type. |
46 | 46 |
static Value zero() { |
47 | 47 |
return static_cast<Value>(0); |
48 | 48 |
} |
49 | 49 |
/// \brief Gives back the sum of the given two elements. |
50 | 50 |
static Value plus(const Value& left, const Value& right) { |
51 | 51 |
return left + right; |
52 | 52 |
} |
53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
54 | 54 |
static bool less(const Value& left, const Value& right) { |
55 | 55 |
return left < right; |
56 | 56 |
} |
57 | 57 |
}; |
58 | 58 |
|
59 | 59 |
///Default traits class of Dijkstra class. |
60 | 60 |
|
61 | 61 |
///Default traits class of Dijkstra class. |
62 | 62 |
///\tparam GR The type of the digraph. |
63 | 63 |
///\tparam LEN The type of the length map. |
64 | 64 |
template<typename GR, typename LEN> |
65 | 65 |
struct DijkstraDefaultTraits |
66 | 66 |
{ |
67 | 67 |
///The type of the digraph the algorithm runs on. |
68 | 68 |
typedef GR Digraph; |
69 | 69 |
|
70 | 70 |
///The type of the map that stores the arc lengths. |
71 | 71 |
|
72 | 72 |
///The type of the map that stores the arc lengths. |
73 | 73 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
74 | 74 |
typedef LEN LengthMap; |
75 | 75 |
///The type of the length of the arcs. |
76 | 76 |
typedef typename LEN::Value Value; |
77 | 77 |
|
78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
79 | 79 |
|
80 | 80 |
/// This class defines the operations that are used in the algorithm. |
81 | 81 |
/// \see DijkstraDefaultOperationTraits |
82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
83 | 83 |
|
84 | 84 |
/// The cross reference type used by the heap. |
85 | 85 |
|
86 | 86 |
/// The cross reference type used by the heap. |
87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
89 | 89 |
///Instantiates a \c HeapCrossRef. |
90 | 90 |
|
91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
92 | 92 |
/// \param g is the digraph, to which we would like to define the |
93 | 93 |
/// \ref HeapCrossRef. |
94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
95 | 95 |
{ |
96 | 96 |
return new HeapCrossRef(g); |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
///The heap type used by the Dijkstra algorithm. |
102 | 102 |
/// |
103 | 103 |
///\sa BinHeap |
104 | 104 |
///\sa Dijkstra |
105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
106 | 106 |
///Instantiates a \c Heap. |
107 | 107 |
|
108 | 108 |
///This function instantiates a \ref Heap. |
109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
110 | 110 |
{ |
111 | 111 |
return new Heap(r); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 | 119 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 | 134 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
135 | 135 |
///By default it is a NullMap. |
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 | 154 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
160 | 160 |
///the \ref DistMap. |
161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
162 | 162 |
{ |
163 | 163 |
return new DistMap(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
///%Dijkstra algorithm class. |
168 | 168 |
|
169 | 169 |
/// \ingroup shortest_path |
170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
171 | 171 |
/// |
172 | 172 |
///The arc lengths are passed to the algorithm using a |
173 | 173 |
///\ref concepts::ReadMap "ReadMap", |
174 | 174 |
///so it is easy to change it to any kind of length. |
175 | 175 |
///The type of the length is determined by the |
176 | 176 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
177 | 177 |
///It is also possible to change the underlying priority heap. |
178 | 178 |
/// |
179 | 179 |
///There is also a \ref dijkstra() "function-type interface" for the |
180 | 180 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
181 | 181 |
///it can be used easier. |
182 | 182 |
/// |
183 | 183 |
///\tparam GR The type of the digraph the algorithm runs on. |
184 | 184 |
///The default type is \ref ListDigraph. |
185 | 185 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
186 | 186 |
///the lengths of the arcs. |
187 | 187 |
///It is read once for each arc, so the map may involve in |
188 | 188 |
///relatively time consuming process to compute the arc lengths if |
189 | 189 |
///it is necessary. The default map type is \ref |
190 | 190 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
191 | 191 |
#ifdef DOXYGEN |
192 | 192 |
template <typename GR, typename LEN, typename TR> |
193 | 193 |
#else |
194 | 194 |
template <typename GR=ListDigraph, |
195 | 195 |
typename LEN=typename GR::template ArcMap<int>, |
196 | 196 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
197 | 197 |
#endif |
198 | 198 |
class Dijkstra { |
199 | 199 |
public: |
200 | 200 |
|
201 | 201 |
///The type of the digraph the algorithm runs on. |
202 | 202 |
typedef typename TR::Digraph Digraph; |
203 | 203 |
|
204 | 204 |
///The type of the length of the arcs. |
205 | 205 |
typedef typename TR::LengthMap::Value Value; |
206 | 206 |
///The type of the map that stores the arc lengths. |
207 | 207 |
typedef typename TR::LengthMap LengthMap; |
208 | 208 |
///\brief The type of the map that stores the predecessor arcs of the |
209 | 209 |
///shortest paths. |
210 | 210 |
typedef typename TR::PredMap PredMap; |
211 | 211 |
///The type of the map that stores the distances of the nodes. |
212 | 212 |
typedef typename TR::DistMap DistMap; |
213 | 213 |
///The type of the map that indicates which nodes are processed. |
214 | 214 |
typedef typename TR::ProcessedMap ProcessedMap; |
215 | 215 |
///The type of the paths. |
216 | 216 |
typedef PredMapPath<Digraph, PredMap> Path; |
217 | 217 |
///The cross reference type used for the current heap. |
218 | 218 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
219 | 219 |
///The heap type used by the algorithm. |
220 | 220 |
typedef typename TR::Heap Heap; |
221 | 221 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
222 | 222 |
///of the algorithm. |
223 | 223 |
typedef typename TR::OperationTraits OperationTraits; |
224 | 224 |
|
225 | 225 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
226 | 226 |
typedef TR Traits; |
227 | 227 |
|
228 | 228 |
private: |
229 | 229 |
|
230 | 230 |
typedef typename Digraph::Node Node; |
231 | 231 |
typedef typename Digraph::NodeIt NodeIt; |
232 | 232 |
typedef typename Digraph::Arc Arc; |
233 | 233 |
typedef typename Digraph::OutArcIt OutArcIt; |
234 | 234 |
|
235 | 235 |
//Pointer to the underlying digraph. |
236 | 236 |
const Digraph *G; |
237 | 237 |
//Pointer to the length map. |
238 | 238 |
const LengthMap *_length; |
239 | 239 |
//Pointer to the map of predecessors arcs. |
240 | 240 |
PredMap *_pred; |
241 | 241 |
//Indicates if _pred is locally allocated (true) or not. |
242 | 242 |
bool local_pred; |
243 | 243 |
//Pointer to the map of distances. |
244 | 244 |
DistMap *_dist; |
245 | 245 |
//Indicates if _dist is locally allocated (true) or not. |
246 | 246 |
bool local_dist; |
247 | 247 |
//Pointer to the map of processed status of the nodes. |
248 | 248 |
ProcessedMap *_processed; |
249 | 249 |
//Indicates if _processed is locally allocated (true) or not. |
250 | 250 |
bool local_processed; |
251 | 251 |
//Pointer to the heap cross references. |
252 | 252 |
HeapCrossRef *_heap_cross_ref; |
253 | 253 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
254 | 254 |
bool local_heap_cross_ref; |
255 | 255 |
//Pointer to the heap. |
256 | 256 |
Heap *_heap; |
257 | 257 |
//Indicates if _heap is locally allocated (true) or not. |
258 | 258 |
bool local_heap; |
259 | 259 |
|
260 | 260 |
//Creates the maps if necessary. |
261 | 261 |
void create_maps() |
262 | 262 |
{ |
263 | 263 |
if(!_pred) { |
264 | 264 |
local_pred = true; |
265 | 265 |
_pred = Traits::createPredMap(*G); |
266 | 266 |
} |
267 | 267 |
if(!_dist) { |
268 | 268 |
local_dist = true; |
269 | 269 |
_dist = Traits::createDistMap(*G); |
270 | 270 |
} |
271 | 271 |
if(!_processed) { |
272 | 272 |
local_processed = true; |
273 | 273 |
_processed = Traits::createProcessedMap(*G); |
274 | 274 |
} |
275 | 275 |
if (!_heap_cross_ref) { |
276 | 276 |
local_heap_cross_ref = true; |
277 | 277 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
278 | 278 |
} |
279 | 279 |
if (!_heap) { |
280 | 280 |
local_heap = true; |
281 | 281 |
_heap = Traits::createHeap(*_heap_cross_ref); |
282 | 282 |
} |
283 | 283 |
} |
284 | 284 |
|
285 | 285 |
public: |
286 | 286 |
|
287 | 287 |
typedef Dijkstra Create; |
288 | 288 |
|
289 |
///\name Named |
|
289 |
///\name Named Template Parameters |
|
290 | 290 |
|
291 | 291 |
///@{ |
292 | 292 |
|
293 | 293 |
template <class T> |
294 | 294 |
struct SetPredMapTraits : public Traits { |
295 | 295 |
typedef T PredMap; |
296 | 296 |
static PredMap *createPredMap(const Digraph &) |
297 | 297 |
{ |
298 | 298 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
299 | 299 |
return 0; // ignore warnings |
300 | 300 |
} |
301 | 301 |
}; |
302 | 302 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 303 |
///\c PredMap type. |
304 | 304 |
/// |
305 | 305 |
///\ref named-templ-param "Named parameter" for setting |
306 | 306 |
///\c PredMap type. |
307 | 307 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
308 | 308 |
template <class T> |
309 | 309 |
struct SetPredMap |
310 | 310 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
311 | 311 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
template <class T> |
315 | 315 |
struct SetDistMapTraits : public Traits { |
316 | 316 |
typedef T DistMap; |
317 | 317 |
static DistMap *createDistMap(const Digraph &) |
318 | 318 |
{ |
319 | 319 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
320 | 320 |
return 0; // ignore warnings |
321 | 321 |
} |
322 | 322 |
}; |
323 | 323 |
///\brief \ref named-templ-param "Named parameter" for setting |
324 | 324 |
///\c DistMap type. |
325 | 325 |
/// |
326 | 326 |
///\ref named-templ-param "Named parameter" for setting |
327 | 327 |
///\c DistMap type. |
328 | 328 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
329 | 329 |
template <class T> |
330 | 330 |
struct SetDistMap |
331 | 331 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
332 | 332 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
333 | 333 |
}; |
334 | 334 |
|
335 | 335 |
template <class T> |
336 | 336 |
struct SetProcessedMapTraits : public Traits { |
337 | 337 |
typedef T ProcessedMap; |
338 | 338 |
static ProcessedMap *createProcessedMap(const Digraph &) |
339 | 339 |
{ |
340 | 340 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
341 | 341 |
return 0; // ignore warnings |
342 | 342 |
} |
343 | 343 |
}; |
344 | 344 |
///\brief \ref named-templ-param "Named parameter" for setting |
345 | 345 |
///\c ProcessedMap type. |
346 | 346 |
/// |
347 | 347 |
///\ref named-templ-param "Named parameter" for setting |
348 | 348 |
///\c ProcessedMap type. |
349 | 349 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
350 | 350 |
template <class T> |
351 | 351 |
struct SetProcessedMap |
352 | 352 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
353 | 353 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
354 | 354 |
}; |
355 | 355 |
|
356 | 356 |
struct SetStandardProcessedMapTraits : public Traits { |
357 | 357 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
358 | 358 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
359 | 359 |
{ |
360 | 360 |
return new ProcessedMap(g); |
361 | 361 |
} |
362 | 362 |
}; |
363 | 363 |
///\brief \ref named-templ-param "Named parameter" for setting |
364 | 364 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
365 | 365 |
/// |
366 | 366 |
///\ref named-templ-param "Named parameter" for setting |
367 | 367 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
368 | 368 |
///If you don't set it explicitly, it will be automatically allocated. |
369 | 369 |
struct SetStandardProcessedMap |
370 | 370 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
371 | 371 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
372 | 372 |
Create; |
373 | 373 |
}; |
374 | 374 |
|
375 | 375 |
template <class H, class CR> |
376 | 376 |
struct SetHeapTraits : public Traits { |
377 | 377 |
typedef CR HeapCrossRef; |
378 | 378 |
typedef H Heap; |
379 | 379 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
380 | 380 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
381 | 381 |
return 0; // ignore warnings |
382 | 382 |
} |
383 | 383 |
static Heap *createHeap(HeapCrossRef &) |
384 | 384 |
{ |
385 | 385 |
LEMON_ASSERT(false, "Heap is not initialized"); |
386 | 386 |
return 0; // ignore warnings |
387 | 387 |
} |
388 | 388 |
}; |
389 | 389 |
///\brief \ref named-templ-param "Named parameter" for setting |
390 | 390 |
///heap and cross reference types |
391 | 391 |
/// |
392 | 392 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
393 | 393 |
///reference types. If this named parameter is used, then external |
394 | 394 |
///heap and cross reference objects must be passed to the algorithm |
395 | 395 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
396 | 396 |
///or \ref init(). |
397 | 397 |
///\sa SetStandardHeap |
398 | 398 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
399 | 399 |
struct SetHeap |
400 | 400 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
401 | 401 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
402 | 402 |
}; |
403 | 403 |
|
404 | 404 |
template <class H, class CR> |
405 | 405 |
struct SetStandardHeapTraits : public Traits { |
406 | 406 |
typedef CR HeapCrossRef; |
407 | 407 |
typedef H Heap; |
408 | 408 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
409 | 409 |
return new HeapCrossRef(G); |
410 | 410 |
} |
411 | 411 |
static Heap *createHeap(HeapCrossRef &R) |
412 | 412 |
{ |
413 | 413 |
return new Heap(R); |
414 | 414 |
} |
415 | 415 |
}; |
416 | 416 |
///\brief \ref named-templ-param "Named parameter" for setting |
417 | 417 |
///heap and cross reference types with automatic allocation |
418 | 418 |
/// |
419 | 419 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
420 | 420 |
///reference types with automatic allocation. |
421 | 421 |
///They should have standard constructor interfaces to be able to |
422 | 422 |
///automatically created by the algorithm (i.e. the digraph should be |
423 | 423 |
///passed to the constructor of the cross reference and the cross |
424 | 424 |
///reference should be passed to the constructor of the heap). |
425 | 425 |
///However external heap and cross reference objects could also be |
426 | 426 |
///passed to the algorithm using the \ref heap() function before |
427 | 427 |
///calling \ref run(Node) "run()" or \ref init(). |
428 | 428 |
///\sa SetHeap |
429 | 429 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
430 | 430 |
struct SetStandardHeap |
431 | 431 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
432 | 432 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
433 | 433 |
Create; |
434 | 434 |
}; |
435 | 435 |
|
436 | 436 |
template <class T> |
437 | 437 |
struct SetOperationTraitsTraits : public Traits { |
438 | 438 |
typedef T OperationTraits; |
439 | 439 |
}; |
440 | 440 |
|
441 | 441 |
/// \brief \ref named-templ-param "Named parameter" for setting |
442 | 442 |
///\c OperationTraits type |
443 | 443 |
/// |
444 | 444 |
///\ref named-templ-param "Named parameter" for setting |
445 | 445 |
///\c OperationTraits type. |
446 | 446 |
template <class T> |
447 | 447 |
struct SetOperationTraits |
448 | 448 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
449 | 449 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
450 | 450 |
Create; |
451 | 451 |
}; |
452 | 452 |
|
453 | 453 |
///@} |
454 | 454 |
|
455 | 455 |
protected: |
456 | 456 |
|
457 | 457 |
Dijkstra() {} |
458 | 458 |
|
459 | 459 |
public: |
460 | 460 |
|
461 | 461 |
///Constructor. |
462 | 462 |
|
463 | 463 |
///Constructor. |
464 | 464 |
///\param g The digraph the algorithm runs on. |
465 | 465 |
///\param length The length map used by the algorithm. |
466 | 466 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
467 | 467 |
G(&g), _length(&length), |
468 | 468 |
_pred(NULL), local_pred(false), |
469 | 469 |
_dist(NULL), local_dist(false), |
470 | 470 |
_processed(NULL), local_processed(false), |
471 | 471 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
472 | 472 |
_heap(NULL), local_heap(false) |
473 | 473 |
{ } |
474 | 474 |
|
475 | 475 |
///Destructor. |
476 | 476 |
~Dijkstra() |
477 | 477 |
{ |
478 | 478 |
if(local_pred) delete _pred; |
479 | 479 |
if(local_dist) delete _dist; |
480 | 480 |
if(local_processed) delete _processed; |
481 | 481 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
482 | 482 |
if(local_heap) delete _heap; |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
///Sets the length map. |
486 | 486 |
|
487 | 487 |
///Sets the length map. |
488 | 488 |
///\return <tt> (*this) </tt> |
489 | 489 |
Dijkstra &lengthMap(const LengthMap &m) |
490 | 490 |
{ |
491 | 491 |
_length = &m; |
492 | 492 |
return *this; |
493 | 493 |
} |
494 | 494 |
|
495 | 495 |
///Sets the map that stores the predecessor arcs. |
496 | 496 |
|
497 | 497 |
///Sets the map that stores the predecessor arcs. |
498 | 498 |
///If you don't use this function before calling \ref run(Node) "run()" |
499 | 499 |
///or \ref init(), an instance will be allocated automatically. |
500 | 500 |
///The destructor deallocates this automatically allocated map, |
501 | 501 |
///of course. |
502 | 502 |
///\return <tt> (*this) </tt> |
503 | 503 |
Dijkstra &predMap(PredMap &m) |
504 | 504 |
{ |
505 | 505 |
if(local_pred) { |
506 | 506 |
delete _pred; |
507 | 507 |
local_pred=false; |
508 | 508 |
} |
509 | 509 |
_pred = &m; |
510 | 510 |
return *this; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
///Sets the map that indicates which nodes are processed. |
514 | 514 |
|
515 | 515 |
///Sets the map that indicates which nodes are processed. |
516 | 516 |
///If you don't use this function before calling \ref run(Node) "run()" |
517 | 517 |
///or \ref init(), an instance will be allocated automatically. |
518 | 518 |
///The destructor deallocates this automatically allocated map, |
519 | 519 |
///of course. |
520 | 520 |
///\return <tt> (*this) </tt> |
521 | 521 |
Dijkstra &processedMap(ProcessedMap &m) |
522 | 522 |
{ |
523 | 523 |
if(local_processed) { |
524 | 524 |
delete _processed; |
525 | 525 |
local_processed=false; |
526 | 526 |
} |
527 | 527 |
_processed = &m; |
528 | 528 |
return *this; |
529 | 529 |
} |
530 | 530 |
|
531 | 531 |
///Sets the map that stores the distances of the nodes. |
532 | 532 |
|
533 | 533 |
///Sets the map that stores the distances of the nodes calculated by the |
534 | 534 |
///algorithm. |
535 | 535 |
///If you don't use this function before calling \ref run(Node) "run()" |
536 | 536 |
///or \ref init(), an instance will be allocated automatically. |
537 | 537 |
///The destructor deallocates this automatically allocated map, |
538 | 538 |
///of course. |
539 | 539 |
///\return <tt> (*this) </tt> |
540 | 540 |
Dijkstra &distMap(DistMap &m) |
541 | 541 |
{ |
542 | 542 |
if(local_dist) { |
543 | 543 |
delete _dist; |
544 | 544 |
local_dist=false; |
545 | 545 |
} |
546 | 546 |
_dist = &m; |
547 | 547 |
return *this; |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
///Sets the heap and the cross reference used by algorithm. |
551 | 551 |
|
552 | 552 |
///Sets the heap and the cross reference used by algorithm. |
553 | 553 |
///If you don't use this function before calling \ref run(Node) "run()" |
554 | 554 |
///or \ref init(), heap and cross reference instances will be |
555 | 555 |
///allocated automatically. |
556 | 556 |
///The destructor deallocates these automatically allocated objects, |
557 | 557 |
///of course. |
558 | 558 |
///\return <tt> (*this) </tt> |
559 | 559 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
560 | 560 |
{ |
561 | 561 |
if(local_heap_cross_ref) { |
562 | 562 |
delete _heap_cross_ref; |
563 | 563 |
local_heap_cross_ref=false; |
564 | 564 |
} |
565 | 565 |
_heap_cross_ref = &cr; |
566 | 566 |
if(local_heap) { |
567 | 567 |
delete _heap; |
568 | 568 |
local_heap=false; |
569 | 569 |
} |
570 | 570 |
_heap = &hp; |
571 | 571 |
return *this; |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
private: |
575 | 575 |
|
576 | 576 |
void finalizeNodeData(Node v,Value dst) |
577 | 577 |
{ |
578 | 578 |
_processed->set(v,true); |
579 | 579 |
_dist->set(v, dst); |
580 | 580 |
} |
581 | 581 |
|
582 | 582 |
public: |
583 | 583 |
|
584 | 584 |
///\name Execution Control |
585 | 585 |
///The simplest way to execute the %Dijkstra algorithm is to use |
586 | 586 |
///one of the member functions called \ref run(Node) "run()".\n |
587 | 587 |
///If you need more control on the execution, first you have to call |
588 | 588 |
///\ref init(), then you can add several source nodes with |
589 | 589 |
///\ref addSource(). Finally the actual path computation can be |
590 | 590 |
///performed with one of the \ref start() functions. |
591 | 591 |
|
592 | 592 |
///@{ |
593 | 593 |
|
594 | 594 |
///\brief Initializes the internal data structures. |
595 | 595 |
/// |
596 | 596 |
///Initializes the internal data structures. |
597 | 597 |
void init() |
598 | 598 |
{ |
599 | 599 |
create_maps(); |
600 | 600 |
_heap->clear(); |
601 | 601 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
602 | 602 |
_pred->set(u,INVALID); |
603 | 603 |
_processed->set(u,false); |
604 | 604 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
605 | 605 |
} |
606 | 606 |
} |
607 | 607 |
|
608 | 608 |
///Adds a new source node. |
609 | 609 |
|
610 | 610 |
///Adds a new source node to the priority heap. |
611 | 611 |
///The optional second parameter is the initial distance of the node. |
612 | 612 |
/// |
613 | 613 |
///The function checks if the node has already been added to the heap and |
614 | 614 |
///it is pushed to the heap only if either it was not in the heap |
615 | 615 |
///or the shortest path found till then is shorter than \c dst. |
616 | 616 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
617 | 617 |
{ |
618 | 618 |
if(_heap->state(s) != Heap::IN_HEAP) { |
619 | 619 |
_heap->push(s,dst); |
620 | 620 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
621 | 621 |
_heap->set(s,dst); |
622 | 622 |
_pred->set(s,INVALID); |
623 | 623 |
} |
624 | 624 |
} |
625 | 625 |
|
626 | 626 |
///Processes the next node in the priority heap |
627 | 627 |
|
628 | 628 |
///Processes the next node in the priority heap. |
629 | 629 |
/// |
630 | 630 |
///\return The processed node. |
631 | 631 |
/// |
632 | 632 |
///\warning The priority heap must not be empty. |
633 | 633 |
Node processNextNode() |
634 | 634 |
{ |
635 | 635 |
Node v=_heap->top(); |
636 | 636 |
Value oldvalue=_heap->prio(); |
637 | 637 |
_heap->pop(); |
638 | 638 |
finalizeNodeData(v,oldvalue); |
639 | 639 |
|
640 | 640 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
641 | 641 |
Node w=G->target(e); |
642 | 642 |
switch(_heap->state(w)) { |
643 | 643 |
case Heap::PRE_HEAP: |
644 | 644 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
645 | 645 |
_pred->set(w,e); |
646 | 646 |
break; |
647 | 647 |
case Heap::IN_HEAP: |
648 | 648 |
{ |
649 | 649 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
650 | 650 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
651 | 651 |
_heap->decrease(w, newvalue); |
652 | 652 |
_pred->set(w,e); |
653 | 653 |
} |
654 | 654 |
} |
655 | 655 |
break; |
656 | 656 |
case Heap::POST_HEAP: |
657 | 657 |
break; |
658 | 658 |
} |
659 | 659 |
} |
660 | 660 |
return v; |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
///The next node to be processed. |
664 | 664 |
|
665 | 665 |
///Returns the next node to be processed or \c INVALID if the |
666 | 666 |
///priority heap is empty. |
667 | 667 |
Node nextNode() const |
668 | 668 |
{ |
669 | 669 |
return !_heap->empty()?_heap->top():INVALID; |
670 | 670 |
} |
671 | 671 |
|
672 | 672 |
///Returns \c false if there are nodes to be processed. |
673 | 673 |
|
674 | 674 |
///Returns \c false if there are nodes to be processed |
675 | 675 |
///in the priority heap. |
676 | 676 |
bool emptyQueue() const { return _heap->empty(); } |
677 | 677 |
|
678 | 678 |
///Returns the number of the nodes to be processed. |
679 | 679 |
|
680 | 680 |
///Returns the number of the nodes to be processed |
681 | 681 |
///in the priority heap. |
682 | 682 |
int queueSize() const { return _heap->size(); } |
683 | 683 |
|
684 | 684 |
///Executes the algorithm. |
685 | 685 |
|
686 | 686 |
///Executes the algorithm. |
687 | 687 |
/// |
688 | 688 |
///This method runs the %Dijkstra algorithm from the root node(s) |
689 | 689 |
///in order to compute the shortest path to each node. |
690 | 690 |
/// |
691 | 691 |
///The algorithm computes |
692 | 692 |
///- the shortest path tree (forest), |
693 | 693 |
///- the distance of each node from the root(s). |
694 | 694 |
/// |
695 | 695 |
///\pre init() must be called and at least one root node should be |
696 | 696 |
///added with addSource() before using this function. |
697 | 697 |
/// |
698 | 698 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
699 | 699 |
///\code |
700 | 700 |
/// while ( !d.emptyQueue() ) { |
701 | 701 |
/// d.processNextNode(); |
702 | 702 |
/// } |
703 | 703 |
///\endcode |
704 | 704 |
void start() |
705 | 705 |
{ |
706 | 706 |
while ( !emptyQueue() ) processNextNode(); |
707 | 707 |
} |
708 | 708 |
|
709 | 709 |
///Executes the algorithm until the given target node is processed. |
710 | 710 |
|
711 | 711 |
///Executes the algorithm until the given target node is processed. |
712 | 712 |
/// |
713 | 713 |
///This method runs the %Dijkstra algorithm from the root node(s) |
714 | 714 |
///in order to compute the shortest path to \c t. |
715 | 715 |
/// |
716 | 716 |
///The algorithm computes |
717 | 717 |
///- the shortest path to \c t, |
718 | 718 |
///- the distance of \c t from the root(s). |
719 | 719 |
/// |
720 | 720 |
///\pre init() must be called and at least one root node should be |
721 | 721 |
///added with addSource() before using this function. |
722 | 722 |
void start(Node t) |
723 | 723 |
{ |
724 | 724 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
725 | 725 |
if ( !_heap->empty() ) { |
726 | 726 |
finalizeNodeData(_heap->top(),_heap->prio()); |
727 | 727 |
_heap->pop(); |
728 | 728 |
} |
729 | 729 |
} |
730 | 730 |
|
731 | 731 |
///Executes the algorithm until a condition is met. |
732 | 732 |
|
733 | 733 |
///Executes the algorithm until a condition is met. |
734 | 734 |
/// |
735 | 735 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
736 | 736 |
///order to compute the shortest path to a node \c v with |
737 | 737 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
738 | 738 |
/// |
739 | 739 |
///\param nm A \c bool (or convertible) node map. The algorithm |
740 | 740 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
741 | 741 |
/// |
742 | 742 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
743 | 743 |
///\c INVALID if no such node was found. |
744 | 744 |
/// |
745 | 745 |
///\pre init() must be called and at least one root node should be |
746 | 746 |
///added with addSource() before using this function. |
747 | 747 |
template<class NodeBoolMap> |
748 | 748 |
Node start(const NodeBoolMap &nm) |
749 | 749 |
{ |
750 | 750 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
751 | 751 |
if ( _heap->empty() ) return INVALID; |
752 | 752 |
finalizeNodeData(_heap->top(),_heap->prio()); |
753 | 753 |
return _heap->top(); |
754 | 754 |
} |
755 | 755 |
|
756 | 756 |
///Runs the algorithm from the given source node. |
757 | 757 |
|
758 | 758 |
///This method runs the %Dijkstra algorithm from node \c s |
759 | 759 |
///in order to compute the shortest path to each node. |
760 | 760 |
/// |
761 | 761 |
///The algorithm computes |
762 | 762 |
///- the shortest path tree, |
763 | 763 |
///- the distance of each node from the root. |
764 | 764 |
/// |
765 | 765 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
766 | 766 |
///\code |
767 | 767 |
/// d.init(); |
768 | 768 |
/// d.addSource(s); |
769 | 769 |
/// d.start(); |
770 | 770 |
///\endcode |
771 | 771 |
void run(Node s) { |
772 | 772 |
init(); |
773 | 773 |
addSource(s); |
774 | 774 |
start(); |
775 | 775 |
} |
776 | 776 |
|
777 | 777 |
///Finds the shortest path between \c s and \c t. |
778 | 778 |
|
779 | 779 |
///This method runs the %Dijkstra algorithm from node \c s |
780 | 780 |
///in order to compute the shortest path to node \c t |
781 | 781 |
///(it stops searching when \c t is processed). |
782 | 782 |
/// |
783 | 783 |
///\return \c true if \c t is reachable form \c s. |
784 | 784 |
/// |
785 | 785 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
786 | 786 |
///shortcut of the following code. |
787 | 787 |
///\code |
788 | 788 |
/// d.init(); |
789 | 789 |
/// d.addSource(s); |
790 | 790 |
/// d.start(t); |
791 | 791 |
///\endcode |
792 | 792 |
bool run(Node s,Node t) { |
793 | 793 |
init(); |
794 | 794 |
addSource(s); |
795 | 795 |
start(t); |
796 | 796 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
797 | 797 |
} |
798 | 798 |
|
799 | 799 |
///@} |
800 | 800 |
|
801 | 801 |
///\name Query Functions |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIMACS_H |
20 | 20 |
#define LEMON_DIMACS_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
#include <string> |
24 | 24 |
#include <vector> |
25 | 25 |
#include <limits> |
26 | 26 |
#include <lemon/maps.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
/// \ingroup dimacs_group |
29 | 29 |
/// \file |
30 | 30 |
/// \brief DIMACS file format reader. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \addtogroup dimacs_group |
35 | 35 |
/// @{ |
36 | 36 |
|
37 | 37 |
/// DIMACS file type descriptor. |
38 | 38 |
struct DimacsDescriptor |
39 | 39 |
{ |
40 |
///File type enum |
|
41 |
enum Type |
|
42 |
{ |
|
43 |
NONE, MIN, MAX, SP, MAT |
|
44 |
|
|
40 |
///\brief DIMACS file type enum |
|
41 |
/// |
|
42 |
///DIMACS file type enum. |
|
43 |
enum Type { |
|
44 |
NONE, ///< Undefined type. |
|
45 |
MIN, ///< DIMACS file type for minimum cost flow problems. |
|
46 |
MAX, ///< DIMACS file type for maximum flow problems. |
|
47 |
SP, ///< DIMACS file type for shostest path problems. |
|
48 |
MAT ///< DIMACS file type for plain graphs and matching problems. |
|
49 |
}; |
|
45 | 50 |
///The file type |
46 | 51 |
Type type; |
47 | 52 |
///The number of nodes in the graph |
48 | 53 |
int nodeNum; |
49 | 54 |
///The number of edges in the graph |
50 | 55 |
int edgeNum; |
51 | 56 |
int lineShift; |
52 |
/// |
|
57 |
///Constructor. It sets the type to \c NONE. |
|
53 | 58 |
DimacsDescriptor() : type(NONE) {} |
54 | 59 |
}; |
55 | 60 |
|
56 | 61 |
///Discover the type of a DIMACS file |
57 | 62 |
|
58 |
///It starts seeking the beginning of the file for the problem type |
|
59 |
///and size info. The found data is returned in a special struct |
|
60 |
///that can be evaluated and passed to the appropriate reader |
|
61 |
///function. |
|
63 |
///This function starts seeking the beginning of the given file for the |
|
64 |
///problem type and size info. |
|
65 |
///The found data is returned in a special struct that can be evaluated |
|
66 |
///and passed to the appropriate reader function. |
|
62 | 67 |
DimacsDescriptor dimacsType(std::istream& is) |
63 | 68 |
{ |
64 | 69 |
DimacsDescriptor r; |
65 | 70 |
std::string problem,str; |
66 | 71 |
char c; |
67 | 72 |
r.lineShift=0; |
68 | 73 |
while (is >> c) |
69 | 74 |
switch(c) |
70 | 75 |
{ |
71 | 76 |
case 'p': |
72 | 77 |
if(is >> problem >> r.nodeNum >> r.edgeNum) |
73 | 78 |
{ |
74 | 79 |
getline(is, str); |
75 | 80 |
r.lineShift++; |
76 | 81 |
if(problem=="min") r.type=DimacsDescriptor::MIN; |
77 | 82 |
else if(problem=="max") r.type=DimacsDescriptor::MAX; |
78 | 83 |
else if(problem=="sp") r.type=DimacsDescriptor::SP; |
79 | 84 |
else if(problem=="mat") r.type=DimacsDescriptor::MAT; |
80 | 85 |
else throw FormatError("Unknown problem type"); |
81 | 86 |
return r; |
82 | 87 |
} |
83 | 88 |
else |
84 | 89 |
{ |
85 | 90 |
throw FormatError("Missing or wrong problem type declaration."); |
86 | 91 |
} |
87 | 92 |
break; |
88 | 93 |
case 'c': |
89 | 94 |
getline(is, str); |
90 | 95 |
r.lineShift++; |
91 | 96 |
break; |
92 | 97 |
default: |
93 | 98 |
throw FormatError("Unknown DIMACS declaration."); |
94 | 99 |
} |
95 | 100 |
throw FormatError("Missing problem type declaration."); |
96 | 101 |
} |
97 | 102 |
|
98 | 103 |
|
99 |
|
|
100 |
/// DIMACS minimum cost flow reader function. |
|
104 |
/// \brief DIMACS minimum cost flow reader function. |
|
101 | 105 |
/// |
102 | 106 |
/// This function reads a minimum cost flow instance from DIMACS format, |
103 | 107 |
/// i.e. from a DIMACS file having a line starting with |
104 | 108 |
/// \code |
105 | 109 |
/// p min |
106 | 110 |
/// \endcode |
107 | 111 |
/// At the beginning, \c g is cleared by \c g.clear(). The supply |
108 | 112 |
/// amount of the nodes are written to the \c supply node map |
109 | 113 |
/// (they are signed values). The lower bounds, capacities and costs |
110 | 114 |
/// of the arcs are written to the \c lower, \c capacity and \c cost |
111 | 115 |
/// arc maps. |
112 | 116 |
/// |
113 | 117 |
/// If the capacity of an arc is less than the lower bound, it will |
114 | 118 |
/// be set to "infinite" instead. The actual value of "infinite" is |
115 | 119 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
116 | 120 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
117 | 121 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
118 | 122 |
/// a non-zero value, that value will be used as "infinite". |
119 | 123 |
/// |
120 | 124 |
/// If the file type was previously evaluated by dimacsType(), then |
121 | 125 |
/// the descriptor struct should be given by the \c dest parameter. |
122 | 126 |
template <typename Digraph, typename LowerMap, |
123 | 127 |
typename CapacityMap, typename CostMap, |
124 | 128 |
typename SupplyMap> |
125 | 129 |
void readDimacsMin(std::istream& is, |
126 | 130 |
Digraph &g, |
127 | 131 |
LowerMap& lower, |
128 | 132 |
CapacityMap& capacity, |
129 | 133 |
CostMap& cost, |
130 | 134 |
SupplyMap& supply, |
131 | 135 |
typename CapacityMap::Value infty = 0, |
132 | 136 |
DimacsDescriptor desc=DimacsDescriptor()) |
133 | 137 |
{ |
134 | 138 |
g.clear(); |
135 | 139 |
std::vector<typename Digraph::Node> nodes; |
136 | 140 |
typename Digraph::Arc e; |
137 | 141 |
std::string problem, str; |
138 | 142 |
char c; |
139 | 143 |
int i, j; |
140 | 144 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
141 | 145 |
if(desc.type!=DimacsDescriptor::MIN) |
142 | 146 |
throw FormatError("Problem type mismatch"); |
143 | 147 |
|
144 | 148 |
nodes.resize(desc.nodeNum + 1); |
145 | 149 |
for (int k = 1; k <= desc.nodeNum; ++k) { |
146 | 150 |
nodes[k] = g.addNode(); |
147 | 151 |
supply.set(nodes[k], 0); |
148 | 152 |
} |
149 | 153 |
|
150 | 154 |
typename SupplyMap::Value sup; |
151 | 155 |
typename CapacityMap::Value low; |
152 | 156 |
typename CapacityMap::Value cap; |
153 | 157 |
typename CostMap::Value co; |
154 | 158 |
typedef typename CapacityMap::Value Capacity; |
155 | 159 |
if(infty==0) |
156 | 160 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
157 | 161 |
std::numeric_limits<Capacity>::infinity() : |
158 | 162 |
std::numeric_limits<Capacity>::max(); |
159 | 163 |
|
160 | 164 |
while (is >> c) { |
161 | 165 |
switch (c) { |
162 | 166 |
case 'c': // comment line |
163 | 167 |
getline(is, str); |
164 | 168 |
break; |
165 | 169 |
case 'n': // node definition line |
166 | 170 |
is >> i >> sup; |
167 | 171 |
getline(is, str); |
168 | 172 |
supply.set(nodes[i], sup); |
169 | 173 |
break; |
170 | 174 |
case 'a': // arc definition line |
171 | 175 |
is >> i >> j >> low >> cap >> co; |
172 | 176 |
getline(is, str); |
173 | 177 |
e = g.addArc(nodes[i], nodes[j]); |
174 | 178 |
lower.set(e, low); |
175 | 179 |
if (cap >= low) |
176 | 180 |
capacity.set(e, cap); |
177 | 181 |
else |
178 | 182 |
capacity.set(e, infty); |
179 | 183 |
cost.set(e, co); |
180 | 184 |
break; |
181 | 185 |
} |
182 | 186 |
} |
183 | 187 |
} |
184 | 188 |
|
185 | 189 |
template<typename Digraph, typename CapacityMap> |
186 | 190 |
void _readDimacs(std::istream& is, |
187 | 191 |
Digraph &g, |
188 | 192 |
CapacityMap& capacity, |
189 | 193 |
typename Digraph::Node &s, |
190 | 194 |
typename Digraph::Node &t, |
191 | 195 |
typename CapacityMap::Value infty = 0, |
192 | 196 |
DimacsDescriptor desc=DimacsDescriptor()) { |
193 | 197 |
g.clear(); |
194 | 198 |
s=t=INVALID; |
195 | 199 |
std::vector<typename Digraph::Node> nodes; |
196 | 200 |
typename Digraph::Arc e; |
197 | 201 |
char c, d; |
198 | 202 |
int i, j; |
199 | 203 |
typename CapacityMap::Value _cap; |
200 | 204 |
std::string str; |
201 | 205 |
nodes.resize(desc.nodeNum + 1); |
202 | 206 |
for (int k = 1; k <= desc.nodeNum; ++k) { |
203 | 207 |
nodes[k] = g.addNode(); |
204 | 208 |
} |
205 | 209 |
typedef typename CapacityMap::Value Capacity; |
206 | 210 |
|
207 | 211 |
if(infty==0) |
208 | 212 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
209 | 213 |
std::numeric_limits<Capacity>::infinity() : |
210 | 214 |
std::numeric_limits<Capacity>::max(); |
211 | 215 |
|
212 | 216 |
while (is >> c) { |
213 | 217 |
switch (c) { |
214 | 218 |
case 'c': // comment line |
215 | 219 |
getline(is, str); |
216 | 220 |
break; |
217 | 221 |
case 'n': // node definition line |
218 | 222 |
if (desc.type==DimacsDescriptor::SP) { // shortest path problem |
219 | 223 |
is >> i; |
220 | 224 |
getline(is, str); |
221 | 225 |
s = nodes[i]; |
222 | 226 |
} |
223 | 227 |
if (desc.type==DimacsDescriptor::MAX) { // max flow problem |
224 | 228 |
is >> i >> d; |
225 | 229 |
getline(is, str); |
226 | 230 |
if (d == 's') s = nodes[i]; |
227 | 231 |
if (d == 't') t = nodes[i]; |
228 | 232 |
} |
229 | 233 |
break; |
230 | 234 |
case 'a': // arc definition line |
231 | 235 |
if (desc.type==DimacsDescriptor::SP) { |
232 | 236 |
is >> i >> j >> _cap; |
233 | 237 |
getline(is, str); |
234 | 238 |
e = g.addArc(nodes[i], nodes[j]); |
235 | 239 |
capacity.set(e, _cap); |
236 | 240 |
} |
237 | 241 |
else if (desc.type==DimacsDescriptor::MAX) { |
238 | 242 |
is >> i >> j >> _cap; |
239 | 243 |
getline(is, str); |
240 | 244 |
e = g.addArc(nodes[i], nodes[j]); |
241 | 245 |
if (_cap >= 0) |
242 | 246 |
capacity.set(e, _cap); |
243 | 247 |
else |
244 | 248 |
capacity.set(e, infty); |
245 | 249 |
} |
246 | 250 |
else { |
247 | 251 |
is >> i >> j; |
248 | 252 |
getline(is, str); |
249 | 253 |
g.addArc(nodes[i], nodes[j]); |
250 | 254 |
} |
251 | 255 |
break; |
252 | 256 |
} |
253 | 257 |
} |
254 | 258 |
} |
255 | 259 |
|
256 |
/// DIMACS maximum flow reader function. |
|
260 |
/// \brief DIMACS maximum flow reader function. |
|
257 | 261 |
/// |
258 | 262 |
/// This function reads a maximum flow instance from DIMACS format, |
259 | 263 |
/// i.e. from a DIMACS file having a line starting with |
260 | 264 |
/// \code |
261 | 265 |
/// p max |
262 | 266 |
/// \endcode |
263 | 267 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
264 | 268 |
/// capacities are written to the \c capacity arc map and \c s and |
265 | 269 |
/// \c t are set to the source and the target nodes. |
266 | 270 |
/// |
267 | 271 |
/// If the capacity of an arc is negative, it will |
268 | 272 |
/// be set to "infinite" instead. The actual value of "infinite" is |
269 | 273 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
270 | 274 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
271 | 275 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
272 | 276 |
/// a non-zero value, that value will be used as "infinite". |
273 | 277 |
/// |
274 | 278 |
/// If the file type was previously evaluated by dimacsType(), then |
275 | 279 |
/// the descriptor struct should be given by the \c dest parameter. |
276 | 280 |
template<typename Digraph, typename CapacityMap> |
277 | 281 |
void readDimacsMax(std::istream& is, |
278 | 282 |
Digraph &g, |
279 | 283 |
CapacityMap& capacity, |
280 | 284 |
typename Digraph::Node &s, |
281 | 285 |
typename Digraph::Node &t, |
282 | 286 |
typename CapacityMap::Value infty = 0, |
283 | 287 |
DimacsDescriptor desc=DimacsDescriptor()) { |
284 | 288 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
285 | 289 |
if(desc.type!=DimacsDescriptor::MAX) |
286 | 290 |
throw FormatError("Problem type mismatch"); |
287 | 291 |
_readDimacs(is,g,capacity,s,t,infty,desc); |
288 | 292 |
} |
289 | 293 |
|
290 |
/// DIMACS shortest path reader function. |
|
294 |
/// \brief DIMACS shortest path reader function. |
|
291 | 295 |
/// |
292 | 296 |
/// This function reads a shortest path instance from DIMACS format, |
293 | 297 |
/// i.e. from a DIMACS file having a line starting with |
294 | 298 |
/// \code |
295 | 299 |
/// p sp |
296 | 300 |
/// \endcode |
297 | 301 |
/// At the beginning, \c g is cleared by \c g.clear(). The arc |
298 | 302 |
/// lengths are written to the \c length arc map and \c s is set to the |
299 | 303 |
/// source node. |
300 | 304 |
/// |
301 | 305 |
/// If the file type was previously evaluated by dimacsType(), then |
302 | 306 |
/// the descriptor struct should be given by the \c dest parameter. |
303 | 307 |
template<typename Digraph, typename LengthMap> |
304 | 308 |
void readDimacsSp(std::istream& is, |
305 | 309 |
Digraph &g, |
306 | 310 |
LengthMap& length, |
307 | 311 |
typename Digraph::Node &s, |
308 | 312 |
DimacsDescriptor desc=DimacsDescriptor()) { |
309 | 313 |
typename Digraph::Node t; |
310 | 314 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
311 | 315 |
if(desc.type!=DimacsDescriptor::SP) |
312 | 316 |
throw FormatError("Problem type mismatch"); |
313 | 317 |
_readDimacs(is, g, length, s, t, 0, desc); |
314 | 318 |
} |
315 | 319 |
|
316 |
/// DIMACS capacitated digraph reader function. |
|
320 |
/// \brief DIMACS capacitated digraph reader function. |
|
317 | 321 |
/// |
318 | 322 |
/// This function reads an arc capacitated digraph instance from |
319 | 323 |
/// DIMACS 'max' or 'sp' format. |
320 | 324 |
/// At the beginning, \c g is cleared by \c g.clear() |
321 | 325 |
/// and the arc capacities/lengths are written to the \c capacity |
322 | 326 |
/// arc map. |
323 | 327 |
/// |
324 | 328 |
/// In case of the 'max' format, if the capacity of an arc is negative, |
325 | 329 |
/// it will |
326 | 330 |
/// be set to "infinite" instead. The actual value of "infinite" is |
327 | 331 |
/// contolled by the \c infty parameter. If it is 0 (the default value), |
328 | 332 |
/// \c std::numeric_limits<Capacity>::infinity() will be used if available, |
329 | 333 |
/// \c std::numeric_limits<Capacity>::max() otherwise. If \c infty is set to |
330 | 334 |
/// a non-zero value, that value will be used as "infinite". |
331 | 335 |
/// |
332 | 336 |
/// If the file type was previously evaluated by dimacsType(), then |
333 | 337 |
/// the descriptor struct should be given by the \c dest parameter. |
334 | 338 |
template<typename Digraph, typename CapacityMap> |
335 | 339 |
void readDimacsCap(std::istream& is, |
336 | 340 |
Digraph &g, |
337 | 341 |
CapacityMap& capacity, |
338 | 342 |
typename CapacityMap::Value infty = 0, |
339 | 343 |
DimacsDescriptor desc=DimacsDescriptor()) { |
340 | 344 |
typename Digraph::Node u,v; |
341 | 345 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
342 | 346 |
if(desc.type!=DimacsDescriptor::MAX || desc.type!=DimacsDescriptor::SP) |
343 | 347 |
throw FormatError("Problem type mismatch"); |
344 | 348 |
_readDimacs(is, g, capacity, u, v, infty, desc); |
345 | 349 |
} |
346 | 350 |
|
347 | 351 |
template<typename Graph> |
348 | 352 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
349 | 353 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
350 | 354 |
dummy<0> = 0) |
351 | 355 |
{ |
352 | 356 |
g.addEdge(s,t); |
353 | 357 |
} |
354 | 358 |
template<typename Graph> |
355 | 359 |
typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
356 | 360 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
357 | 361 |
dummy<1> = 1) |
358 | 362 |
{ |
359 | 363 |
g.addArc(s,t); |
360 | 364 |
} |
361 | 365 |
|
362 |
/// DIMACS plain (di)graph reader function. |
|
366 |
/// \brief DIMACS plain (di)graph reader function. |
|
363 | 367 |
/// |
364 |
/// This function reads a (di)graph without any designated nodes and |
|
365 |
/// maps from DIMACS format, i.e. from DIMACS files having a line |
|
366 |
/// |
|
368 |
/// This function reads a plain (di)graph without any designated nodes |
|
369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
370 |
/// DIMACS files having a line starting with |
|
367 | 371 |
/// \code |
368 | 372 |
/// p mat |
369 | 373 |
/// \endcode |
370 | 374 |
/// At the beginning, \c g is cleared by \c g.clear(). |
371 | 375 |
/// |
372 | 376 |
/// If the file type was previously evaluated by dimacsType(), then |
373 | 377 |
/// the descriptor struct should be given by the \c dest parameter. |
374 | 378 |
template<typename Graph> |
375 | 379 |
void readDimacsMat(std::istream& is, Graph &g, |
376 | 380 |
DimacsDescriptor desc=DimacsDescriptor()) |
377 | 381 |
{ |
378 | 382 |
if(desc.type==DimacsDescriptor::NONE) desc=dimacsType(is); |
379 | 383 |
if(desc.type!=DimacsDescriptor::MAT) |
380 | 384 |
throw FormatError("Problem type mismatch"); |
381 | 385 |
|
382 | 386 |
g.clear(); |
383 | 387 |
std::vector<typename Graph::Node> nodes; |
384 | 388 |
char c; |
385 | 389 |
int i, j; |
386 | 390 |
std::string str; |
387 | 391 |
nodes.resize(desc.nodeNum + 1); |
388 | 392 |
for (int k = 1; k <= desc.nodeNum; ++k) { |
389 | 393 |
nodes[k] = g.addNode(); |
390 | 394 |
} |
391 | 395 |
|
392 | 396 |
while (is >> c) { |
393 | 397 |
switch (c) { |
394 | 398 |
case 'c': // comment line |
395 | 399 |
getline(is, str); |
396 | 400 |
break; |
397 | 401 |
case 'n': // node definition line |
398 | 402 |
break; |
399 | 403 |
case 'a': // arc definition line |
400 | 404 |
is >> i >> j; |
401 | 405 |
getline(is, str); |
402 | 406 |
_addArcEdge(g,nodes[i], nodes[j]); |
403 | 407 |
break; |
404 | 408 |
} |
405 | 409 |
} |
406 | 410 |
} |
407 | 411 |
|
408 | 412 |
/// DIMACS plain digraph writer function. |
409 | 413 |
/// |
410 | 414 |
/// This function writes a digraph without any designated nodes and |
411 | 415 |
/// maps into DIMACS format, i.e. into DIMACS file having a line |
412 | 416 |
/// starting with |
413 | 417 |
/// \code |
414 | 418 |
/// p mat |
415 | 419 |
/// \endcode |
416 | 420 |
/// If \c comment is not empty, then it will be printed in the first line |
417 | 421 |
/// prefixed by 'c'. |
418 | 422 |
template<typename Digraph> |
419 | 423 |
void writeDimacsMat(std::ostream& os, const Digraph &g, |
420 | 424 |
std::string comment="") { |
421 | 425 |
typedef typename Digraph::NodeIt NodeIt; |
422 | 426 |
typedef typename Digraph::ArcIt ArcIt; |
423 | 427 |
|
424 | 428 |
if(!comment.empty()) |
425 | 429 |
os << "c " << comment << std::endl; |
426 | 430 |
os << "p mat " << g.nodeNum() << " " << g.arcNum() << std::endl; |
427 | 431 |
|
428 | 432 |
typename Digraph::template NodeMap<int> nodes(g); |
429 | 433 |
int i = 1; |
430 | 434 |
for(NodeIt v(g); v != INVALID; ++v) { |
431 | 435 |
nodes.set(v, i); |
432 | 436 |
++i; |
433 | 437 |
} |
434 | 438 |
for(ArcIt e(g); e != INVALID; ++e) { |
435 | 439 |
os << "a " << nodes[g.source(e)] << " " << nodes[g.target(e)] |
436 | 440 |
<< std::endl; |
437 | 441 |
} |
438 | 442 |
} |
439 | 443 |
|
440 | 444 |
/// @} |
441 | 445 |
|
442 | 446 |
} //namespace lemon |
443 | 447 |
|
444 | 448 |
#endif //LEMON_DIMACS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#include<lemon/bits/windows.h> |
33 | 33 |
#endif |
34 | 34 |
|
35 | 35 |
#include<lemon/math.h> |
36 | 36 |
#include<lemon/core.h> |
37 | 37 |
#include<lemon/dim2.h> |
38 | 38 |
#include<lemon/maps.h> |
39 | 39 |
#include<lemon/color.h> |
40 | 40 |
#include<lemon/bits/bezier.h> |
41 | 41 |
#include<lemon/error.h> |
42 | 42 |
|
43 | 43 |
|
44 | 44 |
///\ingroup eps_io |
45 | 45 |
///\file |
46 | 46 |
///\brief A well configurable tool for visualizing graphs |
47 | 47 |
|
48 | 48 |
namespace lemon { |
49 | 49 |
|
50 | 50 |
namespace _graph_to_eps_bits { |
51 | 51 |
template<class MT> |
52 | 52 |
class _NegY { |
53 | 53 |
public: |
54 | 54 |
typedef typename MT::Key Key; |
55 | 55 |
typedef typename MT::Value Value; |
56 | 56 |
const MT ↦ |
57 | 57 |
int yscale; |
58 | 58 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
59 | 59 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
60 | 60 |
}; |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
///Default traits class of GraphToEps |
64 | 64 |
|
65 | 65 |
///Default traits class of \ref GraphToEps. |
66 | 66 |
/// |
67 | 67 |
///\param GR is the type of the underlying graph. |
68 | 68 |
template<class GR> |
69 | 69 |
struct DefaultGraphToEpsTraits |
70 | 70 |
{ |
71 | 71 |
typedef GR Graph; |
72 | 72 |
typedef typename Graph::Node Node; |
73 | 73 |
typedef typename Graph::NodeIt NodeIt; |
74 | 74 |
typedef typename Graph::Arc Arc; |
75 | 75 |
typedef typename Graph::ArcIt ArcIt; |
76 | 76 |
typedef typename Graph::InArcIt InArcIt; |
77 | 77 |
typedef typename Graph::OutArcIt OutArcIt; |
78 | 78 |
|
79 | 79 |
|
80 | 80 |
const Graph &g; |
81 | 81 |
|
82 | 82 |
std::ostream& os; |
83 | 83 |
|
84 | 84 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
85 | 85 |
CoordsMapType _coords; |
86 | 86 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
87 | 87 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
88 | 88 |
|
89 | 89 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
90 | 90 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
91 | 91 |
|
92 | 92 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
93 | 93 |
|
94 | 94 |
double _arcWidthScale; |
95 | 95 |
|
96 | 96 |
double _nodeScale; |
97 | 97 |
double _xBorder, _yBorder; |
98 | 98 |
double _scale; |
99 | 99 |
double _nodeBorderQuotient; |
100 | 100 |
|
101 | 101 |
bool _drawArrows; |
102 | 102 |
double _arrowLength, _arrowWidth; |
103 | 103 |
|
104 | 104 |
bool _showNodes, _showArcs; |
105 | 105 |
|
106 | 106 |
bool _enableParallel; |
107 | 107 |
double _parArcDist; |
108 | 108 |
|
109 | 109 |
bool _showNodeText; |
110 | 110 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
111 | 111 |
double _nodeTextSize; |
112 | 112 |
|
113 | 113 |
bool _showNodePsText; |
114 | 114 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
115 | 115 |
char *_nodePsTextsPreamble; |
116 | 116 |
|
117 | 117 |
bool _undirected; |
118 | 118 |
|
119 | 119 |
bool _pleaseRemoveOsStream; |
120 | 120 |
|
121 | 121 |
bool _scaleToA4; |
122 | 122 |
|
123 | 123 |
std::string _title; |
124 | 124 |
std::string _copyright; |
125 | 125 |
|
126 | 126 |
enum NodeTextColorType |
127 | 127 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
128 | 128 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
129 | 129 |
|
130 | 130 |
bool _autoNodeScale; |
131 | 131 |
bool _autoArcWidthScale; |
132 | 132 |
|
133 | 133 |
bool _absoluteNodeSizes; |
134 | 134 |
bool _absoluteArcWidths; |
135 | 135 |
|
136 | 136 |
bool _negY; |
137 | 137 |
|
138 | 138 |
bool _preScale; |
139 | 139 |
///Constructor |
140 | 140 |
|
141 | 141 |
///Constructor |
142 | 142 |
///\param gr Reference to the graph to be printed. |
143 | 143 |
///\param ost Reference to the output stream. |
144 | 144 |
///By default it is <tt>std::cout</tt>. |
145 | 145 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
146 | 146 |
///will be explicitly deallocated by the destructor. |
147 | 147 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
148 | 148 |
bool pros = false) : |
149 | 149 |
g(gr), os(ost), |
150 | 150 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
151 | 151 |
_nodeColors(WHITE), _arcColors(BLACK), |
152 | 152 |
_arcWidths(1.0), _arcWidthScale(0.003), |
153 | 153 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
154 | 154 |
_nodeBorderQuotient(.1), |
155 | 155 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
156 | 156 |
_showNodes(true), _showArcs(true), |
157 | 157 |
_enableParallel(false), _parArcDist(1), |
158 | 158 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
159 | 159 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
160 | 160 |
_undirected(lemon::UndirectedTagIndicator<GR>::value), |
161 | 161 |
_pleaseRemoveOsStream(pros), _scaleToA4(false), |
162 | 162 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
163 | 163 |
_autoNodeScale(false), |
164 | 164 |
_autoArcWidthScale(false), |
165 | 165 |
_absoluteNodeSizes(false), |
166 | 166 |
_absoluteArcWidths(false), |
167 | 167 |
_negY(false), |
168 | 168 |
_preScale(true) |
169 | 169 |
{} |
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
173 | 173 |
|
174 | 174 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
175 | 175 |
/// |
176 | 176 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
177 | 177 |
template<class T> class GraphToEps : public T |
178 | 178 |
{ |
179 | 179 |
// Can't believe it is required by the C++ standard |
180 | 180 |
using T::g; |
181 | 181 |
using T::os; |
182 | 182 |
|
183 | 183 |
using T::_coords; |
184 | 184 |
using T::_nodeSizes; |
185 | 185 |
using T::_nodeShapes; |
186 | 186 |
using T::_nodeColors; |
187 | 187 |
using T::_arcColors; |
188 | 188 |
using T::_arcWidths; |
189 | 189 |
|
190 | 190 |
using T::_arcWidthScale; |
191 | 191 |
using T::_nodeScale; |
192 | 192 |
using T::_xBorder; |
193 | 193 |
using T::_yBorder; |
194 | 194 |
using T::_scale; |
195 | 195 |
using T::_nodeBorderQuotient; |
196 | 196 |
|
197 | 197 |
using T::_drawArrows; |
198 | 198 |
using T::_arrowLength; |
199 | 199 |
using T::_arrowWidth; |
200 | 200 |
|
201 | 201 |
using T::_showNodes; |
202 | 202 |
using T::_showArcs; |
203 | 203 |
|
204 | 204 |
using T::_enableParallel; |
205 | 205 |
using T::_parArcDist; |
206 | 206 |
|
207 | 207 |
using T::_showNodeText; |
208 | 208 |
using T::_nodeTexts; |
209 | 209 |
using T::_nodeTextSize; |
210 | 210 |
|
211 | 211 |
using T::_showNodePsText; |
212 | 212 |
using T::_nodePsTexts; |
213 | 213 |
using T::_nodePsTextsPreamble; |
214 | 214 |
|
215 | 215 |
using T::_undirected; |
216 | 216 |
|
217 | 217 |
using T::_pleaseRemoveOsStream; |
218 | 218 |
|
219 | 219 |
using T::_scaleToA4; |
220 | 220 |
|
221 | 221 |
using T::_title; |
222 | 222 |
using T::_copyright; |
223 | 223 |
|
224 | 224 |
using T::NodeTextColorType; |
225 | 225 |
using T::CUST_COL; |
226 | 226 |
using T::DIST_COL; |
227 | 227 |
using T::DIST_BW; |
228 | 228 |
using T::_nodeTextColorType; |
229 | 229 |
using T::_nodeTextColors; |
230 | 230 |
|
231 | 231 |
using T::_autoNodeScale; |
232 | 232 |
using T::_autoArcWidthScale; |
233 | 233 |
|
234 | 234 |
using T::_absoluteNodeSizes; |
235 | 235 |
using T::_absoluteArcWidths; |
236 | 236 |
|
237 | 237 |
|
238 | 238 |
using T::_negY; |
239 | 239 |
using T::_preScale; |
240 | 240 |
|
241 | 241 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
242 | 242 |
|
243 | 243 |
typedef typename T::Graph Graph; |
244 | 244 |
typedef typename Graph::Node Node; |
245 | 245 |
typedef typename Graph::NodeIt NodeIt; |
246 | 246 |
typedef typename Graph::Arc Arc; |
247 | 247 |
typedef typename Graph::ArcIt ArcIt; |
248 | 248 |
typedef typename Graph::InArcIt InArcIt; |
249 | 249 |
typedef typename Graph::OutArcIt OutArcIt; |
250 | 250 |
|
251 | 251 |
static const int INTERPOL_PREC; |
252 | 252 |
static const double A4HEIGHT; |
253 | 253 |
static const double A4WIDTH; |
254 | 254 |
static const double A4BORDER; |
255 | 255 |
|
256 | 256 |
bool dontPrint; |
257 | 257 |
|
258 | 258 |
public: |
259 | 259 |
///Node shapes |
260 | 260 |
|
261 | 261 |
///Node shapes. |
262 | 262 |
/// |
263 | 263 |
enum NodeShapes { |
264 | 264 |
/// = 0 |
265 | 265 |
///\image html nodeshape_0.png |
266 | 266 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
267 | 267 |
CIRCLE=0, |
268 | 268 |
/// = 1 |
269 | 269 |
///\image html nodeshape_1.png |
270 | 270 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
271 |
/// |
|
272 | 271 |
SQUARE=1, |
273 | 272 |
/// = 2 |
274 | 273 |
///\image html nodeshape_2.png |
275 | 274 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
276 |
/// |
|
277 | 275 |
DIAMOND=2, |
278 | 276 |
/// = 3 |
279 | 277 |
///\image html nodeshape_3.png |
280 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
|
281 |
/// |
|
278 |
///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm |
|
282 | 279 |
MALE=3, |
283 | 280 |
/// = 4 |
284 | 281 |
///\image html nodeshape_4.png |
285 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
|
286 |
/// |
|
282 |
///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm |
|
287 | 283 |
FEMALE=4 |
288 | 284 |
}; |
289 | 285 |
|
290 | 286 |
private: |
291 | 287 |
class arcLess { |
292 | 288 |
const Graph &g; |
293 | 289 |
public: |
294 | 290 |
arcLess(const Graph &_g) : g(_g) {} |
295 | 291 |
bool operator()(Arc a,Arc b) const |
296 | 292 |
{ |
297 | 293 |
Node ai=std::min(g.source(a),g.target(a)); |
298 | 294 |
Node aa=std::max(g.source(a),g.target(a)); |
299 | 295 |
Node bi=std::min(g.source(b),g.target(b)); |
300 | 296 |
Node ba=std::max(g.source(b),g.target(b)); |
301 | 297 |
return ai<bi || |
302 | 298 |
(ai==bi && (aa < ba || |
303 | 299 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
304 | 300 |
} |
305 | 301 |
}; |
306 | 302 |
bool isParallel(Arc e,Arc f) const |
307 | 303 |
{ |
308 | 304 |
return (g.source(e)==g.source(f)&& |
309 | 305 |
g.target(e)==g.target(f)) || |
310 | 306 |
(g.source(e)==g.target(f)&& |
311 | 307 |
g.target(e)==g.source(f)); |
312 | 308 |
} |
313 | 309 |
template<class TT> |
314 | 310 |
static std::string psOut(const dim2::Point<TT> &p) |
315 | 311 |
{ |
316 | 312 |
std::ostringstream os; |
317 | 313 |
os << p.x << ' ' << p.y; |
318 | 314 |
return os.str(); |
319 | 315 |
} |
320 | 316 |
static std::string psOut(const Color &c) |
321 | 317 |
{ |
322 | 318 |
std::ostringstream os; |
323 | 319 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
324 | 320 |
return os.str(); |
325 | 321 |
} |
326 | 322 |
|
327 | 323 |
public: |
328 | 324 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
329 | 325 |
|
330 | 326 |
template<class X> struct CoordsTraits : public T { |
331 | 327 |
typedef X CoordsMapType; |
332 | 328 |
const X &_coords; |
333 | 329 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
334 | 330 |
}; |
335 | 331 |
///Sets the map of the node coordinates |
336 | 332 |
|
337 | 333 |
///Sets the map of the node coordinates. |
338 | 334 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
339 | 335 |
///\ref dim2::Point "dim2::Point<int>" values. |
340 | 336 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
341 | 337 |
dontPrint=true; |
342 | 338 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
343 | 339 |
} |
344 | 340 |
template<class X> struct NodeSizesTraits : public T { |
345 | 341 |
const X &_nodeSizes; |
346 | 342 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
347 | 343 |
}; |
348 | 344 |
///Sets the map of the node sizes |
349 | 345 |
|
350 | 346 |
///Sets the map of the node sizes. |
351 | 347 |
///\param x must be a node map with \c double (or convertible) values. |
352 | 348 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
353 | 349 |
{ |
354 | 350 |
dontPrint=true; |
355 | 351 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
356 | 352 |
} |
357 | 353 |
template<class X> struct NodeShapesTraits : public T { |
358 | 354 |
const X &_nodeShapes; |
359 | 355 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
360 | 356 |
}; |
361 | 357 |
///Sets the map of the node shapes |
362 | 358 |
|
363 | 359 |
///Sets the map of the node shapes. |
364 | 360 |
///The available shape values |
365 | 361 |
///can be found in \ref NodeShapes "enum NodeShapes". |
366 | 362 |
///\param x must be a node map with \c int (or convertible) values. |
367 | 363 |
///\sa NodeShapes |
368 | 364 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
369 | 365 |
{ |
370 | 366 |
dontPrint=true; |
371 | 367 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
372 | 368 |
} |
373 | 369 |
template<class X> struct NodeTextsTraits : public T { |
374 | 370 |
const X &_nodeTexts; |
375 | 371 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
376 | 372 |
}; |
377 | 373 |
///Sets the text printed on the nodes |
378 | 374 |
|
379 | 375 |
///Sets the text printed on the nodes. |
380 | 376 |
///\param x must be a node map with type that can be pushed to a standard |
381 | 377 |
///\c ostream. |
382 | 378 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
383 | 379 |
{ |
384 | 380 |
dontPrint=true; |
385 | 381 |
_showNodeText=true; |
386 | 382 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
387 | 383 |
} |
388 | 384 |
template<class X> struct NodePsTextsTraits : public T { |
389 | 385 |
const X &_nodePsTexts; |
390 | 386 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
391 | 387 |
}; |
392 | 388 |
///Inserts a PostScript block to the nodes |
393 | 389 |
|
394 | 390 |
///With this command it is possible to insert a verbatim PostScript |
395 | 391 |
///block to the nodes. |
396 | 392 |
///The PS current point will be moved to the center of the node before |
397 | 393 |
///the PostScript block inserted. |
398 | 394 |
/// |
399 | 395 |
///Before and after the block a newline character is inserted so you |
400 | 396 |
///don't have to bother with the separators. |
401 | 397 |
/// |
402 | 398 |
///\param x must be a node map with type that can be pushed to a standard |
403 | 399 |
///\c ostream. |
404 | 400 |
/// |
405 | 401 |
///\sa nodePsTextsPreamble() |
406 | 402 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
407 | 403 |
{ |
408 | 404 |
dontPrint=true; |
409 | 405 |
_showNodePsText=true; |
410 | 406 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
411 | 407 |
} |
412 | 408 |
template<class X> struct ArcWidthsTraits : public T { |
413 | 409 |
const X &_arcWidths; |
414 | 410 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
415 | 411 |
}; |
416 | 412 |
///Sets the map of the arc widths |
417 | 413 |
|
418 | 414 |
///Sets the map of the arc widths. |
419 | 415 |
///\param x must be an arc map with \c double (or convertible) values. |
420 | 416 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
421 | 417 |
{ |
422 | 418 |
dontPrint=true; |
423 | 419 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
424 | 420 |
} |
425 | 421 |
|
426 | 422 |
template<class X> struct NodeColorsTraits : public T { |
427 | 423 |
const X &_nodeColors; |
428 | 424 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
429 | 425 |
}; |
430 | 426 |
///Sets the map of the node colors |
431 | 427 |
|
432 | 428 |
///Sets the map of the node colors. |
433 | 429 |
///\param x must be a node map with \ref Color values. |
434 | 430 |
/// |
435 | 431 |
