1 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
2 |
2 |
*
|
3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
4 |
4 |
*
|
5 |
5 |
* Copyright (C) 2003-2009
|
6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
8 |
8 |
*
|
9 |
9 |
* Permission to use, modify and distribute this software is granted
|
10 |
10 |
* provided that this copyright notice appears in all copies. For
|
11 |
11 |
* precise terms see the accompanying LICENSE file.
|
12 |
12 |
*
|
13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
15 |
15 |
* purpose.
|
16 |
16 |
*
|
17 |
17 |
*/
|
18 |
18 |
|
19 |
19 |
#include <sstream>
|
20 |
20 |
#include <lemon/lp_skeleton.h>
|
21 |
21 |
#include "test_tools.h"
|
22 |
22 |
#include <lemon/tolerance.h>
|
23 |
23 |
|
24 |
24 |
#ifdef HAVE_CONFIG_H
|
25 |
25 |
#include <lemon/config.h>
|
26 |
26 |
#endif
|
27 |
27 |
|
28 |
28 |
#ifdef HAVE_GLPK
|
29 |
29 |
#include <lemon/glpk.h>
|
30 |
30 |
#endif
|
31 |
31 |
|
32 |
32 |
#ifdef HAVE_CPLEX
|
33 |
33 |
#include <lemon/cplex.h>
|
34 |
34 |
#endif
|
35 |
35 |
|
36 |
36 |
#ifdef HAVE_SOPLEX
|
37 |
37 |
#include <lemon/soplex.h>
|
38 |
38 |
#endif
|
39 |
39 |
|
40 |
40 |
#ifdef HAVE_CLP
|
41 |
41 |
#include <lemon/clp.h>
|
42 |
42 |
#endif
|
43 |
43 |
|
44 |
44 |
using namespace lemon;
|
45 |
45 |
|
46 |
46 |
void lpTest(LpSolver& lp)
|
47 |
47 |
{
|
48 |
48 |
|
49 |
49 |
typedef LpSolver LP;
|
50 |
50 |
|
51 |
51 |
std::vector<LP::Col> x(10);
|
52 |
52 |
// for(int i=0;i<10;i++) x.push_back(lp.addCol());
|
53 |
53 |
lp.addColSet(x);
|
54 |
54 |
lp.colLowerBound(x,1);
|
55 |
55 |
lp.colUpperBound(x,1);
|
56 |
56 |
lp.colBounds(x,1,2);
|
57 |
57 |
|
58 |
58 |
std::vector<LP::Col> y(10);
|
59 |
59 |
lp.addColSet(y);
|
60 |
60 |
|
61 |
61 |
lp.colLowerBound(y,1);
|
62 |
62 |
lp.colUpperBound(y,1);
|
63 |
63 |
lp.colBounds(y,1,2);
|
64 |
64 |
|
65 |
65 |
std::map<int,LP::Col> z;
|
66 |
66 |
|
67 |
67 |
z.insert(std::make_pair(12,INVALID));
|
68 |
68 |
z.insert(std::make_pair(2,INVALID));
|
69 |
69 |
z.insert(std::make_pair(7,INVALID));
|
70 |
70 |
z.insert(std::make_pair(5,INVALID));
|
71 |
71 |
|
72 |
72 |
lp.addColSet(z);
|
73 |
73 |
|
74 |
74 |
lp.colLowerBound(z,1);
|
75 |
75 |
lp.colUpperBound(z,1);
|
76 |
76 |
lp.colBounds(z,1,2);
|
77 |
77 |
|
78 |
78 |
{
|
79 |
79 |
LP::Expr e,f,g;
|
80 |
80 |
LP::Col p1,p2,p3,p4,p5;
|
81 |
81 |
LP::Constr c;
|
82 |
82 |
|
83 |
83 |
p1=lp.addCol();
|
84 |
84 |
p2=lp.addCol();
|
85 |
85 |
p3=lp.addCol();
|
86 |
86 |
p4=lp.addCol();
|
87 |
87 |
p5=lp.addCol();
|
88 |
88 |
|
89 |
89 |
e[p1]=2;
|
90 |
90 |
*e=12;
|
91 |
91 |
e[p1]+=2;
|
92 |
92 |
*e+=12;
|
93 |
93 |
e[p1]-=2;
|
94 |
94 |
*e-=12;
|
95 |
95 |
|
96 |
96 |
e=2;
|
97 |
97 |
e=2.2;
|
98 |
98 |
e=p1;
|
99 |
99 |
e=f;
|
100 |
100 |
|
101 |
101 |
e+=2;
|
102 |
102 |
e+=2.2;
|
103 |
103 |
e+=p1;
|
104 |
104 |
e+=f;
|
105 |
105 |
|
106 |
106 |
e-=2;
|
107 |
107 |
e-=2.2;
|
108 |
108 |
e-=p1;
|
109 |
109 |
e-=f;
|
110 |
110 |
|
111 |
111 |
e*=2;
