... | ... |
@@ -68,34 +68,35 @@ |
68 | 68 |
/// Absorbs the value. |
69 | 69 |
void set(const K&, const T&) {} |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///Returns a \c NullMap class |
73 | 73 |
|
74 | 74 |
///This function just returns a \c NullMap class. |
75 | 75 |
///\relates NullMap |
76 | 76 |
template <typename K, typename V> |
77 | 77 |
NullMap<K, V> nullMap() { |
78 | 78 |
return NullMap<K, V>(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
|
82 | 82 |
/// Constant map. |
83 | 83 |
|
84 |
/// This is a readable map which assigns a specified value to each key. |
|
85 |
/// In other aspects it is equivalent to the \c NullMap. |
|
84 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
|
85 |
/// specified value to each key. |
|
86 |
/// In other aspects it is equivalent to \c NullMap. |
|
86 | 87 |
template<typename K, typename T> |
87 | 88 |
class ConstMap : public MapBase<K, T> { |
88 | 89 |
private: |
89 | 90 |
T v; |
90 | 91 |
public: |
91 | 92 |
|
92 | 93 |
typedef MapBase<K, T> Parent; |
93 | 94 |
typedef typename Parent::Key Key; |
94 | 95 |
typedef typename Parent::Value Value; |
95 | 96 |
|
96 | 97 |
/// Default constructor |
97 | 98 |
|
98 | 99 |
/// Default constructor. |
99 | 100 |
/// The value of the map will be uninitialized. |
100 | 101 |
/// (More exactly it will be default constructed.) |
101 | 102 |
ConstMap() {} |
... | ... |
@@ -120,96 +121,98 @@ |
120 | 121 |
|
121 | 122 |
///Returns a \c ConstMap class |
122 | 123 |
|
123 | 124 |
///This function just returns a \c ConstMap class. |
124 | 125 |
///\relates ConstMap |
125 | 126 |
template<typename K, typename V> |
126 | 127 |
inline ConstMap<K, V> constMap(const V &v) { |
127 | 128 |
return ConstMap<K, V>(v); |
128 | 129 |
} |
129 | 130 |
|
130 | 131 |
|
131 | 132 |
template<typename T, T v> |
132 | 133 |
struct Const { }; |
133 | 134 |
|
134 | 135 |
/// Constant map with inlined constant value. |
135 | 136 |
|
136 |
/// This is a readable map which assigns a specified value to each key. |
|
137 |
/// In other aspects it is equivalent to the \c NullMap. |
|
137 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
|
138 |
/// specified value to each key. |
|
139 |
/// In other aspects it is equivalent to \c NullMap. |
|
138 | 140 |
template<typename K, typename V, V v> |
139 | 141 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
140 | 142 |
public: |
141 | 143 |
typedef MapBase<K, V> Parent; |
142 | 144 |
typedef typename Parent::Key Key; |
143 | 145 |
typedef typename Parent::Value Value; |
144 | 146 |
|
145 | 147 |
ConstMap() { } |
146 | 148 |
///\e |
147 | 149 |
V operator[](const K&) const { return v; } |
148 | 150 |
///\e |
149 | 151 |
void set(const K&, const V&) { } |
150 | 152 |
}; |
151 | 153 |
|
152 |
///Returns a \c ConstMap class |
|
154 |
///Returns a \c ConstMap class with inlined value |
|
153 | 155 |
|
154 | 156 |
///This function just returns a \c ConstMap class with inlined value. |
155 | 157 |
///\relates ConstMap |
156 | 158 |
template<typename K, typename V, V v> |
157 | 159 |
inline ConstMap<K, Const<V, v> > constMap() { |
158 | 160 |
return ConstMap<K, Const<V, v> >(); |
159 | 161 |
} |
160 | 162 |
|
161 | 163 |
///Map based on \c std::map |
162 | 164 |
|
163 | 165 |
///This is essentially a wrapper for \c std::map with addition that |
164 | 166 |
///you can specify a default value different from \c Value(). |
167 |
