gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Fix several doxygen warnings
0 3 0
default
3 files changed with 30 insertions and 30 deletions:
↑ Collapse diff ↑
Ignore white space 1024 line context
... ...
@@ -24,686 +24,686 @@
24 24

	
25 25
///\ingroup misc
26 26
///\file
27 27
///\brief A simple two dimensional vector and a bounding box implementation 
28 28
///
29 29
/// The class \ref lemon::dim2::Point "dim2::Point" implements
30 30
///a two dimensional vector with the usual
31 31
/// operations.
32 32
///
33 33
/// The class \ref lemon::dim2::BoundingBox "dim2::BoundingBox"
34 34
/// can be used to determine
35 35
/// the rectangular bounding box of a set of
36 36
/// \ref lemon::dim2::Point "dim2::Point"'s.
37 37

	
38 38
namespace lemon {
39 39

	
40 40
  ///Tools for handling two dimensional coordinates
41 41

	
42 42
  ///This namespace is a storage of several
43 43
  ///tools for handling two dimensional coordinates
44 44
  namespace dim2 {
45 45

	
46 46
  /// \addtogroup misc
47 47
  /// @{
48 48

	
49 49
  /// A simple two dimensional vector (plainvector) implementation
50 50

	
51 51
  /// A simple two dimensional vector (plainvector) implementation
52 52
  ///with the usual vector
53 53
  /// operators.
54 54
  ///
55 55
  template<typename T>
56 56
    class Point {
57 57

	
58 58
    public:
59 59

	
60 60
      typedef T Value;
61 61

	
62 62
      ///First coordinate
63 63
      T x;
64 64
      ///Second coordinate
65 65
      T y;     
66 66
      
67 67
      ///Default constructor
68 68
      Point() {}
69 69

	
70 70
      ///Construct an instance from coordinates
71 71
      Point(T a, T b) : x(a), y(b) { }
72 72

	
73 73
      ///The dimension of the vector.
74 74

	
75 75
      ///The dimension of the vector.
76 76
      ///This function always returns 2. 
77 77
      int size() const { return 2; }
78 78

	
79 79
      ///Subscripting operator
80 80

	
81 81
      ///\c p[0] is \c p.x and \c p[1] is \c p.y
82 82
      ///
83 83
      T& operator[](int idx) { return idx == 0 ? x : y; }
84 84

	
85 85
      ///Const subscripting operator
86 86

	
87 87
      ///\c p[0] is \c p.x and \c p[1] is \c p.y
88 88
      ///
89 89
      const T& operator[](int idx) const { return idx == 0 ? x : y; }
90 90

	
91 91
      ///Conversion constructor
92 92
      template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {}
93 93

	
94 94
      ///Give back the square of the norm of the vector
95 95
      T normSquare() const {
96 96
        return x*x+y*y;
97 97
      }
98 98
  
99 99
      ///Increment the left hand side by u
100 100
      Point<T>& operator +=(const Point<T>& u) {
101 101
        x += u.x;
102 102
        y += u.y;
103 103
        return *this;
104 104
      }
105 105
  
106 106
      ///Decrement the left hand side by u
107 107
      Point<T>& operator -=(const Point<T>& u) {
108 108
        x -= u.x;
109 109
        y -= u.y;
110 110
        return *this;
111 111
      }
112 112

	
113 113
      ///Multiply the left hand side with a scalar
114 114
      Point<T>& operator *=(const T &u) {
115 115
        x *= u;
116 116
        y *= u;
117 117
        return *this;
118 118
      }
119 119

	
120 120
      ///Divide the left hand side by a scalar
121 121
      Point<T>& operator /=(const T &u) {
122 122
        x /= u;
123 123
        y /= u;
124 124
        return *this;
125 125
      }
126 126
  
127 127
      ///Return the scalar product of two vectors
128 128
      T operator *(const Point<T>& u) const {
129 129
        return x*u.x+y*u.y;
130 130
      }
131 131
  
132 132
      ///Return the sum of two vectors
133 133
      Point<T> operator+(const Point<T> &u) const {
134 134
        Point<T> b=*this;
135 135
        return b+=u;
136 136
      }
137 137

	
138 138
      ///Return the negative of the vector
139 139
      Point<T> operator-() const {
140 140
        Point<T> b=*this;
141 141
        b.x=-b.x; b.y=-b.y;
142 142
        return b;
143 143
      }
144 144

	
145 145
      ///Return the difference of two vectors
146 146
      Point<T> operator-(const Point<T> &u) const {
147 147
        Point<T> b=*this;
148 148
        return b-=u;
149 149
      }
150 150

	
151 151
      ///Return a vector multiplied by a scalar
152 152
      Point<T> operator*(const T &u) const {
153 153
        Point<T> b=*this;
154 154
        return b*=u;
155 155
      }
156 156

	
157 157
      ///Return a vector divided by a scalar
158 158
      Point<T> operator/(const T &u) const {
159 159
        Point<T> b=*this;
160 160
        return b/=u;
161 161
      }
162 162

	
163 163
      ///Test equality
164 164
      bool operator==(const Point<T> &u) const {
165 165
        return (x==u.x) && (y==u.y);
166 166
      }
167 167

	
168 168
      ///Test inequality
169 169
      bool operator!=(Point u) const {
170 170
        return  (x!=u.x) || (y!=u.y);
171 171
      }
172 172

	
173 173
    };
174 174

	
175 175
  ///Return a Point 
176 176

	
177 177
  ///Return a Point.
178 178
  ///\relates Point
179 179
  template <typename T>
180 180
  inline Point<T> makePoint(const T& x, const T& y) {
181 181
    return Point<T>(x, y);
182 182
  }
183 183

	
184 184
  ///Return a vector multiplied by a scalar
185 185

	
186 186
  ///Return a vector multiplied by a scalar.
187 187
  ///\relates Point
188 188
  template<typename T> Point<T> operator*(const T &u,const Point<T> &x) {
189 189
    return x*u;
190 190
  }
191 191

	
192 192
  ///Read a plainvector from a stream
193 193

	
194 194
  ///Read a plainvector from a stream.
195 195
  ///\relates Point
196 196
  ///
197 197
  template<typename T>
198 198
  inline std::istream& operator>>(std::istream &is, Point<T> &z) {
199 199
    char c;
200 200
    if (is >> c) {
201 201
      if (c != '(') is.putback(c);
202 202
    } else {
203 203
      is.clear();
204 204
    }
205 205
    if (!(is >> z.x)) return is;
206 206
    if (is >> c) {
207 207
      if (c != ',') is.putback(c);
208 208
    } else {
209 209
      is.clear();
210 210
    }
211 211
    if (!(is >> z.y)) return is;
212 212
    if (is >> c) {
213 213
      if (c != ')') is.putback(c);
214 214
    } else {
215 215
      is.clear();
216 216
    }
217 217
    return is;
218 218
  }
219 219

	
220 220
  ///Write a plainvector to a stream
221 221

	
222 222
  ///Write a plainvector to a stream.
223 223
  ///\relates Point
224 224
  ///
225 225
  template<typename T>
226 226
  inline std::ostream& operator<<(std::ostream &os, const Point<T>& z)
227 227
  {
228 228
    os << "(" << z.x << ", " << z.y << ")";
229 229
    return os;
230 230
  }
231 231

	
232 232
  ///Rotate by 90 degrees
233 233

	
234 234
  ///Returns the parameter rotated by 90 degrees in positive direction.
235 235
  ///\relates Point
236 236
  ///
237 237
  template<typename T>
238 238
  inline Point<T> rot90(const Point<T> &z)
239 239
  {
240 240
    return Point<T>(-z.y,z.x);
241 241
  }
242 242

	
243 243
  ///Rotate by 180 degrees
244 244

	
245 245
  ///Returns the parameter rotated by 180 degrees.
246 246
  ///\relates Point
247 247
  ///
248 248
  template<typename T>
249 249
  inline Point<T> rot180(const Point<T> &z)
250 250
  {
251 251
    return Point<T>(-z.x,-z.y);
252 252
  }
253 253

	
254 254
  ///Rotate by 270 degrees
255 255

	
256 256
  ///Returns the parameter rotated by 90 degrees in negative direction.
257 257
  ///\relates Point
258 258
  ///
259 259
  template<typename T>
260 260
  inline Point<T> rot270(const Point<T> &z)
261 261
  {
262 262
    return Point<T>(z.y,-z.x);
263 263
  }
264 264

