0
2
1
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_KARP_H |
|
20 |
#define LEMON_KARP_H |
|
21 |
|
|
22 |
/// \ingroup shortest_path |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Karp's algorithm for finding a minimum mean cycle. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <lemon/core.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
#include <lemon/tolerance.h> |
|
32 |
#include <lemon/connectivity.h> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default traits class of Karp algorithm. |
|
37 |
/// |
|
38 |
/// Default traits class of Karp algorithm. |
|
39 |
/// \tparam GR The type of the digraph. |
|
40 |
/// \tparam LEN The type of the length map. |
|
41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
42 |
#ifdef DOXYGEN |
|
43 |
template <typename GR, typename LEN> |
|
44 |
#else |
|
45 |
template <typename GR, typename LEN, |
|
46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
47 |
#endif |
|
48 |
struct KarpDefaultTraits |
|
49 |
{ |
|
50 |
/// The type of the digraph |
|
51 |
typedef GR Digraph; |
|
52 |
/// The type of the length map |
|
53 |
typedef LEN LengthMap; |
|
54 |
/// The type of the arc lengths |
|
55 |
typedef typename LengthMap::Value Value; |
|
56 |
|
|
57 |
/// \brief The large value type used for internal computations |
|
58 |
/// |
|
59 |
/// The large value type used for internal computations. |
|
60 |
/// It is \c long \c long if the \c Value type is integer, |
|
61 |
/// otherwise it is \c double. |
|
62 |
/// \c Value must be convertible to \c LargeValue. |
|
63 |
typedef double LargeValue; |
|
64 |
|
|
65 |
/// The tolerance type used for internal computations |
|
66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
67 |
|
|
68 |
/// \brief The path type of the found cycles |
|
69 |
/// |
|
70 |
/// The path type of the found cycles. |
|
71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
72 |
/// and it must have an \c addBack() function. |
|
73 |
typedef lemon::Path<Digraph> Path; |
|
74 |
}; |
|
75 |
|
|
76 |
// Default traits class for integer value types |
|
77 |
template <typename GR, typename LEN> |
|
78 |
struct KarpDefaultTraits<GR, LEN, true> |
|
79 |
{ |
|
80 |
typedef GR Digraph; |
|
81 |
typedef LEN LengthMap; |
|
82 |
typedef typename LengthMap::Value Value; |
|
83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
84 |
typedef long long LargeValue; |
|
85 |
#else |
|
86 |
typedef long LargeValue; |
|
87 |
#endif |
|
88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
89 |
typedef lemon::Path<Digraph> Path; |
|
90 |
}; |
|
91 |
|
|
92 |
|
|
93 |
/// \addtogroup shortest_path |
|
94 |
/// @{ |
|
95 |
|
|
96 |
/// \brief Implementation of Karp's algorithm for finding a minimum |
|
97 |
/// mean cycle. |
|
98 |
/// |
|
99 |
/// This class implements Karp's algorithm for finding a directed |
|
100 |
/// cycle of minimum mean length (cost) in a digraph. |
|
101 |
/// |
|
102 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
103 |
/// \tparam LEN The type of the length map. The default |
|
104 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
105 |
#ifdef DOXYGEN |
|
106 |
template <typename GR, typename LEN, typename TR> |
|
107 |
#else |
|
108 |
template < typename GR, |
|
109 |
typename LEN = typename GR::template ArcMap<int>, |
|
110 |
typename TR = KarpDefaultTraits<GR, LEN> > |
|
111 |
#endif |
|
112 |
class Karp |
|
113 |
{ |
|
114 |
public: |
|
115 |
|
|
116 |
/// The type of the digraph |