|
112 |
112 |
e*=2.2;
|
113 |
113 |
e/=2;
|
114 |
114 |
e/=2.2;
|
115 |
115 |
|
116 |
116 |
e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+
|
117 |
117 |
(f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+
|
118 |
118 |
(f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+
|
119 |
119 |
2.2*f+f*2.2+f/2.2+
|
120 |
120 |
2*f+f*2+f/2+
|
121 |
121 |
2.2*p1+p1*2.2+p1/2.2+
|
122 |
122 |
2*p1+p1*2+p1/2
|
123 |
123 |
);
|
124 |
124 |
|
125 |
125 |
|
126 |
126 |
c = (e <= f );
|
127 |
127 |
c = (e <= 2.2);
|
128 |
128 |
c = (e <= 2 );
|
129 |
129 |
c = (e <= p1 );
|
130 |
130 |
c = (2.2<= f );
|
131 |
131 |
c = (2 <= f );
|
132 |
132 |
c = (p1 <= f );
|
133 |
133 |
c = (p1 <= p2 );
|
134 |
134 |
c = (p1 <= 2.2);
|
135 |
135 |
c = (p1 <= 2 );
|
136 |
136 |
c = (2.2<= p2 );
|
137 |
137 |
c = (2 <= p2 );
|
138 |
138 |
|
139 |
139 |
c = (e >= f );
|
140 |
140 |
c = (e >= 2.2);
|
141 |
141 |
c = (e >= 2 );
|
142 |
142 |
c = (e >= p1 );
|
143 |
143 |
c = (2.2>= f );
|
144 |
144 |
c = (2 >= f );
|
145 |
145 |
c = (p1 >= f );
|
146 |
146 |
c = (p1 >= p2 );
|
147 |
147 |
c = (p1 >= 2.2);
|
148 |
148 |
c = (p1 >= 2 );
|
149 |
149 |
c = (2.2>= p2 );
|
150 |
150 |
c = (2 >= p2 );
|
151 |
151 |
|
152 |
152 |
c = (e == f );
|
153 |
153 |
c = (e == 2.2);
|
154 |
154 |
c = (e == 2 );
|
155 |
155 |
c = (e == p1 );
|
156 |
156 |
c = (2.2== f );
|
157 |
157 |
c = (2 == f );
|
158 |
158 |
c = (p1 == f );
|
159 |
159 |
//c = (p1 == p2 );
|
160 |
160 |
c = (p1 == 2.2);
|
161 |
161 |
c = (p1 == 2 );
|
162 |
162 |
c = (2.2== p2 );
|
163 |
163 |
c = (2 == p2 );
|
164 |
164 |
|
165 |
165 |
c = ((2 <= e) <= 3);
|
166 |
166 |
c = ((2 <= p1) <= 3);
|
167 |
167 |
|
168 |
168 |
c = ((2 >= e) >= 3);
|
169 |
169 |
c = ((2 >= p1) >= 3);
|
170 |
170 |
|
171 |
171 |
e[x[3]]=2;
|
172 |
172 |
e[x[3]]=4;
|
173 |
173 |
e[x[3]]=1;
|
174 |
174 |
*e=12;
|
175 |
175 |
|
176 |
176 |
lp.addRow(-LP::INF,e,23);
|
177 |
177 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23);
|
178 |
178 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23);
|
179 |
179 |
|
180 |
180 |
lp.addRow(x[1]+x[3]<=x[5]-3);
|
181 |
181 |
lp.addRow((-7<=x[1]+x[3]-12)<=3);
|
182 |
182 |
lp.addRow(x[1]<=x[5]);
|
183 |
183 |
|
184 |
184 |
std::ostringstream buf;
|
185 |
185 |
|
186 |
186 |
|
187 |
187 |
e=((p1+p2)+(p1-0.99*p2));
|
188 |
188 |
//e.prettyPrint(std::cout);
|
189 |
189 |
//(e<=2).prettyPrint(std::cout);
|
190 |
190 |
double tolerance=0.001;
|
191 |
191 |
e.simplify(tolerance);
|
192 |
192 |
buf << "Coeff. of p2 should be 0.01";
|
193 |
193 |
check(e[p2]>0, buf.str());
|
194 |
194 |
|
195 |
195 |
tolerance=0.02;
|
196 |
196 |
e.simplify(tolerance);
|
197 |
197 |
buf << "Coeff. of p2 should be 0";
|
198 |
198 |
check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str());
|
199 |
199 |
|
200 |
200 |
//Test for clone/new
|
201 |
201 |
LP* lpnew = lp.newSolver();
|
202 |
202 |
LP* lpclone = lp.cloneSolver();
|
203 |
203 |
delete lpnew;
|
204 |
204 |