///\sa Palette |
436 | 432 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
437 | 433 |
nodeColors(const X &x) |
438 | 434 |
{ |
439 | 435 |
dontPrint=true; |
440 | 436 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
441 | 437 |
} |
442 | 438 |
template<class X> struct NodeTextColorsTraits : public T { |
443 | 439 |
const X &_nodeTextColors; |
444 | 440 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
445 | 441 |
}; |
446 | 442 |
///Sets the map of the node text colors |
447 | 443 |
|
448 | 444 |
///Sets the map of the node text colors. |
449 | 445 |
///\param x must be a node map with \ref Color values. |
450 | 446 |
/// |
451 | 447 |
///\sa Palette |
452 | 448 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
453 | 449 |
nodeTextColors(const X &x) |
454 | 450 |
{ |
455 | 451 |
dontPrint=true; |
456 | 452 |
_nodeTextColorType=CUST_COL; |
457 | 453 |
return GraphToEps<NodeTextColorsTraits<X> > |
458 | 454 |
(NodeTextColorsTraits<X>(*this,x)); |
459 | 455 |
} |
460 | 456 |
template<class X> struct ArcColorsTraits : public T { |
461 | 457 |
const X &_arcColors; |
462 | 458 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
463 | 459 |
}; |
464 | 460 |
///Sets the map of the arc colors |
465 | 461 |
|
466 | 462 |
///Sets the map of the arc colors. |
467 | 463 |
///\param x must be an arc map with \ref Color values. |
468 | 464 |
/// |
469 | 465 |
///\sa Palette |
470 | 466 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
471 | 467 |
arcColors(const X &x) |
472 | 468 |
{ |
473 | 469 |
dontPrint=true; |
474 | 470 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
475 | 471 |
} |
476 | 472 |
///Sets a global scale factor for node sizes |
477 | 473 |
|
478 | 474 |
///Sets a global scale factor for node sizes. |
479 | 475 |
/// |
480 | 476 |
/// If nodeSizes() is not given, this function simply sets the node |
481 | 477 |
/// sizes to \c d. If nodeSizes() is given, but |
482 | 478 |
/// autoNodeScale() is not, then the node size given by |
483 | 479 |
/// nodeSizes() will be multiplied by the value \c d. |
484 | 480 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
485 | 481 |
/// node sizes will be scaled in such a way that the greatest size will be |
486 | 482 |
/// equal to \c d. |
487 | 483 |
/// \sa nodeSizes() |
488 | 484 |
/// \sa autoNodeScale() |
489 | 485 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
490 | 486 |
///Turns on/off the automatic node size scaling. |
491 | 487 |
|
492 | 488 |
///Turns on/off the automatic node size scaling. |
493 | 489 |
/// |
494 | 490 |
///\sa nodeScale() |
495 | 491 |
/// |
496 | 492 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
497 | 493 |
_autoNodeScale=b;return *this; |
498 | 494 |
} |
499 | 495 |
|
500 | 496 |
///Turns on/off the absolutematic node size scaling. |
501 | 497 |
|
502 | 498 |
///Turns on/off the absolutematic node size scaling. |
503 | 499 |
/// |
504 | 500 |
///\sa nodeScale() |
505 | 501 |
/// |
506 | 502 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
507 | 503 |
_absoluteNodeSizes=b;return *this; |
508 | 504 |
} |
509 | 505 |
|
510 | 506 |
///Negates the Y coordinates. |
511 | 507 |
GraphToEps<T> &negateY(bool b=true) { |
512 | 508 |
_negY=b;return *this; |
513 | 509 |
} |
514 | 510 |
|
515 | 511 |
///Turn on/off pre-scaling |
516 | 512 |
|
517 | 513 |
///By default graphToEps() rescales the whole image in order to avoid |
518 | 514 |
///very big or very small bounding boxes. |
519 | 515 |
/// |
520 | 516 |
///This (p)rescaling can be turned off with this function. |
521 | 517 |
/// |
522 | 518 |
GraphToEps<T> &preScale(bool b=true) { |
523 | 519 |
_preScale=b;return *this; |
524 | 520 |
} |
525 | 521 |
|
526 | 522 |
///Sets a global scale factor for arc widths |
527 | 523 |
|
528 | 524 |
/// Sets a global scale factor for arc widths. |
529 | 525 |
/// |
530 | 526 |
/// If arcWidths() is not given, this function simply sets the arc |
531 | 527 |
/// widths to \c d. If arcWidths() is given, but |
532 | 528 |
/// autoArcWidthScale() is not, then the arc withs given by |
533 | 529 |
/// arcWidths() will be multiplied by the value \c d. |
534 | 530 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
535 | 531 |
/// arc withs will be scaled in such a way that the greatest width will be |
536 | 532 |
/// equal to \c d. |
537 | 533 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
538 | 534 |
///Turns on/off the automatic arc width scaling. |
539 | 535 |
|
540 | 536 |
///Turns on/off the automatic arc width scaling. |
541 | 537 |
/// |
542 | 538 |
///\sa arcWidthScale() |
543 | 539 |
/// |
544 | 540 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
545 | 541 |
_autoArcWidthScale=b;return *this; |
546 | 542 |
} |
547 | 543 |
///Turns on/off the absolutematic arc width scaling. |
548 | 544 |
|
549 | 545 |
///Turns on/off the absolutematic arc width scaling. |
550 | 546 |
/// |
551 | 547 |
///\sa arcWidthScale() |
552 | 548 |
/// |
553 | 549 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
554 | 550 |
_absoluteArcWidths=b;return *this; |
555 | 551 |
} |
556 | 552 |
///Sets a global scale factor for the whole picture |
557 | 553 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
558 | 554 |
///Sets the width of the border around the picture |
559 | 555 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
560 | 556 |
///Sets the width of the border around the picture |
561 | 557 |
GraphToEps<T> &border(double x, double y) { |
562 | 558 |
_xBorder=x;_yBorder=y;return *this; |
563 | 559 |
} |
564 | 560 |
///Sets whether to draw arrows |
565 | 561 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
566 | 562 |
///Sets the length of the arrowheads |
567 | 563 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
568 | 564 |
///Sets the width of the arrowheads |
569 | 565 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
570 | 566 |
|
571 | 567 |
///Scales the drawing to fit to A4 page |
572 | 568 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
573 | 569 |
|
574 | 570 |
///Enables parallel arcs |
575 | 571 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
576 | 572 |
|
577 | 573 |
///Sets the distance between parallel arcs |
578 | 574 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
579 | 575 |
|
580 | 576 |
///Hides the arcs |
581 | 577 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
582 | 578 |
///Hides the nodes |
583 | 579 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
584 | 580 |
|
585 | 581 |
///Sets the size of the node texts |
586 | 582 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
587 | 583 |
|
588 | 584 |
///Sets the color of the node texts to be different from the node color |
589 | 585 |
|
590 | 586 |
///Sets the color of the node texts to be as different from the node color |
591 | 587 |
///as it is possible. |
592 | 588 |
GraphToEps<T> &distantColorNodeTexts() |
593 | 589 |
{_nodeTextColorType=DIST_COL;return *this;} |
594 | 590 |
///Sets the color of the node texts to be black or white and always visible. |
595 | 591 |
|
596 | 592 |
///Sets the color of the node texts to be black or white according to |
597 | 593 |
///which is more different from the node color. |
598 | 594 |
GraphToEps<T> &distantBWNodeTexts() |
599 | 595 |
{_nodeTextColorType=DIST_BW;return *this;} |
600 | 596 |
|
601 | 597 |
///Gives a preamble block for node Postscript block. |
602 | 598 |
|
603 | 599 |
///Gives a preamble block for node Postscript block. |
604 | 600 |
/// |
605 | 601 |
///\sa nodePsTexts() |
606 | 602 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
607 | 603 |
_nodePsTextsPreamble=str ;return *this; |
608 | 604 |
} |
609 | 605 |
///Sets whether the graph is undirected |
610 | 606 |
|
611 | 607 |
///Sets whether the graph is undirected. |
612 | 608 |
/// |
613 | 609 |
///This setting is the default for undirected graphs. |
614 | 610 |
/// |
615 | 611 |
///\sa directed() |
616 | 612 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
617 | 613 |
|
618 | 614 |
///Sets whether the graph is directed |
619 | 615 |
|
620 | 616 |
///Sets whether the graph is directed. |
621 | 617 |
///Use it to show the edges as a pair of directed ones. |
622 | 618 |
/// |
623 | 619 |
///This setting is the default for digraphs. |
624 | 620 |
/// |
625 | 621 |
///\sa undirected() |
626 | 622 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
627 | 623 |
|
628 | 624 |
///Sets the title. |
629 | 625 |
|
630 | 626 |
///Sets the title of the generated image, |
631 | 627 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
632 | 628 |
///the EPS file. |
633 | 629 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;} |
634 | 630 |
///Sets the copyright statement. |
635 | 631 |
|
636 | 632 |
///Sets the copyright statement of the generated image, |
637 | 633 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
638 | 634 |
///the EPS file. |
639 | 635 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;} |
640 | 636 |
|
641 | 637 |
protected: |
642 | 638 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
643 | 639 |
{ |
644 | 640 |
switch(t) { |
645 | 641 |
case CIRCLE: |
646 | 642 |
case MALE: |
647 | 643 |
case FEMALE: |
648 | 644 |
return p.normSquare()<=r*r; |
649 | 645 |
case SQUARE: |
650 | 646 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
651 | 647 |
case DIAMOND: |
652 | 648 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
653 | 649 |
} |
654 | 650 |
return false; |
655 | 651 |
} |
656 | 652 |
|
657 | 653 |
public: |
658 | 654 |
~GraphToEps() { } |
659 | 655 |
|
660 | 656 |
///Draws the graph. |
661 | 657 |
|
662 | 658 |
///Like other functions using |
663 | 659 |
///\ref named-templ-func-param "named template parameters", |
664 | 660 |
///this function calls the algorithm itself, i.e. in this case |
665 | 661 |
///it draws the graph. |
666 | 662 |
void run() { |
667 | 663 |
const double EPSILON=1e-9; |
668 | 664 |
if(dontPrint) return; |
669 | 665 |
|
670 | 666 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
671 | 667 |
mycoords(_coords,_negY); |
672 | 668 |
|
673 | 669 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
674 | 670 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
675 | 671 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
676 | 672 |
os << "%%Creator: LEMON, graphToEps()\n"; |
677 | 673 |
|
678 | 674 |
{ |
679 | 675 |
os << "%%CreationDate: "; |
680 | 676 |
#ifndef WIN32 |
681 | 677 |
timeval tv; |
682 | 678 |
gettimeofday(&tv, 0); |
683 | 679 |
|
684 | 680 |
char cbuf[26]; |
685 | 681 |
ctime_r(&tv.tv_sec,cbuf); |
686 | 682 |
os << cbuf; |
687 | 683 |
#else |
688 | 684 |
os << bits::getWinFormattedDate(); |
689 | 685 |
#endif |
690 | 686 |
} |
691 | 687 |
os << std::endl; |
692 | 688 |
|
693 | 689 |
if (_autoArcWidthScale) { |
694 | 690 |
double max_w=0; |
695 | 691 |
for(ArcIt e(g);e!=INVALID;++e) |
696 | 692 |
max_w=std::max(double(_arcWidths[e]),max_w); |
697 | 693 |
if(max_w>EPSILON) { |
698 | 694 |
_arcWidthScale/=max_w; |
699 | 695 |
} |
700 | 696 |
} |
701 | 697 |
|
702 | 698 |
if (_autoNodeScale) { |
703 | 699 |
double max_s=0; |
704 | 700 |
for(NodeIt n(g);n!=INVALID;++n) |
705 | 701 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
706 | 702 |
if(max_s>EPSILON) { |
707 | 703 |
_nodeScale/=max_s; |
708 | 704 |
} |
709 | 705 |
} |
710 | 706 |
|
711 | 707 |
double diag_len = 1; |
712 | 708 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { |
713 | 709 |
dim2::Box<double> bb; |
714 | 710 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
715 | 711 |
if (bb.empty()) { |
716 | 712 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
717 | 713 |
} |
718 | 714 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
719 | 715 |
if(diag_len<EPSILON) diag_len = 1; |
720 | 716 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
721 | 717 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
722 | 718 |
} |
723 | 719 |
|
724 | 720 |
dim2::Box<double> bb; |
725 | 721 |
for(NodeIt n(g);n!=INVALID;++n) { |
726 | 722 |
double ns=_nodeSizes[n]*_nodeScale; |
727 | 723 |
dim2::Point<double> p(ns,ns); |
728 | 724 |
switch(_nodeShapes[n]) { |
729 | 725 |
case CIRCLE: |
730 | 726 |
case SQUARE: |
731 | 727 |
case DIAMOND: |
732 | 728 |
bb.add(p+mycoords[n]); |
733 | 729 |
bb.add(-p+mycoords[n]); |
734 | 730 |
break; |
735 | 731 |
case MALE: |
736 | 732 |
bb.add(-p+mycoords[n]); |
737 | 733 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
738 | 734 |
break; |
739 | 735 |
case FEMALE: |
740 | 736 |
bb.add(p+mycoords[n]); |
741 | 737 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
742 | 738 |
break; |
743 | 739 |
} |
744 | 740 |
} |
745 | 741 |
if (bb.empty()) { |
746 | 742 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
747 | 743 |
} |
748 | 744 |
|
749 | 745 |
if(_scaleToA4) |
750 | 746 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
751 | 747 |
else { |
752 | 748 |
if(_preScale) { |
753 | 749 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
754 | 750 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
755 | 751 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
756 | 752 |
} |
757 | 753 |
|
758 | 754 |
os << "%%BoundingBox: " |
759 | 755 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
760 | 756 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
761 | 757 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
762 | 758 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
763 | 759 |
} |
764 | 760 |
|
765 | 761 |
os << "%%EndComments\n"; |
766 | 762 |
|
767 | 763 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
768 | 764 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n" |
769 | 765 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
770 | 766 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }" |
771 | 767 |
<< " bind def\n"; |
772 | 768 |
//x y r |
773 | 769 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }" |
774 | 770 |
<< " bind def\n"; |
775 | 771 |
//x y r |
776 | 772 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
777 | 773 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
778 | 774 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
779 | 775 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
780 | 776 |
<< " closepath pop pop pop} bind def\n"; |
781 | 777 |
//x y r |
782 | 778 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
783 | 779 |
<< " 2 index 2 index 2 index add lineto\n" |
784 | 780 |
<< " 2 index 1 index sub 2 index lineto\n" |
785 | 781 |
<< " 2 index 2 index 2 index sub lineto\n" |
786 | 782 |
<< " closepath pop pop pop} bind def\n"; |
787 | 783 |
// x y r cr cg cb |
788 | 784 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
789 | 785 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
790 | 786 |
<< " } bind def\n"; |
791 | 787 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
792 | 788 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
793 | 789 |
<< " } bind def\n"; |
794 | 790 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
795 | 791 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
796 | 792 |
<< " } bind def\n"; |
797 | 793 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
798 | 794 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KRUSKAL_H |
20 | 20 |
#define LEMON_KRUSKAL_H |
21 | 21 |
|
22 | 22 |
#include <algorithm> |
23 | 23 |
#include <vector> |
24 | 24 |
#include <lemon/unionfind.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/bits/traits.h> |
29 | 29 |
|
30 | 30 |
///\ingroup spantree |
31 | 31 |
///\file |
32 | 32 |
///\brief Kruskal's algorithm to compute a minimum cost spanning tree |
33 | 33 |
/// |
34 | 34 |
///Kruskal's algorithm to compute a minimum cost spanning tree. |
35 | 35 |
/// |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
namespace _kruskal_bits { |
40 | 40 |
|
41 | 41 |
// Kruskal for directed graphs. |
42 | 42 |
|
43 | 43 |
template <typename Digraph, typename In, typename Out> |
44 | 44 |
typename disable_if<lemon::UndirectedTagIndicator<Digraph>, |
45 | 45 |
typename In::value_type::second_type >::type |
46 | 46 |
kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) { |
47 | 47 |
typedef typename In::value_type::second_type Value; |
48 | 48 |
typedef typename Digraph::template NodeMap<int> IndexMap; |
49 | 49 |
typedef typename Digraph::Node Node; |
50 | 50 |
|
51 | 51 |
IndexMap index(digraph); |
52 | 52 |
UnionFind<IndexMap> uf(index); |
53 | 53 |
for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) { |
54 | 54 |
uf.insert(it); |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
Value tree_value = 0; |
58 | 58 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
59 | 59 |
if (uf.join(digraph.target(it->first),digraph.source(it->first))) { |
60 | 60 |
out.set(it->first, true); |
61 | 61 |
tree_value += it->second; |
62 | 62 |
} |
63 | 63 |
else { |
64 | 64 |
out.set(it->first, false); |
65 | 65 |
} |
66 | 66 |
} |
67 | 67 |
return tree_value; |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
// Kruskal for undirected graphs. |
71 | 71 |
|
72 | 72 |
template <typename Graph, typename In, typename Out> |
73 | 73 |
typename enable_if<lemon::UndirectedTagIndicator<Graph>, |
74 | 74 |
typename In::value_type::second_type >::type |
75 | 75 |
kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) { |
76 | 76 |
typedef typename In::value_type::second_type Value; |
77 | 77 |
typedef typename Graph::template NodeMap<int> IndexMap; |
78 | 78 |
typedef typename Graph::Node Node; |
79 | 79 |
|
80 | 80 |
IndexMap index(graph); |
81 | 81 |
UnionFind<IndexMap> uf(index); |
82 | 82 |
for (typename Graph::NodeIt it(graph); it != INVALID; ++it) { |
83 | 83 |
uf.insert(it); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
Value tree_value = 0; |
87 | 87 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
88 | 88 |
if (uf.join(graph.u(it->first),graph.v(it->first))) { |
89 | 89 |
out.set(it->first, true); |
90 | 90 |
tree_value += it->second; |
91 | 91 |
} |
92 | 92 |
else { |
93 | 93 |
out.set(it->first, false); |
94 | 94 |
} |
95 | 95 |
} |
96 | 96 |
return tree_value; |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
template <typename Sequence> |
101 | 101 |
struct PairComp { |
102 | 102 |
typedef typename Sequence::value_type Value; |
103 | 103 |
bool operator()(const Value& left, const Value& right) { |
104 | 104 |
return left.second < right.second; |
105 | 105 |
} |
106 | 106 |
}; |
107 | 107 |
|
108 | 108 |
template <typename In, typename Enable = void> |
109 | 109 |
struct SequenceInputIndicator { |
110 | 110 |
static const bool value = false; |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
template <typename In> |
114 | 114 |
struct SequenceInputIndicator<In, |
115 | 115 |
typename exists<typename In::value_type::first_type>::type> { |
116 | 116 |
static const bool value = true; |
117 | 117 |
}; |
118 | 118 |
|
119 | 119 |
template <typename In, typename Enable = void> |
120 | 120 |
struct MapInputIndicator { |
121 | 121 |
static const bool value = false; |
122 | 122 |
}; |
123 | 123 |
|
124 | 124 |
template <typename In> |
125 | 125 |
struct MapInputIndicator<In, |
126 | 126 |
typename exists<typename In::Value>::type> { |
127 | 127 |
static const bool value = true; |
128 | 128 |
}; |
129 | 129 |
|
130 | 130 |
template <typename In, typename Enable = void> |
131 | 131 |
struct SequenceOutputIndicator { |
132 | 132 |
static const bool value = false; |
133 | 133 |
}; |
134 | 134 |
|
135 | 135 |
template <typename Out> |
136 | 136 |
struct SequenceOutputIndicator<Out, |
137 | 137 |
typename exists<typename Out::value_type>::type> { |
138 | 138 |
static const bool value = true; |
139 | 139 |
}; |
140 | 140 |
|
141 | 141 |
template <typename Out, typename Enable = void> |
142 | 142 |
struct MapOutputIndicator { |
143 | 143 |
static const bool value = false; |
144 | 144 |
}; |
145 | 145 |
|
146 | 146 |
template <typename Out> |
147 | 147 |
struct MapOutputIndicator<Out, |
148 | 148 |
typename exists<typename Out::Value>::type> { |
149 | 149 |
static const bool value = true; |
150 | 150 |
}; |
151 | 151 |
|
152 | 152 |
template <typename In, typename InEnable = void> |
153 | 153 |
struct KruskalValueSelector {}; |
154 | 154 |
|
155 | 155 |
template <typename In> |
156 | 156 |
struct KruskalValueSelector<In, |
157 | 157 |
typename enable_if<SequenceInputIndicator<In>, void>::type> |
158 | 158 |
{ |
159 | 159 |
typedef typename In::value_type::second_type Value; |
160 | 160 |
}; |
161 | 161 |
|
162 | 162 |
template <typename In> |
163 | 163 |
struct KruskalValueSelector<In, |
164 | 164 |
typename enable_if<MapInputIndicator<In>, void>::type> |
165 | 165 |
{ |
166 | 166 |
typedef typename In::Value Value; |
167 | 167 |
}; |
168 | 168 |
|
169 | 169 |
template <typename Graph, typename In, typename Out, |
170 | 170 |
typename InEnable = void> |
171 | 171 |
struct KruskalInputSelector {}; |
172 | 172 |
|
173 | 173 |
template <typename Graph, typename In, typename Out, |
174 | 174 |
typename InEnable = void> |
175 | 175 |
struct KruskalOutputSelector {}; |
176 | 176 |
|
177 | 177 |
template <typename Graph, typename In, typename Out> |
178 | 178 |
struct KruskalInputSelector<Graph, In, Out, |
179 | 179 |
typename enable_if<SequenceInputIndicator<In>, void>::type > |
180 | 180 |
{ |
181 | 181 |
typedef typename In::value_type::second_type Value; |
182 | 182 |
|
183 | 183 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
184 | 184 |
return KruskalOutputSelector<Graph, In, Out>:: |
185 | 185 |
kruskal(graph, in, out); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
}; |
189 | 189 |
|
190 | 190 |
template <typename Graph, typename In, typename Out> |
191 | 191 |
struct KruskalInputSelector<Graph, In, Out, |
192 | 192 |
typename enable_if<MapInputIndicator<In>, void>::type > |
193 | 193 |
{ |
194 | 194 |
typedef typename In::Value Value; |
195 | 195 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
196 | 196 |
typedef typename In::Key MapArc; |
197 | 197 |
typedef typename In::Value Value; |
198 | 198 |
typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt; |
199 | 199 |
typedef std::vector<std::pair<MapArc, Value> > Sequence; |
200 | 200 |
Sequence seq; |
201 | 201 |
|
202 | 202 |
for (MapArcIt it(graph); it != INVALID; ++it) { |
203 | 203 |
seq.push_back(std::make_pair(it, in[it])); |
204 | 204 |
} |
205 | 205 |
|
206 | 206 |
std::sort(seq.begin(), seq.end(), PairComp<Sequence>()); |
207 | 207 |
return KruskalOutputSelector<Graph, Sequence, Out>:: |
208 | 208 |
kruskal(graph, seq, out); |
209 | 209 |
} |
210 | 210 |
}; |
211 | 211 |
|
212 | 212 |
template <typename T> |
213 | 213 |
struct RemoveConst { |
214 | 214 |
typedef T type; |
215 | 215 |
}; |
216 | 216 |
|
217 | 217 |
template <typename T> |
218 | 218 |
struct RemoveConst<const T> { |
219 | 219 |
typedef T type; |
220 | 220 |
}; |
221 | 221 |
|
222 | 222 |
template <typename Graph, typename In, typename Out> |
223 | 223 |
struct KruskalOutputSelector<Graph, In, Out, |
224 | 224 |
typename enable_if<SequenceOutputIndicator<Out>, void>::type > |
225 | 225 |
{ |
226 | 226 |
typedef typename In::value_type::second_type Value; |
227 | 227 |
|
228 | 228 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
229 | 229 |
typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map; |
230 | 230 |
Map map(out); |
231 | 231 |
return _kruskal_bits::kruskal(graph, in, map); |
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
}; |
235 | 235 |
|
236 | 236 |
template <typename Graph, typename In, typename Out> |
237 | 237 |
struct KruskalOutputSelector<Graph, In, Out, |
238 | 238 |
typename enable_if<MapOutputIndicator<Out>, void>::type > |
239 | 239 |
{ |
240 | 240 |
typedef typename In::value_type::second_type Value; |
241 | 241 |
|
242 | 242 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
243 | 243 |
return _kruskal_bits::kruskal(graph, in, out); |
244 | 244 |
} |
245 | 245 |
}; |
246 | 246 |
|
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
/// \ingroup spantree |
250 | 250 |
/// |
251 |
/// \brief Kruskal algorithm |
|
251 |
/// \brief Kruskal's algorithm for finding a minimum cost spanning tree of |
|
252 | 252 |
/// a graph. |
253 | 253 |
/// |
254 | 254 |
/// This function runs Kruskal's algorithm to find a minimum cost |
255 |
/// spanning tree. |
|
255 |
/// spanning tree of a graph. |
|
256 | 256 |
/// Due to some C++ hacking, it accepts various input and output types. |
257 | 257 |
/// |
258 | 258 |
/// \param g The graph the algorithm runs on. |
259 | 259 |
/// It can be either \ref concepts::Digraph "directed" or |
260 | 260 |
/// \ref concepts::Graph "undirected". |
261 | 261 |
/// If the graph is directed, the algorithm consider it to be |
262 | 262 |
/// undirected by disregarding the direction of the arcs. |
263 | 263 |
/// |
264 | 264 |
/// \param in This object is used to describe the arc/edge costs. |
265 | 265 |
/// It can be one of the following choices. |
266 | 266 |
/// - An STL compatible 'Forward Container' with |
267 |
/// <tt>std::pair<GR::Arc,X></tt> or |
|
268 |
/// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where |
|
269 |
/// |
|
267 |
/// <tt>std::pair<GR::Arc,C></tt> or |
|
268 |
/// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where |
|
269 |
/// \c C is the type of the costs. The pairs indicates the arcs/edges |
|
270 | 270 |
/// along with the assigned cost. <em>They must be in a |
271 | 271 |
/// cost-ascending order.</em> |
272 | 272 |
/// - Any readable arc/edge map. The values of the map indicate the |
273 | 273 |
/// arc/edge costs. |
274 | 274 |
/// |
275 | 275 |
/// \retval out Here we also have a choice. |
276 |
/// - It can be a writable \c bool arc/edge map. After running the |
|
277 |
/// algorithm it will contain the found minimum cost spanning |
|
276 |
/// - It can be a writable arc/edge map with \c bool value type. After |
|
277 |
/// running the algorithm it will contain the found minimum cost spanning |
|
278 | 278 |
/// tree: the value of an arc/edge will be set to \c true if it belongs |
279 | 279 |
/// to the tree, otherwise it will be set to \c false. The value of |
280 | 280 |
/// each arc/edge will be set exactly once. |
281 | 281 |
/// - It can also be an iteraror of an STL Container with |
282 | 282 |
/// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its |
283 | 283 |
/// <tt>value_type</tt>. The algorithm copies the elements of the |
284 | 284 |
/// found tree into this sequence. For example, if we know that the |
285 | 285 |
/// spanning tree of the graph \c g has say 53 arcs, then we can |
286 | 286 |
/// put its arcs into an STL vector \c tree with a code like this. |
287 | 287 |
///\code |
288 | 288 |
/// std::vector<Arc> tree(53); |
289 | 289 |
/// kruskal(g,cost,tree.begin()); |
290 | 290 |
///\endcode |
291 | 291 |
/// Or if we don't know in advance the size of the tree, we can |
292 | 292 |
/// write this. |
293 | 293 |
///\code |
294 | 294 |
/// std::vector<Arc> tree; |
295 | 295 |
/// kruskal(g,cost,std::back_inserter(tree)); |
296 | 296 |
///\endcode |
297 | 297 |
/// |
298 | 298 |
/// \return The total cost of the found spanning tree. |
299 | 299 |
/// |
300 | 300 |
/// \note If the input graph is not (weakly) connected, a spanning |
301 | 301 |
/// forest is calculated instead of a spanning tree. |
302 | 302 |
|
303 | 303 |
#ifdef DOXYGEN |
304 |
template <class Graph, class In, class Out> |
|
305 |
Value kruskal(GR const& g, const In& in, Out& out) |
|
304 |
template <typename Graph, typename In, typename Out> |
|
305 |
Value kruskal(const Graph& g, const In& in, Out& out) |
|
306 | 306 |
#else |
307 | 307 |
template <class Graph, class In, class Out> |
308 | 308 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
309 | 309 |
kruskal(const Graph& graph, const In& in, Out& out) |
310 | 310 |
#endif |
311 | 311 |
{ |
312 | 312 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
313 | 313 |
kruskal(graph, in, out); |
314 | 314 |
} |
315 | 315 |
|
316 | 316 |
|
317 |
|
|
318 |
|
|
319 | 317 |
template <class Graph, class In, class Out> |
320 | 318 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
321 | 319 |
kruskal(const Graph& graph, const In& in, const Out& out) |
322 | 320 |
{ |
323 | 321 |
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
324 | 322 |
kruskal(graph, in, out); |
325 | 323 |
} |
326 | 324 |
|
327 | 325 |
} //namespace lemon |
328 | 326 |
|
329 | 327 |
#endif //LEMON_KRUSKAL_H |
... | ... |
@@ -84,2592 +84,2592 @@ |
84 | 84 |
class MapStorage : public MapStorageBase<_Item> { |
85 | 85 |
public: |
86 | 86 |
typedef _Map Map; |
87 | 87 |
typedef _Converter Converter; |
88 | 88 |
typedef _Item Item; |
89 | 89 |
|
90 | 90 |
private: |
91 | 91 |
Map& _map; |
92 | 92 |
Converter _converter; |
93 | 93 |
|
94 | 94 |
public: |
95 | 95 |
MapStorage(Map& map, const Converter& converter = Converter()) |
96 | 96 |
: _map(map), _converter(converter) {} |
97 | 97 |
virtual ~MapStorage() {} |
98 | 98 |
|
99 | 99 |
virtual void set(const Item& item ,const std::string& value) { |
100 | 100 |
_map.set(item, _converter(value)); |
101 | 101 |
} |
102 | 102 |
}; |
103 | 103 |
|
104 | 104 |
template <typename _Graph, bool _dir, typename _Map, |
105 | 105 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
106 | 106 |
class GraphArcMapStorage : public MapStorageBase<typename _Graph::Edge> { |
107 | 107 |
public: |
108 | 108 |
typedef _Map Map; |
109 | 109 |
typedef _Converter Converter; |
110 | 110 |
typedef _Graph Graph; |
111 | 111 |
typedef typename Graph::Edge Item; |
112 | 112 |
static const bool dir = _dir; |
113 | 113 |
|
114 | 114 |
private: |
115 | 115 |
const Graph& _graph; |
116 | 116 |
Map& _map; |
117 | 117 |
Converter _converter; |
118 | 118 |
|
119 | 119 |
public: |
120 | 120 |
GraphArcMapStorage(const Graph& graph, Map& map, |
121 | 121 |
const Converter& converter = Converter()) |
122 | 122 |
: _graph(graph), _map(map), _converter(converter) {} |
123 | 123 |
virtual ~GraphArcMapStorage() {} |
124 | 124 |
|
125 | 125 |
virtual void set(const Item& item ,const std::string& value) { |
126 | 126 |
_map.set(_graph.direct(item, dir), _converter(value)); |
127 | 127 |
} |
128 | 128 |
}; |
129 | 129 |
|
130 | 130 |
class ValueStorageBase { |
131 | 131 |
public: |
132 | 132 |
ValueStorageBase() {} |
133 | 133 |
virtual ~ValueStorageBase() {} |
134 | 134 |
|
135 | 135 |
virtual void set(const std::string&) = 0; |
136 | 136 |
}; |
137 | 137 |
|
138 | 138 |
template <typename _Value, typename _Converter = DefaultConverter<_Value> > |
139 | 139 |
class ValueStorage : public ValueStorageBase { |
140 | 140 |
public: |
141 | 141 |
typedef _Value Value; |
142 | 142 |
typedef _Converter Converter; |
143 | 143 |
|
144 | 144 |
private: |
145 | 145 |
Value& _value; |
146 | 146 |
Converter _converter; |
147 | 147 |
|
148 | 148 |
public: |
149 | 149 |
ValueStorage(Value& value, const Converter& converter = Converter()) |
150 | 150 |
: _value(value), _converter(converter) {} |
151 | 151 |
|
152 | 152 |
virtual void set(const std::string& value) { |
153 | 153 |
_value = _converter(value); |
154 | 154 |
} |
155 | 155 |
}; |
156 | 156 |
|
157 | 157 |
template <typename Value> |
158 | 158 |
struct MapLookUpConverter { |
159 | 159 |
const std::map<std::string, Value>& _map; |
160 | 160 |
|
161 | 161 |
MapLookUpConverter(const std::map<std::string, Value>& map) |
162 | 162 |
: _map(map) {} |
163 | 163 |
|
164 | 164 |
Value operator()(const std::string& str) { |
165 | 165 |
typename std::map<std::string, Value>::const_iterator it = |
166 | 166 |
_map.find(str); |
167 | 167 |
if (it == _map.end()) { |
168 | 168 |
std::ostringstream msg; |
169 | 169 |
msg << "Item not found: " << str; |
170 | 170 |
throw FormatError(msg.str()); |
171 | 171 |
} |
172 | 172 |
return it->second; |
173 | 173 |
} |
174 | 174 |
}; |
175 | 175 |
|
176 | 176 |
template <typename Graph> |
177 | 177 |
struct GraphArcLookUpConverter { |
178 | 178 |
const Graph& _graph; |
179 | 179 |
const std::map<std::string, typename Graph::Edge>& _map; |
180 | 180 |
|
181 | 181 |
GraphArcLookUpConverter(const Graph& graph, |
182 | 182 |
const std::map<std::string, |
183 | 183 |
typename Graph::Edge>& map) |
184 | 184 |
: _graph(graph), _map(map) {} |
185 | 185 |
|
186 | 186 |
typename Graph::Arc operator()(const std::string& str) { |
187 | 187 |
if (str.empty() || (str[0] != '+' && str[0] != '-')) { |
188 | 188 |
throw FormatError("Item must start with '+' or '-'"); |
189 | 189 |
} |
190 | 190 |
typename std::map<std::string, typename Graph::Edge> |
191 | 191 |
::const_iterator it = _map.find(str.substr(1)); |
192 | 192 |
if (it == _map.end()) { |
193 | 193 |
throw FormatError("Item not found"); |
194 | 194 |
} |
195 | 195 |
return _graph.direct(it->second, str[0] == '+'); |
196 | 196 |
} |
197 | 197 |
}; |
198 | 198 |
|
199 | 199 |
inline bool isWhiteSpace(char c) { |
200 | 200 |
return c == ' ' || c == '\t' || c == '\v' || |
201 | 201 |
c == '\n' || c == '\r' || c == '\f'; |
202 | 202 |
} |
203 | 203 |
|
204 | 204 |
inline bool isOct(char c) { |
205 | 205 |
return '0' <= c && c <='7'; |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
inline int valueOct(char c) { |
209 | 209 |
LEMON_ASSERT(isOct(c), "The character is not octal."); |
210 | 210 |
return c - '0'; |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
inline bool isHex(char c) { |
214 | 214 |
return ('0' <= c && c <= '9') || |
215 | 215 |
('a' <= c && c <= 'z') || |
216 | 216 |
('A' <= c && c <= 'Z'); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
inline int valueHex(char c) { |
220 | 220 |
LEMON_ASSERT(isHex(c), "The character is not hexadecimal."); |
221 | 221 |
if ('0' <= c && c <= '9') return c - '0'; |
222 | 222 |
if ('a' <= c && c <= 'z') return c - 'a' + 10; |
223 | 223 |
return c - 'A' + 10; |
224 | 224 |
} |
225 | 225 |
|
226 | 226 |
inline bool isIdentifierFirstChar(char c) { |
227 | 227 |
return ('a' <= c && c <= 'z') || |
228 | 228 |
('A' <= c && c <= 'Z') || c == '_'; |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
inline bool isIdentifierChar(char c) { |
232 | 232 |
return isIdentifierFirstChar(c) || |
233 | 233 |
('0' <= c && c <= '9'); |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
inline char readEscape(std::istream& is) { |
237 | 237 |
char c; |
238 | 238 |
if (!is.get(c)) |
239 | 239 |
throw FormatError("Escape format error"); |
240 | 240 |
|
241 | 241 |
switch (c) { |
242 | 242 |
case '\\': |
243 | 243 |
return '\\'; |
244 | 244 |
case '\"': |
245 | 245 |
return '\"'; |
246 | 246 |
case '\'': |
247 | 247 |
return '\''; |
248 | 248 |
case '\?': |
249 | 249 |
return '\?'; |
250 | 250 |
case 'a': |
251 | 251 |
return '\a'; |
252 | 252 |
case 'b': |
253 | 253 |
return '\b'; |
254 | 254 |
case 'f': |
255 | 255 |
return '\f'; |
256 | 256 |
case 'n': |
257 | 257 |
return '\n'; |
258 | 258 |
case 'r': |
259 | 259 |
return '\r'; |
260 | 260 |
case 't': |
261 | 261 |
return '\t'; |
262 | 262 |
case 'v': |
263 | 263 |
return '\v'; |
264 | 264 |
case 'x': |
265 | 265 |
{ |
266 | 266 |
int code; |
267 | 267 |
if (!is.get(c) || !isHex(c)) |
268 | 268 |
throw FormatError("Escape format error"); |
269 | 269 |
else if (code = valueHex(c), !is.get(c) || !isHex(c)) is.putback(c); |
270 | 270 |
else code = code * 16 + valueHex(c); |
271 | 271 |
return code; |
272 | 272 |
} |
273 | 273 |
default: |
274 | 274 |
{ |
275 | 275 |
int code; |
276 | 276 |
if (!isOct(c)) |
277 | 277 |
throw FormatError("Escape format error"); |
278 | 278 |
else if (code = valueOct(c), !is.get(c) || !isOct(c)) |
279 | 279 |
is.putback(c); |
280 | 280 |
else if (code = code * 8 + valueOct(c), !is.get(c) || !isOct(c)) |
281 | 281 |
is.putback(c); |
282 | 282 |
else code = code * 8 + valueOct(c); |
283 | 283 |
return code; |
284 | 284 |
} |
285 | 285 |
} |
286 | 286 |
} |
287 | 287 |
|
288 | 288 |
inline std::istream& readToken(std::istream& is, std::string& str) { |
289 | 289 |
std::ostringstream os; |
290 | 290 |
|
291 | 291 |
char c; |
292 | 292 |
is >> std::ws; |
293 | 293 |
|
294 | 294 |
if (!is.get(c)) |
295 | 295 |
return is; |
296 | 296 |
|
297 | 297 |
if (c == '\"') { |
298 | 298 |
while (is.get(c) && c != '\"') { |
299 | 299 |
if (c == '\\') |
300 | 300 |
c = readEscape(is); |
301 | 301 |
os << c; |
302 | 302 |
} |
303 | 303 |
if (!is) |
304 | 304 |
throw FormatError("Quoted format error"); |
305 | 305 |
} else { |
306 | 306 |
is.putback(c); |
307 | 307 |
while (is.get(c) && !isWhiteSpace(c)) { |
308 | 308 |
if (c == '\\') |
309 | 309 |
c = readEscape(is); |
310 | 310 |
os << c; |
311 | 311 |
} |
312 | 312 |
if (!is) { |
313 | 313 |
is.clear(); |
314 | 314 |
} else { |
315 | 315 |
is.putback(c); |
316 | 316 |
} |
317 | 317 |
} |
318 | 318 |
str = os.str(); |
319 | 319 |
return is; |
320 | 320 |
} |
321 | 321 |
|
322 | 322 |
class Section { |
323 | 323 |
public: |
324 | 324 |
virtual ~Section() {} |
325 | 325 |
virtual void process(std::istream& is, int& line_num) = 0; |
326 | 326 |
}; |
327 | 327 |
|
328 | 328 |
template <typename Functor> |
329 | 329 |
class LineSection : public Section { |
330 | 330 |
private: |
331 | 331 |
|
332 | 332 |
Functor _functor; |
333 | 333 |
|
334 | 334 |
public: |
335 | 335 |
|
336 | 336 |
LineSection(const Functor& functor) : _functor(functor) {} |
337 | 337 |
virtual ~LineSection() {} |
338 | 338 |
|
339 | 339 |
virtual void process(std::istream& is, int& line_num) { |
340 | 340 |
char c; |
341 | 341 |
std::string line; |
342 | 342 |
while (is.get(c) && c != '@') { |
343 | 343 |
if (c == '\n') { |
344 | 344 |
++line_num; |
345 | 345 |
} else if (c == '#') { |
346 | 346 |
getline(is, line); |
347 | 347 |
++line_num; |
348 | 348 |
} else if (!isWhiteSpace(c)) { |
349 | 349 |
is.putback(c); |
350 | 350 |
getline(is, line); |
351 | 351 |
_functor(line); |
352 | 352 |
++line_num; |
353 | 353 |
} |
354 | 354 |
} |
355 | 355 |
if (is) is.putback(c); |
356 | 356 |
else if (is.eof()) is.clear(); |
357 | 357 |
} |
358 | 358 |
}; |
359 | 359 |
|
360 | 360 |
template <typename Functor> |
361 | 361 |
class StreamSection : public Section { |
362 | 362 |
private: |
363 | 363 |
|
364 | 364 |
Functor _functor; |
365 | 365 |
|
366 | 366 |
public: |
367 | 367 |
|
368 | 368 |
StreamSection(const Functor& functor) : _functor(functor) {} |
369 | 369 |
virtual ~StreamSection() {} |
370 | 370 |
|
371 | 371 |
virtual void process(std::istream& is, int& line_num) { |
372 | 372 |
_functor(is, line_num); |
373 | 373 |
char c; |
374 | 374 |
std::string line; |
375 | 375 |
while (is.get(c) && c != '@') { |
376 | 376 |
if (c == '\n') { |
377 | 377 |
++line_num; |
378 | 378 |
} else if (!isWhiteSpace(c)) { |
379 | 379 |
getline(is, line); |
380 | 380 |
++line_num; |
381 | 381 |
} |
382 | 382 |
} |
383 | 383 |
if (is) is.putback(c); |
384 | 384 |
else if (is.eof()) is.clear(); |
385 | 385 |
} |
386 | 386 |
}; |
387 | 387 |
|
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
template <typename Digraph> |
391 | 391 |
class DigraphReader; |
392 | 392 |
|
393 | 393 |
template <typename Digraph> |
394 | 394 |
DigraphReader<Digraph> digraphReader(Digraph& digraph, |
395 | 395 |
std::istream& is = std::cin); |
396 | 396 |
template <typename Digraph> |
397 | 397 |
DigraphReader<Digraph> digraphReader(Digraph& digraph, const std::string& fn); |
398 | 398 |
template <typename Digraph> |
399 | 399 |
DigraphReader<Digraph> digraphReader(Digraph& digraph, const char *fn); |
400 | 400 |
|
401 | 401 |
/// \ingroup lemon_io |
402 | 402 |
/// |
403 | 403 |
/// \brief \ref lgf-format "LGF" reader for directed graphs |
404 | 404 |
/// |
405 | 405 |
/// This utility reads an \ref lgf-format "LGF" file. |
406 | 406 |
/// |
407 | 407 |
/// The reading method does a batch processing. The user creates a |
408 | 408 |
/// reader object, then various reading rules can be added to the |
409 | 409 |
/// reader, and eventually the reading is executed with the \c run() |
410 | 410 |
/// member function. A map reading rule can be added to the reader |
411 | 411 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
412 | 412 |
/// converter parameter can also be added as a standard functor |
413 | 413 |
/// converting from \c std::string to the value type of the map. If it |
414 | 414 |
/// is set, it will determine how the tokens in the file should be |
415 | 415 |
/// converted to the value type of the map. If the functor is not set, |
416 | 416 |
/// then a default conversion will be used. One map can be read into |
417 | 417 |
/// multiple map objects at the same time. The \c attribute(), \c |
418 | 418 |
/// node() and \c arc() functions are used to add attribute reading |
419 | 419 |
/// rules. |
420 | 420 |
/// |
421 | 421 |
///\code |
422 | 422 |
/// DigraphReader<Digraph>(digraph, std::cin). |
423 | 423 |
/// nodeMap("coordinates", coord_map). |
424 | 424 |
/// arcMap("capacity", cap_map). |
425 | 425 |
/// node("source", src). |
426 | 426 |
/// node("target", trg). |
427 | 427 |
/// attribute("caption", caption). |
428 | 428 |
/// run(); |
429 | 429 |
///\endcode |
430 | 430 |
/// |
431 | 431 |
/// By default the reader uses the first section in the file of the |
432 | 432 |
/// proper type. If a section has an optional name, then it can be |
433 | 433 |
/// selected for reading by giving an optional name parameter to the |
434 | 434 |
/// \c nodes(), \c arcs() or \c attributes() functions. |
435 | 435 |
/// |
436 | 436 |
/// The \c useNodes() and \c useArcs() functions are used to tell the reader |
437 | 437 |
/// that the nodes or arcs should not be constructed (added to the |
438 | 438 |
/// graph) during the reading, but instead the label map of the items |
439 | 439 |
/// are given as a parameter of these functions. An |
440 | 440 |
/// application of these functions is multipass reading, which is |
441 | 441 |
/// important if two \c \@arcs sections must be read from the |
442 | 442 |
/// file. In this case the first phase would read the node set and one |
443 | 443 |
/// of the arc sets, while the second phase would read the second arc |
444 | 444 |
/// set into an \e ArcSet class (\c SmartArcSet or \c ListArcSet). |
445 | 445 |
/// The previously read label node map should be passed to the \c |
446 | 446 |
/// useNodes() functions. Another application of multipass reading when |
447 | 447 |
/// paths are given as a node map or an arc map. |
448 | 448 |
/// It is impossible to read this in |
449 | 449 |
/// a single pass, because the arcs are not constructed when the node |
450 | 450 |
/// maps are read. |
451 | 451 |
template <typename GR> |
452 | 452 |
class DigraphReader { |
453 | 453 |
public: |
454 | 454 |
|
455 | 455 |
typedef GR Digraph; |
456 | 456 |
|
457 | 457 |
private: |
458 | 458 |
|
459 | 459 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
460 | 460 |
|
461 | 461 |
std::istream* _is; |
462 | 462 |
bool local_is; |
463 | 463 |
std::string _filename; |
464 | 464 |
|
465 | 465 |
Digraph& _digraph; |
466 | 466 |
|
467 | 467 |
std::string _nodes_caption; |
468 | 468 |
std::string _arcs_caption; |
469 | 469 |
std::string _attributes_caption; |
470 | 470 |
|
471 | 471 |
typedef std::map<std::string, Node> NodeIndex; |
472 | 472 |
NodeIndex _node_index; |
473 | 473 |
typedef std::map<std::string, Arc> ArcIndex; |
474 | 474 |
ArcIndex _arc_index; |
475 | 475 |
|
476 | 476 |
typedef std::vector<std::pair<std::string, |
477 | 477 |
_reader_bits::MapStorageBase<Node>*> > NodeMaps; |
478 | 478 |
NodeMaps _node_maps; |
479 | 479 |
|
480 | 480 |
typedef std::vector<std::pair<std::string, |
481 | 481 |
_reader_bits::MapStorageBase<Arc>*> >ArcMaps; |
482 | 482 |
ArcMaps _arc_maps; |
483 | 483 |
|
484 | 484 |
typedef std::multimap<std::string, _reader_bits::ValueStorageBase*> |
485 | 485 |
Attributes; |
486 | 486 |
Attributes _attributes; |
487 | 487 |
|
488 | 488 |
bool _use_nodes; |
489 | 489 |
bool _use_arcs; |
490 | 490 |
|
491 | 491 |
bool _skip_nodes; |
492 | 492 |
bool _skip_arcs; |
493 | 493 |
|
494 | 494 |
int line_num; |
495 | 495 |
std::istringstream line; |
496 | 496 |
|
497 | 497 |
public: |
498 | 498 |
|
499 | 499 |
/// \brief Constructor |
500 | 500 |
/// |
501 | 501 |
/// Construct a directed graph reader, which reads from the given |
502 | 502 |
/// input stream. |
503 | 503 |
DigraphReader(Digraph& digraph, std::istream& is = std::cin) |
504 | 504 |
: _is(&is), local_is(false), _digraph(digraph), |
505 | 505 |
_use_nodes(false), _use_arcs(false), |
506 | 506 |
_skip_nodes(false), _skip_arcs(false) {} |
507 | 507 |
|
508 | 508 |
/// \brief Constructor |
509 | 509 |
/// |
510 | 510 |
/// Construct a directed graph reader, which reads from the given |
511 | 511 |
/// file. |
512 | 512 |
DigraphReader(Digraph& digraph, const std::string& fn) |
513 | 513 |
: _is(new std::ifstream(fn.c_str())), local_is(true), |
514 | 514 |
_filename(fn), _digraph(digraph), |
515 | 515 |
_use_nodes(false), _use_arcs(false), |
516 | 516 |
_skip_nodes(false), _skip_arcs(false) { |
517 | 517 |
if (!(*_is)) { |
518 | 518 |
delete _is; |
519 | 519 |
throw IoError("Cannot open file", fn); |
520 | 520 |
} |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
/// \brief Constructor |
524 | 524 |
/// |
525 | 525 |
/// Construct a directed graph reader, which reads from the given |
526 | 526 |
/// file. |
527 | 527 |
DigraphReader(Digraph& digraph, const char* fn) |
528 | 528 |
: _is(new std::ifstream(fn)), local_is(true), |
529 | 529 |
_filename(fn), _digraph(digraph), |
530 | 530 |
_use_nodes(false), _use_arcs(false), |
531 | 531 |
_skip_nodes(false), _skip_arcs(false) { |
532 | 532 |
if (!(*_is)) { |
533 | 533 |
delete _is; |
534 | 534 |
throw IoError("Cannot open file", fn); |
535 | 535 |
} |
536 | 536 |
} |
537 | 537 |
|
538 | 538 |
/// \brief Destructor |
539 | 539 |
~DigraphReader() { |
540 | 540 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
541 | 541 |
it != _node_maps.end(); ++it) { |
542 | 542 |
delete it->second; |
543 | 543 |
} |
544 | 544 |
|
545 | 545 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
546 | 546 |
it != _arc_maps.end(); ++it) { |
547 | 547 |
delete it->second; |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
for (typename Attributes::iterator it = _attributes.begin(); |
551 | 551 |
it != _attributes.end(); ++it) { |
552 | 552 |
delete it->second; |
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
if (local_is) { |
556 | 556 |
delete _is; |
557 | 557 |
} |
558 | 558 |
|
559 | 559 |
} |
560 | 560 |
|
561 | 561 |
private: |
562 | 562 |
|
563 | 563 |
template <typename DGR> |
564 | 564 |
friend DigraphReader<DGR> digraphReader(DGR& digraph, std::istream& is); |
565 | 565 |
template <typename DGR> |
566 | 566 |
friend DigraphReader<DGR> digraphReader(DGR& digraph, |
567 | 567 |
const std::string& fn); |
568 | 568 |
template <typename DGR> |
569 | 569 |
friend DigraphReader<DGR> digraphReader(DGR& digraph, const char *fn); |
570 | 570 |
|
571 | 571 |
DigraphReader(DigraphReader& other) |
572 | 572 |
: _is(other._is), local_is(other.local_is), _digraph(other._digraph), |
573 | 573 |
_use_nodes(other._use_nodes), _use_arcs(other._use_arcs), |
574 | 574 |
_skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) { |
575 | 575 |
|
576 | 576 |
other._is = 0; |
577 | 577 |
other.local_is = false; |
578 | 578 |
|
579 | 579 |
_node_index.swap(other._node_index); |
580 | 580 |
_arc_index.swap(other._arc_index); |
581 | 581 |
|
582 | 582 |
_node_maps.swap(other._node_maps); |
583 | 583 |
_arc_maps.swap(other._arc_maps); |
584 | 584 |
_attributes.swap(other._attributes); |
585 | 585 |
|
586 | 586 |
_nodes_caption = other._nodes_caption; |
587 | 587 |
_arcs_caption = other._arcs_caption; |
588 | 588 |
_attributes_caption = other._attributes_caption; |
589 | 589 |
|
590 | 590 |
} |
591 | 591 |
|
592 | 592 |
DigraphReader& operator=(const DigraphReader&); |
593 | 593 |
|
594 | 594 |
public: |
595 | 595 |
|
596 |
/// \name Reading |
|
596 |
/// \name Reading Rules |
|
597 | 597 |
/// @{ |
598 | 598 |
|
599 | 599 |
/// \brief Node map reading rule |
600 | 600 |
/// |
601 | 601 |
/// Add a node map reading rule to the reader. |
602 | 602 |
template <typename Map> |
603 | 603 |
DigraphReader& nodeMap(const std::string& caption, Map& map) { |
604 | 604 |
checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>(); |
605 | 605 |
_reader_bits::MapStorageBase<Node>* storage = |
606 | 606 |
new _reader_bits::MapStorage<Node, Map>(map); |
607 | 607 |
_node_maps.push_back(std::make_pair(caption, storage)); |
608 | 608 |
return *this; |
609 | 609 |
} |
610 | 610 |
|
611 | 611 |
/// \brief Node map reading rule |
612 | 612 |
/// |
613 | 613 |
/// Add a node map reading rule with specialized converter to the |
614 | 614 |
/// reader. |
615 | 615 |
template <typename Map, typename Converter> |
616 | 616 |
DigraphReader& nodeMap(const std::string& caption, Map& map, |
617 | 617 |
const Converter& converter = Converter()) { |
618 | 618 |
checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>(); |
619 | 619 |
_reader_bits::MapStorageBase<Node>* storage = |
620 | 620 |
new _reader_bits::MapStorage<Node, Map, Converter>(map, converter); |
621 | 621 |
_node_maps.push_back(std::make_pair(caption, storage)); |
622 | 622 |
return *this; |
623 | 623 |
} |
624 | 624 |
|
625 | 625 |
/// \brief Arc map reading rule |
626 | 626 |
/// |
627 | 627 |
/// Add an arc map reading rule to the reader. |
628 | 628 |
template <typename Map> |
629 | 629 |
DigraphReader& arcMap(const std::string& caption, Map& map) { |
630 | 630 |
checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>(); |
631 | 631 |
_reader_bits::MapStorageBase<Arc>* storage = |
632 | 632 |
new _reader_bits::MapStorage<Arc, Map>(map); |
633 | 633 |
_arc_maps.push_back(std::make_pair(caption, storage)); |
634 | 634 |
return *this; |
635 | 635 |
} |
636 | 636 |
|
637 | 637 |
/// \brief Arc map reading rule |
638 | 638 |
/// |
639 | 639 |
/// Add an arc map reading rule with specialized converter to the |
640 | 640 |
/// reader. |
641 | 641 |
template <typename Map, typename Converter> |
642 | 642 |
DigraphReader& arcMap(const std::string& caption, Map& map, |
643 | 643 |
const Converter& converter = Converter()) { |
644 | 644 |
checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>(); |
645 | 645 |
_reader_bits::MapStorageBase<Arc>* storage = |
646 | 646 |
new _reader_bits::MapStorage<Arc, Map, Converter>(map, converter); |
647 | 647 |
_arc_maps.push_back(std::make_pair(caption, storage)); |
648 | 648 |
return *this; |
649 | 649 |
} |
650 | 650 |
|
651 | 651 |
/// \brief Attribute reading rule |
652 | 652 |
/// |
653 | 653 |
/// Add an attribute reading rule to the reader. |
654 | 654 |
template <typename Value> |
655 | 655 |
DigraphReader& attribute(const std::string& caption, Value& value) { |
656 | 656 |
_reader_bits::ValueStorageBase* storage = |
657 | 657 |
new _reader_bits::ValueStorage<Value>(value); |
658 | 658 |
_attributes.insert(std::make_pair(caption, storage)); |
659 | 659 |
return *this; |
660 | 660 |
} |
661 | 661 |
|
662 | 662 |
/// \brief Attribute reading rule |
663 | 663 |
/// |
664 | 664 |
/// Add an attribute reading rule with specialized converter to the |
665 | 665 |
/// reader. |
666 | 666 |
template <typename Value, typename Converter> |
667 | 667 |
DigraphReader& attribute(const std::string& caption, Value& value, |
668 | 668 |
const Converter& converter = Converter()) { |
669 | 669 |
_reader_bits::ValueStorageBase* storage = |
670 | 670 |
new _reader_bits::ValueStorage<Value, Converter>(value, converter); |
671 | 671 |
_attributes.insert(std::make_pair(caption, storage)); |
672 | 672 |
return *this; |
673 | 673 |
} |
674 | 674 |
|
675 | 675 |
/// \brief Node reading rule |
676 | 676 |
/// |
677 | 677 |
/// Add a node reading rule to reader. |
678 | 678 |
DigraphReader& node(const std::string& caption, Node& node) { |
679 | 679 |
typedef _reader_bits::MapLookUpConverter<Node> Converter; |
680 | 680 |
Converter converter(_node_index); |
681 | 681 |
_reader_bits::ValueStorageBase* storage = |
682 | 682 |
new _reader_bits::ValueStorage<Node, Converter>(node, converter); |
683 | 683 |
_attributes.insert(std::make_pair(caption, storage)); |
684 | 684 |
return *this; |
685 | 685 |
} |
686 | 686 |
|
687 | 687 |
/// \brief Arc reading rule |
688 | 688 |
/// |
689 | 689 |
/// Add an arc reading rule to reader. |
690 | 690 |
DigraphReader& arc(const std::string& caption, Arc& arc) { |
691 | 691 |
typedef _reader_bits::MapLookUpConverter<Arc> Converter; |
692 | 692 |
Converter converter(_arc_index); |
693 | 693 |
_reader_bits::ValueStorageBase* storage = |
694 | 694 |
new _reader_bits::ValueStorage<Arc, Converter>(arc, converter); |
695 | 695 |
_attributes.insert(std::make_pair(caption, storage)); |
696 | 696 |
return *this; |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
/// @} |
700 | 700 |
|
701 |
/// \name Select |
|
701 |
/// \name Select Section by Name |
|
702 | 702 |
/// @{ |
703 | 703 |
|
704 | 704 |
/// \brief Set \c \@nodes section to be read |
705 | 705 |
/// |
706 | 706 |
/// Set \c \@nodes section to be read |
707 | 707 |
DigraphReader& nodes(const std::string& caption) { |
708 | 708 |
_nodes_caption = caption; |
709 | 709 |
return *this; |
710 | 710 |
} |
711 | 711 |
|
712 | 712 |
/// \brief Set \c \@arcs section to be read |
713 | 713 |
/// |
714 | 714 |
/// Set \c \@arcs section to be read |
715 | 715 |
DigraphReader& arcs(const std::string& caption) { |
716 | 716 |
_arcs_caption = caption; |
717 | 717 |
return *this; |
718 | 718 |
} |
719 | 719 |
|
720 | 720 |
/// \brief Set \c \@attributes section to be read |
721 | 721 |
/// |
722 | 722 |
/// Set \c \@attributes section to be read |
723 | 723 |
DigraphReader& attributes(const std::string& caption) { |
724 | 724 |
_attributes_caption = caption; |
725 | 725 |
return *this; |
726 | 726 |
} |
727 | 727 |
|
728 | 728 |
/// @} |
729 | 729 |
|
730 |
/// \name Using |
|
730 |
/// \name Using Previously Constructed Node or Arc Set |
|
731 | 731 |
/// @{ |
732 | 732 |
|
733 | 733 |
/// \brief Use previously constructed node set |
734 | 734 |
/// |
735 | 735 |
/// Use previously constructed node set, and specify the node |
736 | 736 |
/// label map. |
737 | 737 |
template <typename Map> |
738 | 738 |
DigraphReader& useNodes(const Map& map) { |
739 | 739 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
740 | 740 |
LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member"); |
741 | 741 |
_use_nodes = true; |
742 | 742 |
_writer_bits::DefaultConverter<typename Map::Value> converter; |
743 | 743 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
744 | 744 |
_node_index.insert(std::make_pair(converter(map[n]), n)); |
745 | 745 |
} |
746 | 746 |
return *this; |
747 | 747 |
} |
748 | 748 |
|
749 | 749 |
/// \brief Use previously constructed node set |
750 | 750 |
/// |
751 | 751 |
/// Use previously constructed node set, and specify the node |
752 | 752 |
/// label map and a functor which converts the label map values to |
753 | 753 |
/// \c std::string. |
754 | 754 |
template <typename Map, typename Converter> |
755 | 755 |
DigraphReader& useNodes(const Map& map, |
756 | 756 |
const Converter& converter = Converter()) { |
757 | 757 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
758 | 758 |
LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member"); |
759 | 759 |
_use_nodes = true; |
760 | 760 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
761 | 761 |
_node_index.insert(std::make_pair(converter(map[n]), n)); |
762 | 762 |
} |
763 | 763 |
return *this; |
764 | 764 |
} |
765 | 765 |
|
766 | 766 |
/// \brief Use previously constructed arc set |
767 | 767 |
/// |
768 | 768 |
/// Use previously constructed arc set, and specify the arc |
769 | 769 |
/// label map. |
770 | 770 |
template <typename Map> |
771 | 771 |
DigraphReader& useArcs(const Map& map) { |
772 | 772 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
773 | 773 |
LEMON_ASSERT(!_use_arcs, "Multiple usage of useArcs() member"); |
774 | 774 |
_use_arcs = true; |
775 | 775 |
_writer_bits::DefaultConverter<typename Map::Value> converter; |
776 | 776 |
for (ArcIt a(_digraph); a != INVALID; ++a) { |
777 | 777 |
_arc_index.insert(std::make_pair(converter(map[a]), a)); |
778 | 778 |
} |
779 | 779 |
return *this; |
780 | 780 |
} |
781 | 781 |
|
782 | 782 |
/// \brief Use previously constructed arc set |
783 | 783 |
/// |
784 | 784 |
/// Use previously constructed arc set, and specify the arc |
785 | 785 |
/// label map and a functor which converts the label map values to |
786 | 786 |
/// \c std::string. |
787 | 787 |
template <typename Map, typename Converter> |
788 | 788 |
DigraphReader& useArcs(const Map& map, |
789 | 789 |
const Converter& converter = Converter()) { |
790 | 790 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
791 | 791 |
LEMON_ASSERT(!_use_arcs, "Multiple usage of useArcs() member"); |
792 | 792 |
_use_arcs = true; |
793 | 793 |
for (ArcIt a(_digraph); a != INVALID; ++a) { |
794 | 794 |
_arc_index.insert(std::make_pair(converter(map[a]), a)); |
795 | 795 |
} |
796 | 796 |
return *this; |
797 | 797 |
} |
798 | 798 |
|
799 | 799 |
/// \brief Skips the reading of node section |
800 | 800 |
/// |
801 | 801 |
/// Omit the reading of the node section. This implies that each node |
802 | 802 |
/// map reading rule will be abandoned, and the nodes of the graph |
803 | 803 |
/// will not be constructed, which usually cause that the arc set |
804 | 804 |
/// could not be read due to lack of node name resolving. |
805 | 805 |
/// Therefore \c skipArcs() function should also be used, or |
806 | 806 |
/// \c useNodes() should be used to specify the label of the nodes. |
807 | 807 |
DigraphReader& skipNodes() { |
808 | 808 |
LEMON_ASSERT(!_skip_nodes, "Skip nodes already set"); |
809 | 809 |
_skip_nodes = true; |
810 | 810 |
return *this; |
811 | 811 |
} |
812 | 812 |
|
813 | 813 |
/// \brief Skips the reading of arc section |
814 | 814 |
/// |
815 | 815 |
/// Omit the reading of the arc section. This implies that each arc |
816 | 816 |
/// map reading rule will be abandoned, and the arcs of the graph |
817 | 817 |
/// will not be constructed. |
818 | 818 |
DigraphReader& skipArcs() { |
819 | 819 |
LEMON_ASSERT(!_skip_arcs, "Skip arcs already set"); |
820 | 820 |
_skip_arcs = true; |
821 | 821 |
return *this; |
822 | 822 |
} |
823 | 823 |
|
824 | 824 |
/// @} |
825 | 825 |
|
826 | 826 |
private: |
827 | 827 |
|
828 | 828 |
bool readLine() { |
829 | 829 |
std::string str; |
830 | 830 |
while(++line_num, std::getline(*_is, str)) { |
831 | 831 |
line.clear(); line.str(str); |
832 | 832 |
char c; |
833 | 833 |
if (line >> std::ws >> c && c != '#') { |
834 | 834 |
line.putback(c); |
835 | 835 |
return true; |
836 | 836 |
} |
837 | 837 |
} |
838 | 838 |
return false; |
839 | 839 |
} |
840 | 840 |
|
841 | 841 |
bool readSuccess() { |
842 | 842 |
return static_cast<bool>(*_is); |
843 | 843 |
} |
844 | 844 |
|
845 | 845 |
void skipSection() { |
846 | 846 |
char c; |
847 | 847 |
while (readSuccess() && line >> c && c != '@') { |
848 | 848 |
readLine(); |
849 | 849 |
} |
850 | 850 |
if (readSuccess()) { |
851 | 851 |
line.putback(c); |
852 | 852 |
} |
853 | 853 |
} |
854 | 854 |
|
855 | 855 |
void readNodes() { |
856 | 856 |
|
857 | 857 |
std::vector<int> map_index(_node_maps.size()); |
858 | 858 |
int map_num, label_index; |
859 | 859 |
|
860 | 860 |
char c; |
861 | 861 |
if (!readLine() || !(line >> c) || c == '@') { |
862 | 862 |
if (readSuccess() && line) line.putback(c); |
863 | 863 |
if (!_node_maps.empty()) |
864 | 864 |
throw FormatError("Cannot find map names"); |
865 | 865 |
return; |
866 | 866 |
} |
867 | 867 |
line.putback(c); |
868 | 868 |
|
869 | 869 |
{ |
870 | 870 |
std::map<std::string, int> maps; |
871 | 871 |
|
872 | 872 |
std::string map; |
873 | 873 |
int index = 0; |
874 | 874 |
while (_reader_bits::readToken(line, map)) { |
875 | 875 |
if (maps.find(map) != maps.end()) { |
876 | 876 |
std::ostringstream msg; |
877 | 877 |
msg << "Multiple occurence of node map: " << map; |
878 | 878 |
throw FormatError(msg.str()); |
879 | 879 |
} |
880 | 880 |
maps.insert(std::make_pair(map, index)); |
881 | 881 |
++index; |
882 | 882 |
} |
883 | 883 |
|
884 | 884 |
for (int i = 0; i < static_cast<int>(_node_maps.size()); ++i) { |
885 | 885 |
std::map<std::string, int>::iterator jt = |
886 | 886 |
maps.find(_node_maps[i].first); |
887 | 887 |
if (jt == maps.end()) { |
888 | 888 |
std::ostringstream msg; |
889 | 889 |
msg << "Map not found: " << _node_maps[i].first; |
890 | 890 |
throw FormatError(msg.str()); |
891 | 891 |
} |
892 | 892 |
map_index[i] = jt->second; |
893 | 893 |
} |
894 | 894 |
|
895 | 895 |
{ |
896 | 896 |
std::map<std::string, int>::iterator jt = maps.find("label"); |
897 | 897 |
if (jt != maps.end()) { |
898 | 898 |
label_index = jt->second; |
899 | 899 |
} else { |
900 | 900 |
label_index = -1; |
901 | 901 |
} |
902 | 902 |
} |
903 | 903 |
map_num = maps.size(); |
904 | 904 |
} |
905 | 905 |
|
906 | 906 |
while (readLine() && line >> c && c != '@') { |
907 | 907 |
line.putback(c); |
908 | 908 |
|
909 | 909 |
std::vector<std::string> tokens(map_num); |
910 | 910 |
for (int i = 0; i < map_num; ++i) { |
911 | 911 |
if (!_reader_bits::readToken(line, tokens[i])) { |
912 | 912 |
std::ostringstream msg; |
913 | 913 |
msg << "Column not found (" << i + 1 << ")"; |
914 | 914 |
throw FormatError(msg.str()); |
915 | 915 |
} |
916 | 916 |
} |
917 | 917 |
if (line >> std::ws >> c) |
918 | 918 |
throw FormatError("Extra character at the end of line"); |
919 | 919 |
|
920 | 920 |
Node n; |
921 | 921 |
if (!_use_nodes) { |
922 | 922 |
n = _digraph.addNode(); |
923 | 923 |
if (label_index != -1) |
924 | 924 |
_node_index.insert(std::make_pair(tokens[label_index], n)); |
925 | 925 |
} else { |
926 | 926 |
if (label_index == -1) |
927 | 927 |
throw FormatError("Label map not found"); |
928 | 928 |
typename std::map<std::string, Node>::iterator it = |
929 | 929 |
_node_index.find(tokens[label_index]); |
930 | 930 |
if (it == _node_index.end()) { |
931 | 931 |
std::ostringstream msg; |
932 | 932 |
msg << "Node with label not found: " << tokens[label_index]; |
933 | 933 |
throw FormatError(msg.str()); |
934 | 934 |
} |
935 | 935 |
n = it->second; |
936 | 936 |
} |
937 | 937 |
|
938 | 938 |
for (int i = 0; i < static_cast<int>(_node_maps.size()); ++i) { |
939 | 939 |
_node_maps[i].second->set(n, tokens[map_index[i]]); |
940 | 940 |
} |
941 | 941 |
|
942 | 942 |
} |
943 | 943 |
if (readSuccess()) { |
944 | 944 |
line.putback(c); |
945 | 945 |
} |
946 | 946 |
} |
947 | 947 |
|
948 | 948 |
void readArcs() { |
949 | 949 |
|
950 | 950 |
std::vector<int> map_index(_arc_maps.size()); |
951 | 951 |
int map_num, label_index; |
952 | 952 |
|
953 | 953 |
char c; |
954 | 954 |
if (!readLine() || !(line >> c) || c == '@') { |
955 | 955 |
if (readSuccess() && line) line.putback(c); |
956 | 956 |
if (!_arc_maps.empty()) |
957 | 957 |
throw FormatError("Cannot find map names"); |