|
117 |
typedef typename TR::Digraph Digraph; |
|
118 |
/// The type of the length map |
|
119 |
typedef typename TR::LengthMap LengthMap; |
|
120 |
/// The type of the arc lengths |
|
121 |
typedef typename TR::Value Value; |
|
122 |
|
|
123 |
/// \brief The large value type |
|
124 |
/// |
|
125 |
/// The large value type used for internal computations. |
|
126 |
/// Using the \ref KarpDefaultTraits "default traits class", |
|
127 |
/// it is \c long \c long if the \c Value type is integer, |
|
128 |
/// otherwise it is \c double. |
|
129 |
typedef typename TR::LargeValue LargeValue; |
|
130 |
|
|
131 |
/// The tolerance type |
|
132 |
typedef typename TR::Tolerance Tolerance; |
|
133 |
|
|
134 |
/// \brief The path type of the found cycles |
|
135 |
/// |
|
136 |
/// The path type of the found cycles. |
|
137 |
/// Using the \ref KarpDefaultTraits "default traits class", |
|
138 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
139 |
typedef typename TR::Path Path; |
|
140 |
|
|
141 |
/// The \ref KarpDefaultTraits "traits class" of the algorithm |
|
142 |
typedef TR Traits; |
|
143 |
|
|
144 |
private: |
|
145 |
|
|
146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
147 |
|
|
148 |
// Data sturcture for path data |
|
149 |
struct PathData |
|
150 |
{ |
|
151 |
bool found; |
|
152 |
LargeValue dist; |
|
153 |
Arc pred; |
|
154 |
PathData(bool f = false, LargeValue d = 0, Arc p = INVALID) : |
|
155 |
found(f), dist(d), pred(p) {} |
|
156 |
}; |
|
157 |
|
|
158 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
159 |
PathDataNodeMap; |
|
160 |
|
|
161 |
private: |
|
162 |
|
|
163 |
// The digraph the algorithm runs on |
|
164 |
const Digraph &_gr; |
|
165 |
// The length of the arcs |
|
166 |
const LengthMap &_length; |
|
167 |
|
|
168 |
// Data for storing the strongly connected components |
|
169 |
int _comp_num; |
|
170 |
typename Digraph::template NodeMap<int> _comp; |
|
171 |
std::vector<std::vector<Node> > _comp_nodes; |
|
172 |
std::vector<Node>* _nodes; |
|
173 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
174 |
|
|
175 |
// Data for the found cycle |
|
176 |
LargeValue _cycle_length; |
|
177 |
int _cycle_size; |
|
178 |
Node _cycle_node; |
|
179 |
|
|
180 |
Path *_cycle_path; |
|
181 |
bool _local_path; |
|
182 |
|
|
183 |
// Node map for storing path data |
|
184 |
PathDataNodeMap _data; |
|
185 |
// The processed nodes in the last round |
|
186 |
std::vector<Node> _process; |
|
187 |
|
|
188 |
Tolerance _tolerance; |
|
189 |
|
|
190 |
public: |
|
191 |
|
|
192 |
/// \name Named Template Parameters |
|
193 |
/// @{ |
|
194 |
|
|
195 |
template <typename T> |
|
196 |
struct SetLargeValueTraits : public Traits { |
|
197 |
typedef T LargeValue; |
|
198 |
typedef lemon::Tolerance<T> Tolerance; |
|
199 |
}; |
|
200 |
|
|
201 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
202 |
/// \c LargeValue type. |
|
203 |
/// |
|
204 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
205 |
/// type. It is used for internal computations in the algorithm. |
|
206 |
template <typename T> |
|
207 |
struct SetLargeValue |
|
208 |
: public Karp<GR, LEN, SetLargeValueTraits<T> > { |
|
209 |
typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create; |
|
210 |
}; |
|
211 |
|
|
212 |
template <typename T> |
|
213 |
struct SetPathTraits : public Traits { |
|
214 |
typedef T Path; |
|
215 |
}; |
|
216 |
|
|
217 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