///It meets the \ref concepts::ReferenceMap "ReferenceMap" concept. |
|
165 | 168 |
template <typename K, typename T, typename Compare = std::less<K> > |
166 | 169 |
class StdMap : public MapBase<K, T> { |
167 | 170 |
template <typename K1, typename T1, typename C1> |
168 | 171 |
friend class StdMap; |
169 | 172 |
public: |
170 | 173 |
|
171 | 174 |
typedef MapBase<K, T> Parent; |
172 | 175 |
///\e |
173 | 176 |
typedef typename Parent::Key Key; |
174 | 177 |
///\e |
175 | 178 |
typedef typename Parent::Value Value; |
176 | 179 |
///\e |
177 | 180 |
typedef T& Reference; |
178 | 181 |
///\e |
179 | 182 |
typedef const T& ConstReference; |
180 | 183 |
|
181 | 184 |
typedef True ReferenceMapTag; |
182 | 185 |
|
183 | 186 |
private: |
184 | 187 |
|
185 | 188 |
typedef std::map<K, T, Compare> Map; |
186 | 189 |
Value _value; |
187 | 190 |
Map _map; |
188 | 191 |
|
189 | 192 |
public: |
190 | 193 |
|
191 | 194 |
/// Constructor with specified default value |
192 | 195 |
StdMap(const T& value = T()) : _value(value) {} |
193 |
/// \brief Constructs the map from an appropriate std::map, and explicitly |
|
194 |
/// specifies a default value. |
|
196 |
/// \brief Constructs the map from an appropriate \c std::map, and |
|
197 |
/// explicitly specifies a default value. |
|
195 | 198 |
template <typename T1, typename Comp1> |
196 | 199 |
StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) |
197 | 200 |
: _map(map.begin(), map.end()), _value(value) {} |
198 | 201 |
|
199 |
/// \brief Constructs a map from an other StdMap. |
|
202 |
/// \brief Constructs a map from an other \ref StdMap. |
|
200 | 203 |
template<typename T1, typename Comp1> |
201 | 204 |
StdMap(const StdMap<Key, T1, Comp1> &c) |
202 | 205 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
203 | 206 |
|
204 | 207 |
private: |
205 | 208 |
|
206 | 209 |
StdMap& operator=(const StdMap&); |
207 | 210 |
|
208 | 211 |
public: |
209 | 212 |
|
210 | 213 |
///\e |
211 | 214 |
Reference operator[](const Key &k) { |
212 | 215 |
typename Map::iterator it = _map.lower_bound(k); |
213 | 216 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
214 | 217 |
return it->second; |
215 | 218 |
else |
... | ... |
@@ -252,74 +255,75 @@ |
252 | 255 |
return StdMap<K, V, Compare>(value); |
253 | 256 |
} |
254 | 257 |
|
255 | 258 |
///Returns a \c StdMap class created from an appropriate std::map |
256 | 259 |
|
257 | 260 |
///This function just returns a \c StdMap class created from an |
258 | 261 |
///appropriate std::map. |
259 | 262 |
///\relates StdMap |
260 | 263 |
template<typename K, typename V, typename Compare = std::less<K> > |
261 | 264 |
inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, |
262 | 265 |
const V& value = V() ) { |
263 | 266 |
return StdMap<K, V, Compare>(map, value); |
264 | 267 |
} |
265 | 268 |
|
266 | 269 |
/// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt> |
267 | 270 |
/// |
268 |
/// |
|
271 |
/// This map has the <tt>[0..size-1]</tt> keyset and the values |
|
269 | 272 |
/// are stored in a \c std::vector<T> container. It can be used with |
270 | 273 |
/// some data structures, for example \c UnionFind, \c BinHeap, when |
271 |
/// the used items are small integer numbers. |
|
274 |
/// the used items are small integer numbers. |
|
275 |
/// This map meets the \ref concepts::ReferenceMap "ReferenceMap" concept. |
|
272 | 276 |
/// |
273 | 277 |
/// \todo Revise its name |
274 | 278 |
template <typename T> |
275 | 279 |