958 | 958 |
return; |
959 | 959 |
} |
960 | 960 |
line.putback(c); |
961 | 961 |
|
962 | 962 |
{ |
963 | 963 |
std::map<std::string, int> maps; |
964 | 964 |
|
965 | 965 |
std::string map; |
966 | 966 |
int index = 0; |
967 | 967 |
while (_reader_bits::readToken(line, map)) { |
968 | 968 |
if (maps.find(map) != maps.end()) { |
969 | 969 |
std::ostringstream msg; |
970 | 970 |
msg << "Multiple occurence of arc map: " << map; |
971 | 971 |
throw FormatError(msg.str()); |
972 | 972 |
} |
973 | 973 |
maps.insert(std::make_pair(map, index)); |
974 | 974 |
++index; |
975 | 975 |
} |
976 | 976 |
|
977 | 977 |
for (int i = 0; i < static_cast<int>(_arc_maps.size()); ++i) { |
978 | 978 |
std::map<std::string, int>::iterator jt = |
979 | 979 |
maps.find(_arc_maps[i].first); |
980 | 980 |
if (jt == maps.end()) { |
981 | 981 |
std::ostringstream msg; |
982 | 982 |
msg << "Map not found: " << _arc_maps[i].first; |
983 | 983 |
throw FormatError(msg.str()); |
984 | 984 |
} |
985 | 985 |
map_index[i] = jt->second; |
986 | 986 |
} |
987 | 987 |
|
988 | 988 |
{ |
989 | 989 |
std::map<std::string, int>::iterator jt = maps.find("label"); |
990 | 990 |
if (jt != maps.end()) { |
991 | 991 |
label_index = jt->second; |
992 | 992 |
} else { |
993 | 993 |
label_index = -1; |
994 | 994 |
} |
995 | 995 |
} |
996 | 996 |
map_num = maps.size(); |
997 | 997 |
} |
998 | 998 |
|
999 | 999 |
while (readLine() && line >> c && c != '@') { |
1000 | 1000 |
line.putback(c); |
1001 | 1001 |
|
1002 | 1002 |
std::string source_token; |
1003 | 1003 |
std::string target_token; |
1004 | 1004 |
|
1005 | 1005 |
if (!_reader_bits::readToken(line, source_token)) |
1006 | 1006 |
throw FormatError("Source not found"); |
1007 | 1007 |
|
1008 | 1008 |
if (!_reader_bits::readToken(line, target_token)) |
1009 | 1009 |
throw FormatError("Target not found"); |
1010 | 1010 |
|
1011 | 1011 |
std::vector<std::string> tokens(map_num); |
1012 | 1012 |
for (int i = 0; i < map_num; ++i) { |
1013 | 1013 |
if (!_reader_bits::readToken(line, tokens[i])) { |
1014 | 1014 |
std::ostringstream msg; |
1015 | 1015 |
msg << "Column not found (" << i + 1 << ")"; |
1016 | 1016 |
throw FormatError(msg.str()); |
1017 | 1017 |
} |
1018 | 1018 |
} |
1019 | 1019 |
if (line >> std::ws >> c) |
1020 | 1020 |
throw FormatError("Extra character at the end of line"); |
1021 | 1021 |
|
1022 | 1022 |
Arc a; |
1023 | 1023 |
if (!_use_arcs) { |
1024 | 1024 |
|
1025 | 1025 |
typename NodeIndex::iterator it; |
1026 | 1026 |
|
1027 | 1027 |
it = _node_index.find(source_token); |
1028 | 1028 |
if (it == _node_index.end()) { |
1029 | 1029 |
std::ostringstream msg; |
1030 | 1030 |
msg << "Item not found: " << source_token; |
1031 | 1031 |
throw FormatError(msg.str()); |
1032 | 1032 |
} |
1033 | 1033 |
Node source = it->second; |
1034 | 1034 |
|
1035 | 1035 |
it = _node_index.find(target_token); |
1036 | 1036 |
if (it == _node_index.end()) { |
1037 | 1037 |
std::ostringstream msg; |
1038 | 1038 |
msg << "Item not found: " << target_token; |
1039 | 1039 |
throw FormatError(msg.str()); |
1040 | 1040 |
} |
1041 | 1041 |
Node target = it->second; |
1042 | 1042 |
|
1043 | 1043 |
a = _digraph.addArc(source, target); |
1044 | 1044 |
if (label_index != -1) |
1045 | 1045 |
_arc_index.insert(std::make_pair(tokens[label_index], a)); |
1046 | 1046 |
} else { |
1047 | 1047 |
if (label_index == -1) |
1048 | 1048 |
throw FormatError("Label map not found"); |
1049 | 1049 |
typename std::map<std::string, Arc>::iterator it = |
1050 | 1050 |
_arc_index.find(tokens[label_index]); |
1051 | 1051 |
if (it == _arc_index.end()) { |
1052 | 1052 |
std::ostringstream msg; |
1053 | 1053 |
msg << "Arc with label not found: " << tokens[label_index]; |
1054 | 1054 |
throw FormatError(msg.str()); |
1055 | 1055 |
} |
1056 | 1056 |
a = it->second; |
1057 | 1057 |
} |
1058 | 1058 |
|
1059 | 1059 |
for (int i = 0; i < static_cast<int>(_arc_maps.size()); ++i) { |
1060 | 1060 |
_arc_maps[i].second->set(a, tokens[map_index[i]]); |
1061 | 1061 |
} |
1062 | 1062 |
|
1063 | 1063 |
} |
1064 | 1064 |
if (readSuccess()) { |
1065 | 1065 |
line.putback(c); |
1066 | 1066 |
} |
1067 | 1067 |
} |
1068 | 1068 |
|
1069 | 1069 |
void readAttributes() { |
1070 | 1070 |
|
1071 | 1071 |
std::set<std::string> read_attr; |
1072 | 1072 |
|
1073 | 1073 |
char c; |
1074 | 1074 |
while (readLine() && line >> c && c != '@') { |
1075 | 1075 |
line.putback(c); |
1076 | 1076 |
|
1077 | 1077 |
std::string attr, token; |
1078 | 1078 |
if (!_reader_bits::readToken(line, attr)) |
1079 | 1079 |
throw FormatError("Attribute name not found"); |
1080 | 1080 |
if (!_reader_bits::readToken(line, token)) |
1081 | 1081 |
throw FormatError("Attribute value not found"); |
1082 | 1082 |
if (line >> c) |
1083 | 1083 |
throw FormatError("Extra character at the end of line"); |
1084 | 1084 |
|
1085 | 1085 |
{ |
1086 | 1086 |
std::set<std::string>::iterator it = read_attr.find(attr); |
1087 | 1087 |
if (it != read_attr.end()) { |
1088 | 1088 |
std::ostringstream msg; |
1089 | 1089 |
msg << "Multiple occurence of attribute: " << attr; |
1090 | 1090 |
throw FormatError(msg.str()); |
1091 | 1091 |
} |
1092 | 1092 |
read_attr.insert(attr); |
1093 | 1093 |
} |
1094 | 1094 |
|
1095 | 1095 |
{ |
1096 | 1096 |
typename Attributes::iterator it = _attributes.lower_bound(attr); |
1097 | 1097 |
while (it != _attributes.end() && it->first == attr) { |
1098 | 1098 |
it->second->set(token); |
1099 | 1099 |
++it; |
1100 | 1100 |
} |
1101 | 1101 |
} |
1102 | 1102 |
|
1103 | 1103 |
} |
1104 | 1104 |
if (readSuccess()) { |
1105 | 1105 |
line.putback(c); |
1106 | 1106 |
} |
1107 | 1107 |
for (typename Attributes::iterator it = _attributes.begin(); |
1108 | 1108 |
it != _attributes.end(); ++it) { |
1109 | 1109 |
if (read_attr.find(it->first) == read_attr.end()) { |
1110 | 1110 |
std::ostringstream msg; |
1111 | 1111 |
msg << "Attribute not found: " << it->first; |
1112 | 1112 |
throw FormatError(msg.str()); |
1113 | 1113 |
} |
1114 | 1114 |
} |
1115 | 1115 |
} |
1116 | 1116 |
|
1117 | 1117 |
public: |
1118 | 1118 |
|
1119 |
/// \name Execution of the |
|
1119 |
/// \name Execution of the Reader |
|
1120 | 1120 |
/// @{ |
1121 | 1121 |
|
1122 | 1122 |
/// \brief Start the batch processing |
1123 | 1123 |
/// |
1124 | 1124 |
/// This function starts the batch processing |
1125 | 1125 |
void run() { |
1126 | 1126 |
LEMON_ASSERT(_is != 0, "This reader assigned to an other reader"); |
1127 | 1127 |
|
1128 | 1128 |
bool nodes_done = _skip_nodes; |
1129 | 1129 |
bool arcs_done = _skip_arcs; |
1130 | 1130 |
bool attributes_done = false; |
1131 | 1131 |
|
1132 | 1132 |
line_num = 0; |
1133 | 1133 |
readLine(); |
1134 | 1134 |
skipSection(); |
1135 | 1135 |
|
1136 | 1136 |
while (readSuccess()) { |
1137 | 1137 |
try { |
1138 | 1138 |
char c; |
1139 | 1139 |
std::string section, caption; |
1140 | 1140 |
line >> c; |
1141 | 1141 |
_reader_bits::readToken(line, section); |
1142 | 1142 |
_reader_bits::readToken(line, caption); |
1143 | 1143 |
|
1144 | 1144 |
if (line >> c) |
1145 | 1145 |
throw FormatError("Extra character at the end of line"); |
1146 | 1146 |
|
1147 | 1147 |
if (section == "nodes" && !nodes_done) { |
1148 | 1148 |
if (_nodes_caption.empty() || _nodes_caption == caption) { |
1149 | 1149 |
readNodes(); |
1150 | 1150 |
nodes_done = true; |
1151 | 1151 |
} |
1152 | 1152 |
} else if ((section == "arcs" || section == "edges") && |
1153 | 1153 |
!arcs_done) { |
1154 | 1154 |
if (_arcs_caption.empty() || _arcs_caption == caption) { |
1155 | 1155 |
readArcs(); |
1156 | 1156 |
arcs_done = true; |
1157 | 1157 |
} |
1158 | 1158 |
} else if (section == "attributes" && !attributes_done) { |
1159 | 1159 |
if (_attributes_caption.empty() || _attributes_caption == caption) { |
1160 | 1160 |
readAttributes(); |
1161 | 1161 |
attributes_done = true; |
1162 | 1162 |
} |
1163 | 1163 |
} else { |
1164 | 1164 |
readLine(); |
1165 | 1165 |
skipSection(); |
1166 | 1166 |
} |
1167 | 1167 |
} catch (FormatError& error) { |
1168 | 1168 |
error.line(line_num); |
1169 | 1169 |
error.file(_filename); |
1170 | 1170 |
throw; |
1171 | 1171 |
} |
1172 | 1172 |
} |
1173 | 1173 |
|
1174 | 1174 |
if (!nodes_done) { |
1175 | 1175 |
throw FormatError("Section @nodes not found"); |
1176 | 1176 |
} |
1177 | 1177 |
|
1178 | 1178 |
if (!arcs_done) { |
1179 | 1179 |
throw FormatError("Section @arcs not found"); |
1180 | 1180 |
} |
1181 | 1181 |
|
1182 | 1182 |
if (!attributes_done && !_attributes.empty()) { |
1183 | 1183 |
throw FormatError("Section @attributes not found"); |
1184 | 1184 |
} |
1185 | 1185 |
|
1186 | 1186 |
} |
1187 | 1187 |
|
1188 | 1188 |
/// @} |
1189 | 1189 |
|
1190 | 1190 |
}; |
1191 | 1191 |
|
1192 | 1192 |
/// \brief Return a \ref DigraphReader class |
1193 | 1193 |
/// |
1194 | 1194 |
/// This function just returns a \ref DigraphReader class. |
1195 | 1195 |
/// \relates DigraphReader |
1196 | 1196 |
template <typename Digraph> |
1197 | 1197 |
DigraphReader<Digraph> digraphReader(Digraph& digraph, std::istream& is) { |
1198 | 1198 |
DigraphReader<Digraph> tmp(digraph, is); |
1199 | 1199 |
return tmp; |
1200 | 1200 |
} |
1201 | 1201 |
|
1202 | 1202 |
/// \brief Return a \ref DigraphReader class |
1203 | 1203 |
/// |
1204 | 1204 |
/// This function just returns a \ref DigraphReader class. |
1205 | 1205 |
/// \relates DigraphReader |
1206 | 1206 |
template <typename Digraph> |
1207 | 1207 |
DigraphReader<Digraph> digraphReader(Digraph& digraph, |
1208 | 1208 |
const std::string& fn) { |
1209 | 1209 |
DigraphReader<Digraph> tmp(digraph, fn); |
1210 | 1210 |
return tmp; |
1211 | 1211 |
} |
1212 | 1212 |
|
1213 | 1213 |
/// \brief Return a \ref DigraphReader class |
1214 | 1214 |
/// |
1215 | 1215 |
/// This function just returns a \ref DigraphReader class. |
1216 | 1216 |
/// \relates DigraphReader |
1217 | 1217 |
template <typename Digraph> |
1218 | 1218 |
DigraphReader<Digraph> digraphReader(Digraph& digraph, const char* fn) { |
1219 | 1219 |
DigraphReader<Digraph> tmp(digraph, fn); |
1220 | 1220 |
return tmp; |
1221 | 1221 |
} |
1222 | 1222 |
|
1223 | 1223 |
template <typename Graph> |
1224 | 1224 |
class GraphReader; |
1225 | 1225 |
|
1226 | 1226 |
template <typename Graph> |
1227 | 1227 |
GraphReader<Graph> graphReader(Graph& graph, |
1228 | 1228 |
std::istream& is = std::cin); |
1229 | 1229 |
template <typename Graph> |
1230 | 1230 |
GraphReader<Graph> graphReader(Graph& graph, const std::string& fn); |
1231 | 1231 |
template <typename Graph> |
1232 | 1232 |
GraphReader<Graph> graphReader(Graph& graph, const char *fn); |
1233 | 1233 |
|
1234 | 1234 |
/// \ingroup lemon_io |
1235 | 1235 |
/// |
1236 | 1236 |
/// \brief \ref lgf-format "LGF" reader for undirected graphs |
1237 | 1237 |
/// |
1238 | 1238 |
/// This utility reads an \ref lgf-format "LGF" file. |
1239 | 1239 |
/// |
1240 | 1240 |
/// It can be used almost the same way as \c DigraphReader. |
1241 | 1241 |
/// The only difference is that this class can handle edges and |
1242 | 1242 |
/// edge maps as well as arcs and arc maps. |
1243 | 1243 |
/// |
1244 | 1244 |
/// The columns in the \c \@edges (or \c \@arcs) section are the |
1245 | 1245 |
/// edge maps. However, if there are two maps with the same name |
1246 | 1246 |
/// prefixed with \c '+' and \c '-', then these can be read into an |
1247 | 1247 |
/// arc map. Similarly, an attribute can be read into an arc, if |
1248 | 1248 |
/// it's value is an edge label prefixed with \c '+' or \c '-'. |
1249 | 1249 |
template <typename GR> |
1250 | 1250 |
class GraphReader { |
1251 | 1251 |
public: |
1252 | 1252 |
|
1253 | 1253 |
typedef GR Graph; |
1254 | 1254 |
|
1255 | 1255 |
private: |
1256 | 1256 |
|
1257 | 1257 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
1258 | 1258 |
|
1259 | 1259 |
std::istream* _is; |
1260 | 1260 |
bool local_is; |
1261 | 1261 |
std::string _filename; |
1262 | 1262 |
|
1263 | 1263 |
Graph& _graph; |
1264 | 1264 |
|
1265 | 1265 |
std::string _nodes_caption; |
1266 | 1266 |
std::string _edges_caption; |
1267 | 1267 |
std::string _attributes_caption; |
1268 | 1268 |
|
1269 | 1269 |
typedef std::map<std::string, Node> NodeIndex; |
1270 | 1270 |
NodeIndex _node_index; |
1271 | 1271 |
typedef std::map<std::string, Edge> EdgeIndex; |
1272 | 1272 |
EdgeIndex _edge_index; |
1273 | 1273 |
|
1274 | 1274 |
typedef std::vector<std::pair<std::string, |
1275 | 1275 |
_reader_bits::MapStorageBase<Node>*> > NodeMaps; |
1276 | 1276 |
NodeMaps _node_maps; |
1277 | 1277 |
|
1278 | 1278 |
typedef std::vector<std::pair<std::string, |
1279 | 1279 |
_reader_bits::MapStorageBase<Edge>*> > EdgeMaps; |
1280 | 1280 |
EdgeMaps _edge_maps; |
1281 | 1281 |
|
1282 | 1282 |
typedef std::multimap<std::string, _reader_bits::ValueStorageBase*> |
1283 | 1283 |
Attributes; |
1284 | 1284 |
Attributes _attributes; |
1285 | 1285 |
|
1286 | 1286 |
bool _use_nodes; |
1287 | 1287 |
bool _use_edges; |
1288 | 1288 |
|
1289 | 1289 |
bool _skip_nodes; |
1290 | 1290 |
bool _skip_edges; |
1291 | 1291 |
|
1292 | 1292 |
int line_num; |
1293 | 1293 |
std::istringstream line; |
1294 | 1294 |
|
1295 | 1295 |
public: |
1296 | 1296 |
|
1297 | 1297 |
/// \brief Constructor |
1298 | 1298 |
/// |
1299 | 1299 |
/// Construct an undirected graph reader, which reads from the given |
1300 | 1300 |
/// input stream. |
1301 | 1301 |
GraphReader(Graph& graph, std::istream& is = std::cin) |
1302 | 1302 |
: _is(&is), local_is(false), _graph(graph), |
1303 | 1303 |
_use_nodes(false), _use_edges(false), |
1304 | 1304 |
_skip_nodes(false), _skip_edges(false) {} |
1305 | 1305 |
|
1306 | 1306 |
/// \brief Constructor |
1307 | 1307 |
/// |
1308 | 1308 |
/// Construct an undirected graph reader, which reads from the given |
1309 | 1309 |
/// file. |
1310 | 1310 |
GraphReader(Graph& graph, const std::string& fn) |
1311 | 1311 |
: _is(new std::ifstream(fn.c_str())), local_is(true), |
1312 | 1312 |
_filename(fn), _graph(graph), |
1313 | 1313 |
_use_nodes(false), _use_edges(false), |
1314 | 1314 |
_skip_nodes(false), _skip_edges(false) { |
1315 | 1315 |
if (!(*_is)) { |
1316 | 1316 |
delete _is; |
1317 | 1317 |
throw IoError("Cannot open file", fn); |
1318 | 1318 |
} |
1319 | 1319 |
} |
1320 | 1320 |
|
1321 | 1321 |
/// \brief Constructor |
1322 | 1322 |
/// |
1323 | 1323 |
/// Construct an undirected graph reader, which reads from the given |
1324 | 1324 |
/// file. |
1325 | 1325 |
GraphReader(Graph& graph, const char* fn) |
1326 | 1326 |
: _is(new std::ifstream(fn)), local_is(true), |
1327 | 1327 |
_filename(fn), _graph(graph), |
1328 | 1328 |
_use_nodes(false), _use_edges(false), |
1329 | 1329 |
_skip_nodes(false), _skip_edges(false) { |
1330 | 1330 |
if (!(*_is)) { |
1331 | 1331 |
delete _is; |
1332 | 1332 |
throw IoError("Cannot open file", fn); |
1333 | 1333 |
} |
1334 | 1334 |
} |
1335 | 1335 |
|
1336 | 1336 |
/// \brief Destructor |
1337 | 1337 |
~GraphReader() { |
1338 | 1338 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1339 | 1339 |
it != _node_maps.end(); ++it) { |
1340 | 1340 |
delete it->second; |
1341 | 1341 |
} |
1342 | 1342 |
|
1343 | 1343 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1344 | 1344 |
it != _edge_maps.end(); ++it) { |
1345 | 1345 |
delete it->second; |
1346 | 1346 |
} |
1347 | 1347 |
|
1348 | 1348 |
for (typename Attributes::iterator it = _attributes.begin(); |
1349 | 1349 |
it != _attributes.end(); ++it) { |
1350 | 1350 |
delete it->second; |
1351 | 1351 |
} |
1352 | 1352 |
|
1353 | 1353 |
if (local_is) { |
1354 | 1354 |
delete _is; |
1355 | 1355 |
} |
1356 | 1356 |
|
1357 | 1357 |
} |
1358 | 1358 |
|
1359 | 1359 |
private: |
1360 | 1360 |
template <typename Graph> |
1361 | 1361 |
friend GraphReader<Graph> graphReader(Graph& graph, std::istream& is); |
1362 | 1362 |
template <typename Graph> |
1363 | 1363 |
friend GraphReader<Graph> graphReader(Graph& graph, const std::string& fn); |
1364 | 1364 |
template <typename Graph> |
1365 | 1365 |
friend GraphReader<Graph> graphReader(Graph& graph, const char *fn); |
1366 | 1366 |
|
1367 | 1367 |
GraphReader(GraphReader& other) |
1368 | 1368 |
: _is(other._is), local_is(other.local_is), _graph(other._graph), |
1369 | 1369 |
_use_nodes(other._use_nodes), _use_edges(other._use_edges), |
1370 | 1370 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) { |
1371 | 1371 |
|
1372 | 1372 |
other._is = 0; |
1373 | 1373 |
other.local_is = false; |
1374 | 1374 |
|
1375 | 1375 |
_node_index.swap(other._node_index); |
1376 | 1376 |
_edge_index.swap(other._edge_index); |
1377 | 1377 |
|
1378 | 1378 |
_node_maps.swap(other._node_maps); |
1379 | 1379 |
_edge_maps.swap(other._edge_maps); |
1380 | 1380 |
_attributes.swap(other._attributes); |
1381 | 1381 |
|
1382 | 1382 |
_nodes_caption = other._nodes_caption; |
1383 | 1383 |
_edges_caption = other._edges_caption; |
1384 | 1384 |
_attributes_caption = other._attributes_caption; |
1385 | 1385 |
|
1386 | 1386 |
} |
1387 | 1387 |
|
1388 | 1388 |
GraphReader& operator=(const GraphReader&); |
1389 | 1389 |
|
1390 | 1390 |
public: |
1391 | 1391 |
|
1392 |
/// \name Reading |
|
1392 |
/// \name Reading Rules |
|
1393 | 1393 |
/// @{ |
1394 | 1394 |
|
1395 | 1395 |
/// \brief Node map reading rule |
1396 | 1396 |
/// |
1397 | 1397 |
/// Add a node map reading rule to the reader. |
1398 | 1398 |
template <typename Map> |
1399 | 1399 |
GraphReader& nodeMap(const std::string& caption, Map& map) { |
1400 | 1400 |
checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>(); |
1401 | 1401 |
_reader_bits::MapStorageBase<Node>* storage = |
1402 | 1402 |
new _reader_bits::MapStorage<Node, Map>(map); |
1403 | 1403 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1404 | 1404 |
return *this; |
1405 | 1405 |
} |
1406 | 1406 |
|
1407 | 1407 |
/// \brief Node map reading rule |
1408 | 1408 |
/// |
1409 | 1409 |
/// Add a node map reading rule with specialized converter to the |
1410 | 1410 |
/// reader. |
1411 | 1411 |
template <typename Map, typename Converter> |
1412 | 1412 |
GraphReader& nodeMap(const std::string& caption, Map& map, |
1413 | 1413 |
const Converter& converter = Converter()) { |
1414 | 1414 |
checkConcept<concepts::WriteMap<Node, typename Map::Value>, Map>(); |
1415 | 1415 |
_reader_bits::MapStorageBase<Node>* storage = |
1416 | 1416 |
new _reader_bits::MapStorage<Node, Map, Converter>(map, converter); |
1417 | 1417 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1418 | 1418 |
return *this; |
1419 | 1419 |
} |
1420 | 1420 |
|
1421 | 1421 |
/// \brief Edge map reading rule |
1422 | 1422 |
/// |
1423 | 1423 |
/// Add an edge map reading rule to the reader. |
1424 | 1424 |
template <typename Map> |
1425 | 1425 |
GraphReader& edgeMap(const std::string& caption, Map& map) { |
1426 | 1426 |
checkConcept<concepts::WriteMap<Edge, typename Map::Value>, Map>(); |
1427 | 1427 |
_reader_bits::MapStorageBase<Edge>* storage = |
1428 | 1428 |
new _reader_bits::MapStorage<Edge, Map>(map); |
1429 | 1429 |
_edge_maps.push_back(std::make_pair(caption, storage)); |
1430 | 1430 |
return *this; |
1431 | 1431 |
} |
1432 | 1432 |
|
1433 | 1433 |
/// \brief Edge map reading rule |
1434 | 1434 |
/// |
1435 | 1435 |
/// Add an edge map reading rule with specialized converter to the |
1436 | 1436 |
/// reader. |
1437 | 1437 |
template <typename Map, typename Converter> |
1438 | 1438 |
GraphReader& edgeMap(const std::string& caption, Map& map, |
1439 | 1439 |
const Converter& converter = Converter()) { |
1440 | 1440 |
checkConcept<concepts::WriteMap<Edge, typename Map::Value>, Map>(); |
1441 | 1441 |
_reader_bits::MapStorageBase<Edge>* storage = |
1442 | 1442 |
new _reader_bits::MapStorage<Edge, Map, Converter>(map, converter); |
1443 | 1443 |
_edge_maps.push_back(std::make_pair(caption, storage)); |
1444 | 1444 |
return *this; |
1445 | 1445 |
} |
1446 | 1446 |
|
1447 | 1447 |
/// \brief Arc map reading rule |
1448 | 1448 |
/// |
1449 | 1449 |
/// Add an arc map reading rule to the reader. |
1450 | 1450 |
template <typename Map> |
1451 | 1451 |
GraphReader& arcMap(const std::string& caption, Map& map) { |
1452 | 1452 |
checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>(); |
1453 | 1453 |
_reader_bits::MapStorageBase<Edge>* forward_storage = |
1454 | 1454 |
new _reader_bits::GraphArcMapStorage<Graph, true, Map>(_graph, map); |
1455 | 1455 |
_edge_maps.push_back(std::make_pair('+' + caption, forward_storage)); |
1456 | 1456 |
_reader_bits::MapStorageBase<Edge>* backward_storage = |
1457 | 1457 |
new _reader_bits::GraphArcMapStorage<Graph, false, Map>(_graph, map); |
1458 | 1458 |
_edge_maps.push_back(std::make_pair('-' + caption, backward_storage)); |
1459 | 1459 |
return *this; |
1460 | 1460 |
} |
1461 | 1461 |
|
1462 | 1462 |
/// \brief Arc map reading rule |
1463 | 1463 |
/// |
1464 | 1464 |
/// Add an arc map reading rule with specialized converter to the |
1465 | 1465 |
/// reader. |
1466 | 1466 |
template <typename Map, typename Converter> |
1467 | 1467 |
GraphReader& arcMap(const std::string& caption, Map& map, |
1468 | 1468 |
const Converter& converter = Converter()) { |
1469 | 1469 |
checkConcept<concepts::WriteMap<Arc, typename Map::Value>, Map>(); |
1470 | 1470 |
_reader_bits::MapStorageBase<Edge>* forward_storage = |
1471 | 1471 |
new _reader_bits::GraphArcMapStorage<Graph, true, Map, Converter> |
1472 | 1472 |
(_graph, map, converter); |
1473 | 1473 |
_edge_maps.push_back(std::make_pair('+' + caption, forward_storage)); |
1474 | 1474 |
_reader_bits::MapStorageBase<Edge>* backward_storage = |
1475 | 1475 |
new _reader_bits::GraphArcMapStorage<Graph, false, Map, Converter> |
1476 | 1476 |
(_graph, map, converter); |
1477 | 1477 |
_edge_maps.push_back(std::make_pair('-' + caption, backward_storage)); |
1478 | 1478 |
return *this; |
1479 | 1479 |
} |
1480 | 1480 |
|
1481 | 1481 |
/// \brief Attribute reading rule |
1482 | 1482 |
/// |
1483 | 1483 |
/// Add an attribute reading rule to the reader. |
1484 | 1484 |
template <typename Value> |
1485 | 1485 |
GraphReader& attribute(const std::string& caption, Value& value) { |
1486 | 1486 |
_reader_bits::ValueStorageBase* storage = |
1487 | 1487 |
new _reader_bits::ValueStorage<Value>(value); |
1488 | 1488 |
_attributes.insert(std::make_pair(caption, storage)); |
1489 | 1489 |
return *this; |
1490 | 1490 |
} |
1491 | 1491 |
|
1492 | 1492 |
/// \brief Attribute reading rule |
1493 | 1493 |
/// |
1494 | 1494 |
/// Add an attribute reading rule with specialized converter to the |
1495 | 1495 |
/// reader. |
1496 | 1496 |
template <typename Value, typename Converter> |
1497 | 1497 |
GraphReader& attribute(const std::string& caption, Value& value, |
1498 | 1498 |
const Converter& converter = Converter()) { |
1499 | 1499 |
_reader_bits::ValueStorageBase* storage = |
1500 | 1500 |
new _reader_bits::ValueStorage<Value, Converter>(value, converter); |
1501 | 1501 |
_attributes.insert(std::make_pair(caption, storage)); |
1502 | 1502 |
return *this; |
1503 | 1503 |
} |
1504 | 1504 |
|
1505 | 1505 |
/// \brief Node reading rule |
1506 | 1506 |
/// |
1507 | 1507 |
/// Add a node reading rule to reader. |
1508 | 1508 |
GraphReader& node(const std::string& caption, Node& node) { |
1509 | 1509 |
typedef _reader_bits::MapLookUpConverter<Node> Converter; |
1510 | 1510 |
Converter converter(_node_index); |
1511 | 1511 |
_reader_bits::ValueStorageBase* storage = |
1512 | 1512 |
new _reader_bits::ValueStorage<Node, Converter>(node, converter); |
1513 | 1513 |
_attributes.insert(std::make_pair(caption, storage)); |
1514 | 1514 |
return *this; |
1515 | 1515 |
} |
1516 | 1516 |
|
1517 | 1517 |
/// \brief Edge reading rule |
1518 | 1518 |
/// |
1519 | 1519 |
/// Add an edge reading rule to reader. |
1520 | 1520 |
GraphReader& edge(const std::string& caption, Edge& edge) { |
1521 | 1521 |
typedef _reader_bits::MapLookUpConverter<Edge> Converter; |
1522 | 1522 |
Converter converter(_edge_index); |
1523 | 1523 |
_reader_bits::ValueStorageBase* storage = |
1524 | 1524 |
new _reader_bits::ValueStorage<Edge, Converter>(edge, converter); |
1525 | 1525 |
_attributes.insert(std::make_pair(caption, storage)); |
1526 | 1526 |
return *this; |
1527 | 1527 |
} |
1528 | 1528 |
|
1529 | 1529 |
/// \brief Arc reading rule |
1530 | 1530 |
/// |
1531 | 1531 |
/// Add an arc reading rule to reader. |
1532 | 1532 |
GraphReader& arc(const std::string& caption, Arc& arc) { |
1533 | 1533 |
typedef _reader_bits::GraphArcLookUpConverter<Graph> Converter; |
1534 | 1534 |
Converter converter(_graph, _edge_index); |
1535 | 1535 |
_reader_bits::ValueStorageBase* storage = |
1536 | 1536 |
new _reader_bits::ValueStorage<Arc, Converter>(arc, converter); |
1537 | 1537 |
_attributes.insert(std::make_pair(caption, storage)); |
1538 | 1538 |
return *this; |
1539 | 1539 |
} |
1540 | 1540 |
|
1541 | 1541 |
/// @} |
1542 | 1542 |
|
1543 |
/// \name Select |
|
1543 |
/// \name Select Section by Name |
|
1544 | 1544 |
/// @{ |
1545 | 1545 |
|
1546 | 1546 |
/// \brief Set \c \@nodes section to be read |
1547 | 1547 |
/// |
1548 | 1548 |
/// Set \c \@nodes section to be read. |
1549 | 1549 |
GraphReader& nodes(const std::string& caption) { |
1550 | 1550 |
_nodes_caption = caption; |
1551 | 1551 |
return *this; |
1552 | 1552 |
} |
1553 | 1553 |
|
1554 | 1554 |
/// \brief Set \c \@edges section to be read |
1555 | 1555 |
/// |
1556 | 1556 |
/// Set \c \@edges section to be read. |
1557 | 1557 |
GraphReader& edges(const std::string& caption) { |
1558 | 1558 |
_edges_caption = caption; |
1559 | 1559 |
return *this; |
1560 | 1560 |
} |
1561 | 1561 |
|
1562 | 1562 |
/// \brief Set \c \@attributes section to be read |
1563 | 1563 |
/// |
1564 | 1564 |
/// Set \c \@attributes section to be read. |
1565 | 1565 |
GraphReader& attributes(const std::string& caption) { |
1566 | 1566 |
_attributes_caption = caption; |
1567 | 1567 |
return *this; |
1568 | 1568 |
} |
1569 | 1569 |
|
1570 | 1570 |
/// @} |
1571 | 1571 |
|
1572 |
/// \name Using |
|
1572 |
/// \name Using Previously Constructed Node or Edge Set |
|
1573 | 1573 |
/// @{ |
1574 | 1574 |
|
1575 | 1575 |
/// \brief Use previously constructed node set |
1576 | 1576 |
/// |
1577 | 1577 |
/// Use previously constructed node set, and specify the node |
1578 | 1578 |
/// label map. |
1579 | 1579 |
template <typename Map> |
1580 | 1580 |
GraphReader& useNodes(const Map& map) { |
1581 | 1581 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1582 | 1582 |
LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member"); |
1583 | 1583 |
_use_nodes = true; |
1584 | 1584 |
_writer_bits::DefaultConverter<typename Map::Value> converter; |
1585 | 1585 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1586 | 1586 |
_node_index.insert(std::make_pair(converter(map[n]), n)); |
1587 | 1587 |
} |
1588 | 1588 |
return *this; |
1589 | 1589 |
} |
1590 | 1590 |
|
1591 | 1591 |
/// \brief Use previously constructed node set |
1592 | 1592 |
/// |
1593 | 1593 |
/// Use previously constructed node set, and specify the node |
1594 | 1594 |
/// label map and a functor which converts the label map values to |
1595 | 1595 |
/// \c std::string. |
1596 | 1596 |
template <typename Map, typename Converter> |
1597 | 1597 |
GraphReader& useNodes(const Map& map, |
1598 | 1598 |
const Converter& converter = Converter()) { |
1599 | 1599 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1600 | 1600 |
LEMON_ASSERT(!_use_nodes, "Multiple usage of useNodes() member"); |
1601 | 1601 |
_use_nodes = true; |
1602 | 1602 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1603 | 1603 |
_node_index.insert(std::make_pair(converter(map[n]), n)); |
1604 | 1604 |
} |
1605 | 1605 |
return *this; |
1606 | 1606 |
} |
1607 | 1607 |
|
1608 | 1608 |
/// \brief Use previously constructed edge set |
1609 | 1609 |
/// |
1610 | 1610 |
/// Use previously constructed edge set, and specify the edge |
1611 | 1611 |
/// label map. |
1612 | 1612 |
template <typename Map> |
1613 | 1613 |
GraphReader& useEdges(const Map& map) { |
1614 | 1614 |
checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>(); |
1615 | 1615 |
LEMON_ASSERT(!_use_edges, "Multiple usage of useEdges() member"); |
1616 | 1616 |
_use_edges = true; |
1617 | 1617 |
_writer_bits::DefaultConverter<typename Map::Value> converter; |
1618 | 1618 |
for (EdgeIt a(_graph); a != INVALID; ++a) { |
1619 | 1619 |
_edge_index.insert(std::make_pair(converter(map[a]), a)); |
1620 | 1620 |
} |
1621 | 1621 |
return *this; |
1622 | 1622 |
} |
1623 | 1623 |
|
1624 | 1624 |
/// \brief Use previously constructed edge set |
1625 | 1625 |
/// |
1626 | 1626 |
/// Use previously constructed edge set, and specify the edge |
1627 | 1627 |
/// label map and a functor which converts the label map values to |
1628 | 1628 |
/// \c std::string. |
1629 | 1629 |
template <typename Map, typename Converter> |
1630 | 1630 |
GraphReader& useEdges(const Map& map, |
1631 | 1631 |
const Converter& converter = Converter()) { |
1632 | 1632 |
checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>(); |
1633 | 1633 |
LEMON_ASSERT(!_use_edges, "Multiple usage of useEdges() member"); |
1634 | 1634 |
_use_edges = true; |
1635 | 1635 |
for (EdgeIt a(_graph); a != INVALID; ++a) { |
1636 | 1636 |
_edge_index.insert(std::make_pair(converter(map[a]), a)); |
1637 | 1637 |
} |
1638 | 1638 |
return *this; |
1639 | 1639 |
} |
1640 | 1640 |
|
1641 | 1641 |
/// \brief Skip the reading of node section |
1642 | 1642 |
/// |
1643 | 1643 |
/// Omit the reading of the node section. This implies that each node |
1644 | 1644 |
/// map reading rule will be abandoned, and the nodes of the graph |
1645 | 1645 |
/// will not be constructed, which usually cause that the edge set |
1646 | 1646 |
/// could not be read due to lack of node name |
1647 | 1647 |
/// could not be read due to lack of node name resolving. |
1648 | 1648 |
/// Therefore \c skipEdges() function should also be used, or |
1649 | 1649 |
/// \c useNodes() should be used to specify the label of the nodes. |
1650 | 1650 |
GraphReader& skipNodes() { |
1651 | 1651 |
LEMON_ASSERT(!_skip_nodes, "Skip nodes already set"); |
1652 | 1652 |
_skip_nodes = true; |
1653 | 1653 |
return *this; |
1654 | 1654 |
} |
1655 | 1655 |
|
1656 | 1656 |
/// \brief Skip the reading of edge section |
1657 | 1657 |
/// |
1658 | 1658 |
/// Omit the reading of the edge section. This implies that each edge |
1659 | 1659 |
/// map reading rule will be abandoned, and the edges of the graph |
1660 | 1660 |
/// will not be constructed. |
1661 | 1661 |
GraphReader& skipEdges() { |
1662 | 1662 |
LEMON_ASSERT(!_skip_edges, "Skip edges already set"); |
1663 | 1663 |
_skip_edges = true; |
1664 | 1664 |
return *this; |
1665 | 1665 |
} |
1666 | 1666 |
|
1667 | 1667 |
/// @} |
1668 | 1668 |
|
1669 | 1669 |
private: |
1670 | 1670 |
|
1671 | 1671 |
bool readLine() { |
1672 | 1672 |
std::string str; |
1673 | 1673 |
while(++line_num, std::getline(*_is, str)) { |
1674 | 1674 |
line.clear(); line.str(str); |
1675 | 1675 |
char c; |
1676 | 1676 |
if (line >> std::ws >> c && c != '#') { |
1677 | 1677 |
line.putback(c); |
1678 | 1678 |
return true; |
1679 | 1679 |
} |
1680 | 1680 |
} |
1681 | 1681 |
return false; |
1682 | 1682 |
} |
1683 | 1683 |
|
1684 | 1684 |
bool readSuccess() { |
1685 | 1685 |
return static_cast<bool>(*_is); |
1686 | 1686 |
} |
1687 | 1687 |
|
1688 | 1688 |
void skipSection() { |
1689 | 1689 |
char c; |
1690 | 1690 |
while (readSuccess() && line >> c && c != '@') { |
1691 | 1691 |
readLine(); |
1692 | 1692 |
} |
1693 | 1693 |
if (readSuccess()) { |
1694 | 1694 |
line.putback(c); |
1695 | 1695 |
} |
1696 | 1696 |
} |
1697 | 1697 |
|
1698 | 1698 |
void readNodes() { |
1699 | 1699 |
|
1700 | 1700 |
std::vector<int> map_index(_node_maps.size()); |
1701 | 1701 |
int map_num, label_index; |
1702 | 1702 |
|
1703 | 1703 |
char c; |
1704 | 1704 |
if (!readLine() || !(line >> c) || c == '@') { |
1705 | 1705 |
if (readSuccess() && line) line.putback(c); |
1706 | 1706 |
if (!_node_maps.empty()) |
1707 | 1707 |
throw FormatError("Cannot find map names"); |
1708 | 1708 |
return; |
1709 | 1709 |
} |
1710 | 1710 |
line.putback(c); |
1711 | 1711 |
|
1712 | 1712 |
{ |
1713 | 1713 |
std::map<std::string, int> maps; |
1714 | 1714 |
|
1715 | 1715 |
std::string map; |
1716 | 1716 |
int index = 0; |
1717 | 1717 |
while (_reader_bits::readToken(line, map)) { |
1718 | 1718 |
if (maps.find(map) != maps.end()) { |
1719 | 1719 |
std::ostringstream msg; |
1720 | 1720 |
msg << "Multiple occurence of node map: " << map; |
1721 | 1721 |
throw FormatError(msg.str()); |
1722 | 1722 |
} |
1723 | 1723 |
maps.insert(std::make_pair(map, index)); |
1724 | 1724 |
++index; |
1725 | 1725 |
} |
1726 | 1726 |
|
1727 | 1727 |
for (int i = 0; i < static_cast<int>(_node_maps.size()); ++i) { |
1728 | 1728 |
std::map<std::string, int>::iterator jt = |
1729 | 1729 |
maps.find(_node_maps[i].first); |
1730 | 1730 |
if (jt == maps.end()) { |
1731 | 1731 |
std::ostringstream msg; |
1732 | 1732 |
msg << "Map not found: " << _node_maps[i].first; |
1733 | 1733 |
throw FormatError(msg.str()); |
1734 | 1734 |
} |
1735 | 1735 |
map_index[i] = jt->second; |
1736 | 1736 |
} |
1737 | 1737 |
|
1738 | 1738 |
{ |
1739 | 1739 |
std::map<std::string, int>::iterator jt = maps.find("label"); |
1740 | 1740 |
if (jt != maps.end()) { |
1741 | 1741 |
label_index = jt->second; |
1742 | 1742 |
} else { |
1743 | 1743 |
label_index = -1; |
1744 | 1744 |
} |
1745 | 1745 |
} |
1746 | 1746 |
map_num = maps.size(); |
1747 | 1747 |
} |
1748 | 1748 |
|
1749 | 1749 |
while (readLine() && line >> c && c != '@') { |
1750 | 1750 |
line.putback(c); |
1751 | 1751 |
|
1752 | 1752 |
std::vector<std::string> tokens(map_num); |
1753 | 1753 |
for (int i = 0; i < map_num; ++i) { |
1754 | 1754 |
if (!_reader_bits::readToken(line, tokens[i])) { |
1755 | 1755 |
std::ostringstream msg; |
1756 | 1756 |
msg << "Column not found (" << i + 1 << ")"; |
1757 | 1757 |
throw FormatError(msg.str()); |
1758 | 1758 |
} |
1759 | 1759 |
} |
1760 | 1760 |
if (line >> std::ws >> c) |
1761 | 1761 |
throw FormatError("Extra character at the end of line"); |
1762 | 1762 |
|
1763 | 1763 |
Node n; |
1764 | 1764 |
if (!_use_nodes) { |
1765 | 1765 |
n = _graph.addNode(); |
1766 | 1766 |
if (label_index != -1) |
1767 | 1767 |
_node_index.insert(std::make_pair(tokens[label_index], n)); |
1768 | 1768 |
} else { |
1769 | 1769 |
if (label_index == -1) |
1770 | 1770 |
throw FormatError("Label map not found"); |
1771 | 1771 |
typename std::map<std::string, Node>::iterator it = |
1772 | 1772 |
_node_index.find(tokens[label_index]); |
1773 | 1773 |
if (it == _node_index.end()) { |
1774 | 1774 |
std::ostringstream msg; |
1775 | 1775 |
msg << "Node with label not found: " << tokens[label_index]; |
1776 | 1776 |
throw FormatError(msg.str()); |
1777 | 1777 |
} |
1778 | 1778 |
n = it->second; |
1779 | 1779 |
} |
1780 | 1780 |
|
1781 | 1781 |
for (int i = 0; i < static_cast<int>(_node_maps.size()); ++i) { |
1782 | 1782 |
_node_maps[i].second->set(n, tokens[map_index[i]]); |
1783 | 1783 |
} |
1784 | 1784 |
|
1785 | 1785 |
} |
1786 | 1786 |
if (readSuccess()) { |
1787 | 1787 |
line.putback(c); |
1788 | 1788 |
} |
1789 | 1789 |
} |
1790 | 1790 |
|
1791 | 1791 |
void readEdges() { |
1792 | 1792 |
|
1793 | 1793 |
std::vector<int> map_index(_edge_maps.size()); |
1794 | 1794 |
int map_num, label_index; |
1795 | 1795 |
|
1796 | 1796 |
char c; |
1797 | 1797 |
if (!readLine() || !(line >> c) || c == '@') { |
1798 | 1798 |
if (readSuccess() && line) line.putback(c); |
1799 | 1799 |
if (!_edge_maps.empty()) |
1800 | 1800 |
throw FormatError("Cannot find map names"); |
1801 | 1801 |
return; |
1802 | 1802 |
} |
1803 | 1803 |
line.putback(c); |
1804 | 1804 |
|
1805 | 1805 |
{ |
1806 | 1806 |
std::map<std::string, int> maps; |
1807 | 1807 |
|
1808 | 1808 |
std::string map; |
1809 | 1809 |
int index = 0; |
1810 | 1810 |
while (_reader_bits::readToken(line, map)) { |
1811 | 1811 |
if (maps.find(map) != maps.end()) { |
1812 | 1812 |
std::ostringstream msg; |
1813 | 1813 |
msg << "Multiple occurence of edge map: " << map; |
1814 | 1814 |
throw FormatError(msg.str()); |
1815 | 1815 |
} |
1816 | 1816 |
maps.insert(std::make_pair(map, index)); |
1817 | 1817 |
++index; |
1818 | 1818 |
} |
1819 | 1819 |
|
1820 | 1820 |
for (int i = 0; i < static_cast<int>(_edge_maps.size()); ++i) { |
1821 | 1821 |
std::map<std::string, int>::iterator jt = |
1822 | 1822 |
maps.find(_edge_maps[i].first); |
1823 | 1823 |
if (jt == maps.end()) { |
1824 | 1824 |
std::ostringstream msg; |
1825 | 1825 |
msg << "Map not found: " << _edge_maps[i].first; |
1826 | 1826 |
throw FormatError(msg.str()); |
1827 | 1827 |
} |
1828 | 1828 |
map_index[i] = jt->second; |
1829 | 1829 |
} |
1830 | 1830 |
|
1831 | 1831 |
{ |
1832 | 1832 |
std::map<std::string, int>::iterator jt = maps.find("label"); |
1833 | 1833 |
if (jt != maps.end()) { |
1834 | 1834 |
label_index = jt->second; |
1835 | 1835 |
} else { |
1836 | 1836 |
label_index = -1; |
1837 | 1837 |
} |
1838 | 1838 |
} |
1839 | 1839 |
map_num = maps.size(); |
1840 | 1840 |
} |
1841 | 1841 |
|
1842 | 1842 |
while (readLine() && line >> c && c != '@') { |
1843 | 1843 |
line.putback(c); |
1844 | 1844 |
|
1845 | 1845 |
std::string source_token; |
1846 | 1846 |
std::string target_token; |
1847 | 1847 |
|
1848 | 1848 |
if (!_reader_bits::readToken(line, source_token)) |
1849 | 1849 |
throw FormatError("Node u not found"); |
1850 | 1850 |
|
1851 | 1851 |
if (!_reader_bits::readToken(line, target_token)) |
1852 | 1852 |
throw FormatError("Node v not found"); |
1853 | 1853 |
|
1854 | 1854 |
std::vector<std::string> tokens(map_num); |
1855 | 1855 |
for (int i = 0; i < map_num; ++i) { |
1856 | 1856 |
if (!_reader_bits::readToken(line, tokens[i])) { |
1857 | 1857 |
std::ostringstream msg; |
1858 | 1858 |
msg << "Column not found (" << i + 1 << ")"; |
1859 | 1859 |
throw FormatError(msg.str()); |
1860 | 1860 |
} |
1861 | 1861 |
} |
1862 | 1862 |
if (line >> std::ws >> c) |
1863 | 1863 |
throw FormatError("Extra character at the end of line"); |
1864 | 1864 |
|
1865 | 1865 |
Edge e; |
1866 | 1866 |
if (!_use_edges) { |
1867 | 1867 |
|
1868 | 1868 |
typename NodeIndex::iterator it; |
1869 | 1869 |
|
1870 | 1870 |
it = _node_index.find(source_token); |
1871 | 1871 |
if (it == _node_index.end()) { |
1872 | 1872 |
std::ostringstream msg; |
1873 | 1873 |
msg << "Item not found: " << source_token; |
1874 | 1874 |
throw FormatError(msg.str()); |
1875 | 1875 |
} |
1876 | 1876 |
Node source = it->second; |
1877 | 1877 |
|
1878 | 1878 |
it = _node_index.find(target_token); |
1879 | 1879 |
if (it == _node_index.end()) { |
1880 | 1880 |
std::ostringstream msg; |
1881 | 1881 |
msg << "Item not found: " << target_token; |
1882 | 1882 |
throw FormatError(msg.str()); |
1883 | 1883 |
} |
1884 | 1884 |
Node target = it->second; |
1885 | 1885 |
|
1886 | 1886 |
e = _graph.addEdge(source, target); |
1887 | 1887 |
if (label_index != -1) |
1888 | 1888 |
_edge_index.insert(std::make_pair(tokens[label_index], e)); |
1889 | 1889 |
} else { |
1890 | 1890 |
if (label_index == -1) |
1891 | 1891 |
throw FormatError("Label map not found"); |
1892 | 1892 |
typename std::map<std::string, Edge>::iterator it = |
1893 | 1893 |
_edge_index.find(tokens[label_index]); |
1894 | 1894 |
if (it == _edge_index.end()) { |
1895 | 1895 |
std::ostringstream msg; |
1896 | 1896 |
msg << "Edge with label not found: " << tokens[label_index]; |
1897 | 1897 |
throw FormatError(msg.str()); |
1898 | 1898 |
} |
1899 | 1899 |
e = it->second; |
1900 | 1900 |
} |
1901 | 1901 |
|
1902 | 1902 |
for (int i = 0; i < static_cast<int>(_edge_maps.size()); ++i) { |
1903 | 1903 |
_edge_maps[i].second->set(e, tokens[map_index[i]]); |
1904 | 1904 |
} |
1905 | 1905 |
|
1906 | 1906 |
} |
1907 | 1907 |
if (readSuccess()) { |
1908 | 1908 |
line.putback(c); |
1909 | 1909 |
} |
1910 | 1910 |
} |
1911 | 1911 |
|
1912 | 1912 |
void readAttributes() { |
1913 | 1913 |
|
1914 | 1914 |
std::set<std::string> read_attr; |
1915 | 1915 |
|
1916 | 1916 |
char c; |
1917 | 1917 |
while (readLine() && line >> c && c != '@') { |
1918 | 1918 |
line.putback(c); |
1919 | 1919 |
|
1920 | 1920 |
std::string attr, token; |
1921 | 1921 |
if (!_reader_bits::readToken(line, attr)) |
1922 | 1922 |
throw FormatError("Attribute name not found"); |
1923 | 1923 |
if (!_reader_bits::readToken(line, token)) |
1924 | 1924 |
throw FormatError("Attribute value not found"); |
1925 | 1925 |
if (line >> c) |
1926 | 1926 |
throw FormatError("Extra character at the end of line"); |
1927 | 1927 |
|
1928 | 1928 |
{ |
1929 | 1929 |
std::set<std::string>::iterator it = read_attr.find(attr); |
1930 | 1930 |
if (it != read_attr.end()) { |
1931 | 1931 |
std::ostringstream msg; |
1932 | 1932 |
msg << "Multiple occurence of attribute: " << attr; |
1933 | 1933 |
throw FormatError(msg.str()); |
1934 | 1934 |
} |
1935 | 1935 |
read_attr.insert(attr); |
1936 | 1936 |
} |
1937 | 1937 |
|
1938 | 1938 |
{ |
1939 | 1939 |
typename Attributes::iterator it = _attributes.lower_bound(attr); |
1940 | 1940 |
while (it != _attributes.end() && it->first == attr) { |
1941 | 1941 |
it->second->set(token); |
1942 | 1942 |
++it; |
1943 | 1943 |
} |
1944 | 1944 |
} |
1945 | 1945 |
|
1946 | 1946 |
} |
1947 | 1947 |
if (readSuccess()) { |
1948 | 1948 |
line.putback(c); |
1949 | 1949 |
} |
1950 | 1950 |
for (typename Attributes::iterator it = _attributes.begin(); |
1951 | 1951 |
it != _attributes.end(); ++it) { |
1952 | 1952 |
if (read_attr.find(it->first) == read_attr.end()) { |
1953 | 1953 |
std::ostringstream msg; |
1954 | 1954 |
msg << "Attribute not found: " << it->first; |
1955 | 1955 |
throw FormatError(msg.str()); |
1956 | 1956 |
} |
1957 | 1957 |
} |
1958 | 1958 |
} |
1959 | 1959 |
|
1960 | 1960 |
public: |
1961 | 1961 |
|
1962 |
/// \name Execution of the |
|
1962 |
/// \name Execution of the Reader |
|
1963 | 1963 |
/// @{ |
1964 | 1964 |
|
1965 | 1965 |
/// \brief Start the batch processing |
1966 | 1966 |
/// |
1967 | 1967 |
/// This function starts the batch processing |
1968 | 1968 |
void run() { |
1969 | 1969 |
|
1970 | 1970 |
LEMON_ASSERT(_is != 0, "This reader assigned to an other reader"); |
1971 | 1971 |
|
1972 | 1972 |
bool nodes_done = _skip_nodes; |
1973 | 1973 |
bool edges_done = _skip_edges; |
1974 | 1974 |
bool attributes_done = false; |
1975 | 1975 |
|
1976 | 1976 |
line_num = 0; |
1977 | 1977 |
readLine(); |
1978 | 1978 |
skipSection(); |
1979 | 1979 |
|
1980 | 1980 |
while (readSuccess()) { |
1981 | 1981 |
try { |
1982 | 1982 |
char c; |
1983 | 1983 |
std::string section, caption; |
1984 | 1984 |
line >> c; |
1985 | 1985 |
_reader_bits::readToken(line, section); |
1986 | 1986 |
_reader_bits::readToken(line, caption); |
1987 | 1987 |
|
1988 | 1988 |
if (line >> c) |
1989 | 1989 |
throw FormatError("Extra character at the end of line"); |
1990 | 1990 |
|
1991 | 1991 |
if (section == "nodes" && !nodes_done) { |
1992 | 1992 |
if (_nodes_caption.empty() || _nodes_caption == caption) { |
1993 | 1993 |
readNodes(); |
1994 | 1994 |
nodes_done = true; |
1995 | 1995 |
} |
1996 | 1996 |
} else if ((section == "edges" || section == "arcs") && |
1997 | 1997 |
!edges_done) { |
1998 | 1998 |
if (_edges_caption.empty() || _edges_caption == caption) { |
1999 | 1999 |
readEdges(); |
2000 | 2000 |
edges_done = true; |
2001 | 2001 |
} |
2002 | 2002 |
} else if (section == "attributes" && !attributes_done) { |
2003 | 2003 |
if (_attributes_caption.empty() || _attributes_caption == caption) { |
2004 | 2004 |
readAttributes(); |
2005 | 2005 |
attributes_done = true; |
2006 | 2006 |
} |
2007 | 2007 |
} else { |
2008 | 2008 |
readLine(); |
2009 | 2009 |
skipSection(); |
2010 | 2010 |
} |
2011 | 2011 |
} catch (FormatError& error) { |
2012 | 2012 |
error.line(line_num); |
2013 | 2013 |
error.file(_filename); |
2014 | 2014 |
throw; |
2015 | 2015 |
} |
2016 | 2016 |
} |
2017 | 2017 |
|
2018 | 2018 |
if (!nodes_done) { |
2019 | 2019 |
throw FormatError("Section @nodes not found"); |
2020 | 2020 |
} |
2021 | 2021 |
|
2022 | 2022 |
if (!edges_done) { |
2023 | 2023 |
throw FormatError("Section @edges not found"); |
2024 | 2024 |
} |
2025 | 2025 |
|
2026 | 2026 |
if (!attributes_done && !_attributes.empty()) { |
2027 | 2027 |
throw FormatError("Section @attributes not found"); |
2028 | 2028 |
} |
2029 | 2029 |
|
2030 | 2030 |
} |
2031 | 2031 |
|
2032 | 2032 |
/// @} |
2033 | 2033 |
|
2034 | 2034 |
}; |
2035 | 2035 |
|
2036 | 2036 |
/// \brief Return a \ref GraphReader class |
2037 | 2037 |
/// |
2038 | 2038 |
/// This function just returns a \ref GraphReader class. |
2039 | 2039 |
/// \relates GraphReader |
2040 | 2040 |
template <typename Graph> |
2041 | 2041 |
GraphReader<Graph> graphReader(Graph& graph, std::istream& is) { |
2042 | 2042 |
GraphReader<Graph> tmp(graph, is); |
2043 | 2043 |
return tmp; |
2044 | 2044 |
} |
2045 | 2045 |
|
2046 | 2046 |
/// \brief Return a \ref GraphReader class |
2047 | 2047 |
/// |
2048 | 2048 |
/// This function just returns a \ref GraphReader class. |
2049 | 2049 |
/// \relates GraphReader |
2050 | 2050 |
template <typename Graph> |
2051 | 2051 |
GraphReader<Graph> graphReader(Graph& graph, const std::string& fn) { |
2052 | 2052 |
GraphReader<Graph> tmp(graph, fn); |
2053 | 2053 |
return tmp; |
2054 | 2054 |
} |
2055 | 2055 |
|
2056 | 2056 |
/// \brief Return a \ref GraphReader class |
2057 | 2057 |
/// |
2058 | 2058 |
/// This function just returns a \ref GraphReader class. |
2059 | 2059 |
/// \relates GraphReader |
2060 | 2060 |
template <typename Graph> |
2061 | 2061 |
GraphReader<Graph> graphReader(Graph& graph, const char* fn) { |
2062 | 2062 |
GraphReader<Graph> tmp(graph, fn); |
2063 | 2063 |
return tmp; |
2064 | 2064 |
} |
2065 | 2065 |
|
2066 | 2066 |
class SectionReader; |
2067 | 2067 |
|
2068 | 2068 |
SectionReader sectionReader(std::istream& is); |
2069 | 2069 |
SectionReader sectionReader(const std::string& fn); |
2070 | 2070 |
SectionReader sectionReader(const char* fn); |
2071 | 2071 |
|
2072 | 2072 |
/// \ingroup lemon_io |
2073 | 2073 |
/// |
2074 | 2074 |
/// \brief Section reader class |
2075 | 2075 |
/// |
2076 | 2076 |
/// In the \ref lgf-format "LGF" file extra sections can be placed, |
2077 | 2077 |
/// which contain any data in arbitrary format. Such sections can be |
2078 | 2078 |
/// read with this class. A reading rule can be added to the class |
2079 | 2079 |
/// with two different functions. With the \c sectionLines() function a |
2080 | 2080 |
/// functor can process the section line-by-line, while with the \c |
2081 | 2081 |
/// sectionStream() member the section can be read from an input |
2082 | 2082 |
/// stream. |
2083 | 2083 |
class SectionReader { |
2084 | 2084 |
private: |
2085 | 2085 |
|
2086 | 2086 |
std::istream* _is; |
2087 | 2087 |
bool local_is; |
2088 | 2088 |
std::string _filename; |
2089 | 2089 |
|
2090 | 2090 |
typedef std::map<std::string, _reader_bits::Section*> Sections; |
2091 | 2091 |
Sections _sections; |
2092 | 2092 |
|
2093 | 2093 |
int line_num; |
2094 | 2094 |
std::istringstream line; |
2095 | 2095 |
|
2096 | 2096 |
public: |
2097 | 2097 |
|
2098 | 2098 |
/// \brief Constructor |
2099 | 2099 |
/// |
2100 | 2100 |
/// Construct a section reader, which reads from the given input |
2101 | 2101 |
/// stream. |
2102 | 2102 |
SectionReader(std::istream& is) |
2103 | 2103 |
: _is(&is), local_is(false) {} |
2104 | 2104 |
|
2105 | 2105 |
/// \brief Constructor |
2106 | 2106 |
/// |
2107 | 2107 |
/// Construct a section reader, which reads from the given file. |
2108 | 2108 |
SectionReader(const std::string& fn) |
2109 | 2109 |
: _is(new std::ifstream(fn.c_str())), local_is(true), |
2110 | 2110 |
_filename(fn) { |
2111 | 2111 |
if (!(*_is)) { |
2112 | 2112 |
delete _is; |
2113 | 2113 |
throw IoError("Cannot open file", fn); |
2114 | 2114 |
} |
2115 | 2115 |
} |
2116 | 2116 |
|
2117 | 2117 |
/// \brief Constructor |
2118 | 2118 |
/// |
2119 | 2119 |
/// Construct a section reader, which reads from the given file. |
2120 | 2120 |
SectionReader(const char* fn) |
2121 | 2121 |
: _is(new std::ifstream(fn)), local_is(true), |
2122 | 2122 |
_filename(fn) { |
2123 | 2123 |
if (!(*_is)) { |
2124 | 2124 |
delete _is; |
2125 | 2125 |
throw IoError("Cannot open file", fn); |
2126 | 2126 |
} |
2127 | 2127 |
} |
2128 | 2128 |
|
2129 | 2129 |
/// \brief Destructor |
2130 | 2130 |
~SectionReader() { |
2131 | 2131 |
for (Sections::iterator it = _sections.begin(); |
2132 | 2132 |
it != _sections.end(); ++it) { |
2133 | 2133 |
delete it->second; |
2134 | 2134 |
} |
2135 | 2135 |
|
2136 | 2136 |
if (local_is) { |
2137 | 2137 |
delete _is; |
2138 | 2138 |
} |
2139 | 2139 |
|
2140 | 2140 |
} |
2141 | 2141 |
|
2142 | 2142 |
private: |
2143 | 2143 |
|
2144 | 2144 |
friend SectionReader sectionReader(std::istream& is); |
2145 | 2145 |
friend SectionReader sectionReader(const std::string& fn); |
2146 | 2146 |
friend SectionReader sectionReader(const char* fn); |
2147 | 2147 |
|
2148 | 2148 |
SectionReader(SectionReader& other) |
2149 | 2149 |
: _is(other._is), local_is(other.local_is) { |
2150 | 2150 |
|
2151 | 2151 |
other._is = 0; |
2152 | 2152 |
other.local_is = false; |
2153 | 2153 |
|
2154 | 2154 |
_sections.swap(other._sections); |
2155 | 2155 |
} |
2156 | 2156 |
|
2157 | 2157 |
SectionReader& operator=(const SectionReader&); |
2158 | 2158 |
|
2159 | 2159 |
public: |
2160 | 2160 |
|
2161 |
/// \name Section |
|
2161 |
/// \name Section Readers |
|
2162 | 2162 |
/// @{ |
2163 | 2163 |
|
2164 | 2164 |
/// \brief Add a section processor with line oriented reading |
2165 | 2165 |
/// |
2166 | 2166 |
/// The first parameter is the type descriptor of the section, the |
2167 | 2167 |
/// second is a functor, which takes just one \c std::string |
2168 | 2168 |
/// parameter. At the reading process, each line of the section |
2169 | 2169 |
/// will be given to the functor object. However, the empty lines |
2170 | 2170 |
/// and the comment lines are filtered out, and the leading |
2171 | 2171 |
/// whitespaces are trimmed from each processed string. |
2172 | 2172 |
/// |
2173 | 2173 |
/// For example let's see a section, which contain several |
2174 | 2174 |
/// integers, which should be inserted into a vector. |
2175 | 2175 |
///\code |
2176 | 2176 |
/// @numbers |
2177 | 2177 |
/// 12 45 23 |
2178 | 2178 |
/// 4 |
2179 | 2179 |
/// 23 6 |
2180 | 2180 |
///\endcode |
2181 | 2181 |
/// |
2182 | 2182 |
/// The functor is implemented as a struct: |
2183 | 2183 |
///\code |
2184 | 2184 |
/// struct NumberSection { |
2185 | 2185 |
/// std::vector<int>& _data; |
2186 | 2186 |
/// NumberSection(std::vector<int>& data) : _data(data) {} |
2187 | 2187 |
/// void operator()(const std::string& line) { |
2188 | 2188 |
/// std::istringstream ls(line); |
2189 | 2189 |
/// int value; |
2190 | 2190 |
/// while (ls >> value) _data.push_back(value); |
2191 | 2191 |
/// } |
2192 | 2192 |
/// }; |
2193 | 2193 |
/// |
2194 | 2194 |
/// // ... |
2195 | 2195 |
/// |
2196 | 2196 |
/// reader.sectionLines("numbers", NumberSection(vec)); |
2197 | 2197 |
///\endcode |
2198 | 2198 |
template <typename Functor> |
2199 | 2199 |
SectionReader& sectionLines(const std::string& type, Functor functor) { |
2200 | 2200 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
2201 | 2201 |
LEMON_ASSERT(_sections.find(type) == _sections.end(), |
2202 | 2202 |
"Multiple reading of section."); |
2203 | 2203 |
_sections.insert(std::make_pair(type, |
2204 | 2204 |
new _reader_bits::LineSection<Functor>(functor))); |
2205 | 2205 |
return *this; |
2206 | 2206 |
} |
2207 | 2207 |
|
2208 | 2208 |
|
2209 | 2209 |
/// \brief Add a section processor with stream oriented reading |
2210 | 2210 |
/// |
2211 | 2211 |
/// The first parameter is the type of the section, the second is |
2212 | 2212 |
/// a functor, which takes an \c std::istream& and an \c int& |
2213 | 2213 |
/// parameter, the latter regard to the line number of stream. The |
2214 | 2214 |
/// functor can read the input while the section go on, and the |
2215 | 2215 |
/// line number should be modified accordingly. |
2216 | 2216 |
template <typename Functor> |
2217 | 2217 |
SectionReader& sectionStream(const std::string& type, Functor functor) { |
2218 | 2218 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
2219 | 2219 |
LEMON_ASSERT(_sections.find(type) == _sections.end(), |
2220 | 2220 |
"Multiple reading of section."); |
2221 | 2221 |
_sections.insert(std::make_pair(type, |
2222 | 2222 |
new _reader_bits::StreamSection<Functor>(functor))); |
2223 | 2223 |
return *this; |
2224 | 2224 |
} |
2225 | 2225 |
|
2226 | 2226 |
/// @} |
2227 | 2227 |
|
2228 | 2228 |
private: |
2229 | 2229 |
|
2230 | 2230 |
bool readLine() { |
2231 | 2231 |
std::string str; |
2232 | 2232 |
while(++line_num, std::getline(*_is, str)) { |
2233 | 2233 |
line.clear(); line.str(str); |
2234 | 2234 |
char c; |
2235 | 2235 |
if (line >> std::ws >> c && c != '#') { |
2236 | 2236 |
line.putback(c); |
2237 | 2237 |
return true; |
2238 | 2238 |
} |
2239 | 2239 |
} |
2240 | 2240 |
return false; |
2241 | 2241 |
} |
2242 | 2242 |
|
2243 | 2243 |
bool readSuccess() { |
2244 | 2244 |
return static_cast<bool>(*_is); |
2245 | 2245 |
} |
2246 | 2246 |
|
2247 | 2247 |
void skipSection() { |
2248 | 2248 |
char c; |
2249 | 2249 |
while (readSuccess() && line >> c && c != '@') { |
2250 | 2250 |
readLine(); |
2251 | 2251 |
} |
2252 | 2252 |
if (readSuccess()) { |
2253 | 2253 |
line.putback(c); |
2254 | 2254 |
} |
2255 | 2255 |
} |
2256 | 2256 |
|
2257 | 2257 |
public: |
2258 | 2258 |
|
2259 | 2259 |
|
2260 |
/// \name Execution of the |
|
2260 |
/// \name Execution of the Reader |
|
2261 | 2261 |
/// @{ |
2262 | 2262 |
|
2263 | 2263 |
/// \brief Start the batch processing |
2264 | 2264 |
/// |
2265 | 2265 |
/// This function starts the batch processing. |
2266 | 2266 |
void run() { |
2267 | 2267 |
|
2268 | 2268 |
LEMON_ASSERT(_is != 0, "This reader assigned to an other reader"); |
2269 | 2269 |
|
2270 | 2270 |
std::set<std::string> extra_sections; |
2271 | 2271 |
|
2272 | 2272 |
line_num = 0; |
2273 | 2273 |
readLine(); |
2274 | 2274 |
skipSection(); |
2275 | 2275 |
|
2276 | 2276 |
while (readSuccess()) { |
2277 | 2277 |
try { |
2278 | 2278 |
char c; |
2279 | 2279 |
std::string section, caption; |
2280 | 2280 |
line >> c; |
2281 | 2281 |
_reader_bits::readToken(line, section); |
2282 | 2282 |
_reader_bits::readToken(line, caption); |
2283 | 2283 |
|
2284 | 2284 |
if (line >> c) |
2285 | 2285 |
throw FormatError("Extra character at the end of line"); |
2286 | 2286 |
|
2287 | 2287 |
if (extra_sections.find(section) != extra_sections.end()) { |
2288 | 2288 |
std::ostringstream msg; |
2289 | 2289 |
msg << "Multiple occurence of section: " << section; |
2290 | 2290 |
throw FormatError(msg.str()); |
2291 | 2291 |
} |
2292 | 2292 |
Sections::iterator it = _sections.find(section); |
2293 | 2293 |
if (it != _sections.end()) { |
2294 | 2294 |
extra_sections.insert(section); |
2295 | 2295 |
it->second->process(*_is, line_num); |
2296 | 2296 |
} |
2297 | 2297 |
readLine(); |
2298 | 2298 |
skipSection(); |
2299 | 2299 |
} catch (FormatError& error) { |
2300 | 2300 |
error.line(line_num); |
2301 | 2301 |
error.file(_filename); |
2302 | 2302 |
throw; |
2303 | 2303 |
} |
2304 | 2304 |
} |
2305 | 2305 |
for (Sections::iterator it = _sections.begin(); |
2306 | 2306 |
it != _sections.end(); ++it) { |
2307 | 2307 |
if (extra_sections.find(it->first) == extra_sections.end()) { |
2308 | 2308 |
std::ostringstream os; |
2309 | 2309 |
os << "Cannot find section: " << it->first; |
2310 | 2310 |
throw FormatError(os.str()); |
2311 | 2311 |
} |
2312 | 2312 |
} |
2313 | 2313 |
} |
2314 | 2314 |
|
2315 | 2315 |
/// @} |
2316 | 2316 |
|
2317 | 2317 |
}; |
2318 | 2318 |
|
2319 | 2319 |
/// \brief Return a \ref SectionReader class |
2320 | 2320 |
/// |
2321 | 2321 |
/// This function just returns a \ref SectionReader class. |
2322 | 2322 |
/// \relates SectionReader |
2323 | 2323 |
inline SectionReader sectionReader(std::istream& is) { |
2324 | 2324 |
SectionReader tmp(is); |
2325 | 2325 |
return tmp; |
2326 | 2326 |
} |
2327 | 2327 |
|
2328 | 2328 |
/// \brief Return a \ref SectionReader class |
2329 | 2329 |
/// |
2330 | 2330 |
/// This function just returns a \ref SectionReader class. |
2331 | 2331 |
/// \relates SectionReader |
2332 | 2332 |
inline SectionReader sectionReader(const std::string& fn) { |
2333 | 2333 |
SectionReader tmp(fn); |
2334 | 2334 |
return tmp; |
2335 | 2335 |
} |
2336 | 2336 |
|
2337 | 2337 |
/// \brief Return a \ref SectionReader class |
2338 | 2338 |
/// |
2339 | 2339 |
/// This function just returns a \ref SectionReader class. |
2340 | 2340 |
/// \relates SectionReader |
2341 | 2341 |
inline SectionReader sectionReader(const char* fn) { |
2342 | 2342 |
SectionReader tmp(fn); |
2343 | 2343 |
return tmp; |
2344 | 2344 |
} |
2345 | 2345 |
|
2346 | 2346 |
/// \ingroup lemon_io |
2347 | 2347 |
/// |
2348 | 2348 |
/// \brief Reader for the contents of the \ref lgf-format "LGF" file |
2349 | 2349 |
/// |
2350 | 2350 |
/// This class can be used to read the sections, the map names and |
2351 | 2351 |
/// the attributes from a file. Usually, the LEMON programs know |
2352 | 2352 |
/// that, which type of graph, which maps and which attributes |
2353 | 2353 |
/// should be read from a file, but in general tools (like glemon) |
2354 | 2354 |
/// the contents of an LGF file should be guessed somehow. This class |
2355 | 2355 |
/// reads the graph and stores the appropriate information for |
2356 | 2356 |
/// reading the graph. |
2357 | 2357 |
/// |
2358 | 2358 |
///\code |
2359 | 2359 |
/// LgfContents contents("graph.lgf"); |
2360 | 2360 |
/// contents.run(); |
2361 | 2361 |
/// |
2362 | 2362 |
/// // Does it contain any node section and arc section? |
2363 | 2363 |
/// if (contents.nodeSectionNum() == 0 || contents.arcSectionNum()) { |
2364 | 2364 |
/// std::cerr << "Failure, cannot find graph." << std::endl; |
2365 | 2365 |
/// return -1; |
2366 | 2366 |
/// } |
2367 | 2367 |
/// std::cout << "The name of the default node section: " |
2368 | 2368 |
/// << contents.nodeSection(0) << std::endl; |
2369 | 2369 |
/// std::cout << "The number of the arc maps: " |
2370 | 2370 |
/// << contents.arcMaps(0).size() << std::endl; |
2371 | 2371 |
/// std::cout << "The name of second arc map: " |
2372 | 2372 |
/// << contents.arcMaps(0)[1] << std::endl; |
2373 | 2373 |
///\endcode |
2374 | 2374 |
class LgfContents { |
2375 | 2375 |
private: |
2376 | 2376 |
|
2377 | 2377 |
std::istream* _is; |
2378 | 2378 |
bool local_is; |
2379 | 2379 |
|
2380 | 2380 |
std::vector<std::string> _node_sections; |
2381 | 2381 |
std::vector<std::string> _edge_sections; |
2382 | 2382 |
std::vector<std::string> _attribute_sections; |
2383 | 2383 |
std::vector<std::string> _extra_sections; |
2384 | 2384 |
|
2385 | 2385 |
std::vector<bool> _arc_sections; |
2386 | 2386 |
|
2387 | 2387 |
std::vector<std::vector<std::string> > _node_maps; |
2388 | 2388 |
std::vector<std::vector<std::string> > _edge_maps; |
2389 | 2389 |
|
2390 | 2390 |
std::vector<std::vector<std::string> > _attributes; |
2391 | 2391 |
|
2392 | 2392 |
|
2393 | 2393 |
int line_num; |
2394 | 2394 |
std::istringstream line; |
2395 | 2395 |
|
2396 | 2396 |
public: |
2397 | 2397 |
|
2398 | 2398 |
/// \brief Constructor |
2399 | 2399 |
/// |
2400 | 2400 |
/// Construct an \e LGF contents reader, which reads from the given |
2401 | 2401 |
/// input stream. |
2402 | 2402 |
LgfContents(std::istream& is) |
2403 | 2403 |
: _is(&is), local_is(false) {} |
2404 | 2404 |
|
2405 | 2405 |
/// \brief Constructor |
2406 | 2406 |
/// |
2407 | 2407 |
/// Construct an \e LGF contents reader, which reads from the given |
2408 | 2408 |
/// file. |
2409 | 2409 |
LgfContents(const std::string& fn) |
2410 | 2410 |
: _is(new std::ifstream(fn.c_str())), local_is(true) { |
2411 | 2411 |
if (!(*_is)) { |
2412 | 2412 |
delete _is; |
2413 | 2413 |
throw IoError("Cannot open file", fn); |
2414 | 2414 |
} |
2415 | 2415 |
} |
2416 | 2416 |
|
2417 | 2417 |
/// \brief Constructor |
2418 | 2418 |
/// |
2419 | 2419 |
/// Construct an \e LGF contents reader, which reads from the given |
2420 | 2420 |
/// file. |
2421 | 2421 |
LgfContents(const char* fn) |
2422 | 2422 |
: _is(new std::ifstream(fn)), local_is(true) { |
2423 | 2423 |
if (!(*_is)) { |
2424 | 2424 |
delete _is; |
2425 | 2425 |
throw IoError("Cannot open file", fn); |
2426 | 2426 |
} |
2427 | 2427 |
} |
2428 | 2428 |
|
2429 | 2429 |
/// \brief Destructor |
2430 | 2430 |
~LgfContents() { |
2431 | 2431 |
if (local_is) delete _is; |
2432 | 2432 |
} |
2433 | 2433 |
|
2434 | 2434 |
private: |
2435 | 2435 |
|
2436 | 2436 |
LgfContents(const LgfContents&); |
2437 | 2437 |
LgfContents& operator=(const LgfContents&); |
2438 | 2438 |
|
2439 | 2439 |
public: |
2440 | 2440 |
|
2441 | 2441 |
|
2442 |
/// \name Node |
|
2442 |
/// \name Node Sections |
|
2443 | 2443 |
/// @{ |
2444 | 2444 |
|
2445 | 2445 |
/// \brief Gives back the number of node sections in the file. |
2446 | 2446 |
/// |
2447 | 2447 |
/// Gives back the number of node sections in the file. |
2448 | 2448 |
int nodeSectionNum() const { |
2449 | 2449 |
return _node_sections.size(); |
2450 | 2450 |
} |
2451 | 2451 |
|
2452 | 2452 |
/// \brief Returns the node section name at the given position. |
2453 | 2453 |
/// |
2454 | 2454 |
/// Returns the node section name at the given position. |
2455 | 2455 |
const std::string& nodeSection(int i) const { |
2456 | 2456 |
return _node_sections[i]; |
2457 | 2457 |
} |
2458 | 2458 |
|
2459 | 2459 |
/// \brief Gives back the node maps for the given section. |
2460 | 2460 |
/// |
2461 | 2461 |
/// Gives back the node maps for the given section. |
2462 | 2462 |
const std::vector<std::string>& nodeMapNames(int i) const { |
2463 | 2463 |
return _node_maps[i]; |
2464 | 2464 |
} |
2465 | 2465 |
|
2466 | 2466 |
/// @} |
2467 | 2467 |
|
2468 |
/// \name Arc/Edge |
|
2468 |
/// \name Arc/Edge Sections |
|
2469 | 2469 |
/// @{ |
2470 | 2470 |
|
2471 | 2471 |
/// \brief Gives back the number of arc/edge sections in the file. |
2472 | 2472 |
/// |
2473 | 2473 |
/// Gives back the number of arc/edge sections in the file. |
2474 | 2474 |
/// \note It is synonym of \c edgeSectionNum(). |
2475 | 2475 |
int arcSectionNum() const { |
2476 | 2476 |
return _edge_sections.size(); |
2477 | 2477 |
} |
2478 | 2478 |
|
2479 | 2479 |
/// \brief Returns the arc/edge section name at the given position. |
2480 | 2480 |
/// |
2481 | 2481 |
/// Returns the arc/edge section name at the given position. |
2482 | 2482 |
/// \note It is synonym of \c edgeSection(). |
2483 | 2483 |
const std::string& arcSection(int i) const { |
2484 | 2484 |
return _edge_sections[i]; |
2485 | 2485 |
} |
2486 | 2486 |
|
2487 | 2487 |
/// \brief Gives back the arc/edge maps for the given section. |
2488 | 2488 |
/// |
2489 | 2489 |
/// Gives back the arc/edge maps for the given section. |
2490 | 2490 |
/// \note It is synonym of \c edgeMapNames(). |
2491 | 2491 |
const std::vector<std::string>& arcMapNames(int i) const { |