218 |
/// \c %Path type. |
|
219 |
/// |
|
220 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
221 |
/// type of the found cycles. |
|
222 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
223 |
/// and it must have an \c addFront() function. |
|
224 |
template <typename T> |
|
225 |
struct SetPath |
|
226 |
: public Karp<GR, LEN, SetPathTraits<T> > { |
|
227 |
typedef Karp<GR, LEN, SetPathTraits<T> > Create; |
|
228 |
}; |
|
229 |
|
|
230 |
/// @} |
|
231 |
|
|
232 |
public: |
|
233 |
|
|
234 |
/// \brief Constructor. |
|
235 |
/// |
|
236 |
/// The constructor of the class. |
|
237 |
/// |
|
238 |
/// \param digraph The digraph the algorithm runs on. |
|
239 |
/// \param length The lengths (costs) of the arcs. |
|
240 |
Karp( const Digraph &digraph, |
|
241 |
const LengthMap &length ) : |
|
242 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
243 |
_cycle_length(0), _cycle_size(1), _cycle_node(INVALID), |
|
244 |
_cycle_path(NULL), _local_path(false), _data(digraph) |
|
245 |
{} |
|
246 |
|
|
247 |
/// Destructor. |
|
248 |
~Karp() { |
|
249 |
if (_local_path) delete _cycle_path; |
|
250 |
} |
|
251 |
|
|
252 |
/// \brief Set the path structure for storing the found cycle. |
|
253 |
/// |
|
254 |
/// This function sets an external path structure for storing the |
|
255 |
/// found cycle. |
|
256 |
/// |
|
257 |
/// If you don't call this function before calling \ref run() or |
|
258 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
259 |
/// structure. The destuctor deallocates this automatically |
|
260 |
/// allocated object, of course. |
|
261 |
/// |
|
262 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
263 |
/// "addFront()" function of the given path structure. |
|
264 |
/// |
|
265 |
/// \return <tt>(*this)</tt> |
|
266 |
Karp& cycle(Path &path) { |
|
267 |
if (_local_path) { |
|
268 |
delete _cycle_path; |
|
269 |
_local_path = false; |
|
270 |
} |
|
271 |
_cycle_path = &path; |
|
272 |
return *this; |
|
273 |
} |
|
274 |
|
|
275 |
/// \name Execution control |
|
276 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
277 |
/// function.\n |
|
278 |
/// If you only need the minimum mean length, you may call |
|
279 |
/// \ref findMinMean(). |
|
280 |
|
|
281 |
/// @{ |
|
282 |
|
|
283 |
/// \brief Run the algorithm. |
|
284 |
/// |
|
285 |
/// This function runs the algorithm. |
|
286 |
/// It can be called more than once (e.g. if the underlying digraph |
|
287 |
/// and/or the arc lengths have been modified). |
|
288 |
/// |
|
289 |
/// \return \c true if a directed cycle exists in the digraph. |
|
290 |
/// |
|
291 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
292 |
/// \code |
|
293 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
294 |
/// \endcode |
|
295 |
bool run() { |
|
296 |
return findMinMean() && findCycle(); |
|
297 |
} |
|
298 |
|
|
299 |
/// \brief Find the minimum cycle mean. |
|
300 |
/// |
|
301 |
/// This function finds the minimum mean length of the directed |
|
302 |
/// cycles in the digraph. |
|
303 |
/// |
|
304 |
/// \return \c true if a directed cycle exists in the digraph. |
|
305 |
bool findMinMean() { |
|
306 |
// Initialization and find strongly connected components |
|
307 |
init(); |
|
308 |
findComponents(); |
|
309 |
|
|
310 |
// Find the minimum cycle mean in the components |
|
311 |
for (int comp = 0; comp < _comp_num; ++comp) { |
|
312 |
if (!initComponent(comp)) continue; |
|
313 |
processRounds(); |