class IntegerMap : public MapBase<int, T> { |
276 | 280 |
|
277 | 281 |
template <typename T1> |
278 | 282 |
friend class IntegerMap; |
279 | 283 |
|
280 | 284 |
public: |
281 | 285 |
|
282 | 286 |
typedef MapBase<int, T> Parent; |
283 | 287 |
///\e |
284 | 288 |
typedef typename Parent::Key Key; |
285 | 289 |
///\e |
286 | 290 |
typedef typename Parent::Value Value; |
287 | 291 |
///\e |
288 | 292 |
typedef T& Reference; |
289 | 293 |
///\e |
290 | 294 |
typedef const T& ConstReference; |
291 | 295 |
|
292 | 296 |
typedef True ReferenceMapTag; |
293 | 297 |
|
294 | 298 |
private: |
295 | 299 |
|
296 | 300 |
typedef std::vector<T> Vector; |
297 | 301 |
Vector _vector; |
298 | 302 |
|
299 | 303 |
public: |
300 | 304 |
|
301 | 305 |
/// Constructor with specified default value |
302 | 306 |
IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {} |
303 | 307 |
|
304 |
/// \brief Constructs the map from an appropriate std::vector. |
|
308 |
/// \brief Constructs the map from an appropriate \c std::vector. |
|
305 | 309 |
template <typename T1> |
306 | 310 |
IntegerMap(const std::vector<T1>& vector) |
307 | 311 |
: _vector(vector.begin(), vector.end()) {} |
308 | 312 |
|
309 |
/// \brief Constructs a map from an other IntegerMap. |
|
313 |
/// \brief Constructs a map from an other \ref IntegerMap. |
|
310 | 314 |
template <typename T1> |
311 | 315 |
IntegerMap(const IntegerMap<T1> &c) |
312 | 316 |
: _vector(c._vector.begin(), c._vector.end()) {} |
313 | 317 |
|
314 | 318 |
/// \brief Resize the container |
315 | 319 |
void resize(int size, const T& value = T()) { |
316 | 320 |
_vector.resize(size, value); |
317 | 321 |
} |
318 | 322 |
|
319 | 323 |
private: |
320 | 324 |
|
321 | 325 |
IntegerMap& operator=(const IntegerMap&); |
322 | 326 |
|
323 | 327 |
public: |
324 | 328 |
|
325 | 329 |
///\e |
... | ... |
@@ -387,35 +391,33 @@ |
387 | 391 |
///converts the \c Value of a map to type \c T. |
388 | 392 |
///Its \c Key is inherited from \c M. |
389 | 393 |
template <typename M, typename T> |
390 | 394 |
class ConvertMap : public MapBase<typename M::Key, T> { |
391 | 395 |
const M& m; |
392 | 396 |
public: |
393 | 397 |
typedef MapBase<typename M::Key, T> Parent; |
394 | 398 |
typedef typename Parent::Key Key; |
395 | 399 |
typedef typename Parent::Value Value; |
396 | 400 |
|
397 | 401 |
///Constructor |
398 | 402 |
|
399 | 403 |
///Constructor. |
400 | 404 |
///\param _m is the underlying map. |
401 | 405 |
ConvertMap(const M &_m) : m(_m) {}; |
402 | 406 |
|
403 |
/// \brief The subscript operator. |
|
404 |
/// |
|
405 |
/// |
|
407 |
///\e |
|
406 | 408 |
Value operator[](const Key& k) const {return m[k];} |
407 | 409 |
}; |
408 | 410 |
|
409 | 411 |
///Returns a \c ConvertMap class |
410 | 412 |
|
411 | 413 |
///This function just returns a \c ConvertMap class. |
412 | 414 |
///\relates ConvertMap |
413 | 415 |
template<typename T, typename M> |
414 | 416 |
inline ConvertMap<M, T> convertMap(const M &m) { |
415 | 417 |
return ConvertMap<M, T>(m); |
416 | 418 |
} |
417 | 419 |
|
418 | 420 |
///Simple wrapping of a map |
419 | 421 |
|
420 | 422 |
///This \ref concepts::ReadMap "read only map" returns the simple |
421 | 423 |
///wrapping of the given map. Sometimes the reference maps cannot be |
... | ... |
@@ -477,53 +479,53 @@ |
477 | 479 |
}; |
478 | 480 |
|
479 | 481 |
///Returns a \c SimpleWriteMap class |
480 | 482 |
|
481 | 483 |
///This function just returns a \c SimpleWriteMap class. |