	
265 265
  
266 266

	
267 267
  /// A class to calculate or store the bounding box of plainvectors.
268 268

	
269 269
  /// A class to calculate or store the bounding box of plainvectors.
270 270
  ///
271 271
    template<typename T>
272 272
    class BoundingBox {
273 273
      Point<T> bottom_left, top_right;
274 274
      bool _empty;
275 275
    public:
276 276
      
277 277
      ///Default constructor: creates an empty bounding box
278 278
      BoundingBox() { _empty = true; }
279 279

	
280 280
      ///Construct an instance from one point
281 281
      BoundingBox(Point<T> a) { bottom_left=top_right=a; _empty = false; }
282 282
      
283 283
      ///Construct an instance from two points
284 284
      
285 285
      ///Construct an instance from two points.
286 286
      ///\param a The bottom left corner.
287 287
      ///\param b The top right corner.
288 288
      ///\warning The coordinates of the bottom left corner must be no more
289 289
      ///than those of the top right one.
290 290
      BoundingBox(Point<T> a,Point<T> b)
291 291
      {
292 292
	bottom_left=a;
293 293
	top_right=b;
294 294
	_empty = false;
295 295
      }
296 296
      
297 297
      ///Construct an instance from four numbers
298 298

	
299 299
      ///Construct an instance from four numbers.
300 300
      ///\param l The left side of the box.
301 301
      ///\param b The bottom of the box.
302 302
      ///\param r The right side of the box.
303 303
      ///\param t The top of the box.
304 304
      ///\warning The left side must be no more than the right side and
305 305
      ///bottom must be no more than the top. 
306 306
      BoundingBox(T l,T b,T r,T t)
307 307
      {
308 308
	bottom_left=Point<T>(l,b);
309 309
	top_right=Point<T>(r,t);
310 310
	_empty = false;
311 311
      }
312 312
      
313 313
      ///Return \c true if the bounding box is empty.
314 314
      
315 315
      ///Return \c true if the bounding box is empty (i.e. return \c false
316 316
      ///if at least one point was added to the box or the coordinates of
317 317
      ///the box were set).
318 318
      ///The coordinates of an empty bounding box are not defined. 
319 319
      bool empty() const {
320 320
        return _empty;
321 321
      }
322 322
      
323 323
      ///Make the BoundingBox empty
324 324
      void clear() {
325 325
        _empty=1;
326 326
      }
327 327

	
328 328
      ///Give back the bottom left corner
329 329

	
330 330
      ///Give back the bottom left corner.
331 331
      ///If the bounding box is empty, then the return value is not defined.
332 332
      Point<T> bottomLeft() const {
333 333
        return bottom_left;
334 334
      }
335 335

	
336 336
      ///Set the bottom left corner
337 337

	
338 338
      ///Set the bottom left corner.
339 339
      ///It should only be used for non-empty box.
340 340
      void bottomLeft(Point<T> p) {
341 341
	bottom_left = p;
342 342
      }
343 343

	
344 344
      ///Give back the top right corner
345 345

	
346 346
      ///Give back the top right corner.
347 347
      ///If the bounding box is empty, then the return value is not defined.
348 348
      Point<T> topRight() const {
349 349
        return top_right;
350 350
      }
351 351

	
352 352
      ///Set the top right corner
353 353

	
354 354
      ///Set the top right corner.
355 355
      ///It should only be used for non-empty box.
356 356
      void topRight(Point<T> p) {
357 357
	top_right = p;
358 358
      }
359 359

	
360 360
      ///Give back the bottom right corner
361 361

	
362 362
      ///Give back the bottom right corner.
363 363
      ///If the bounding box is empty, then the return value is not defined.
364 364
      Point<T> bottomRight() const {
365 365
        return Point<T>(top_right.x,bottom_left.y);
366 366
      }
367 367

	
368 368
      ///Set the bottom right corner
369 369

	
370 370
      ///Set the bottom right corner.
371 371
      ///It should only be used for non-empty box.
372 372
      void bottomRight(Point<T> p) {
373 373
	top_right.x = p.x;
374 374
	bottom_left.y = p.y;
375 375
      }
376 376
 
377 377
      ///Give back the top left corner
378 378

	
379 379
      ///Give back the top left corner.
380 380
      ///If the bounding box is empty, then the return value is not defined.
381 381
      Point<T> topLeft() const {
382 382
        return Point<T>(bottom_left.x,top_right.y);
383 383
      }
384 384

	
385 385
      ///Set the top left corner
386 386

	
387 387
      ///Set the top left corner.
388 388
      ///It should only be used for non-empty box.
389 389
      void topLeft(Point<T> p) {
390 390
	top_right.y = p.y;
391 391
	bottom_left.x = p.x;
392 392
      }
393 393

	
394 394
      ///Give back the bottom of the box
395 395

	
396 396
      ///Give back the bottom of the box.
397 397
      ///If the bounding box is empty, then the return value is not defined.
398 398
      T bottom() const {
399 399
        return bottom_left.y;
400 400
      }
401 401

	
402 402
      ///Set the bottom of the box
403 403

	
404 404
      ///Set the bottom of the box.
405 405
      ///It should only be used for non-empty box.
406 406
      void bottom(T t) {
407 407
	bottom_left.y = t;
408 408
      }
409 409

	
410 410
      ///Give back the top of the box
411 411

	
412 412
      ///Give back the top of the box.
413 413
      ///If the bounding box is empty, then the return value is not defined.
414 414
      T top() const {
415 415
        return top_right.y;
416 416
      }
417 417

	
418 418
      ///Set the top of the box
419 419

	
420 420
      ///Set the top of the box.
421 421
      ///It should only be used for non-empty box.
422 422
      void top(T t) {
423 423
	top_right.y = t;
424 424
      }
425 425

	
426 426
      ///Give back the left side of the box
427 427

	
428 428
      ///Give back the left side of the box.
429 429
      ///If the bounding box is empty, then the return value is not defined.
430 430
      T left() const {
431 431
        return bottom_left.x;
432 432
      }
433 433
 
434 434
      ///Set the left side of the box
435 435

	
436 436
      ///Set the left side of the box.
437 437
      ///It should only be used for non-empty box.
438 438
      void left(T t) {
439 439
	bottom_left.x = t;
440 440
      }
441 441

	
442 442
      /// Give back the right side of the box
443 443

	
444 444
      /// Give back the right side of the box.
445 445
      ///If the bounding box is empty, then the return value is not defined.
446 446
      T right() const {
447 447
        return top_right.x;
448 448
      }
449 449

	
450 450
      ///Set the right side of the box
451 451

	
452 452
      ///Set the right side of the box.
453 453
      ///It should only be used for non-empty box.
454 454
      void right(T t) {
455 455
	top_right.x = t;
456 456
      }
457 457

	
458 458
      ///Give back the height of the box
459 459

	
460 460
      ///Give back the height of the box.
461 461
      ///If the bounding box is empty, then the return value is not defined.
462 462
      T height() const {
463 463
        return top_right.y-bottom_left.y;
464 464
      }
465 465

	
466 466
      ///Give back the width of the box
467 467

	
468 468
      ///Give back the width of the box.
469 469
      ///If the bounding box is empty, then the return value is not defined.
470 470
      T width() const {
471 471
        return top_right.x-bottom_left.x;
472 472
      }
473 473

	
474 474
      ///Checks whether a point is inside a bounding box
475 475
      bool inside(const Point<T>& u) const {
476 476
        if (_empty)
477 477
          return false;
478 478
        else{
479 479
          return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
480 480
              (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
481 481
        }
482 482
      }
483 483
  
484 484
      ///Increments a bounding box with a point
485 485

	
486 486
      ///Increments a bounding box with a point.
487 487
      ///
488 488
      BoundingBox& add(const Point<T>& u){
489 489
        if (_empty){
490 490
          bottom_left=top_right=u;
491 491
          _empty = false;
492 492
        }
493 493
        else{
494 494
          if (bottom_left.x > u.x) bottom_left.x = u.x;
495 495
          if (bottom_left.y > u.y) bottom_left.y = u.y;
496 496
          if (top_right.x < u.x) top_right.x = u.x;
497 497
          if (top_right.y < u.y) top_right.y = u.y;
498 498
        }
499 499
        return *this;
500 500
      }
501 501
    
502 502
      ///Increments a bounding box to contain another bounding box
503 503
      