|
314 |
updateMinMean(); |
|
315 |
} |
|
316 |
return (_cycle_node != INVALID); |
|
317 |
} |
|
318 |
|
|
319 |
/// \brief Find a minimum mean directed cycle. |
|
320 |
/// |
|
321 |
/// This function finds a directed cycle of minimum mean length |
|
322 |
/// in the digraph using the data computed by findMinMean(). |
|
323 |
/// |
|
324 |
/// \return \c true if a directed cycle exists in the digraph. |
|
325 |
/// |
|
326 |
/// \pre \ref findMinMean() must be called before using this function. |
|
327 |
bool findCycle() { |
|
328 |
if (_cycle_node == INVALID) return false; |
|
329 |
IntNodeMap reached(_gr, -1); |
|
330 |
int r = _data[_cycle_node].size(); |
|
331 |
Node u = _cycle_node; |
|
332 |
while (reached[u] < 0) { |
|
333 |
reached[u] = --r; |
|
334 |
u = _gr.source(_data[u][r].pred); |
|
335 |
} |
|
336 |
r = reached[u]; |
|
337 |
Arc e = _data[u][r].pred; |
|
338 |
_cycle_path->addFront(e); |
|
339 |
_cycle_length = _length[e]; |
|
340 |
_cycle_size = 1; |
|
341 |
Node v; |
|
342 |
while ((v = _gr.source(e)) != u) { |
|
343 |
e = _data[v][--r].pred; |
|
344 |
_cycle_path->addFront(e); |
|
345 |
_cycle_length += _length[e]; |
|
346 |
++_cycle_size; |
|
347 |
} |
|
348 |
return true; |
|
349 |
} |
|
350 |
|
|
351 |
/// @} |
|
352 |
|
|
353 |
/// \name Query Functions |
|
354 |
/// The results of the algorithm can be obtained using these |
|
355 |
/// functions.\n |
|
356 |
/// The algorithm should be executed before using them. |
|
357 |
|
|
358 |
/// @{ |
|
359 |
|
|
360 |
/// \brief Return the total length of the found cycle. |
|
361 |
/// |
|
362 |
/// This function returns the total length of the found cycle. |
|
363 |
/// |
|
364 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
365 |
/// using this function. |
|
366 |
LargeValue cycleLength() const { |
|
367 |
return _cycle_length; |
|
368 |
} |
|
369 |
|
|
370 |
/// \brief Return the number of arcs on the found cycle. |
|
371 |
/// |
|
372 |
/// This function returns the number of arcs on the found cycle. |
|
373 |
/// |
|
374 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
375 |
/// using this function. |
|
376 |
int cycleArcNum() const { |
|
377 |
return _cycle_size; |
|
378 |
} |
|
379 |
|
|
380 |
/// \brief Return the mean length of the found cycle. |
|
381 |
/// |
|
382 |
/// This function returns the mean length of the found cycle. |
|
383 |
/// |
|
384 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
385 |
/// following code. |
|
386 |
/// \code |
|
387 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
388 |
/// \endcode |
|
389 |
/// |
|
390 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
391 |
/// using this function. |
|
392 |
double cycleMean() const { |
|
393 |
return static_cast<double>(_cycle_length) / _cycle_size; |
|
394 |
} |
|
395 |
|
|
396 |
/// \brief Return the found cycle. |
|
397 |
/// |
|
398 |
/// This function returns a const reference to the path structure |
|
399 |
/// storing the found cycle. |
|
400 |
/// |
|
401 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
402 |
/// this function. |
|
403 |
const Path& cycle() const { |
|
404 |
return *_cycle_path; |
|
405 |
} |
|
406 |
|
|
407 |
///@} |
|
408 |
|
|
409 |
private: |
|
410 |
|
|
411 |
// Initialization |
|
412 |
void init() { |
|
413 |
if (!_cycle_path) { |
|
414 |
_local_path = true; |
|
415 |
_cycle_path = new Path; |
|
416 |
} |
|
417 |
_cycle_path->clear(); |
|
418 |
_cycle_length = 0; |
|
419 |