482 | 484 |
///\relates SimpleWriteMap |
483 | 485 |
template<typename M> |
484 | 486 |
inline SimpleWriteMap<M> simpleWriteMap(M &m) { |
485 | 487 |
return SimpleWriteMap<M>(m); |
486 | 488 |
} |
487 | 489 |
|
488 | 490 |
///Sum of two maps |
489 | 491 |
|
490 | 492 |
///This \ref concepts::ReadMap "read only map" returns the sum of the two |
491 | 493 |
///given maps. |
492 | 494 |
///Its \c Key and \c Value are inherited from \c M1. |
493 |
///The \c Key and \c Value of M2 must be convertible to those of \c M1. |
|
495 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
494 | 496 |
template<typename M1, typename M2> |
495 | 497 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
496 | 498 |
const M1& m1; |
497 | 499 |
const M2& m2; |
498 | 500 |
|
499 | 501 |
public: |
500 | 502 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
501 | 503 |
typedef typename Parent::Key Key; |
502 | 504 |
typedef typename Parent::Value Value; |
503 | 505 |
|
504 | 506 |
///Constructor |
505 | 507 |
AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
506 | 508 |
///\e |
507 | 509 |
Value operator[](Key k) const {return m1[k]+m2[k];} |
508 | 510 |
}; |
509 | 511 |
|
510 | 512 |
///Returns an \c AddMap class |
511 | 513 |
|
512 | 514 |
///This function just returns an \c AddMap class. |
513 |
///\todo |
|
515 |
///\todo Extend the documentation: how to call these type of functions? |
|
514 | 516 |
/// |
515 | 517 |
///\relates AddMap |
516 | 518 |
template<typename M1, typename M2> |
517 | 519 |
inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) { |
518 | 520 |
return AddMap<M1, M2>(m1,m2); |
519 | 521 |
} |
520 | 522 |
|
521 | 523 |
///Shift a map with a constant. |
522 | 524 |
|
523 | 525 |
///This \ref concepts::ReadMap "read only map" returns the sum of the |
524 | 526 |
///given map and a constant value. |
525 | 527 |
///Its \c Key and \c Value are inherited from \c M. |
526 | 528 |
/// |
527 | 529 |
///Actually, |
528 | 530 |
///\code |
529 | 531 |
/// ShiftMap<X> sh(x,v); |
... | ... |
@@ -994,82 +996,84 @@ |
994 | 996 |
|
995 | 997 |
///This function just returns an \c AbsMap class. |
996 | 998 |
///\relates AbsMap |
997 | 999 |
template<typename M> |
998 | 1000 |
inline AbsMap<M> absMap(const M &m) { |
999 | 1001 |
return AbsMap<M>(m); |
1000 | 1002 |
} |
1001 | 1003 |
|
1002 | 1004 |
///Converts an STL style functor to a map |
1003 | 1005 |
|
1004 | 1006 |
///This \ref concepts::ReadMap "read only map" returns the value |
1005 | 1007 |
///of a given functor. |
1006 | 1008 |
/// |
1007 | 1009 |
///Template parameters \c K and \c V will become its |
1008 | 1010 |
///\c Key and \c Value. |
1009 | 1011 |
///In most cases they have to be given explicitly because a |
1010 |
///functor typically does not provide |
|
1012 |
///functor typically does not provide \c argument_type and |
|
1013 |
///\c result_type typedefs. |
|
1011 | 1014 |
/// |
1012 | 1015 |
///Parameter \c F is the type of the used functor. |
1013 | 1016 |
/// |
1014 | 1017 |
///\sa MapFunctor |
1015 | 1018 |
template<typename F, |
1016 | 1019 |
typename K = typename F::argument_type, |
1017 | 1020 |
typename V = typename F::result_type> |
1018 | 1021 |
class FunctorMap : public MapBase<K, V> { |
1019 | 1022 |
F f; |
1020 | 1023 |
public: |
1021 | 1024 |
typedef MapBase<K, V> Parent; |
1022 | 1025 |
typedef typename Parent::Key Key; |
1023 | 1026 |
typedef typename Parent::Value Value; |