504 504
      ///Increments a bounding box to contain another bounding box.
505 505
      ///
506 506
      BoundingBox& add(const BoundingBox &u){
507 507
        if ( !u.empty() ){
508 508
          this->add(u.bottomLeft());
509 509
	  this->add(u.topRight());
510 510
        }
511 511
        return *this;
512 512
      }
513 513
  
514 514
      ///Intersection of two bounding boxes
515 515

	
516 516
      ///Intersection of two bounding boxes.
517 517
      ///
518 518
      BoundingBox operator&(const BoundingBox& u) const {
519 519
        BoundingBox b;
520 520
        if (this->_empty || u._empty) {
521 521
	  b._empty = true;
522 522
	} else {
523 523
	  b.bottom_left.x = std::max(this->bottom_left.x,u.bottom_left.x);
524 524
	  b.bottom_left.y = std::max(this->bottom_left.y,u.bottom_left.y);
525 525
	  b.top_right.x = std::min(this->top_right.x,u.top_right.x);
526 526
	  b.top_right.y = std::min(this->top_right.y,u.top_right.y);
527 527
	  b._empty = b.bottom_left.x > b.top_right.x ||
528 528
	             b.bottom_left.y > b.top_right.y;
529 529
	} 
530 530
        return b;
531 531
      }
532 532

	
533 533
    };//class Boundingbox
534 534

	
535 535

	
536
  ///Map of x-coordinates of a \ref Point "Point"-map
536
  ///Map of x-coordinates of a Point map
537 537

	
538 538
  ///\ingroup maps
539
  ///Map of x-coordinates of a \ref Point "Point"-map.
539
  ///Map of x-coordinates of a \ref dim2::Point "Point"-map.
540 540
  ///
541 541
  template<class M>
542 542
  class XMap 
543 543
  {
544 544
    M& _map;
545 545
  public:
546 546

	
547 547
    typedef typename M::Value::Value Value;
548 548
    typedef typename M::Key Key;
549 549
    ///\e
550 550
    XMap(M& map) : _map(map) {}
551 551
    Value operator[](Key k) const {return _map[k].x;}
552 552
    void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
553 553
  };
554 554
    
555 555
  ///Returns an \ref XMap class
556 556

	
557 557
  ///This function just returns an \ref XMap class.
558 558
  ///
559 559
  ///\ingroup maps
560 560
  ///\relates XMap
561 561
  template<class M> 
562 562
  inline XMap<M> xMap(M &m) 
563 563
  {
564 564
    return XMap<M>(m);
565 565
  }
566 566

	
567 567
  template<class M> 
568 568
  inline XMap<M> xMap(const M &m) 
569 569
  {
570 570
    return XMap<M>(m);
571 571
  }
572 572

	
573
  ///Constant (read only) version of \ref XMap
573
  ///Constant (read only) version of XMap
574 574

	
575 575
  ///\ingroup maps
576 576
  ///Constant (read only) version of \ref XMap
577 577
  ///
578 578
  template<class M>
579 579
  class ConstXMap 
580 580
  {
581 581
    const M& _map;
582 582
  public:
583 583

	
584 584
    typedef typename M::Value::Value Value;
585 585
    typedef typename M::Key Key;
586 586
    ///\e
587 587
    ConstXMap(const M &map) : _map(map) {}
588 588
    Value operator[](Key k) const {return _map[k].x;}
589 589
  };
590 590
    
591 591
  ///Returns a \ref ConstXMap class
592 592

	
593 593
  ///This function just returns a \ref ConstXMap class.
594 594
  ///
595 595
  ///\ingroup maps
596 596
  ///\relates ConstXMap
597 597
  template<class M> 
598 598
  inline ConstXMap<M> xMap(const M &m) 
599 599
  {
600 600
    return ConstXMap<M>(m);
601 601
  }
602 602

	
603
  ///Map of y-coordinates of a \ref Point "Point"-map
603
  ///Map of y-coordinates of a Point map
604 604
    
605 605
  ///\ingroup maps
606 606
  ///Map of y-coordinates of a \ref Point "Point"-map.
607 607
  ///
608 608
  template<class M>
609 609
  class YMap 
610 610
  {
611 611
    M& _map;
612 612
  public:
613 613

	
614 614
    typedef typename M::Value::Value Value;
615 615
    typedef typename M::Key Key;
616 616
    ///\e
617 617
    YMap(M& map) : _map(map) {}
618 618
    Value operator[](Key k) const {return _map[k].y;}
619 619
    void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
620 620
  };
621 621

	
622 622
  ///Returns a \ref YMap class
623 623

	
624 624
  ///This function just returns a \ref YMap class.
625 625
  ///
626 626
  ///\ingroup maps
627 627
  ///\relates YMap
628 628
  template<class M> 
629 629
  inline YMap<M> yMap(M &m) 
630 630
  {
631 631
    return YMap<M>(m);
632 632
  }
633 633

	
634 634
  template<class M> 
635 635
  inline YMap<M> yMap(const M &m) 
636 636
  {
637 637
    return YMap<M>(m);
638 638
  }
639 639

	
640
  ///Constant (read only) version of \ref YMap
640
  ///Constant (read only) version of YMap
641 641

	
642 642
  ///\ingroup maps
643 643
  ///Constant (read only) version of \ref YMap
644 644
  ///
645 645
  template<class M>
646 646
  class ConstYMap 
647 647
  {
648 648
    const M& _map;
649 649
  public:
650 650

	
651 651
    typedef typename M::Value::Value Value;
652 652
    typedef typename M::Key Key;
653 653
    ///\e
654 654
    ConstYMap(const M &map) : _map(map) {}
655 655
    Value operator[](Key k) const {return _map[k].y;}
656 656
  };
657 657
    
658 658
  ///Returns a \ref ConstYMap class
659 659

	
660 660
  ///This function just returns a \ref ConstYMap class.
661 661
  ///
662 662
  ///\ingroup maps
663 663
  ///\relates ConstYMap
664 664
  template<class M> 
665 665
  inline ConstYMap<M> yMap(const M &m) 
666 666
  {
667 667
    return ConstYMap<M>(m);
668 668
  }
669 669

	
670 670

	
671
    ///\brief Map of the \ref Point::normSquare() "normSquare()"
672
    ///of a \ref Point "Point"-map
671
    ///\brief Map of the normSquare()
672
    ///of a Point map
673 673
    ///
674 674
    ///Map of the \ref Point::normSquare() "normSquare()"
675 675
    ///of a \ref Point "Point"-map.
676 676
    ///\ingroup maps
677 677
    ///
678 678
  template<class M>
679 679
  class NormSquareMap 
680 680
  {
681 681
    const M& _map;
682 682
  public:
683 683

	
684 684
    typedef typename M::Value::Value Value;
685 685
    typedef typename M::Key Key;
686 686
    ///\e
687 687
    NormSquareMap(const M &map) : _map(map) {}
688 688
    Value operator[](Key k) const {return _map[k].normSquare();}
689 689
  };
690 690
    
691 691
  ///Returns a \ref NormSquareMap class
692 692

	
693 693
  ///This function just returns a \ref NormSquareMap class.
694 694
  ///
695 695
  ///\ingroup maps
696 696
  ///\relates NormSquareMap
697 697
  template<class M> 
698 698
  inline NormSquareMap<M> normSquareMap(const M &m) 
699 699
  {
700 700
    return NormSquareMap<M>(m);
701 701
  }
702 702

	
703 703
  /// @}
704 704

	
705 705
  } //namespce dim2
706 706
  
707 707
} //namespace lemon
708 708

	
709 709
#endif //LEMON_DIM2_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25

	
26 26
#include <lemon/bits/utility.h>
27 27
// #include <lemon/bits/traits.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32 32
///
33 33
#include <map>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \addtogroup maps
38 38
  /// @{
39 39

	
40 40
  /// Base class of maps.
41 41

	
42 42
  /// Base class of maps.
43 43
  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
44 44
  template<typename K, typename T>
45 45
  class MapBase {
46 46
  public:
47 47
    /// The key type of the map.
48 48
    typedef K Key;
49 49
    /// The value type of the map. (The type of objects associated with the keys).
50 50
    typedef T Value;
51 51
  };
52 52