_cycle_size = 1; |
|
420 |
_cycle_node = INVALID; |
|
421 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
422 |
_data[u].clear(); |
|
423 |
} |
|
424 |
|
|
425 |
// Find strongly connected components and initialize _comp_nodes |
|
426 |
// and _out_arcs |
|
427 |
void findComponents() { |
|
428 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
429 |
_comp_nodes.resize(_comp_num); |
|
430 |
if (_comp_num == 1) { |
|
431 |
_comp_nodes[0].clear(); |
|
432 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
433 |
_comp_nodes[0].push_back(n); |
|
434 |
_out_arcs[n].clear(); |
|
435 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
436 |
_out_arcs[n].push_back(a); |
|
437 |
} |
|
438 |
} |
|
439 |
} else { |
|
440 |
for (int i = 0; i < _comp_num; ++i) |
|
441 |
_comp_nodes[i].clear(); |
|
442 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
443 |
int k = _comp[n]; |
|
444 |
_comp_nodes[k].push_back(n); |
|
445 |
_out_arcs[n].clear(); |
|
446 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
447 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
448 |
} |
|
449 |
} |
|
450 |
} |
|
451 |
} |
|
452 |
|
|
453 |
// Initialize path data for the current component |
|
454 |
bool initComponent(int comp) { |
|
455 |
_nodes = &(_comp_nodes[comp]); |
|
456 |
int n = _nodes->size(); |
|
457 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
|
458 |
return false; |
|
459 |
} |
|
460 |
for (int i = 0; i < n; ++i) { |
|
461 |
_data[(*_nodes)[i]].resize(n + 1); |
|
462 |
} |
|
463 |
return true; |
|
464 |
} |
|
465 |
|
|
466 |
// Process all rounds of computing path data for the current component. |
|
467 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
468 |
// node to node v containing exactly k arcs. |
|
469 |
void processRounds() { |
|
470 |
Node start = (*_nodes)[0]; |
|
471 |
_data[start][0] = PathData(true, 0); |
|
472 |
_process.clear(); |
|
473 |
_process.push_back(start); |
|
474 |
|
|
475 |
int k, n = _nodes->size(); |
|
476 |
for (k = 1; k <= n && int(_process.size()) < n; ++k) { |
|
477 |
processNextBuildRound(k); |
|
478 |
} |
|
479 |
for ( ; k <= n; ++k) { |
|
480 |
processNextFullRound(k); |
|
481 |
} |
|
482 |
} |
|
483 |
|
|
484 |
// Process one round and rebuild _process |
|
485 |
void processNextBuildRound(int k) { |
|
486 |
std::vector<Node> next; |
|
487 |
Node u, v; |
|
488 |
Arc e; |
|
489 |
LargeValue d; |
|
490 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
491 |
u = _process[i]; |
|
492 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
493 |
e = _out_arcs[u][j]; |
|
494 |
v = _gr.target(e); |
|
495 |
d = _data[u][k-1].dist + _length[e]; |
|
496 |
if (!_data[v][k].found) { |
|
497 |
next.push_back(v); |
|
498 |
_data[v][k] = PathData(true, _data[u][k-1].dist + _length[e], e); |
|
499 |
} |
|
500 |
else if (_tolerance.less(d, _data[v][k].dist)) { |
|
501 |
_data[v][k] = PathData(true, d, e); |
|
502 |
} |
|
503 |
} |
|
504 |
} |
|
505 |
_process.swap(next); |
|
506 |
} |
|
507 |
|
|
508 |
// Process one round using _nodes instead of _process |
|
509 |
void processNextFullRound(int k) { |
|
510 |
Node u, v; |
|
511 |
Arc e; |
|
512 |
LargeValue d; |
|
513 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
514 |
u = (*_nodes)[i]; |
|
515 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
516 |
e = _out_arcs[u][j]; |
|
517 |
v = _gr.target(e); |
|
518 |
d = _data[u][k-1].dist + _length[e]; |
|
519 |
if (!_data[v][k].found || _tolerance.less(d, _data[v][k].dist)) { |