1024 | 1027 |
|
1025 | 1028 |
///Constructor |
1026 | 1029 |
FunctorMap(const F &_f = F()) : f(_f) {} |
1027 | 1030 |
/// \e |
1028 | 1031 |
Value operator[](Key k) const { return f(k);} |
1029 | 1032 |
}; |
1030 | 1033 |
|
1031 | 1034 |
///Returns a \c FunctorMap class |
1032 | 1035 |
|
1033 | 1036 |
///This function just returns a \c FunctorMap class. |
1034 | 1037 |
/// |
1035 |
///It is specialized for adaptable function classes and |
|
1036 |
///C++ functions. |
|
1038 |
///This function is specialized for adaptable binary function |
|
1039 |
///classes and C++ functions. |
|
1040 |
/// |
|
1037 | 1041 |
///\relates FunctorMap |
1038 | 1042 |
template<typename K, typename V, typename F> inline |
1039 | 1043 |
FunctorMap<F, K, V> functorMap(const F &f) { |
1040 | 1044 |
return FunctorMap<F, K, V>(f); |
1041 | 1045 |
} |
1042 | 1046 |
|
1043 | 1047 |
template <typename F> inline |
1044 | 1048 |
FunctorMap<F, typename F::argument_type, typename F::result_type> |
1045 | 1049 |
functorMap(const F &f) { |
1046 | 1050 |
return FunctorMap<F, typename F::argument_type, |
1047 | 1051 |
typename F::result_type>(f); |
1048 | 1052 |
} |
1049 | 1053 |
|
1050 | 1054 |
template <typename K, typename V> inline |
1051 | 1055 |
FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) { |
1052 | 1056 |
return FunctorMap<V (*)(K), K, V>(f); |
1053 | 1057 |
} |
1054 | 1058 |
|
1055 | 1059 |
|
1056 | 1060 |
///Converts a map to an STL style (unary) functor |
1057 | 1061 |
|
1058 | 1062 |
///This class Converts a map to an STL style (unary) functor. |
1059 |
/// |
|
1063 |
///That is it provides an <tt>operator()</tt> to read its values. |
|
1060 | 1064 |
/// |
1061 | 1065 |
///For the sake of convenience it also works as |
1062 | 1066 |
///a ususal \ref concepts::ReadMap "readable map", |
1063 | 1067 |
///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist. |
1064 | 1068 |
/// |
1065 | 1069 |
///\sa FunctorMap |
1066 | 1070 |
template <typename M> |
1067 | 1071 |
class MapFunctor : public MapBase<typename M::Key, typename M::Value> { |
1068 | 1072 |
const M& m; |
1069 | 1073 |
public: |
1070 | 1074 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
1071 | 1075 |
typedef typename Parent::Key Key; |
1072 | 1076 |
typedef typename Parent::Value Value; |
1073 | 1077 |
|
1074 | 1078 |
typedef typename M::Key argument_type; |
1075 | 1079 |
typedef typename M::Value result_type; |
... | ... |
@@ -1078,70 +1082,70 @@ |
1078 | 1082 |
MapFunctor(const M &_m) : m(_m) {}; |
1079 | 1083 |
///\e |
1080 | 1084 |
Value operator()(Key k) const {return m[k];} |
1081 | 1085 |
///\e |
1082 | 1086 |
Value operator[](Key k) const {return m[k];} |
1083 | 1087 |
}; |
1084 | 1088 |
|
1085 | 1089 |
///Returns a \c MapFunctor class |
1086 | 1090 |
|
1087 | 1091 |
///This function just returns a \c MapFunctor class. |
1088 | 1092 |
///\relates MapFunctor |
1089 | 1093 |
template<typename M> |
1090 | 1094 |
inline MapFunctor<M> mapFunctor(const M &m) { |
1091 | 1095 |
return MapFunctor<M>(m); |
1092 | 1096 |
} |
1093 | 1097 |
|
1094 |
/// |
|
1098 |
///Just readable version of \ref ForkWriteMap |
|
1095 | 1099 |
|
1096 | 1100 |
///This map has two \ref concepts::ReadMap "readable map" |
1097 | 1101 |
///parameters and each read request will be passed just to the |
1098 |
///first map. This class is the just readable map type of |
|
1102 |
///first map. This class is the just readable map type of \c ForkWriteMap. |
|