	
53 53
  /// Null map. (a.k.a. DoNothingMap)
54 54

	
55 55
  /// This map can be used if you have to provide a map only for
56 56
  /// its type definitions, or if you have to provide a writable map, 
57 57
  /// but data written to it is not required (i.e. it will be sent to 
58 58
  /// <tt>/dev/null</tt>).
59 59
  template<typename K, typename T>
60 60
  class NullMap : public MapBase<K, T> {
61 61
  public:
62 62
    typedef MapBase<K, T> Parent;
63 63
    typedef typename Parent::Key Key;
64 64
    typedef typename Parent::Value Value;
65 65
    
66 66
    /// Gives back a default constructed element.
67 67
    T operator[](const K&) const { return T(); }
68 68
    /// Absorbs the value.
69 69
    void set(const K&, const T&) {}
70 70
  };
71 71

	
72 72
  ///Returns a \c NullMap class
73 73

	
74 74
  ///This function just returns a \c NullMap class.
75 75
  ///\relates NullMap
76 76
  template <typename K, typename V> 
77 77
  NullMap<K, V> nullMap() {
78 78
    return NullMap<K, V>();
79 79
  }
80 80

	
81 81

	
82 82
  /// Constant map.
83 83

	
84 84
  /// This is a readable map which assigns a specified value to each key.
85 85
  /// In other aspects it is equivalent to the \c NullMap.
86 86
  template<typename K, typename T>
87 87
  class ConstMap : public MapBase<K, T> {
88 88
  private:
89 89
    T v;
90 90
  public:
91 91

	
92 92
    typedef MapBase<K, T> Parent;
93 93
    typedef typename Parent::Key Key;
94 94
    typedef typename Parent::Value Value;
95 95

	
96 96
    /// Default constructor
97 97

	
98 98
    /// Default constructor.
99 99
    /// The value of the map will be uninitialized. 
100 100
    /// (More exactly it will be default constructed.)
101 101
    ConstMap() {}
102 102
    
103 103
    /// Constructor with specified initial value
104 104

	
105 105
    /// Constructor with specified initial value.
106 106
    /// \param _v is the initial value of the map.
107 107
    ConstMap(const T &_v) : v(_v) {}
108 108
    
109 109
    ///\e
110 110
    T operator[](const K&) const { return v; }
111 111

	
112 112
    ///\e
113 113
    void setAll(const T &t) {
114 114
      v = t;
115 115
    }    
116 116

	
117 117
    template<typename T1>
118 118
    struct rebind {
119 119
      typedef ConstMap<K, T1> other;
120 120
    };
121 121

	
122 122
    template<typename T1>
123 123
    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
124 124
  };
125 125

	
126 126
  ///Returns a \c ConstMap class
127 127

	
128 128
  ///This function just returns a \c ConstMap class.
129 129
  ///\relates ConstMap
130 130
  template<typename K, typename V> 
131 131
  inline ConstMap<K, V> constMap(const V &v) {
132 132
    return ConstMap<K, V>(v);
133 133
  }
134 134

	
135 135

	
136 136
  template<typename T, T v>
137 137
  struct Const { };
138 138

	
139 139
  /// Constant map with inlined constant value.
140 140

	
141 141
  /// This is a readable map which assigns a specified value to each key.
142 142
  /// In other aspects it is equivalent to the \c NullMap.
143 143
  template<typename K, typename V, V v>
144 144
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
145 145
  public:
146 146
    typedef MapBase<K, V> Parent;
147 147
    typedef typename Parent::Key Key;
148 148
    typedef typename Parent::Value Value;
149 149

	
150 150
    ConstMap() { }
151 151
    ///\e
152 152
    V operator[](const K&) const { return v; }
153 153
    ///\e
154 154
    void set(const K&, const V&) { }
155 155
  };
156 156

	
157 157
  ///Returns a \c ConstMap class
158 158

	
159 159
  ///This function just returns a \c ConstMap class with inlined value.
160 160
  ///\relates ConstMap
161 161
  template<typename K, typename V, V v> 
162 162
  inline ConstMap<K, Const<V, v> > constMap() {
163 163
    return ConstMap<K, Const<V, v> >();
164 164
  }
165 165

	
166 166
  ///Map based on std::map
167 167

	
168 168
  ///This is essentially a wrapper for \c std::map with addition that
169 169
  ///you can specify a default value different from \c Value().
170 170
  template <typename K, typename T, typename Compare = std::less<K> >
171 171
  class StdMap {
172 172
    template <typename K1, typename T1, typename C1>
173 173
    friend class StdMap;
174 174
  public:
175 175

	
176 176
    typedef True ReferenceMapTag;
177
    ///\e
177
    ///Key type
178 178
    typedef K Key;
179
    ///\e
179
    ///Value type
180 180
    typedef T Value;
181
    ///\e
181
    ///Reference Type
182 182
    typedef T& Reference;
183
    ///\e
183
    ///Const reference type
184 184
    typedef const T& ConstReference;
185 185

	
186 186
  private:
187 187
    
188 188
    typedef std::map<K, T, Compare> Map;
189 189
    Value _value;
190 190
    Map _map;
191 191

	
192 192
  public:
193 193

	
194 194
    /// Constructor with specified default value
195 195
    StdMap(const T& value = T()) : _value(value) {}
196 196
    /// \brief Constructs the map from an appropriate std::map, and explicitly
197 197
    /// specifies a default value.
198 198
    template <typename T1, typename Comp1>
199 199
    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
200 200
      : _map(map.begin(), map.end()), _value(value) {}
201 201
    
202 202
    /// \brief Constructs a map from an other StdMap.
203 203
    template<typename T1, typename Comp1>
204 204
    StdMap(const StdMap<Key, T1, Comp1> &c) 
205 205
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
206 206

	
207 207
  private:
208 208

	
209 209
    StdMap& operator=(const StdMap&);
210 210

	
211 211
  public:
212 212

	
213 213
    ///\e
214 214
    Reference operator[](const Key &k) {
215 215
      typename Map::iterator it = _map.lower_bound(k);
216 216
      if (it != _map.end() && !_map.key_comp()(k, it->first))
217 217
	return it->second;
218 218
      else
219 219
	return _map.insert(it, std::make_pair(k, _value))->second;
220 220
    }
221 221

	
222 222
    /// \e 
223 223
    ConstReference operator[](const Key &k) const {
224 224
      typename Map::const_iterator it = _map.find(k);
225 225
      if (it != _map.end())
226 226
	return it->second;
227 227
      else
228 228
	return _value;
229 229
    }
230 230

	
231 231
    /// \e 
232 232
    void set(const Key &k, const T &t) {
233 233
      typename Map::iterator it = _map.lower_bound(k);
234 234
      if (it != _map.end() && !_map.key_comp()(k, it->first))
235 235
	it->second = t;
236 236
      else
237 237
	_map.insert(it, std::make_pair(k, t));
238 238
    }
239 239

	
240 240
    /// \e
241 241
    void setAll(const T &t) {
242 242
      _value = t;
243 243
      _map.clear();
244 244
    }    
245 245

	
246 246
    template <typename T1, typename C1 = std::less<T1> >
247 247
    struct rebind {
248 248
      typedef StdMap<Key, T1, C1> other;
249 249
    };
250 250
  };
251 251

	
252 252
  /// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
253 253
  ///
254 254
  /// The current map has the <tt>[0..size-1]</tt> keyset and the values
255 255
  /// are stored in a \c std::vector<T>  container. It can be used with
256 256
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
257 257
  /// the used items are small integer numbers. 
258 258
  ///
259 259
  /// \todo Revise its name
260 260
  template <typename T>
261 261
  class IntegerMap {
262 262

	
263 263
    template <typename T1>
264 264
    friend class IntegerMap;
265 265

	
266 266
  public:
267 267

	
268 268
    typedef True ReferenceMapTag;
269 269
    ///\e
270 270
    typedef int Key;
271 271
    ///\e
272 272
    typedef T Value;
273 273
    ///\e
274 274
    typedef T& Reference;
275 275
    ///\e
276 276
    typedef const T& ConstReference;
277 277

	
278 278
  private:
279 279
    
280 280
    typedef std::vector<T> Vector;
281 281
    Vector _vector;
282 282

	
283 283
  public:
284 284

	
285 285
    /// Constructor with specified default value
286 286
    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
287 287

	
288 288
    /// \brief Constructs the map from an appropriate std::vector.
289 289
    template <typename T1>
290 290
    IntegerMap(const std::vector<T1>& vector) 
291 291
      : _vector(vector.begin(), vector.end()) {}
292 292
    
