gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Minor doc improvements in maps.h.
0 1 0
default
1 file changed with 33 insertions and 30 deletions:
↑ Collapse diff ↑
Show white space 12 line context
... ...
@@ -78,14 +78,15 @@
78 78
    return NullMap<K, V>();
79 79
  }
80 80

	
81 81

	
82 82
  /// Constant map.
83 83

	
84
  /// This is a readable map which assigns a specified value to each key.
85
  /// In other aspects it is equivalent to the \c NullMap.
84
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
85
  /// specified value to each key.
86
  /// In other aspects it is equivalent to \c NullMap.
86 87
  template<typename K, typename T>
87 88
  class ConstMap : public MapBase<K, T> {
88 89
  private:
89 90
    T v;
90 91
  public:
91 92

	
... ...
@@ -130,14 +131,15 @@
130 131

	
131 132
  template<typename T, T v>
132 133
  struct Const { };
133 134

	
134 135
  /// Constant map with inlined constant value.
135 136

	
136
  /// This is a readable map which assigns a specified value to each key.
137
  /// In other aspects it is equivalent to the \c NullMap.
137
  /// This is a \ref concepts::ReadMap "readable" map which assigns a 
138
  /// specified value to each key.
139
  /// In other aspects it is equivalent to \c NullMap.
138 140
  template<typename K, typename V, V v>
139 141
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
140 142
  public:
141 143
    typedef MapBase<K, V> Parent;
142 144
    typedef typename Parent::Key Key;
143 145
    typedef typename Parent::Value Value;
... ...
@@ -146,25 +148,26 @@
146 148
    ///\e
147 149
    V operator[](const K&) const { return v; }
148 150
    ///\e
149 151
    void set(const K&, const V&) { }
150 152
  };
151 153

	
152
  ///Returns a \c ConstMap class
154
  ///Returns a \c ConstMap class with inlined value
153 155

	
154 156
  ///This function just returns a \c ConstMap class with inlined value.
155 157
  ///\relates ConstMap
156 158
  template<typename K, typename V, V v> 
157 159
  inline ConstMap<K, Const<V, v> > constMap() {
158 160
    return ConstMap<K, Const<V, v> >();
159 161
  }
160 162

	
161 163
  ///Map based on \c std::map
162 164

	
163 165
  ///This is essentially a wrapper for \c std::map with addition that
164 166
  ///you can specify a default value different from \c Value().
167
  ///It meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
165 168
  template <typename K, typename T, typename Compare = std::less<K> >
166 169
  class StdMap : public MapBase<K, T> {
167 170
    template <typename K1, typename T1, typename C1>
168 171
    friend class StdMap;
169 172
  public:
170 173

	
... ...
@@ -187,19 +190,19 @@
187 190
    Map _map;
188 191

	
189 192
  public:
190 193

	
191 194
    /// Constructor with specified default value
192 195
    StdMap(const T& value = T()) : _value(value) {}
193
    /// \brief Constructs the map from an appropriate std::map, and explicitly
194
    /// specifies a default value.
196
    /// \brief Constructs the map from an appropriate \c std::map, and 
197
    /// explicitly specifies a default value.
195 198
    template <typename T1, typename Comp1>
196 199
    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
197 200
      : _map(map.begin(), map.end()), _value(value) {}
198 201
    
199
    /// \brief Constructs a map from an other StdMap.
202
    /// \brief Constructs a map from an other \ref StdMap.
200 203
    template<typename T1, typename Comp1>
201 204
    StdMap(const StdMap<Key, T1, Comp1> &c) 
202 205
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
203 206

	
204 207
  private:
205 208

	
... ...
@@ -262,16 +265,17 @@
262 265
                                       const V& value = V() ) {
263 266
    return StdMap<K, V, Compare>(map, value);
264 267
  }
265 268

	
266 269
  /// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
267 270
  ///
268
  /// The current map has the <tt>[0..size-1]</tt> keyset and the values
271
  /// This map has the <tt>[0..size-1]</tt> keyset and the values
269 272
  /// are stored in a \c std::vector<T>  container. It can be used with
270 273
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
271 274
  /// the used items are small integer numbers. 
275
  /// This map meets the \ref concepts::ReferenceMap "ReferenceMap" concept.
272 276
  ///
273 277
  /// \todo Revise its name
274 278
  template <typename T>
275 279
  class IntegerMap : public MapBase<int, T> {
276 280

	
277 281
    template <typename T1>
... ...
@@ -298,18 +302,18 @@
298 302

	
299 303
  public:
300 304

	
301 305
    /// Constructor with specified default value
302 306
    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
303 307