1099 | 1103 |
/// |
1100 | 1104 |
///The \c Key and \c Value are inherited from \c M1. |
1101 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1. |
|
1105 |
///The \c Key and \c Value of \c M2 must be convertible from those of \c M1. |
|
1102 | 1106 |
/// |
1103 | 1107 |
///\sa ForkWriteMap |
1104 | 1108 |
/// |
1105 | 1109 |
/// \todo Why is it needed? |
1106 | 1110 |
template<typename M1, typename M2> |
1107 | 1111 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
1108 | 1112 |
const M1& m1; |
1109 | 1113 |
const M2& m2; |
1110 | 1114 |
public: |
1111 | 1115 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
1112 | 1116 |
typedef typename Parent::Key Key; |
1113 | 1117 |
typedef typename Parent::Value Value; |
1114 | 1118 |
|
1115 | 1119 |
///Constructor |
1116 | 1120 |
ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {}; |
1117 | 1121 |
/// \e |
1118 | 1122 |
Value operator[](Key k) const {return m1[k];} |
1119 | 1123 |
}; |
1120 | 1124 |
|
1121 | 1125 |
|
1122 | 1126 |
///Applies all map setting operations to two maps |
1123 | 1127 |
|
1124 | 1128 |
///This map has two \ref concepts::WriteMap "writable map" |
1125 | 1129 |
///parameters and each write request will be passed to both of them. |
1126 | 1130 |
///If \c M1 is also \ref concepts::ReadMap "readable", |
1127 | 1131 |
///then the read operations will return the |
1128 | 1132 |
///corresponding values of \c M1. |
1129 | 1133 |
/// |
1130 | 1134 |
///The \c Key and \c Value are inherited from \c M1. |
1131 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1. |
|
1135 |
///The \c Key and \c Value of \c M2 must be convertible from those of \c M1. |
|
1132 | 1136 |
/// |
1133 | 1137 |
///\sa ForkMap |
1134 | 1138 |
template<typename M1, typename M2> |
1135 | 1139 |
class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> { |
1136 | 1140 |
M1& m1; |
1137 | 1141 |
M2& m2; |
1138 | 1142 |
public: |
1139 | 1143 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
1140 | 1144 |
typedef typename Parent::Key Key; |
1141 | 1145 |
typedef typename Parent::Value Value; |
1142 | 1146 |
|
1143 | 1147 |
///Constructor |
1144 | 1148 |
ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {}; |
1145 | 1149 |
///\e |
1146 | 1150 |
Value operator[](Key k) const {return m1[k];} |
1147 | 1151 |
///\e |
... | ... |
@@ -1161,55 +1165,55 @@ |
1161 | 1165 |
|
1162 | 1166 |
///This function just returns a \c ForkWriteMap class. |
1163 | 1167 |
///\relates ForkWriteMap |
1164 | 1168 |
template <typename M1, typename M2> |
1165 | 1169 |
inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) { |
1166 | 1170 |
return ForkWriteMap<M1, M2>(m1,m2); |
1167 | 1171 |
} |
1168 | 1172 |
|
1169 | 1173 |
|
1170 | 1174 |
|
1171 | 1175 |
/* ************* BOOL MAPS ******************* */ |
1172 | 1176 |
|
1173 | 1177 |
///Logical 'not' of a map |
1174 | 1178 |
|
1175 | 1179 |
///This bool \ref concepts::ReadMap "read only map" returns the |
1176 | 1180 |
///logical negation of the value returned by the given map. |
1177 |
///Its \c Key is inherited from \c M, its Value is \c bool. |
|
1181 |
///Its \c Key is inherited from \c M, its \c Value is \c bool. |
|
1178 | 1182 |
/// |
1179 | 1183 |
///\sa NotWriteMap |
1180 | 1184 |
template <typename M> |
1181 | 1185 |
class NotMap : public MapBase<typename M::Key, bool> { |
1182 | 1186 |
const M& m; |
1183 | 1187 |
public: |
1184 | 1188 |
typedef MapBase<typename M::Key, bool> Parent; |