293 293
    /// \brief Constructs a map from an other IntegerMap.
294 294
    template <typename T1>
295 295
    IntegerMap(const IntegerMap<T1> &c) 
296 296
      : _vector(c._vector.begin(), c._vector.end()) {}
297 297

	
298 298
    /// \brief Resize the container
299 299
    void resize(int size, const T& value = T()) {
300 300
      _vector.resize(size, value);
301 301
    }
302 302

	
303 303
  private:
304 304

	
305 305
    IntegerMap& operator=(const IntegerMap&);
306 306

	
307 307
  public:
308 308

	
309 309
    ///\e
310 310
    Reference operator[](Key k) {
311 311
      return _vector[k];
312 312
    }
313 313

	
314 314
    /// \e 
315 315
    ConstReference operator[](Key k) const {
316 316
      return _vector[k];
317 317
    }
318 318

	
319 319
    /// \e 
320 320
    void set(const Key &k, const T& t) {
321 321
      _vector[k] = t;
322 322
    }
323 323

	
324 324
  };
325 325

	
326 326
  /// @}
327 327

	
328 328
  /// \addtogroup map_adaptors
329 329
  /// @{
330 330

	
331 331
  /// \brief Identity map.
332 332
  ///
333 333
  /// This map gives back the given key as value without any
334 334
  /// modification. 
335 335
  template <typename T>
336 336
  class IdentityMap : public MapBase<T, T> {
337 337
  public:
338 338
    typedef MapBase<T, T> Parent;
339 339
    typedef typename Parent::Key Key;
340 340
    typedef typename Parent::Value Value;
341 341

	
342 342
    /// \e
343 343
    const T& operator[](const T& t) const {
344 344
      return t;
345 345
    }
346 346
  };
347 347

	
348 348
  ///Returns an \c IdentityMap class
349 349

	
350 350
  ///This function just returns an \c IdentityMap class.
351 351
  ///\relates IdentityMap
352 352
  template<typename T>
353 353
  inline IdentityMap<T> identityMap() {
354 354
    return IdentityMap<T>();
355 355
  }
356 356
  
357 357

	
358 358
  ///\brief Convert the \c Value of a map to another type using
359 359
  ///the default conversion.
360 360
  ///
361 361
  ///This \c concepts::ReadMap "read only map"
362 362
  ///converts the \c Value of a map to type \c T.
363 363
  ///Its \c Key is inherited from \c M.
364 364
  template <typename M, typename T> 
365 365
  class ConvertMap : public MapBase<typename M::Key, T> {
366 366
    const M& m;
367 367
  public:
368 368
    typedef MapBase<typename M::Key, T> Parent;
369 369
    typedef typename Parent::Key Key;
370 370
    typedef typename Parent::Value Value;
371 371

	
372 372
    ///Constructor
373 373

	
374 374
    ///Constructor.
375 375
    ///\param _m is the underlying map.
376 376
    ConvertMap(const M &_m) : m(_m) {};
377 377

	
378 378
    /// \brief The subscript operator.
379 379
    ///
380 380
    /// The subscript operator.
381 381
    Value operator[](const Key& k) const {return m[k];}
382 382
  };
383 383
  
384 384
  ///Returns a \c ConvertMap class
385 385

	
386 386
  ///This function just returns a \c ConvertMap class.
387 387
  ///\relates ConvertMap
388 388
  template<typename T, typename M>
389 389
  inline ConvertMap<M, T> convertMap(const M &m) {
390 390
    return ConvertMap<M, T>(m);
391 391
  }
392 392

	
393 393
  ///Simple wrapping of a map
394 394

	
395 395
  ///This \c concepts::ReadMap "read only map" returns the simple
396 396
  ///wrapping of the given map. Sometimes the reference maps cannot be
397 397
  ///combined with simple read maps. This map adaptor wraps the given
398 398
  ///map to simple read map.
399 399
  ///
400 400
  ///\sa SimpleWriteMap
401 401
  ///
402 402
  /// \todo Revise the misleading name 
403 403
  template<typename M> 
404 404
  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
405 405
    const M& m;
406 406

	
407 407
  public:
408 408
    typedef MapBase<typename M::Key, typename M::Value> Parent;
409 409
    typedef typename Parent::Key Key;
410 410
    typedef typename Parent::Value Value;
411 411

	
412 412
    ///Constructor
413 413
    SimpleMap(const M &_m) : m(_m) {};
414 414
    ///\e
415 415
    Value operator[](Key k) const {return m[k];}
416 416
  };
417 417

	
418 418
  ///Simple writable wrapping of the map
419 419

	
420 420
  ///This \c concepts::WriteMap "write map" returns the simple
421 421
  ///wrapping of the given map. Sometimes the reference maps cannot be
422 422
  ///combined with simple read-write maps. This map adaptor wraps the
423 423
  ///given map to simple read-write map.
424 424
  ///
425 425
  ///\sa SimpleMap
426 426
  ///
427 427
  /// \todo Revise the misleading name
428 428
  template<typename M> 
429 429
  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
430 430
    M& m;
431 431

	
432 432
  public:
433 433
    typedef MapBase<typename M::Key, typename M::Value> Parent;
434 434
    typedef typename Parent::Key Key;
435 435
    typedef typename Parent::Value Value;
436 436

	
437 437
    ///Constructor
438 438
    SimpleWriteMap(M &_m) : m(_m) {};
439 439
    ///\e
440 440
    Value operator[](Key k) const {return m[k];}
441 441
    ///\e
442 442
    void set(Key k, const Value& c) { m.set(k, c); }
443 443
  };
444 444

	
445 445
  ///Sum of two maps
446 446

	
447 447
  ///This \c concepts::ReadMap "read only map" returns the sum of the two
448 448
  ///given maps.
449 449
  ///Its \c Key and \c Value are inherited from \c M1.
450 450
  ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
451 451
  template<typename M1, typename M2> 
452 452
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
453 453
    const M1& m1;
454 454
    const M2& m2;
455 455

	
456 456
  public:
457 457
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
458 458
    typedef typename Parent::Key Key;
459 459
    typedef typename Parent::Value Value;
460 460

	
461 461
    ///Constructor
462 462
    AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
463 463
    ///\e
464 464
    Value operator[](Key k) const {return m1[k]+m2[k];}
465 465
  };
466 466
  
467 467
  ///Returns an \c AddMap class
468 468

	
469 469
  ///This function just returns an \c AddMap class.
470 470
  ///\todo How to call these type of functions?
471 471
  ///
472 472
  ///\relates AddMap
473 473
  template<typename M1, typename M2> 
474 474
  inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
475 475
    return AddMap<M1, M2>(m1,m2);
476 476
  }
477 477

	
478 478
  ///Shift a map with a constant.
479 479

	
480 480
  ///This \c concepts::ReadMap "read only map" returns the sum of the
481 481
  ///given map and a constant value.
482 482
  ///Its \c Key and \c Value are inherited from \c M.
483 483
  ///
484 484
  ///Actually,
485 485
  ///\code
486 486
  ///  ShiftMap<X> sh(x,v);
487 487
  ///\endcode
488 488
  ///is equivalent to
489 489
  ///\code
490 490
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
491 491
  ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
492 492
  ///\endcode
493 493
  ///
494 494
  ///\sa ShiftWriteMap
495 495
  template<typename M, typename C = typename M::Value> 
496 496
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
497 497
    const M& m;
498 498
    C v;
499 499
  public:
500 500
    typedef MapBase<typename M::Key, typename M::Value> Parent;
501 501
    typedef typename Parent::Key Key;
502 502
    typedef typename Parent::Value Value;
503 503

	
504 504
    ///Constructor
505 505

	
506 506
    ///Constructor.
507 507
    ///\param _m is the undelying map.
508 508
    ///\param _v is the shift value.
509 509
    ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
510 510
    ///\e
511 511
    Value operator[](Key k) const {return m[k] + v;}
512 512
  };
513 513

	
514 514
  ///Shift a map with a constant (ReadWrite version).
515 515

	
516 516
  ///This \c concepts::ReadWriteMap "read-write map" returns the sum of the
517 517
  ///given map and a constant value. It makes also possible to write the map.
518 518
  ///Its \c Key and \c Value are inherited from \c M.
519 519
  ///
520 520
  ///\sa ShiftMap
521 521
  template<typename M, typename C = typename M::Value> 
522 522
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
523 523
    M& m;
524 524
    C v;
525 525
  public:
526 526
    typedef MapBase<typename M::Key, typename M::Value> Parent;
527 527
    typedef typename Parent::Key Key;
528 528
    typedef typename Parent::Value Value;
529 529