	
304
    /// \brief Constructs the map from an appropriate std::vector.
308
    /// \brief Constructs the map from an appropriate \c std::vector.
305 309
    template <typename T1>
306 310
    IntegerMap(const std::vector<T1>& vector) 
307 311
      : _vector(vector.begin(), vector.end()) {}
308 312
    
309
    /// \brief Constructs a map from an other IntegerMap.
313
    /// \brief Constructs a map from an other \ref IntegerMap.
310 314
    template <typename T1>
311 315
    IntegerMap(const IntegerMap<T1> &c) 
312 316
      : _vector(c._vector.begin(), c._vector.end()) {}
313 317

	
314 318
    /// \brief Resize the container
315 319
    void resize(int size, const T& value = T()) {
... ...
@@ -397,15 +401,13 @@
397 401
    ///Constructor
398 402

	
399 403
    ///Constructor.
400 404
    ///\param _m is the underlying map.
401 405
    ConvertMap(const M &_m) : m(_m) {};
402 406

	
403
    /// \brief The subscript operator.
404
    ///
405
    /// The subscript operator.
407
    ///\e
406 408
    Value operator[](const Key& k) const {return m[k];}
407 409
  };
408 410
  
409 411
  ///Returns a \c ConvertMap class
410 412

	
411 413
  ///This function just returns a \c ConvertMap class.
... ...
@@ -487,13 +489,13 @@
487 489

	
488 490
  ///Sum of two maps
489 491

	
490 492
  ///This \ref concepts::ReadMap "read only map" returns the sum of the two
491 493
  ///given maps.
492 494
  ///Its \c Key and \c Value are inherited from \c M1.
493
  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
495
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
494 496
  template<typename M1, typename M2> 
495 497
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
496 498
    const M1& m1;
497 499
    const M2& m2;
498 500

	
499 501
  public:
... ...
@@ -507,13 +509,13 @@
507 509
    Value operator[](Key k) const {return m1[k]+m2[k];}
508 510
  };
509 511
  
510 512
  ///Returns an \c AddMap class
511 513

	
512 514
  ///This function just returns an \c AddMap class.
513
  ///\todo How to call these type of functions?
515
  ///\todo Extend the documentation: how to call these type of functions?
514 516
  ///
515 517
  ///\relates AddMap
516 518
  template<typename M1, typename M2> 
517 519
  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
518 520
    return AddMap<M1, M2>(m1,m2);
519 521
  }
... ...
@@ -1004,13 +1006,14 @@
1004 1006
  ///This \ref concepts::ReadMap "read only map" returns the value
1005 1007
  ///of a given functor.
1006 1008
  ///
1007 1009
  ///Template parameters \c K and \c V will become its
1008 1010
  ///\c Key and \c Value. 
1009 1011
  ///In most cases they have to be given explicitly because a 
1010
  ///functor typically does not provide such typedefs.
1012
  ///functor typically does not provide \c argument_type and 
1013
  ///\c result_type typedefs.
1011 1014
  ///
1012 1015
  ///Parameter \c F is the type of the used functor.
1013 1016
  ///
1014 1017
  ///\sa MapFunctor
1015 1018
  template<typename F, 
1016 1019
	   typename K = typename F::argument_type, 
... ...
@@ -1029,14 +1032,15 @@
1029 1032
  };
1030 1033
  
1031 1034
  ///Returns a \c FunctorMap class
1032 1035

	
1033 1036
  ///This function just returns a \c FunctorMap class.
1034 1037
  ///
1035
  ///It is specialized for adaptable function classes and
1036
  ///C++ functions.
1038
  ///This function is specialized for adaptable binary function
1039
  ///classes and C++ functions.
1040
  ///
1037 1041
  ///\relates FunctorMap
1038 1042
  template<typename K, typename V, typename F> inline 
1039 1043
  FunctorMap<F, K, V> functorMap(const F &f) {
1040 1044
    return FunctorMap<F, K, V>(f);
1041 1045
  }
1042 1046

	
... ...
@@ -1053,13 +1057,13 @@
1053 1057
  }
1054 1058

	
1055 1059

	
1056 1060
  ///Converts a map to an STL style (unary) functor
1057 1061

	
1058 1062
  ///This class Converts a map to an STL style (unary) functor.
1059
  ///that is it provides an <tt>operator()</tt> to read its values.
1063
  ///That is it provides an <tt>operator()</tt> to read its values.
1060 1064
  ///
1061 1065
  ///For the sake of convenience it also works as
1062 1066
  ///a ususal \ref concepts::ReadMap "readable map",
1063 1067
  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
1064 1068
  ///
1065 1069
  ///\sa FunctorMap
... ...
@@ -1088,20 +1092,20 @@
1088 1092
  ///\relates MapFunctor
1089 1093
  template<typename M> 
1090 1094
  inline MapFunctor<M> mapFunctor(const M &m) {
1091 1095
    return MapFunctor<M>(m);
1092 1096
  }
1093 1097