1185 | 1189 |
typedef typename Parent::Key Key; |
1186 | 1190 |
typedef typename Parent::Value Value; |
1187 | 1191 |
|
1188 | 1192 |
/// Constructor |
1189 | 1193 |
NotMap(const M &_m) : m(_m) {}; |
1190 | 1194 |
///\e |
1191 | 1195 |
Value operator[](Key k) const {return !m[k];} |
1192 | 1196 |
}; |
1193 | 1197 |
|
1194 | 1198 |
///Logical 'not' of a map (ReadWrie version) |
1195 | 1199 |
|
1196 | 1200 |
///This bool \ref concepts::ReadWriteMap "read-write map" returns the |
1197 | 1201 |
///logical negation of the value returned by the given map. When it is set, |
1198 | 1202 |
///the opposite value is set to the original map. |
1199 |
///Its \c Key is inherited from \c M, its Value is \c bool. |
|
1203 |
///Its \c Key is inherited from \c M, its \c Value is \c bool. |
|
1200 | 1204 |
/// |
1201 | 1205 |
///\sa NotMap |
1202 | 1206 |
template <typename M> |
1203 | 1207 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1204 | 1208 |
M& m; |
1205 | 1209 |
public: |
1206 | 1210 |
typedef MapBase<typename M::Key, bool> Parent; |
1207 | 1211 |
typedef typename Parent::Key Key; |
1208 | 1212 |
typedef typename Parent::Value Value; |
1209 | 1213 |
|
1210 | 1214 |
/// Constructor |
1211 | 1215 |
NotWriteMap(M &_m) : m(_m) {}; |
1212 | 1216 |
///\e |
1213 | 1217 |
Value operator[](Key k) const {return !m[k];} |
1214 | 1218 |
///\e |
1215 | 1219 |
void set(Key k, bool v) { m.set(k, !v); } |
... | ... |
@@ -1249,41 +1253,40 @@ |
1249 | 1253 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1250 | 1254 |
}; |
1251 | 1255 |
|
1252 | 1256 |
template <typename _Iterator> |
1253 | 1257 |
struct IteratorTraits<_Iterator, |
1254 | 1258 |
typename exists<typename _Iterator::container_type>::type> |
1255 | 1259 |
{ |
1256 | 1260 |
typedef typename _Iterator::container_type::value_type Value; |
1257 | 1261 |
}; |
1258 | 1262 |
|
1259 | 1263 |
} |
1260 | 1264 |
|
1261 | 1265 |
|
1262 | 1266 |
/// \brief Writable bool map for logging each \c true assigned element |
1263 | 1267 |
/// |
1264 | 1268 |
/// A \ref concepts::ReadWriteMap "read-write" bool map for logging |
1265 |
/// each \c true assigned element, i.e it |
|
1269 |
/// each \c true assigned element, i.e it copies all the keys set |
|
1266 | 1270 |
/// to \c true to the given iterator. |
1267 | 1271 |
/// |
1268 | 1272 |
/// \note The container of the iterator should contain space |
1269 | 1273 |
/// for each element. |
1270 | 1274 |
/// |
1271 |
/// The following example shows how you can write the edges found by the Prim |
|
1272 |
/// algorithm directly |
|
1273 |
/// |
|
1275 |
/// The following example shows how you can write the edges found by |
|
1276 |
/// the \ref Prim algorithm directly to the standard output. |
|
1274 | 1277 |
///\code |
1275 | 1278 |
/// typedef IdMap<Graph, Edge> EdgeIdMap; |
1276 | 1279 |
/// EdgeIdMap edgeId(graph); |
1277 | 1280 |
/// |
1278 | 1281 |
/// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor; |
1279 | 1282 |
/// EdgeIdFunctor edgeIdFunctor(edgeId); |
1280 | 1283 |
/// |
1281 | 1284 |
/// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> |
1282 | 1285 |
/// writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor); |
1283 | 1286 |
/// |
1284 | 1287 |
/// prim(graph, cost, writerMap); |
1285 | 1288 |
///\endcode |
1286 | 1289 |
/// |
1287 | 1290 |
///\sa BackInserterBoolMap |
1288 | 1291 |
///\sa FrontInserterBoolMap |
1289 | 1292 |
///\sa InserterBoolMap |
0 comments (0 inline)