	
530 530
    ///Constructor
531 531

	
532 532
    ///Constructor.
533 533
    ///\param _m is the undelying map.
534 534
    ///\param _v is the shift value.
535 535
    ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
536 536
    /// \e
537 537
    Value operator[](Key k) const {return m[k] + v;}
538 538
    /// \e
539 539
    void set(Key k, const Value& c) { m.set(k, c - v); }
540 540
  };
541 541
  
542 542
  ///Returns a \c ShiftMap class
543 543

	
544 544
  ///This function just returns a \c ShiftMap class.
545 545
  ///\relates ShiftMap
546 546
  template<typename M, typename C> 
547 547
  inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
548 548
    return ShiftMap<M, C>(m,v);
549 549
  }
550 550

	
551 551
  ///Returns a \c ShiftWriteMap class
552 552

	
553 553
  ///This function just returns a \c ShiftWriteMap class.
554 554
  ///\relates ShiftWriteMap
555 555
  template<typename M, typename C> 
556 556
  inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
557 557
    return ShiftWriteMap<M, C>(m,v);
558 558
  }
559 559

	
560 560
  ///Difference of two maps
561 561

	
562 562
  ///This \c concepts::ReadMap "read only map" returns the difference
563 563
  ///of the values of the two given maps.
564 564
  ///Its \c Key and \c Value are inherited from \c M1.
565 565
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
566 566
  ///
567 567
  /// \todo Revise the misleading name
568 568
  template<typename M1, typename M2> 
569 569
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
570 570
    const M1& m1;
571 571
    const M2& m2;
572 572
  public:
573 573
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
574 574
    typedef typename Parent::Key Key;
575 575
    typedef typename Parent::Value Value;
576 576

	
577 577
    ///Constructor
578 578
    SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
579 579
    /// \e
580 580
    Value operator[](Key k) const {return m1[k]-m2[k];}
581 581
  };
582 582
  
583 583
  ///Returns a \c SubMap class
584 584

	
585 585
  ///This function just returns a \c SubMap class.
586 586
  ///
587 587
  ///\relates SubMap
588 588
  template<typename M1, typename M2> 
589 589
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
590 590
    return SubMap<M1, M2>(m1, m2);
591 591
  }
592 592

	
593 593
  ///Product of two maps
594 594

	
595 595
  ///This \c concepts::ReadMap "read only map" returns the product of the
596 596
  ///values of the two given maps.
597 597
  ///Its \c Key and \c Value are inherited from \c M1.
598 598
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
599 599
  template<typename M1, typename M2> 
600 600
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
601 601
    const M1& m1;
602 602
    const M2& m2;
603 603
  public:
604 604
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
605 605
    typedef typename Parent::Key Key;
606 606
    typedef typename Parent::Value Value;
607 607

	
608 608
    ///Constructor
609 609
    MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
610 610
    /// \e
611 611
    Value operator[](Key k) const {return m1[k]*m2[k];}
612 612
  };
613 613
  
614 614
  ///Returns a \c MulMap class
615 615

	
616 616
  ///This function just returns a \c MulMap class.
617 617
  ///\relates MulMap
618 618
  template<typename M1, typename M2> 
619 619
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
620 620
    return MulMap<M1, M2>(m1,m2);
621 621
  }
622 622
 
623 623
  ///Scales a map with a constant.
624 624

	
625 625
  ///This \c concepts::ReadMap "read only map" returns the value of the
626 626
  ///given map multiplied from the left side with a constant value.
627 627
  ///Its \c Key and \c Value are inherited from \c M.
628 628
  ///
629 629
  ///Actually,
630 630
  ///\code
631 631
  ///  ScaleMap<X> sc(x,v);
632 632
  ///\endcode
633 633
  ///is equivalent to
634 634
  ///\code
635 635
  ///  ConstMap<X::Key, X::Value> c_tmp(v);
636 636
  ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
637 637
  ///\endcode
638 638
  ///
639 639
  ///\sa ScaleWriteMap
640 640
  template<typename M, typename C = typename M::Value> 
641 641
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
642 642
    const M& m;
643 643
    C v;
644 644
  public:
645 645
    typedef MapBase<typename M::Key, typename M::Value> Parent;
646 646
    typedef typename Parent::Key Key;
647 647
    typedef typename Parent::Value Value;
648 648

	
649 649
    ///Constructor
650 650

	
651 651
    ///Constructor.
652 652
    ///\param _m is the undelying map.
653 653
    ///\param _v is the scaling value.
654 654
    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
655 655
    /// \e
656 656
    Value operator[](Key k) const {return v * m[k];}
657 657
  };
658 658

	
659 659
  ///Scales a map with a constant (ReadWrite version).
660 660

	
661 661
  ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
662 662
  ///given map multiplied from the left side with a constant value. It can
663 663
  ///also be used as write map if the \c / operator is defined between
664 664
  ///\c Value and \c C and the given multiplier is not zero.
665 665
  ///Its \c Key and \c Value are inherited from \c M.
666 666
  ///
667 667
  ///\sa ScaleMap
668 668
  template<typename M, typename C = typename M::Value> 
669 669
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
670 670
    M& m;
671 671
    C v;
672 672
  public:
673 673
    typedef MapBase<typename M::Key, typename M::Value> Parent;
674 674
    typedef typename Parent::Key Key;
675 675
    typedef typename Parent::Value Value;
676 676

	
677 677
    ///Constructor
678 678

	
679 679
    ///Constructor.
680 680
    ///\param _m is the undelying map.
681 681
    ///\param _v is the scaling value.
682 682
    ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
683 683
    /// \e
684 684
    Value operator[](Key k) const {return v * m[k];}
685 685
    /// \e
686 686
    void set(Key k, const Value& c) { m.set(k, c / v);}
687 687
  };
688 688
  
689 689
  ///Returns a \c ScaleMap class
690 690

	
691 691
  ///This function just returns a \c ScaleMap class.
692 692
  ///\relates ScaleMap
693 693
  template<typename M, typename C> 
694 694
  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
695 695
    return ScaleMap<M, C>(m,v);
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_TOLERANCE_H
20 20
#define LEMON_TOLERANCE_H
21 21

	
22 22
///\ingroup misc
23 23
///\file
24 24
///\brief A basic tool to handle the anomalies of calculation with
25 25
///floating point numbers.
26 26
///
27 27
///\todo It should be in a module like "Basic tools"
28 28

	
29 29

	
30 30
namespace lemon {
31 31

	
32 32
  /// \addtogroup misc
33 33
  /// @{
34 34
  
35 35
  ///\brief A class to provide a basic way to
36 36
  ///handle the comparison of numbers that are obtained
37 37
  ///as a result of a probably inexact computation.
38 38
  ///
39 39
  ///Tolerance is a class to provide a basic way to
40 40
  ///handle the comparison of numbers that are obtained
41 41
  ///as a result of a probably inexact computation.
42 42
  ///
43 43
  ///This is an abstract class, it should be specialized for all numerical
44
  ///data types. These specialized classes like \ref Tolerance\<double\>
44
  ///data types. These specialized classes like Tolerance<double>
45 45
  ///may offer additional tuning parameters.
46 46
  ///
47 47
  ///\sa Tolerance<float>
48 48
  ///\sa Tolerance<double>
49 49
  ///\sa Tolerance<long double>
50 50
  ///\sa Tolerance<int>
51 51
#if defined __GNUC__ && !defined __STRICT_ANSI__  
52 52
  ///\sa Tolerance<long long int>
53 53
#endif
54 54
  ///\sa Tolerance<unsigned int>
55 55
#if defined __GNUC__ && !defined __STRICT_ANSI__  
56 56
  ///\sa Tolerance<unsigned long long int>
57 57
#endif
58 58

	
59 59
  template<class T>
60 60
  class Tolerance
61 61
  {
62 62
  public:
63 63
    typedef T Value;
64 64

	
65 65
    ///\name Comparisons
66 66
    ///The concept is that these bool functions return with \c true only if
67 67
    ///the related comparisons hold even if some numerical error appeared
68 68
    ///during the computations.
69 69