2492 | 2492 |
return _edge_maps[i]; |
2493 | 2493 |
} |
2494 | 2494 |
|
2495 | 2495 |
/// @} |
2496 | 2496 |
|
2497 | 2497 |
/// \name Synonyms |
2498 | 2498 |
/// @{ |
2499 | 2499 |
|
2500 | 2500 |
/// \brief Gives back the number of arc/edge sections in the file. |
2501 | 2501 |
/// |
2502 | 2502 |
/// Gives back the number of arc/edge sections in the file. |
2503 | 2503 |
/// \note It is synonym of \c arcSectionNum(). |
2504 | 2504 |
int edgeSectionNum() const { |
2505 | 2505 |
return _edge_sections.size(); |
2506 | 2506 |
} |
2507 | 2507 |
|
2508 | 2508 |
/// \brief Returns the section name at the given position. |
2509 | 2509 |
/// |
2510 | 2510 |
/// Returns the section name at the given position. |
2511 | 2511 |
/// \note It is synonym of \c arcSection(). |
2512 | 2512 |
const std::string& edgeSection(int i) const { |
2513 | 2513 |
return _edge_sections[i]; |
2514 | 2514 |
} |
2515 | 2515 |
|
2516 | 2516 |
/// \brief Gives back the edge maps for the given section. |
2517 | 2517 |
/// |
2518 | 2518 |
/// Gives back the edge maps for the given section. |
2519 | 2519 |
/// \note It is synonym of \c arcMapNames(). |
2520 | 2520 |
const std::vector<std::string>& edgeMapNames(int i) const { |
2521 | 2521 |
return _edge_maps[i]; |
2522 | 2522 |
} |
2523 | 2523 |
|
2524 | 2524 |
/// @} |
2525 | 2525 |
|
2526 |
/// \name Attribute |
|
2526 |
/// \name Attribute Sections |
|
2527 | 2527 |
/// @{ |
2528 | 2528 |
|
2529 | 2529 |
/// \brief Gives back the number of attribute sections in the file. |
2530 | 2530 |
/// |
2531 | 2531 |
/// Gives back the number of attribute sections in the file. |
2532 | 2532 |
int attributeSectionNum() const { |
2533 | 2533 |
return _attribute_sections.size(); |
2534 | 2534 |
} |
2535 | 2535 |
|
2536 | 2536 |
/// \brief Returns the attribute section name at the given position. |
2537 | 2537 |
/// |
2538 | 2538 |
/// Returns the attribute section name at the given position. |
2539 | 2539 |
const std::string& attributeSectionNames(int i) const { |
2540 | 2540 |
return _attribute_sections[i]; |
2541 | 2541 |
} |
2542 | 2542 |
|
2543 | 2543 |
/// \brief Gives back the attributes for the given section. |
2544 | 2544 |
/// |
2545 | 2545 |
/// Gives back the attributes for the given section. |
2546 | 2546 |
const std::vector<std::string>& attributes(int i) const { |
2547 | 2547 |
return _attributes[i]; |
2548 | 2548 |
} |
2549 | 2549 |
|
2550 | 2550 |
/// @} |
2551 | 2551 |
|
2552 |
/// \name Extra |
|
2552 |
/// \name Extra Sections |
|
2553 | 2553 |
/// @{ |
2554 | 2554 |
|
2555 | 2555 |
/// \brief Gives back the number of extra sections in the file. |
2556 | 2556 |
/// |
2557 | 2557 |
/// Gives back the number of extra sections in the file. |
2558 | 2558 |
int extraSectionNum() const { |
2559 | 2559 |
return _extra_sections.size(); |
2560 | 2560 |
} |
2561 | 2561 |
|
2562 | 2562 |
/// \brief Returns the extra section type at the given position. |
2563 | 2563 |
/// |
2564 | 2564 |
/// Returns the section type at the given position. |
2565 | 2565 |
const std::string& extraSection(int i) const { |
2566 | 2566 |
return _extra_sections[i]; |
2567 | 2567 |
} |
2568 | 2568 |
|
2569 | 2569 |
/// @} |
2570 | 2570 |
|
2571 | 2571 |
private: |
2572 | 2572 |
|
2573 | 2573 |
bool readLine() { |
2574 | 2574 |
std::string str; |
2575 | 2575 |
while(++line_num, std::getline(*_is, str)) { |
2576 | 2576 |
line.clear(); line.str(str); |
2577 | 2577 |
char c; |
2578 | 2578 |
if (line >> std::ws >> c && c != '#') { |
2579 | 2579 |
line.putback(c); |
2580 | 2580 |
return true; |
2581 | 2581 |
} |
2582 | 2582 |
} |
2583 | 2583 |
return false; |
2584 | 2584 |
} |
2585 | 2585 |
|
2586 | 2586 |
bool readSuccess() { |
2587 | 2587 |
return static_cast<bool>(*_is); |
2588 | 2588 |
} |
2589 | 2589 |
|
2590 | 2590 |
void skipSection() { |
2591 | 2591 |
char c; |
2592 | 2592 |
while (readSuccess() && line >> c && c != '@') { |
2593 | 2593 |
readLine(); |
2594 | 2594 |
} |
2595 | 2595 |
if (readSuccess()) { |
2596 | 2596 |
line.putback(c); |
2597 | 2597 |
} |
2598 | 2598 |
} |
2599 | 2599 |
|
2600 | 2600 |
void readMaps(std::vector<std::string>& maps) { |
2601 | 2601 |
char c; |
2602 | 2602 |
if (!readLine() || !(line >> c) || c == '@') { |
2603 | 2603 |
if (readSuccess() && line) line.putback(c); |
2604 | 2604 |
return; |
2605 | 2605 |
} |
2606 | 2606 |
line.putback(c); |
2607 | 2607 |
std::string map; |
2608 | 2608 |
while (_reader_bits::readToken(line, map)) { |
2609 | 2609 |
maps.push_back(map); |
2610 | 2610 |
} |
2611 | 2611 |
} |
2612 | 2612 |
|
2613 | 2613 |
void readAttributes(std::vector<std::string>& attrs) { |
2614 | 2614 |
readLine(); |
2615 | 2615 |
char c; |
2616 | 2616 |
while (readSuccess() && line >> c && c != '@') { |
2617 | 2617 |
line.putback(c); |
2618 | 2618 |
std::string attr; |
2619 | 2619 |
_reader_bits::readToken(line, attr); |
2620 | 2620 |
attrs.push_back(attr); |
2621 | 2621 |
readLine(); |
2622 | 2622 |
} |
2623 | 2623 |
line.putback(c); |
2624 | 2624 |
} |
2625 | 2625 |
|
2626 | 2626 |
public: |
2627 | 2627 |
|
2628 |
/// \name Execution of the |
|
2628 |
/// \name Execution of the Contents Reader |
|
2629 | 2629 |
/// @{ |
2630 | 2630 |
|
2631 | 2631 |
/// \brief Starts the reading |
2632 | 2632 |
/// |
2633 | 2633 |
/// This function starts the reading. |
2634 | 2634 |
void run() { |
2635 | 2635 |
|
2636 | 2636 |
readLine(); |
2637 | 2637 |
skipSection(); |
2638 | 2638 |
|
2639 | 2639 |
while (readSuccess()) { |
2640 | 2640 |
|
2641 | 2641 |
char c; |
2642 | 2642 |
line >> c; |
2643 | 2643 |
|
2644 | 2644 |
std::string section, caption; |
2645 | 2645 |
_reader_bits::readToken(line, section); |
2646 | 2646 |
_reader_bits::readToken(line, caption); |
2647 | 2647 |
|
2648 | 2648 |
if (section == "nodes") { |
2649 | 2649 |
_node_sections.push_back(caption); |
2650 | 2650 |
_node_maps.push_back(std::vector<std::string>()); |
2651 | 2651 |
readMaps(_node_maps.back()); |
2652 | 2652 |
readLine(); skipSection(); |
2653 | 2653 |
} else if (section == "arcs" || section == "edges") { |
2654 | 2654 |
_edge_sections.push_back(caption); |
2655 | 2655 |
_arc_sections.push_back(section == "arcs"); |
2656 | 2656 |
_edge_maps.push_back(std::vector<std::string>()); |
2657 | 2657 |
readMaps(_edge_maps.back()); |
2658 | 2658 |
readLine(); skipSection(); |
2659 | 2659 |
} else if (section == "attributes") { |
2660 | 2660 |
_attribute_sections.push_back(caption); |
2661 | 2661 |
_attributes.push_back(std::vector<std::string>()); |
2662 | 2662 |
readAttributes(_attributes.back()); |
2663 | 2663 |
} else { |
2664 | 2664 |
_extra_sections.push_back(section); |
2665 | 2665 |
readLine(); skipSection(); |
2666 | 2666 |
} |
2667 | 2667 |
} |
2668 | 2668 |
} |
2669 | 2669 |
|
2670 | 2670 |
/// @} |
2671 | 2671 |
|
2672 | 2672 |
}; |
2673 | 2673 |
} |
2674 | 2674 |
|
2675 | 2675 |
#endif |
... | ... |
@@ -29,1749 +29,1749 @@ |
29 | 29 |
#include <sstream> |
30 | 30 |
|
31 | 31 |
#include <algorithm> |
32 | 32 |
|
33 | 33 |
#include <vector> |
34 | 34 |
#include <functional> |
35 | 35 |
|
36 | 36 |
#include <lemon/core.h> |
37 | 37 |
#include <lemon/maps.h> |
38 | 38 |
|
39 | 39 |
#include <lemon/concept_check.h> |
40 | 40 |
#include <lemon/concepts/maps.h> |
41 | 41 |
|
42 | 42 |
namespace lemon { |
43 | 43 |
|
44 | 44 |
namespace _writer_bits { |
45 | 45 |
|
46 | 46 |
template <typename Value> |
47 | 47 |
struct DefaultConverter { |
48 | 48 |
std::string operator()(const Value& value) { |
49 | 49 |
std::ostringstream os; |
50 | 50 |
os << value; |
51 | 51 |
return os.str(); |
52 | 52 |
} |
53 | 53 |
}; |
54 | 54 |
|
55 | 55 |
template <typename T> |
56 | 56 |
bool operator<(const T&, const T&) { |
57 | 57 |
throw FormatError("Label map is not comparable"); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
template <typename _Map> |
61 | 61 |
class MapLess { |
62 | 62 |
public: |
63 | 63 |
typedef _Map Map; |
64 | 64 |
typedef typename Map::Key Item; |
65 | 65 |
|
66 | 66 |
private: |
67 | 67 |
const Map& _map; |
68 | 68 |
|
69 | 69 |
public: |
70 | 70 |
MapLess(const Map& map) : _map(map) {} |
71 | 71 |
|
72 | 72 |
bool operator()(const Item& left, const Item& right) { |
73 | 73 |
return _map[left] < _map[right]; |
74 | 74 |
} |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
template <typename _Graph, bool _dir, typename _Map> |
78 | 78 |
class GraphArcMapLess { |
79 | 79 |
public: |
80 | 80 |
typedef _Map Map; |
81 | 81 |
typedef _Graph Graph; |
82 | 82 |
typedef typename Graph::Edge Item; |
83 | 83 |
|
84 | 84 |
private: |
85 | 85 |
const Graph& _graph; |
86 | 86 |
const Map& _map; |
87 | 87 |
|
88 | 88 |
public: |
89 | 89 |
GraphArcMapLess(const Graph& graph, const Map& map) |
90 | 90 |
: _graph(graph), _map(map) {} |
91 | 91 |
|
92 | 92 |
bool operator()(const Item& left, const Item& right) { |
93 | 93 |
return _map[_graph.direct(left, _dir)] < |
94 | 94 |
_map[_graph.direct(right, _dir)]; |
95 | 95 |
} |
96 | 96 |
}; |
97 | 97 |
|
98 | 98 |
template <typename _Item> |
99 | 99 |
class MapStorageBase { |
100 | 100 |
public: |
101 | 101 |
typedef _Item Item; |
102 | 102 |
|
103 | 103 |
public: |
104 | 104 |
MapStorageBase() {} |
105 | 105 |
virtual ~MapStorageBase() {} |
106 | 106 |
|
107 | 107 |
virtual std::string get(const Item& item) = 0; |
108 | 108 |
virtual void sort(std::vector<Item>&) = 0; |
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
template <typename _Item, typename _Map, |
112 | 112 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
113 | 113 |
class MapStorage : public MapStorageBase<_Item> { |
114 | 114 |
public: |
115 | 115 |
typedef _Map Map; |
116 | 116 |
typedef _Converter Converter; |
117 | 117 |
typedef _Item Item; |
118 | 118 |
|
119 | 119 |
private: |
120 | 120 |
const Map& _map; |
121 | 121 |
Converter _converter; |
122 | 122 |
|
123 | 123 |
public: |
124 | 124 |
MapStorage(const Map& map, const Converter& converter = Converter()) |
125 | 125 |
: _map(map), _converter(converter) {} |
126 | 126 |
virtual ~MapStorage() {} |
127 | 127 |
|
128 | 128 |
virtual std::string get(const Item& item) { |
129 | 129 |
return _converter(_map[item]); |
130 | 130 |
} |
131 | 131 |
virtual void sort(std::vector<Item>& items) { |
132 | 132 |
MapLess<Map> less(_map); |
133 | 133 |
std::sort(items.begin(), items.end(), less); |
134 | 134 |
} |
135 | 135 |
}; |
136 | 136 |
|
137 | 137 |
template <typename _Graph, bool _dir, typename _Map, |
138 | 138 |
typename _Converter = DefaultConverter<typename _Map::Value> > |
139 | 139 |
class GraphArcMapStorage : public MapStorageBase<typename _Graph::Edge> { |
140 | 140 |
public: |
141 | 141 |
typedef _Map Map; |
142 | 142 |
typedef _Converter Converter; |
143 | 143 |
typedef _Graph Graph; |
144 | 144 |
typedef typename Graph::Edge Item; |
145 | 145 |
static const bool dir = _dir; |
146 | 146 |
|
147 | 147 |
private: |
148 | 148 |
const Graph& _graph; |
149 | 149 |
const Map& _map; |
150 | 150 |
Converter _converter; |
151 | 151 |
|
152 | 152 |
public: |
153 | 153 |
GraphArcMapStorage(const Graph& graph, const Map& map, |
154 | 154 |
const Converter& converter = Converter()) |
155 | 155 |
: _graph(graph), _map(map), _converter(converter) {} |
156 | 156 |
virtual ~GraphArcMapStorage() {} |
157 | 157 |
|
158 | 158 |
virtual std::string get(const Item& item) { |
159 | 159 |
return _converter(_map[_graph.direct(item, dir)]); |
160 | 160 |
} |
161 | 161 |
virtual void sort(std::vector<Item>& items) { |
162 | 162 |
GraphArcMapLess<Graph, dir, Map> less(_graph, _map); |
163 | 163 |
std::sort(items.begin(), items.end(), less); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
class ValueStorageBase { |
168 | 168 |
public: |
169 | 169 |
ValueStorageBase() {} |
170 | 170 |
virtual ~ValueStorageBase() {} |
171 | 171 |
|
172 | 172 |
virtual std::string get() = 0; |
173 | 173 |
}; |
174 | 174 |
|
175 | 175 |
template <typename _Value, typename _Converter = DefaultConverter<_Value> > |
176 | 176 |
class ValueStorage : public ValueStorageBase { |
177 | 177 |
public: |
178 | 178 |
typedef _Value Value; |
179 | 179 |
typedef _Converter Converter; |
180 | 180 |
|
181 | 181 |
private: |
182 | 182 |
const Value& _value; |
183 | 183 |
Converter _converter; |
184 | 184 |
|
185 | 185 |
public: |
186 | 186 |
ValueStorage(const Value& value, const Converter& converter = Converter()) |
187 | 187 |
: _value(value), _converter(converter) {} |
188 | 188 |
|
189 | 189 |
virtual std::string get() { |
190 | 190 |
return _converter(_value); |
191 | 191 |
} |
192 | 192 |
}; |
193 | 193 |
|
194 | 194 |
template <typename Value> |
195 | 195 |
struct MapLookUpConverter { |
196 | 196 |
const std::map<Value, std::string>& _map; |
197 | 197 |
|
198 | 198 |
MapLookUpConverter(const std::map<Value, std::string>& map) |
199 | 199 |
: _map(map) {} |
200 | 200 |
|
201 | 201 |
std::string operator()(const Value& str) { |
202 | 202 |
typename std::map<Value, std::string>::const_iterator it = |
203 | 203 |
_map.find(str); |
204 | 204 |
if (it == _map.end()) { |
205 | 205 |
throw FormatError("Item not found"); |
206 | 206 |
} |
207 | 207 |
return it->second; |
208 | 208 |
} |
209 | 209 |
}; |
210 | 210 |
|
211 | 211 |
template <typename Graph> |
212 | 212 |
struct GraphArcLookUpConverter { |
213 | 213 |
const Graph& _graph; |
214 | 214 |
const std::map<typename Graph::Edge, std::string>& _map; |
215 | 215 |
|
216 | 216 |
GraphArcLookUpConverter(const Graph& graph, |
217 | 217 |
const std::map<typename Graph::Edge, |
218 | 218 |
std::string>& map) |
219 | 219 |
: _graph(graph), _map(map) {} |
220 | 220 |
|
221 | 221 |
std::string operator()(const typename Graph::Arc& val) { |
222 | 222 |
typename std::map<typename Graph::Edge, std::string> |
223 | 223 |
::const_iterator it = _map.find(val); |
224 | 224 |
if (it == _map.end()) { |
225 | 225 |
throw FormatError("Item not found"); |
226 | 226 |
} |
227 | 227 |
return (_graph.direction(val) ? '+' : '-') + it->second; |
228 | 228 |
} |
229 | 229 |
}; |
230 | 230 |
|
231 | 231 |
inline bool isWhiteSpace(char c) { |
232 | 232 |
return c == ' ' || c == '\t' || c == '\v' || |
233 | 233 |
c == '\n' || c == '\r' || c == '\f'; |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
inline bool isEscaped(char c) { |
237 | 237 |
return c == '\\' || c == '\"' || c == '\'' || |
238 | 238 |
c == '\a' || c == '\b'; |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
inline static void writeEscape(std::ostream& os, char c) { |
242 | 242 |
switch (c) { |
243 | 243 |
case '\\': |
244 | 244 |
os << "\\\\"; |
245 | 245 |
return; |
246 | 246 |
case '\"': |
247 | 247 |
os << "\\\""; |
248 | 248 |
return; |
249 | 249 |
case '\a': |
250 | 250 |
os << "\\a"; |
251 | 251 |
return; |
252 | 252 |
case '\b': |
253 | 253 |
os << "\\b"; |
254 | 254 |
return; |
255 | 255 |
case '\f': |
256 | 256 |
os << "\\f"; |
257 | 257 |
return; |
258 | 258 |
case '\r': |
259 | 259 |
os << "\\r"; |
260 | 260 |
return; |
261 | 261 |
case '\n': |
262 | 262 |
os << "\\n"; |
263 | 263 |
return; |
264 | 264 |
case '\t': |
265 | 265 |
os << "\\t"; |
266 | 266 |
return; |
267 | 267 |
case '\v': |
268 | 268 |
os << "\\v"; |
269 | 269 |
return; |
270 | 270 |
default: |
271 | 271 |
if (c < 0x20) { |
272 | 272 |
std::ios::fmtflags flags = os.flags(); |
273 | 273 |
os << '\\' << std::oct << static_cast<int>(c); |
274 | 274 |
os.flags(flags); |
275 | 275 |
} else { |
276 | 276 |
os << c; |
277 | 277 |
} |
278 | 278 |
return; |
279 | 279 |
} |
280 | 280 |
} |
281 | 281 |
|
282 | 282 |
inline bool requireEscape(const std::string& str) { |
283 | 283 |
if (str.empty() || str[0] == '@') return true; |
284 | 284 |
std::istringstream is(str); |
285 | 285 |
char c; |
286 | 286 |
while (is.get(c)) { |
287 | 287 |
if (isWhiteSpace(c) || isEscaped(c)) { |
288 | 288 |
return true; |
289 | 289 |
} |
290 | 290 |
} |
291 | 291 |
return false; |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
inline std::ostream& writeToken(std::ostream& os, const std::string& str) { |
295 | 295 |
|
296 | 296 |
if (requireEscape(str)) { |
297 | 297 |
os << '\"'; |
298 | 298 |
for (std::string::const_iterator it = str.begin(); |
299 | 299 |
it != str.end(); ++it) { |
300 | 300 |
writeEscape(os, *it); |
301 | 301 |
} |
302 | 302 |
os << '\"'; |
303 | 303 |
} else { |
304 | 304 |
os << str; |
305 | 305 |
} |
306 | 306 |
return os; |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
class Section { |
310 | 310 |
public: |
311 | 311 |
virtual ~Section() {} |
312 | 312 |
virtual void process(std::ostream& os) = 0; |
313 | 313 |
}; |
314 | 314 |
|
315 | 315 |
template <typename Functor> |
316 | 316 |
class LineSection : public Section { |
317 | 317 |
private: |
318 | 318 |
|
319 | 319 |
Functor _functor; |
320 | 320 |
|
321 | 321 |
public: |
322 | 322 |
|
323 | 323 |
LineSection(const Functor& functor) : _functor(functor) {} |
324 | 324 |
virtual ~LineSection() {} |
325 | 325 |
|
326 | 326 |
virtual void process(std::ostream& os) { |
327 | 327 |
std::string line; |
328 | 328 |
while (!(line = _functor()).empty()) os << line << std::endl; |
329 | 329 |
} |
330 | 330 |
}; |
331 | 331 |
|
332 | 332 |
template <typename Functor> |
333 | 333 |
class StreamSection : public Section { |
334 | 334 |
private: |
335 | 335 |
|
336 | 336 |
Functor _functor; |
337 | 337 |
|
338 | 338 |
public: |
339 | 339 |
|
340 | 340 |
StreamSection(const Functor& functor) : _functor(functor) {} |
341 | 341 |
virtual ~StreamSection() {} |
342 | 342 |
|
343 | 343 |
virtual void process(std::ostream& os) { |
344 | 344 |
_functor(os); |
345 | 345 |
} |
346 | 346 |
}; |
347 | 347 |
|
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
template <typename Digraph> |
351 | 351 |
class DigraphWriter; |
352 | 352 |
|
353 | 353 |
template <typename Digraph> |
354 | 354 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
355 | 355 |
std::ostream& os = std::cout); |
356 | 356 |
template <typename Digraph> |
357 | 357 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
358 | 358 |
const std::string& fn); |
359 | 359 |
|
360 | 360 |
template <typename Digraph> |
361 | 361 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
362 | 362 |
const char* fn); |
363 | 363 |
|
364 | 364 |
|
365 | 365 |
/// \ingroup lemon_io |
366 | 366 |
/// |
367 | 367 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
368 | 368 |
/// |
369 | 369 |
/// This utility writes an \ref lgf-format "LGF" file. |
370 | 370 |
/// |
371 | 371 |
/// The writing method does a batch processing. The user creates a |
372 | 372 |
/// writer object, then various writing rules can be added to the |
373 | 373 |
/// writer, and eventually the writing is executed with the \c run() |
374 | 374 |
/// member function. A map writing rule can be added to the writer |
375 | 375 |
/// with the \c nodeMap() or \c arcMap() members. An optional |
376 | 376 |
/// converter parameter can also be added as a standard functor |
377 | 377 |
/// converting from the value type of the map to \c std::string. If it |
378 | 378 |
/// is set, it will determine how the value type of the map is written to |
379 | 379 |
/// the output stream. If the functor is not set, then a default |
380 | 380 |
/// conversion will be used. The \c attribute(), \c node() and \c |
381 | 381 |
/// arc() functions are used to add attribute writing rules. |
382 | 382 |
/// |
383 | 383 |
///\code |
384 | 384 |
/// DigraphWriter<Digraph>(digraph, std::cout). |
385 | 385 |
/// nodeMap("coordinates", coord_map). |
386 | 386 |
/// nodeMap("size", size). |
387 | 387 |
/// nodeMap("title", title). |
388 | 388 |
/// arcMap("capacity", cap_map). |
389 | 389 |
/// node("source", src). |
390 | 390 |
/// node("target", trg). |
391 | 391 |
/// attribute("caption", caption). |
392 | 392 |
/// run(); |
393 | 393 |
///\endcode |
394 | 394 |
/// |
395 | 395 |
/// |
396 | 396 |
/// By default, the writer does not write additional captions to the |
397 | 397 |
/// sections, but they can be give as an optional parameter of |
398 | 398 |
/// the \c nodes(), \c arcs() or \c |
399 | 399 |
/// attributes() functions. |
400 | 400 |
/// |
401 | 401 |
/// The \c skipNodes() and \c skipArcs() functions forbid the |
402 | 402 |
/// writing of the sections. If two arc sections should be written |
403 | 403 |
/// to the output, it can be done in two passes, the first pass |
404 | 404 |
/// writes the node section and the first arc section, then the |
405 | 405 |
/// second pass skips the node section and writes just the arc |
406 | 406 |
/// section to the stream. The output stream can be retrieved with |
407 | 407 |
/// the \c ostream() function, hence the second pass can append its |
408 | 408 |
/// output to the output of the first pass. |
409 | 409 |
template <typename GR> |
410 | 410 |
class DigraphWriter { |
411 | 411 |
public: |
412 | 412 |
|
413 | 413 |
typedef GR Digraph; |
414 | 414 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
415 | 415 |
|
416 | 416 |
private: |
417 | 417 |
|
418 | 418 |
|
419 | 419 |
std::ostream* _os; |
420 | 420 |
bool local_os; |
421 | 421 |
|
422 | 422 |
const Digraph& _digraph; |
423 | 423 |
|
424 | 424 |
std::string _nodes_caption; |
425 | 425 |
std::string _arcs_caption; |
426 | 426 |
std::string _attributes_caption; |
427 | 427 |
|
428 | 428 |
typedef std::map<Node, std::string> NodeIndex; |
429 | 429 |
NodeIndex _node_index; |
430 | 430 |
typedef std::map<Arc, std::string> ArcIndex; |
431 | 431 |
ArcIndex _arc_index; |
432 | 432 |
|
433 | 433 |
typedef std::vector<std::pair<std::string, |
434 | 434 |
_writer_bits::MapStorageBase<Node>* > > NodeMaps; |
435 | 435 |
NodeMaps _node_maps; |
436 | 436 |
|
437 | 437 |
typedef std::vector<std::pair<std::string, |
438 | 438 |
_writer_bits::MapStorageBase<Arc>* > >ArcMaps; |
439 | 439 |
ArcMaps _arc_maps; |
440 | 440 |
|
441 | 441 |
typedef std::vector<std::pair<std::string, |
442 | 442 |
_writer_bits::ValueStorageBase*> > Attributes; |
443 | 443 |
Attributes _attributes; |
444 | 444 |
|
445 | 445 |
bool _skip_nodes; |
446 | 446 |
bool _skip_arcs; |
447 | 447 |
|
448 | 448 |
public: |
449 | 449 |
|
450 | 450 |
/// \brief Constructor |
451 | 451 |
/// |
452 | 452 |
/// Construct a directed graph writer, which writes to the given |
453 | 453 |
/// output stream. |
454 | 454 |
DigraphWriter(const Digraph& digraph, std::ostream& os = std::cout) |
455 | 455 |
: _os(&os), local_os(false), _digraph(digraph), |
456 | 456 |
_skip_nodes(false), _skip_arcs(false) {} |
457 | 457 |
|
458 | 458 |
/// \brief Constructor |
459 | 459 |
/// |
460 | 460 |
/// Construct a directed graph writer, which writes to the given |
461 | 461 |
/// output file. |
462 | 462 |
DigraphWriter(const Digraph& digraph, const std::string& fn) |
463 | 463 |
: _os(new std::ofstream(fn.c_str())), local_os(true), _digraph(digraph), |
464 | 464 |
_skip_nodes(false), _skip_arcs(false) { |
465 | 465 |
if (!(*_os)) { |
466 | 466 |
delete _os; |
467 | 467 |
throw IoError("Cannot write file", fn); |
468 | 468 |
} |
469 | 469 |
} |
470 | 470 |
|
471 | 471 |
/// \brief Constructor |
472 | 472 |
/// |
473 | 473 |
/// Construct a directed graph writer, which writes to the given |
474 | 474 |
/// output file. |
475 | 475 |
DigraphWriter(const Digraph& digraph, const char* fn) |
476 | 476 |
: _os(new std::ofstream(fn)), local_os(true), _digraph(digraph), |
477 | 477 |
_skip_nodes(false), _skip_arcs(false) { |
478 | 478 |
if (!(*_os)) { |
479 | 479 |
delete _os; |
480 | 480 |
throw IoError("Cannot write file", fn); |
481 | 481 |
} |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
/// \brief Destructor |
485 | 485 |
~DigraphWriter() { |
486 | 486 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
487 | 487 |
it != _node_maps.end(); ++it) { |
488 | 488 |
delete it->second; |
489 | 489 |
} |
490 | 490 |
|
491 | 491 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
492 | 492 |
it != _arc_maps.end(); ++it) { |
493 | 493 |
delete it->second; |
494 | 494 |
} |
495 | 495 |
|
496 | 496 |
for (typename Attributes::iterator it = _attributes.begin(); |
497 | 497 |
it != _attributes.end(); ++it) { |
498 | 498 |
delete it->second; |
499 | 499 |
} |
500 | 500 |
|
501 | 501 |
if (local_os) { |
502 | 502 |
delete _os; |
503 | 503 |
} |
504 | 504 |
} |
505 | 505 |
|
506 | 506 |
private: |
507 | 507 |
|
508 | 508 |
template <typename DGR> |
509 | 509 |
friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, |
510 | 510 |
std::ostream& os); |
511 | 511 |
template <typename DGR> |
512 | 512 |
friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, |
513 | 513 |
const std::string& fn); |
514 | 514 |
template <typename DGR> |
515 | 515 |
friend DigraphWriter<DGR> digraphWriter(const DGR& digraph, |
516 | 516 |
const char *fn); |
517 | 517 |
|
518 | 518 |
DigraphWriter(DigraphWriter& other) |
519 | 519 |
: _os(other._os), local_os(other.local_os), _digraph(other._digraph), |
520 | 520 |
_skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) { |
521 | 521 |
|
522 | 522 |
other._os = 0; |
523 | 523 |
other.local_os = false; |
524 | 524 |
|
525 | 525 |
_node_index.swap(other._node_index); |
526 | 526 |
_arc_index.swap(other._arc_index); |
527 | 527 |
|
528 | 528 |
_node_maps.swap(other._node_maps); |
529 | 529 |
_arc_maps.swap(other._arc_maps); |
530 | 530 |
_attributes.swap(other._attributes); |
531 | 531 |
|
532 | 532 |
_nodes_caption = other._nodes_caption; |
533 | 533 |
_arcs_caption = other._arcs_caption; |
534 | 534 |
_attributes_caption = other._attributes_caption; |
535 | 535 |
} |
536 | 536 |
|
537 | 537 |
DigraphWriter& operator=(const DigraphWriter&); |
538 | 538 |
|
539 | 539 |
public: |
540 | 540 |
|
541 |
/// \name Writing |
|
541 |
/// \name Writing Rules |
|
542 | 542 |
/// @{ |
543 | 543 |
|
544 | 544 |
/// \brief Node map writing rule |
545 | 545 |
/// |
546 | 546 |
/// Add a node map writing rule to the writer. |
547 | 547 |
template <typename Map> |
548 | 548 |
DigraphWriter& nodeMap(const std::string& caption, const Map& map) { |
549 | 549 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
550 | 550 |
_writer_bits::MapStorageBase<Node>* storage = |
551 | 551 |
new _writer_bits::MapStorage<Node, Map>(map); |
552 | 552 |
_node_maps.push_back(std::make_pair(caption, storage)); |
553 | 553 |
return *this; |
554 | 554 |
} |
555 | 555 |
|
556 | 556 |
/// \brief Node map writing rule |
557 | 557 |
/// |
558 | 558 |
/// Add a node map writing rule with specialized converter to the |
559 | 559 |
/// writer. |
560 | 560 |
template <typename Map, typename Converter> |
561 | 561 |
DigraphWriter& nodeMap(const std::string& caption, const Map& map, |
562 | 562 |
const Converter& converter = Converter()) { |
563 | 563 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
564 | 564 |
_writer_bits::MapStorageBase<Node>* storage = |
565 | 565 |
new _writer_bits::MapStorage<Node, Map, Converter>(map, converter); |
566 | 566 |
_node_maps.push_back(std::make_pair(caption, storage)); |
567 | 567 |
return *this; |
568 | 568 |
} |
569 | 569 |
|
570 | 570 |
/// \brief Arc map writing rule |
571 | 571 |
/// |
572 | 572 |
/// Add an arc map writing rule to the writer. |
573 | 573 |
template <typename Map> |
574 | 574 |
DigraphWriter& arcMap(const std::string& caption, const Map& map) { |
575 | 575 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
576 | 576 |
_writer_bits::MapStorageBase<Arc>* storage = |
577 | 577 |
new _writer_bits::MapStorage<Arc, Map>(map); |
578 | 578 |
_arc_maps.push_back(std::make_pair(caption, storage)); |
579 | 579 |
return *this; |
580 | 580 |
} |
581 | 581 |
|
582 | 582 |
/// \brief Arc map writing rule |
583 | 583 |
/// |
584 | 584 |
/// Add an arc map writing rule with specialized converter to the |
585 | 585 |
/// writer. |
586 | 586 |
template <typename Map, typename Converter> |
587 | 587 |
DigraphWriter& arcMap(const std::string& caption, const Map& map, |
588 | 588 |
const Converter& converter = Converter()) { |
589 | 589 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
590 | 590 |
_writer_bits::MapStorageBase<Arc>* storage = |
591 | 591 |
new _writer_bits::MapStorage<Arc, Map, Converter>(map, converter); |
592 | 592 |
_arc_maps.push_back(std::make_pair(caption, storage)); |
593 | 593 |
return *this; |
594 | 594 |
} |
595 | 595 |
|
596 | 596 |
/// \brief Attribute writing rule |
597 | 597 |
/// |
598 | 598 |
/// Add an attribute writing rule to the writer. |
599 | 599 |
template <typename Value> |
600 | 600 |
DigraphWriter& attribute(const std::string& caption, const Value& value) { |
601 | 601 |
_writer_bits::ValueStorageBase* storage = |
602 | 602 |
new _writer_bits::ValueStorage<Value>(value); |
603 | 603 |
_attributes.push_back(std::make_pair(caption, storage)); |
604 | 604 |
return *this; |
605 | 605 |
} |
606 | 606 |
|
607 | 607 |
/// \brief Attribute writing rule |
608 | 608 |
/// |
609 | 609 |
/// Add an attribute writing rule with specialized converter to the |
610 | 610 |
/// writer. |
611 | 611 |
template <typename Value, typename Converter> |
612 | 612 |
DigraphWriter& attribute(const std::string& caption, const Value& value, |
613 | 613 |
const Converter& converter = Converter()) { |
614 | 614 |
_writer_bits::ValueStorageBase* storage = |
615 | 615 |
new _writer_bits::ValueStorage<Value, Converter>(value, converter); |
616 | 616 |
_attributes.push_back(std::make_pair(caption, storage)); |
617 | 617 |
return *this; |
618 | 618 |
} |
619 | 619 |
|
620 | 620 |
/// \brief Node writing rule |
621 | 621 |
/// |
622 | 622 |
/// Add a node writing rule to the writer. |
623 | 623 |
DigraphWriter& node(const std::string& caption, const Node& node) { |
624 | 624 |
typedef _writer_bits::MapLookUpConverter<Node> Converter; |
625 | 625 |
Converter converter(_node_index); |
626 | 626 |
_writer_bits::ValueStorageBase* storage = |
627 | 627 |
new _writer_bits::ValueStorage<Node, Converter>(node, converter); |
628 | 628 |
_attributes.push_back(std::make_pair(caption, storage)); |
629 | 629 |
return *this; |
630 | 630 |
} |
631 | 631 |
|
632 | 632 |
/// \brief Arc writing rule |
633 | 633 |
/// |
634 | 634 |
/// Add an arc writing rule to writer. |
635 | 635 |
DigraphWriter& arc(const std::string& caption, const Arc& arc) { |
636 | 636 |
typedef _writer_bits::MapLookUpConverter<Arc> Converter; |
637 | 637 |
Converter converter(_arc_index); |
638 | 638 |
_writer_bits::ValueStorageBase* storage = |
639 | 639 |
new _writer_bits::ValueStorage<Arc, Converter>(arc, converter); |
640 | 640 |
_attributes.push_back(std::make_pair(caption, storage)); |
641 | 641 |
return *this; |
642 | 642 |
} |
643 | 643 |
|
644 |
/// \name Section |
|
644 |
/// \name Section Captions |
|
645 | 645 |
/// @{ |
646 | 646 |
|
647 | 647 |
/// \brief Add an additional caption to the \c \@nodes section |
648 | 648 |
/// |
649 | 649 |
/// Add an additional caption to the \c \@nodes section. |
650 | 650 |
DigraphWriter& nodes(const std::string& caption) { |
651 | 651 |
_nodes_caption = caption; |
652 | 652 |
return *this; |
653 | 653 |
} |
654 | 654 |
|
655 | 655 |
/// \brief Add an additional caption to the \c \@arcs section |
656 | 656 |
/// |
657 | 657 |
/// Add an additional caption to the \c \@arcs section. |
658 | 658 |
DigraphWriter& arcs(const std::string& caption) { |
659 | 659 |
_arcs_caption = caption; |
660 | 660 |
return *this; |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
/// \brief Add an additional caption to the \c \@attributes section |
664 | 664 |
/// |
665 | 665 |
/// Add an additional caption to the \c \@attributes section. |
666 | 666 |
DigraphWriter& attributes(const std::string& caption) { |
667 | 667 |
_attributes_caption = caption; |
668 | 668 |
return *this; |
669 | 669 |
} |
670 | 670 |
|
671 |
/// \name Skipping |
|
671 |
/// \name Skipping Section |
|
672 | 672 |
/// @{ |
673 | 673 |
|
674 | 674 |
/// \brief Skip writing the node set |
675 | 675 |
/// |
676 | 676 |
/// The \c \@nodes section will not be written to the stream. |
677 | 677 |
DigraphWriter& skipNodes() { |
678 | 678 |
LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member"); |
679 | 679 |
_skip_nodes = true; |
680 | 680 |
return *this; |
681 | 681 |
} |
682 | 682 |
|
683 | 683 |
/// \brief Skip writing arc set |
684 | 684 |
/// |
685 | 685 |
/// The \c \@arcs section will not be written to the stream. |
686 | 686 |
DigraphWriter& skipArcs() { |
687 | 687 |
LEMON_ASSERT(!_skip_arcs, "Multiple usage of skipArcs() member"); |
688 | 688 |
_skip_arcs = true; |
689 | 689 |
return *this; |
690 | 690 |
} |
691 | 691 |
|
692 | 692 |
/// @} |
693 | 693 |
|
694 | 694 |
private: |
695 | 695 |
|
696 | 696 |
void writeNodes() { |
697 | 697 |
_writer_bits::MapStorageBase<Node>* label = 0; |
698 | 698 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
699 | 699 |
it != _node_maps.end(); ++it) { |
700 | 700 |
if (it->first == "label") { |
701 | 701 |
label = it->second; |
702 | 702 |
break; |
703 | 703 |
} |
704 | 704 |
} |
705 | 705 |
|
706 | 706 |
*_os << "@nodes"; |
707 | 707 |
if (!_nodes_caption.empty()) { |
708 | 708 |
_writer_bits::writeToken(*_os << ' ', _nodes_caption); |
709 | 709 |
} |
710 | 710 |
*_os << std::endl; |
711 | 711 |
|
712 | 712 |
if (label == 0) { |
713 | 713 |
*_os << "label" << '\t'; |
714 | 714 |
} |
715 | 715 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
716 | 716 |
it != _node_maps.end(); ++it) { |
717 | 717 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
718 | 718 |
} |
719 | 719 |
*_os << std::endl; |
720 | 720 |
|
721 | 721 |
std::vector<Node> nodes; |
722 | 722 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
723 | 723 |
nodes.push_back(n); |
724 | 724 |
} |
725 | 725 |
|
726 | 726 |
if (label == 0) { |
727 | 727 |
IdMap<Digraph, Node> id_map(_digraph); |
728 | 728 |
_writer_bits::MapLess<IdMap<Digraph, Node> > id_less(id_map); |
729 | 729 |
std::sort(nodes.begin(), nodes.end(), id_less); |
730 | 730 |
} else { |
731 | 731 |
label->sort(nodes); |
732 | 732 |
} |
733 | 733 |
|
734 | 734 |
for (int i = 0; i < static_cast<int>(nodes.size()); ++i) { |
735 | 735 |
Node n = nodes[i]; |
736 | 736 |
if (label == 0) { |
737 | 737 |
std::ostringstream os; |
738 | 738 |
os << _digraph.id(n); |
739 | 739 |
_writer_bits::writeToken(*_os, os.str()); |
740 | 740 |
*_os << '\t'; |
741 | 741 |
_node_index.insert(std::make_pair(n, os.str())); |
742 | 742 |
} |
743 | 743 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
744 | 744 |
it != _node_maps.end(); ++it) { |
745 | 745 |
std::string value = it->second->get(n); |
746 | 746 |
_writer_bits::writeToken(*_os, value); |
747 | 747 |
if (it->first == "label") { |
748 | 748 |
_node_index.insert(std::make_pair(n, value)); |
749 | 749 |
} |
750 | 750 |
*_os << '\t'; |
751 | 751 |
} |
752 | 752 |
*_os << std::endl; |
753 | 753 |
} |
754 | 754 |
} |
755 | 755 |
|
756 | 756 |
void createNodeIndex() { |
757 | 757 |
_writer_bits::MapStorageBase<Node>* label = 0; |
758 | 758 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
759 | 759 |
it != _node_maps.end(); ++it) { |
760 | 760 |
if (it->first == "label") { |
761 | 761 |
label = it->second; |
762 | 762 |
break; |
763 | 763 |
} |
764 | 764 |
} |
765 | 765 |
|
766 | 766 |
if (label == 0) { |
767 | 767 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
768 | 768 |
std::ostringstream os; |
769 | 769 |
os << _digraph.id(n); |
770 | 770 |
_node_index.insert(std::make_pair(n, os.str())); |
771 | 771 |
} |
772 | 772 |
} else { |
773 | 773 |
for (NodeIt n(_digraph); n != INVALID; ++n) { |
774 | 774 |
std::string value = label->get(n); |
775 | 775 |
_node_index.insert(std::make_pair(n, value)); |
776 | 776 |
} |
777 | 777 |
} |
778 | 778 |
} |
779 | 779 |
|
780 | 780 |
void writeArcs() { |
781 | 781 |
_writer_bits::MapStorageBase<Arc>* label = 0; |
782 | 782 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
783 | 783 |
it != _arc_maps.end(); ++it) { |
784 | 784 |
if (it->first == "label") { |
785 | 785 |
label = it->second; |
786 | 786 |
break; |
787 | 787 |
} |
788 | 788 |
} |
789 | 789 |
|
790 | 790 |
*_os << "@arcs"; |
791 | 791 |
if (!_arcs_caption.empty()) { |
792 | 792 |
_writer_bits::writeToken(*_os << ' ', _arcs_caption); |
793 | 793 |
} |
794 | 794 |
*_os << std::endl; |
795 | 795 |
|
796 | 796 |
*_os << '\t' << '\t'; |
797 | 797 |
if (label == 0) { |
798 | 798 |
*_os << "label" << '\t'; |
799 | 799 |
} |
800 | 800 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
801 | 801 |
it != _arc_maps.end(); ++it) { |
802 | 802 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
803 | 803 |
} |
804 | 804 |
*_os << std::endl; |
805 | 805 |
|
806 | 806 |
std::vector<Arc> arcs; |
807 | 807 |
for (ArcIt n(_digraph); n != INVALID; ++n) { |
808 | 808 |
arcs.push_back(n); |
809 | 809 |
} |
810 | 810 |
|
811 | 811 |
if (label == 0) { |
812 | 812 |
IdMap<Digraph, Arc> id_map(_digraph); |
813 | 813 |
_writer_bits::MapLess<IdMap<Digraph, Arc> > id_less(id_map); |
814 | 814 |
std::sort(arcs.begin(), arcs.end(), id_less); |
815 | 815 |
} else { |
816 | 816 |
label->sort(arcs); |
817 | 817 |
} |
818 | 818 |
|
819 | 819 |
for (int i = 0; i < static_cast<int>(arcs.size()); ++i) { |
820 | 820 |
Arc a = arcs[i]; |
821 | 821 |
_writer_bits::writeToken(*_os, _node_index. |
822 | 822 |
find(_digraph.source(a))->second); |
823 | 823 |
*_os << '\t'; |
824 | 824 |
_writer_bits::writeToken(*_os, _node_index. |
825 | 825 |
find(_digraph.target(a))->second); |
826 | 826 |
*_os << '\t'; |
827 | 827 |
if (label == 0) { |
828 | 828 |
std::ostringstream os; |
829 | 829 |
os << _digraph.id(a); |
830 | 830 |
_writer_bits::writeToken(*_os, os.str()); |
831 | 831 |
*_os << '\t'; |
832 | 832 |
_arc_index.insert(std::make_pair(a, os.str())); |
833 | 833 |
} |
834 | 834 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
835 | 835 |
it != _arc_maps.end(); ++it) { |
836 | 836 |
std::string value = it->second->get(a); |
837 | 837 |
_writer_bits::writeToken(*_os, value); |
838 | 838 |
if (it->first == "label") { |
839 | 839 |
_arc_index.insert(std::make_pair(a, value)); |
840 | 840 |
} |
841 | 841 |
*_os << '\t'; |
842 | 842 |
} |
843 | 843 |
*_os << std::endl; |
844 | 844 |
} |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
void createArcIndex() { |
848 | 848 |
_writer_bits::MapStorageBase<Arc>* label = 0; |
849 | 849 |
for (typename ArcMaps::iterator it = _arc_maps.begin(); |
850 | 850 |
it != _arc_maps.end(); ++it) { |
851 | 851 |
if (it->first == "label") { |
852 | 852 |
label = it->second; |
853 | 853 |
break; |
854 | 854 |
} |
855 | 855 |
} |
856 | 856 |
|
857 | 857 |
if (label == 0) { |
858 | 858 |
for (ArcIt a(_digraph); a != INVALID; ++a) { |
859 | 859 |
std::ostringstream os; |
860 | 860 |
os << _digraph.id(a); |
861 | 861 |
_arc_index.insert(std::make_pair(a, os.str())); |
862 | 862 |
} |
863 | 863 |
} else { |
864 | 864 |
for (ArcIt a(_digraph); a != INVALID; ++a) { |
865 | 865 |
std::string value = label->get(a); |
866 | 866 |
_arc_index.insert(std::make_pair(a, value)); |
867 | 867 |
} |
868 | 868 |
} |
869 | 869 |
} |
870 | 870 |
|
871 | 871 |
void writeAttributes() { |
872 | 872 |
if (_attributes.empty()) return; |
873 | 873 |
*_os << "@attributes"; |
874 | 874 |
if (!_attributes_caption.empty()) { |
875 | 875 |
_writer_bits::writeToken(*_os << ' ', _attributes_caption); |
876 | 876 |
} |
877 | 877 |
*_os << std::endl; |
878 | 878 |
for (typename Attributes::iterator it = _attributes.begin(); |
879 | 879 |
it != _attributes.end(); ++it) { |
880 | 880 |
_writer_bits::writeToken(*_os, it->first) << ' '; |
881 | 881 |
_writer_bits::writeToken(*_os, it->second->get()); |
882 | 882 |
*_os << std::endl; |
883 | 883 |
} |
884 | 884 |
} |
885 | 885 |
|
886 | 886 |
public: |
887 | 887 |
|
888 |
/// \name Execution of the |
|
888 |
/// \name Execution of the Writer |
|
889 | 889 |
/// @{ |
890 | 890 |
|
891 | 891 |
/// \brief Start the batch processing |
892 | 892 |
/// |
893 | 893 |
/// This function starts the batch processing. |
894 | 894 |
void run() { |
895 | 895 |
if (!_skip_nodes) { |
896 | 896 |
writeNodes(); |
897 | 897 |
} else { |
898 | 898 |
createNodeIndex(); |
899 | 899 |
} |
900 | 900 |
if (!_skip_arcs) { |
901 | 901 |
writeArcs(); |
902 | 902 |
} else { |
903 | 903 |
createArcIndex(); |
904 | 904 |
} |
905 | 905 |
writeAttributes(); |
906 | 906 |
} |
907 | 907 |
|
908 | 908 |
/// \brief Give back the stream of the writer |
909 | 909 |
/// |
910 | 910 |
/// Give back the stream of the writer. |
911 | 911 |
std::ostream& ostream() { |
912 | 912 |
return *_os; |
913 | 913 |
} |
914 | 914 |
|
915 | 915 |
/// @} |
916 | 916 |
}; |
917 | 917 |
|
918 | 918 |
/// \brief Return a \ref DigraphWriter class |
919 | 919 |
/// |
920 | 920 |
/// This function just returns a \ref DigraphWriter class. |
921 | 921 |
/// \relates DigraphWriter |
922 | 922 |
template <typename Digraph> |
923 | 923 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
924 | 924 |
std::ostream& os) { |
925 | 925 |
DigraphWriter<Digraph> tmp(digraph, os); |
926 | 926 |
return tmp; |
927 | 927 |
} |
928 | 928 |
|
929 | 929 |
/// \brief Return a \ref DigraphWriter class |
930 | 930 |
/// |
931 | 931 |
/// This function just returns a \ref DigraphWriter class. |
932 | 932 |
/// \relates DigraphWriter |
933 | 933 |
template <typename Digraph> |
934 | 934 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
935 | 935 |
const std::string& fn) { |
936 | 936 |
DigraphWriter<Digraph> tmp(digraph, fn); |
937 | 937 |
return tmp; |
938 | 938 |
} |
939 | 939 |
|
940 | 940 |
/// \brief Return a \ref DigraphWriter class |
941 | 941 |
/// |
942 | 942 |
/// This function just returns a \ref DigraphWriter class. |
943 | 943 |
/// \relates DigraphWriter |
944 | 944 |
template <typename Digraph> |
945 | 945 |
DigraphWriter<Digraph> digraphWriter(const Digraph& digraph, |
946 | 946 |
const char* fn) { |
947 | 947 |
DigraphWriter<Digraph> tmp(digraph, fn); |
948 | 948 |
return tmp; |
949 | 949 |
} |
950 | 950 |
|
951 | 951 |
template <typename Graph> |
952 | 952 |
class GraphWriter; |
953 | 953 |
|
954 | 954 |
template <typename Graph> |
955 | 955 |
GraphWriter<Graph> graphWriter(const Graph& graph, |
956 | 956 |
std::ostream& os = std::cout); |
957 | 957 |
template <typename Graph> |
958 | 958 |
GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn); |
959 | 959 |
template <typename Graph> |
960 | 960 |
GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn); |
961 | 961 |
|
962 | 962 |
/// \ingroup lemon_io |
963 | 963 |
/// |
964 | 964 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
965 | 965 |
/// |
966 | 966 |
/// This utility writes an \ref lgf-format "LGF" file. |
967 | 967 |
/// |
968 | 968 |
/// It can be used almost the same way as \c DigraphWriter. |
969 | 969 |
/// The only difference is that this class can handle edges and |
970 | 970 |
/// edge maps as well as arcs and arc maps. |
971 | 971 |
/// |
972 | 972 |
/// The arc maps are written into the file as two columns, the |
973 | 973 |
/// caption of the columns are the name of the map prefixed with \c |
974 | 974 |
/// '+' and \c '-'. The arcs are written into the \c \@attributes |
975 | 975 |
/// section as a \c '+' or a \c '-' prefix (depends on the direction |
976 | 976 |
/// of the arc) and the label of corresponding edge. |
977 | 977 |
template <typename GR> |
978 | 978 |
class GraphWriter { |
979 | 979 |
public: |
980 | 980 |
|
981 | 981 |
typedef GR Graph; |
982 | 982 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
983 | 983 |
|
984 | 984 |
private: |
985 | 985 |
|
986 | 986 |
|
987 | 987 |
std::ostream* _os; |
988 | 988 |
bool local_os; |
989 | 989 |
|
990 | 990 |
const Graph& _graph; |
991 | 991 |
|
992 | 992 |
std::string _nodes_caption; |
993 | 993 |
std::string _edges_caption; |
994 | 994 |
std::string _attributes_caption; |
995 | 995 |
|
996 | 996 |
typedef std::map<Node, std::string> NodeIndex; |
997 | 997 |
NodeIndex _node_index; |
998 | 998 |
typedef std::map<Edge, std::string> EdgeIndex; |
999 | 999 |
EdgeIndex _edge_index; |
1000 | 1000 |
|
1001 | 1001 |
typedef std::vector<std::pair<std::string, |
1002 | 1002 |
_writer_bits::MapStorageBase<Node>* > > NodeMaps; |
1003 | 1003 |
NodeMaps _node_maps; |
1004 | 1004 |
|
1005 | 1005 |
typedef std::vector<std::pair<std::string, |
1006 | 1006 |
_writer_bits::MapStorageBase<Edge>* > >EdgeMaps; |
1007 | 1007 |
EdgeMaps _edge_maps; |
1008 | 1008 |
|
1009 | 1009 |
typedef std::vector<std::pair<std::string, |
1010 | 1010 |
_writer_bits::ValueStorageBase*> > Attributes; |
1011 | 1011 |
Attributes _attributes; |
1012 | 1012 |
|
1013 | 1013 |
bool _skip_nodes; |
1014 | 1014 |
bool _skip_edges; |
1015 | 1015 |
|
1016 | 1016 |
public: |
1017 | 1017 |
|
1018 | 1018 |
/// \brief Constructor |
1019 | 1019 |
/// |
1020 | 1020 |
/// Construct a directed graph writer, which writes to the given |
1021 | 1021 |
/// output stream. |
1022 | 1022 |
GraphWriter(const Graph& graph, std::ostream& os = std::cout) |
1023 | 1023 |
: _os(&os), local_os(false), _graph(graph), |
1024 | 1024 |
_skip_nodes(false), _skip_edges(false) {} |
1025 | 1025 |
|
1026 | 1026 |
/// \brief Constructor |
1027 | 1027 |
/// |
1028 | 1028 |
/// Construct a directed graph writer, which writes to the given |
1029 | 1029 |
/// output file. |
1030 | 1030 |
GraphWriter(const Graph& graph, const std::string& fn) |
1031 | 1031 |
: _os(new std::ofstream(fn.c_str())), local_os(true), _graph(graph), |
1032 | 1032 |
_skip_nodes(false), _skip_edges(false) { |
1033 | 1033 |
if (!(*_os)) { |
1034 | 1034 |
delete _os; |
1035 | 1035 |
throw IoError("Cannot write file", fn); |
1036 | 1036 |
} |
1037 | 1037 |
} |
1038 | 1038 |
|
1039 | 1039 |
/// \brief Constructor |
1040 | 1040 |
/// |
1041 | 1041 |
/// Construct a directed graph writer, which writes to the given |
1042 | 1042 |
/// output file. |
1043 | 1043 |
GraphWriter(const Graph& graph, const char* fn) |
1044 | 1044 |
: _os(new std::ofstream(fn)), local_os(true), _graph(graph), |
1045 | 1045 |
_skip_nodes(false), _skip_edges(false) { |
1046 | 1046 |
if (!(*_os)) { |
1047 | 1047 |
delete _os; |
1048 | 1048 |
throw IoError("Cannot write file", fn); |
1049 | 1049 |
} |
1050 | 1050 |
} |
1051 | 1051 |
|
1052 | 1052 |
/// \brief Destructor |
1053 | 1053 |
~GraphWriter() { |
1054 | 1054 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1055 | 1055 |
it != _node_maps.end(); ++it) { |
1056 | 1056 |
delete it->second; |
1057 | 1057 |
} |
1058 | 1058 |
|
1059 | 1059 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1060 | 1060 |
it != _edge_maps.end(); ++it) { |
1061 | 1061 |
delete it->second; |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
for (typename Attributes::iterator it = _attributes.begin(); |
1065 | 1065 |
it != _attributes.end(); ++it) { |
1066 | 1066 |
delete it->second; |
1067 | 1067 |
} |
1068 | 1068 |
|
1069 | 1069 |
if (local_os) { |
1070 | 1070 |
delete _os; |
1071 | 1071 |
} |
1072 | 1072 |
} |
1073 | 1073 |
|
1074 | 1074 |
private: |
1075 | 1075 |
|
1076 | 1076 |
template <typename Graph> |
1077 | 1077 |
friend GraphWriter<Graph> graphWriter(const Graph& graph, |
1078 | 1078 |
std::ostream& os); |
1079 | 1079 |
template <typename Graph> |
1080 | 1080 |
friend GraphWriter<Graph> graphWriter(const Graph& graph, |
1081 | 1081 |
const std::string& fn); |
1082 | 1082 |
template <typename Graph> |
1083 | 1083 |
friend GraphWriter<Graph> graphWriter(const Graph& graph, |
1084 | 1084 |
const char *fn); |
1085 | 1085 |
|
1086 | 1086 |
GraphWriter(GraphWriter& other) |
1087 | 1087 |
: _os(other._os), local_os(other.local_os), _graph(other._graph), |
1088 | 1088 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) { |
1089 | 1089 |
|
1090 | 1090 |
other._os = 0; |
1091 | 1091 |
other.local_os = false; |
1092 | 1092 |
|
1093 | 1093 |
_node_index.swap(other._node_index); |
1094 | 1094 |
_edge_index.swap(other._edge_index); |
1095 | 1095 |
|
1096 | 1096 |
_node_maps.swap(other._node_maps); |
1097 | 1097 |
_edge_maps.swap(other._edge_maps); |
1098 | 1098 |
_attributes.swap(other._attributes); |
1099 | 1099 |
|
1100 | 1100 |
_nodes_caption = other._nodes_caption; |
1101 | 1101 |
_edges_caption = other._edges_caption; |
1102 | 1102 |
_attributes_caption = other._attributes_caption; |
1103 | 1103 |
} |
1104 | 1104 |
|
1105 | 1105 |
GraphWriter& operator=(const GraphWriter&); |
1106 | 1106 |
|
1107 | 1107 |
public: |
1108 | 1108 |
|
1109 |
/// \name Writing |
|
1109 |
/// \name Writing Rules |
|
1110 | 1110 |
/// @{ |
1111 | 1111 |
|
1112 | 1112 |
/// \brief Node map writing rule |
1113 | 1113 |
/// |
1114 | 1114 |
/// Add a node map writing rule to the writer. |
1115 | 1115 |
template <typename Map> |
1116 | 1116 |
GraphWriter& nodeMap(const std::string& caption, const Map& map) { |
1117 | 1117 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1118 | 1118 |
_writer_bits::MapStorageBase<Node>* storage = |
1119 | 1119 |
new _writer_bits::MapStorage<Node, Map>(map); |
1120 | 1120 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1121 | 1121 |
return *this; |
1122 | 1122 |
} |
1123 | 1123 |
|
1124 | 1124 |
/// \brief Node map writing rule |
1125 | 1125 |
/// |
1126 | 1126 |
/// Add a node map writing rule with specialized converter to the |
1127 | 1127 |
/// writer. |
1128 | 1128 |
template <typename Map, typename Converter> |
1129 | 1129 |
GraphWriter& nodeMap(const std::string& caption, const Map& map, |
1130 | 1130 |
const Converter& converter = Converter()) { |
1131 | 1131 |
checkConcept<concepts::ReadMap<Node, typename Map::Value>, Map>(); |
1132 | 1132 |
_writer_bits::MapStorageBase<Node>* storage = |
1133 | 1133 |
new _writer_bits::MapStorage<Node, Map, Converter>(map, converter); |
1134 | 1134 |
_node_maps.push_back(std::make_pair(caption, storage)); |
1135 | 1135 |
return *this; |
1136 | 1136 |
} |
1137 | 1137 |
|
1138 | 1138 |
/// \brief Edge map writing rule |
1139 | 1139 |
/// |
1140 | 1140 |
/// Add an edge map writing rule to the writer. |
1141 | 1141 |
template <typename Map> |
1142 | 1142 |
GraphWriter& edgeMap(const std::string& caption, const Map& map) { |
1143 | 1143 |
checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>(); |
1144 | 1144 |
_writer_bits::MapStorageBase<Edge>* storage = |
1145 | 1145 |
new _writer_bits::MapStorage<Edge, Map>(map); |
1146 | 1146 |
_edge_maps.push_back(std::make_pair(caption, storage)); |
1147 | 1147 |
return *this; |
1148 | 1148 |
} |
1149 | 1149 |
|
1150 | 1150 |
/// \brief Edge map writing rule |
1151 | 1151 |
/// |
1152 | 1152 |
/// Add an edge map writing rule with specialized converter to the |
1153 | 1153 |
/// writer. |
1154 | 1154 |
template <typename Map, typename Converter> |
1155 | 1155 |
GraphWriter& edgeMap(const std::string& caption, const Map& map, |
1156 | 1156 |
const Converter& converter = Converter()) { |
1157 | 1157 |
checkConcept<concepts::ReadMap<Edge, typename Map::Value>, Map>(); |
1158 | 1158 |
_writer_bits::MapStorageBase<Edge>* storage = |
1159 | 1159 |
new _writer_bits::MapStorage<Edge, Map, Converter>(map, converter); |
1160 | 1160 |
_edge_maps.push_back(std::make_pair(caption, storage)); |
1161 | 1161 |
return *this; |
1162 | 1162 |
} |
1163 | 1163 |
|
1164 | 1164 |
/// \brief Arc map writing rule |
1165 | 1165 |
/// |
1166 | 1166 |
/// Add an arc map writing rule to the writer. |
1167 | 1167 |
template <typename Map> |
1168 | 1168 |
GraphWriter& arcMap(const std::string& caption, const Map& map) { |
1169 | 1169 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
1170 | 1170 |
_writer_bits::MapStorageBase<Edge>* forward_storage = |
1171 | 1171 |
new _writer_bits::GraphArcMapStorage<Graph, true, Map>(_graph, map); |
1172 | 1172 |
_edge_maps.push_back(std::make_pair('+' + caption, forward_storage)); |
1173 | 1173 |
_writer_bits::MapStorageBase<Edge>* backward_storage = |
1174 | 1174 |
new _writer_bits::GraphArcMapStorage<Graph, false, Map>(_graph, map); |
1175 | 1175 |
_edge_maps.push_back(std::make_pair('-' + caption, backward_storage)); |
1176 | 1176 |
return *this; |
1177 | 1177 |
} |
1178 | 1178 |
|
1179 | 1179 |
/// \brief Arc map writing rule |
1180 | 1180 |
/// |
1181 | 1181 |
/// Add an arc map writing rule with specialized converter to the |
1182 | 1182 |
/// writer. |
1183 | 1183 |
template <typename Map, typename Converter> |
1184 | 1184 |
GraphWriter& arcMap(const std::string& caption, const Map& map, |
1185 | 1185 |
const Converter& converter = Converter()) { |
1186 | 1186 |
checkConcept<concepts::ReadMap<Arc, typename Map::Value>, Map>(); |
1187 | 1187 |
_writer_bits::MapStorageBase<Edge>* forward_storage = |
1188 | 1188 |
new _writer_bits::GraphArcMapStorage<Graph, true, Map, Converter> |
1189 | 1189 |
(_graph, map, converter); |
1190 | 1190 |
_edge_maps.push_back(std::make_pair('+' + caption, forward_storage)); |
1191 | 1191 |
_writer_bits::MapStorageBase<Edge>* backward_storage = |
1192 | 1192 |
new _writer_bits::GraphArcMapStorage<Graph, false, Map, Converter> |
1193 | 1193 |
(_graph, map, converter); |
1194 | 1194 |
_edge_maps.push_back(std::make_pair('-' + caption, backward_storage)); |
1195 | 1195 |
return *this; |
1196 | 1196 |
} |
1197 | 1197 |
|
1198 | 1198 |
/// \brief Attribute writing rule |
1199 | 1199 |
/// |
1200 | 1200 |
/// Add an attribute writing rule to the writer. |
1201 | 1201 |
template <typename Value> |
1202 | 1202 |
GraphWriter& attribute(const std::string& caption, const Value& value) { |
1203 | 1203 |
_writer_bits::ValueStorageBase* storage = |
1204 | 1204 |
new _writer_bits::ValueStorage<Value>(value); |
1205 | 1205 |
_attributes.push_back(std::make_pair(caption, storage)); |
1206 | 1206 |
return *this; |
1207 | 1207 |
} |
1208 | 1208 |
|
1209 | 1209 |
/// \brief Attribute writing rule |
1210 | 1210 |
/// |
1211 | 1211 |
/// Add an attribute writing rule with specialized converter to the |
1212 | 1212 |
/// writer. |
1213 | 1213 |
template <typename Value, typename Converter> |
1214 | 1214 |
GraphWriter& attribute(const std::string& caption, const Value& value, |
1215 | 1215 |
const Converter& converter = Converter()) { |
1216 | 1216 |
_writer_bits::ValueStorageBase* storage = |
1217 | 1217 |
new _writer_bits::ValueStorage<Value, Converter>(value, converter); |
1218 | 1218 |
_attributes.push_back(std::make_pair(caption, storage)); |
1219 | 1219 |
return *this; |
1220 | 1220 |
} |
1221 | 1221 |
|
1222 | 1222 |
/// \brief Node writing rule |
1223 | 1223 |
/// |
1224 | 1224 |
/// Add a node writing rule to the writer. |
1225 | 1225 |
GraphWriter& node(const std::string& caption, const Node& node) { |
1226 | 1226 |
typedef _writer_bits::MapLookUpConverter<Node> Converter; |
1227 | 1227 |
Converter converter(_node_index); |
1228 | 1228 |
_writer_bits::ValueStorageBase* storage = |
1229 | 1229 |
new _writer_bits::ValueStorage<Node, Converter>(node, converter); |
1230 | 1230 |
_attributes.push_back(std::make_pair(caption, storage)); |
1231 | 1231 |
return *this; |
1232 | 1232 |
} |
1233 | 1233 |
|
1234 | 1234 |
/// \brief Edge writing rule |
1235 | 1235 |
/// |
1236 | 1236 |
/// Add an edge writing rule to writer. |
1237 | 1237 |
GraphWriter& edge(const std::string& caption, const Edge& edge) { |
1238 | 1238 |
typedef _writer_bits::MapLookUpConverter<Edge> Converter; |
1239 | 1239 |
Converter converter(_edge_index); |
1240 | 1240 |
_writer_bits::ValueStorageBase* storage = |
1241 | 1241 |
new _writer_bits::ValueStorage<Edge, Converter>(edge, converter); |
1242 | 1242 |
_attributes.push_back(std::make_pair(caption, storage)); |
1243 | 1243 |
return *this; |
1244 | 1244 |
} |
1245 | 1245 |
|
1246 | 1246 |
/// \brief Arc writing rule |
1247 | 1247 |
/// |
1248 | 1248 |
/// Add an arc writing rule to writer. |
1249 | 1249 |
GraphWriter& arc(const std::string& caption, const Arc& arc) { |
1250 | 1250 |
typedef _writer_bits::GraphArcLookUpConverter<Graph> Converter; |
1251 | 1251 |
Converter converter(_graph, _edge_index); |
1252 | 1252 |
_writer_bits::ValueStorageBase* storage = |
1253 | 1253 |
new _writer_bits::ValueStorage<Arc, Converter>(arc, converter); |
1254 | 1254 |
_attributes.push_back(std::make_pair(caption, storage)); |
1255 | 1255 |
return *this; |
1256 | 1256 |
} |
1257 | 1257 |
|
1258 |
/// \name Section |
|
1258 |
/// \name Section Captions |
|
1259 | 1259 |
/// @{ |
1260 | 1260 |
|
1261 | 1261 |
/// \brief Add an additional caption to the \c \@nodes section |
1262 | 1262 |
/// |
1263 | 1263 |
/// Add an additional caption to the \c \@nodes section. |
1264 | 1264 |
GraphWriter& nodes(const std::string& caption) { |
1265 | 1265 |
_nodes_caption = caption; |
1266 | 1266 |
return *this; |
1267 | 1267 |
} |
1268 | 1268 |
|
1269 | 1269 |
/// \brief Add an additional caption to the \c \@arcs section |
1270 | 1270 |
/// |
1271 | 1271 |
/// Add an additional caption to the \c \@arcs section. |
1272 | 1272 |
GraphWriter& edges(const std::string& caption) { |
1273 | 1273 |
_edges_caption = caption; |
1274 | 1274 |
return *this; |
1275 | 1275 |
} |
1276 | 1276 |
|
1277 | 1277 |
/// \brief Add an additional caption to the \c \@attributes section |
1278 | 1278 |
/// |
1279 | 1279 |
/// Add an additional caption to the \c \@attributes section. |
1280 | 1280 |
GraphWriter& attributes(const std::string& caption) { |
1281 | 1281 |
_attributes_caption = caption; |
1282 | 1282 |
return *this; |
1283 | 1283 |
} |
1284 | 1284 |
|
1285 |
/// \name Skipping |
|
1285 |
/// \name Skipping Section |
|
1286 | 1286 |
/// @{ |
1287 | 1287 |
|
1288 | 1288 |
/// \brief Skip writing the node set |
1289 | 1289 |
/// |
1290 | 1290 |
/// The \c \@nodes section will not be written to the stream. |
1291 | 1291 |
GraphWriter& skipNodes() { |
1292 | 1292 |
LEMON_ASSERT(!_skip_nodes, "Multiple usage of skipNodes() member"); |
1293 | 1293 |
_skip_nodes = true; |
1294 | 1294 |
return *this; |
1295 | 1295 |
} |
1296 | 1296 |
|
1297 | 1297 |
/// \brief Skip writing edge set |
1298 | 1298 |
/// |
1299 | 1299 |
/// The \c \@edges section will not be written to the stream. |
1300 | 1300 |
GraphWriter& skipEdges() { |
1301 | 1301 |
LEMON_ASSERT(!_skip_edges, "Multiple usage of skipEdges() member"); |
1302 | 1302 |
_skip_edges = true; |
1303 | 1303 |
return *this; |
1304 | 1304 |
} |
1305 | 1305 |
|
1306 | 1306 |
/// @} |
1307 | 1307 |
|
1308 | 1308 |
private: |
1309 | 1309 |
|
1310 | 1310 |
void writeNodes() { |
1311 | 1311 |
_writer_bits::MapStorageBase<Node>* label = 0; |
1312 | 1312 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1313 | 1313 |
it != _node_maps.end(); ++it) { |
1314 | 1314 |
if (it->first == "label") { |
1315 | 1315 |
label = it->second; |
1316 | 1316 |
break; |
1317 | 1317 |
} |
1318 | 1318 |
} |
1319 | 1319 |
|
1320 | 1320 |
*_os << "@nodes"; |
1321 | 1321 |
if (!_nodes_caption.empty()) { |
1322 | 1322 |
_writer_bits::writeToken(*_os << ' ', _nodes_caption); |
1323 | 1323 |
} |
1324 | 1324 |
*_os << std::endl; |
1325 | 1325 |
|
1326 | 1326 |
if (label == 0) { |
1327 | 1327 |
*_os << "label" << '\t'; |
1328 | 1328 |
} |
1329 | 1329 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1330 | 1330 |
it != _node_maps.end(); ++it) { |
1331 | 1331 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
1332 | 1332 |
} |
1333 | 1333 |
*_os << std::endl; |
1334 | 1334 |
|
1335 | 1335 |
std::vector<Node> nodes; |
1336 | 1336 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1337 | 1337 |
nodes.push_back(n); |
1338 | 1338 |
} |
1339 | 1339 |
|
1340 | 1340 |
if (label == 0) { |
1341 | 1341 |
IdMap<Graph, Node> id_map(_graph); |
1342 | 1342 |
_writer_bits::MapLess<IdMap<Graph, Node> > id_less(id_map); |
1343 | 1343 |
std::sort(nodes.begin(), nodes.end(), id_less); |
1344 | 1344 |
} else { |
1345 | 1345 |
label->sort(nodes); |
1346 | 1346 |
} |
1347 | 1347 |
|
1348 | 1348 |
for (int i = 0; i < static_cast<int>(nodes.size()); ++i) { |
1349 | 1349 |
Node n = nodes[i]; |
1350 | 1350 |
if (label == 0) { |
1351 | 1351 |
std::ostringstream os; |
1352 | 1352 |
os << _graph.id(n); |
1353 | 1353 |
_writer_bits::writeToken(*_os, os.str()); |
1354 | 1354 |
*_os << '\t'; |
1355 | 1355 |
_node_index.insert(std::make_pair(n, os.str())); |
1356 | 1356 |
} |
1357 | 1357 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1358 | 1358 |
it != _node_maps.end(); ++it) { |
1359 | 1359 |
std::string value = it->second->get(n); |
1360 | 1360 |
_writer_bits::writeToken(*_os, value); |
1361 | 1361 |
if (it->first == "label") { |
1362 | 1362 |
_node_index.insert(std::make_pair(n, value)); |
1363 | 1363 |
} |
1364 | 1364 |
*_os << '\t'; |
1365 | 1365 |
} |
1366 | 1366 |
*_os << std::endl; |
1367 | 1367 |
} |
1368 | 1368 |
} |
1369 | 1369 |
|
1370 | 1370 |
void createNodeIndex() { |
1371 | 1371 |
_writer_bits::MapStorageBase<Node>* label = 0; |
1372 | 1372 |
for (typename NodeMaps::iterator it = _node_maps.begin(); |
1373 | 1373 |
it != _node_maps.end(); ++it) { |
1374 | 1374 |
if (it->first == "label") { |
1375 | 1375 |
label = it->second; |
1376 | 1376 |
break; |
1377 | 1377 |
} |
1378 | 1378 |
} |
1379 | 1379 |
|
1380 | 1380 |
if (label == 0) { |
1381 | 1381 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1382 | 1382 |
std::ostringstream os; |
1383 | 1383 |
os << _graph.id(n); |
1384 | 1384 |
_node_index.insert(std::make_pair(n, os.str())); |
1385 | 1385 |
} |
1386 | 1386 |
} else { |
1387 | 1387 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1388 | 1388 |
std::string value = label->get(n); |
1389 | 1389 |
_node_index.insert(std::make_pair(n, value)); |
1390 | 1390 |
} |
1391 | 1391 |
} |
1392 | 1392 |
} |
1393 | 1393 |
|
1394 | 1394 |
void writeEdges() { |
1395 | 1395 |
_writer_bits::MapStorageBase<Edge>* label = 0; |
1396 | 1396 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1397 | 1397 |
it != _edge_maps.end(); ++it) { |
1398 | 1398 |
if (it->first == "label") { |
1399 | 1399 |
label = it->second; |
1400 | 1400 |
break; |
1401 | 1401 |
} |
1402 | 1402 |
} |
1403 | 1403 |
|
1404 | 1404 |
*_os << "@edges"; |
1405 | 1405 |
if (!_edges_caption.empty()) { |
1406 | 1406 |
_writer_bits::writeToken(*_os << ' ', _edges_caption); |
1407 | 1407 |
} |
1408 | 1408 |
*_os << std::endl; |
1409 | 1409 |
|
1410 | 1410 |
*_os << '\t' << '\t'; |
1411 | 1411 |
if (label == 0) { |
1412 | 1412 |
*_os << "label" << '\t'; |
1413 | 1413 |
} |
1414 | 1414 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1415 | 1415 |
it != _edge_maps.end(); ++it) { |
1416 | 1416 |
_writer_bits::writeToken(*_os, it->first) << '\t'; |
1417 | 1417 |
} |
1418 | 1418 |
*_os << std::endl; |
1419 | 1419 |
|
1420 | 1420 |
std::vector<Edge> edges; |
1421 | 1421 |
for (EdgeIt n(_graph); n != INVALID; ++n) { |
1422 | 1422 |
edges.push_back(n); |
1423 | 1423 |
} |
1424 | 1424 |
|
1425 | 1425 |
if (label == 0) { |
1426 | 1426 |
IdMap<Graph, Edge> id_map(_graph); |
1427 | 1427 |
_writer_bits::MapLess<IdMap<Graph, Edge> > id_less(id_map); |
1428 | 1428 |
std::sort(edges.begin(), edges.end(), id_less); |
1429 | 1429 |
} else { |
1430 | 1430 |
label->sort(edges); |
1431 | 1431 |
} |
1432 | 1432 |
|
1433 | 1433 |
for (int i = 0; i < static_cast<int>(edges.size()); ++i) { |
1434 | 1434 |
Edge e = edges[i]; |
1435 | 1435 |
_writer_bits::writeToken(*_os, _node_index. |