	
1094
  ///Applies all map setting operations to two maps
1098
  ///Just readable version of \ref ForkWriteMap
1095 1099

	
1096 1100
  ///This map has two \ref concepts::ReadMap "readable map"
1097 1101
  ///parameters and each read request will be passed just to the
1098
  ///first map. This class is the just readable map type of the \c ForkWriteMap.
1102
  ///first map. This class is the just readable map type of \c ForkWriteMap.
1099 1103
  ///
1100 1104
  ///The \c Key and \c Value are inherited from \c M1.
1101
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1105
  ///The \c Key and \c Value of \c M2 must be convertible from those of \c M1.
1102 1106
  ///
1103 1107
  ///\sa ForkWriteMap
1104 1108
  ///
1105 1109
  /// \todo Why is it needed?
1106 1110
  template<typename  M1, typename M2> 
1107 1111
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
... ...
@@ -1125,13 +1129,13 @@
1125 1129
  ///parameters and each write request will be passed to both of them.
1126 1130
  ///If \c M1 is also \ref concepts::ReadMap "readable",
1127 1131
  ///then the read operations will return the
1128 1132
  ///corresponding values of \c M1.
1129 1133
  ///
1130 1134
  ///The \c Key and \c Value are inherited from \c M1.
1131
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1135
  ///The \c Key and \c Value of \c M2 must be convertible from those of \c M1.
1132 1136
  ///
1133 1137
  ///\sa ForkMap
1134 1138
  template<typename  M1, typename M2> 
1135 1139
  class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
1136 1140
    M1& m1;
1137 1141
    M2& m2;
... ...
@@ -1171,13 +1175,13 @@
1171 1175
  /* ************* BOOL MAPS ******************* */
1172 1176
  
1173 1177
  ///Logical 'not' of a map
1174 1178
  
1175 1179
  ///This bool \ref concepts::ReadMap "read only map" returns the 
1176 1180
  ///logical negation of the value returned by the given map.
1177
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1181
  ///Its \c Key is inherited from \c M, its \c Value is \c bool.
1178 1182
  ///
1179 1183
  ///\sa NotWriteMap
1180 1184
  template <typename M> 
1181 1185
  class NotMap : public MapBase<typename M::Key, bool> {
1182 1186
    const M& m;
1183 1187
  public:
... ...
@@ -1193,13 +1197,13 @@
1193 1197

	
1194 1198
  ///Logical 'not' of a map (ReadWrie version)
1195 1199
  
1196 1200
  ///This bool \ref concepts::ReadWriteMap "read-write map" returns the 
1197 1201
  ///logical negation of the value returned by the given map. When it is set,
1198 1202
  ///the opposite value is set to the original map.
1199
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1203
  ///Its \c Key is inherited from \c M, its \c Value is \c bool.
1200 1204
  ///
1201 1205
  ///\sa NotMap
1202 1206
  template <typename M> 
1203 1207
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1204 1208
    M& m;
1205 1209
  public:
... ...
@@ -1259,21 +1263,20 @@
1259 1263
  }
1260 1264
  
1261 1265

	
1262 1266
  /// \brief Writable bool map for logging each \c true assigned element
1263 1267
  ///
1264 1268
  /// A \ref concepts::ReadWriteMap "read-write" bool map for logging 
1265
  /// each \c true assigned element, i.e it/ copies all the keys set 
1269
  /// each \c true assigned element, i.e it copies all the keys set 
1266 1270
  /// to \c true to the given iterator.
1267 1271
  ///
1268 1272
  /// \note The container of the iterator should contain space 
1269 1273
  /// for each element.
1270 1274
  ///
1271
  /// The following example shows how you can write the edges found by the Prim
1272
  /// algorithm directly
1273
  /// to the standard output.
1275
  /// The following example shows how you can write the edges found by 
1276
  /// the \ref Prim algorithm directly to the standard output.
1274 1277
  ///\code
1275 1278
  /// typedef IdMap<Graph, Edge> EdgeIdMap;
1276 1279
  /// EdgeIdMap edgeId(graph);
1277 1280
  ///
1278 1281
  /// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
1279 1282
  /// EdgeIdFunctor edgeIdFunctor(edgeId);
0 comments (0 inline)