	
70 70
    ///@{
71 71

	
72 72
    ///Returns \c true if \c a is \e surely strictly less than \c b
73 73
    static bool less(Value a,Value b) {return false;}
74 74
    ///Returns \c true if \c a is \e surely different from \c b
75 75
    static bool different(Value a,Value b) {return false;}
76 76
    ///Returns \c true if \c a is \e surely positive
77 77
    static bool positive(Value a) {return false;}
78 78
    ///Returns \c true if \c a is \e surely negative
79 79
    static bool negative(Value a) {return false;}
80 80
    ///Returns \c true if \c a is \e surely non-zero
81 81
    static bool nonZero(Value a) {return false;}
82 82

	
83 83
    ///@}
84 84

	
85 85
    ///Returns the zero value.
86 86
    static Value zero() {return T();}
87 87

	
88 88
    //   static bool finite(Value a) {}
89 89
    //   static Value big() {}
90 90
    //   static Value negativeBig() {}
91 91
  };
92 92

	
93 93

	
94
  ///Float specialization of \ref Tolerance.
94
  ///Float specialization of Tolerance.
95 95

	
96
  ///Float specialization of \ref Tolerance.
96
  ///Float specialization of Tolerance.
97 97
  ///\sa Tolerance
98 98
  ///\relates Tolerance
99 99
  template<>
100 100
  class Tolerance<float>
101 101
  {
102 102
    static float def_epsilon;
103 103
    float _epsilon;
104 104
  public:
105 105
    ///\e
106 106
    typedef float Value;
107 107

	
108 108
    ///Constructor setting the epsilon tolerance to the default value.
109 109
    Tolerance() : _epsilon(def_epsilon) {}
110 110
    ///Constructor setting the epsilon tolerance.
111 111
    Tolerance(float e) : _epsilon(e) {}
112 112

	
113 113
    ///Return the epsilon value.
114 114
    Value epsilon() const {return _epsilon;}
115 115
    ///Set the epsilon value.
116 116
    void epsilon(Value e) {_epsilon=e;}
117 117

	
118 118
    ///Return the default epsilon value.
119 119
    static Value defaultEpsilon() {return def_epsilon;}
120 120
    ///Set the default epsilon value.
121 121
    static void defaultEpsilon(Value e) {def_epsilon=e;}
122 122

	
123 123
    ///\name Comparisons
124 124
    ///See class Tolerance for more details.
125 125

	
126 126
    ///@{
127 127

	
128 128
    ///Returns \c true if \c a is \e surely strictly less than \c b
129 129
    bool less(Value a,Value b) const {return a+_epsilon<b;}
130 130
    ///Returns \c true if \c a is \e surely different from \c b
131 131
    bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
132 132
    ///Returns \c true if \c a is \e surely positive
133 133
    bool positive(Value a) const { return _epsilon<a; }
134 134
    ///Returns \c true if \c a is \e surely negative
135 135
    bool negative(Value a) const { return -_epsilon>a; }
136 136
    ///Returns \c true if \c a is \e surely non-zero
137 137
    bool nonZero(Value a) const { return positive(a)||negative(a); }
138 138

	
139 139
    ///@}
140 140

	
141 141
    ///Returns zero
142 142
    static Value zero() {return 0;}
143 143
  };
144 144

	
145
  ///Double specialization of \ref Tolerance.
145
  ///Double specialization of Tolerance.
146 146

	
147
  ///Double specialization of \ref Tolerance.
147
  ///Double specialization of Tolerance.
148 148
  ///\sa Tolerance
149 149
  ///\relates Tolerance
150 150
  template<>
151 151
  class Tolerance<double>
152 152
  {
153 153
    static double def_epsilon;
154 154
    double _epsilon;
155 155
  public:
156 156
    ///\e
157 157
    typedef double Value;
158 158

	
159 159
    ///Constructor setting the epsilon tolerance to the default value.
160 160
    Tolerance() : _epsilon(def_epsilon) {}
161 161
    ///Constructor setting the epsilon tolerance.
162 162
    Tolerance(double e) : _epsilon(e) {}
163 163

	
164 164
    ///Return the epsilon value.
165 165
    Value epsilon() const {return _epsilon;}
166 166
    ///Set the epsilon value.
167 167
    void epsilon(Value e) {_epsilon=e;}
168 168

	
169 169
    ///Return the default epsilon value.
170 170
    static Value defaultEpsilon() {return def_epsilon;}
171 171
    ///Set the default epsilon value.
172 172
    static void defaultEpsilon(Value e) {def_epsilon=e;}
173 173

	
174 174
    ///\name Comparisons
175 175
    ///See class Tolerance for more details.
176 176

	
177 177
    ///@{
178 178

	
179 179
    ///Returns \c true if \c a is \e surely strictly less than \c b
180 180
    bool less(Value a,Value b) const {return a+_epsilon<b;}
181 181
    ///Returns \c true if \c a is \e surely different from \c b
182 182
    bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
183 183
    ///Returns \c true if \c a is \e surely positive
184 184
    bool positive(Value a) const { return _epsilon<a; }
185 185
    ///Returns \c true if \c a is \e surely negative
186 186
    bool negative(Value a) const { return -_epsilon>a; }
187 187
    ///Returns \c true if \c a is \e surely non-zero
188 188
    bool nonZero(Value a) const { return positive(a)||negative(a); }
189 189

	
190 190
    ///@}
191 191

	
192 192
    ///Returns zero
193 193
    static Value zero() {return 0;}
194 194
  };
195 195

	
196
  ///Long double specialization of \ref Tolerance.
196
  ///Long double specialization of Tolerance.
197 197

	
198
  ///Long double specialization of \ref Tolerance.
198
  ///Long double specialization of Tolerance.
199 199
  ///\sa Tolerance
200 200
  ///\relates Tolerance
201 201
  template<>
202 202
  class Tolerance<long double>
203 203
  {
204 204
    static long double def_epsilon;
205 205
    long double _epsilon;
206 206
  public:
207 207
    ///\e
208 208
    typedef long double Value;
209 209

	
210 210
    ///Constructor setting the epsilon tolerance to the default value.
211 211
    Tolerance() : _epsilon(def_epsilon) {}
212 212
    ///Constructor setting the epsilon tolerance.
213 213
    Tolerance(long double e) : _epsilon(e) {}
214 214

	
215 215
    ///Return the epsilon value.
216 216
    Value epsilon() const {return _epsilon;}
217 217
    ///Set the epsilon value.
218 218
    void epsilon(Value e) {_epsilon=e;}
219 219

	
220 220
    ///Return the default epsilon value.
221 221
    static Value defaultEpsilon() {return def_epsilon;}
222 222
    ///Set the default epsilon value.
223 223
    static void defaultEpsilon(Value e) {def_epsilon=e;}
224 224

	
225 225
    ///\name Comparisons
226 226
    ///See class Tolerance for more details.
227 227

	
228 228
    ///@{
229 229

	
230 230
    ///Returns \c true if \c a is \e surely strictly less than \c b
231 231
    bool less(Value a,Value b) const {return a+_epsilon<b;}
232 232
    ///Returns \c true if \c a is \e surely different from \c b
233 233
    bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
234 234
    ///Returns \c true if \c a is \e surely positive
235 235
    bool positive(Value a) const { return _epsilon<a; }
236 236
    ///Returns \c true if \c a is \e surely negative
237 237
    bool negative(Value a) const { return -_epsilon>a; }
238 238
    ///Returns \c true if \c a is \e surely non-zero
239 239
    bool nonZero(Value a) const { return positive(a)||negative(a); }
240 240

	
241 241
    ///@}
242 242

	
243 243
    ///Returns zero
244 244
    static Value zero() {return 0;}
245 245
  };
246 246

	
247
  ///Integer specialization of \ref Tolerance.
247
  ///Integer specialization of Tolerance.
248 248

	
249
  ///Integer specialization of \ref Tolerance.
249
  ///Integer specialization of Tolerance.
250 250
  ///\sa Tolerance
251 251
  template<>
252 252
  class Tolerance<int>
253 253
  {
254 254
  public:
255 255
    ///\e
256 256
    typedef int Value;
257 257

	
258 258
    ///\name Comparisons
259
    ///See \ref Tolerance for more details.
259
    ///See Tolerance for more details.
260 260