1436 | 1436 |
find(_graph.u(e))->second); |
1437 | 1437 |
*_os << '\t'; |
1438 | 1438 |
_writer_bits::writeToken(*_os, _node_index. |
1439 | 1439 |
find(_graph.v(e))->second); |
1440 | 1440 |
*_os << '\t'; |
1441 | 1441 |
if (label == 0) { |
1442 | 1442 |
std::ostringstream os; |
1443 | 1443 |
os << _graph.id(e); |
1444 | 1444 |
_writer_bits::writeToken(*_os, os.str()); |
1445 | 1445 |
*_os << '\t'; |
1446 | 1446 |
_edge_index.insert(std::make_pair(e, os.str())); |
1447 | 1447 |
} |
1448 | 1448 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1449 | 1449 |
it != _edge_maps.end(); ++it) { |
1450 | 1450 |
std::string value = it->second->get(e); |
1451 | 1451 |
_writer_bits::writeToken(*_os, value); |
1452 | 1452 |
if (it->first == "label") { |
1453 | 1453 |
_edge_index.insert(std::make_pair(e, value)); |
1454 | 1454 |
} |
1455 | 1455 |
*_os << '\t'; |
1456 | 1456 |
} |
1457 | 1457 |
*_os << std::endl; |
1458 | 1458 |
} |
1459 | 1459 |
} |
1460 | 1460 |
|
1461 | 1461 |
void createEdgeIndex() { |
1462 | 1462 |
_writer_bits::MapStorageBase<Edge>* label = 0; |
1463 | 1463 |
for (typename EdgeMaps::iterator it = _edge_maps.begin(); |
1464 | 1464 |
it != _edge_maps.end(); ++it) { |
1465 | 1465 |
if (it->first == "label") { |
1466 | 1466 |
label = it->second; |
1467 | 1467 |
break; |
1468 | 1468 |
} |
1469 | 1469 |
} |
1470 | 1470 |
|
1471 | 1471 |
if (label == 0) { |
1472 | 1472 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1473 | 1473 |
std::ostringstream os; |
1474 | 1474 |
os << _graph.id(e); |
1475 | 1475 |
_edge_index.insert(std::make_pair(e, os.str())); |
1476 | 1476 |
} |
1477 | 1477 |
} else { |
1478 | 1478 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1479 | 1479 |
std::string value = label->get(e); |
1480 | 1480 |
_edge_index.insert(std::make_pair(e, value)); |
1481 | 1481 |
} |
1482 | 1482 |
} |
1483 | 1483 |
} |
1484 | 1484 |
|
1485 | 1485 |
void writeAttributes() { |
1486 | 1486 |
if (_attributes.empty()) return; |
1487 | 1487 |
*_os << "@attributes"; |
1488 | 1488 |
if (!_attributes_caption.empty()) { |
1489 | 1489 |
_writer_bits::writeToken(*_os << ' ', _attributes_caption); |
1490 | 1490 |
} |
1491 | 1491 |
*_os << std::endl; |
1492 | 1492 |
for (typename Attributes::iterator it = _attributes.begin(); |
1493 | 1493 |
it != _attributes.end(); ++it) { |
1494 | 1494 |
_writer_bits::writeToken(*_os, it->first) << ' '; |
1495 | 1495 |
_writer_bits::writeToken(*_os, it->second->get()); |
1496 | 1496 |
*_os << std::endl; |
1497 | 1497 |
} |
1498 | 1498 |
} |
1499 | 1499 |
|
1500 | 1500 |
public: |
1501 | 1501 |
|
1502 |
/// \name Execution of the |
|
1502 |
/// \name Execution of the Writer |
|
1503 | 1503 |
/// @{ |
1504 | 1504 |
|
1505 | 1505 |
/// \brief Start the batch processing |
1506 | 1506 |
/// |
1507 | 1507 |
/// This function starts the batch processing. |
1508 | 1508 |
void run() { |
1509 | 1509 |
if (!_skip_nodes) { |
1510 | 1510 |
writeNodes(); |
1511 | 1511 |
} else { |
1512 | 1512 |
createNodeIndex(); |
1513 | 1513 |
} |
1514 | 1514 |
if (!_skip_edges) { |
1515 | 1515 |
writeEdges(); |
1516 | 1516 |
} else { |
1517 | 1517 |
createEdgeIndex(); |
1518 | 1518 |
} |
1519 | 1519 |
writeAttributes(); |
1520 | 1520 |
} |
1521 | 1521 |
|
1522 | 1522 |
/// \brief Give back the stream of the writer |
1523 | 1523 |
/// |
1524 | 1524 |
/// Give back the stream of the writer |
1525 | 1525 |
std::ostream& ostream() { |
1526 | 1526 |
return *_os; |
1527 | 1527 |
} |
1528 | 1528 |
|
1529 | 1529 |
/// @} |
1530 | 1530 |
}; |
1531 | 1531 |
|
1532 | 1532 |
/// \brief Return a \ref GraphWriter class |
1533 | 1533 |
/// |
1534 | 1534 |
/// This function just returns a \ref GraphWriter class. |
1535 | 1535 |
/// \relates GraphWriter |
1536 | 1536 |
template <typename Graph> |
1537 | 1537 |
GraphWriter<Graph> graphWriter(const Graph& graph, |
1538 | 1538 |
std::ostream& os) { |
1539 | 1539 |
GraphWriter<Graph> tmp(graph, os); |
1540 | 1540 |
return tmp; |
1541 | 1541 |
} |
1542 | 1542 |
|
1543 | 1543 |
/// \brief Return a \ref GraphWriter class |
1544 | 1544 |
/// |
1545 | 1545 |
/// This function just returns a \ref GraphWriter class. |
1546 | 1546 |
/// \relates GraphWriter |
1547 | 1547 |
template <typename Graph> |
1548 | 1548 |
GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn) { |
1549 | 1549 |
GraphWriter<Graph> tmp(graph, fn); |
1550 | 1550 |
return tmp; |
1551 | 1551 |
} |
1552 | 1552 |
|
1553 | 1553 |
/// \brief Return a \ref GraphWriter class |
1554 | 1554 |
/// |
1555 | 1555 |
/// This function just returns a \ref GraphWriter class. |
1556 | 1556 |
/// \relates GraphWriter |
1557 | 1557 |
template <typename Graph> |
1558 | 1558 |
GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn) { |
1559 | 1559 |
GraphWriter<Graph> tmp(graph, fn); |
1560 | 1560 |
return tmp; |
1561 | 1561 |
} |
1562 | 1562 |
|
1563 | 1563 |
class SectionWriter; |
1564 | 1564 |
|
1565 | 1565 |
SectionWriter sectionWriter(std::istream& is); |
1566 | 1566 |
SectionWriter sectionWriter(const std::string& fn); |
1567 | 1567 |
SectionWriter sectionWriter(const char* fn); |
1568 | 1568 |
|
1569 | 1569 |
/// \ingroup lemon_io |
1570 | 1570 |
/// |
1571 | 1571 |
/// \brief Section writer class |
1572 | 1572 |
/// |
1573 | 1573 |
/// In the \ref lgf-format "LGF" file extra sections can be placed, |
1574 | 1574 |
/// which contain any data in arbitrary format. Such sections can be |
1575 | 1575 |
/// written with this class. A writing rule can be added to the |
1576 | 1576 |
/// class with two different functions. With the \c sectionLines() |
1577 | 1577 |
/// function a generator can write the section line-by-line, while |
1578 | 1578 |
/// with the \c sectionStream() member the section can be written to |
1579 | 1579 |
/// an output stream. |
1580 | 1580 |
class SectionWriter { |
1581 | 1581 |
private: |
1582 | 1582 |
|
1583 | 1583 |
std::ostream* _os; |
1584 | 1584 |
bool local_os; |
1585 | 1585 |
|
1586 | 1586 |
typedef std::vector<std::pair<std::string, _writer_bits::Section*> > |
1587 | 1587 |
Sections; |
1588 | 1588 |
|
1589 | 1589 |
Sections _sections; |
1590 | 1590 |
|
1591 | 1591 |
public: |
1592 | 1592 |
|
1593 | 1593 |
/// \brief Constructor |
1594 | 1594 |
/// |
1595 | 1595 |
/// Construct a section writer, which writes to the given output |
1596 | 1596 |
/// stream. |
1597 | 1597 |
SectionWriter(std::ostream& os) |
1598 | 1598 |
: _os(&os), local_os(false) {} |
1599 | 1599 |
|
1600 | 1600 |
/// \brief Constructor |
1601 | 1601 |
/// |
1602 | 1602 |
/// Construct a section writer, which writes into the given file. |
1603 | 1603 |
SectionWriter(const std::string& fn) |
1604 | 1604 |
: _os(new std::ofstream(fn.c_str())), local_os(true) { |
1605 | 1605 |
if (!(*_os)) { |
1606 | 1606 |
delete _os; |
1607 | 1607 |
throw IoError("Cannot write file", fn); |
1608 | 1608 |
} |
1609 | 1609 |
} |
1610 | 1610 |
|
1611 | 1611 |
/// \brief Constructor |
1612 | 1612 |
/// |
1613 | 1613 |
/// Construct a section writer, which writes into the given file. |
1614 | 1614 |
SectionWriter(const char* fn) |
1615 | 1615 |
: _os(new std::ofstream(fn)), local_os(true) { |
1616 | 1616 |
if (!(*_os)) { |
1617 | 1617 |
delete _os; |
1618 | 1618 |
throw IoError("Cannot write file", fn); |
1619 | 1619 |
} |
1620 | 1620 |
} |
1621 | 1621 |
|
1622 | 1622 |
/// \brief Destructor |
1623 | 1623 |
~SectionWriter() { |
1624 | 1624 |
for (Sections::iterator it = _sections.begin(); |
1625 | 1625 |
it != _sections.end(); ++it) { |
1626 | 1626 |
delete it->second; |
1627 | 1627 |
} |
1628 | 1628 |
|
1629 | 1629 |
if (local_os) { |
1630 | 1630 |
delete _os; |
1631 | 1631 |
} |
1632 | 1632 |
|
1633 | 1633 |
} |
1634 | 1634 |
|
1635 | 1635 |
private: |
1636 | 1636 |
|
1637 | 1637 |
friend SectionWriter sectionWriter(std::ostream& os); |
1638 | 1638 |
friend SectionWriter sectionWriter(const std::string& fn); |
1639 | 1639 |
friend SectionWriter sectionWriter(const char* fn); |
1640 | 1640 |
|
1641 | 1641 |
SectionWriter(SectionWriter& other) |
1642 | 1642 |
: _os(other._os), local_os(other.local_os) { |
1643 | 1643 |
|
1644 | 1644 |
other._os = 0; |
1645 | 1645 |
other.local_os = false; |
1646 | 1646 |
|
1647 | 1647 |
_sections.swap(other._sections); |
1648 | 1648 |
} |
1649 | 1649 |
|
1650 | 1650 |
SectionWriter& operator=(const SectionWriter&); |
1651 | 1651 |
|
1652 | 1652 |
public: |
1653 | 1653 |
|
1654 |
/// \name Section |
|
1654 |
/// \name Section Writers |
|
1655 | 1655 |
/// @{ |
1656 | 1656 |
|
1657 | 1657 |
/// \brief Add a section writer with line oriented writing |
1658 | 1658 |
/// |
1659 | 1659 |
/// The first parameter is the type descriptor of the section, the |
1660 | 1660 |
/// second is a generator with std::string values. At the writing |
1661 | 1661 |
/// process, the returned \c std::string will be written into the |
1662 | 1662 |
/// output file until it is an empty string. |
1663 | 1663 |
/// |
1664 | 1664 |
/// For example, an integer vector is written into a section. |
1665 | 1665 |
///\code |
1666 | 1666 |
/// @numbers |
1667 | 1667 |
/// 12 45 23 78 |
1668 | 1668 |
/// 4 28 38 28 |
1669 | 1669 |
/// 23 6 16 |
1670 | 1670 |
///\endcode |
1671 | 1671 |
/// |
1672 | 1672 |
/// The generator is implemented as a struct. |
1673 | 1673 |
///\code |
1674 | 1674 |
/// struct NumberSection { |
1675 | 1675 |
/// std::vector<int>::const_iterator _it, _end; |
1676 | 1676 |
/// NumberSection(const std::vector<int>& data) |
1677 | 1677 |
/// : _it(data.begin()), _end(data.end()) {} |
1678 | 1678 |
/// std::string operator()() { |
1679 | 1679 |
/// int rem_in_line = 4; |
1680 | 1680 |
/// std::ostringstream ls; |
1681 | 1681 |
/// while (rem_in_line > 0 && _it != _end) { |
1682 | 1682 |
/// ls << *(_it++) << ' '; |
1683 | 1683 |
/// --rem_in_line; |
1684 | 1684 |
/// } |
1685 | 1685 |
/// return ls.str(); |
1686 | 1686 |
/// } |
1687 | 1687 |
/// }; |
1688 | 1688 |
/// |
1689 | 1689 |
/// // ... |
1690 | 1690 |
/// |
1691 | 1691 |
/// writer.sectionLines("numbers", NumberSection(vec)); |
1692 | 1692 |
///\endcode |
1693 | 1693 |
template <typename Functor> |
1694 | 1694 |
SectionWriter& sectionLines(const std::string& type, Functor functor) { |
1695 | 1695 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
1696 | 1696 |
_sections.push_back(std::make_pair(type, |
1697 | 1697 |
new _writer_bits::LineSection<Functor>(functor))); |
1698 | 1698 |
return *this; |
1699 | 1699 |
} |
1700 | 1700 |
|
1701 | 1701 |
|
1702 | 1702 |
/// \brief Add a section writer with stream oriented writing |
1703 | 1703 |
/// |
1704 | 1704 |
/// The first parameter is the type of the section, the second is |
1705 | 1705 |
/// a functor, which takes a \c std::ostream& parameter. The |
1706 | 1706 |
/// functor writes the section to the output stream. |
1707 | 1707 |
/// \warning The last line must be closed with end-line character. |
1708 | 1708 |
template <typename Functor> |
1709 | 1709 |
SectionWriter& sectionStream(const std::string& type, Functor functor) { |
1710 | 1710 |
LEMON_ASSERT(!type.empty(), "Type is empty."); |
1711 | 1711 |
_sections.push_back(std::make_pair(type, |
1712 | 1712 |
new _writer_bits::StreamSection<Functor>(functor))); |
1713 | 1713 |
return *this; |
1714 | 1714 |
} |
1715 | 1715 |
|
1716 | 1716 |
/// @} |
1717 | 1717 |
|
1718 | 1718 |
public: |
1719 | 1719 |
|
1720 | 1720 |
|
1721 |
/// \name Execution of the |
|
1721 |
/// \name Execution of the Writer |
|
1722 | 1722 |
/// @{ |
1723 | 1723 |
|
1724 | 1724 |
/// \brief Start the batch processing |
1725 | 1725 |
/// |
1726 | 1726 |
/// This function starts the batch processing. |
1727 | 1727 |
void run() { |
1728 | 1728 |
|
1729 | 1729 |
LEMON_ASSERT(_os != 0, "This writer is assigned to an other writer"); |
1730 | 1730 |
|
1731 | 1731 |
for (Sections::iterator it = _sections.begin(); |
1732 | 1732 |
it != _sections.end(); ++it) { |
1733 | 1733 |
(*_os) << '@' << it->first << std::endl; |
1734 | 1734 |
it->second->process(*_os); |
1735 | 1735 |
} |
1736 | 1736 |
} |
1737 | 1737 |
|
1738 | 1738 |
/// \brief Give back the stream of the writer |
1739 | 1739 |
/// |
1740 | 1740 |
/// Returns the stream of the writer |
1741 | 1741 |
std::ostream& ostream() { |
1742 | 1742 |
return *_os; |
1743 | 1743 |
} |
1744 | 1744 |
|
1745 | 1745 |
/// @} |
1746 | 1746 |
|
1747 | 1747 |
}; |
1748 | 1748 |
|
1749 | 1749 |
/// \brief Return a \ref SectionWriter class |
1750 | 1750 |
/// |
1751 | 1751 |
/// This function just returns a \ref SectionWriter class. |
1752 | 1752 |
/// \relates SectionWriter |
1753 | 1753 |
inline SectionWriter sectionWriter(std::ostream& os) { |
1754 | 1754 |
SectionWriter tmp(os); |
1755 | 1755 |
return tmp; |
1756 | 1756 |
} |
1757 | 1757 |
|
1758 | 1758 |
/// \brief Return a \ref SectionWriter class |
1759 | 1759 |
/// |
1760 | 1760 |
/// This function just returns a \ref SectionWriter class. |
1761 | 1761 |
/// \relates SectionWriter |
1762 | 1762 |
inline SectionWriter sectionWriter(const std::string& fn) { |
1763 | 1763 |
SectionWriter tmp(fn); |
1764 | 1764 |
return tmp; |
1765 | 1765 |
} |
1766 | 1766 |
|
1767 | 1767 |
/// \brief Return a \ref SectionWriter class |
1768 | 1768 |
/// |
1769 | 1769 |
/// This function just returns a \ref SectionWriter class. |
1770 | 1770 |
/// \relates SectionWriter |
1771 | 1771 |
inline SectionWriter sectionWriter(const char* fn) { |
1772 | 1772 |
SectionWriter tmp(fn); |
1773 | 1773 |
return tmp; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LP_BASE_H |
20 | 20 |
#define LEMON_LP_BASE_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<vector> |
24 | 24 |
#include<map> |
25 | 25 |
#include<limits> |
26 | 26 |
#include<lemon/math.h> |
27 | 27 |
|
28 | 28 |
#include<lemon/error.h> |
29 | 29 |
#include<lemon/assert.h> |
30 | 30 |
|
31 | 31 |
#include<lemon/core.h> |
32 | 32 |
#include<lemon/bits/solver_bits.h> |
33 | 33 |
|
34 | 34 |
///\file |
35 | 35 |
///\brief The interface of the LP solver interface. |
36 | 36 |
///\ingroup lp_group |
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
///Common base class for LP and MIP solvers |
40 | 40 |
|
41 | 41 |
///Usually this class is not used directly, please use one of the concrete |
42 | 42 |
///implementations of the solver interface. |
43 | 43 |
///\ingroup lp_group |
44 | 44 |
class LpBase { |
45 | 45 |
|
46 | 46 |
protected: |
47 | 47 |
|
48 | 48 |
_solver_bits::VarIndex rows; |
49 | 49 |
_solver_bits::VarIndex cols; |
50 | 50 |
|
51 | 51 |
public: |
52 | 52 |
|
53 | 53 |
///Possible outcomes of an LP solving procedure |
54 | 54 |
enum SolveExitStatus { |
55 |
/// |
|
55 |
/// = 0. It means that the problem has been successfully solved: either |
|
56 | 56 |
///an optimal solution has been found or infeasibility/unboundedness |
57 | 57 |
///has been proved. |
58 | 58 |
SOLVED = 0, |
59 |
///Any other case (including the case when some user specified |
|
60 |
///limit has been exceeded) |
|
59 |
/// = 1. Any other case (including the case when some user specified |
|
60 |
///limit has been exceeded). |
|
61 | 61 |
UNSOLVED = 1 |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
///Direction of the optimization |
65 | 65 |
enum Sense { |
66 | 66 |
/// Minimization |
67 | 67 |
MIN, |
68 | 68 |
/// Maximization |
69 | 69 |
MAX |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///Enum for \c messageLevel() parameter |
73 | 73 |
enum MessageLevel { |
74 |
/// |
|
74 |
/// No output (default value). |
|
75 | 75 |
MESSAGE_NOTHING, |
76 |
/// |
|
76 |
/// Error messages only. |
|
77 | 77 |
MESSAGE_ERROR, |
78 |
/// |
|
78 |
/// Warnings. |
|
79 | 79 |
MESSAGE_WARNING, |
80 |
/// |
|
80 |
/// Normal output. |
|
81 | 81 |
MESSAGE_NORMAL, |
82 |
/// |
|
82 |
/// Verbose output. |
|
83 | 83 |
MESSAGE_VERBOSE |
84 | 84 |
}; |
85 | 85 |
|
86 | 86 |
|
87 | 87 |
///The floating point type used by the solver |
88 | 88 |
typedef double Value; |
89 | 89 |
///The infinity constant |
90 | 90 |
static const Value INF; |
91 | 91 |
///The not a number constant |
92 | 92 |
static const Value NaN; |
93 | 93 |
|
94 | 94 |
friend class Col; |
95 | 95 |
friend class ColIt; |
96 | 96 |
friend class Row; |
97 | 97 |
friend class RowIt; |
98 | 98 |
|
99 | 99 |
///Refer to a column of the LP. |
100 | 100 |
|
101 | 101 |
///This type is used to refer to a column of the LP. |
102 | 102 |
/// |
103 | 103 |
///Its value remains valid and correct even after the addition or erase of |
104 | 104 |
///other columns. |
105 | 105 |
/// |
106 | 106 |
///\note This class is similar to other Item types in LEMON, like |
107 | 107 |
///Node and Arc types in digraph. |
108 | 108 |
class Col { |
109 | 109 |
friend class LpBase; |
110 | 110 |
protected: |
111 | 111 |
int _id; |
112 | 112 |
explicit Col(int id) : _id(id) {} |
113 | 113 |
public: |
114 | 114 |
typedef Value ExprValue; |
115 | 115 |
typedef True LpCol; |
116 | 116 |
/// Default constructor |
117 | 117 |
|
118 | 118 |
/// \warning The default constructor sets the Col to an |
119 | 119 |
/// undefined value. |
120 | 120 |
Col() {} |
121 | 121 |
/// Invalid constructor \& conversion. |
122 | 122 |
|
123 | 123 |
/// This constructor initializes the Col to be invalid. |
124 | 124 |
/// \sa Invalid for more details. |
125 | 125 |
Col(const Invalid&) : _id(-1) {} |
126 | 126 |
/// Equality operator |
127 | 127 |
|
128 | 128 |
/// Two \ref Col "Col"s are equal if and only if they point to |
129 | 129 |
/// the same LP column or both are invalid. |
130 | 130 |
bool operator==(Col c) const {return _id == c._id;} |
131 | 131 |
/// Inequality operator |
132 | 132 |
|
133 | 133 |
/// \sa operator==(Col c) |
134 | 134 |
/// |
135 | 135 |
bool operator!=(Col c) const {return _id != c._id;} |
136 | 136 |
/// Artificial ordering operator. |
137 | 137 |
|
138 | 138 |
/// To allow the use of this object in std::map or similar |
139 | 139 |
/// associative container we require this. |
140 | 140 |
/// |
141 | 141 |
/// \note This operator only have to define some strict ordering of |
142 | 142 |
/// the items; this order has nothing to do with the iteration |
143 | 143 |
/// ordering of the items. |
144 | 144 |
bool operator<(Col c) const {return _id < c._id;} |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
///Iterator for iterate over the columns of an LP problem |
148 | 148 |
|
149 | 149 |
/// Its usage is quite simple, for example you can count the number |
150 | 150 |
/// of columns in an LP \c lp: |
151 | 151 |
///\code |
152 | 152 |
/// int count=0; |
153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
154 | 154 |
///\endcode |
155 | 155 |
class ColIt : public Col { |
156 | 156 |
const LpBase *_solver; |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 | 159 |
|
160 | 160 |
/// \warning The default constructor sets the iterator |
161 | 161 |
/// to an undefined value. |
162 | 162 |
ColIt() {} |
163 | 163 |
/// Sets the iterator to the first Col |
164 | 164 |
|
165 | 165 |
/// Sets the iterator to the first Col. |
166 | 166 |
/// |
167 | 167 |
ColIt(const LpBase &solver) : _solver(&solver) |
168 | 168 |
{ |
169 | 169 |
_solver->cols.firstItem(_id); |
170 | 170 |
} |
171 | 171 |
/// Invalid constructor \& conversion |
172 | 172 |
|
173 | 173 |
/// Initialize the iterator to be invalid. |
174 | 174 |
/// \sa Invalid for more details. |
175 | 175 |
ColIt(const Invalid&) : Col(INVALID) {} |
176 | 176 |
/// Next column |
177 | 177 |
|
178 | 178 |
/// Assign the iterator to the next column. |
179 | 179 |
/// |
180 | 180 |
ColIt &operator++() |
181 | 181 |
{ |
182 | 182 |
_solver->cols.nextItem(_id); |
183 | 183 |
return *this; |
184 | 184 |
} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
/// \brief Returns the ID of the column. |
188 | 188 |
static int id(const Col& col) { return col._id; } |
189 | 189 |
/// \brief Returns the column with the given ID. |
190 | 190 |
/// |
191 | 191 |
/// \pre The argument should be a valid column ID in the LP problem. |
192 | 192 |
static Col colFromId(int id) { return Col(id); } |
193 | 193 |
|
194 | 194 |
///Refer to a row of the LP. |
195 | 195 |
|
196 | 196 |
///This type is used to refer to a row of the LP. |
197 | 197 |
/// |
198 | 198 |
///Its value remains valid and correct even after the addition or erase of |
199 | 199 |
///other rows. |
200 | 200 |
/// |
201 | 201 |
///\note This class is similar to other Item types in LEMON, like |
202 | 202 |
///Node and Arc types in digraph. |
203 | 203 |
class Row { |
204 | 204 |
friend class LpBase; |
205 | 205 |
protected: |
206 | 206 |
int _id; |
207 | 207 |
explicit Row(int id) : _id(id) {} |
208 | 208 |
public: |
209 | 209 |
typedef Value ExprValue; |
210 | 210 |
typedef True LpRow; |
211 | 211 |
/// Default constructor |
212 | 212 |
|
213 | 213 |
/// \warning The default constructor sets the Row to an |
214 | 214 |
/// undefined value. |
215 | 215 |
Row() {} |
216 | 216 |
/// Invalid constructor \& conversion. |
217 | 217 |
|
218 | 218 |
/// This constructor initializes the Row to be invalid. |
219 | 219 |
/// \sa Invalid for more details. |
220 | 220 |
Row(const Invalid&) : _id(-1) {} |
221 | 221 |
/// Equality operator |
222 | 222 |
|
223 | 223 |
/// Two \ref Row "Row"s are equal if and only if they point to |
224 | 224 |
/// the same LP row or both are invalid. |
225 | 225 |
bool operator==(Row r) const {return _id == r._id;} |
226 | 226 |
/// Inequality operator |
227 | 227 |
|
228 | 228 |
/// \sa operator==(Row r) |
229 | 229 |
/// |
230 | 230 |
bool operator!=(Row r) const {return _id != r._id;} |
231 | 231 |
/// Artificial ordering operator. |
232 | 232 |
|
233 | 233 |
/// To allow the use of this object in std::map or similar |
234 | 234 |
/// associative container we require this. |
235 | 235 |
/// |
236 | 236 |
/// \note This operator only have to define some strict ordering of |
237 | 237 |
/// the items; this order has nothing to do with the iteration |
238 | 238 |
/// ordering of the items. |
239 | 239 |
bool operator<(Row r) const {return _id < r._id;} |
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
///Iterator for iterate over the rows of an LP problem |
243 | 243 |
|
244 | 244 |
/// Its usage is quite simple, for example you can count the number |
245 | 245 |
/// of rows in an LP \c lp: |
246 | 246 |
///\code |
247 | 247 |
/// int count=0; |
248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
249 | 249 |
///\endcode |
250 | 250 |
class RowIt : public Row { |
251 | 251 |
const LpBase *_solver; |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 | 254 |
|
255 | 255 |
/// \warning The default constructor sets the iterator |
256 | 256 |
/// to an undefined value. |
257 | 257 |
RowIt() {} |
258 | 258 |
/// Sets the iterator to the first Row |
259 | 259 |
|
260 | 260 |
/// Sets the iterator to the first Row. |
261 | 261 |
/// |
262 | 262 |
RowIt(const LpBase &solver) : _solver(&solver) |
263 | 263 |
{ |
264 | 264 |
_solver->rows.firstItem(_id); |
265 | 265 |
} |
266 | 266 |
/// Invalid constructor \& conversion |
267 | 267 |
|
268 | 268 |
/// Initialize the iterator to be invalid. |
269 | 269 |
/// \sa Invalid for more details. |
270 | 270 |
RowIt(const Invalid&) : Row(INVALID) {} |
271 | 271 |
/// Next row |
272 | 272 |
|
273 | 273 |
/// Assign the iterator to the next row. |
274 | 274 |
/// |
275 | 275 |
RowIt &operator++() |
276 | 276 |
{ |
277 | 277 |
_solver->rows.nextItem(_id); |
278 | 278 |
return *this; |
279 | 279 |
} |
280 | 280 |
}; |
281 | 281 |
|
282 | 282 |
/// \brief Returns the ID of the row. |
283 | 283 |
static int id(const Row& row) { return row._id; } |
284 | 284 |
/// \brief Returns the row with the given ID. |
285 | 285 |
/// |
286 | 286 |
/// \pre The argument should be a valid row ID in the LP problem. |
287 | 287 |
static Row rowFromId(int id) { return Row(id); } |
288 | 288 |
|
289 | 289 |
public: |
290 | 290 |
|
291 | 291 |
///Linear expression of variables and a constant component |
292 | 292 |
|
293 | 293 |
///This data structure stores a linear expression of the variables |
294 | 294 |
///(\ref Col "Col"s) and also has a constant component. |
295 | 295 |
/// |
296 | 296 |
///There are several ways to access and modify the contents of this |
297 | 297 |
///container. |
298 | 298 |
///\code |
299 | 299 |
///e[v]=5; |
300 | 300 |
///e[v]+=12; |
301 | 301 |
///e.erase(v); |
302 | 302 |
///\endcode |
303 | 303 |
///or you can also iterate through its elements. |
304 | 304 |
///\code |
305 | 305 |
///double s=0; |
306 | 306 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
307 | 307 |
/// s+=*i * primal(i); |
308 | 308 |
///\endcode |
309 | 309 |
///(This code computes the primal value of the expression). |
310 | 310 |
///- Numbers (<tt>double</tt>'s) |
311 | 311 |
///and variables (\ref Col "Col"s) directly convert to an |
312 | 312 |
///\ref Expr and the usual linear operations are defined, so |
313 | 313 |
///\code |
314 | 314 |
///v+w |
315 | 315 |
///2*v-3.12*(v-w/2)+2 |
316 | 316 |
///v*2.1+(3*v+(v*12+w+6)*3)/2 |
317 | 317 |
///\endcode |
318 | 318 |
///are valid expressions. |
319 | 319 |
///The usual assignment operations are also defined. |
320 | 320 |
///\code |
321 | 321 |
///e=v+w; |
322 | 322 |
///e+=2*v-3.12*(v-w/2)+2; |
323 | 323 |
///e*=3.4; |
324 | 324 |
///e/=5; |
325 | 325 |
///\endcode |
326 | 326 |
///- The constant member can be set and read by dereference |
327 | 327 |
/// operator (unary *) |
328 | 328 |
/// |
329 | 329 |
///\code |
330 | 330 |
///*e=12; |
331 | 331 |
///double c=*e; |
332 | 332 |
///\endcode |
333 | 333 |
/// |
334 | 334 |
///\sa Constr |
335 | 335 |
class Expr { |
336 | 336 |
friend class LpBase; |
337 | 337 |
public: |
338 | 338 |
/// The key type of the expression |
339 | 339 |
typedef LpBase::Col Key; |
340 | 340 |
/// The value type of the expression |
341 | 341 |
typedef LpBase::Value Value; |
342 | 342 |
|
343 | 343 |
protected: |
344 | 344 |
Value const_comp; |
345 | 345 |
std::map<int, Value> comps; |
346 | 346 |
|
347 | 347 |
public: |
348 | 348 |
typedef True SolverExpr; |
349 | 349 |
/// Default constructor |
350 | 350 |
|
351 | 351 |
/// Construct an empty expression, the coefficients and |
352 | 352 |
/// the constant component are initialized to zero. |
353 | 353 |
Expr() : const_comp(0) {} |
354 | 354 |
/// Construct an expression from a column |
355 | 355 |
|
356 | 356 |
/// Construct an expression, which has a term with \c c variable |
357 | 357 |
/// and 1.0 coefficient. |
358 | 358 |
Expr(const Col &c) : const_comp(0) { |
359 | 359 |
typedef std::map<int, Value>::value_type pair_type; |
360 | 360 |
comps.insert(pair_type(id(c), 1)); |
361 | 361 |
} |
362 | 362 |
/// Construct an expression from a constant |
363 | 363 |
|
364 | 364 |
/// Construct an expression, which's constant component is \c v. |
365 | 365 |
/// |
366 | 366 |
Expr(const Value &v) : const_comp(v) {} |
367 | 367 |
/// Returns the coefficient of the column |
368 | 368 |
Value operator[](const Col& c) const { |
369 | 369 |
std::map<int, Value>::const_iterator it=comps.find(id(c)); |
370 | 370 |
if (it != comps.end()) { |
371 | 371 |
return it->second; |
372 | 372 |
} else { |
373 | 373 |
return 0; |
374 | 374 |
} |
375 | 375 |
} |
376 | 376 |
/// Returns the coefficient of the column |
377 | 377 |
Value& operator[](const Col& c) { |
378 | 378 |
return comps[id(c)]; |
379 | 379 |
} |
380 | 380 |
/// Sets the coefficient of the column |
381 | 381 |
void set(const Col &c, const Value &v) { |
382 | 382 |
if (v != 0.0) { |
383 | 383 |
typedef std::map<int, Value>::value_type pair_type; |
384 | 384 |
comps.insert(pair_type(id(c), v)); |
385 | 385 |
} else { |
386 | 386 |
comps.erase(id(c)); |
387 | 387 |
} |
388 | 388 |
} |
389 | 389 |
/// Returns the constant component of the expression |
390 | 390 |
Value& operator*() { return const_comp; } |
391 | 391 |
/// Returns the constant component of the expression |
392 | 392 |
const Value& operator*() const { return const_comp; } |
393 | 393 |
/// \brief Removes the coefficients which's absolute value does |
394 | 394 |
/// not exceed \c epsilon. It also sets to zero the constant |
395 | 395 |
/// component, if it does not exceed epsilon in absolute value. |
396 | 396 |
void simplify(Value epsilon = 0.0) { |
397 | 397 |
std::map<int, Value>::iterator it=comps.begin(); |
398 | 398 |
while (it != comps.end()) { |
399 | 399 |
std::map<int, Value>::iterator jt=it; |
400 | 400 |
++jt; |
401 | 401 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
402 | 402 |
it=jt; |
403 | 403 |
} |
404 | 404 |
if (std::fabs(const_comp) <= epsilon) const_comp = 0; |
405 | 405 |
} |
406 | 406 |
|
407 | 407 |
void simplify(Value epsilon = 0.0) const { |
408 | 408 |
const_cast<Expr*>(this)->simplify(epsilon); |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
///Sets all coefficients and the constant component to 0. |
412 | 412 |
void clear() { |
413 | 413 |
comps.clear(); |
414 | 414 |
const_comp=0; |
415 | 415 |
} |
416 | 416 |
|
417 | 417 |
///Compound assignment |
418 | 418 |
Expr &operator+=(const Expr &e) { |
419 | 419 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
420 | 420 |
it!=e.comps.end(); ++it) |
421 | 421 |
comps[it->first]+=it->second; |
422 | 422 |
const_comp+=e.const_comp; |
423 | 423 |
return *this; |
424 | 424 |
} |
425 | 425 |
///Compound assignment |
426 | 426 |
Expr &operator-=(const Expr &e) { |
427 | 427 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
428 | 428 |
it!=e.comps.end(); ++it) |
429 | 429 |
comps[it->first]-=it->second; |
430 | 430 |
const_comp-=e.const_comp; |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
///Multiply with a constant |
434 | 434 |
Expr &operator*=(const Value &v) { |
435 | 435 |
for (std::map<int, Value>::iterator it=comps.begin(); |
436 | 436 |
it!=comps.end(); ++it) |
437 | 437 |
it->second*=v; |
438 | 438 |
const_comp*=v; |
439 | 439 |
return *this; |
440 | 440 |
} |
441 | 441 |
///Division with a constant |
442 | 442 |
Expr &operator/=(const Value &c) { |
443 | 443 |
for (std::map<int, Value>::iterator it=comps.begin(); |
444 | 444 |
it!=comps.end(); ++it) |
445 | 445 |
it->second/=c; |
446 | 446 |
const_comp/=c; |
447 | 447 |
return *this; |
448 | 448 |
} |
449 | 449 |
|
450 | 450 |
///Iterator over the expression |
451 | 451 |
|
452 | 452 |
///The iterator iterates over the terms of the expression. |
453 | 453 |
/// |
454 | 454 |
///\code |
455 | 455 |
///double s=0; |
456 | 456 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
457 | 457 |
/// s+= *i * primal(i); |
458 | 458 |
///\endcode |
459 | 459 |
class CoeffIt { |
460 | 460 |
private: |
461 | 461 |
|
462 | 462 |
std::map<int, Value>::iterator _it, _end; |
463 | 463 |
|
464 | 464 |
public: |
465 | 465 |
|
466 | 466 |
/// Sets the iterator to the first term |
467 | 467 |
|
468 | 468 |
/// Sets the iterator to the first term of the expression. |
469 | 469 |
/// |
470 | 470 |
CoeffIt(Expr& e) |
471 | 471 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
472 | 472 |
|
473 | 473 |
/// Convert the iterator to the column of the term |
474 | 474 |
operator Col() const { |
475 | 475 |
return colFromId(_it->first); |
476 | 476 |
} |
477 | 477 |
|
478 | 478 |
/// Returns the coefficient of the term |
479 | 479 |
Value& operator*() { return _it->second; } |
480 | 480 |
|
481 | 481 |
/// Returns the coefficient of the term |
482 | 482 |
const Value& operator*() const { return _it->second; } |
483 | 483 |
/// Next term |
484 | 484 |
|
485 | 485 |
/// Assign the iterator to the next term. |
486 | 486 |
/// |
487 | 487 |
CoeffIt& operator++() { ++_it; return *this; } |
488 | 488 |
|
489 | 489 |
/// Equality operator |
490 | 490 |
bool operator==(Invalid) const { return _it == _end; } |
491 | 491 |
/// Inequality operator |
492 | 492 |
bool operator!=(Invalid) const { return _it != _end; } |
493 | 493 |
}; |
494 | 494 |
|
495 | 495 |
/// Const iterator over the expression |
496 | 496 |
|
497 | 497 |
///The iterator iterates over the terms of the expression. |
498 | 498 |
/// |
499 | 499 |
///\code |
500 | 500 |
///double s=0; |
501 | 501 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
502 | 502 |
/// s+=*i * primal(i); |
503 | 503 |
///\endcode |
504 | 504 |
class ConstCoeffIt { |
505 | 505 |
private: |
506 | 506 |
|
507 | 507 |
std::map<int, Value>::const_iterator _it, _end; |
508 | 508 |
|
509 | 509 |
public: |
510 | 510 |
|
511 | 511 |
/// Sets the iterator to the first term |
512 | 512 |
|
513 | 513 |
/// Sets the iterator to the first term of the expression. |
514 | 514 |
/// |
515 | 515 |
ConstCoeffIt(const Expr& e) |
516 | 516 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
517 | 517 |
|
518 | 518 |
/// Convert the iterator to the column of the term |
519 | 519 |
operator Col() const { |
520 | 520 |
return colFromId(_it->first); |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
/// Returns the coefficient of the term |
524 | 524 |
const Value& operator*() const { return _it->second; } |
525 | 525 |
|
526 | 526 |
/// Next term |
527 | 527 |
|
528 | 528 |
/// Assign the iterator to the next term. |
529 | 529 |
/// |
530 | 530 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
531 | 531 |
|
532 | 532 |
/// Equality operator |
533 | 533 |
bool operator==(Invalid) const { return _it == _end; } |
534 | 534 |
/// Inequality operator |
535 | 535 |
bool operator!=(Invalid) const { return _it != _end; } |
536 | 536 |
}; |
537 | 537 |
|
538 | 538 |
}; |
539 | 539 |
|
540 | 540 |
///Linear constraint |
541 | 541 |
|
542 | 542 |
///This data stucture represents a linear constraint in the LP. |
543 | 543 |
///Basically it is a linear expression with a lower or an upper bound |
544 | 544 |
///(or both). These parts of the constraint can be obtained by the member |
545 | 545 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
546 | 546 |
///respectively. |
547 | 547 |
///There are two ways to construct a constraint. |
548 | 548 |
///- You can set the linear expression and the bounds directly |
549 | 549 |
/// by the functions above. |
550 | 550 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
551 | 551 |
/// are defined between expressions, or even between constraints whenever |
552 | 552 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and |
553 | 553 |
/// \c s and \c t are numbers, then the followings are valid expressions |
554 | 554 |
/// and thus they can be used directly e.g. in \ref addRow() whenever |
555 | 555 |
/// it makes sense. |
556 | 556 |
///\code |
557 | 557 |
/// e<=s |
558 | 558 |
/// e<=f |
559 | 559 |
/// e==f |
560 | 560 |
/// s<=e<=t |
561 | 561 |
/// e>=t |
562 | 562 |
///\endcode |
563 | 563 |
///\warning The validity of a constraint is checked only at run |
564 | 564 |
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will |
565 | 565 |
///compile, but will fail an assertion. |
566 | 566 |
class Constr |
567 | 567 |
{ |
568 | 568 |
public: |
569 | 569 |
typedef LpBase::Expr Expr; |
570 | 570 |
typedef Expr::Key Key; |
571 | 571 |
typedef Expr::Value Value; |
572 | 572 |
|
573 | 573 |
protected: |
574 | 574 |
Expr _expr; |
575 | 575 |
Value _lb,_ub; |
576 | 576 |
public: |
577 | 577 |
///\e |
578 | 578 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {} |
579 | 579 |
///\e |
580 | 580 |
Constr(Value lb, const Expr &e, Value ub) : |
581 | 581 |
_expr(e), _lb(lb), _ub(ub) {} |
582 | 582 |
Constr(const Expr &e) : |
583 | 583 |
_expr(e), _lb(NaN), _ub(NaN) {} |
584 | 584 |
///\e |
585 | 585 |
void clear() |
586 | 586 |
{ |
587 | 587 |
_expr.clear(); |
588 | 588 |
_lb=_ub=NaN; |
589 | 589 |
} |
590 | 590 |
|
591 | 591 |
///Reference to the linear expression |
592 | 592 |
Expr &expr() { return _expr; } |
593 | 593 |
///Cont reference to the linear expression |
594 | 594 |
const Expr &expr() const { return _expr; } |
595 | 595 |
///Reference to the lower bound. |
596 | 596 |
|
597 | 597 |
///\return |
598 | 598 |
///- \ref INF "INF": the constraint is lower unbounded. |
599 | 599 |
///- \ref NaN "NaN": lower bound has not been set. |
600 | 600 |
///- finite number: the lower bound |
601 | 601 |
Value &lowerBound() { return _lb; } |
602 | 602 |
///The const version of \ref lowerBound() |
603 | 603 |
const Value &lowerBound() const { return _lb; } |
604 | 604 |
///Reference to the upper bound. |
605 | 605 |
|
606 | 606 |
///\return |
607 | 607 |
///- \ref INF "INF": the constraint is upper unbounded. |
608 | 608 |
///- \ref NaN "NaN": upper bound has not been set. |
609 | 609 |
///- finite number: the upper bound |
610 | 610 |
Value &upperBound() { return _ub; } |
611 | 611 |
///The const version of \ref upperBound() |
612 | 612 |
const Value &upperBound() const { return _ub; } |
613 | 613 |
///Is the constraint lower bounded? |
614 | 614 |
bool lowerBounded() const { |
615 | 615 |
return _lb != -INF && !isNaN(_lb); |
616 | 616 |
} |
617 | 617 |
///Is the constraint upper bounded? |
618 | 618 |
bool upperBounded() const { |
619 | 619 |
return _ub != INF && !isNaN(_ub); |
620 | 620 |
} |
621 | 621 |
|
622 | 622 |
}; |
623 | 623 |
|
624 | 624 |
///Linear expression of rows |
625 | 625 |
|
626 | 626 |
///This data structure represents a column of the matrix, |
627 | 627 |
///thas is it strores a linear expression of the dual variables |
628 | 628 |
///(\ref Row "Row"s). |
629 | 629 |
/// |
630 | 630 |
///There are several ways to access and modify the contents of this |
631 | 631 |
///container. |
632 | 632 |
///\code |
633 | 633 |
///e[v]=5; |
634 | 634 |
///e[v]+=12; |
635 | 635 |
///e.erase(v); |
636 | 636 |
///\endcode |
637 | 637 |
///or you can also iterate through its elements. |
638 | 638 |
///\code |
639 | 639 |
///double s=0; |
640 | 640 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
641 | 641 |
/// s+=*i; |
642 | 642 |
///\endcode |
643 | 643 |
///(This code computes the sum of all coefficients). |
644 | 644 |
///- Numbers (<tt>double</tt>'s) |
645 | 645 |
///and variables (\ref Row "Row"s) directly convert to an |
646 | 646 |
///\ref DualExpr and the usual linear operations are defined, so |
647 | 647 |
///\code |
648 | 648 |
///v+w |
649 | 649 |
///2*v-3.12*(v-w/2) |
650 | 650 |
///v*2.1+(3*v+(v*12+w)*3)/2 |
651 | 651 |
///\endcode |
652 | 652 |
///are valid \ref DualExpr dual expressions. |
653 | 653 |
///The usual assignment operations are also defined. |
654 | 654 |
///\code |
655 | 655 |
///e=v+w; |
656 | 656 |
///e+=2*v-3.12*(v-w/2); |
657 | 657 |
///e*=3.4; |
658 | 658 |
///e/=5; |
659 | 659 |
///\endcode |
660 | 660 |
/// |
661 | 661 |
///\sa Expr |
662 | 662 |
class DualExpr { |
663 | 663 |
friend class LpBase; |
664 | 664 |
public: |
665 | 665 |
/// The key type of the expression |
666 | 666 |
typedef LpBase::Row Key; |
667 | 667 |
/// The value type of the expression |
668 | 668 |
typedef LpBase::Value Value; |
669 | 669 |
|
670 | 670 |
protected: |
671 | 671 |
std::map<int, Value> comps; |
672 | 672 |
|
673 | 673 |
public: |
674 | 674 |
typedef True SolverExpr; |
675 | 675 |
/// Default constructor |
676 | 676 |
|
677 | 677 |
/// Construct an empty expression, the coefficients are |
678 | 678 |
/// initialized to zero. |
679 | 679 |
DualExpr() {} |
680 | 680 |
/// Construct an expression from a row |
681 | 681 |
|
682 | 682 |
/// Construct an expression, which has a term with \c r dual |
683 | 683 |
/// variable and 1.0 coefficient. |
684 | 684 |
DualExpr(const Row &r) { |
685 | 685 |
typedef std::map<int, Value>::value_type pair_type; |
686 | 686 |
comps.insert(pair_type(id(r), 1)); |
687 | 687 |
} |
688 | 688 |
/// Returns the coefficient of the row |
689 | 689 |
Value operator[](const Row& r) const { |
690 | 690 |
std::map<int, Value>::const_iterator it = comps.find(id(r)); |
691 | 691 |
if (it != comps.end()) { |
692 | 692 |
return it->second; |
693 | 693 |
} else { |
694 | 694 |
return 0; |
695 | 695 |
} |
696 | 696 |
} |
697 | 697 |
/// Returns the coefficient of the row |
698 | 698 |
Value& operator[](const Row& r) { |
699 | 699 |
return comps[id(r)]; |
700 | 700 |
} |
701 | 701 |
/// Sets the coefficient of the row |
702 | 702 |
void set(const Row &r, const Value &v) { |
703 | 703 |
if (v != 0.0) { |
704 | 704 |
typedef std::map<int, Value>::value_type pair_type; |
705 | 705 |
comps.insert(pair_type(id(r), v)); |
706 | 706 |
} else { |
707 | 707 |
comps.erase(id(r)); |
708 | 708 |
} |
709 | 709 |
} |
710 | 710 |
/// \brief Removes the coefficients which's absolute value does |
711 | 711 |
/// not exceed \c epsilon. |
712 | 712 |
void simplify(Value epsilon = 0.0) { |
713 | 713 |
std::map<int, Value>::iterator it=comps.begin(); |
714 | 714 |
while (it != comps.end()) { |
715 | 715 |
std::map<int, Value>::iterator jt=it; |
716 | 716 |
++jt; |
717 | 717 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
718 | 718 |
it=jt; |
719 | 719 |
} |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
void simplify(Value epsilon = 0.0) const { |
723 | 723 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
724 | 724 |
} |
725 | 725 |
|
726 | 726 |
///Sets all coefficients to 0. |
727 | 727 |
void clear() { |
728 | 728 |
comps.clear(); |
729 | 729 |
} |
730 | 730 |
///Compound assignment |
731 | 731 |
DualExpr &operator+=(const DualExpr &e) { |
732 | 732 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
733 | 733 |
it!=e.comps.end(); ++it) |
734 | 734 |
comps[it->first]+=it->second; |
735 | 735 |
return *this; |
736 | 736 |
} |
737 | 737 |
///Compound assignment |
738 | 738 |
DualExpr &operator-=(const DualExpr &e) { |
739 | 739 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
740 | 740 |
it!=e.comps.end(); ++it) |
741 | 741 |
comps[it->first]-=it->second; |
742 | 742 |
return *this; |
743 | 743 |
} |
744 | 744 |
///Multiply with a constant |
745 | 745 |
DualExpr &operator*=(const Value &v) { |
746 | 746 |
for (std::map<int, Value>::iterator it=comps.begin(); |
747 | 747 |
it!=comps.end(); ++it) |
748 | 748 |
it->second*=v; |
749 | 749 |
return *this; |
750 | 750 |
} |
751 | 751 |
///Division with a constant |
752 | 752 |
DualExpr &operator/=(const Value &v) { |
753 | 753 |
for (std::map<int, Value>::iterator it=comps.begin(); |
754 | 754 |
it!=comps.end(); ++it) |
755 | 755 |
it->second/=v; |
756 | 756 |
return *this; |
757 | 757 |
} |
758 | 758 |
|
759 | 759 |
///Iterator over the expression |
760 | 760 |
|
761 | 761 |
///The iterator iterates over the terms of the expression. |
762 | 762 |
/// |
763 | 763 |
///\code |
764 | 764 |
///double s=0; |
765 | 765 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
766 | 766 |
/// s+= *i * dual(i); |
767 | 767 |
///\endcode |
768 | 768 |
class CoeffIt { |
769 | 769 |
private: |
770 | 770 |
|
771 | 771 |
std::map<int, Value>::iterator _it, _end; |
772 | 772 |
|
773 | 773 |
public: |
774 | 774 |
|
775 | 775 |
/// Sets the iterator to the first term |
776 | 776 |
|
777 | 777 |
/// Sets the iterator to the first term of the expression. |
778 | 778 |
/// |
779 | 779 |
CoeffIt(DualExpr& e) |
780 | 780 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
781 | 781 |
|
782 | 782 |
/// Convert the iterator to the row of the term |
783 | 783 |
operator Row() const { |
784 | 784 |
return rowFromId(_it->first); |
785 | 785 |
} |
786 | 786 |
|
787 | 787 |
/// Returns the coefficient of the term |
788 | 788 |
Value& operator*() { return _it->second; } |
789 | 789 |
|
790 | 790 |
/// Returns the coefficient of the term |
791 | 791 |
const Value& operator*() const { return _it->second; } |
792 | 792 |
|
793 | 793 |
/// Next term |
794 | 794 |
|
795 | 795 |
/// Assign the iterator to the next term. |
796 | 796 |
/// |
797 | 797 |
CoeffIt& operator++() { ++_it; return *this; } |
798 | 798 |
|
799 | 799 |
/// Equality operator |
800 | 800 |
bool operator==(Invalid) const { return _it == _end; } |
801 | 801 |
/// Inequality operator |
802 | 802 |
bool operator!=(Invalid) const { return _it != _end; } |
803 | 803 |
}; |
804 | 804 |
|
805 | 805 |
///Iterator over the expression |
806 | 806 |
|
807 | 807 |
///The iterator iterates over the terms of the expression. |
808 | 808 |
/// |
809 | 809 |
///\code |
810 | 810 |
///double s=0; |
811 | 811 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
812 | 812 |
/// s+= *i * dual(i); |
813 | 813 |
///\endcode |
814 | 814 |
class ConstCoeffIt { |
815 | 815 |
private: |
816 | 816 |
|
817 | 817 |
std::map<int, Value>::const_iterator _it, _end; |
818 | 818 |
|
819 | 819 |
public: |
820 | 820 |
|
821 | 821 |
/// Sets the iterator to the first term |
822 | 822 |
|
823 | 823 |
/// Sets the iterator to the first term of the expression. |
824 | 824 |
/// |
825 | 825 |
ConstCoeffIt(const DualExpr& e) |
826 | 826 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
827 | 827 |
|
828 | 828 |
/// Convert the iterator to the row of the term |
829 | 829 |
operator Row() const { |
830 | 830 |
return rowFromId(_it->first); |
831 | 831 |
} |
832 | 832 |
|
833 | 833 |
/// Returns the coefficient of the term |
834 | 834 |
const Value& operator*() const { return _it->second; } |
835 | 835 |
|
836 | 836 |
/// Next term |
837 | 837 |
|
838 | 838 |
/// Assign the iterator to the next term. |
839 | 839 |
/// |
840 | 840 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
841 | 841 |
|
842 | 842 |
/// Equality operator |
843 | 843 |
bool operator==(Invalid) const { return _it == _end; } |
844 | 844 |
/// Inequality operator |
845 | 845 |
bool operator!=(Invalid) const { return _it != _end; } |
846 | 846 |
}; |
847 | 847 |
}; |
848 | 848 |
|
849 | 849 |
|
850 | 850 |
protected: |
851 | 851 |
|
852 | 852 |
class InsertIterator { |
853 | 853 |
private: |
854 | 854 |
|
855 | 855 |
std::map<int, Value>& _host; |
856 | 856 |
const _solver_bits::VarIndex& _index; |
857 | 857 |
|
858 | 858 |
public: |
859 | 859 |
|
860 | 860 |
typedef std::output_iterator_tag iterator_category; |
861 | 861 |
typedef void difference_type; |
862 | 862 |
typedef void value_type; |
863 | 863 |
typedef void reference; |
864 | 864 |
typedef void pointer; |
865 | 865 |
|
866 | 866 |
InsertIterator(std::map<int, Value>& host, |
867 | 867 |
const _solver_bits::VarIndex& index) |
868 | 868 |
: _host(host), _index(index) {} |
869 | 869 |
|
870 | 870 |
InsertIterator& operator=(const std::pair<int, Value>& value) { |
871 | 871 |
typedef std::map<int, Value>::value_type pair_type; |
872 | 872 |
_host.insert(pair_type(_index[value.first], value.second)); |
873 | 873 |
return *this; |
874 | 874 |
} |
875 | 875 |
|
876 | 876 |
InsertIterator& operator*() { return *this; } |
877 | 877 |
InsertIterator& operator++() { return *this; } |
878 | 878 |
InsertIterator operator++(int) { return *this; } |
879 | 879 |
|
880 | 880 |
}; |
881 | 881 |
|
882 | 882 |
class ExprIterator { |
883 | 883 |
private: |
884 | 884 |
std::map<int, Value>::const_iterator _host_it; |
885 | 885 |
const _solver_bits::VarIndex& _index; |
886 | 886 |
public: |
887 | 887 |
|
888 | 888 |
typedef std::bidirectional_iterator_tag iterator_category; |
889 | 889 |
typedef std::ptrdiff_t difference_type; |
890 | 890 |
typedef const std::pair<int, Value> value_type; |
891 | 891 |
typedef value_type reference; |
892 | 892 |
|
893 | 893 |
class pointer { |
894 | 894 |
public: |
895 | 895 |
pointer(value_type& _value) : value(_value) {} |
896 | 896 |
value_type* operator->() { return &value; } |
897 | 897 |
private: |
898 | 898 |
value_type value; |
899 | 899 |
}; |
900 | 900 |
|
901 | 901 |
ExprIterator(const std::map<int, Value>::const_iterator& host_it, |
902 | 902 |
const _solver_bits::VarIndex& index) |
903 | 903 |
: _host_it(host_it), _index(index) {} |
904 | 904 |
|
905 | 905 |
reference operator*() { |
906 | 906 |
return std::make_pair(_index(_host_it->first), _host_it->second); |
907 | 907 |
} |
908 | 908 |
|
909 | 909 |
pointer operator->() { |
910 | 910 |
return pointer(operator*()); |
911 | 911 |
} |
912 | 912 |
|
913 | 913 |
ExprIterator& operator++() { ++_host_it; return *this; } |
914 | 914 |
ExprIterator operator++(int) { |
915 | 915 |
ExprIterator tmp(*this); ++_host_it; return tmp; |
916 | 916 |
} |
917 | 917 |
|
918 | 918 |
ExprIterator& operator--() { --_host_it; return *this; } |
919 | 919 |
ExprIterator operator--(int) { |
920 | 920 |
ExprIterator tmp(*this); --_host_it; return tmp; |
921 | 921 |
} |
922 | 922 |
|
923 | 923 |
bool operator==(const ExprIterator& it) const { |
924 | 924 |
return _host_it == it._host_it; |
925 | 925 |
} |
926 | 926 |
|
927 | 927 |
bool operator!=(const ExprIterator& it) const { |
928 | 928 |
return _host_it != it._host_it; |
929 | 929 |
} |
930 | 930 |
|
931 | 931 |
}; |
932 | 932 |
|
933 | 933 |
protected: |
934 | 934 |
|
935 | 935 |
//Abstract virtual functions |
936 | 936 |
|
937 | 937 |
virtual int _addColId(int col) { return cols.addIndex(col); } |
938 | 938 |
virtual int _addRowId(int row) { return rows.addIndex(row); } |
939 | 939 |
|
940 | 940 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); } |
941 | 941 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); } |
942 | 942 |
|
943 | 943 |
virtual int _addCol() = 0; |
944 | 944 |
virtual int _addRow() = 0; |
945 | 945 |
|
946 | 946 |
virtual void _eraseCol(int col) = 0; |
947 | 947 |
virtual void _eraseRow(int row) = 0; |
948 | 948 |
|
949 | 949 |
virtual void _getColName(int col, std::string& name) const = 0; |
950 | 950 |
virtual void _setColName(int col, const std::string& name) = 0; |
951 | 951 |
virtual int _colByName(const std::string& name) const = 0; |
952 | 952 |
|
953 | 953 |
virtual void _getRowName(int row, std::string& name) const = 0; |
954 | 954 |
virtual void _setRowName(int row, const std::string& name) = 0; |
955 | 955 |
virtual int _rowByName(const std::string& name) const = 0; |
956 | 956 |
|
957 | 957 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
958 | 958 |
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; |
959 | 959 |
|
960 | 960 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
961 | 961 |
virtual void _getColCoeffs(int i, InsertIterator b) const = 0; |
962 | 962 |
|
963 | 963 |
virtual void _setCoeff(int row, int col, Value value) = 0; |
964 | 964 |
virtual Value _getCoeff(int row, int col) const = 0; |
965 | 965 |
|
966 | 966 |
virtual void _setColLowerBound(int i, Value value) = 0; |
967 | 967 |
virtual Value _getColLowerBound(int i) const = 0; |
968 | 968 |
|
969 | 969 |
virtual void _setColUpperBound(int i, Value value) = 0; |
970 | 970 |
virtual Value _getColUpperBound(int i) const = 0; |
971 | 971 |
|
972 | 972 |
virtual void _setRowLowerBound(int i, Value value) = 0; |
973 | 973 |
virtual Value _getRowLowerBound(int i) const = 0; |
974 | 974 |
|
975 | 975 |
virtual void _setRowUpperBound(int i, Value value) = 0; |
976 | 976 |
virtual Value _getRowUpperBound(int i) const = 0; |
977 | 977 |
|
978 | 978 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; |
979 | 979 |
virtual void _getObjCoeffs(InsertIterator b) const = 0; |
980 | 980 |
|
981 | 981 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
982 | 982 |
virtual Value _getObjCoeff(int i) const = 0; |
983 | 983 |
|
984 | 984 |
virtual void _setSense(Sense) = 0; |
985 | 985 |
virtual Sense _getSense() const = 0; |
986 | 986 |
|
987 | 987 |
virtual void _clear() = 0; |
988 | 988 |
|
989 | 989 |
virtual const char* _solverName() const = 0; |
990 | 990 |
|
991 | 991 |
virtual void _messageLevel(MessageLevel level) = 0; |
992 | 992 |
|
993 | 993 |
//Own protected stuff |
994 | 994 |
|
995 | 995 |
//Constant component of the objective function |
996 | 996 |
Value obj_const_comp; |
997 | 997 |
|
998 | 998 |
LpBase() : rows(), cols(), obj_const_comp(0) {} |
999 | 999 |
|
1000 | 1000 |
public: |
1001 | 1001 |
|
1002 | 1002 |
/// Virtual destructor |
1003 | 1003 |
virtual ~LpBase() {} |
1004 | 1004 |
|
1005 | 1005 |
///Gives back the name of the solver. |
1006 | 1006 |
const char* solverName() const {return _solverName();} |
1007 | 1007 |
|
1008 |
///\name Build |
|
1008 |
///\name Build Up and Modify the LP |
|
1009 | 1009 |
|
1010 | 1010 |
///@{ |
1011 | 1011 |
|
1012 | 1012 |
///Add a new empty column (i.e a new variable) to the LP |
1013 | 1013 |
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;} |
1014 | 1014 |
|
1015 | 1015 |
///\brief Adds several new columns (i.e variables) at once |
1016 | 1016 |
/// |
1017 | 1017 |
///This magic function takes a container as its argument and fills |
1018 | 1018 |
///its elements with new columns (i.e. variables) |
1019 | 1019 |
///\param t can be |
1020 | 1020 |
///- a standard STL compatible iterable container with |
1021 | 1021 |
///\ref Col as its \c values_type like |
1022 | 1022 |
///\code |
1023 | 1023 |
///std::vector<LpBase::Col> |
1024 | 1024 |
///std::list<LpBase::Col> |
1025 | 1025 |
///\endcode |
1026 | 1026 |
///- a standard STL compatible iterable container with |
1027 | 1027 |
///\ref Col as its \c mapped_type like |
1028 | 1028 |
///\code |
1029 | 1029 |
///std::map<AnyType,LpBase::Col> |
1030 | 1030 |
///\endcode |
1031 | 1031 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
1032 | 1032 |
///\code |
1033 | 1033 |
///ListGraph::NodeMap<LpBase::Col> |
1034 | 1034 |
///ListGraph::ArcMap<LpBase::Col> |
1035 | 1035 |
///\endcode |
1036 | 1036 |
///\return The number of the created column. |
1037 | 1037 |
#ifdef DOXYGEN |
1038 | 1038 |
template<class T> |
1039 | 1039 |
int addColSet(T &t) { return 0;} |
1040 | 1040 |
#else |
1041 | 1041 |
template<class T> |
1042 | 1042 |
typename enable_if<typename T::value_type::LpCol,int>::type |
1043 | 1043 |
addColSet(T &t,dummy<0> = 0) { |
1044 | 1044 |
int s=0; |
1045 | 1045 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} |
1046 | 1046 |
return s; |
1047 | 1047 |
} |
1048 | 1048 |
template<class T> |
1049 | 1049 |
typename enable_if<typename T::value_type::second_type::LpCol, |
1050 | 1050 |
int>::type |
1051 | 1051 |
addColSet(T &t,dummy<1> = 1) { |
1052 | 1052 |
int s=0; |
1053 | 1053 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1054 | 1054 |
i->second=addCol(); |
1055 | 1055 |
s++; |
1056 | 1056 |
} |
1057 | 1057 |
return s; |
1058 | 1058 |
} |
1059 | 1059 |
template<class T> |
1060 | 1060 |
typename enable_if<typename T::MapIt::Value::LpCol, |
1061 | 1061 |
int>::type |
1062 | 1062 |
addColSet(T &t,dummy<2> = 2) { |
1063 | 1063 |
int s=0; |
1064 | 1064 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
1065 | 1065 |
{ |
1066 | 1066 |
i.set(addCol()); |
1067 | 1067 |
s++; |
1068 | 1068 |
} |
1069 | 1069 |
return s; |
1070 | 1070 |
} |
1071 | 1071 |
#endif |
1072 | 1072 |
|
1073 | 1073 |
///Set a column (i.e a dual constraint) of the LP |
1074 | 1074 |
|
1075 | 1075 |
///\param c is the column to be modified |
1076 | 1076 |
///\param e is a dual linear expression (see \ref DualExpr) |
1077 | 1077 |
///a better one. |
1078 | 1078 |
void col(Col c, const DualExpr &e) { |
1079 | 1079 |
e.simplify(); |
1080 | 1080 |
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), |
1081 | 1081 |
ExprIterator(e.comps.end(), rows)); |
1082 | 1082 |
} |
1083 | 1083 |
|
1084 | 1084 |
///Get a column (i.e a dual constraint) of the LP |
1085 | 1085 |
|
1086 | 1086 |
///\param c is the column to get |
1087 | 1087 |
///\return the dual expression associated to the column |
1088 | 1088 |
DualExpr col(Col c) const { |
1089 | 1089 |
DualExpr e; |
1090 | 1090 |
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); |
1091 | 1091 |
return e; |
1092 | 1092 |
} |
1093 | 1093 |
|
1094 | 1094 |
///Add a new column to the LP |
1095 | 1095 |
|
1096 | 1096 |
///\param e is a dual linear expression (see \ref DualExpr) |
1097 | 1097 |
///\param o is the corresponding component of the objective |
1098 | 1098 |
///function. It is 0 by default. |
1099 | 1099 |
///\return The created column. |
1100 | 1100 |
Col addCol(const DualExpr &e, Value o = 0) { |
1101 | 1101 |
Col c=addCol(); |
1102 | 1102 |
col(c,e); |
1103 | 1103 |
objCoeff(c,o); |
1104 | 1104 |
return c; |
1105 | 1105 |
} |
1106 | 1106 |
|
1107 | 1107 |
///Add a new empty row (i.e a new constraint) to the LP |
1108 | 1108 |
|
1109 | 1109 |
///This function adds a new empty row (i.e a new constraint) to the LP. |
1110 | 1110 |
///\return The created row |
1111 | 1111 |
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;} |
1112 | 1112 |
|
1113 | 1113 |
///\brief Add several new rows (i.e constraints) at once |
1114 | 1114 |
/// |
1115 | 1115 |
///This magic function takes a container as its argument and fills |
1116 | 1116 |
///its elements with new row (i.e. variables) |
1117 | 1117 |
///\param t can be |
1118 | 1118 |
///- a standard STL compatible iterable container with |
1119 | 1119 |
///\ref Row as its \c values_type like |
1120 | 1120 |
///\code |
1121 | 1121 |
///std::vector<LpBase::Row> |
1122 | 1122 |
///std::list<LpBase::Row> |
1123 | 1123 |
///\endcode |
1124 | 1124 |
///- a standard STL compatible iterable container with |
1125 | 1125 |
///\ref Row as its \c mapped_type like |
1126 | 1126 |
///\code |
1127 | 1127 |
///std::map<AnyType,LpBase::Row> |
1128 | 1128 |
///\endcode |
1129 | 1129 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
1130 | 1130 |
///\code |
1131 | 1131 |
///ListGraph::NodeMap<LpBase::Row> |
1132 | 1132 |
///ListGraph::ArcMap<LpBase::Row> |
1133 | 1133 |
///\endcode |
1134 | 1134 |
///\return The number of rows created. |
1135 | 1135 |
#ifdef DOXYGEN |
1136 | 1136 |
template<class T> |
1137 | 1137 |
int addRowSet(T &t) { return 0;} |
1138 | 1138 |
#else |
1139 | 1139 |
template<class T> |
1140 | 1140 |
typename enable_if<typename T::value_type::LpRow,int>::type |
1141 | 1141 |
addRowSet(T &t, dummy<0> = 0) { |
1142 | 1142 |
int s=0; |
1143 | 1143 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;} |
1144 | 1144 |
return s; |
1145 | 1145 |
} |
1146 | 1146 |
template<class T> |
1147 | 1147 |
typename enable_if<typename T::value_type::second_type::LpRow, int>::type |
1148 | 1148 |
addRowSet(T &t, dummy<1> = 1) { |
1149 | 1149 |
int s=0; |
1150 | 1150 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1151 | 1151 |
i->second=addRow(); |
1152 | 1152 |
s++; |
1153 | 1153 |
} |
1154 | 1154 |
return s; |
1155 | 1155 |
} |
1156 | 1156 |
template<class T> |
1157 | 1157 |
typename enable_if<typename T::MapIt::Value::LpRow, int>::type |
1158 | 1158 |
addRowSet(T &t, dummy<2> = 2) { |
1159 | 1159 |
int s=0; |
1160 | 1160 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
1161 | 1161 |
{ |
1162 | 1162 |
i.set(addRow()); |
1163 | 1163 |
s++; |
1164 | 1164 |
} |
1165 | 1165 |
return s; |
1166 | 1166 |
} |
1167 | 1167 |
#endif |
1168 | 1168 |
|
1169 | 1169 |
///Set a row (i.e a constraint) of the LP |
1170 | 1170 |
|
1171 | 1171 |
///\param r is the row to be modified |
1172 | 1172 |
///\param l is lower bound (-\ref INF means no bound) |
1173 | 1173 |
///\param e is a linear expression (see \ref Expr) |
1174 | 1174 |
///\param u is the upper bound (\ref INF means no bound) |
1175 | 1175 |
void row(Row r, Value l, const Expr &e, Value u) { |
1176 | 1176 |
e.simplify(); |
1177 | 1177 |
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), |
1178 | 1178 |
ExprIterator(e.comps.end(), cols)); |
1179 | 1179 |
_setRowLowerBound(rows(id(r)),l - *e); |
1180 | 1180 |
_setRowUpperBound(rows(id(r)),u - *e); |
1181 | 1181 |
} |
1182 | 1182 |
|
1183 | 1183 |
///Set a row (i.e a constraint) of the LP |
1184 | 1184 |
|
1185 | 1185 |
///\param r is the row to be modified |
1186 | 1186 |
///\param c is a linear expression (see \ref Constr) |
1187 | 1187 |
void row(Row r, const Constr &c) { |
1188 | 1188 |
row(r, c.lowerBounded()?c.lowerBound():-INF, |
1189 | 1189 |
c.expr(), c.upperBounded()?c.upperBound():INF); |
1190 | 1190 |
} |
1191 | 1191 |
|
1192 | 1192 |
|
1193 | 1193 |
///Get a row (i.e a constraint) of the LP |
1194 | 1194 |
|
1195 | 1195 |
///\param r is the row to get |
1196 | 1196 |
///\return the expression associated to the row |
1197 | 1197 |
Expr row(Row r) const { |
1198 | 1198 |
Expr e; |
1199 | 1199 |
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); |
1200 | 1200 |
return e; |
1201 | 1201 |
} |
1202 | 1202 |
|
1203 | 1203 |
///Add a new row (i.e a new constraint) to the LP |
1204 | 1204 |
|
1205 | 1205 |
///\param l is the lower bound (-\ref INF means no bound) |
1206 | 1206 |
///\param e is a linear expression (see \ref Expr) |
1207 | 1207 |
///\param u is the upper bound (\ref INF means no bound) |
1208 | 1208 |
///\return The created row. |
1209 | 1209 |
Row addRow(Value l,const Expr &e, Value u) { |
1210 | 1210 |
Row r=addRow(); |
1211 | 1211 |
row(r,l,e,u); |
1212 | 1212 |
return r; |
1213 | 1213 |
} |
1214 | 1214 |
|
1215 | 1215 |
///Add a new row (i.e a new constraint) to the LP |
1216 | 1216 |
|
1217 | 1217 |
///\param c is a linear expression (see \ref Constr) |
1218 | 1218 |
///\return The created row. |
1219 | 1219 |
Row addRow(const Constr &c) { |
1220 | 1220 |
Row r=addRow(); |
1221 | 1221 |
row(r,c); |
1222 | 1222 |
return r; |
1223 | 1223 |
} |
1224 | 1224 |
///Erase a column (i.e a variable) from the LP |
1225 | 1225 |
|
1226 | 1226 |
///\param c is the column to be deleted |
1227 | 1227 |
void erase(Col c) { |
1228 | 1228 |
_eraseCol(cols(id(c))); |
1229 | 1229 |
_eraseColId(cols(id(c))); |
1230 | 1230 |
} |
1231 | 1231 |
///Erase a row (i.e a constraint) from the LP |
1232 | 1232 |
|
1233 | 1233 |
///\param r is the row to be deleted |
1234 | 1234 |
void erase(Row r) { |
1235 | 1235 |
_eraseRow(rows(id(r))); |
1236 | 1236 |
_eraseRowId(rows(id(r))); |
1237 | 1237 |
} |
1238 | 1238 |
|
1239 | 1239 |
/// Get the name of a column |
1240 | 1240 |
|
1241 | 1241 |
///\param c is the coresponding column |
1242 | 1242 |
///\return The name of the colunm |
1243 | 1243 |
std::string colName(Col c) const { |
1244 | 1244 |
std::string name; |
1245 | 1245 |
_getColName(cols(id(c)), name); |
1246 | 1246 |
return name; |
1247 | 1247 |
} |
1248 | 1248 |
|
1249 | 1249 |
/// Set the name of a column |
1250 | 1250 |
|
1251 | 1251 |
///\param c is the coresponding column |
1252 | 1252 |
///\param name The name to be given |
1253 | 1253 |
void colName(Col c, const std::string& name) { |
1254 | 1254 |
_setColName(cols(id(c)), name); |
1255 | 1255 |
} |
1256 | 1256 |
|
1257 | 1257 |
/// Get the column by its name |
1258 | 1258 |
|
1259 | 1259 |
///\param name The name of the column |
1260 | 1260 |
///\return the proper column or \c INVALID |
1261 | 1261 |
Col colByName(const std::string& name) const { |
1262 | 1262 |
int k = _colByName(name); |
1263 | 1263 |
return k != -1 ? Col(cols[k]) : Col(INVALID); |
1264 | 1264 |
} |
1265 | 1265 |
|
1266 | 1266 |
/// Get the name of a row |
1267 | 1267 |
|
1268 | 1268 |
///\param r is the coresponding row |
1269 | 1269 |
///\return The name of the row |
1270 | 1270 |
std::string rowName(Row r) const { |
1271 | 1271 |
std::string name; |
1272 | 1272 |
_getRowName(rows(id(r)), name); |
1273 | 1273 |
return name; |
1274 | 1274 |
} |
1275 | 1275 |
|
1276 | 1276 |
/// Set the name of a row |
1277 | 1277 |
|
1278 | 1278 |
///\param r is the coresponding row |
1279 | 1279 |
///\param name The name to be given |
1280 | 1280 |
void rowName(Row r, const std::string& name) { |
1281 | 1281 |