|
520 |
_data[v][k] = PathData(true, d, e); |
|
521 |
} |
|
522 |
} |
|
523 |
} |
|
524 |
} |
|
525 |
|
|
526 |
// Update the minimum cycle mean |
|
527 |
void updateMinMean() { |
|
528 |
int n = _nodes->size(); |
|
529 |
for (int i = 0; i < n; ++i) { |
|
530 |
Node u = (*_nodes)[i]; |
|
531 |
if (!_data[u][n].found) continue; |
|
532 |
LargeValue length, max_length = 0; |
|
533 |
int size, max_size = 1; |
|
534 |
bool found_curr = false; |
|
535 |
for (int k = 0; k < n; ++k) { |
|
536 |
if (!_data[u][k].found) continue; |
|
537 |
length = _data[u][n].dist - _data[u][k].dist; |
|
538 |
size = n - k; |
|
539 |
if (!found_curr || length * max_size > max_length * size) { |
|
540 |
found_curr = true; |
|
541 |
max_length = length; |
|
542 |
max_size = size; |
|
543 |
} |
|
544 |
} |
|
545 |
if ( found_curr && (_cycle_node == INVALID || |
|
546 |
max_length * _cycle_size < _cycle_length * max_size) ) { |
|
547 |
_cycle_length = max_length; |
|
548 |
_cycle_size = max_size; |
|
549 |
_cycle_node = u; |
|
550 |
} |
|
551 |
} |
|
552 |
} |
|
553 |
|
|
554 |
}; //class Karp |
|
555 |
|
|
556 |
///@} |
|
557 |
|
|
558 |
} //namespace lemon |
|
559 |
|
|
560 |
#endif //LEMON_KARP_H |
... | ... |
@@ -23,3 +23,2 @@ |
23 | 23 |
#include <lemon/lgf_reader.h> |
24 |
#include <lemon/howard.h> |
|
25 | 24 |
#include <lemon/path.h> |
... | ... |
@@ -28,2 +27,5 @@ |
28 | 27 |
|
28 |
#include <lemon/karp.h> |
|
29 |
#include <lemon/howard.h> |
|
30 |
|
|
29 | 31 |
#include "test_tools.h" |
... | ... |
@@ -143,12 +145,19 @@ |
143 | 145 |
typedef concepts::Digraph GR; |
144 |
typedef Howard<GR, concepts::ReadMap<GR::Arc, int> > IntMmcAlg; |
|
145 |
typedef Howard<GR, concepts::ReadMap<GR::Arc, float> > FloatMmcAlg; |
|
146 | 146 |
|
147 |
checkConcept<MmcClassConcept<GR, int>, IntMmcAlg>(); |
|
148 |
checkConcept<MmcClassConcept<GR, float>, FloatMmcAlg>(); |
|
147 |
// Karp |
|
148 |
checkConcept< MmcClassConcept<GR, int>, |
|
149 |
Karp<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
150 |
checkConcept< MmcClassConcept<GR, float>, |
|
151 |
Karp<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
149 | 152 |
|
150 |
if (IsSameType<IntMmcAlg::LargeValue, long_int>::result == 0) |
|
151 |
check(false, "Wrong LargeValue type"); |
|
152 |
if (IsSameType<FloatMmcAlg::LargeValue, double>::result == 0) |
|
153 |
check(false, "Wrong LargeValue type"); |
|
153 |
// Howard |
|
154 |
checkConcept< MmcClassConcept<GR, int>, |
|
155 |
Howard<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
156 |
checkConcept< MmcClassConcept<GR, float>, |
|
157 |
Howard<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
158 |
|
|
159 |
if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, int> >::LargeValue, |
|
160 |
long_int>::result == 0) check(false, "Wrong LargeValue type"); |
|
161 |
if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, float> >::LargeValue, |
|
162 |
double>::result == 0) check(false, "Wrong LargeValue type"); |
|
154 | 163 |
} |
... | ... |
@@ -176,2 +185,9 @@ |
176 | 185 |
|
186 |
// Karp |
|
187 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
188 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
189 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
190 |
checkMmcAlg<Karp<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
191 |
|
|
192 |
// Howard |
|
177 | 193 |
checkMmcAlg<Howard<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
0 comments (0 inline)