	
261 261
    ///@{
262 262

	
263 263
    ///Returns \c true if \c a is \e surely strictly less than \c b
264 264
    static bool less(Value a,Value b) { return a<b;}
265 265
    ///Returns \c true if \c a is \e surely different from \c b
266 266
    static bool different(Value a,Value b) { return a!=b; }
267 267
    ///Returns \c true if \c a is \e surely positive
268 268
    static bool positive(Value a) { return 0<a; }
269 269
    ///Returns \c true if \c a is \e surely negative
270 270
    static bool negative(Value a) { return 0>a; }
271 271
    ///Returns \c true if \c a is \e surely non-zero
272 272
    static bool nonZero(Value a) { return a!=0; }
273 273

	
274 274
    ///@}
275 275

	
276 276
    ///Returns zero
277 277
    static Value zero() {return 0;}
278 278
  };
279 279

	
280
  ///Unsigned integer specialization of \ref Tolerance.
280
  ///Unsigned integer specialization of Tolerance.
281 281

	
282 282
  ///Unsigned integer specialization of \ref Tolerance.
283 283
  ///\sa Tolerance
284 284
  template<>
285 285
  class Tolerance<unsigned int>
286 286
  {
287 287
  public:
288 288
    ///\e
289 289
    typedef unsigned int Value;
290 290

	
291 291
    ///\name Comparisons
292
    ///See \ref Tolerance for more details.
292
    ///See Tolerance for more details.
293 293

	
294 294
    ///@{
295 295

	
296 296
    ///Returns \c true if \c a is \e surely strictly less than \c b
297 297
    static bool less(Value a,Value b) { return a<b;}
298 298
    ///Returns \c true if \c a is \e surely different from \c b
299 299
    static bool different(Value a,Value b) { return a!=b; }
300 300
    ///Returns \c true if \c a is \e surely positive
301 301
    static bool positive(Value a) { return 0<a; }
302 302
    ///Returns \c true if \c a is \e surely negative
303 303
    static bool negative(Value) { return false; }
304 304
    ///Returns \c true if \c a is \e surely non-zero
305 305
    static bool nonZero(Value a) { return a!=0; }
306 306

	
307 307
    ///@}
308 308

	
309 309
    ///Returns zero
310 310
    static Value zero() {return 0;}
311 311
  };
312 312
  
313 313

	
314
  ///Long integer specialization of \ref Tolerance.
314
  ///Long integer specialization of Tolerance.
315 315

	
316
  ///Long integer specialization of \ref Tolerance.
316
  ///Long integer specialization of Tolerance.
317 317
  ///\sa Tolerance
318 318
  template<>
319 319
  class Tolerance<long int>
320 320
  {
321 321
  public:
322 322
    ///\e
323 323
    typedef long int Value;
324 324

	
325 325
    ///\name Comparisons
326
    ///See \ref Tolerance for more details.
326
    ///See Tolerance for more details.
327 327

	
328 328
    ///@{
329 329

	
330 330
    ///Returns \c true if \c a is \e surely strictly less than \c b
331 331
    static bool less(Value a,Value b) { return a<b;}
332 332
    ///Returns \c true if \c a is \e surely different from \c b
333 333
    static bool different(Value a,Value b) { return a!=b; }
334 334
    ///Returns \c true if \c a is \e surely positive
335 335
    static bool positive(Value a) { return 0<a; }
336 336
    ///Returns \c true if \c a is \e surely negative
337 337
    static bool negative(Value a) { return 0>a; }
338 338
    ///Returns \c true if \c a is \e surely non-zero
339 339
    static bool nonZero(Value a) { return a!=0;}
340 340

	
341 341
    ///@}
342 342

	
343 343
    ///Returns zero
344 344
    static Value zero() {return 0;}
345 345
  };
346 346

	
347
  ///Unsigned long integer specialization of \ref Tolerance.
347
  ///Unsigned long integer specialization of Tolerance.
348 348

	
349 349
  ///Unsigned long integer specialization of \ref Tolerance.
350 350
  ///\sa Tolerance
351 351
  template<>
352 352
  class Tolerance<unsigned long int>
353 353
  {
354 354
  public:
355 355
    ///\e
356 356
    typedef unsigned long int Value;
357 357

	
358 358
    ///\name Comparisons
359
    ///See \ref Tolerance for more details.
359
    ///See Tolerance for more details.
360 360

	
361 361
    ///@{
362 362

	
363 363
    ///Returns \c true if \c a is \e surely strictly less than \c b
364 364
    static bool less(Value a,Value b) { return a<b;}
365 365
    ///Returns \c true if \c a is \e surely different from \c b
366 366
    static bool different(Value a,Value b) { return a!=b; }
367 367
    ///Returns \c true if \c a is \e surely positive
368 368
    static bool positive(Value a) { return 0<a; }
369 369
    ///Returns \c true if \c a is \e surely negative
370 370
    static bool negative(Value) { return false; }
371 371
    ///Returns \c true if \c a is \e surely non-zero
372 372
    static bool nonZero(Value a) { return a!=0;}
373 373

	
374 374
    ///@}
375 375

	
376 376
    ///Returns zero
377 377
    static Value zero() {return 0;}
378 378
  };
379 379

	
380 380
#if defined __GNUC__ && !defined __STRICT_ANSI__
381 381

	
382
  ///Long long integer specialization of \ref Tolerance.
382
  ///Long long integer specialization of Tolerance.
383 383

	
384 384
  ///Long long integer specialization of \ref Tolerance.
385 385
  ///\warning This class (more exactly, type <tt>long long</tt>)
386 386
  ///is not ansi compatible.
387 387
  ///\sa Tolerance
388 388
  template<>
389 389
  class Tolerance<long long int>
390 390
  {
391 391
  public:
392 392
    ///\e
393 393
    typedef long long int Value;
394 394

	
395 395
    ///\name Comparisons
396 396
    ///See \ref Tolerance for more details.
397 397

	
398 398
    ///@{
399 399

	
400 400
    ///Returns \c true if \c a is \e surely strictly less than \c b
401 401
    static bool less(Value a,Value b) { return a<b;}
402 402
    ///Returns \c true if \c a is \e surely different from \c b
403 403
    static bool different(Value a,Value b) { return a!=b; }
404 404
    ///Returns \c true if \c a is \e surely positive
405 405
    static bool positive(Value a) { return 0<a; }
406 406
    ///Returns \c true if \c a is \e surely negative
407 407
    static bool negative(Value a) { return 0>a; }
408 408
    ///Returns \c true if \c a is \e surely non-zero
409 409
    static bool nonZero(Value a) { return a!=0;}
410 410

	
411 411
    ///@}
412 412

	
413 413
    ///Returns zero
414 414
    static Value zero() {return 0;}
415 415
  };
416 416

	
417
  ///Unsigned long long integer specialization of \ref Tolerance.
417
  ///Unsigned long long integer specialization of Tolerance.
418 418

	
419 419
  ///Unsigned long long integer specialization of \ref Tolerance.
420 420
  ///\warning This class (more exactly, type <tt>unsigned long long</tt>)
421 421
  ///is not ansi compatible.
422 422
  ///\sa Tolerance
423 423
  template<>
424 424
  class Tolerance<unsigned long long int>
425 425
  {
426 426
  public:
427 427
    ///\e
428 428
    typedef unsigned long long int Value;
429 429

	
430 430
    ///\name Comparisons
431 431
    ///See \ref Tolerance for more details.
432 432

	
433 433
    ///@{
434 434

	
435 435
    ///Returns \c true if \c a is \e surely strictly less than \c b
436 436
    static bool less(Value a,Value b) { return a<b;}
437 437
    ///Returns \c true if \c a is \e surely different from \c b
438 438
    static bool different(Value a,Value b) { return a!=b; }
439 439
    ///Returns \c true if \c a is \e surely positive
440 440
    static bool positive(Value a) { return 0<a; }
441 441
    ///Returns \c true if \c a is \e surely negative
442 442
    static bool negative(Value) { return false; }
443 443
    ///Returns \c true if \c a is \e surely non-zero
444 444
    static bool nonZero(Value a) { return a!=0;}
445 445

	
446 446
    ///@}
447 447

	
448 448
    ///Returns zero
449 449
    static Value zero() {return 0;}
450 450
  };
451 451

	
452 452
#endif
453 453

	
454 454
  /// @}
455 455

	
456 456
} //namespace lemon
457 457

	
458 458
#endif //LEMON_TOLERANCE_H
0 comments (0 inline)