_setRowName(rows(id(r)), name); |
1282 | 1282 |
} |
1283 | 1283 |
|
1284 | 1284 |
/// Get the row by its name |
1285 | 1285 |
|
1286 | 1286 |
///\param name The name of the row |
1287 | 1287 |
///\return the proper row or \c INVALID |
1288 | 1288 |
Row rowByName(const std::string& name) const { |
1289 | 1289 |
int k = _rowByName(name); |
1290 | 1290 |
return k != -1 ? Row(rows[k]) : Row(INVALID); |
1291 | 1291 |
} |
1292 | 1292 |
|
1293 | 1293 |
/// Set an element of the coefficient matrix of the LP |
1294 | 1294 |
|
1295 | 1295 |
///\param r is the row of the element to be modified |
1296 | 1296 |
///\param c is the column of the element to be modified |
1297 | 1297 |
///\param val is the new value of the coefficient |
1298 | 1298 |
void coeff(Row r, Col c, Value val) { |
1299 | 1299 |
_setCoeff(rows(id(r)),cols(id(c)), val); |
1300 | 1300 |
} |
1301 | 1301 |
|
1302 | 1302 |
/// Get an element of the coefficient matrix of the LP |
1303 | 1303 |
|
1304 | 1304 |
///\param r is the row of the element |
1305 | 1305 |
///\param c is the column of the element |
1306 | 1306 |
///\return the corresponding coefficient |
1307 | 1307 |
Value coeff(Row r, Col c) const { |
1308 | 1308 |
return _getCoeff(rows(id(r)),cols(id(c))); |
1309 | 1309 |
} |
1310 | 1310 |
|
1311 | 1311 |
/// Set the lower bound of a column (i.e a variable) |
1312 | 1312 |
|
1313 | 1313 |
/// The lower bound of a variable (column) has to be given by an |
1314 | 1314 |
/// extended number of type Value, i.e. a finite number of type |
1315 | 1315 |
/// Value or -\ref INF. |
1316 | 1316 |
void colLowerBound(Col c, Value value) { |
1317 | 1317 |
_setColLowerBound(cols(id(c)),value); |
1318 | 1318 |
} |
1319 | 1319 |
|
1320 | 1320 |
/// Get the lower bound of a column (i.e a variable) |
1321 | 1321 |
|
1322 | 1322 |
/// This function returns the lower bound for column (variable) \c c |
1323 | 1323 |
/// (this might be -\ref INF as well). |
1324 | 1324 |
///\return The lower bound for column \c c |
1325 | 1325 |
Value colLowerBound(Col c) const { |
1326 | 1326 |
return _getColLowerBound(cols(id(c))); |
1327 | 1327 |
} |
1328 | 1328 |
|
1329 | 1329 |
///\brief Set the lower bound of several columns |
1330 | 1330 |
///(i.e variables) at once |
1331 | 1331 |
/// |
1332 | 1332 |
///This magic function takes a container as its argument |
1333 | 1333 |
///and applies the function on all of its elements. |
1334 | 1334 |
///The lower bound of a variable (column) has to be given by an |
1335 | 1335 |
///extended number of type Value, i.e. a finite number of type |
1336 | 1336 |
///Value or -\ref INF. |
1337 | 1337 |
#ifdef DOXYGEN |
1338 | 1338 |
template<class T> |
1339 | 1339 |
void colLowerBound(T &t, Value value) { return 0;} |
1340 | 1340 |
#else |
1341 | 1341 |
template<class T> |
1342 | 1342 |
typename enable_if<typename T::value_type::LpCol,void>::type |
1343 | 1343 |
colLowerBound(T &t, Value value,dummy<0> = 0) { |
1344 | 1344 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1345 | 1345 |
colLowerBound(*i, value); |
1346 | 1346 |
} |
1347 | 1347 |
} |
1348 | 1348 |
template<class T> |
1349 | 1349 |
typename enable_if<typename T::value_type::second_type::LpCol, |
1350 | 1350 |
void>::type |
1351 | 1351 |
colLowerBound(T &t, Value value,dummy<1> = 1) { |
1352 | 1352 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1353 | 1353 |
colLowerBound(i->second, value); |
1354 | 1354 |
} |
1355 | 1355 |
} |
1356 | 1356 |
template<class T> |
1357 | 1357 |
typename enable_if<typename T::MapIt::Value::LpCol, |
1358 | 1358 |
void>::type |
1359 | 1359 |
colLowerBound(T &t, Value value,dummy<2> = 2) { |
1360 | 1360 |
for(typename T::MapIt i(t); i!=INVALID; ++i){ |
1361 | 1361 |
colLowerBound(*i, value); |
1362 | 1362 |
} |
1363 | 1363 |
} |
1364 | 1364 |
#endif |
1365 | 1365 |
|
1366 | 1366 |
/// Set the upper bound of a column (i.e a variable) |
1367 | 1367 |
|
1368 | 1368 |
/// The upper bound of a variable (column) has to be given by an |
1369 | 1369 |
/// extended number of type Value, i.e. a finite number of type |
1370 | 1370 |
/// Value or \ref INF. |
1371 | 1371 |
void colUpperBound(Col c, Value value) { |
1372 | 1372 |
_setColUpperBound(cols(id(c)),value); |
1373 | 1373 |
}; |
1374 | 1374 |
|
1375 | 1375 |
/// Get the upper bound of a column (i.e a variable) |
1376 | 1376 |
|
1377 | 1377 |
/// This function returns the upper bound for column (variable) \c c |
1378 | 1378 |
/// (this might be \ref INF as well). |
1379 | 1379 |
/// \return The upper bound for column \c c |
1380 | 1380 |
Value colUpperBound(Col c) const { |
1381 | 1381 |
return _getColUpperBound(cols(id(c))); |
1382 | 1382 |
} |
1383 | 1383 |
|
1384 | 1384 |
///\brief Set the upper bound of several columns |
1385 | 1385 |
///(i.e variables) at once |
1386 | 1386 |
/// |
1387 | 1387 |
///This magic function takes a container as its argument |
1388 | 1388 |
///and applies the function on all of its elements. |
1389 | 1389 |
///The upper bound of a variable (column) has to be given by an |
1390 | 1390 |
///extended number of type Value, i.e. a finite number of type |
1391 | 1391 |
///Value or \ref INF. |
1392 | 1392 |
#ifdef DOXYGEN |
1393 | 1393 |
template<class T> |
1394 | 1394 |
void colUpperBound(T &t, Value value) { return 0;} |
1395 | 1395 |
#else |
1396 | 1396 |
template<class T1> |
1397 | 1397 |
typename enable_if<typename T1::value_type::LpCol,void>::type |
1398 | 1398 |
colUpperBound(T1 &t, Value value,dummy<0> = 0) { |
1399 | 1399 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) { |
1400 | 1400 |
colUpperBound(*i, value); |
1401 | 1401 |
} |
1402 | 1402 |
} |
1403 | 1403 |
template<class T1> |
1404 | 1404 |
typename enable_if<typename T1::value_type::second_type::LpCol, |
1405 | 1405 |
void>::type |
1406 | 1406 |
colUpperBound(T1 &t, Value value,dummy<1> = 1) { |
1407 | 1407 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) { |
1408 | 1408 |
colUpperBound(i->second, value); |
1409 | 1409 |
} |
1410 | 1410 |
} |
1411 | 1411 |
template<class T1> |
1412 | 1412 |
typename enable_if<typename T1::MapIt::Value::LpCol, |
1413 | 1413 |
void>::type |
1414 | 1414 |
colUpperBound(T1 &t, Value value,dummy<2> = 2) { |
1415 | 1415 |
for(typename T1::MapIt i(t); i!=INVALID; ++i){ |
1416 | 1416 |
colUpperBound(*i, value); |
1417 | 1417 |
} |
1418 | 1418 |
} |
1419 | 1419 |
#endif |
1420 | 1420 |
|
1421 | 1421 |
/// Set the lower and the upper bounds of a column (i.e a variable) |
1422 | 1422 |
|
1423 | 1423 |
/// The lower and the upper bounds of |
1424 | 1424 |
/// a variable (column) have to be given by an |
1425 | 1425 |
/// extended number of type Value, i.e. a finite number of type |
1426 | 1426 |
/// Value, -\ref INF or \ref INF. |
1427 | 1427 |
void colBounds(Col c, Value lower, Value upper) { |
1428 | 1428 |
_setColLowerBound(cols(id(c)),lower); |
1429 | 1429 |
_setColUpperBound(cols(id(c)),upper); |
1430 | 1430 |
} |
1431 | 1431 |
|
1432 | 1432 |
///\brief Set the lower and the upper bound of several columns |
1433 | 1433 |
///(i.e variables) at once |
1434 | 1434 |
/// |
1435 | 1435 |
///This magic function takes a container as its argument |
1436 | 1436 |
///and applies the function on all of its elements. |
1437 | 1437 |
/// The lower and the upper bounds of |
1438 | 1438 |
/// a variable (column) have to be given by an |
1439 | 1439 |
/// extended number of type Value, i.e. a finite number of type |
1440 | 1440 |
/// Value, -\ref INF or \ref INF. |
1441 | 1441 |
#ifdef DOXYGEN |
1442 | 1442 |
template<class T> |
1443 | 1443 |
void colBounds(T &t, Value lower, Value upper) { return 0;} |
1444 | 1444 |
#else |
1445 | 1445 |
template<class T2> |
1446 | 1446 |
typename enable_if<typename T2::value_type::LpCol,void>::type |
1447 | 1447 |
colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) { |
1448 | 1448 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) { |
1449 | 1449 |
colBounds(*i, lower, upper); |
1450 | 1450 |
} |
1451 | 1451 |
} |
1452 | 1452 |
template<class T2> |
1453 | 1453 |
typename enable_if<typename T2::value_type::second_type::LpCol, void>::type |
1454 | 1454 |
colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) { |
1455 | 1455 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) { |
1456 | 1456 |
colBounds(i->second, lower, upper); |
1457 | 1457 |
} |
1458 | 1458 |
} |
1459 | 1459 |
template<class T2> |
1460 | 1460 |
typename enable_if<typename T2::MapIt::Value::LpCol, void>::type |
1461 | 1461 |
colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) { |
1462 | 1462 |
for(typename T2::MapIt i(t); i!=INVALID; ++i){ |
1463 | 1463 |
colBounds(*i, lower, upper); |
1464 | 1464 |
} |
1465 | 1465 |
} |
1466 | 1466 |
#endif |
1467 | 1467 |
|
1468 | 1468 |
/// Set the lower bound of a row (i.e a constraint) |
1469 | 1469 |
|
1470 | 1470 |
/// The lower bound of a constraint (row) has to be given by an |
1471 | 1471 |
/// extended number of type Value, i.e. a finite number of type |
1472 | 1472 |
/// Value or -\ref INF. |
1473 | 1473 |
void rowLowerBound(Row r, Value value) { |
1474 | 1474 |
_setRowLowerBound(rows(id(r)),value); |
1475 | 1475 |
} |
1476 | 1476 |
|
1477 | 1477 |
/// Get the lower bound of a row (i.e a constraint) |
1478 | 1478 |
|
1479 | 1479 |
/// This function returns the lower bound for row (constraint) \c c |
1480 | 1480 |
/// (this might be -\ref INF as well). |
1481 | 1481 |
///\return The lower bound for row \c r |
1482 | 1482 |
Value rowLowerBound(Row r) const { |
1483 | 1483 |
return _getRowLowerBound(rows(id(r))); |
1484 | 1484 |
} |
1485 | 1485 |
|
1486 | 1486 |
/// Set the upper bound of a row (i.e a constraint) |
1487 | 1487 |
|
1488 | 1488 |
/// The upper bound of a constraint (row) has to be given by an |
1489 | 1489 |
/// extended number of type Value, i.e. a finite number of type |
1490 | 1490 |
/// Value or -\ref INF. |
1491 | 1491 |
void rowUpperBound(Row r, Value value) { |
1492 | 1492 |
_setRowUpperBound(rows(id(r)),value); |
1493 | 1493 |
} |
1494 | 1494 |
|
1495 | 1495 |
/// Get the upper bound of a row (i.e a constraint) |
1496 | 1496 |
|
1497 | 1497 |
/// This function returns the upper bound for row (constraint) \c c |
1498 | 1498 |
/// (this might be -\ref INF as well). |
1499 | 1499 |
///\return The upper bound for row \c r |
1500 | 1500 |
Value rowUpperBound(Row r) const { |
1501 | 1501 |
return _getRowUpperBound(rows(id(r))); |
1502 | 1502 |
} |
1503 | 1503 |
|
1504 | 1504 |
///Set an element of the objective function |
1505 | 1505 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); }; |
1506 | 1506 |
|
1507 | 1507 |
///Get an element of the objective function |
1508 | 1508 |
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); }; |
1509 | 1509 |
|
1510 | 1510 |
///Set the objective function |
1511 | 1511 |
|
1512 | 1512 |
///\param e is a linear expression of type \ref Expr. |
1513 | 1513 |
/// |
1514 | 1514 |
void obj(const Expr& e) { |
1515 | 1515 |
_setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
1516 | 1516 |
ExprIterator(e.comps.end(), cols)); |
1517 | 1517 |
obj_const_comp = *e; |
1518 | 1518 |
} |
1519 | 1519 |
|
1520 | 1520 |
///Get the objective function |
1521 | 1521 |
|
1522 | 1522 |
///\return the objective function as a linear expression of type |
1523 | 1523 |
///Expr. |
1524 | 1524 |
Expr obj() const { |
1525 | 1525 |
Expr e; |
1526 | 1526 |
_getObjCoeffs(InsertIterator(e.comps, cols)); |
1527 | 1527 |
*e = obj_const_comp; |
1528 | 1528 |
return e; |
1529 | 1529 |
} |
1530 | 1530 |
|
1531 | 1531 |
|
1532 | 1532 |
///Set the direction of optimization |
1533 | 1533 |
void sense(Sense sense) { _setSense(sense); } |
1534 | 1534 |
|
1535 | 1535 |
///Query the direction of the optimization |
1536 | 1536 |
Sense sense() const {return _getSense(); } |
1537 | 1537 |
|
1538 | 1538 |
///Set the sense to maximization |
1539 | 1539 |
void max() { _setSense(MAX); } |
1540 | 1540 |
|
1541 | 1541 |
///Set the sense to maximization |
1542 | 1542 |
void min() { _setSense(MIN); } |
1543 | 1543 |
|
1544 | 1544 |
///Clears the problem |
1545 | 1545 |
void clear() { _clear(); } |
1546 | 1546 |
|
1547 | 1547 |
/// Sets the message level of the solver |
1548 | 1548 |
void messageLevel(MessageLevel level) { _messageLevel(level); } |
1549 | 1549 |
|
1550 | 1550 |
///@} |
1551 | 1551 |
|
1552 | 1552 |
}; |
1553 | 1553 |
|
1554 | 1554 |
/// Addition |
1555 | 1555 |
|
1556 | 1556 |
///\relates LpBase::Expr |
1557 | 1557 |
/// |
1558 | 1558 |
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) { |
1559 | 1559 |
LpBase::Expr tmp(a); |
1560 | 1560 |
tmp+=b; |
1561 | 1561 |
return tmp; |
1562 | 1562 |
} |
1563 | 1563 |
///Substraction |
1564 | 1564 |
|
1565 | 1565 |
///\relates LpBase::Expr |
1566 | 1566 |
/// |
1567 | 1567 |
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) { |
1568 | 1568 |
LpBase::Expr tmp(a); |
1569 | 1569 |
tmp-=b; |
1570 | 1570 |
return tmp; |
1571 | 1571 |
} |
1572 | 1572 |
///Multiply with constant |
1573 | 1573 |
|
1574 | 1574 |
///\relates LpBase::Expr |
1575 | 1575 |
/// |
1576 | 1576 |
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) { |
1577 | 1577 |
LpBase::Expr tmp(a); |
1578 | 1578 |
tmp*=b; |
1579 | 1579 |
return tmp; |
1580 | 1580 |
} |
1581 | 1581 |
|
1582 | 1582 |
///Multiply with constant |
1583 | 1583 |
|
1584 | 1584 |
///\relates LpBase::Expr |
1585 | 1585 |
/// |
1586 | 1586 |
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) { |
1587 | 1587 |
LpBase::Expr tmp(b); |
1588 | 1588 |
tmp*=a; |
1589 | 1589 |
return tmp; |
1590 | 1590 |
} |
1591 | 1591 |
///Divide with constant |
1592 | 1592 |
|
1593 | 1593 |
///\relates LpBase::Expr |
1594 | 1594 |
/// |
1595 | 1595 |
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) { |
1596 | 1596 |
LpBase::Expr tmp(a); |
1597 | 1597 |
tmp/=b; |
1598 | 1598 |
return tmp; |
1599 | 1599 |
} |
1600 | 1600 |
|
1601 | 1601 |
///Create constraint |
1602 | 1602 |
|
1603 | 1603 |
///\relates LpBase::Constr |
1604 | 1604 |
/// |
1605 | 1605 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
1606 | 1606 |
const LpBase::Expr &f) { |
1607 | 1607 |
return LpBase::Constr(0, f - e, LpBase::INF); |
1608 | 1608 |
} |
1609 | 1609 |
|
1610 | 1610 |
///Create constraint |
1611 | 1611 |
|
1612 | 1612 |
///\relates LpBase::Constr |
1613 | 1613 |
/// |
1614 | 1614 |
inline LpBase::Constr operator<=(const LpBase::Value &e, |
1615 | 1615 |
const LpBase::Expr &f) { |
1616 | 1616 |
return LpBase::Constr(e, f, LpBase::NaN); |
1617 | 1617 |
} |
1618 | 1618 |
|
1619 | 1619 |
///Create constraint |
1620 | 1620 |
|
1621 | 1621 |
///\relates LpBase::Constr |
1622 | 1622 |
/// |
1623 | 1623 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
1624 | 1624 |
const LpBase::Value &f) { |
1625 | 1625 |
return LpBase::Constr(- LpBase::INF, e, f); |
1626 | 1626 |
} |
1627 | 1627 |
|
1628 | 1628 |
///Create constraint |
1629 | 1629 |
|
1630 | 1630 |
///\relates LpBase::Constr |
1631 | 1631 |
/// |
1632 | 1632 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
1633 | 1633 |
const LpBase::Expr &f) { |
1634 | 1634 |
return LpBase::Constr(0, e - f, LpBase::INF); |
1635 | 1635 |
} |
1636 | 1636 |
|
1637 | 1637 |
|
1638 | 1638 |
///Create constraint |
1639 | 1639 |
|
1640 | 1640 |
///\relates LpBase::Constr |
1641 | 1641 |
/// |
1642 | 1642 |
inline LpBase::Constr operator>=(const LpBase::Value &e, |
1643 | 1643 |
const LpBase::Expr &f) { |
1644 | 1644 |
return LpBase::Constr(LpBase::NaN, f, e); |
1645 | 1645 |
} |
1646 | 1646 |
|
1647 | 1647 |
|
1648 | 1648 |
///Create constraint |
1649 | 1649 |
|
1650 | 1650 |
///\relates LpBase::Constr |
1651 | 1651 |
/// |
1652 | 1652 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
1653 | 1653 |
const LpBase::Value &f) { |
1654 | 1654 |
return LpBase::Constr(f, e, LpBase::INF); |
1655 | 1655 |
} |
1656 | 1656 |
|
1657 | 1657 |
///Create constraint |
1658 | 1658 |
|
1659 | 1659 |
///\relates LpBase::Constr |
1660 | 1660 |
/// |
1661 | 1661 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
1662 | 1662 |
const LpBase::Value &f) { |
1663 | 1663 |
return LpBase::Constr(f, e, f); |
1664 | 1664 |
} |
1665 | 1665 |
|
1666 | 1666 |
///Create constraint |
1667 | 1667 |
|
1668 | 1668 |
///\relates LpBase::Constr |
1669 | 1669 |
/// |
1670 | 1670 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
1671 | 1671 |
const LpBase::Expr &f) { |
1672 | 1672 |
return LpBase::Constr(0, f - e, 0); |
1673 | 1673 |
} |
1674 | 1674 |
|
1675 | 1675 |
///Create constraint |
1676 | 1676 |
|
1677 | 1677 |
///\relates LpBase::Constr |
1678 | 1678 |
/// |
1679 | 1679 |
inline LpBase::Constr operator<=(const LpBase::Value &n, |
1680 | 1680 |
const LpBase::Constr &c) { |
1681 | 1681 |
LpBase::Constr tmp(c); |
1682 | 1682 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
1683 | 1683 |
tmp.lowerBound()=n; |
1684 | 1684 |
return tmp; |
1685 | 1685 |
} |
1686 | 1686 |
///Create constraint |
1687 | 1687 |
|
1688 | 1688 |
///\relates LpBase::Constr |
1689 | 1689 |
/// |
1690 | 1690 |
inline LpBase::Constr operator<=(const LpBase::Constr &c, |
1691 | 1691 |
const LpBase::Value &n) |
1692 | 1692 |
{ |
1693 | 1693 |
LpBase::Constr tmp(c); |
1694 | 1694 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
1695 | 1695 |
tmp.upperBound()=n; |
1696 | 1696 |
return tmp; |
1697 | 1697 |
} |
1698 | 1698 |
|
1699 | 1699 |
///Create constraint |
1700 | 1700 |
|
1701 | 1701 |
///\relates LpBase::Constr |
1702 | 1702 |
/// |
1703 | 1703 |
inline LpBase::Constr operator>=(const LpBase::Value &n, |
1704 | 1704 |
const LpBase::Constr &c) { |
1705 | 1705 |
LpBase::Constr tmp(c); |
1706 | 1706 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
1707 | 1707 |
tmp.upperBound()=n; |
1708 | 1708 |
return tmp; |
1709 | 1709 |
} |
1710 | 1710 |
///Create constraint |
1711 | 1711 |
|
1712 | 1712 |
///\relates LpBase::Constr |
1713 | 1713 |
/// |
1714 | 1714 |
inline LpBase::Constr operator>=(const LpBase::Constr &c, |
1715 | 1715 |
const LpBase::Value &n) |
1716 | 1716 |
{ |
1717 | 1717 |
LpBase::Constr tmp(c); |
1718 | 1718 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
1719 | 1719 |
tmp.lowerBound()=n; |
1720 | 1720 |
return tmp; |
1721 | 1721 |
} |
1722 | 1722 |
|
1723 | 1723 |
///Addition |
1724 | 1724 |
|
1725 | 1725 |
///\relates LpBase::DualExpr |
1726 | 1726 |
/// |
1727 | 1727 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
1728 | 1728 |
const LpBase::DualExpr &b) { |
1729 | 1729 |
LpBase::DualExpr tmp(a); |
1730 | 1730 |
tmp+=b; |
1731 | 1731 |
return tmp; |
1732 | 1732 |
} |
1733 | 1733 |
///Substraction |
1734 | 1734 |
|
1735 | 1735 |
///\relates LpBase::DualExpr |
1736 | 1736 |
/// |
1737 | 1737 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
1738 | 1738 |
const LpBase::DualExpr &b) { |
1739 | 1739 |
LpBase::DualExpr tmp(a); |
1740 | 1740 |
tmp-=b; |
1741 | 1741 |
return tmp; |
1742 | 1742 |
} |
1743 | 1743 |
///Multiply with constant |
1744 | 1744 |
|
1745 | 1745 |
///\relates LpBase::DualExpr |
1746 | 1746 |
/// |
1747 | 1747 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
1748 | 1748 |
const LpBase::Value &b) { |
1749 | 1749 |
LpBase::DualExpr tmp(a); |
1750 | 1750 |
tmp*=b; |
1751 | 1751 |
return tmp; |
1752 | 1752 |
} |
1753 | 1753 |
|
1754 | 1754 |
///Multiply with constant |
1755 | 1755 |
|
1756 | 1756 |
///\relates LpBase::DualExpr |
1757 | 1757 |
/// |
1758 | 1758 |
inline LpBase::DualExpr operator*(const LpBase::Value &a, |
1759 | 1759 |
const LpBase::DualExpr &b) { |
1760 | 1760 |
LpBase::DualExpr tmp(b); |
1761 | 1761 |
tmp*=a; |
1762 | 1762 |
return tmp; |
1763 | 1763 |
} |
1764 | 1764 |
///Divide with constant |
1765 | 1765 |
|
1766 | 1766 |
///\relates LpBase::DualExpr |
1767 | 1767 |
/// |
1768 | 1768 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
1769 | 1769 |
const LpBase::Value &b) { |
1770 | 1770 |
LpBase::DualExpr tmp(a); |
1771 | 1771 |
tmp/=b; |
1772 | 1772 |
return tmp; |
1773 | 1773 |
} |
1774 | 1774 |
|
1775 | 1775 |
/// \ingroup lp_group |
1776 | 1776 |
/// |
1777 | 1777 |
/// \brief Common base class for LP solvers |
1778 | 1778 |
/// |
1779 | 1779 |
/// This class is an abstract base class for LP solvers. This class |
1780 | 1780 |
/// provides a full interface for set and modify an LP problem, |
1781 | 1781 |
/// solve it and retrieve the solution. You can use one of the |
1782 | 1782 |
/// descendants as a concrete implementation, or the \c Lp |
1783 | 1783 |
/// default LP solver. However, if you would like to handle LP |
1784 | 1784 |
/// solvers as reference or pointer in a generic way, you can use |
1785 | 1785 |
/// this class directly. |
1786 | 1786 |
class LpSolver : virtual public LpBase { |
1787 | 1787 |
public: |
1788 | 1788 |
|
1789 | 1789 |
/// The problem types for primal and dual problems |
1790 | 1790 |
enum ProblemType { |
1791 |
///Feasible solution hasn't been found (but may exist). |
|
1791 |
/// = 0. Feasible solution hasn't been found (but may exist). |
|
1792 | 1792 |
UNDEFINED = 0, |
1793 |
///The problem has no feasible solution |
|
1793 |
/// = 1. The problem has no feasible solution. |
|
1794 | 1794 |
INFEASIBLE = 1, |
1795 |
///Feasible solution found |
|
1795 |
/// = 2. Feasible solution found. |
|
1796 | 1796 |
FEASIBLE = 2, |
1797 |
///Optimal solution exists and found |
|
1797 |
/// = 3. Optimal solution exists and found. |
|
1798 | 1798 |
OPTIMAL = 3, |
1799 |
///The cost function is unbounded |
|
1799 |
/// = 4. The cost function is unbounded. |
|
1800 | 1800 |
UNBOUNDED = 4 |
1801 | 1801 |
}; |
1802 | 1802 |
|
1803 | 1803 |
///The basis status of variables |
1804 | 1804 |
enum VarStatus { |
1805 | 1805 |
/// The variable is in the basis |
1806 | 1806 |
BASIC, |
1807 | 1807 |
/// The variable is free, but not basic |
1808 | 1808 |
FREE, |
1809 | 1809 |
/// The variable has active lower bound |
1810 | 1810 |
LOWER, |
1811 | 1811 |
/// The variable has active upper bound |
1812 | 1812 |
UPPER, |
1813 | 1813 |
/// The variable is non-basic and fixed |
1814 | 1814 |
FIXED |
1815 | 1815 |
}; |
1816 | 1816 |
|
1817 | 1817 |
protected: |
1818 | 1818 |
|
1819 | 1819 |
virtual SolveExitStatus _solve() = 0; |
1820 | 1820 |
|
1821 | 1821 |
virtual Value _getPrimal(int i) const = 0; |
1822 | 1822 |
virtual Value _getDual(int i) const = 0; |
1823 | 1823 |
|
1824 | 1824 |
virtual Value _getPrimalRay(int i) const = 0; |
1825 | 1825 |
virtual Value _getDualRay(int i) const = 0; |
1826 | 1826 |
|
1827 | 1827 |
virtual Value _getPrimalValue() const = 0; |
1828 | 1828 |
|
1829 | 1829 |
virtual VarStatus _getColStatus(int i) const = 0; |
1830 | 1830 |
virtual VarStatus _getRowStatus(int i) const = 0; |
1831 | 1831 |
|
1832 | 1832 |
virtual ProblemType _getPrimalType() const = 0; |
1833 | 1833 |
virtual ProblemType _getDualType() const = 0; |
1834 | 1834 |
|
1835 | 1835 |
public: |
1836 | 1836 |
|
1837 | 1837 |
///Allocate a new LP problem instance |
1838 | 1838 |
virtual LpSolver* newSolver() const = 0; |
1839 | 1839 |
///Make a copy of the LP problem |
1840 | 1840 |
virtual LpSolver* cloneSolver() const = 0; |
1841 | 1841 |
|
1842 | 1842 |
///\name Solve the LP |
1843 | 1843 |
|
1844 | 1844 |
///@{ |
1845 | 1845 |
|
1846 | 1846 |
///\e Solve the LP problem at hand |
1847 | 1847 |
/// |
1848 | 1848 |
///\return The result of the optimization procedure. Possible |
1849 | 1849 |
///values and their meanings can be found in the documentation of |
1850 | 1850 |
///\ref SolveExitStatus. |
1851 | 1851 |
SolveExitStatus solve() { return _solve(); } |
1852 | 1852 |
|
1853 | 1853 |
///@} |
1854 | 1854 |
|
1855 |
///\name Obtain the |
|
1855 |
///\name Obtain the Solution |
|
1856 | 1856 |
|
1857 | 1857 |
///@{ |
1858 | 1858 |
|
1859 | 1859 |
/// The type of the primal problem |
1860 | 1860 |
ProblemType primalType() const { |
1861 | 1861 |
return _getPrimalType(); |
1862 | 1862 |
} |
1863 | 1863 |
|
1864 | 1864 |
/// The type of the dual problem |
1865 | 1865 |
ProblemType dualType() const { |
1866 | 1866 |
return _getDualType(); |
1867 | 1867 |
} |
1868 | 1868 |
|
1869 | 1869 |
/// Return the primal value of the column |
1870 | 1870 |
|
1871 | 1871 |
/// Return the primal value of the column. |
1872 | 1872 |
/// \pre The problem is solved. |
1873 | 1873 |
Value primal(Col c) const { return _getPrimal(cols(id(c))); } |
1874 | 1874 |
|
1875 | 1875 |
/// Return the primal value of the expression |
1876 | 1876 |
|
1877 | 1877 |
/// Return the primal value of the expression, i.e. the dot |
1878 | 1878 |
/// product of the primal solution and the expression. |
1879 | 1879 |
/// \pre The problem is solved. |
1880 | 1880 |
Value primal(const Expr& e) const { |
1881 | 1881 |
double res = *e; |
1882 | 1882 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
1883 | 1883 |
res += *c * primal(c); |
1884 | 1884 |
} |
1885 | 1885 |
return res; |
1886 | 1886 |
} |
1887 | 1887 |
/// Returns a component of the primal ray |
1888 | 1888 |
|
1889 | 1889 |
/// The primal ray is solution of the modified primal problem, |
1890 | 1890 |
/// where we change each finite bound to 0, and we looking for a |
1891 | 1891 |
/// negative objective value in case of minimization, and positive |
1892 | 1892 |
/// objective value for maximization. If there is such solution, |
1893 | 1893 |
/// that proofs the unsolvability of the dual problem, and if a |
1894 | 1894 |
/// feasible primal solution exists, then the unboundness of |
1895 | 1895 |
/// primal problem. |
1896 | 1896 |
/// |
1897 | 1897 |
/// \pre The problem is solved and the dual problem is infeasible. |
1898 | 1898 |
/// \note Some solvers does not provide primal ray calculation |
1899 | 1899 |
/// functions. |
1900 | 1900 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); } |
1901 | 1901 |
|
1902 | 1902 |
/// Return the dual value of the row |
1903 | 1903 |
|
1904 | 1904 |
/// Return the dual value of the row. |
1905 | 1905 |
/// \pre The problem is solved. |
1906 | 1906 |
Value dual(Row r) const { return _getDual(rows(id(r))); } |
1907 | 1907 |
|
1908 | 1908 |
/// Return the dual value of the dual expression |
1909 | 1909 |
|
1910 | 1910 |
/// Return the dual value of the dual expression, i.e. the dot |
1911 | 1911 |
/// product of the dual solution and the dual expression. |
1912 | 1912 |
/// \pre The problem is solved. |
1913 | 1913 |
Value dual(const DualExpr& e) const { |
1914 | 1914 |
double res = 0.0; |
1915 | 1915 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) { |
1916 | 1916 |
res += *r * dual(r); |
1917 | 1917 |
} |
1918 | 1918 |
return res; |
1919 | 1919 |
} |
1920 | 1920 |
|
1921 | 1921 |
/// Returns a component of the dual ray |
1922 | 1922 |
|
1923 | 1923 |
/// The dual ray is solution of the modified primal problem, where |
1924 | 1924 |
/// we change each finite bound to 0 (i.e. the objective function |
1925 | 1925 |
/// coefficients in the primal problem), and we looking for a |
1926 | 1926 |
/// ositive objective value. If there is such solution, that |
1927 | 1927 |
/// proofs the unsolvability of the primal problem, and if a |
1928 | 1928 |
/// feasible dual solution exists, then the unboundness of |
1929 | 1929 |
/// dual problem. |
1930 | 1930 |
/// |
1931 | 1931 |
/// \pre The problem is solved and the primal problem is infeasible. |
1932 | 1932 |
/// \note Some solvers does not provide dual ray calculation |
1933 | 1933 |
/// functions. |
1934 | 1934 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); } |
1935 | 1935 |
|
1936 | 1936 |
/// Return the basis status of the column |
1937 | 1937 |
|
1938 | 1938 |
/// \see VarStatus |
1939 | 1939 |
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); } |
1940 | 1940 |
|
1941 | 1941 |
/// Return the basis status of the row |
1942 | 1942 |
|
1943 | 1943 |
/// \see VarStatus |
1944 | 1944 |
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); } |
1945 | 1945 |
|
1946 | 1946 |
///The value of the objective function |
1947 | 1947 |
|
1948 | 1948 |
///\return |
1949 | 1949 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
1950 | 1950 |
/// of the primal problem, depending on whether we minimize or maximize. |
1951 | 1951 |
///- \ref NaN if no primal solution is found. |
1952 | 1952 |
///- The (finite) objective value if an optimal solution is found. |
1953 | 1953 |
Value primal() const { return _getPrimalValue()+obj_const_comp;} |
1954 | 1954 |
///@} |
1955 | 1955 |
|
1956 | 1956 |
protected: |
1957 | 1957 |
|
1958 | 1958 |
}; |
1959 | 1959 |
|
1960 | 1960 |
|
1961 | 1961 |
/// \ingroup lp_group |
1962 | 1962 |
/// |
1963 | 1963 |
/// \brief Common base class for MIP solvers |
1964 | 1964 |
/// |
1965 | 1965 |
/// This class is an abstract base class for MIP solvers. This class |
1966 | 1966 |
/// provides a full interface for set and modify an MIP problem, |
1967 | 1967 |
/// solve it and retrieve the solution. You can use one of the |
1968 | 1968 |
/// descendants as a concrete implementation, or the \c Lp |
1969 | 1969 |
/// default MIP solver. However, if you would like to handle MIP |
1970 | 1970 |
/// solvers as reference or pointer in a generic way, you can use |
1971 | 1971 |
/// this class directly. |
1972 | 1972 |
class MipSolver : virtual public LpBase { |
1973 | 1973 |
public: |
1974 | 1974 |
|
1975 | 1975 |
/// The problem types for MIP problems |
1976 | 1976 |
enum ProblemType { |
1977 |
///Feasible solution hasn't been found (but may exist). |
|
1977 |
/// = 0. Feasible solution hasn't been found (but may exist). |
|
1978 | 1978 |
UNDEFINED = 0, |
1979 |
///The problem has no feasible solution |
|
1979 |
/// = 1. The problem has no feasible solution. |
|
1980 | 1980 |
INFEASIBLE = 1, |
1981 |
///Feasible solution found |
|
1981 |
/// = 2. Feasible solution found. |
|
1982 | 1982 |
FEASIBLE = 2, |
1983 |
///Optimal solution exists and found |
|
1983 |
/// = 3. Optimal solution exists and found. |
|
1984 | 1984 |
OPTIMAL = 3, |
1985 |
///The cost function is unbounded |
|
1986 |
/// |
|
1987 |
///The |
|
1985 |
/// = 4. The cost function is unbounded. |
|
1986 |
///The Mip or at least the relaxed problem is unbounded. |
|
1988 | 1987 |
UNBOUNDED = 4 |
1989 | 1988 |
}; |
1990 | 1989 |
|
1991 | 1990 |
///Allocate a new MIP problem instance |
1992 | 1991 |
virtual MipSolver* newSolver() const = 0; |
1993 | 1992 |
///Make a copy of the MIP problem |
1994 | 1993 |
virtual MipSolver* cloneSolver() const = 0; |
1995 | 1994 |
|
1996 | 1995 |
///\name Solve the MIP |
1997 | 1996 |
|
1998 | 1997 |
///@{ |
1999 | 1998 |
|
2000 | 1999 |
/// Solve the MIP problem at hand |
2001 | 2000 |
/// |
2002 | 2001 |
///\return The result of the optimization procedure. Possible |
2003 | 2002 |
///values and their meanings can be found in the documentation of |
2004 | 2003 |
///\ref SolveExitStatus. |
2005 | 2004 |
SolveExitStatus solve() { return _solve(); } |
2006 | 2005 |
|
2007 | 2006 |
///@} |
2008 | 2007 |
|
2009 |
///\name |
|
2008 |
///\name Set Column Type |
|
2010 | 2009 |
///@{ |
2011 | 2010 |
|
2012 | 2011 |
///Possible variable (column) types (e.g. real, integer, binary etc.) |
2013 | 2012 |
enum ColTypes { |
2014 |
///Continuous variable (default) |
|
2013 |
/// = 0. Continuous variable (default). |
|
2015 | 2014 |
REAL = 0, |
2016 |
///Integer variable |
|
2015 |
/// = 1. Integer variable. |
|
2017 | 2016 |
INTEGER = 1 |
2018 | 2017 |
}; |
2019 | 2018 |
|
2020 | 2019 |
///Sets the type of the given column to the given type |
2021 | 2020 |
|
2022 | 2021 |
///Sets the type of the given column to the given type. |
2023 | 2022 |
/// |
2024 | 2023 |
void colType(Col c, ColTypes col_type) { |
2025 | 2024 |
_setColType(cols(id(c)),col_type); |
2026 | 2025 |
} |
2027 | 2026 |
|
2028 | 2027 |
///Gives back the type of the column. |
2029 | 2028 |
|
2030 | 2029 |
///Gives back the type of the column. |
2031 | 2030 |
/// |
2032 | 2031 |
ColTypes colType(Col c) const { |
2033 | 2032 |
return _getColType(cols(id(c))); |
2034 | 2033 |
} |
2035 | 2034 |
///@} |
2036 | 2035 |
|
2037 |
///\name Obtain the |
|
2036 |
///\name Obtain the Solution |
|
2038 | 2037 |
|
2039 | 2038 |
///@{ |
2040 | 2039 |
|
2041 | 2040 |
/// The type of the MIP problem |
2042 | 2041 |
ProblemType type() const { |
2043 | 2042 |
return _getType(); |
2044 | 2043 |
} |
2045 | 2044 |
|
2046 | 2045 |
/// Return the value of the row in the solution |
2047 | 2046 |
|
2048 | 2047 |
/// Return the value of the row in the solution. |
2049 | 2048 |
/// \pre The problem is solved. |
2050 | 2049 |
Value sol(Col c) const { return _getSol(cols(id(c))); } |
2051 | 2050 |
|
2052 | 2051 |
/// Return the value of the expression in the solution |
2053 | 2052 |
|
2054 | 2053 |
/// Return the value of the expression in the solution, i.e. the |
2055 | 2054 |
/// dot product of the solution and the expression. |
2056 | 2055 |
/// \pre The problem is solved. |
2057 | 2056 |
Value sol(const Expr& e) const { |
2058 | 2057 |
double res = *e; |
2059 | 2058 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
2060 | 2059 |
res += *c * sol(c); |
2061 | 2060 |
} |
2062 | 2061 |
return res; |
2063 | 2062 |
} |
2064 | 2063 |
///The value of the objective function |
2065 | 2064 |
|
2066 | 2065 |
///\return |
2067 | 2066 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
2068 | 2067 |
/// of the problem, depending on whether we minimize or maximize. |
2069 | 2068 |
///- \ref NaN if no primal solution is found. |
2070 | 2069 |
///- The (finite) objective value if an optimal solution is found. |
2071 | 2070 |
Value solValue() const { return _getSolValue()+obj_const_comp;} |
2072 | 2071 |
///@} |
2073 | 2072 |
|
2074 | 2073 |
protected: |
2075 | 2074 |
|
2076 | 2075 |
virtual SolveExitStatus _solve() = 0; |
2077 | 2076 |
virtual ColTypes _getColType(int col) const = 0; |
2078 | 2077 |
virtual void _setColType(int col, ColTypes col_type) = 0; |
2079 | 2078 |
virtual ProblemType _getType() const = 0; |
2080 | 2079 |
virtual Value _getSol(int i) const = 0; |
2081 | 2080 |
virtual Value _getSolValue() const = 0; |
2082 | 2081 |
|
2083 | 2082 |
}; |
2084 | 2083 |
|
2085 | 2084 |
|
2086 | 2085 |
|
2087 | 2086 |
} //namespace lemon |
2088 | 2087 |
|
2089 | 2088 |
#endif //LEMON_LP_BASE_H |
... | ... |
@@ -2219,564 +2219,564 @@ |
2219 | 2219 |
/// \c AlterationNotifier. |
2220 | 2220 |
virtual void clear() { |
2221 | 2221 |
_inv_map.clear(); |
2222 | 2222 |
Map::clear(); |
2223 | 2223 |
} |
2224 | 2224 |
|
2225 | 2225 |
public: |
2226 | 2226 |
|
2227 | 2227 |
/// \brief Returns the maximal value plus one. |
2228 | 2228 |
/// |
2229 | 2229 |
/// Returns the maximal value plus one in the map. |
2230 | 2230 |
unsigned int size() const { |
2231 | 2231 |
return _inv_map.size(); |
2232 | 2232 |
} |
2233 | 2233 |
|
2234 | 2234 |
/// \brief Swaps the position of the two items in the map. |
2235 | 2235 |
/// |
2236 | 2236 |
/// Swaps the position of the two items in the map. |
2237 | 2237 |
void swap(const Item& p, const Item& q) { |
2238 | 2238 |
int pi = Map::operator[](p); |
2239 | 2239 |
int qi = Map::operator[](q); |
2240 | 2240 |
Map::set(p, qi); |
2241 | 2241 |
_inv_map[qi] = p; |
2242 | 2242 |
Map::set(q, pi); |
2243 | 2243 |
_inv_map[pi] = q; |
2244 | 2244 |
} |
2245 | 2245 |
|
2246 | 2246 |
/// \brief Gives back the \e RangeId of the item |
2247 | 2247 |
/// |
2248 | 2248 |
/// Gives back the \e RangeId of the item. |
2249 | 2249 |
int operator[](const Item& item) const { |
2250 | 2250 |
return Map::operator[](item); |
2251 | 2251 |
} |
2252 | 2252 |
|
2253 | 2253 |
/// \brief Gives back the item belonging to a \e RangeId |
2254 | 2254 |
/// |
2255 | 2255 |
/// Gives back the item belonging to a \e RangeId. |
2256 | 2256 |
Item operator()(int id) const { |
2257 | 2257 |
return _inv_map[id]; |
2258 | 2258 |
} |
2259 | 2259 |
|
2260 | 2260 |
private: |
2261 | 2261 |
|
2262 | 2262 |
typedef std::vector<Item> Container; |
2263 | 2263 |
Container _inv_map; |
2264 | 2264 |
|
2265 | 2265 |
public: |
2266 | 2266 |
|
2267 | 2267 |
/// \brief The inverse map type of RangeIdMap. |
2268 | 2268 |
/// |
2269 | 2269 |
/// The inverse map type of RangeIdMap. |
2270 | 2270 |
class InverseMap { |
2271 | 2271 |
public: |
2272 | 2272 |
/// \brief Constructor |
2273 | 2273 |
/// |
2274 | 2274 |
/// Constructor of the InverseMap. |
2275 | 2275 |
explicit InverseMap(const RangeIdMap& inverted) |
2276 | 2276 |
: _inverted(inverted) {} |
2277 | 2277 |
|
2278 | 2278 |
|
2279 | 2279 |
/// The value type of the InverseMap. |
2280 | 2280 |
typedef typename RangeIdMap::Key Value; |
2281 | 2281 |
/// The key type of the InverseMap. |
2282 | 2282 |
typedef typename RangeIdMap::Value Key; |
2283 | 2283 |
|
2284 | 2284 |
/// \brief Subscript operator. |
2285 | 2285 |
/// |
2286 | 2286 |
/// Subscript operator. It gives back the item |
2287 | 2287 |
/// that the descriptor currently belongs to. |
2288 | 2288 |
Value operator[](const Key& key) const { |
2289 | 2289 |
return _inverted(key); |
2290 | 2290 |
} |
2291 | 2291 |
|
2292 | 2292 |
/// \brief Size of the map. |
2293 | 2293 |
/// |
2294 | 2294 |
/// Returns the size of the map. |
2295 | 2295 |
unsigned int size() const { |
2296 | 2296 |
return _inverted.size(); |
2297 | 2297 |
} |
2298 | 2298 |
|
2299 | 2299 |
private: |
2300 | 2300 |
const RangeIdMap& _inverted; |
2301 | 2301 |
}; |
2302 | 2302 |
|
2303 | 2303 |
/// \brief Gives back the inverse of the map. |
2304 | 2304 |
/// |
2305 | 2305 |
/// Gives back the inverse of the map. |
2306 | 2306 |
const InverseMap inverse() const { |
2307 | 2307 |
return InverseMap(*this); |
2308 | 2308 |
} |
2309 | 2309 |
}; |
2310 | 2310 |
|
2311 | 2311 |
/// \brief Map of the source nodes of arcs in a digraph. |
2312 | 2312 |
/// |
2313 | 2313 |
/// SourceMap provides access for the source node of each arc in a digraph, |
2314 | 2314 |
/// which is returned by the \c source() function of the digraph. |
2315 | 2315 |
/// \tparam GR The digraph type. |
2316 | 2316 |
/// \see TargetMap |
2317 | 2317 |
template <typename GR> |
2318 | 2318 |
class SourceMap { |
2319 | 2319 |
public: |
2320 | 2320 |
|
2321 | 2321 |
///\e |
2322 | 2322 |
typedef typename GR::Arc Key; |
2323 | 2323 |
///\e |
2324 | 2324 |
typedef typename GR::Node Value; |
2325 | 2325 |
|
2326 | 2326 |
/// \brief Constructor |
2327 | 2327 |
/// |
2328 | 2328 |
/// Constructor. |
2329 | 2329 |
/// \param digraph The digraph that the map belongs to. |
2330 | 2330 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
2331 | 2331 |
|
2332 | 2332 |
/// \brief Returns the source node of the given arc. |
2333 | 2333 |
/// |
2334 | 2334 |
/// Returns the source node of the given arc. |
2335 | 2335 |
Value operator[](const Key& arc) const { |
2336 | 2336 |
return _graph.source(arc); |
2337 | 2337 |
} |
2338 | 2338 |
|
2339 | 2339 |
private: |
2340 | 2340 |
const GR& _graph; |
2341 | 2341 |
}; |
2342 | 2342 |
|
2343 | 2343 |
/// \brief Returns a \c SourceMap class. |
2344 | 2344 |
/// |
2345 | 2345 |
/// This function just returns an \c SourceMap class. |
2346 | 2346 |
/// \relates SourceMap |
2347 | 2347 |
template <typename GR> |
2348 | 2348 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
2349 | 2349 |
return SourceMap<GR>(graph); |
2350 | 2350 |
} |
2351 | 2351 |
|
2352 | 2352 |
/// \brief Map of the target nodes of arcs in a digraph. |
2353 | 2353 |
/// |
2354 | 2354 |
/// TargetMap provides access for the target node of each arc in a digraph, |
2355 | 2355 |
/// which is returned by the \c target() function of the digraph. |
2356 | 2356 |
/// \tparam GR The digraph type. |
2357 | 2357 |
/// \see SourceMap |
2358 | 2358 |
template <typename GR> |
2359 | 2359 |
class TargetMap { |
2360 | 2360 |
public: |
2361 | 2361 |
|
2362 | 2362 |
///\e |
2363 | 2363 |
typedef typename GR::Arc Key; |
2364 | 2364 |
///\e |
2365 | 2365 |
typedef typename GR::Node Value; |
2366 | 2366 |
|
2367 | 2367 |
/// \brief Constructor |
2368 | 2368 |
/// |
2369 | 2369 |
/// Constructor. |
2370 | 2370 |
/// \param digraph The digraph that the map belongs to. |
2371 | 2371 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
2372 | 2372 |
|
2373 | 2373 |
/// \brief Returns the target node of the given arc. |
2374 | 2374 |
/// |
2375 | 2375 |
/// Returns the target node of the given arc. |
2376 | 2376 |
Value operator[](const Key& e) const { |
2377 | 2377 |
return _graph.target(e); |
2378 | 2378 |
} |
2379 | 2379 |
|
2380 | 2380 |
private: |
2381 | 2381 |
const GR& _graph; |
2382 | 2382 |
}; |
2383 | 2383 |
|
2384 | 2384 |
/// \brief Returns a \c TargetMap class. |
2385 | 2385 |
/// |
2386 | 2386 |
/// This function just returns a \c TargetMap class. |
2387 | 2387 |
/// \relates TargetMap |
2388 | 2388 |
template <typename GR> |
2389 | 2389 |
inline TargetMap<GR> targetMap(const GR& graph) { |
2390 | 2390 |
return TargetMap<GR>(graph); |
2391 | 2391 |
} |
2392 | 2392 |
|
2393 | 2393 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
2394 | 2394 |
/// |
2395 | 2395 |
/// ForwardMap provides access for the "forward" directed arc view of |
2396 | 2396 |
/// each edge in a graph, which is returned by the \c direct() function |
2397 | 2397 |
/// of the graph with \c true parameter. |
2398 | 2398 |
/// \tparam GR The graph type. |
2399 | 2399 |
/// \see BackwardMap |
2400 | 2400 |
template <typename GR> |
2401 | 2401 |
class ForwardMap { |
2402 | 2402 |
public: |
2403 | 2403 |
|
2404 | 2404 |
typedef typename GR::Arc Value; |
2405 | 2405 |
typedef typename GR::Edge Key; |
2406 | 2406 |
|
2407 | 2407 |
/// \brief Constructor |
2408 | 2408 |
/// |
2409 | 2409 |
/// Constructor. |
2410 | 2410 |
/// \param graph The graph that the map belongs to. |
2411 | 2411 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
2412 | 2412 |
|
2413 | 2413 |
/// \brief Returns the "forward" directed arc view of the given edge. |
2414 | 2414 |
/// |
2415 | 2415 |
/// Returns the "forward" directed arc view of the given edge. |
2416 | 2416 |
Value operator[](const Key& key) const { |
2417 | 2417 |
return _graph.direct(key, true); |
2418 | 2418 |
} |
2419 | 2419 |
|
2420 | 2420 |
private: |
2421 | 2421 |
const GR& _graph; |
2422 | 2422 |
}; |
2423 | 2423 |
|
2424 | 2424 |
/// \brief Returns a \c ForwardMap class. |
2425 | 2425 |
/// |
2426 | 2426 |
/// This function just returns an \c ForwardMap class. |
2427 | 2427 |
/// \relates ForwardMap |
2428 | 2428 |
template <typename GR> |
2429 | 2429 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
2430 | 2430 |
return ForwardMap<GR>(graph); |
2431 | 2431 |
} |
2432 | 2432 |
|
2433 | 2433 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
2434 | 2434 |
/// |
2435 | 2435 |
/// BackwardMap provides access for the "backward" directed arc view of |
2436 | 2436 |
/// each edge in a graph, which is returned by the \c direct() function |
2437 | 2437 |
/// of the graph with \c false parameter. |
2438 | 2438 |
/// \tparam GR The graph type. |
2439 | 2439 |
/// \see ForwardMap |
2440 | 2440 |
template <typename GR> |
2441 | 2441 |
class BackwardMap { |
2442 | 2442 |
public: |
2443 | 2443 |
|
2444 | 2444 |
typedef typename GR::Arc Value; |
2445 | 2445 |
typedef typename GR::Edge Key; |
2446 | 2446 |
|
2447 | 2447 |
/// \brief Constructor |
2448 | 2448 |
/// |
2449 | 2449 |
/// Constructor. |
2450 | 2450 |
/// \param graph The graph that the map belongs to. |
2451 | 2451 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
2452 | 2452 |
|
2453 | 2453 |
/// \brief Returns the "backward" directed arc view of the given edge. |
2454 | 2454 |
/// |
2455 | 2455 |
/// Returns the "backward" directed arc view of the given edge. |
2456 | 2456 |
Value operator[](const Key& key) const { |
2457 | 2457 |
return _graph.direct(key, false); |
2458 | 2458 |
} |
2459 | 2459 |
|
2460 | 2460 |
private: |
2461 | 2461 |
const GR& _graph; |
2462 | 2462 |
}; |
2463 | 2463 |
|
2464 | 2464 |
/// \brief Returns a \c BackwardMap class |
2465 | 2465 |
|
2466 | 2466 |
/// This function just returns a \c BackwardMap class. |
2467 | 2467 |
/// \relates BackwardMap |
2468 | 2468 |
template <typename GR> |
2469 | 2469 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
2470 | 2470 |
return BackwardMap<GR>(graph); |
2471 | 2471 |
} |
2472 | 2472 |
|
2473 | 2473 |
/// \brief Map of the in-degrees of nodes in a digraph. |
2474 | 2474 |
/// |
2475 | 2475 |
/// This map returns the in-degree of a node. Once it is constructed, |
2476 | 2476 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2477 | 2477 |
/// in constant time. On the other hand, the values are updated automatically |
2478 | 2478 |
/// whenever the digraph changes. |
2479 | 2479 |
/// |
2480 | 2480 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
2481 | 2481 |
/// may provide alternative ways to modify the digraph. |
2482 | 2482 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2483 | 2483 |
/// features are used. For example the functions |
2484 | 2484 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2485 | 2485 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2486 | 2486 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2487 | 2487 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2488 | 2488 |
/// |
2489 | 2489 |
/// \sa OutDegMap |
2490 | 2490 |
template <typename GR> |
2491 | 2491 |
class InDegMap |
2492 | 2492 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2493 | 2493 |
::ItemNotifier::ObserverBase { |
2494 | 2494 |
|
2495 | 2495 |
public: |
2496 | 2496 |
|
2497 | 2497 |
/// The digraph type |
2498 | 2498 |
typedef GR Digraph; |
2499 | 2499 |
/// The key type |
2500 | 2500 |
typedef typename Digraph::Node Key; |
2501 | 2501 |
/// The value type |
2502 | 2502 |
typedef int Value; |
2503 | 2503 |
|
2504 | 2504 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2505 | 2505 |
::ItemNotifier::ObserverBase Parent; |
2506 | 2506 |
|
2507 | 2507 |
private: |
2508 | 2508 |
|
2509 | 2509 |
class AutoNodeMap |
2510 | 2510 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2511 | 2511 |
public: |
2512 | 2512 |
|
2513 | 2513 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2514 | 2514 |
template Map<int>::Type Parent; |
2515 | 2515 |
|
2516 | 2516 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2517 | 2517 |
|
2518 | 2518 |
virtual void add(const Key& key) { |
2519 | 2519 |
Parent::add(key); |
2520 | 2520 |
Parent::set(key, 0); |
2521 | 2521 |
} |
2522 | 2522 |
|
2523 | 2523 |
virtual void add(const std::vector<Key>& keys) { |
2524 | 2524 |
Parent::add(keys); |
2525 | 2525 |
for (int i = 0; i < int(keys.size()); ++i) { |
2526 | 2526 |
Parent::set(keys[i], 0); |
2527 | 2527 |
} |
2528 | 2528 |
} |
2529 | 2529 |
|
2530 | 2530 |
virtual void build() { |
2531 | 2531 |
Parent::build(); |
2532 | 2532 |
Key it; |
2533 | 2533 |
typename Parent::Notifier* nf = Parent::notifier(); |
2534 | 2534 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2535 | 2535 |
Parent::set(it, 0); |
2536 | 2536 |
} |
2537 | 2537 |
} |
2538 | 2538 |
}; |
2539 | 2539 |
|
2540 | 2540 |
public: |
2541 | 2541 |
|
2542 | 2542 |
/// \brief Constructor. |
2543 | 2543 |
/// |
2544 | 2544 |
/// Constructor for creating an in-degree map. |
2545 | 2545 |
explicit InDegMap(const Digraph& graph) |
2546 | 2546 |
: _digraph(graph), _deg(graph) { |
2547 | 2547 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2548 | 2548 |
|
2549 | 2549 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2550 | 2550 |
_deg[it] = countInArcs(_digraph, it); |
2551 | 2551 |
} |
2552 | 2552 |
} |
2553 | 2553 |
|
2554 | 2554 |
/// \brief Gives back the in-degree of a Node. |
2555 | 2555 |
/// |
2556 | 2556 |
/// Gives back the in-degree of a Node. |
2557 | 2557 |
int operator[](const Key& key) const { |
2558 | 2558 |
return _deg[key]; |
2559 | 2559 |
} |
2560 | 2560 |
|
2561 | 2561 |
protected: |
2562 | 2562 |
|
2563 | 2563 |
typedef typename Digraph::Arc Arc; |
2564 | 2564 |
|
2565 | 2565 |
virtual void add(const Arc& arc) { |
2566 | 2566 |
++_deg[_digraph.target(arc)]; |
2567 | 2567 |
} |
2568 | 2568 |
|
2569 | 2569 |
virtual void add(const std::vector<Arc>& arcs) { |
2570 | 2570 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2571 | 2571 |
++_deg[_digraph.target(arcs[i])]; |
2572 | 2572 |
} |
2573 | 2573 |
} |
2574 | 2574 |
|
2575 | 2575 |
virtual void erase(const Arc& arc) { |
2576 | 2576 |
--_deg[_digraph.target(arc)]; |
2577 | 2577 |
} |
2578 | 2578 |
|
2579 | 2579 |
virtual void erase(const std::vector<Arc>& arcs) { |
2580 | 2580 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2581 | 2581 |
--_deg[_digraph.target(arcs[i])]; |
2582 | 2582 |
} |
2583 | 2583 |
} |
2584 | 2584 |
|
2585 | 2585 |
virtual void build() { |
2586 | 2586 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2587 | 2587 |
_deg[it] = countInArcs(_digraph, it); |
2588 | 2588 |
} |
2589 | 2589 |
} |
2590 | 2590 |
|
2591 | 2591 |
virtual void clear() { |
2592 | 2592 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2593 | 2593 |
_deg[it] = 0; |
2594 | 2594 |
} |
2595 | 2595 |
} |
2596 | 2596 |
private: |
2597 | 2597 |
|
2598 | 2598 |
const Digraph& _digraph; |
2599 | 2599 |
AutoNodeMap _deg; |
2600 | 2600 |
}; |
2601 | 2601 |
|
2602 | 2602 |
/// \brief Map of the out-degrees of nodes in a digraph. |
2603 | 2603 |
/// |
2604 | 2604 |
/// This map returns the out-degree of a node. Once it is constructed, |
2605 | 2605 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2606 | 2606 |
/// in constant time. On the other hand, the values are updated automatically |
2607 | 2607 |
/// whenever the digraph changes. |
2608 | 2608 |
/// |
2609 | 2609 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
2610 | 2610 |
/// may provide alternative ways to modify the digraph. |
2611 | 2611 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2612 | 2612 |
/// features are used. For example the functions |
2613 | 2613 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2614 | 2614 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2615 | 2615 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2616 | 2616 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2617 | 2617 |
/// |
2618 | 2618 |
/// \sa InDegMap |
2619 | 2619 |
template <typename GR> |
2620 | 2620 |
class OutDegMap |
2621 | 2621 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2622 | 2622 |
::ItemNotifier::ObserverBase { |
2623 | 2623 |
|
2624 | 2624 |
public: |
2625 | 2625 |
|
2626 | 2626 |
/// The digraph type |
2627 | 2627 |
typedef GR Digraph; |
2628 | 2628 |
/// The key type |
2629 | 2629 |
typedef typename Digraph::Node Key; |
2630 | 2630 |
/// The value type |
2631 | 2631 |
typedef int Value; |
2632 | 2632 |
|
2633 | 2633 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2634 | 2634 |
::ItemNotifier::ObserverBase Parent; |
2635 | 2635 |
|
2636 | 2636 |
private: |
2637 | 2637 |
|
2638 | 2638 |
class AutoNodeMap |
2639 | 2639 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2640 | 2640 |
public: |
2641 | 2641 |
|
2642 | 2642 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2643 | 2643 |
template Map<int>::Type Parent; |
2644 | 2644 |
|
2645 | 2645 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2646 | 2646 |
|
2647 | 2647 |
virtual void add(const Key& key) { |
2648 | 2648 |
Parent::add(key); |
2649 | 2649 |
Parent::set(key, 0); |
2650 | 2650 |
} |
2651 | 2651 |
virtual void add(const std::vector<Key>& keys) { |
2652 | 2652 |
Parent::add(keys); |
2653 | 2653 |
for (int i = 0; i < int(keys.size()); ++i) { |
2654 | 2654 |
Parent::set(keys[i], 0); |
2655 | 2655 |
} |
2656 | 2656 |
} |
2657 | 2657 |
virtual void build() { |
2658 | 2658 |
Parent::build(); |
2659 | 2659 |
Key it; |
2660 | 2660 |
typename Parent::Notifier* nf = Parent::notifier(); |
2661 | 2661 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2662 | 2662 |
Parent::set(it, 0); |
2663 | 2663 |
} |
2664 | 2664 |
} |
2665 | 2665 |
}; |
2666 | 2666 |
|
2667 | 2667 |
public: |
2668 | 2668 |
|
2669 | 2669 |
/// \brief Constructor. |
2670 | 2670 |
/// |
2671 | 2671 |
/// Constructor for creating an out-degree map. |
2672 | 2672 |
explicit OutDegMap(const Digraph& graph) |
2673 | 2673 |
: _digraph(graph), _deg(graph) { |
2674 | 2674 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2675 | 2675 |
|
2676 | 2676 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2677 | 2677 |
_deg[it] = countOutArcs(_digraph, it); |
2678 | 2678 |
} |
2679 | 2679 |
} |
2680 | 2680 |
|
2681 | 2681 |
/// \brief Gives back the out-degree of a Node. |
2682 | 2682 |
/// |
2683 | 2683 |
/// Gives back the out-degree of a Node. |
2684 | 2684 |
int operator[](const Key& key) const { |
2685 | 2685 |
return _deg[key]; |
2686 | 2686 |
} |
2687 | 2687 |
|
2688 | 2688 |
protected: |
2689 | 2689 |
|
2690 | 2690 |
typedef typename Digraph::Arc Arc; |
2691 | 2691 |
|
2692 | 2692 |
virtual void add(const Arc& arc) { |
2693 | 2693 |
++_deg[_digraph.source(arc)]; |
2694 | 2694 |
} |
2695 | 2695 |
|
2696 | 2696 |
virtual void add(const std::vector<Arc>& arcs) { |
2697 | 2697 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2698 | 2698 |
++_deg[_digraph.source(arcs[i])]; |
2699 | 2699 |
} |
2700 | 2700 |
} |
2701 | 2701 |
|
2702 | 2702 |
virtual void erase(const Arc& arc) { |
2703 | 2703 |
--_deg[_digraph.source(arc)]; |
2704 | 2704 |
} |
2705 | 2705 |
|
2706 | 2706 |
virtual void erase(const std::vector<Arc>& arcs) { |
2707 | 2707 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2708 | 2708 |
--_deg[_digraph.source(arcs[i])]; |
2709 | 2709 |
} |
2710 | 2710 |
} |
2711 | 2711 |
|
2712 | 2712 |
virtual void build() { |
2713 | 2713 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2714 | 2714 |
_deg[it] = countOutArcs(_digraph, it); |
2715 | 2715 |
} |
2716 | 2716 |
} |
2717 | 2717 |
|
2718 | 2718 |
virtual void clear() { |
2719 | 2719 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2720 | 2720 |
_deg[it] = 0; |
2721 | 2721 |
} |
2722 | 2722 |
} |
2723 | 2723 |
private: |
2724 | 2724 |
|
2725 | 2725 |
const Digraph& _digraph; |
2726 | 2726 |
AutoNodeMap _deg; |
2727 | 2727 |
}; |
2728 | 2728 |
|
2729 | 2729 |
/// \brief Potential difference map |
2730 | 2730 |
/// |
2731 |
/// PotentialMap returns the difference between the potentials of the |
|
2732 |
/// source and target nodes of each arc in a digraph, i.e. it returns |
|
2731 |
/// PotentialDifferenceMap returns the difference between the potentials of |
|
2732 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
|
2733 | 2733 |
/// \code |
2734 | 2734 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2735 | 2735 |
/// \endcode |
2736 | 2736 |
/// \tparam GR The digraph type. |
2737 | 2737 |
/// \tparam POT A node map storing the potentials. |
2738 | 2738 |
template <typename GR, typename POT> |
2739 | 2739 |
class PotentialDifferenceMap { |
2740 | 2740 |
public: |
2741 | 2741 |
/// Key type |
2742 | 2742 |
typedef typename GR::Arc Key; |
2743 | 2743 |
/// Value type |
2744 | 2744 |
typedef typename POT::Value Value; |
2745 | 2745 |
|
2746 | 2746 |
/// \brief Constructor |
2747 | 2747 |
/// |
2748 | 2748 |
/// Contructor of the map. |
2749 | 2749 |
explicit PotentialDifferenceMap(const GR& gr, |
2750 | 2750 |
const POT& potential) |
2751 | 2751 |
: _digraph(gr), _potential(potential) {} |
2752 | 2752 |
|
2753 | 2753 |
/// \brief Returns the potential difference for the given arc. |
2754 | 2754 |
/// |
2755 | 2755 |
/// Returns the potential difference for the given arc, i.e. |
2756 | 2756 |
/// \code |
2757 | 2757 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2758 | 2758 |
/// \endcode |
2759 | 2759 |
Value operator[](const Key& arc) const { |
2760 | 2760 |
return _potential[_digraph.target(arc)] - |
2761 | 2761 |
_potential[_digraph.source(arc)]; |
2762 | 2762 |
} |
2763 | 2763 |
|
2764 | 2764 |
private: |
2765 | 2765 |
const GR& _digraph; |
2766 | 2766 |
const POT& _potential; |
2767 | 2767 |
}; |
2768 | 2768 |
|
2769 | 2769 |
/// \brief Returns a PotentialDifferenceMap. |
2770 | 2770 |
/// |
2771 | 2771 |
/// This function just returns a PotentialDifferenceMap. |
2772 | 2772 |
/// \relates PotentialDifferenceMap |
2773 | 2773 |
template <typename GR, typename POT> |
2774 | 2774 |
PotentialDifferenceMap<GR, POT> |
2775 | 2775 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
2776 | 2776 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
2777 | 2777 |
} |
2778 | 2778 |
|
2779 | 2779 |
/// @} |
2780 | 2780 |
} |
2781 | 2781 |
|
2782 | 2782 |
#endif // LEMON_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MIN_COST_ARBORESCENCE_H |
20 | 20 |
#define LEMON_MIN_COST_ARBORESCENCE_H |
21 | 21 |
|
22 | 22 |
///\ingroup spantree |
23 | 23 |
///\file |
24 | 24 |
///\brief Minimum Cost Arborescence algorithm. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 | 28 |
#include <lemon/list_graph.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/assert.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
/// \brief Default traits class for MinCostArborescence class. |
36 | 36 |
/// |
37 | 37 |
/// Default traits class for MinCostArborescence class. |
38 | 38 |
/// \param GR Digraph type. |
39 | 39 |
/// \param CM Type of cost map. |
40 | 40 |
template <class GR, class CM> |
41 | 41 |
struct MinCostArborescenceDefaultTraits{ |
42 | 42 |
|
43 | 43 |
/// \brief The digraph type the algorithm runs on. |
44 | 44 |
typedef GR Digraph; |
45 | 45 |
|
46 | 46 |
/// \brief The type of the map that stores the arc costs. |
47 | 47 |
/// |
48 | 48 |
/// The type of the map that stores the arc costs. |
49 | 49 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
50 | 50 |
typedef CM CostMap; |
51 | 51 |
|
52 | 52 |
/// \brief The value type of the costs. |
53 | 53 |
/// |
54 | 54 |
/// The value type of the costs. |
55 | 55 |
typedef typename CostMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The type of the map that stores which arcs are in the |
58 | 58 |
/// arborescence. |
59 | 59 |
/// |
60 | 60 |
/// The type of the map that stores which arcs are in the |
61 | 61 |
/// arborescence. It must meet the \ref concepts::WriteMap |
62 | 62 |
/// "WriteMap" concept. Initially it will be set to false on each |
63 | 63 |
/// arc. After it will set all arborescence arcs once. |
64 | 64 |
typedef typename Digraph::template ArcMap<bool> ArborescenceMap; |
65 | 65 |
|
66 | 66 |
/// \brief Instantiates a \c ArborescenceMap. |
67 | 67 |
/// |
68 | 68 |
/// This function instantiates a \c ArborescenceMap. |
69 | 69 |
/// \param digraph is the graph, to which we would like to |
70 | 70 |
/// calculate the \c ArborescenceMap. |
71 | 71 |
static ArborescenceMap *createArborescenceMap(const Digraph &digraph){ |
72 | 72 |
return new ArborescenceMap(digraph); |
73 | 73 |
} |
74 | 74 |
|
75 | 75 |
/// \brief The type of the \c PredMap |
76 | 76 |
/// |
77 | 77 |
/// The type of the \c PredMap. It is a node map with an arc value type. |
78 | 78 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
79 | 79 |
|
80 | 80 |
/// \brief Instantiates a \c PredMap. |
81 | 81 |
/// |
82 | 82 |
/// This function instantiates a \c PredMap. |
83 | 83 |
/// \param digraph The digraph to which we would like to define the |
84 | 84 |
/// \c PredMap. |
85 | 85 |
static PredMap *createPredMap(const Digraph &digraph){ |
86 | 86 |
return new PredMap(digraph); |
87 | 87 |
} |
88 | 88 |
|
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
/// \ingroup spantree |
92 | 92 |
/// |
93 |
/// \brief |
|
93 |
/// \brief Minimum Cost Arborescence algorithm class. |
|
94 | 94 |
/// |
95 | 95 |
/// This class provides an efficient implementation of |
96 |
/// |
|
96 |
/// Minimum Cost Arborescence algorithm. The arborescence is a tree |
|
97 | 97 |
/// which is directed from a given source node of the digraph. One or |
98 | 98 |
/// more sources should be given for the algorithm and it will calculate |
99 | 99 |
/// the minimum cost subgraph which are union of arborescences with the |
100 | 100 |
/// given sources and spans all the nodes which are reachable from the |
101 | 101 |
/// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e). |
102 | 102 |
/// |
103 | 103 |
/// The algorithm provides also an optimal dual solution, therefore |
104 | 104 |
/// the optimality of the solution can be checked. |
105 | 105 |
/// |
106 | 106 |
/// \param GR The digraph type the algorithm runs on. The default value |
107 | 107 |
/// is \ref ListDigraph. |
108 | 108 |
/// \param CM This read-only ArcMap determines the costs of the |
109 | 109 |
/// arcs. It is read once for each arc, so the map may involve in |
110 | 110 |
/// relatively time consuming process to compute the arc cost if |
111 | 111 |
/// it is necessary. The default map type is \ref |
112 | 112 |
/// concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
113 | 113 |
/// \param TR Traits class to set various data types used |
114 | 114 |
/// by the algorithm. The default traits class is |
115 | 115 |
/// \ref MinCostArborescenceDefaultTraits |
116 | 116 |
/// "MinCostArborescenceDefaultTraits<GR, CM>". See \ref |
117 | 117 |
/// MinCostArborescenceDefaultTraits for the documentation of a |
118 | 118 |
/// MinCostArborescence traits class. |
119 | 119 |
#ifndef DOXYGEN |
120 | 120 |
template <typename GR = ListDigraph, |
121 | 121 |
typename CM = typename GR::template ArcMap<int>, |
122 | 122 |
typename TR = |
123 | 123 |
MinCostArborescenceDefaultTraits<GR, CM> > |
124 | 124 |
#else |
125 | 125 |
template <typename GR, typename CM, typedef TR> |
126 | 126 |
#endif |
127 | 127 |
class MinCostArborescence { |
128 | 128 |
public: |
129 | 129 |
|
130 | 130 |
/// The traits. |
131 | 131 |
typedef TR Traits; |
132 | 132 |
/// The type of the underlying digraph. |
133 | 133 |
typedef typename Traits::Digraph Digraph; |
134 | 134 |
/// The type of the map that stores the arc costs. |
135 | 135 |
typedef typename Traits::CostMap CostMap; |
136 | 136 |
///The type of the costs of the arcs. |
137 | 137 |
typedef typename Traits::Value Value; |
138 | 138 |
///The type of the predecessor map. |
139 | 139 |
typedef typename Traits::PredMap PredMap; |
140 | 140 |
///The type of the map that stores which arcs are in the arborescence. |
141 | 141 |
typedef typename Traits::ArborescenceMap ArborescenceMap; |
142 | 142 |
|
143 | 143 |
typedef MinCostArborescence Create; |
144 | 144 |
|
145 | 145 |
private: |
146 | 146 |
|
147 | 147 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
148 | 148 |
|
149 | 149 |
struct CostArc { |
150 | 150 |
|
151 | 151 |
Arc arc; |
152 | 152 |
Value value; |
153 | 153 |
|
154 | 154 |
CostArc() {} |
155 | 155 |
CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {} |
156 | 156 |
|
157 | 157 |
}; |
158 | 158 |
|
159 | 159 |
const Digraph *_digraph; |
160 | 160 |
const CostMap *_cost; |
161 | 161 |
|
162 | 162 |
PredMap *_pred; |
163 | 163 |
bool local_pred; |
164 | 164 |
|
165 | 165 |
ArborescenceMap *_arborescence; |
166 | 166 |
bool local_arborescence; |
167 | 167 |
|
168 | 168 |
typedef typename Digraph::template ArcMap<int> ArcOrder; |
169 | 169 |
ArcOrder *_arc_order; |
170 | 170 |
|
171 | 171 |
typedef typename Digraph::template NodeMap<int> NodeOrder; |
172 | 172 |
NodeOrder *_node_order; |
173 | 173 |
|
174 | 174 |
typedef typename Digraph::template NodeMap<CostArc> CostArcMap; |
175 | 175 |
CostArcMap *_cost_arcs; |
176 | 176 |
|
177 | 177 |
struct StackLevel { |
178 | 178 |
|
179 | 179 |
std::vector<CostArc> arcs; |
180 | 180 |
int node_level; |
181 | 181 |
|
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
std::vector<StackLevel> level_stack; |
185 | 185 |
std::vector<Node> queue; |
186 | 186 |
|
187 | 187 |
typedef std::vector<typename Digraph::Node> DualNodeList; |
188 | 188 |
|
189 | 189 |
DualNodeList _dual_node_list; |
190 | 190 |
|
191 | 191 |
struct DualVariable { |
192 | 192 |
int begin, end; |
193 | 193 |
Value value; |
194 | 194 |
|
195 | 195 |
DualVariable(int _begin, int _end, Value _value) |
196 | 196 |
: begin(_begin), end(_end), value(_value) {} |
197 | 197 |
|
198 | 198 |
}; |
199 | 199 |
|
200 | 200 |
typedef std::vector<DualVariable> DualVariables; |
201 | 201 |
|
202 | 202 |
DualVariables _dual_variables; |
203 | 203 |
|
204 | 204 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
205 | 205 |
|
206 | 206 |
HeapCrossRef *_heap_cross_ref; |
207 | 207 |
|
208 | 208 |
typedef BinHeap<int, HeapCrossRef> Heap; |
209 | 209 |
|
210 | 210 |
Heap *_heap; |
211 | 211 |
|
212 | 212 |
protected: |
213 | 213 |
|
214 | 214 |
MinCostArborescence() {} |
215 | 215 |
|
216 | 216 |
private: |
217 | 217 |
|
218 | 218 |
void createStructures() { |
219 | 219 |
if (!_pred) { |
220 | 220 |
local_pred = true; |
221 | 221 |
_pred = Traits::createPredMap(*_digraph); |
222 | 222 |
} |
223 | 223 |
if (!_arborescence) { |
224 | 224 |
local_arborescence = true; |
225 | 225 |
_arborescence = Traits::createArborescenceMap(*_digraph); |
226 | 226 |
} |
227 | 227 |
if (!_arc_order) { |
228 | 228 |
_arc_order = new ArcOrder(*_digraph); |
229 | 229 |
} |
230 | 230 |
if (!_node_order) { |
231 | 231 |
_node_order = new NodeOrder(*_digraph); |
232 | 232 |
} |
233 | 233 |
if (!_cost_arcs) { |
234 | 234 |
_cost_arcs = new CostArcMap(*_digraph); |
235 | 235 |
} |
236 | 236 |
if (!_heap_cross_ref) { |
237 | 237 |
_heap_cross_ref = new HeapCrossRef(*_digraph, -1); |
238 | 238 |
} |
239 | 239 |
if (!_heap) { |
240 | 240 |
_heap = new Heap(*_heap_cross_ref); |
241 | 241 |
} |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
void destroyStructures() { |
245 | 245 |
if (local_arborescence) { |
246 | 246 |
delete _arborescence; |
247 | 247 |
} |
248 | 248 |
if (local_pred) { |
249 | 249 |
delete _pred; |
250 | 250 |
} |
251 | 251 |
if (_arc_order) { |
252 | 252 |
delete _arc_order; |
253 | 253 |
} |
254 | 254 |
if (_node_order) { |
255 | 255 |
delete _node_order; |
256 | 256 |
} |
257 | 257 |
if (_cost_arcs) { |
258 | 258 |
delete _cost_arcs; |
259 | 259 |
} |
260 | 260 |
if (_heap) { |
261 | 261 |
delete _heap; |
262 | 262 |
} |
263 | 263 |
if (_heap_cross_ref) { |
264 | 264 |
delete _heap_cross_ref; |
265 | 265 |
} |
266 | 266 |
} |
267 | 267 |
|
268 | 268 |
Arc prepare(Node node) { |
269 | 269 |
std::vector<Node> nodes; |
270 | 270 |
(*_node_order)[node] = _dual_node_list.size(); |
271 | 271 |
StackLevel level; |
272 | 272 |
level.node_level = _dual_node_list.size(); |
273 | 273 |
_dual_node_list.push_back(node); |
274 | 274 |
for (InArcIt it(*_digraph, node); it != INVALID; ++it) { |
275 | 275 |
Arc arc = it; |
276 | 276 |
Node source = _digraph->source(arc); |
277 | 277 |
Value value = (*_cost)[it]; |
278 | 278 |
if (source == node || (*_node_order)[source] == -3) continue; |
279 | 279 |
if ((*_cost_arcs)[source].arc == INVALID) { |
280 | 280 |
(*_cost_arcs)[source].arc = arc; |
281 | 281 |
(*_cost_arcs)[source].value = value; |
282 | 282 |
nodes.push_back(source); |
283 | 283 |
} else { |
284 | 284 |
if ((*_cost_arcs)[source].value > value) { |
285 | 285 |
(*_cost_arcs)[source].arc = arc; |
286 | 286 |
(*_cost_arcs)[source].value = value; |
287 | 287 |
} |
288 | 288 |
} |
289 | 289 |
} |
290 | 290 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
291 | 291 |
for (int i = 1; i < int(nodes.size()); ++i) { |
292 | 292 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) { |
293 | 293 |
minimum = (*_cost_arcs)[nodes[i]]; |
294 | 294 |
} |
295 | 295 |
} |
296 | 296 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
297 | 297 |
DualVariable var(_dual_node_list.size() - 1, |
298 | 298 |
_dual_node_list.size(), minimum.value); |
299 | 299 |
_dual_variables.push_back(var); |
300 | 300 |
for (int i = 0; i < int(nodes.size()); ++i) { |
301 | 301 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
302 | 302 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
303 | 303 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
304 | 304 |
} |
305 | 305 |
level_stack.push_back(level); |
306 | 306 |
return minimum.arc; |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
Arc contract(Node node) { |
310 | 310 |
int node_bottom = bottom(node); |
311 | 311 |
std::vector<Node> nodes; |
312 | 312 |
while (!level_stack.empty() && |
313 | 313 |
level_stack.back().node_level >= node_bottom) { |
314 | 314 |
for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) { |
315 | 315 |
Arc arc = level_stack.back().arcs[i].arc; |
316 | 316 |
Node source = _digraph->source(arc); |
317 | 317 |
Value value = level_stack.back().arcs[i].value; |
318 | 318 |
if ((*_node_order)[source] >= node_bottom) continue; |
319 | 319 |
if ((*_cost_arcs)[source].arc == INVALID) { |
320 | 320 |
(*_cost_arcs)[source].arc = arc; |
321 | 321 |
(*_cost_arcs)[source].value = value; |
322 | 322 |
nodes.push_back(source); |
323 | 323 |
} else { |
324 | 324 |
if ((*_cost_arcs)[source].value > value) { |
325 | 325 |
(*_cost_arcs)[source].arc = arc; |
326 | 326 |
(*_cost_arcs)[source].value = value; |
327 | 327 |
} |
328 | 328 |
} |
329 | 329 |
} |
330 | 330 |
level_stack.pop_back(); |
331 | 331 |
} |
332 | 332 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
333 | 333 |
for (int i = 1; i < int(nodes.size()); ++i) { |
334 | 334 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) { |
335 | 335 |
minimum = (*_cost_arcs)[nodes[i]]; |
336 | 336 |
} |
337 | 337 |
} |
338 | 338 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
339 | 339 |
DualVariable var(node_bottom, _dual_node_list.size(), minimum.value); |
340 | 340 |
_dual_variables.push_back(var); |
341 | 341 |
StackLevel level; |
342 | 342 |
level.node_level = node_bottom; |
343 | 343 |
for (int i = 0; i < int(nodes.size()); ++i) { |
344 | 344 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
345 | 345 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
346 | 346 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
347 | 347 |
} |
348 | 348 |
level_stack.push_back(level); |
349 | 349 |
return minimum.arc; |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
int bottom(Node node) { |
353 | 353 |
int k = level_stack.size() - 1; |
354 | 354 |
while (level_stack[k].node_level > (*_node_order)[node]) { |
355 | 355 |
--k; |
356 | 356 |
} |
357 | 357 |
return level_stack[k].node_level; |
358 | 358 |
} |
359 | 359 |
|
360 | 360 |
void finalize(Arc arc) { |
361 | 361 |
Node node = _digraph->target(arc); |
362 | 362 |
_heap->push(node, (*_arc_order)[arc]); |
363 | 363 |
_pred->set(node, arc); |
364 | 364 |
while (!_heap->empty()) { |
365 | 365 |
Node source = _heap->top(); |
366 | 366 |
_heap->pop(); |
367 | 367 |
(*_node_order)[source] = -1; |
368 | 368 |
for (OutArcIt it(*_digraph, source); it != INVALID; ++it) { |
369 | 369 |
if ((*_arc_order)[it] < 0) continue; |
370 | 370 |
Node target = _digraph->target(it); |
371 | 371 |
switch(_heap->state(target)) { |
372 | 372 |
case Heap::PRE_HEAP: |
373 | 373 |
_heap->push(target, (*_arc_order)[it]); |
374 | 374 |
_pred->set(target, it); |
375 | 375 |
break; |
376 | 376 |
case Heap::IN_HEAP: |
377 | 377 |
if ((*_arc_order)[it] < (*_heap)[target]) { |
378 | 378 |
_heap->decrease(target, (*_arc_order)[it]); |
379 | 379 |
_pred->set(target, it); |
380 | 380 |
} |
381 | 381 |
break; |
382 | 382 |
case Heap::POST_HEAP: |
383 | 383 |
break; |
384 | 384 |
} |
385 | 385 |
} |
386 | 386 |
_arborescence->set((*_pred)[source], true); |
387 | 387 |
} |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
|
391 | 391 |
public: |
392 | 392 |
|
393 |
/// \name Named |
|
393 |
/// \name Named Template Parameters |
|
394 | 394 |
|
395 | 395 |
/// @{ |
396 | 396 |
|
397 | 397 |
template <class T> |
398 | 398 |
struct DefArborescenceMapTraits : public Traits { |
399 | 399 |
typedef T ArborescenceMap; |
400 | 400 |
static ArborescenceMap *createArborescenceMap(const Digraph &) |
401 | 401 |
{ |
402 | 402 |
LEMON_ASSERT(false, "ArborescenceMap is not initialized"); |
403 | 403 |
return 0; // ignore warnings |
404 | 404 |
} |
405 | 405 |
}; |
406 | 406 |
|
407 | 407 |
/// \brief \ref named-templ-param "Named parameter" for |
408 | 408 |
/// setting ArborescenceMap type |
409 | 409 |
/// |
410 | 410 |
/// \ref named-templ-param "Named parameter" for setting |
411 | 411 |
/// ArborescenceMap type |
412 | 412 |
template <class T> |
413 | 413 |
struct DefArborescenceMap |
414 | 414 |
: public MinCostArborescence<Digraph, CostMap, |
415 | 415 |
DefArborescenceMapTraits<T> > { |
416 | 416 |
}; |
417 | 417 |
|
418 | 418 |
template <class T> |
419 | 419 |
struct DefPredMapTraits : public Traits { |
420 | 420 |
typedef T PredMap; |
421 | 421 |
static PredMap *createPredMap(const Digraph &) |
422 | 422 |
{ |
423 | 423 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
424 | 424 |
} |
425 | 425 |
}; |
426 | 426 |
|
427 | 427 |
/// \brief \ref named-templ-param "Named parameter" for |
428 | 428 |
/// setting PredMap type |
429 | 429 |
/// |
430 | 430 |
/// \ref named-templ-param "Named parameter" for setting |
431 | 431 |
/// PredMap type |
432 | 432 |
template <class T> |
433 | 433 |
struct DefPredMap |
434 | 434 |
: public MinCostArborescence<Digraph, CostMap, DefPredMapTraits<T> > { |
435 | 435 |
}; |
436 | 436 |
|
437 | 437 |
/// @} |
438 | 438 |
|
439 | 439 |
/// \brief Constructor. |
440 | 440 |
/// |
441 | 441 |
/// \param digraph The digraph the algorithm will run on. |
442 | 442 |
/// \param cost The cost map used by the algorithm. |
443 | 443 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
444 | 444 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
445 | 445 |
_arborescence(0), local_arborescence(false), |
446 | 446 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
447 | 447 |
_heap_cross_ref(0), _heap(0) {} |
448 | 448 |
|
449 | 449 |
/// \brief Destructor. |
450 | 450 |
~MinCostArborescence() { |
451 | 451 |
destroyStructures(); |
452 | 452 |
} |
453 | 453 |
|
454 | 454 |
/// \brief Sets the arborescence map. |
455 | 455 |
/// |
456 | 456 |
/// Sets the arborescence map. |
457 | 457 |
/// \return <tt>(*this)</tt> |
458 | 458 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) { |
459 | 459 |
if (local_arborescence) { |
460 | 460 |
delete _arborescence; |
461 | 461 |
} |
462 | 462 |
local_arborescence = false; |
463 | 463 |
_arborescence = &m; |
464 | 464 |
return *this; |
465 | 465 |
} |
466 | 466 |
|
467 | 467 |
/// \brief Sets the arborescence map. |
468 | 468 |
/// |
469 | 469 |
/// Sets the arborescence map. |
470 | 470 |
/// \return <tt>(*this)</tt> |
471 | 471 |
MinCostArborescence& predMap(PredMap& m) { |
472 | 472 |
if (local_pred) { |
473 | 473 |
delete _pred; |
474 | 474 |
} |
475 | 475 |
local_pred = false; |
476 | 476 |
_pred = &m; |
477 | 477 |
return *this; |
478 | 478 |
} |
479 | 479 |
|
480 | 480 |
/// \name Query Functions |
481 | 481 |
/// The result of the %MinCostArborescence algorithm can be obtained |
482 | 482 |
/// using these functions.\n |
483 | 483 |
/// Before the use of these functions, |
484 | 484 |
/// either run() or start() must be called. |
485 | 485 |
|
486 | 486 |
/// @{ |
487 | 487 |
|
488 | 488 |
/// \brief Returns a reference to the arborescence map. |
489 | 489 |
/// |
490 | 490 |
/// Returns a reference to the arborescence map. |
491 | 491 |
const ArborescenceMap& arborescenceMap() const { |
492 | 492 |
return *_arborescence; |
493 | 493 |
} |
494 | 494 |
|
495 | 495 |
/// \brief Returns true if the arc is in the arborescence. |
496 | 496 |
/// |
497 | 497 |
/// Returns true if the arc is in the arborescence. |
498 | 498 |
/// \param arc The arc of the digraph. |
499 | 499 |
/// \pre \ref run() must be called before using this function. |
500 | 500 |
bool arborescence(Arc arc) const { |
501 | 501 |
return (*_pred)[_digraph->target(arc)] == arc; |
502 | 502 |
} |
503 | 503 |
|
504 | 504 |
/// \brief Returns a reference to the pred map. |
505 | 505 |
/// |
506 | 506 |
/// Returns a reference to the pred map. |
507 | 507 |
const PredMap& predMap() const { |
508 | 508 |
return *_pred; |
509 | 509 |
} |
510 | 510 |
|
511 | 511 |
/// \brief Returns the predecessor arc of the given node. |
512 | 512 |
/// |
513 | 513 |
/// Returns the predecessor arc of the given node. |
514 | 514 |
Arc pred(Node node) const { |
515 | 515 |
return (*_pred)[node]; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
/// \brief Returns the cost of the arborescence. |
519 | 519 |
/// |
520 | 520 |
/// Returns the cost of the arborescence. |
521 | 521 |
Value arborescenceValue() const { |
522 | 522 |
Value sum = 0; |
523 | 523 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
524 | 524 |
if (arborescence(it)) { |
525 | 525 |
sum += (*_cost)[it]; |
526 | 526 |
} |
527 | 527 |
} |
528 | 528 |
return sum; |
529 | 529 |
} |
530 | 530 |
|
531 | 531 |
/// \brief Indicates that a node is reachable from the sources. |
532 | 532 |
/// |
533 | 533 |
/// Indicates that a node is reachable from the sources. |
534 | 534 |
bool reached(Node node) const { |
535 | 535 |
return (*_node_order)[node] != -3; |
536 | 536 |
} |
537 | 537 |
|
538 | 538 |
/// \brief Indicates that a node is processed. |
539 | 539 |
/// |
540 | 540 |
/// Indicates that a node is processed. The arborescence path exists |
541 | 541 |
/// from the source to the given node. |
542 | 542 |
bool processed(Node node) const { |
543 | 543 |
return (*_node_order)[node] == -1; |
544 | 544 |
} |
545 | 545 |
|
546 | 546 |
/// \brief Returns the number of the dual variables in basis. |
547 | 547 |
/// |
548 | 548 |
/// Returns the number of the dual variables in basis. |
549 | 549 |
int dualNum() const { |
550 | 550 |
return _dual_variables.size(); |
551 | 551 |
} |
552 | 552 |
|
553 | 553 |
/// \brief Returns the value of the dual solution. |
554 | 554 |
/// |
555 | 555 |
/// Returns the value of the dual solution. It should be |
556 | 556 |
/// equal to the arborescence value. |
557 | 557 |
Value dualValue() const { |
558 | 558 |
Value sum = 0; |
559 | 559 |
for (int i = 0; i < int(_dual_variables.size()); ++i) { |
560 | 560 |
sum += _dual_variables[i].value; |
561 | 561 |
} |
562 | 562 |
return sum; |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
/// \brief Returns the number of the nodes in the dual variable. |
566 | 566 |
/// |
567 | 567 |
/// Returns the number of the nodes in the dual variable. |
568 | 568 |
int dualSize(int k) const { |
569 | 569 |
return _dual_variables[k].end - _dual_variables[k].begin; |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
/// \brief Returns the value of the dual variable. |
573 | 573 |
/// |
574 | 574 |
/// Returns the the value of the dual variable. |
575 | 575 |
const Value& dualValue(int k) const { |
576 | 576 |
return _dual_variables[k].value; |
577 | 577 |
} |
578 | 578 |
|
579 | 579 |
/// \brief Lemon iterator for get a dual variable. |
580 | 580 |
/// |
581 | 581 |
/// Lemon iterator for get a dual variable. This class provides |
582 | 582 |
/// a common style lemon iterator which gives back a subset of |
583 | 583 |
/// the nodes. |
584 | 584 |
class DualIt { |
585 | 585 |
public: |
586 | 586 |
|
587 | 587 |
/// \brief Constructor. |
588 | 588 |
/// |
589 | 589 |
/// Constructor for get the nodeset of the variable. |
590 | 590 |
DualIt(const MinCostArborescence& algorithm, int variable) |
591 | 591 |
: _algorithm(&algorithm) |
592 | 592 |
{ |
593 | 593 |
_index = _algorithm->_dual_variables[variable].begin; |
594 | 594 |
_last = _algorithm->_dual_variables[variable].end; |
595 | 595 |
} |
596 | 596 |
|
597 | 597 |
/// \brief Conversion to node. |
598 | 598 |
/// |
599 | 599 |
/// Conversion to node. |
600 | 600 |
operator Node() const { |
601 | 601 |
return _algorithm->_dual_node_list[_index]; |
602 | 602 |
} |
603 | 603 |
|
604 | 604 |
/// \brief Increment operator. |
605 | 605 |
/// |
606 | 606 |
/// Increment operator. |
607 | 607 |
DualIt& operator++() { |
608 | 608 |
++_index; |
609 | 609 |
return *this; |
610 | 610 |
} |
611 | 611 |
|
612 | 612 |
/// \brief Validity checking |
613 | 613 |
/// |
614 | 614 |
/// Checks whether the iterator is invalid. |
615 | 615 |
bool operator==(Invalid) const { |
616 | 616 |
return _index == _last; |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
/// \brief Validity checking |
620 | 620 |
/// |
621 | 621 |
/// Checks whether the iterator is valid. |
622 | 622 |
bool operator!=(Invalid) const { |
623 | 623 |
return _index != _last; |
624 | 624 |
} |
625 | 625 |
|
626 | 626 |
private: |
627 | 627 |
const MinCostArborescence* _algorithm; |
628 | 628 |
int _index, _last; |
629 | 629 |
}; |
630 | 630 |
|
631 | 631 |
/// @} |
632 | 632 |
|
633 |
/// \name Execution |
|
633 |
/// \name Execution Control |
|
634 | 634 |
/// The simplest way to execute the algorithm is to use |
635 | 635 |
/// one of the member functions called \c run(...). \n |
636 | 636 |
/// If you need more control on the execution, |
637 | 637 |
/// first you must call \ref init(), then you can add several |
638 | 638 |
/// source nodes with \ref addSource(). |
639 | 639 |
/// Finally \ref start() will perform the arborescence |
640 | 640 |
/// computation. |
641 | 641 |
|
642 | 642 |
///@{ |
643 | 643 |
|
644 | 644 |
/// \brief Initializes the internal data structures. |
645 | 645 |
/// |
646 | 646 |
/// Initializes the internal data structures. |
647 | 647 |
/// |
648 | 648 |
void init() { |
649 | 649 |
createStructures(); |
650 | 650 |
_heap->clear(); |
651 | 651 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
652 | 652 |
(*_cost_arcs)[it].arc = INVALID; |
653 | 653 |
(*_node_order)[it] = -3; |
654 | 654 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
655 | 655 |
_pred->set(it, INVALID); |
656 | 656 |
} |
657 | 657 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
658 | 658 |
_arborescence->set(it, false); |
659 | 659 |
(*_arc_order)[it] = -1; |
660 | 660 |
} |
661 | 661 |
_dual_node_list.clear(); |
662 | 662 |
_dual_variables.clear(); |
663 | 663 |
} |
664 | 664 |
|
665 | 665 |
/// \brief Adds a new source node. |
666 | 666 |
/// |
667 | 667 |
/// Adds a new source node to the algorithm. |
668 | 668 |
void addSource(Node source) { |
669 | 669 |
std::vector<Node> nodes; |
670 | 670 |
nodes.push_back(source); |
671 | 671 |
while (!nodes.empty()) { |
672 | 672 |
Node node = nodes.back(); |
673 | 673 |
nodes.pop_back(); |
674 | 674 |
for (OutArcIt it(*_digraph, node); it != INVALID; ++it) { |
675 | 675 |
Node target = _digraph->target(it); |
676 | 676 |
if ((*_node_order)[target] == -3) { |
677 | 677 |
(*_node_order)[target] = -2; |
678 | 678 |
nodes.push_back(target); |
679 | 679 |
queue.push_back(target); |
680 | 680 |
} |
681 | 681 |
} |
682 | 682 |
} |
683 | 683 |
(*_node_order)[source] = -1; |
684 | 684 |
} |
685 | 685 |
|
686 | 686 |
/// \brief Processes the next node in the priority queue. |
687 | 687 |
/// |
688 | 688 |
/// Processes the next node in the priority queue. |
689 | 689 |
/// |
690 | 690 |
/// \return The processed node. |
691 | 691 |
/// |
692 | 692 |
/// \warning The queue must not be empty! |
693 | 693 |
Node processNextNode() { |
694 | 694 |
Node node = queue.back(); |
695 | 695 |
queue.pop_back(); |
696 | 696 |
if ((*_node_order)[node] == -2) { |
697 | 697 |
Arc arc = prepare(node); |
698 | 698 |
Node source = _digraph->source(arc); |
699 | 699 |
while ((*_node_order)[source] != -1) { |
700 | 700 |
if ((*_node_order)[source] >= 0) { |
701 | 701 |
arc = contract(source); |
702 | 702 |
} else { |
703 | 703 |
arc = prepare(source); |
704 | 704 |
} |
705 | 705 |
source = _digraph->source(arc); |
706 | 706 |
} |
707 | 707 |
finalize(arc); |
708 | 708 |
level_stack.clear(); |
709 | 709 |
} |
710 | 710 |
return node; |
711 | 711 |
} |
712 | 712 |
|
713 | 713 |
/// \brief Returns the number of the nodes to be processed. |
714 | 714 |
/// |
715 | 715 |
/// Returns the number of the nodes to be processed. |
716 | 716 |
int queueSize() const { |
717 | 717 |
return queue.size(); |
718 | 718 |
} |
719 | 719 |
|
720 | 720 |
/// \brief Returns \c false if there are nodes to be processed. |
721 | 721 |
/// |
722 | 722 |
/// Returns \c false if there are nodes to be processed. |
723 | 723 |
bool emptyQueue() const { |
724 | 724 |
return queue.empty(); |
725 | 725 |
} |
726 | 726 |
|
727 | 727 |
/// \brief Executes the algorithm. |
728 | 728 |
/// |
729 | 729 |
/// Executes the algorithm. |
730 | 730 |
/// |
731 | 731 |
/// \pre init() must be called and at least one node should be added |
732 | 732 |
/// with addSource() before using this function. |
733 | 733 |
/// |
734 | 734 |
///\note mca.start() is just a shortcut of the following code. |
735 | 735 |
///\code |
736 | 736 |
///while (!mca.emptyQueue()) { |
737 | 737 |
/// mca.processNextNode(); |
738 | 738 |
///} |
739 | 739 |
///\endcode |
740 | 740 |
void start() { |
741 | 741 |
while (!emptyQueue()) { |
742 | 742 |
processNextNode(); |
743 | 743 |
} |
744 | 744 |
} |
745 | 745 |
|
746 | 746 |
/// \brief Runs %MinCostArborescence algorithm from node \c s. |
747 | 747 |
/// |
748 | 748 |
/// This method runs the %MinCostArborescence algorithm from |
749 | 749 |
/// a root node \c s. |
750 | 750 |
/// |
751 | 751 |
/// \note mca.run(s) is just a shortcut of the following code. |
752 | 752 |
/// \code |
753 | 753 |
/// mca.init(); |
754 | 754 |
/// mca.addSource(s); |
755 | 755 |
/// mca.start(); |
756 | 756 |
/// \endcode |
757 | 757 |
void run(Node node) { |
758 | 758 |
init(); |
759 | 759 |
addSource(node); |
760 | 760 |
start(); |
761 | 761 |
} |
762 | 762 |
|
763 | 763 |
///@} |
764 | 764 |
|
765 | 765 |
}; |
766 | 766 |
|
767 | 767 |
/// \ingroup spantree |
768 | 768 |
/// |
769 | 769 |
/// \brief Function type interface for MinCostArborescence algorithm. |
770 | 770 |
/// |
771 | 771 |
/// Function type interface for MinCostArborescence algorithm. |
772 | 772 |
/// \param digraph The Digraph that the algorithm runs on. |
773 | 773 |
/// \param cost The CostMap of the arcs. |
774 | 774 |
/// \param source The source of the arborescence. |
775 | 775 |
/// \retval arborescence The bool ArcMap which stores the arborescence. |
776 | 776 |
/// \return The cost of the arborescence. |
777 | 777 |
/// |
778 | 778 |
/// \sa MinCostArborescence |
779 | 779 |
template <typename Digraph, typename CostMap, typename ArborescenceMap> |
780 | 780 |
typename CostMap::Value minCostArborescence(const Digraph& digraph, |
781 | 781 |
const CostMap& cost, |
782 | 782 |
typename Digraph::Node source, |
783 | 783 |
ArborescenceMap& arborescence) { |
784 | 784 |
typename MinCostArborescence<Digraph, CostMap> |
785 | 785 |
::template DefArborescenceMap<ArborescenceMap> |
786 | 786 |
::Create mca(digraph, cost); |
787 | 787 |
mca.arborescenceMap(arborescence); |
788 | 788 |
mca.run(source); |
789 | 789 |
return mca.arborescenceValue(); |
790 | 790 |
} |
791 | 791 |
|
792 | 792 |
} |
793 | 793 |
|
794 | 794 |
#endif |
... | ... |
@@ -150,856 +150,856 @@ |
150 | 150 |
|
151 | 151 |
template <typename _Word> |
152 | 152 |
class RandomCore { |
153 | 153 |
public: |
154 | 154 |
|
155 | 155 |
typedef _Word Word; |
156 | 156 |
|
157 | 157 |
private: |
158 | 158 |
|
159 | 159 |
static const int bits = RandomTraits<Word>::bits; |
160 | 160 |
|
161 | 161 |
static const int length = RandomTraits<Word>::length; |
162 | 162 |
static const int shift = RandomTraits<Word>::shift; |
163 | 163 |
|
164 | 164 |
public: |
165 | 165 |
|
166 | 166 |
void initState() { |
167 | 167 |
static const Word seedArray[4] = { |
168 | 168 |
0x12345u, 0x23456u, 0x34567u, 0x45678u |
169 | 169 |
}; |
170 | 170 |
|
171 | 171 |
initState(seedArray, seedArray + 4); |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
void initState(Word seed) { |
175 | 175 |
|
176 | 176 |
static const Word mul = RandomTraits<Word>::mul; |
177 | 177 |
|
178 | 178 |
current = state; |
179 | 179 |
|
180 | 180 |
Word *curr = state + length - 1; |
181 | 181 |
curr[0] = seed; --curr; |
182 | 182 |
for (int i = 1; i < length; ++i) { |
183 | 183 |
curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i); |
184 | 184 |
--curr; |
185 | 185 |
} |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
template <typename Iterator> |
189 | 189 |
void initState(Iterator begin, Iterator end) { |
190 | 190 |
|
191 | 191 |
static const Word init = RandomTraits<Word>::arrayInit; |
192 | 192 |
static const Word mul1 = RandomTraits<Word>::arrayMul1; |
193 | 193 |
static const Word mul2 = RandomTraits<Word>::arrayMul2; |
194 | 194 |
|
195 | 195 |
|
196 | 196 |
Word *curr = state + length - 1; --curr; |
197 | 197 |
Iterator it = begin; int cnt = 0; |
198 | 198 |
int num; |
199 | 199 |
|
200 | 200 |
initState(init); |
201 | 201 |
|
202 | 202 |
num = length > end - begin ? length : end - begin; |
203 | 203 |
while (num--) { |
204 | 204 |
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1)) |
205 | 205 |
+ *it + cnt; |
206 | 206 |
++it; ++cnt; |
207 | 207 |
if (it == end) { |
208 | 208 |
it = begin; cnt = 0; |
209 | 209 |
} |
210 | 210 |
if (curr == state) { |
211 | 211 |
curr = state + length - 1; curr[0] = state[0]; |
212 | 212 |
} |
213 | 213 |
--curr; |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
num = length - 1; cnt = length - (curr - state) - 1; |
217 | 217 |
while (num--) { |
218 | 218 |
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2)) |
219 | 219 |
- cnt; |
220 | 220 |
--curr; ++cnt; |
221 | 221 |
if (curr == state) { |
222 | 222 |
curr = state + length - 1; curr[0] = state[0]; --curr; |
223 | 223 |
cnt = 1; |
224 | 224 |
} |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
state[length - 1] = Word(1) << (bits - 1); |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
void copyState(const RandomCore& other) { |
231 | 231 |
std::copy(other.state, other.state + length, state); |
232 | 232 |
current = state + (other.current - other.state); |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
Word operator()() { |
236 | 236 |
if (current == state) fillState(); |
237 | 237 |
--current; |
238 | 238 |
Word rnd = *current; |
239 | 239 |
return RandomTraits<Word>::tempering(rnd); |
240 | 240 |
} |
241 | 241 |
|
242 | 242 |
private: |
243 | 243 |
|
244 | 244 |
|
245 | 245 |
void fillState() { |
246 | 246 |
static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask }; |
247 | 247 |
static const Word loMask = RandomTraits<Word>::loMask; |
248 | 248 |
static const Word hiMask = RandomTraits<Word>::hiMask; |
249 | 249 |
|
250 | 250 |
current = state + length; |
251 | 251 |
|
252 | 252 |
register Word *curr = state + length - 1; |
253 | 253 |
register long num; |
254 | 254 |
|
255 | 255 |
num = length - shift; |
256 | 256 |
while (num--) { |
257 | 257 |
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^ |
258 | 258 |
curr[- shift] ^ mask[curr[-1] & 1ul]; |
259 | 259 |
--curr; |
260 | 260 |
} |
261 | 261 |
num = shift - 1; |
262 | 262 |
while (num--) { |
263 | 263 |
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^ |
264 | 264 |
curr[length - shift] ^ mask[curr[-1] & 1ul]; |
265 | 265 |
--curr; |
266 | 266 |
} |
267 | 267 |
state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^ |
268 | 268 |
curr[length - shift] ^ mask[curr[length - 1] & 1ul]; |
269 | 269 |
|
270 | 270 |
} |
271 | 271 |
|
272 | 272 |
|
273 | 273 |
Word *current; |
274 | 274 |
Word state[length]; |
275 | 275 |
|
276 | 276 |
}; |
277 | 277 |
|
278 | 278 |
|
279 | 279 |
template <typename Result, |
280 | 280 |
int shift = (std::numeric_limits<Result>::digits + 1) / 2> |
281 | 281 |
struct Masker { |
282 | 282 |
static Result mask(const Result& result) { |
283 | 283 |
return Masker<Result, (shift + 1) / 2>:: |
284 | 284 |
mask(static_cast<Result>(result | (result >> shift))); |
285 | 285 |
} |
286 | 286 |
}; |
287 | 287 |
|
288 | 288 |
template <typename Result> |
289 | 289 |
struct Masker<Result, 1> { |
290 | 290 |
static Result mask(const Result& result) { |
291 | 291 |
return static_cast<Result>(result | (result >> 1)); |
292 | 292 |
} |
293 | 293 |
}; |
294 | 294 |
|
295 | 295 |
template <typename Result, typename Word, |
296 | 296 |
int rest = std::numeric_limits<Result>::digits, int shift = 0, |
297 | 297 |
bool last = rest <= std::numeric_limits<Word>::digits> |
298 | 298 |
struct IntConversion { |
299 | 299 |
static const int bits = std::numeric_limits<Word>::digits; |
300 | 300 |
|
301 | 301 |
static Result convert(RandomCore<Word>& rnd) { |
302 | 302 |
return static_cast<Result>(rnd() >> (bits - rest)) << shift; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
}; |
306 | 306 |
|
307 | 307 |
template <typename Result, typename Word, int rest, int shift> |
308 | 308 |
struct IntConversion<Result, Word, rest, shift, false> { |
309 | 309 |
static const int bits = std::numeric_limits<Word>::digits; |
310 | 310 |
|
311 | 311 |
static Result convert(RandomCore<Word>& rnd) { |
312 | 312 |
return (static_cast<Result>(rnd()) << shift) | |
313 | 313 |
IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd); |
314 | 314 |
} |
315 | 315 |
}; |
316 | 316 |
|
317 | 317 |
|
318 | 318 |
template <typename Result, typename Word, |
319 | 319 |
bool one_word = (std::numeric_limits<Word>::digits < |
320 | 320 |
std::numeric_limits<Result>::digits) > |
321 | 321 |
struct Mapping { |
322 | 322 |
static Result map(RandomCore<Word>& rnd, const Result& bound) { |
323 | 323 |
Word max = Word(bound - 1); |
324 | 324 |
Result mask = Masker<Result>::mask(bound - 1); |
325 | 325 |
Result num; |
326 | 326 |
do { |
327 | 327 |
num = IntConversion<Result, Word>::convert(rnd) & mask; |
328 | 328 |
} while (num > max); |
329 | 329 |
return num; |
330 | 330 |
} |
331 | 331 |
}; |
332 | 332 |
|
333 | 333 |
template <typename Result, typename Word> |
334 | 334 |
struct Mapping<Result, Word, false> { |
335 | 335 |
static Result map(RandomCore<Word>& rnd, const Result& bound) { |
336 | 336 |
Word max = Word(bound - 1); |
337 | 337 |
Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2> |
338 | 338 |
::mask(max); |
339 | 339 |
Word num; |
340 | 340 |
do { |
341 | 341 |
num = rnd() & mask; |
342 | 342 |
} while (num > max); |
343 | 343 |
return num; |
344 | 344 |
} |
345 | 345 |
}; |
346 | 346 |
|
347 | 347 |
template <typename Result, int exp> |
348 | 348 |
struct ShiftMultiplier { |
349 | 349 |
static const Result multiplier() { |
350 | 350 |
Result res = ShiftMultiplier<Result, exp / 2>::multiplier(); |
351 | 351 |
res *= res; |
352 | 352 |
if ((exp & 1) == 1) res *= static_cast<Result>(0.5); |
353 | 353 |
return res; |
354 | 354 |
} |
355 | 355 |
}; |
356 | 356 |
|
357 | 357 |
template <typename Result> |
358 | 358 |
struct ShiftMultiplier<Result, 0> { |
359 | 359 |
static const Result multiplier() { |
360 | 360 |
return static_cast<Result>(1.0); |
361 | 361 |
} |
362 | 362 |
}; |
363 | 363 |
|
364 | 364 |
template <typename Result> |
365 | 365 |
struct ShiftMultiplier<Result, 20> { |
366 | 366 |
static const Result multiplier() { |
367 | 367 |
return static_cast<Result>(1.0/1048576.0); |
368 | 368 |
} |
369 | 369 |
}; |
370 | 370 |
|
371 | 371 |
template <typename Result> |
372 | 372 |
struct ShiftMultiplier<Result, 32> { |
373 | 373 |
static const Result multiplier() { |
374 | 374 |
return static_cast<Result>(1.0/4294967296.0); |
375 | 375 |
} |
376 | 376 |
}; |
377 | 377 |
|
378 | 378 |
template <typename Result> |
379 | 379 |
struct ShiftMultiplier<Result, 53> { |
380 | 380 |
static const Result multiplier() { |
381 | 381 |
return static_cast<Result>(1.0/9007199254740992.0); |
382 | 382 |
} |
383 | 383 |
}; |
384 | 384 |
|
385 | 385 |
template <typename Result> |
386 | 386 |
struct ShiftMultiplier<Result, 64> { |
387 | 387 |
static const Result multiplier() { |
388 | 388 |
return static_cast<Result>(1.0/18446744073709551616.0); |
389 | 389 |
} |
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
template <typename Result, int exp> |
393 | 393 |
struct Shifting { |
394 | 394 |
static Result shift(const Result& result) { |
395 | 395 |
return result * ShiftMultiplier<Result, exp>::multiplier(); |
396 | 396 |
} |
397 | 397 |
}; |
398 | 398 |
|
399 | 399 |
template <typename Result, typename Word, |
400 | 400 |
int rest = std::numeric_limits<Result>::digits, int shift = 0, |
401 | 401 |
bool last = rest <= std::numeric_limits<Word>::digits> |
402 | 402 |
struct RealConversion{ |
403 | 403 |
static const int bits = std::numeric_limits<Word>::digits; |
404 | 404 |
|
405 | 405 |
static Result convert(RandomCore<Word>& rnd) { |
406 | 406 |
return Shifting<Result, shift + rest>:: |
407 | 407 |
shift(static_cast<Result>(rnd() >> (bits - rest))); |
408 | 408 |
} |
409 | 409 |
}; |
410 | 410 |
|
411 | 411 |
template <typename Result, typename Word, int rest, int shift> |
412 | 412 |
struct RealConversion<Result, Word, rest, shift, false> { |
413 | 413 |
static const int bits = std::numeric_limits<Word>::digits; |
414 | 414 |
|
415 | 415 |
static Result convert(RandomCore<Word>& rnd) { |
416 | 416 |
return Shifting<Result, shift + bits>:: |
417 | 417 |
shift(static_cast<Result>(rnd())) + |
418 | 418 |
RealConversion<Result, Word, rest-bits, shift + bits>:: |
419 | 419 |
convert(rnd); |
420 | 420 |
} |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
template <typename Result, typename Word> |
424 | 424 |
struct Initializer { |
425 | 425 |
|
426 | 426 |
template <typename Iterator> |
427 | 427 |
static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) { |
428 | 428 |
std::vector<Word> ws; |
429 | 429 |
for (Iterator it = begin; it != end; ++it) { |
430 | 430 |
ws.push_back(Word(*it)); |
431 | 431 |
} |
432 | 432 |
rnd.initState(ws.begin(), ws.end()); |
433 | 433 |
} |
434 | 434 |
|
435 | 435 |
static void init(RandomCore<Word>& rnd, Result seed) { |
436 | 436 |
rnd.initState(seed); |
437 | 437 |
} |
438 | 438 |
}; |
439 | 439 |
|
440 | 440 |
template <typename Word> |
441 | 441 |
struct BoolConversion { |
442 | 442 |
static bool convert(RandomCore<Word>& rnd) { |
443 | 443 |
return (rnd() & 1) == 1; |
444 | 444 |
} |
445 | 445 |
}; |
446 | 446 |
|
447 | 447 |
template <typename Word> |
448 | 448 |
struct BoolProducer { |
449 | 449 |
Word buffer; |
450 | 450 |
int num; |
451 | 451 |
|
452 | 452 |
BoolProducer() : num(0) {} |
453 | 453 |
|
454 | 454 |
bool convert(RandomCore<Word>& rnd) { |
455 | 455 |
if (num == 0) { |
456 | 456 |
buffer = rnd(); |
457 | 457 |
num = RandomTraits<Word>::bits; |
458 | 458 |
} |
459 | 459 |
bool r = (buffer & 1); |
460 | 460 |
buffer >>= 1; |
461 | 461 |
--num; |
462 | 462 |
return r; |
463 | 463 |
} |
464 | 464 |
}; |
465 | 465 |
|
466 | 466 |
} |
467 | 467 |
|
468 | 468 |
/// \ingroup misc |
469 | 469 |
/// |
470 | 470 |
/// \brief Mersenne Twister random number generator |
471 | 471 |
/// |
472 | 472 |
/// The Mersenne Twister is a twisted generalized feedback |
473 | 473 |
/// shift-register generator of Matsumoto and Nishimura. The period |
474 | 474 |
/// of this generator is \f$ 2^{19937} - 1 \f$ and it is |
475 | 475 |
/// equi-distributed in 623 dimensions for 32-bit numbers. The time |
476 | 476 |
/// performance of this generator is comparable to the commonly used |
477 | 477 |
/// generators. |
478 | 478 |
/// |
479 | 479 |
/// This implementation is specialized for both 32-bit and 64-bit |
480 | 480 |
/// architectures. The generators differ sligthly in the |
481 | 481 |
/// initialization and generation phase so they produce two |
482 | 482 |
/// completly different sequences. |
483 | 483 |
/// |
484 | 484 |
/// The generator gives back random numbers of serveral types. To |
485 | 485 |
/// get a random number from a range of a floating point type you |
486 | 486 |
/// can use one form of the \c operator() or the \c real() member |
487 | 487 |
/// function. If you want to get random number from the {0, 1, ..., |
488 | 488 |
/// n-1} integer range use the \c operator[] or the \c integer() |
489 | 489 |
/// method. And to get random number from the whole range of an |
490 | 490 |
/// integer type you can use the argumentless \c integer() or \c |
491 | 491 |
/// uinteger() functions. After all you can get random bool with |
492 | 492 |
/// equal chance of true and false or given probability of true |
493 | 493 |
/// result with the \c boolean() member functions. |
494 | 494 |
/// |
495 | 495 |
///\code |
496 | 496 |
/// // The commented code is identical to the other |
497 | 497 |
/// double a = rnd(); // [0.0, 1.0) |
498 | 498 |
/// // double a = rnd.real(); // [0.0, 1.0) |
499 | 499 |
/// double b = rnd(100.0); // [0.0, 100.0) |
500 | 500 |
/// // double b = rnd.real(100.0); // [0.0, 100.0) |
501 | 501 |
/// double c = rnd(1.0, 2.0); // [1.0, 2.0) |
502 | 502 |
/// // double c = rnd.real(1.0, 2.0); // [1.0, 2.0) |
503 | 503 |
/// int d = rnd[100000]; // 0..99999 |
504 | 504 |
/// // int d = rnd.integer(100000); // 0..99999 |
505 | 505 |
/// int e = rnd[6] + 1; // 1..6 |
506 | 506 |
/// // int e = rnd.integer(1, 1 + 6); // 1..6 |
507 | 507 |
/// int b = rnd.uinteger<int>(); // 0 .. 2^31 - 1 |
508 | 508 |
/// int c = rnd.integer<int>(); // - 2^31 .. 2^31 - 1 |
509 | 509 |
/// bool g = rnd.boolean(); // P(g = true) = 0.5 |
510 | 510 |
/// bool h = rnd.boolean(0.8); // P(h = true) = 0.8 |
511 | 511 |
///\endcode |
512 | 512 |
/// |
513 | 513 |
/// LEMON provides a global instance of the random number |
514 | 514 |
/// generator which name is \ref lemon::rnd "rnd". Usually it is a |
515 | 515 |
/// good programming convenience to use this global generator to get |
516 | 516 |
/// random numbers. |
517 | 517 |
class Random { |
518 | 518 |
private: |
519 | 519 |
|
520 | 520 |
// Architecture word |
521 | 521 |
typedef unsigned long Word; |
522 | 522 |
|
523 | 523 |
_random_bits::RandomCore<Word> core; |
524 | 524 |
_random_bits::BoolProducer<Word> bool_producer; |
525 | 525 |
|
526 | 526 |
|
527 | 527 |
public: |
528 | 528 |
|
529 | 529 |
///\name Initialization |
530 | 530 |
/// |
531 | 531 |
/// @{ |
532 | 532 |
|
533 | 533 |
/// \brief Default constructor |
534 | 534 |
/// |
535 | 535 |
/// Constructor with constant seeding. |
536 | 536 |
Random() { core.initState(); } |
537 | 537 |
|
538 | 538 |
/// \brief Constructor with seed |
539 | 539 |
/// |
540 | 540 |
/// Constructor with seed. The current number type will be converted |
541 | 541 |
/// to the architecture word type. |
542 | 542 |
template <typename Number> |
543 | 543 |
Random(Number seed) { |
544 | 544 |
_random_bits::Initializer<Number, Word>::init(core, seed); |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
/// \brief Constructor with array seeding |
548 | 548 |
/// |
549 | 549 |
/// Constructor with array seeding. The given range should contain |
550 | 550 |
/// any number type and the numbers will be converted to the |
551 | 551 |
/// architecture word type. |
552 | 552 |
template <typename Iterator> |
553 | 553 |
Random(Iterator begin, Iterator end) { |
554 | 554 |
typedef typename std::iterator_traits<Iterator>::value_type Number; |
555 | 555 |
_random_bits::Initializer<Number, Word>::init(core, begin, end); |
556 | 556 |
} |
557 | 557 |
|
558 | 558 |
/// \brief Copy constructor |
559 | 559 |
/// |
560 | 560 |
/// Copy constructor. The generated sequence will be identical to |
561 | 561 |
/// the other sequence. It can be used to save the current state |
562 | 562 |
/// of the generator and later use it to generate the same |
563 | 563 |
/// sequence. |
564 | 564 |
Random(const Random& other) { |
565 | 565 |
core.copyState(other.core); |
566 | 566 |
} |
567 | 567 |
|
568 | 568 |
/// \brief Assign operator |
569 | 569 |
/// |
570 | 570 |
/// Assign operator. The generated sequence will be identical to |
571 | 571 |
/// the other sequence. It can be used to save the current state |
572 | 572 |
/// of the generator and later use it to generate the same |
573 | 573 |
/// sequence. |
574 | 574 |
Random& operator=(const Random& other) { |
575 | 575 |
if (&other != this) { |
576 | 576 |
core.copyState(other.core); |
577 | 577 |
} |
578 | 578 |
return *this; |
579 | 579 |
} |
580 | 580 |
|
581 | 581 |
/// \brief Seeding random sequence |
582 | 582 |
/// |
583 | 583 |
/// Seeding the random sequence. The current number type will be |
584 | 584 |
/// converted to the architecture word type. |
585 | 585 |
template <typename Number> |
586 | 586 |
void seed(Number seed) { |
587 | 587 |
_random_bits::Initializer<Number, Word>::init(core, seed); |
588 | 588 |
} |
589 | 589 |
|
590 | 590 |
/// \brief Seeding random sequence |
591 | 591 |
/// |
592 | 592 |
/// Seeding the random sequence. The given range should contain |
593 | 593 |
/// any number type and the numbers will be converted to the |
594 | 594 |
/// architecture word type. |
595 | 595 |
template <typename Iterator> |
596 | 596 |
void seed(Iterator begin, Iterator end) { |
597 | 597 |
typedef typename std::iterator_traits<Iterator>::value_type Number; |
598 | 598 |
_random_bits::Initializer<Number, Word>::init(core, begin, end); |
599 | 599 |
} |
600 | 600 |
|
601 | 601 |
/// \brief Seeding from file or from process id and time |
602 | 602 |
/// |
603 | 603 |
/// By default, this function calls the \c seedFromFile() member |
604 | 604 |
/// function with the <tt>/dev/urandom</tt> file. If it does not success, |
605 | 605 |
/// it uses the \c seedFromTime(). |
606 | 606 |
/// \return Currently always \c true. |
607 | 607 |
bool seed() { |
608 | 608 |
#ifndef WIN32 |
609 | 609 |
if (seedFromFile("/dev/urandom", 0)) return true; |
610 | 610 |
#endif |
611 | 611 |
if (seedFromTime()) return true; |
612 | 612 |
return false; |
613 | 613 |
} |
614 | 614 |
|
615 | 615 |
/// \brief Seeding from file |
616 | 616 |
/// |
617 | 617 |
/// Seeding the random sequence from file. The linux kernel has two |
618 | 618 |
/// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which |
619 | 619 |
/// could give good seed values for pseudo random generators (The |
620 | 620 |
/// difference between two devices is that the <tt>random</tt> may |
621 | 621 |
/// block the reading operation while the kernel can give good |
622 | 622 |
/// source of randomness, while the <tt>urandom</tt> does not |
623 | 623 |
/// block the input, but it could give back bytes with worse |
624 | 624 |
/// entropy). |
625 | 625 |
/// \param file The source file |
626 | 626 |
/// \param offset The offset, from the file read. |
627 | 627 |
/// \return \c true when the seeding successes. |
628 | 628 |
#ifndef WIN32 |
629 | 629 |
bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0) |
630 | 630 |
#else |
631 | 631 |
bool seedFromFile(const std::string& file = "", int offset = 0) |
632 | 632 |
#endif |
633 | 633 |
{ |
634 | 634 |
std::ifstream rs(file.c_str()); |
635 | 635 |
const int size = 4; |
636 | 636 |
Word buf[size]; |
637 | 637 |
if (offset != 0 && !rs.seekg(offset)) return false; |
638 | 638 |
if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false; |
639 | 639 |
seed(buf, buf + size); |
640 | 640 |
return true; |
641 | 641 |
} |
642 | 642 |
|
643 | 643 |
/// \brief Seding from process id and time |
644 | 644 |
/// |
645 | 645 |
/// Seding from process id and time. This function uses the |
646 | 646 |
/// current process id and the current time for initialize the |
647 | 647 |
/// random sequence. |
648 | 648 |
/// \return Currently always \c true. |
649 | 649 |
bool seedFromTime() { |
650 | 650 |
#ifndef WIN32 |
651 | 651 |
timeval tv; |
652 | 652 |
gettimeofday(&tv, 0); |
653 | 653 |
seed(getpid() + tv.tv_sec + tv.tv_usec); |
654 | 654 |
#else |
655 | 655 |
seed(bits::getWinRndSeed()); |
656 | 656 |
#endif |
657 | 657 |
return true; |
658 | 658 |
} |
659 | 659 |
|
660 | 660 |
/// @} |
661 | 661 |
|
662 |
///\name Uniform |
|
662 |
///\name Uniform Distributions |
|
663 | 663 |
/// |
664 | 664 |
/// @{ |
665 | 665 |
|
666 | 666 |
/// \brief Returns a random real number from the range [0, 1) |
667 | 667 |
/// |
668 | 668 |
/// It returns a random real number from the range [0, 1). The |
669 | 669 |
/// default Number type is \c double. |
670 | 670 |
template <typename Number> |
671 | 671 |
Number real() { |
672 | 672 |
return _random_bits::RealConversion<Number, Word>::convert(core); |
673 | 673 |
} |
674 | 674 |
|
675 | 675 |
double real() { |
676 | 676 |
return real<double>(); |
677 | 677 |
} |
678 | 678 |
|
679 | 679 |
/// \brief Returns a random real number from the range [0, 1) |
680 | 680 |
/// |
681 | 681 |
/// It returns a random double from the range [0, 1). |
682 | 682 |
double operator()() { |
683 | 683 |
return real<double>(); |
684 | 684 |
} |
685 | 685 |
|
686 | 686 |
/// \brief Returns a random real number from the range [0, b) |
687 | 687 |
/// |
688 | 688 |
/// It returns a random real number from the range [0, b). |
689 | 689 |
double operator()(double b) { |
690 | 690 |
return real<double>() * b; |
691 | 691 |
} |
692 | 692 |
|
693 | 693 |
/// \brief Returns a random real number from the range [a, b) |
694 | 694 |
/// |
695 | 695 |
/// It returns a random real number from the range [a, b). |
696 | 696 |
double operator()(double a, double b) { |
697 | 697 |
return real<double>() * (b - a) + a; |
698 | 698 |
} |
699 | 699 |
|
700 | 700 |
/// \brief Returns a random integer from a range |
701 | 701 |
/// |
702 | 702 |
/// It returns a random integer from the range {0, 1, ..., b - 1}. |
703 | 703 |
template <typename Number> |
704 | 704 |
Number integer(Number b) { |
705 | 705 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
706 | 706 |
} |
707 | 707 |
|
708 | 708 |
/// \brief Returns a random integer from a range |
709 | 709 |
/// |
710 | 710 |
/// It returns a random integer from the range {a, a + 1, ..., b - 1}. |
711 | 711 |
template <typename Number> |
712 | 712 |
Number integer(Number a, Number b) { |
713 | 713 |
return _random_bits::Mapping<Number, Word>::map(core, b - a) + a; |
714 | 714 |
} |
715 | 715 |
|
716 | 716 |
/// \brief Returns a random integer from a range |
717 | 717 |
/// |
718 | 718 |
/// It returns a random integer from the range {0, 1, ..., b - 1}. |
719 | 719 |
template <typename Number> |
720 | 720 |
Number operator[](Number b) { |
721 | 721 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
722 | 722 |
} |
723 | 723 |
|
724 | 724 |
/// \brief Returns a random non-negative integer |
725 | 725 |
/// |
726 | 726 |
/// It returns a random non-negative integer uniformly from the |
727 | 727 |
/// whole range of the current \c Number type. The default result |
728 | 728 |
/// type of this function is <tt>unsigned int</tt>. |
729 | 729 |
template <typename Number> |
730 | 730 |
Number uinteger() { |
731 | 731 |
return _random_bits::IntConversion<Number, Word>::convert(core); |
732 | 732 |
} |
733 | 733 |
|
734 | 734 |
unsigned int uinteger() { |
735 | 735 |
return uinteger<unsigned int>(); |
736 | 736 |
} |
737 | 737 |
|
738 | 738 |
/// \brief Returns a random integer |
739 | 739 |
/// |
740 | 740 |
/// It returns a random integer uniformly from the whole range of |
741 | 741 |
/// the current \c Number type. The default result type of this |
742 | 742 |
/// function is \c int. |
743 | 743 |
template <typename Number> |
744 | 744 |
Number integer() { |
745 | 745 |
static const int nb = std::numeric_limits<Number>::digits + |
746 | 746 |
(std::numeric_limits<Number>::is_signed ? 1 : 0); |
747 | 747 |
return _random_bits::IntConversion<Number, Word, nb>::convert(core); |
748 | 748 |
} |
749 | 749 |
|
750 | 750 |
int integer() { |
751 | 751 |
return integer<int>(); |
752 | 752 |
} |
753 | 753 |
|
754 | 754 |
/// \brief Returns a random bool |
755 | 755 |
/// |
756 | 756 |
/// It returns a random bool. The generator holds a buffer for |
757 | 757 |
/// random bits. Every time when it become empty the generator makes |
758 | 758 |
/// a new random word and fill the buffer up. |
759 | 759 |
bool boolean() { |
760 | 760 |
return bool_producer.convert(core); |
761 | 761 |
} |
762 | 762 |
|
763 | 763 |
/// @} |
764 | 764 |
|
765 |
///\name Non-uniform |
|
765 |
///\name Non-uniform Distributions |
|
766 | 766 |
/// |
767 | 767 |
///@{ |
768 | 768 |
|
769 | 769 |
/// \brief Returns a random bool with given probability of true result. |
770 | 770 |
/// |
771 | 771 |
/// It returns a random bool with given probability of true result. |
772 | 772 |
bool boolean(double p) { |
773 | 773 |
return operator()() < p; |
774 | 774 |
} |
775 | 775 |
|
776 | 776 |
/// Standard normal (Gauss) distribution |
777 | 777 |
|
778 | 778 |
/// Standard normal (Gauss) distribution. |
779 | 779 |
/// \note The Cartesian form of the Box-Muller |
780 | 780 |
/// transformation is used to generate a random normal distribution. |
781 | 781 |
double gauss() |
782 | 782 |
{ |
783 | 783 |
double V1,V2,S; |
784 | 784 |
do { |
785 | 785 |
V1=2*real<double>()-1; |
786 | 786 |
V2=2*real<double>()-1; |
787 | 787 |
S=V1*V1+V2*V2; |
788 | 788 |
} while(S>=1); |
789 | 789 |
return std::sqrt(-2*std::log(S)/S)*V1; |
790 | 790 |
} |
791 | 791 |
/// Normal (Gauss) distribution with given mean and standard deviation |
792 | 792 |
|
793 | 793 |
/// Normal (Gauss) distribution with given mean and standard deviation. |
794 | 794 |
/// \sa gauss() |
795 | 795 |
double gauss(double mean,double std_dev) |
796 | 796 |
{ |
797 | 797 |
return gauss()*std_dev+mean; |
798 | 798 |
} |
799 | 799 |
|
800 | 800 |
/// Lognormal distribution |
801 | 801 |
|
802 | 802 |
/// Lognormal distribution. The parameters are the mean and the standard |
803 | 803 |
/// deviation of <tt>exp(X)</tt>. |
804 | 804 |
/// |
805 | 805 |
double lognormal(double n_mean,double n_std_dev) |
806 | 806 |
{ |
807 | 807 |
return std::exp(gauss(n_mean,n_std_dev)); |
808 | 808 |
} |
809 | 809 |
/// Lognormal distribution |
810 | 810 |
|
811 | 811 |
/// Lognormal distribution. The parameter is an <tt>std::pair</tt> of |
812 | 812 |
/// the mean and the standard deviation of <tt>exp(X)</tt>. |
813 | 813 |
/// |
814 | 814 |
double lognormal(const std::pair<double,double> ¶ms) |
815 | 815 |
{ |
816 | 816 |
return std::exp(gauss(params.first,params.second)); |
817 | 817 |
} |
818 | 818 |
/// Compute the lognormal parameters from mean and standard deviation |
819 | 819 |
|
820 | 820 |
/// This function computes the lognormal parameters from mean and |
821 | 821 |
/// standard deviation. The return value can direcly be passed to |
822 | 822 |
/// lognormal(). |
823 | 823 |
std::pair<double,double> lognormalParamsFromMD(double mean, |
824 | 824 |
double std_dev) |
825 | 825 |
{ |
826 | 826 |
double fr=std_dev/mean; |
827 | 827 |
fr*=fr; |
828 | 828 |
double lg=std::log(1+fr); |
829 | 829 |
return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg)); |
830 | 830 |
} |
831 | 831 |
/// Lognormal distribution with given mean and standard deviation |
832 | 832 |
|
833 | 833 |
/// Lognormal distribution with given mean and standard deviation. |
834 | 834 |
/// |
835 | 835 |
double lognormalMD(double mean,double std_dev) |
836 | 836 |
{ |
837 | 837 |
return lognormal(lognormalParamsFromMD(mean,std_dev)); |
838 | 838 |
} |
839 | 839 |
|
840 | 840 |
/// Exponential distribution with given mean |
841 | 841 |
|
842 | 842 |
/// This function generates an exponential distribution random number |
843 | 843 |
/// with mean <tt>1/lambda</tt>. |
844 | 844 |
/// |
845 | 845 |
double exponential(double lambda=1.0) |
846 | 846 |
{ |
847 | 847 |
return -std::log(1.0-real<double>())/lambda; |
848 | 848 |
} |
849 | 849 |
|
850 | 850 |
/// Gamma distribution with given integer shape |
851 | 851 |
|
852 | 852 |
/// This function generates a gamma distribution random number. |
853 | 853 |
/// |
854 | 854 |
///\param k shape parameter (<tt>k>0</tt> integer) |
855 | 855 |
double gamma(int k) |
856 | 856 |
{ |
857 | 857 |
double s = 0; |
858 | 858 |
for(int i=0;i<k;i++) s-=std::log(1.0-real<double>()); |
859 | 859 |
return s; |
860 | 860 |
} |
861 | 861 |
|
862 | 862 |
/// Gamma distribution with given shape and scale parameter |
863 | 863 |
|
864 | 864 |
/// This function generates a gamma distribution random number. |
865 | 865 |
/// |
866 | 866 |
///\param k shape parameter (<tt>k>0</tt>) |
867 | 867 |
///\param theta scale parameter |
868 | 868 |
/// |
869 | 869 |
double gamma(double k,double theta=1.0) |
870 | 870 |
{ |
871 | 871 |
double xi,nu; |
872 | 872 |
const double delta = k-std::floor(k); |
873 | 873 |
const double v0=E/(E-delta); |
874 | 874 |
do { |
875 | 875 |
double V0=1.0-real<double>(); |
876 | 876 |
double V1=1.0-real<double>(); |
877 | 877 |
double V2=1.0-real<double>(); |
878 | 878 |
if(V2<=v0) |
879 | 879 |
{ |
880 | 880 |
xi=std::pow(V1,1.0/delta); |
881 | 881 |
nu=V0*std::pow(xi,delta-1.0); |
882 | 882 |
} |
883 | 883 |
else |
884 | 884 |
{ |
885 | 885 |
xi=1.0-std::log(V1); |
886 | 886 |
nu=V0*std::exp(-xi); |
887 | 887 |
} |
888 | 888 |
} while(nu>std::pow(xi,delta-1.0)*std::exp(-xi)); |
889 | 889 |
return theta*(xi+gamma(int(std::floor(k)))); |
890 | 890 |
} |
891 | 891 |
|
892 | 892 |
/// Weibull distribution |
893 | 893 |
|
894 | 894 |
/// This function generates a Weibull distribution random number. |
895 | 895 |
/// |
896 | 896 |
///\param k shape parameter (<tt>k>0</tt>) |
897 | 897 |
///\param lambda scale parameter (<tt>lambda>0</tt>) |
898 | 898 |
/// |
899 | 899 |
double weibull(double k,double lambda) |
900 | 900 |
{ |
901 | 901 |
return lambda*pow(-std::log(1.0-real<double>()),1.0/k); |
902 | 902 |
} |
903 | 903 |
|
904 | 904 |
/// Pareto distribution |
905 | 905 |
|
906 | 906 |
/// This function generates a Pareto distribution random number. |
907 | 907 |
/// |
908 | 908 |
///\param k shape parameter (<tt>k>0</tt>) |
909 | 909 |
///\param x_min location parameter (<tt>x_min>0</tt>) |
910 | 910 |
/// |
911 | 911 |
double pareto(double k,double x_min) |
912 | 912 |
{ |
913 | 913 |
return exponential(gamma(k,1.0/x_min))+x_min; |
914 | 914 |
} |
915 | 915 |
|
916 | 916 |
/// Poisson distribution |
917 | 917 |
|
918 | 918 |
/// This function generates a Poisson distribution random number with |
919 | 919 |
/// parameter \c lambda. |
920 | 920 |
/// |
921 | 921 |
/// The probability mass function of this distribusion is |
922 | 922 |
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f] |
923 | 923 |
/// \note The algorithm is taken from the book of Donald E. Knuth titled |
924 | 924 |
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the |
925 | 925 |
/// return value. |
926 | 926 |
|
927 | 927 |
int poisson(double lambda) |
928 | 928 |
{ |
929 | 929 |
const double l = std::exp(-lambda); |
930 | 930 |
int k=0; |
931 | 931 |
double p = 1.0; |
932 | 932 |
do { |
933 | 933 |
k++; |
934 | 934 |
p*=real<double>(); |
935 | 935 |
} while (p>=l); |
936 | 936 |
return k-1; |
937 | 937 |
} |
938 | 938 |
|
939 | 939 |
///@} |
940 | 940 |
|
941 |
///\name Two |
|
941 |
///\name Two Dimensional Distributions |
|
942 | 942 |
/// |
943 | 943 |
///@{ |
944 | 944 |
|
945 | 945 |
/// Uniform distribution on the full unit circle |
946 | 946 |
|
947 | 947 |
/// Uniform distribution on the full unit circle. |
948 | 948 |
/// |
949 | 949 |
dim2::Point<double> disc() |
950 | 950 |
{ |
951 | 951 |
double V1,V2; |
952 | 952 |
do { |
953 | 953 |
V1=2*real<double>()-1; |
954 | 954 |
V2=2*real<double>()-1; |
955 | 955 |
|
956 | 956 |
} while(V1*V1+V2*V2>=1); |
957 | 957 |
return dim2::Point<double>(V1,V2); |
958 | 958 |
} |
959 | 959 |
/// A kind of two dimensional normal (Gauss) distribution |
960 | 960 |
|
961 | 961 |
/// This function provides a turning symmetric two-dimensional distribution. |
962 | 962 |
/// Both coordinates are of standard normal distribution, but they are not |
963 | 963 |
/// independent. |
964 | 964 |
/// |
965 | 965 |
/// \note The coordinates are the two random variables provided by |
966 | 966 |
/// the Box-Muller method. |
967 | 967 |
dim2::Point<double> gauss2() |
968 | 968 |
{ |
969 | 969 |
double V1,V2,S; |
970 | 970 |
do { |
971 | 971 |
V1=2*real<double>()-1; |
972 | 972 |
V2=2*real<double>()-1; |
973 | 973 |
S=V1*V1+V2*V2; |
974 | 974 |
} while(S>=1); |
975 | 975 |
double W=std::sqrt(-2*std::log(S)/S); |
976 | 976 |
return dim2::Point<double>(W*V1,W*V2); |
977 | 977 |
} |
978 | 978 |
/// A kind of two dimensional exponential distribution |
979 | 979 |
|
980 | 980 |
/// This function provides a turning symmetric two-dimensional distribution. |
981 | 981 |
/// The x-coordinate is of conditionally exponential distribution |
982 | 982 |
/// with the condition that x is positive and y=0. If x is negative and |
983 | 983 |
/// y=0 then, -x is of exponential distribution. The same is true for the |
984 | 984 |
/// y-coordinate. |
985 | 985 |
dim2::Point<double> exponential2() |
986 | 986 |
{ |
987 | 987 |
double V1,V2,S; |
988 | 988 |
do { |
989 | 989 |
V1=2*real<double>()-1; |
990 | 990 |
V2=2*real<double>()-1; |
991 | 991 |
S=V1*V1+V2*V2; |
992 | 992 |
} while(S>=1); |
993 | 993 |
double W=-std::log(S)/S; |
994 | 994 |
return dim2::Point<double>(W*V1,W*V2); |
995 | 995 |
} |
996 | 996 |
|
997 | 997 |
///@} |
998 | 998 |
}; |
999 | 999 |
|
1000 | 1000 |
|
1001 | 1001 |
extern Random rnd; |
1002 | 1002 |
|
1003 | 1003 |
} |
1004 | 1004 |
|
1005 | 1005 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/path.h> |
30 | 30 |
#include <lemon/list_graph.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \addtogroup shortest_path |
36 | 36 |
/// @{ |
37 | 37 |
|
38 | 38 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
39 | 39 |
/// having minimum total length. |
40 | 40 |
/// |
41 | 41 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
42 | 42 |
/// finding arc-disjoint paths having minimum total length (cost) |
43 | 43 |
/// from a given source node to a given target node in a digraph. |
44 | 44 |
/// |
45 | 45 |
/// In fact, this implementation is the specialization of the |
46 | 46 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
47 | 47 |
/// |
48 | 48 |
/// \tparam GR The digraph type the algorithm runs on. |
49 | 49 |
/// The default value is \c ListDigraph. |
50 | 50 |
/// \tparam LEN The type of the length (cost) map. |
51 | 51 |
/// The default value is <tt>Digraph::ArcMap<int></tt>. |
52 | 52 |
/// |
53 | 53 |
/// \warning Length values should be \e non-negative \e integers. |
54 | 54 |
/// |
55 | 55 |
/// \note For finding node-disjoint paths this algorithm can be used |
56 | 56 |
/// with \ref SplitNodes. |
57 | 57 |
#ifdef DOXYGEN |
58 | 58 |
template <typename GR, typename LEN> |
59 | 59 |
#else |
60 | 60 |
template < typename GR = ListDigraph, |
61 | 61 |
typename LEN = typename GR::template ArcMap<int> > |
62 | 62 |
#endif |
63 | 63 |
class Suurballe |
64 | 64 |
{ |
65 | 65 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
66 | 66 |
|
67 | 67 |
typedef ConstMap<Arc, int> ConstArcMap; |
68 | 68 |
typedef typename GR::template NodeMap<Arc> PredMap; |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
|
72 | 72 |
/// The type of the digraph the algorithm runs on. |
73 | 73 |
typedef GR Digraph; |
74 | 74 |
/// The type of the length map. |
75 | 75 |
typedef LEN LengthMap; |
76 | 76 |
/// The type of the lengths. |
77 | 77 |
typedef typename LengthMap::Value Length; |
78 | 78 |
/// The type of the flow map. |
79 | 79 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
80 | 80 |
/// The type of the potential map. |
81 | 81 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
82 | 82 |
/// The type of the path structures. |
83 | 83 |
typedef SimplePath<Digraph> Path; |
84 | 84 |
|
85 | 85 |
private: |
86 | 86 |
|
87 | 87 |
/// \brief Special implementation of the Dijkstra algorithm |
88 | 88 |
/// for finding shortest paths in the residual network. |
89 | 89 |
/// |
90 | 90 |
/// \ref ResidualDijkstra is a special implementation of the |
91 | 91 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
92 | 92 |
/// residual network of the digraph with respect to the reduced arc |
93 | 93 |
/// lengths and modifying the node potentials according to the |
94 | 94 |
/// distance of the nodes. |
95 | 95 |
class ResidualDijkstra |
96 | 96 |
{ |
97 | 97 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
98 | 98 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
99 | 99 |
|
100 | 100 |
private: |
101 | 101 |
|
102 | 102 |
// The digraph the algorithm runs on |
103 | 103 |
const Digraph &_graph; |
104 | 104 |
|
105 | 105 |
// The main maps |
106 | 106 |
const FlowMap &_flow; |
107 | 107 |
const LengthMap &_length; |
108 | 108 |
PotentialMap &_potential; |
109 | 109 |
|
110 | 110 |
// The distance map |
111 | 111 |
PotentialMap _dist; |
112 | 112 |
// The pred arc map |
113 | 113 |
PredMap &_pred; |
114 | 114 |
// The processed (i.e. permanently labeled) nodes |
115 | 115 |
std::vector<Node> _proc_nodes; |
116 | 116 |
|
117 | 117 |
Node _s; |
118 | 118 |
Node _t; |
119 | 119 |
|
120 | 120 |
public: |
121 | 121 |
|
122 | 122 |
/// Constructor. |
123 | 123 |
ResidualDijkstra( const Digraph &digraph, |
124 | 124 |
const FlowMap &flow, |
125 | 125 |
const LengthMap &length, |
126 | 126 |
PotentialMap &potential, |
127 | 127 |
PredMap &pred, |
128 | 128 |
Node s, Node t ) : |
129 | 129 |
_graph(digraph), _flow(flow), _length(length), _potential(potential), |
130 | 130 |
_dist(digraph), _pred(pred), _s(s), _t(t) {} |
131 | 131 |
|
132 | 132 |
/// \brief Run the algorithm. It returns \c true if a path is found |
133 | 133 |
/// from the source node to the target node. |
134 | 134 |
bool run() { |
135 | 135 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
136 | 136 |
Heap heap(heap_cross_ref); |
137 | 137 |
heap.push(_s, 0); |
138 | 138 |
_pred[_s] = INVALID; |
139 | 139 |
_proc_nodes.clear(); |
140 | 140 |
|
141 | 141 |
// Process nodes |
142 | 142 |
while (!heap.empty() && heap.top() != _t) { |
143 | 143 |
Node u = heap.top(), v; |
144 | 144 |
Length d = heap.prio() + _potential[u], nd; |
145 | 145 |
_dist[u] = heap.prio(); |
146 | 146 |
heap.pop(); |
147 | 147 |
_proc_nodes.push_back(u); |
148 | 148 |
|
149 | 149 |
// Traverse outgoing arcs |
150 | 150 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
151 | 151 |
if (_flow[e] == 0) { |
152 | 152 |
v = _graph.target(e); |
153 | 153 |
switch(heap.state(v)) { |
154 | 154 |
case Heap::PRE_HEAP: |
155 | 155 |
heap.push(v, d + _length[e] - _potential[v]); |
156 | 156 |
_pred[v] = e; |
157 | 157 |
break; |
158 | 158 |
case Heap::IN_HEAP: |
159 | 159 |
nd = d + _length[e] - _potential[v]; |
160 | 160 |
if (nd < heap[v]) { |
161 | 161 |
heap.decrease(v, nd); |
162 | 162 |
_pred[v] = e; |
163 | 163 |
} |
164 | 164 |
break; |
165 | 165 |
case Heap::POST_HEAP: |
166 | 166 |
break; |
167 | 167 |
} |
168 | 168 |
} |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
// Traverse incoming arcs |
172 | 172 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
173 | 173 |
if (_flow[e] == 1) { |
174 | 174 |
v = _graph.source(e); |
175 | 175 |
switch(heap.state(v)) { |
176 | 176 |
case Heap::PRE_HEAP: |
177 | 177 |
heap.push(v, d - _length[e] - _potential[v]); |
178 | 178 |
_pred[v] = e; |
179 | 179 |
break; |
180 | 180 |
case Heap::IN_HEAP: |
181 | 181 |
nd = d - _length[e] - _potential[v]; |
182 | 182 |
if (nd < heap[v]) { |
183 | 183 |
heap.decrease(v, nd); |
184 | 184 |
_pred[v] = e; |
185 | 185 |
} |
186 | 186 |
break; |
187 | 187 |
case Heap::POST_HEAP: |
188 | 188 |
break; |
189 | 189 |
} |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
} |
193 | 193 |
if (heap.empty()) return false; |
194 | 194 |
|
195 | 195 |
// Update potentials of processed nodes |
196 | 196 |
Length t_dist = heap.prio(); |
197 | 197 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
198 | 198 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
199 | 199 |
return true; |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
}; //class ResidualDijkstra |
203 | 203 |
|
204 | 204 |
private: |
205 | 205 |
|
206 | 206 |
// The digraph the algorithm runs on |
207 | 207 |
const Digraph &_graph; |
208 | 208 |
// The length map |
209 | 209 |
const LengthMap &_length; |
210 | 210 |
|
211 | 211 |
// Arc map of the current flow |
212 | 212 |
FlowMap *_flow; |
213 | 213 |
bool _local_flow; |
214 | 214 |
// Node map of the current potentials |
215 | 215 |
PotentialMap *_potential; |
216 | 216 |
bool _local_potential; |
217 | 217 |
|
218 | 218 |
// The source node |
219 | 219 |
Node _source; |
220 | 220 |
// The target node |
221 | 221 |
Node _target; |
222 | 222 |
|
223 | 223 |
// Container to store the found paths |
224 | 224 |
std::vector< SimplePath<Digraph> > paths; |
225 | 225 |
int _path_num; |
226 | 226 |
|
227 | 227 |
// The pred arc map |
228 | 228 |
PredMap _pred; |
229 | 229 |
// Implementation of the Dijkstra algorithm for finding augmenting |
230 | 230 |
// shortest paths in the residual network |
231 | 231 |
ResidualDijkstra *_dijkstra; |
232 | 232 |
|
233 | 233 |
public: |
234 | 234 |
|
235 | 235 |
/// \brief Constructor. |
236 | 236 |
/// |
237 | 237 |
/// Constructor. |
238 | 238 |
/// |
239 | 239 |
/// \param digraph The digraph the algorithm runs on. |
240 | 240 |
/// \param length The length (cost) values of the arcs. |
241 | 241 |
/// \param s The source node. |
242 | 242 |
/// \param t The target node. |
243 | 243 |
Suurballe( const Digraph &digraph, |
244 | 244 |
const LengthMap &length, |
245 | 245 |
Node s, Node t ) : |
246 | 246 |
_graph(digraph), _length(length), _flow(0), _local_flow(false), |
247 | 247 |
_potential(0), _local_potential(false), _source(s), _target(t), |
248 | 248 |
_pred(digraph) {} |
249 | 249 |
|
250 | 250 |
/// Destructor. |
251 | 251 |
~Suurballe() { |
252 | 252 |
if (_local_flow) delete _flow; |
253 | 253 |
if (_local_potential) delete _potential; |
254 | 254 |
delete _dijkstra; |
255 | 255 |
} |
256 | 256 |
|
257 | 257 |
/// \brief Set the flow map. |
258 | 258 |
/// |
259 | 259 |
/// This function sets the flow map. |
260 | 260 |
/// |
261 | 261 |
/// The found flow contains only 0 and 1 values. It is the union of |
262 | 262 |
/// the found arc-disjoint paths. |
263 | 263 |
/// |
264 | 264 |
/// \return <tt>(*this)</tt> |
265 | 265 |
Suurballe& flowMap(FlowMap &map) { |
266 | 266 |
if (_local_flow) { |
267 | 267 |
delete _flow; |
268 | 268 |
_local_flow = false; |
269 | 269 |
} |
270 | 270 |
_flow = ↦ |
271 | 271 |
return *this; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
/// \brief Set the potential map. |
275 | 275 |
/// |
276 | 276 |
/// This function sets the potential map. |
277 | 277 |
/// |
278 | 278 |
/// The potentials provide the dual solution of the underlying |
279 | 279 |
/// minimum cost flow problem. |
280 | 280 |
/// |
281 | 281 |
/// \return <tt>(*this)</tt> |
282 | 282 |
Suurballe& potentialMap(PotentialMap &map) { |
283 | 283 |
if (_local_potential) { |
284 | 284 |
delete _potential; |
285 | 285 |
_local_potential = false; |
286 | 286 |
} |
287 | 287 |
_potential = ↦ |
288 | 288 |
return *this; |
289 | 289 |
} |
290 | 290 |
|
291 |
/// \name Execution |
|
291 |
/// \name Execution Control |
|
292 | 292 |
/// The simplest way to execute the algorithm is to call the run() |
293 | 293 |
/// function. |
294 | 294 |
/// \n |
295 | 295 |
/// If you only need the flow that is the union of the found |
296 | 296 |
/// arc-disjoint paths, you may call init() and findFlow(). |
297 | 297 |
|
298 | 298 |
/// @{ |
299 | 299 |
|
300 | 300 |
/// \brief Run the algorithm. |
301 | 301 |
/// |
302 | 302 |
/// This function runs the algorithm. |
303 | 303 |
/// |
304 | 304 |
/// \param k The number of paths to be found. |
305 | 305 |
/// |
306 | 306 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
307 | 307 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
308 | 308 |
/// arc-disjoint paths found. |
309 | 309 |
/// |
310 | 310 |
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a |
311 | 311 |
/// shortcut of the following code. |
312 | 312 |
/// \code |
313 | 313 |
/// s.init(); |
314 | 314 |
/// s.findFlow(k); |
315 | 315 |
/// s.findPaths(); |
316 | 316 |
/// \endcode |
317 | 317 |
int run(int k = 2) { |
318 | 318 |
init(); |
319 | 319 |
findFlow(k); |
320 | 320 |
findPaths(); |
321 | 321 |
return _path_num; |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
/// \brief Initialize the algorithm. |
325 | 325 |
/// |
326 | 326 |
/// This function initializes the algorithm. |
327 | 327 |
void init() { |
328 | 328 |
// Initialize maps |
329 | 329 |
if (!_flow) { |
330 | 330 |
_flow = new FlowMap(_graph); |
331 | 331 |
_local_flow = true; |
332 | 332 |
} |
333 | 333 |
if (!_potential) { |
334 | 334 |
_potential = new PotentialMap(_graph); |
335 | 335 |
_local_potential = true; |
336 | 336 |
} |
337 | 337 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
338 | 338 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
339 | 339 |
|
340 | 340 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length, |
341 | 341 |
*_potential, _pred, |
342 | 342 |
_source, _target ); |
343 | 343 |
} |
344 | 344 |
|
345 | 345 |
/// \brief Execute the successive shortest path algorithm to find |
346 | 346 |
/// an optimal flow. |
347 | 347 |
/// |
348 | 348 |
/// This function executes the successive shortest path algorithm to |
349 | 349 |
/// find a minimum cost flow, which is the union of \c k or less |
350 | 350 |
/// arc-disjoint paths. |
351 | 351 |
/// |
352 | 352 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
353 | 353 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
354 | 354 |
/// arc-disjoint paths found. |
355 | 355 |
/// |
356 | 356 |
/// \pre \ref init() must be called before using this function. |
357 | 357 |
int findFlow(int k = 2) { |
358 | 358 |
// Find shortest paths |
359 | 359 |
_path_num = 0; |
360 | 360 |
while (_path_num < k) { |
361 | 361 |
// Run Dijkstra |
362 | 362 |
if (!_dijkstra->run()) break; |
363 | 363 |
++_path_num; |
364 | 364 |
|
365 | 365 |
// Set the flow along the found shortest path |
366 | 366 |
Node u = _target; |
367 | 367 |
Arc e; |
368 | 368 |
while ((e = _pred[u]) != INVALID) { |
369 | 369 |
if (u == _graph.target(e)) { |
370 | 370 |
(*_flow)[e] = 1; |
371 | 371 |
u = _graph.source(e); |
372 | 372 |
} else { |
373 | 373 |
(*_flow)[e] = 0; |
374 | 374 |
u = _graph.target(e); |
375 | 375 |
} |
376 | 376 |
} |
377 | 377 |
} |
378 | 378 |
return _path_num; |
379 | 379 |
} |
380 | 380 |
|
381 | 381 |
/// \brief Compute the paths from the flow. |
382 | 382 |
/// |
383 | 383 |
/// This function computes the paths from the flow. |
384 | 384 |
/// |
385 | 385 |
/// \pre \ref init() and \ref findFlow() must be called before using |
386 | 386 |
/// this function. |
387 | 387 |
void findPaths() { |
388 | 388 |
// Create the residual flow map (the union of the paths not found |
389 | 389 |
// so far) |
390 | 390 |
FlowMap res_flow(_graph); |
391 | 391 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
392 | 392 |
|
393 | 393 |
paths.clear(); |
394 | 394 |
paths.resize(_path_num); |
395 | 395 |
for (int i = 0; i < _path_num; ++i) { |
396 | 396 |
Node n = _source; |
397 | 397 |
while (n != _target) { |
398 | 398 |
OutArcIt e(_graph, n); |
399 | 399 |
for ( ; res_flow[e] == 0; ++e) ; |
400 | 400 |
n = _graph.target(e); |
401 | 401 |
paths[i].addBack(e); |
402 | 402 |
res_flow[e] = 0; |
403 | 403 |
} |
404 | 404 |
} |
405 | 405 |
} |
406 | 406 |
|
407 | 407 |
/// @} |
408 | 408 |
|
409 | 409 |
/// \name Query Functions |
410 | 410 |
/// The results of the algorithm can be obtained using these |
411 | 411 |
/// functions. |
412 | 412 |
/// \n The algorithm should be executed before using them. |
413 | 413 |
|
414 | 414 |
/// @{ |
415 | 415 |
|
416 | 416 |
/// \brief Return a const reference to the arc map storing the |
417 | 417 |
/// found flow. |
418 | 418 |
/// |
419 | 419 |
/// This function returns a const reference to the arc map storing |
420 | 420 |
/// the flow that is the union of the found arc-disjoint paths. |
421 | 421 |
/// |
422 | 422 |
/// \pre \ref run() or \ref findFlow() must be called before using |
423 | 423 |
/// this function. |
424 | 424 |
const FlowMap& flowMap() const { |
425 | 425 |
return *_flow; |
426 | 426 |
} |
427 | 427 |
|
428 | 428 |
/// \brief Return a const reference to the node map storing the |
429 | 429 |
/// found potentials (the dual solution). |
430 | 430 |
/// |
431 | 431 |
/// This function returns a const reference to the node map storing |
432 | 432 |
/// the found potentials that provide the dual solution of the |
433 | 433 |
/// underlying minimum cost flow problem. |
434 | 434 |
/// |
435 | 435 |
/// \pre \ref run() or \ref findFlow() must be called before using |
436 | 436 |
/// this function. |
437 | 437 |
const PotentialMap& potentialMap() const { |
438 | 438 |
return *_potential; |
439 | 439 |
} |
440 | 440 |
|
441 | 441 |
/// \brief Return the flow on the given arc. |
442 | 442 |
/// |
443 | 443 |
/// This function returns the flow on the given arc. |
444 | 444 |
/// It is \c 1 if the arc is involved in one of the found paths, |
445 | 445 |
/// otherwise it is \c 0. |
446 | 446 |
/// |
447 | 447 |
/// \pre \ref run() or \ref findFlow() must be called before using |
448 | 448 |
/// this function. |
449 | 449 |
int flow(const Arc& arc) const { |
450 | 450 |
return (*_flow)[arc]; |
451 | 451 |
} |
452 | 452 |
|
453 | 453 |
/// \brief Return the potential of the given node. |
454 | 454 |
/// |
455 | 455 |
/// This function returns the potential of the given node. |
456 | 456 |
/// |
457 | 457 |
/// \pre \ref run() or \ref findFlow() must be called before using |
458 | 458 |
/// this function. |
459 | 459 |
Length potential(const Node& node) const { |
460 | 460 |
return (*_potential)[node]; |
461 | 461 |
} |
462 | 462 |
|
463 | 463 |
/// \brief Return the total length (cost) of the found paths (flow). |
464 | 464 |
/// |
465 | 465 |
/// This function returns the total length (cost) of the found paths |
466 | 466 |
/// (flow). The complexity of the function is O(e). |
467 | 467 |
/// |
468 | 468 |
/// \pre \ref run() or \ref findFlow() must be called before using |
469 | 469 |
/// this function. |
470 | 470 |
Length totalLength() const { |
471 | 471 |
Length c = 0; |
472 | 472 |
for (ArcIt e(_graph); e != INVALID; ++e) |
473 | 473 |
c += (*_flow)[e] * _length[e]; |
474 | 474 |
return c; |
475 | 475 |
} |
476 | 476 |
|
477 | 477 |
/// \brief Return the number of the found paths. |
478 | 478 |
/// |
479 | 479 |
/// This function returns the number of the found paths. |
480 | 480 |
/// |
481 | 481 |
/// \pre \ref run() or \ref findFlow() must be called before using |
482 | 482 |
/// this function. |
483 | 483 |
int pathNum() const { |
484 | 484 |
return _path_num; |
485 | 485 |
} |
486 | 486 |
|
487 | 487 |
/// \brief Return a const reference to the specified path. |
488 | 488 |
/// |
489 | 489 |
/// This function returns a const reference to the specified path. |
490 | 490 |
/// |
491 | 491 |
/// \param i The function returns the \c i-th path. |
492 | 492 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
493 | 493 |
/// |
494 | 494 |
/// \pre \ref run() or \ref findPaths() must be called before using |
495 | 495 |
/// this function. |
496 | 496 |
Path path(int i) const { |
497 | 497 |
return paths[i]; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
/// @} |
501 | 501 |
|
502 | 502 |
}; //class Suurballe |
503 | 503 |
|
504 | 504 |
///@} |
505 | 505 |
|
506 | 506 |
} //namespace lemon |
507 | 507 |
|
508 | 508 |
#endif //LEMON_SUURBALLE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TIME_MEASURE_H |
20 | 20 |
#define LEMON_TIME_MEASURE_H |
21 | 21 |
|
22 | 22 |
///\ingroup timecount |
23 | 23 |
///\file |
24 | 24 |
///\brief Tools for measuring cpu usage |
25 | 25 |
|
26 | 26 |
#ifdef WIN32 |
27 | 27 |
#include <lemon/bits/windows.h> |
28 | 28 |
#else |
29 | 29 |
#include <unistd.h> |
30 | 30 |
#include <sys/times.h> |
31 | 31 |
#include <sys/time.h> |
32 | 32 |
#endif |
33 | 33 |
|
34 | 34 |
#include <string> |
35 | 35 |
#include <fstream> |
36 | 36 |
#include <iostream> |
37 | 37 |
|
38 | 38 |
namespace lemon { |
39 | 39 |
|
40 | 40 |
/// \addtogroup timecount |
41 | 41 |
/// @{ |
42 | 42 |
|
43 | 43 |
/// A class to store (cpu)time instances. |
44 | 44 |
|
45 | 45 |
/// This class stores five time values. |
46 | 46 |
/// - a real time |
47 | 47 |
/// - a user cpu time |
48 | 48 |
/// - a system cpu time |
49 | 49 |
/// - a user cpu time of children |
50 | 50 |
/// - a system cpu time of children |
51 | 51 |
/// |
52 | 52 |
/// TimeStamp's can be added to or substracted from each other and |
53 | 53 |
/// they can be pushed to a stream. |
54 | 54 |
/// |
55 | 55 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport |
56 | 56 |
/// class is what you want to use instead. |
57 | 57 |
|
58 | 58 |
class TimeStamp |
59 | 59 |
{ |
60 | 60 |
double utime; |
61 | 61 |
double stime; |
62 | 62 |
double cutime; |
63 | 63 |
double cstime; |
64 | 64 |
double rtime; |
65 | 65 |
|
66 | 66 |
void _reset() { |
67 | 67 |
utime = stime = cutime = cstime = rtime = 0; |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
|
72 | 72 |
///Read the current time values of the process |
73 | 73 |
void stamp() |
74 | 74 |
{ |
75 | 75 |
#ifndef WIN32 |
76 | 76 |
timeval tv; |
77 | 77 |
gettimeofday(&tv, 0); |
78 | 78 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
79 | 79 |
|
80 | 80 |
tms ts; |
81 | 81 |
double tck=sysconf(_SC_CLK_TCK); |
82 | 82 |
times(&ts); |
83 | 83 |
utime=ts.tms_utime/tck; |
84 | 84 |
stime=ts.tms_stime/tck; |
85 | 85 |
cutime=ts.tms_cutime/tck; |
86 | 86 |
cstime=ts.tms_cstime/tck; |
87 | 87 |
#else |
88 | 88 |
bits::getWinProcTimes(rtime, utime, stime, cutime, cstime); |
89 | 89 |
#endif |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
/// Constructor initializing with zero |
93 | 93 |
TimeStamp() |
94 | 94 |
{ _reset(); } |
95 | 95 |
///Constructor initializing with the current time values of the process |
96 | 96 |
TimeStamp(void *) { stamp();} |
97 | 97 |
|
98 | 98 |
///Set every time value to zero |
99 | 99 |
TimeStamp &reset() {_reset();return *this;} |
100 | 100 |
|
101 | 101 |
///\e |
102 | 102 |
TimeStamp &operator+=(const TimeStamp &b) |
103 | 103 |
{ |
104 | 104 |
utime+=b.utime; |
105 | 105 |
stime+=b.stime; |
106 | 106 |
cutime+=b.cutime; |
107 | 107 |
cstime+=b.cstime; |
108 | 108 |
rtime+=b.rtime; |
109 | 109 |
return *this; |
110 | 110 |
} |
111 | 111 |
///\e |
112 | 112 |
TimeStamp operator+(const TimeStamp &b) const |
113 | 113 |
{ |
114 | 114 |
TimeStamp t(*this); |
115 | 115 |
return t+=b; |
116 | 116 |
} |
117 | 117 |
///\e |
118 | 118 |
TimeStamp &operator-=(const TimeStamp &b) |
119 | 119 |
{ |
120 | 120 |
utime-=b.utime; |
121 | 121 |
stime-=b.stime; |
122 | 122 |
cutime-=b.cutime; |
123 | 123 |
cstime-=b.cstime; |
124 | 124 |
rtime-=b.rtime; |
125 | 125 |
return *this; |
126 | 126 |
} |
127 | 127 |
///\e |
128 | 128 |
TimeStamp operator-(const TimeStamp &b) const |
129 | 129 |
{ |
130 | 130 |
TimeStamp t(*this); |
131 | 131 |
return t-=b; |
132 | 132 |
} |
133 | 133 |
///\e |
134 | 134 |
TimeStamp &operator*=(double b) |
135 | 135 |
{ |
136 | 136 |
utime*=b; |
137 | 137 |
stime*=b; |
138 | 138 |
cutime*=b; |
139 | 139 |
cstime*=b; |
140 | 140 |
rtime*=b; |
141 | 141 |
return *this; |
142 | 142 |
} |
143 | 143 |
///\e |
144 | 144 |
TimeStamp operator*(double b) const |
145 | 145 |
{ |
146 | 146 |
TimeStamp t(*this); |
147 | 147 |
return t*=b; |
148 | 148 |
} |
149 | 149 |
friend TimeStamp operator*(double b,const TimeStamp &t); |
150 | 150 |
///\e |
151 | 151 |
TimeStamp &operator/=(double b) |
152 | 152 |
{ |
153 | 153 |
utime/=b; |
154 | 154 |
stime/=b; |
155 | 155 |
cutime/=b; |
156 | 156 |
cstime/=b; |
157 | 157 |
rtime/=b; |
158 | 158 |
return *this; |
159 | 159 |
} |
160 | 160 |
///\e |
161 | 161 |
TimeStamp operator/(double b) const |
162 | 162 |
{ |
163 | 163 |
TimeStamp t(*this); |
164 | 164 |
return t/=b; |
165 | 165 |
} |
166 | 166 |
///The time ellapsed since the last call of stamp() |
167 | 167 |
TimeStamp ellapsed() const |
168 | 168 |
{ |
169 | 169 |
TimeStamp t(NULL); |
170 | 170 |
return t-*this; |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t); |
174 | 174 |
|
175 | 175 |
///Gives back the user time of the process |
176 | 176 |
double userTime() const |
177 | 177 |
{ |
178 | 178 |
return utime; |
179 | 179 |
} |
180 | 180 |
///Gives back the system time of the process |
181 | 181 |
double systemTime() const |
182 | 182 |
{ |
183 | 183 |
return stime; |
184 | 184 |
} |
185 | 185 |
///Gives back the user time of the process' children |
186 | 186 |
|
187 | 187 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
188 | 188 |
/// |
189 | 189 |
double cUserTime() const |
190 | 190 |
{ |
191 | 191 |
return cutime; |
192 | 192 |
} |
193 | 193 |
///Gives back the user time of the process' children |
194 | 194 |
|
195 | 195 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
196 | 196 |
/// |
197 | 197 |
double cSystemTime() const |
198 | 198 |
{ |
199 | 199 |
return cstime; |
200 | 200 |
} |
201 | 201 |
///Gives back the real time |
202 | 202 |
double realTime() const {return rtime;} |
203 | 203 |
}; |
204 | 204 |
|
205 | 205 |
inline TimeStamp operator*(double b,const TimeStamp &t) |
206 | 206 |
{ |
207 | 207 |
return t*b; |
208 | 208 |
} |
209 | 209 |
|
210 | 210 |
///Prints the time counters |
211 | 211 |
|
212 | 212 |
///Prints the time counters in the following form: |
213 | 213 |
/// |
214 | 214 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
215 | 215 |
/// |
216 | 216 |
/// where the values are the |
217 | 217 |
/// \li \c u: user cpu time, |
218 | 218 |
/// \li \c s: system cpu time, |
219 | 219 |
/// \li \c cu: user cpu time of children, |
220 | 220 |
/// \li \c cs: system cpu time of children, |
221 | 221 |
/// \li \c real: real time. |
222 | 222 |
/// \relates TimeStamp |
223 | 223 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
224 | 224 |
/// calculated. |
225 | 225 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
226 | 226 |
{ |
227 | 227 |
os << "u: " << t.userTime() << |
228 | 228 |
"s, s: " << t.systemTime() << |
229 | 229 |
"s, cu: " << t.cUserTime() << |
230 | 230 |
"s, cs: " << t.cSystemTime() << |
231 | 231 |
"s, real: " << t.realTime() << "s"; |
232 | 232 |
return os; |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
///Class for measuring the cpu time and real time usage of the process |
236 | 236 |
|
237 | 237 |
///Class for measuring the cpu time and real time usage of the process. |
238 | 238 |
///It is quite easy-to-use, here is a short example. |
239 | 239 |
///\code |
240 | 240 |
/// #include<lemon/time_measure.h> |
241 | 241 |
/// #include<iostream> |
242 | 242 |
/// |
243 | 243 |
/// int main() |
244 | 244 |
/// { |
245 | 245 |
/// |
246 | 246 |
/// ... |
247 | 247 |
/// |
248 | 248 |
/// Timer t; |
249 | 249 |
/// doSomething(); |
250 | 250 |
/// std::cout << t << '\n'; |
251 | 251 |
/// t.restart(); |
252 | 252 |
/// doSomethingElse(); |
253 | 253 |
/// std::cout << t << '\n'; |
254 | 254 |
/// |
255 | 255 |
/// ... |
256 | 256 |
/// |
257 | 257 |
/// } |
258 | 258 |
///\endcode |
259 | 259 |
/// |
260 | 260 |
///The \ref Timer can also be \ref stop() "stopped" and |
261 | 261 |
///\ref start() "started" again, so it is possible to compute collected |
262 | 262 |
///running times. |
263 | 263 |
/// |
264 | 264 |
///\warning Depending on the operation system and its actual configuration |
265 | 265 |
///the time counters have a certain (10ms on a typical Linux system) |
266 | 266 |
///granularity. |
267 | 267 |
///Therefore this tool is not appropriate to measure very short times. |
268 | 268 |
///Also, if you start and stop the timer very frequently, it could lead to |
269 | 269 |
///distorted results. |
270 | 270 |
/// |
271 | 271 |
///\note If you want to measure the running time of the execution of a certain |
272 | 272 |
///function, consider the usage of \ref TimeReport instead. |
273 | 273 |
/// |
274 | 274 |
///\sa TimeReport |
275 | 275 |
class Timer |
276 | 276 |
{ |
277 | 277 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
278 | 278 |
TimeStamp start_time; //This is the relativ start-time if the timer |
279 | 279 |
//is _running, the collected _running time otherwise. |
280 | 280 |
|
281 | 281 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
282 | 282 |
|
283 | 283 |
public: |
284 | 284 |
///Constructor. |
285 | 285 |
|
286 | 286 |
///\param run indicates whether or not the timer starts immediately. |
287 | 287 |
/// |
288 | 288 |
Timer(bool run=true) :_running(run) {_reset();} |
289 | 289 |
|
290 |
///\name Control the |
|
290 |
///\name Control the State of the Timer |
|
291 | 291 |
///Basically a Timer can be either running or stopped, |
292 | 292 |
///but it provides a bit finer control on the execution. |
293 | 293 |
///The \ref lemon::Timer "Timer" also counts the number of |
294 | 294 |
///\ref lemon::Timer::start() "start()" executions, and it stops |
295 | 295 |
///only after the same amount (or more) \ref lemon::Timer::stop() |
296 | 296 |
///"stop()"s. This can be useful e.g. to compute the running time |
297 | 297 |
///of recursive functions. |
298 | 298 |
|
299 | 299 |
///@{ |
300 | 300 |
|
301 | 301 |
///Reset and stop the time counters |
302 | 302 |
|
303 | 303 |
///This function resets and stops the time counters |
304 | 304 |
///\sa restart() |
305 | 305 |
void reset() |
306 | 306 |
{ |
307 | 307 |
_running=0; |
308 | 308 |
_reset(); |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
///Start the time counters |
312 | 312 |
|
313 | 313 |
///This function starts the time counters. |
314 | 314 |
/// |
315 | 315 |
///If the timer is started more than ones, it will remain running |
316 | 316 |
///until the same amount of \ref stop() is called. |
317 | 317 |
///\sa stop() |
318 | 318 |
void start() |
319 | 319 |
{ |
320 | 320 |
if(_running) _running++; |
321 | 321 |
else { |
322 | 322 |
_running=1; |
323 | 323 |
TimeStamp t; |
324 | 324 |
t.stamp(); |
325 | 325 |
start_time=t-start_time; |
326 | 326 |
} |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
|
330 | 330 |
///Stop the time counters |
331 | 331 |
|
332 | 332 |
///This function stops the time counters. If start() was executed more than |
333 | 333 |
///once, then the same number of stop() execution is necessary the really |
334 | 334 |
///stop the timer. |
335 | 335 |
/// |
336 | 336 |
///\sa halt() |
337 | 337 |
///\sa start() |
338 | 338 |
///\sa restart() |
339 | 339 |
///\sa reset() |
340 | 340 |
|
341 | 341 |
void stop() |
342 | 342 |
{ |
343 | 343 |
if(_running && !--_running) { |
344 | 344 |
TimeStamp t; |
345 | 345 |
t.stamp(); |
346 | 346 |
start_time=t-start_time; |
347 | 347 |
} |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
///Halt (i.e stop immediately) the time counters |
351 | 351 |
|
352 | 352 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt> |
353 | 353 |
///is a faster |
354 | 354 |
///equivalent of the following. |
355 | 355 |
///\code |
356 | 356 |
/// while(t.running()) t.stop() |
357 | 357 |
///\endcode |
358 | 358 |
/// |
359 | 359 |
/// |
360 | 360 |
///\sa stop() |
361 | 361 |
///\sa restart() |
362 | 362 |
///\sa reset() |
363 | 363 |
|
364 | 364 |
void halt() |
365 | 365 |
{ |
366 | 366 |
if(_running) { |
367 | 367 |
_running=0; |
368 | 368 |
TimeStamp t; |
369 | 369 |
t.stamp(); |
370 | 370 |
start_time=t-start_time; |
371 | 371 |
} |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Returns the running state of the timer |
375 | 375 |
|
376 | 376 |
///This function returns the number of stop() exections that is |
377 | 377 |
///necessary to really stop the timer. |
378 | 378 |
///For example the timer |
379 | 379 |
///is running if and only if the return value is \c true |
380 | 380 |
///(i.e. greater than |
381 | 381 |
///zero). |
382 | 382 |
int running() { return _running; } |
383 | 383 |
|
384 | 384 |
|
385 | 385 |
///Restart the time counters |
386 | 386 |
|
387 | 387 |
///This function is a shorthand for |
388 | 388 |
///a reset() and a start() calls. |
389 | 389 |
/// |
390 | 390 |
void restart() |
391 | 391 |
{ |
392 | 392 |
reset(); |
393 | 393 |
start(); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
///@} |
397 | 397 |
|
398 |
///\name Query Functions for the |
|
398 |
///\name Query Functions for the Ellapsed Time |
|
399 | 399 |
|
400 | 400 |
///@{ |
401 | 401 |
|
402 | 402 |
///Gives back the ellapsed user time of the process |
403 | 403 |
double userTime() const |
404 | 404 |
{ |
405 | 405 |
return operator TimeStamp().userTime(); |
406 | 406 |
} |
407 | 407 |
///Gives back the ellapsed system time of the process |
408 | 408 |
double systemTime() const |
409 | 409 |
{ |
410 | 410 |
return operator TimeStamp().systemTime(); |
411 | 411 |
} |
412 | 412 |
///Gives back the ellapsed user time of the process' children |
413 | 413 |
|
414 | 414 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
415 | 415 |
/// |
416 | 416 |
double cUserTime() const |
417 | 417 |
{ |
418 | 418 |
return operator TimeStamp().cUserTime(); |
419 | 419 |
} |
420 | 420 |
///Gives back the ellapsed user time of the process' children |
421 | 421 |
|
422 | 422 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
423 | 423 |
/// |
424 | 424 |
double cSystemTime() const |
425 | 425 |
{ |
426 | 426 |
return operator TimeStamp().cSystemTime(); |
427 | 427 |
} |
428 | 428 |
///Gives back the ellapsed real time |
429 | 429 |
double realTime() const |
430 | 430 |
{ |
431 | 431 |
return operator TimeStamp().realTime(); |
432 | 432 |
} |
433 | 433 |
///Computes the ellapsed time |
434 | 434 |
|
435 | 435 |
///This conversion computes the ellapsed time, therefore you can print |
436 | 436 |
///the ellapsed time like this. |
437 | 437 |
///\code |
438 | 438 |
/// Timer t; |
439 | 439 |
/// doSomething(); |
440 | 440 |
/// std::cout << t << '\n'; |
441 | 441 |
///\endcode |
442 | 442 |
operator TimeStamp () const |
443 | 443 |
{ |
444 | 444 |
TimeStamp t; |
445 | 445 |
t.stamp(); |
446 | 446 |
return _running?t-start_time:start_time; |
447 | 447 |
} |
448 | 448 |
|
449 | 449 |
|
450 | 450 |
///@} |
451 | 451 |
}; |
452 | 452 |
|
453 | 453 |
///Same as Timer but prints a report on destruction. |
454 | 454 |
|
455 | 455 |
///Same as \ref Timer but prints a report on destruction. |
456 | 456 |
///This example shows its usage. |
457 | 457 |
///\code |
458 | 458 |
/// void myAlg(ListGraph &g,int n) |
459 | 459 |
/// { |
460 | 460 |
/// TimeReport tr("Running time of myAlg: "); |
461 | 461 |
/// ... //Here comes the algorithm |
462 | 462 |
/// } |
463 | 463 |
///\endcode |
464 | 464 |
/// |
465 | 465 |
///\sa Timer |
466 | 466 |
///\sa NoTimeReport |
467 | 467 |
class TimeReport : public Timer |
468 | 468 |
{ |
469 | 469 |
std::string _title; |
470 | 470 |
std::ostream &_os; |
471 | 471 |
public: |
472 | 472 |
///Constructor |
473 | 473 |
|
474 | 474 |
///Constructor. |
475 | 475 |
///\param title This text will be printed before the ellapsed time. |
476 | 476 |
///\param os The stream to print the report to. |
477 | 477 |
///\param run Sets whether the timer should start immediately. |
478 | 478 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
479 | 479 |
: Timer(run), _title(title), _os(os){} |
480 | 480 |
///Destructor that prints the ellapsed time |
481 | 481 |
~TimeReport() |
482 | 482 |
{ |
483 | 483 |
_os << _title << *this << std::endl; |
484 | 484 |
} |
485 | 485 |
}; |
486 | 486 |
|
487 | 487 |
///'Do nothing' version of TimeReport |
488 | 488 |
|
489 | 489 |
///\sa TimeReport |
490 | 490 |
/// |
491 | 491 |
class NoTimeReport |
492 | 492 |
{ |
493 | 493 |
public: |
494 | 494 |
///\e |
495 | 495 |
NoTimeReport(std::string,std::ostream &,bool) {} |
496 | 496 |
///\e |
497 | 497 |
NoTimeReport(std::string,std::ostream &) {} |
498 | 498 |
///\e |
499 | 499 |
NoTimeReport(std::string) {} |
500 | 500 |
///\e Do nothing. |
501 | 501 |
~NoTimeReport() {} |
502 | 502 |
|
503 | 503 |
operator TimeStamp () const { return TimeStamp(); } |
504 | 504 |
void reset() {} |
505 | 505 |
void start() {} |
506 | 506 |
void stop() {} |
507 | 507 |
void halt() {} |
508 | 508 |
int running() { return 0; } |
509 | 509 |
void restart() {} |
510 | 510 |
double userTime() const { return 0; } |
511 | 511 |
double systemTime() const { return 0; } |
512 | 512 |
double cUserTime() const { return 0; } |
513 | 513 |
double cSystemTime() const { return 0; } |
514 | 514 |
double realTime() const { return 0; } |
515 | 515 |
}; |
516 | 516 |
|
517 | 517 |
///Tool to measure the running time more exactly. |
518 | 518 |
|
519 | 519 |
///This function calls \c f several times and returns the average |
520 | 520 |
///running time. The number of the executions will be choosen in such a way |
521 | 521 |
///that the full real running time will be roughly between \c min_time |
522 | 522 |
///and <tt>2*min_time</tt>. |
523 | 523 |
///\param f the function object to be measured. |
524 | 524 |
///\param min_time the minimum total running time. |
525 | 525 |
///\retval num if it is not \c NULL, then the actual |
526 | 526 |
/// number of execution of \c f will be written into <tt>*num</tt>. |
527 | 527 |
///\retval full_time if it is not \c NULL, then the actual |
528 | 528 |
/// total running time will be written into <tt>*full_time</tt>. |
529 | 529 |
///\return The average running time of \c f. |
530 | 530 |
|
531 | 531 |
template<class F> |
532 | 532 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
533 | 533 |
TimeStamp *full_time=NULL) |
534 | 534 |
{ |
535 | 535 |
TimeStamp full; |
536 | 536 |
unsigned int total=0; |
537 | 537 |
Timer t; |
538 | 538 |
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) { |
539 | 539 |
for(;total<tn;total++) f(); |
540 | 540 |
full=t; |
541 | 541 |
} |
542 | 542 |
if(num) *num=total; |
543 | 543 |
if(full_time) *full_time=full; |
544 | 544 |
return full/total; |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
/// @} |
548 | 548 |
|
549 | 549 |
|
550 | 550 |
} //namespace lemon |
551 | 551 |
|
552 | 552 |
#endif //LEMON_TIME_MEASURE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS problem solver. |
22 | 22 |
/// |
23 | 23 |
/// This program solves various problems given in DIMACS format. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 |
/// \verbatim |
|
27 |
/// dimacs-solver --help |
|
28 |
/// \ |
|
26 |
/// \code |
|
27 |
/// dimacs-solver --help |
|
28 |
/// \endcode |
|
29 | 29 |
/// for more info on usage. |
30 |
/// |
|
31 | 30 |
|
32 | 31 |
#include <iostream> |
33 | 32 |
#include <fstream> |
34 | 33 |
#include <cstring> |
35 | 34 |
|
36 | 35 |
#include <lemon/smart_graph.h> |
37 | 36 |
#include <lemon/dimacs.h> |
38 | 37 |
#include <lemon/lgf_writer.h> |
39 | 38 |
#include <lemon/time_measure.h> |
40 | 39 |
|
41 | 40 |
#include <lemon/arg_parser.h> |
42 | 41 |
#include <lemon/error.h> |
43 | 42 |
|
44 | 43 |
#include <lemon/dijkstra.h> |
45 | 44 |
#include <lemon/preflow.h> |
46 | 45 |
#include <lemon/max_matching.h> |
47 | 46 |
|
48 | 47 |
using namespace lemon; |
49 | 48 |
typedef SmartDigraph Digraph; |
50 | 49 |
DIGRAPH_TYPEDEFS(Digraph); |
51 | 50 |
typedef SmartGraph Graph; |
52 | 51 |
|
53 | 52 |
template<class Value> |
54 | 53 |
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &, |
55 | 54 |
DimacsDescriptor &desc) |
56 | 55 |
{ |
57 | 56 |
bool report = !ap.given("q"); |
58 | 57 |
Digraph g; |
59 | 58 |
Node s; |
60 | 59 |
Digraph::ArcMap<Value> len(g); |
61 | 60 |
Timer t; |
62 | 61 |
t.restart(); |
63 | 62 |
readDimacsSp(is, g, len, s, desc); |
64 | 63 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
65 | 64 |
t.restart(); |
66 | 65 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
67 | 66 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
68 | 67 |
t.restart(); |
69 | 68 |
dij.run(s); |
70 | 69 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
71 | 70 |
} |
72 | 71 |
|
73 | 72 |
template<class Value> |
74 | 73 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
75 | 74 |
Value infty, DimacsDescriptor &desc) |
76 | 75 |
{ |
77 | 76 |
bool report = !ap.given("q"); |
78 | 77 |
Digraph g; |
79 | 78 |
Node s,t; |
80 | 79 |
Digraph::ArcMap<Value> cap(g); |
81 | 80 |
Timer ti; |
82 | 81 |
ti.restart(); |
83 | 82 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
84 | 83 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
85 | 84 |
ti.restart(); |
86 | 85 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
87 | 86 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
88 | 87 |
ti.restart(); |
89 | 88 |
pre.run(); |
90 | 89 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
91 | 90 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
92 | 91 |
} |
93 | 92 |
|
94 | 93 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
95 | 94 |
DimacsDescriptor &desc) |
96 | 95 |
{ |
97 | 96 |
bool report = !ap.given("q"); |
98 | 97 |
Graph g; |
99 | 98 |
Timer ti; |
100 | 99 |
ti.restart(); |
101 | 100 |
readDimacsMat(is, g, desc); |
102 | 101 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
103 | 102 |
ti.restart(); |
104 | 103 |
MaxMatching<Graph> mat(g); |
105 | 104 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
106 | 105 |
ti.restart(); |
107 | 106 |
mat.run(); |
108 | 107 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
109 | 108 |
if(report) std::cerr << "\nCardinality of max matching: " |
110 | 109 |
<< mat.matchingSize() << '\n'; |
111 | 110 |
} |
112 | 111 |
|
113 | 112 |
|
114 | 113 |
template<class Value> |
115 | 114 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
116 | 115 |
DimacsDescriptor &desc) |
117 | 116 |
{ |
118 | 117 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
119 | 118 |
Value infty; |
120 | 119 |
iss >> infty; |
121 | 120 |
if(iss.fail()) |
122 | 121 |
{ |
123 | 122 |
std::cerr << "Cannot interpret '" |
124 | 123 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
125 | 124 |
<< std::endl; |
126 | 125 |
exit(1); |
127 | 126 |
} |
128 | 127 |
|
129 | 128 |
switch(desc.type) |
130 | 129 |
{ |
131 | 130 |
case DimacsDescriptor::MIN: |
132 | 131 |
std::cerr << |
133 | 132 |
"\n\n Sorry, the min. cost flow solver is not yet available.\n"; |
134 | 133 |
break; |
135 | 134 |
case DimacsDescriptor::MAX: |
136 | 135 |
solve_max<Value>(ap,is,os,infty,desc); |
137 | 136 |
break; |
138 | 137 |
case DimacsDescriptor::SP: |
139 | 138 |
solve_sp<Value>(ap,is,os,desc); |
140 | 139 |
break; |
141 | 140 |
case DimacsDescriptor::MAT: |
142 | 141 |
solve_mat(ap,is,os,desc); |
143 | 142 |
break; |
144 | 143 |
default: |
145 | 144 |
break; |
146 | 145 |
} |
147 | 146 |
} |
148 | 147 |
|
149 | 148 |
int main(int argc, const char *argv[]) { |
150 | 149 |
typedef SmartDigraph Digraph; |
151 | 150 |
|
152 | 151 |
typedef Digraph::Arc Arc; |
153 | 152 |
|
154 | 153 |
std::string inputName; |
155 | 154 |
std::string outputName; |
156 | 155 |
|
157 | 156 |
ArgParser ap(argc, argv); |
158 | 157 |
ap.other("[INFILE [OUTFILE]]", |
159 | 158 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
160 | 159 |
" input/output will be used instead.") |
161 | 160 |
.boolOption("q", "Do not print any report") |
162 | 161 |
.boolOption("int","Use 'int' for capacities, costs etc. (default)") |
163 | 162 |
.optionGroup("datatype","int") |
164 | 163 |
#ifdef HAVE_LONG_LONG |
165 | 164 |
.boolOption("long","Use 'long long' for capacities, costs etc.") |
166 | 165 |
.optionGroup("datatype","long") |
167 | 166 |
#endif |
168 | 167 |
.boolOption("double","Use 'double' for capacities, costs etc.") |
169 | 168 |
.optionGroup("datatype","double") |
170 | 169 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.") |
171 | 170 |
.optionGroup("datatype","ldouble") |
172 | 171 |
.onlyOneGroup("datatype") |
173 | 172 |
.stringOption("infcap","Value used for 'very high' capacities","0") |
174 | 173 |
.run(); |
175 | 174 |
|
176 | 175 |
std::ifstream input; |
177 | 176 |
std::ofstream output; |
178 | 177 |
|
179 | 178 |
switch(ap.files().size()) |
180 | 179 |
{ |
181 | 180 |
case 2: |
182 | 181 |
output.open(ap.files()[1].c_str()); |
183 | 182 |
if (!output) { |
184 | 183 |
throw IoError("Cannot open the file for writing", ap.files()[1]); |
185 | 184 |
} |
186 | 185 |
case 1: |
187 | 186 |
input.open(ap.files()[0].c_str()); |
188 | 187 |
if (!input) { |
189 | 188 |
throw IoError("File cannot be found", ap.files()[0]); |
190 | 189 |
} |
191 | 190 |
case 0: |
192 | 191 |
break; |
193 | 192 |
default: |
194 | 193 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
195 | 194 |
return 1; |
196 | 195 |
} |
197 | 196 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
198 | 197 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
199 | 198 |
|
200 | 199 |
DimacsDescriptor desc = dimacsType(is); |
201 | 200 |
|
202 | 201 |
if(!ap.given("q")) |
203 | 202 |
{ |
204 | 203 |
std::cout << "Problem type: "; |
205 | 204 |
switch(desc.type) |
206 | 205 |
{ |
207 | 206 |
case DimacsDescriptor::MIN: |
208 | 207 |
std::cout << "min"; |
209 | 208 |
break; |
210 | 209 |
case DimacsDescriptor::MAX: |
211 | 210 |
std::cout << "max"; |
212 | 211 |
break; |
213 | 212 |
case DimacsDescriptor::SP: |
214 | 213 |
std::cout << "sp"; |
215 | 214 |
case DimacsDescriptor::MAT: |
216 | 215 |
std::cout << "mat"; |
217 | 216 |
break; |
218 | 217 |
default: |
219 | 218 |
exit(1); |
220 | 219 |
break; |
221 | 220 |
} |
222 | 221 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
223 | 222 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
224 | 223 |
std::cout << "\n\n"; |
225 | 224 |
} |
226 | 225 |
|
227 | 226 |
if(ap.given("double")) |
228 | 227 |
solve<double>(ap,is,os,desc); |
229 | 228 |
else if(ap.given("ldouble")) |
230 | 229 |
solve<long double>(ap,is,os,desc); |
231 | 230 |
#ifdef HAVE_LONG_LONG |
232 | 231 |
else if(ap.given("long")) |
233 | 232 |
solve<long long>(ap,is,os,desc); |
234 | 233 |
#endif |
235 | 234 |
else solve<int>(ap,is,os,desc); |
236 | 235 |
|
237 | 236 |
return 0; |
238 | 237 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS to LGF converter. |
22 | 22 |
/// |
23 | 23 |
/// This program converts various DIMACS formats to the LEMON Digraph Format |
24 | 24 |
/// (LGF). |
25 | 25 |
/// |
26 | 26 |
/// See |
27 |
/// \verbatim |
|
28 |
/// dimacs-to-lgf --help |
|
29 |
/// \endverbatim |
|
30 |
/// for more info on usage. |
|
31 |
/// |
|
27 |
/// \code |
|
28 |
/// dimacs-to-lgf --help |
|
29 |
/// \endcode |
|
30 |
/// for more info on the usage. |
|
32 | 31 |
|
33 | 32 |
#include <iostream> |
34 | 33 |
#include <fstream> |
35 | 34 |
#include <cstring> |
36 | 35 |
|
37 | 36 |
#include <lemon/smart_graph.h> |
38 | 37 |
#include <lemon/dimacs.h> |
39 | 38 |
#include <lemon/lgf_writer.h> |
40 | 39 |
|
41 | 40 |
#include <lemon/arg_parser.h> |
42 | 41 |
#include <lemon/error.h> |
43 | 42 |
|
44 | 43 |
using namespace std; |
45 | 44 |
using namespace lemon; |
46 | 45 |
|
47 | 46 |
|
48 | 47 |
int main(int argc, const char *argv[]) { |
49 | 48 |
typedef SmartDigraph Digraph; |
50 | 49 |
|
51 | 50 |
typedef Digraph::Arc Arc; |
52 | 51 |
typedef Digraph::Node Node; |
53 | 52 |
typedef Digraph::ArcIt ArcIt; |
54 | 53 |
typedef Digraph::NodeIt NodeIt; |
55 | 54 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
56 | 55 |
typedef Digraph::NodeMap<double> DoubleNodeMap; |
57 | 56 |
|
58 | 57 |
std::string inputName; |
59 | 58 |
std::string outputName; |
60 | 59 |
|
61 | 60 |
ArgParser ap(argc, argv); |
62 | 61 |
ap.other("[INFILE [OUTFILE]]", |
63 | 62 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
64 | 63 |
" input/output will be used instead.") |
65 | 64 |
.run(); |
66 | 65 |
|
67 | 66 |
ifstream input; |
68 | 67 |
ofstream output; |
69 | 68 |
|
70 | 69 |
switch(ap.files().size()) |
71 | 70 |
{ |
72 | 71 |
case 2: |
73 | 72 |
output.open(ap.files()[1].c_str()); |
74 | 73 |
if (!output) { |
75 | 74 |
throw IoError("Cannot open the file for writing", ap.files()[1]); |
76 | 75 |
} |
77 | 76 |
case 1: |
78 | 77 |
input.open(ap.files()[0].c_str()); |
79 | 78 |
if (!input) { |
80 | 79 |
throw IoError("File cannot be found", ap.files()[0]); |
81 | 80 |
} |
82 | 81 |
case 0: |
83 | 82 |
break; |
84 | 83 |
default: |
85 | 84 |
cerr << ap.commandName() << ": too many arguments\n"; |
86 | 85 |
return 1; |
87 | 86 |
} |
88 | 87 |
istream& is = (ap.files().size()<1 ? cin : input); |
89 | 88 |
ostream& os = (ap.files().size()<2 ? cout : output); |
90 | 89 |
|
91 | 90 |
DimacsDescriptor desc = dimacsType(is); |
92 | 91 |
switch(desc.type) |
93 | 92 |
{ |
94 | 93 |
case DimacsDescriptor::MIN: |
95 | 94 |
{ |
96 | 95 |
Digraph digraph; |
97 | 96 |
DoubleArcMap lower(digraph), capacity(digraph), cost(digraph); |
98 | 97 |
DoubleNodeMap supply(digraph); |
99 | 98 |
readDimacsMin(is, digraph, lower, capacity, cost, supply, 0, desc); |
100 | 99 |
DigraphWriter<Digraph>(digraph, os). |
101 | 100 |
nodeMap("supply", supply). |
102 | 101 |
arcMap("lower", lower). |
103 | 102 |
arcMap("capacity", capacity). |
104 | 103 |
arcMap("cost", cost). |
105 | 104 |
attribute("problem","min"). |
106 | 105 |
run(); |
107 | 106 |
} |
108 | 107 |
break; |
109 | 108 |
case DimacsDescriptor::MAX: |
110 | 109 |
{ |
111 | 110 |
Digraph digraph; |
112 | 111 |
Node s, t; |
113 | 112 |
DoubleArcMap capacity(digraph); |
114 | 113 |
readDimacsMax(is, digraph, capacity, s, t, 0, desc); |
115 | 114 |
DigraphWriter<Digraph>(digraph, os). |
116 | 115 |
arcMap("capacity", capacity). |
117 | 116 |
node("source", s). |
118 | 117 |
node("target", t). |
119 | 118 |
attribute("problem","max"). |
120 | 119 |
run(); |
121 | 120 |
} |
122 | 121 |
break; |
123 | 122 |
case DimacsDescriptor::SP: |
124 | 123 |
{ |
125 | 124 |
Digraph digraph; |
126 | 125 |
Node s; |
127 | 126 |
DoubleArcMap capacity(digraph); |
128 | 127 |
readDimacsSp(is, digraph, capacity, s, desc); |
129 | 128 |
DigraphWriter<Digraph>(digraph, os). |
130 | 129 |
arcMap("capacity", capacity). |
131 | 130 |
node("source", s). |
132 | 131 |
attribute("problem","sp"). |
133 | 132 |
run(); |
134 | 133 |
} |
135 | 134 |
break; |
136 | 135 |
case DimacsDescriptor::MAT: |
137 | 136 |
{ |
138 | 137 |
Digraph digraph; |
139 | 138 |
readDimacsMat(is, digraph,desc); |
140 | 139 |
DigraphWriter<Digraph>(digraph, os). |
141 | 140 |
attribute("problem","mat"). |
142 | 141 |
run(); |
143 | 142 |
} |
144 | 143 |
break; |
145 | 144 |
default: |
146 | 145 |
break; |
147 | 146 |
} |
148 | 147 |
return 0; |
149 | 148 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup tools |
20 | 20 |
/// \file |
21 | 21 |
/// \brief Special plane digraph generator. |
22 | 22 |
/// |
23 | 23 |
/// Graph generator application for various types of plane graphs. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 |
/// \verbatim |
|
27 |
/// lgf-gen --help |
|
28 |
/// \ |
|
26 |
/// \code |
|
27 |
/// lgf-gen --help |
|
28 |
/// \endcode |
|
29 | 29 |
/// for more info on the usage. |
30 |
/// |
|
31 |
|
|
32 | 30 |
|
33 | 31 |
#include <algorithm> |
34 | 32 |
#include <set> |
35 | 33 |
#include <ctime> |
36 | 34 |
#include <lemon/list_graph.h> |
37 | 35 |
#include <lemon/random.h> |
38 | 36 |
#include <lemon/dim2.h> |
39 | 37 |
#include <lemon/bfs.h> |
40 | 38 |
#include <lemon/counter.h> |
41 | 39 |
#include <lemon/suurballe.h> |
42 | 40 |
#include <lemon/graph_to_eps.h> |
43 | 41 |
#include <lemon/lgf_writer.h> |
44 | 42 |
#include <lemon/arg_parser.h> |
45 | 43 |
#include <lemon/euler.h> |
46 | 44 |
#include <lemon/math.h> |
47 | 45 |
#include <lemon/kruskal.h> |
48 | 46 |
#include <lemon/time_measure.h> |
49 | 47 |
|
50 | 48 |
using namespace lemon; |
51 | 49 |
|
52 | 50 |
typedef dim2::Point<double> Point; |
53 | 51 |
|
54 | 52 |
GRAPH_TYPEDEFS(ListGraph); |
55 | 53 |
|
56 | 54 |
bool progress=true; |
57 | 55 |
|
58 | 56 |
int N; |
59 | 57 |
// int girth; |
60 | 58 |
|
61 | 59 |
ListGraph g; |
62 | 60 |
|
63 | 61 |
std::vector<Node> nodes; |
64 | 62 |
ListGraph::NodeMap<Point> coords(g); |
65 | 63 |
|
66 | 64 |
|
67 | 65 |
double totalLen(){ |
68 | 66 |
double tlen=0; |
69 | 67 |
for(EdgeIt e(g);e!=INVALID;++e) |
70 | 68 |
tlen+=sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare()); |
71 | 69 |
return tlen; |
72 | 70 |
} |
73 | 71 |
|
74 | 72 |
int tsp_impr_num=0; |
75 | 73 |
|
76 | 74 |
const double EPSILON=1e-8; |
77 | 75 |
bool tsp_improve(Node u, Node v) |
78 | 76 |
{ |
79 | 77 |
double luv=std::sqrt((coords[v]-coords[u]).normSquare()); |
80 | 78 |
Node u2=u; |
81 | 79 |
Node v2=v; |
82 | 80 |
do { |
83 | 81 |
Node n; |
84 | 82 |
for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e) { } |
85 | 83 |
u2=v2; |
86 | 84 |
v2=n; |
87 | 85 |
if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON> |
88 | 86 |
std::sqrt((coords[u]-coords[u2]).normSquare())+ |
89 | 87 |
std::sqrt((coords[v]-coords[v2]).normSquare())) |
90 | 88 |
{ |
91 | 89 |
g.erase(findEdge(g,u,v)); |
92 | 90 |
g.erase(findEdge(g,u2,v2)); |
93 | 91 |
g.addEdge(u2,u); |
94 | 92 |
g.addEdge(v,v2); |
95 | 93 |
tsp_impr_num++; |
96 | 94 |
return true; |
97 | 95 |
} |
98 | 96 |
} while(v2!=u); |
99 | 97 |
return false; |
100 | 98 |
} |
101 | 99 |
|
102 | 100 |
bool tsp_improve(Node u) |
103 | 101 |
{ |
104 | 102 |
for(IncEdgeIt e(g,u);e!=INVALID;++e) |
105 | 103 |
if(tsp_improve(u,g.runningNode(e))) return true; |
106 | 104 |
return false; |
107 | 105 |
} |
108 | 106 |
|
109 | 107 |
void tsp_improve() |
110 | 108 |
{ |
111 | 109 |
bool b; |
112 | 110 |
do { |
113 | 111 |
b=false; |
114 | 112 |
for(NodeIt n(g);n!=INVALID;++n) |
115 | 113 |
if(tsp_improve(n)) b=true; |
116 | 114 |
} while(b); |
117 | 115 |
} |
118 | 116 |
|
119 | 117 |
void tsp() |
120 | 118 |
{ |
121 | 119 |
for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]); |
122 | 120 |
tsp_improve(); |
123 | 121 |
} |
124 | 122 |
|
125 | 123 |
class Line |
126 | 124 |
{ |
127 | 125 |
public: |
128 | 126 |
Point a; |
129 | 127 |
Point b; |
130 | 128 |
Line(Point _a,Point _b) :a(_a),b(_b) {} |
131 | 129 |
Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {} |
132 | 130 |
Line(const Arc &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {} |
133 | 131 |
Line(const Edge &e) : a(coords[g.u(e)]),b(coords[g.v(e)]) {} |
134 | 132 |
}; |
135 | 133 |
|
136 | 134 |
inline std::ostream& operator<<(std::ostream &os, const Line &l) |
137 | 135 |
{ |
138 | 136 |
os << l.a << "->" << l.b; |
139 | 137 |
return os; |
140 | 138 |
} |
141 | 139 |
|
142 | 140 |
bool cross(Line a, Line b) |
143 | 141 |
{ |
144 | 142 |
Point ao=rot90(a.b-a.a); |
145 | 143 |
Point bo=rot90(b.b-b.a); |
146 | 144 |
return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 && |
147 | 145 |
(bo*(a.a-b.a))*(bo*(a.b-b.a))<0; |
148 | 146 |
} |
149 | 147 |
|
150 | 148 |
struct Parc |
151 | 149 |
{ |
152 | 150 |
Node a; |
153 | 151 |
Node b; |
154 | 152 |
double len; |
155 | 153 |
}; |
156 | 154 |
|
157 | 155 |
bool pedgeLess(Parc a,Parc b) |
158 | 156 |
{ |
159 | 157 |
return a.len<b.len; |
160 | 158 |
} |
161 | 159 |
|
162 | 160 |
std::vector<Edge> arcs; |
163 | 161 |
|
164 | 162 |
namespace _delaunay_bits { |
165 | 163 |
|
166 | 164 |
struct Part { |
167 | 165 |
int prev, curr, next; |
168 | 166 |
|
169 | 167 |
Part(int p, int c, int n) : prev(p), curr(c), next(n) {} |
170 | 168 |
}; |
171 | 169 |
|
172 | 170 |
inline std::ostream& operator<<(std::ostream& os, const Part& part) { |
173 | 171 |
os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')'; |
174 | 172 |
return os; |
175 | 173 |
} |
176 | 174 |
|
177 | 175 |
inline double circle_point(const Point& p, const Point& q, const Point& r) { |
178 | 176 |
double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y); |
179 | 177 |
if (a == 0) return std::numeric_limits<double>::quiet_NaN(); |
180 | 178 |
|
181 | 179 |
double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) + |
182 | 180 |
(q.x * q.x + q.y * q.y) * (r.y - p.y) + |
183 | 181 |
(r.x * r.x + r.y * r.y) * (p.y - q.y); |
184 | 182 |
|
185 | 183 |
double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) + |
186 | 184 |
(q.x * q.x + q.y * q.y) * (r.x - p.x) + |
187 | 185 |
(r.x * r.x + r.y * r.y) * (p.x - q.x); |
188 | 186 |
|
189 | 187 |
double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) + |
190 | 188 |
(q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) + |
191 | 189 |
(r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y); |
192 | 190 |
|
193 | 191 |
return d / (2 * a) + sqrt((d * d + e * e) / (4 * a * a) + f / a); |
194 | 192 |
} |
195 | 193 |
|
196 | 194 |
inline bool circle_form(const Point& p, const Point& q, const Point& r) { |
197 | 195 |
return rot90(q - p) * (r - q) < 0.0; |
198 | 196 |
} |
199 | 197 |
|
200 | 198 |
inline double intersection(const Point& p, const Point& q, double sx) { |
201 | 199 |
const double epsilon = 1e-8; |
202 | 200 |
|
203 | 201 |
if (p.x == q.x) return (p.y + q.y) / 2.0; |
204 | 202 |
|
205 | 203 |
if (sx < p.x + epsilon) return p.y; |
206 | 204 |
if (sx < q.x + epsilon) return q.y; |
207 | 205 |
|
208 | 206 |
double a = q.x - p.x; |
209 | 207 |
double b = (q.x - sx) * p.y - (p.x - sx) * q.y; |
210 | 208 |
double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare(); |
211 | 209 |
return (b - sqrt(d)) / a; |
212 | 210 |
} |
213 | 211 |
|
214 | 212 |
struct YLess { |
215 | 213 |
|
216 | 214 |
|
217 | 215 |
YLess(const std::vector<Point>& points, double& sweep) |
218 | 216 |
: _points(points), _sweep(sweep) {} |
219 | 217 |
|
220 | 218 |
bool operator()(const Part& l, const Part& r) const { |
221 | 219 |
const double epsilon = 1e-8; |
222 | 220 |
|
223 | 221 |
// std::cerr << l << " vs " << r << std::endl; |
224 | 222 |
double lbx = l.prev != -1 ? |
225 | 223 |
intersection(_points[l.prev], _points[l.curr], _sweep) : |
226 | 224 |
- std::numeric_limits<double>::infinity(); |
227 | 225 |
double rbx = r.prev != -1 ? |
228 | 226 |
intersection(_points[r.prev], _points[r.curr], _sweep) : |
229 | 227 |
- std::numeric_limits<double>::infinity(); |
230 | 228 |
double lex = l.next != -1 ? |
231 | 229 |
intersection(_points[l.curr], _points[l.next], _sweep) : |
232 | 230 |
std::numeric_limits<double>::infinity(); |
233 | 231 |
double rex = r.next != -1 ? |
234 | 232 |
intersection(_points[r.curr], _points[r.next], _sweep) : |
235 | 233 |
std::numeric_limits<double>::infinity(); |
236 | 234 |
|
237 | 235 |
if (lbx > lex) std::swap(lbx, lex); |
238 | 236 |
if (rbx > rex) std::swap(rbx, rex); |
239 | 237 |
|
240 | 238 |
if (lex < epsilon + rex && lbx + epsilon < rex) return true; |
241 | 239 |
if (rex < epsilon + lex && rbx + epsilon < lex) return false; |
242 | 240 |
return lex < rex; |
243 | 241 |
} |
244 | 242 |
|
245 | 243 |
const std::vector<Point>& _points; |
246 | 244 |
double& _sweep; |
247 | 245 |
}; |
248 | 246 |
|
249 | 247 |
struct BeachIt; |
250 | 248 |
|
251 | 249 |
typedef std::multimap<double, BeachIt> SpikeHeap; |
252 | 250 |
|
253 | 251 |
typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach; |
254 | 252 |
|
255 | 253 |
struct BeachIt { |
256 | 254 |
Beach::iterator it; |
257 | 255 |
|
258 | 256 |
BeachIt(Beach::iterator iter) : it(iter) {} |
259 | 257 |
}; |
260 | 258 |
|
261 | 259 |
} |
262 | 260 |
|
263 | 261 |
inline void delaunay() { |
264 | 262 |
Counter cnt("Number of arcs added: "); |
265 | 263 |
|
266 | 264 |
using namespace _delaunay_bits; |
267 | 265 |
|
268 | 266 |
typedef _delaunay_bits::Part Part; |
269 | 267 |
typedef std::vector<std::pair<double, int> > SiteHeap; |
270 | 268 |
|
271 | 269 |
|
272 | 270 |
std::vector<Point> points; |
273 | 271 |
std::vector<Node> nodes; |
274 | 272 |
|
275 | 273 |
for (NodeIt it(g); it != INVALID; ++it) { |
276 | 274 |
nodes.push_back(it); |
277 | 275 |
points.push_back(coords[it]); |
278 | 276 |
} |
279 | 277 |
|
280 | 278 |
SiteHeap siteheap(points.size()); |
281 | 279 |
|
282 | 280 |
double sweep; |
283 | 281 |
|
284 | 282 |
|
285 | 283 |
for (int i = 0; i < int(siteheap.size()); ++i) { |
286 | 284 |
siteheap[i] = std::make_pair(points[i].x, i); |
287 | 285 |
} |
288 | 286 |
|
289 | 287 |
std::sort(siteheap.begin(), siteheap.end()); |
290 | 288 |
sweep = siteheap.front().first; |
291 | 289 |
|
292 | 290 |
YLess yless(points, sweep); |
293 | 291 |
Beach beach(yless); |
294 | 292 |
|
295 | 293 |
SpikeHeap spikeheap; |
296 | 294 |
|
297 | 295 |
std::set<std::pair<int, int> > arcs; |
298 | 296 |
|
299 | 297 |
int siteindex = 0; |
300 | 298 |
{ |
301 | 299 |
SiteHeap front; |
302 | 300 |
|
303 | 301 |
while (siteindex < int(siteheap.size()) && |
304 | 302 |
siteheap[0].first == siteheap[siteindex].first) { |
305 | 303 |
front.push_back(std::make_pair(points[siteheap[siteindex].second].y, |
306 | 304 |
siteheap[siteindex].second)); |
307 | 305 |
++siteindex; |
308 | 306 |
} |
309 | 307 |
|
310 | 308 |
std::sort(front.begin(), front.end()); |
311 | 309 |
|
312 | 310 |
for (int i = 0; i < int(front.size()); ++i) { |
313 | 311 |
int prev = (i == 0 ? -1 : front[i - 1].second); |
314 | 312 |
int curr = front[i].second; |
315 | 313 |
int next = (i + 1 == int(front.size()) ? -1 : front[i + 1].second); |
316 | 314 |
|
317 | 315 |
beach.insert(std::make_pair(Part(prev, curr, next), |
318 | 316 |
spikeheap.end())); |
319 | 317 |
} |
320 | 318 |
} |
321 | 319 |
|
322 | 320 |
while (siteindex < int(points.size()) || !spikeheap.empty()) { |
323 | 321 |
|
324 | 322 |
SpikeHeap::iterator spit = spikeheap.begin(); |
325 | 323 |
|
326 | 324 |
if (siteindex < int(points.size()) && |
327 | 325 |
(spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) { |
328 | 326 |
int site = siteheap[siteindex].second; |
329 | 327 |
sweep = siteheap[siteindex].first; |
330 | 328 |
|
331 | 329 |
Beach::iterator bit = beach.upper_bound(Part(site, site, site)); |
332 | 330 |
|
333 | 331 |
if (bit->second != spikeheap.end()) { |
334 | 332 |
spikeheap.erase(bit->second); |
335 | 333 |
} |
336 | 334 |
|
337 | 335 |
int prev = bit->first.prev; |
338 | 336 |
int curr = bit->first.curr; |
339 | 337 |
int next = bit->first.next; |
340 | 338 |
|
341 | 339 |
beach.erase(bit); |
342 | 340 |
|
343 | 341 |
SpikeHeap::iterator pit = spikeheap.end(); |
344 | 342 |
if (prev != -1 && |
345 | 343 |
circle_form(points[prev], points[curr], points[site])) { |
346 | 344 |
double x = circle_point(points[prev], points[curr], points[site]); |
347 | 345 |
pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
348 | 346 |
pit->second.it = |
349 | 347 |
beach.insert(std::make_pair(Part(prev, curr, site), pit)); |
350 | 348 |
} else { |
351 | 349 |
beach.insert(std::make_pair(Part(prev, curr, site), pit)); |
352 | 350 |
} |
353 | 351 |
|
354 | 352 |
beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end())); |
355 | 353 |
|
356 | 354 |
SpikeHeap::iterator nit = spikeheap.end(); |
357 | 355 |
if (next != -1 && |
358 | 356 |
circle_form(points[site], points[curr],points[next])) { |
359 | 357 |
double x = circle_point(points[site], points[curr], points[next]); |
360 | 358 |
nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
361 | 359 |
nit->second.it = |
362 | 360 |
beach.insert(std::make_pair(Part(site, curr, next), nit)); |
363 | 361 |
} else { |
364 | 362 |
beach.insert(std::make_pair(Part(site, curr, next), nit)); |
365 | 363 |
} |
366 | 364 |
|
367 | 365 |
++siteindex; |
368 | 366 |
} else { |
369 | 367 |
sweep = spit->first; |
370 | 368 |
|
371 | 369 |
Beach::iterator bit = spit->second.it; |
372 | 370 |
|
373 | 371 |
int prev = bit->first.prev; |
374 | 372 |
int curr = bit->first.curr; |
375 | 373 |
int next = bit->first.next; |
376 | 374 |
|
377 | 375 |
{ |
378 | 376 |
std::pair<int, int> arc; |
379 | 377 |
|
380 | 378 |
arc = prev < curr ? |
381 | 379 |
std::make_pair(prev, curr) : std::make_pair(curr, prev); |
382 | 380 |
|
383 | 381 |
if (arcs.find(arc) == arcs.end()) { |
384 | 382 |
arcs.insert(arc); |
385 | 383 |
g.addEdge(nodes[prev], nodes[curr]); |
386 | 384 |
++cnt; |
387 | 385 |
} |
388 | 386 |
|
389 | 387 |
arc = curr < next ? |
390 | 388 |
std::make_pair(curr, next) : std::make_pair(next, curr); |
391 | 389 |
|
392 | 390 |
if (arcs.find(arc) == arcs.end()) { |
393 | 391 |
arcs.insert(arc); |
394 | 392 |
g.addEdge(nodes[curr], nodes[next]); |
395 | 393 |
++cnt; |
396 | 394 |
} |
397 | 395 |
} |
398 | 396 |
|
399 | 397 |
Beach::iterator pbit = bit; --pbit; |
400 | 398 |
int ppv = pbit->first.prev; |
401 | 399 |
Beach::iterator nbit = bit; ++nbit; |
402 | 400 |
int nnt = nbit->first.next; |
403 | 401 |
|
404 | 402 |
if (bit->second != spikeheap.end()) spikeheap.erase(bit->second); |
405 | 403 |
if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second); |
406 | 404 |
if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second); |
407 | 405 |
|
408 | 406 |
beach.erase(nbit); |
409 | 407 |
beach.erase(bit); |
410 | 408 |
beach.erase(pbit); |
411 | 409 |
|
412 | 410 |
SpikeHeap::iterator pit = spikeheap.end(); |
413 | 411 |
if (ppv != -1 && ppv != next && |
414 | 412 |
circle_form(points[ppv], points[prev], points[next])) { |
415 | 413 |
double x = circle_point(points[ppv], points[prev], points[next]); |
416 | 414 |
if (x < sweep) x = sweep; |
417 | 415 |
pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
418 | 416 |
pit->second.it = |
419 | 417 |
beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
420 | 418 |
} else { |
421 | 419 |
beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
422 | 420 |
} |
423 | 421 |
|
424 | 422 |
SpikeHeap::iterator nit = spikeheap.end(); |
425 | 423 |
if (nnt != -1 && prev != nnt && |
426 | 424 |
circle_form(points[prev], points[next], points[nnt])) { |
427 | 425 |
double x = circle_point(points[prev], points[next], points[nnt]); |
428 | 426 |
if (x < sweep) x = sweep; |
429 | 427 |
nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
430 | 428 |
nit->second.it = |
431 | 429 |
beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
432 | 430 |
} else { |
433 | 431 |
beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
434 | 432 |
} |
435 | 433 |
|
436 | 434 |
} |
437 | 435 |
} |
438 | 436 |
|
439 | 437 |
for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) { |
440 | 438 |
int curr = it->first.curr; |
441 | 439 |
int next = it->first.next; |
442 | 440 |
|
443 | 441 |
if (next == -1) continue; |
444 | 442 |
|
445 | 443 |
std::pair<int, int> arc; |
446 | 444 |
|
447 | 445 |
arc = curr < next ? |
448 | 446 |
std::make_pair(curr, next) : std::make_pair(next, curr); |
449 | 447 |
|
450 | 448 |
if (arcs.find(arc) == arcs.end()) { |
451 | 449 |
arcs.insert(arc); |
452 | 450 |
g.addEdge(nodes[curr], nodes[next]); |
453 | 451 |
++cnt; |
454 | 452 |
} |
455 | 453 |
} |
456 | 454 |
} |
457 | 455 |
|
458 | 456 |
void sparse(int d) |
459 | 457 |
{ |
460 | 458 |
Counter cnt("Number of arcs removed: "); |
461 | 459 |
Bfs<ListGraph> bfs(g); |
462 | 460 |
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin(); |
463 | 461 |
ei!=arcs.rend();++ei) |
464 | 462 |
{ |
465 | 463 |
Node a=g.u(*ei); |
466 | 464 |
Node b=g.v(*ei); |
467 | 465 |
g.erase(*ei); |
468 | 466 |
bfs.run(a,b); |
469 | 467 |
if(bfs.predArc(b)==INVALID || bfs.dist(b)>d) |
470 | 468 |
g.addEdge(a,b); |
471 | 469 |
else cnt++; |
472 | 470 |
} |
473 | 471 |
} |
474 | 472 |
|
475 | 473 |
void sparse2(int d) |
476 | 474 |
{ |
477 | 475 |
Counter cnt("Number of arcs removed: "); |
478 | 476 |
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin(); |
479 | 477 |
ei!=arcs.rend();++ei) |
480 | 478 |
{ |
481 | 479 |
Node a=g.u(*ei); |
482 | 480 |
Node b=g.v(*ei); |
483 | 481 |
g.erase(*ei); |
484 | 482 |
ConstMap<Arc,int> cegy(1); |
485 | 483 |
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy,a,b); |
486 | 484 |
int k=sur.run(2); |
487 | 485 |
if(k<2 || sur.totalLength()>d) |
488 | 486 |
g.addEdge(a,b); |
489 | 487 |
else cnt++; |
490 | 488 |
// else std::cout << "Remove arc " << g.id(a) << "-" << g.id(b) << '\n'; |
491 | 489 |
} |
492 | 490 |
} |
493 | 491 |
|
494 | 492 |
void sparseTriangle(int d) |
495 | 493 |
{ |
496 | 494 |
Counter cnt("Number of arcs added: "); |
497 | 495 |
std::vector<Parc> pedges; |
498 | 496 |
for(NodeIt n(g);n!=INVALID;++n) |
499 | 497 |
for(NodeIt m=++(NodeIt(n));m!=INVALID;++m) |
500 | 498 |
{ |
501 | 499 |
Parc p; |
502 | 500 |
p.a=n; |
503 | 501 |
p.b=m; |
504 | 502 |
p.len=(coords[m]-coords[n]).normSquare(); |
505 | 503 |
pedges.push_back(p); |
506 | 504 |
} |
507 | 505 |
std::sort(pedges.begin(),pedges.end(),pedgeLess); |
508 | 506 |
for(std::vector<Parc>::iterator pi=pedges.begin();pi!=pedges.end();++pi) |
509 | 507 |
{ |
510 | 508 |
Line li(pi->a,pi->b); |
511 | 509 |
EdgeIt e(g); |
512 | 510 |
for(;e!=INVALID && !cross(e,li);++e) ; |
513 | 511 |
Edge ne; |
514 | 512 |
if(e==INVALID) { |
515 | 513 |
ConstMap<Arc,int> cegy(1); |
516 | 514 |
Suurballe<ListGraph,ConstMap<Arc,int> > |
517 | 515 |
sur(g,cegy,pi->a,pi->b); |
518 | 516 |
int k=sur.run(2); |
519 | 517 |
if(k<2 || sur.totalLength()>d) |
520 | 518 |
{ |
521 | 519 |
ne=g.addEdge(pi->a,pi->b); |
522 | 520 |
arcs.push_back(ne); |
523 | 521 |
cnt++; |
524 | 522 |
} |
525 | 523 |
} |
526 | 524 |
} |
527 | 525 |
} |
528 | 526 |
|
529 | 527 |
template <typename Graph, typename CoordMap> |
530 | 528 |
class LengthSquareMap { |
531 | 529 |
public: |
532 | 530 |
typedef typename Graph::Edge Key; |
533 | 531 |
typedef typename CoordMap::Value::Value Value; |
534 | 532 |
|
535 | 533 |
LengthSquareMap(const Graph& graph, const CoordMap& coords) |
536 | 534 |
: _graph(graph), _coords(coords) {} |
537 | 535 |
|
538 | 536 |
Value operator[](const Key& key) const { |
539 | 537 |
return (_coords[_graph.v(key)] - |
540 | 538 |
_coords[_graph.u(key)]).normSquare(); |
541 | 539 |
} |
542 | 540 |
|
543 | 541 |
private: |
0 comments (0 inline)