delete lpclone;
|
205 |
205 |
|
206 |
206 |
}
|
207 |
207 |
|
208 |
208 |
{
|
209 |
209 |
LP::DualExpr e,f,g;
|
210 |
210 |
LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID,
|
211 |
211 |
p4 = INVALID, p5 = INVALID;
|
212 |
212 |
|
213 |
213 |
e[p1]=2;
|
214 |
214 |
e[p1]+=2;
|
215 |
215 |
e[p1]-=2;
|
216 |
216 |
|
217 |
217 |
e=p1;
|
218 |
218 |
e=f;
|
219 |
219 |
|
220 |
220 |
e+=p1;
|
221 |
221 |
e+=f;
|
222 |
222 |
|
223 |
223 |
e-=p1;
|
224 |
224 |
e-=f;
|
225 |
225 |
|
226 |
226 |
e*=2;
|
227 |
227 |
e*=2.2;
|
228 |
228 |
e/=2;
|
229 |
229 |
e/=2.2;
|
230 |
230 |
|
231 |
231 |
e=((p1+p2)+(p1-p2)+
|
232 |
232 |
(p1+f)+(f+p1)+(f+g)+
|
233 |
233 |
(p1-f)+(f-p1)+(f-g)+
|
234 |
234 |
2.2*f+f*2.2+f/2.2+
|
235 |
235 |
2*f+f*2+f/2+
|
236 |
236 |
2.2*p1+p1*2.2+p1/2.2+
|
237 |
237 |
2*p1+p1*2+p1/2
|
238 |
238 |
);
|
239 |
239 |
}
|
240 |
240 |
|
241 |
241 |
}
|
242 |
242 |
|
243 |
243 |
void solveAndCheck(LpSolver& lp, LpSolver::ProblemType stat,
|
244 |
244 |
double exp_opt) {
|
245 |
245 |
using std::string;
|
246 |
246 |
lp.solve();
|
247 |
247 |
|
248 |
248 |
std::ostringstream buf;
|
249 |
249 |
buf << "PrimalType should be: " << int(stat) << int(lp.primalType());
|
250 |
250 |
|
251 |
251 |
check(lp.primalType()==stat, buf.str());
|
252 |
252 |
|
253 |
253 |
if (stat == LpSolver::OPTIMAL) {
|
254 |
254 |
std::ostringstream sbuf;
|
255 |
255 |
sbuf << "Wrong optimal value (" << lp.primal() <<") with "
|
256 |
256 |
<< lp.solverName() <<"\n the right optimum is " << exp_opt;
|
257 |
257 |
check(std::abs(lp.primal()-exp_opt) < 1e-3, sbuf.str());
|
258 |
258 |
}
|
259 |
259 |
}
|
260 |
260 |
|
261 |
261 |
void aTest(LpSolver & lp)
|
262 |
262 |
{
|
263 |
263 |
typedef LpSolver LP;
|
264 |
264 |
|
265 |
265 |
//The following example is very simple
|
266 |
266 |
|
267 |
267 |
typedef LpSolver::Row Row;
|
268 |
268 |
typedef LpSolver::Col Col;
|
269 |
269 |
|
270 |
270 |
|
271 |
271 |
Col x1 = lp.addCol();
|
272 |
272 |
Col x2 = lp.addCol();
|
273 |
273 |
|
274 |
274 |
|
275 |
275 |
//Constraints
|
276 |
276 |
Row upright=lp.addRow(x1+2*x2 <=1);
|
277 |
277 |
lp.addRow(x1+x2 >=-1);
|
278 |
278 |
lp.addRow(x1-x2 <=1);
|
279 |
279 |
lp.addRow(x1-x2 >=-1);
|
280 |
280 |
//Nonnegativity of the variables
|
281 |
281 |
lp.colLowerBound(x1, 0);
|
282 |
282 |
lp.colLowerBound(x2, 0);
|
283 |
283 |
//Objective function
|
284 |
284 |
lp.obj(x1+x2);
|
285 |
285 |
|
286 |
286 |
lp.sense(lp.MAX);
|
287 |
287 |
|
288 |
288 |
//Testing the problem retrieving routines
|
289 |
289 |
check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!");
|
290 |
290 |
check(lp.sense() == lp.MAX,"This is a maximization!");
|
291 |
291 |
check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!");
|
292 |
292 |
check(lp.colLowerBound(x1)==0,
|
293 |
293 |
"The lower bound for variable x1 should be 0.");
|
294 |
294 |
check(lp.colUpperBound(x1)==LpSolver::INF,
|
295 |
295 |
"The upper bound for variable x1 should be infty.");
|
296 |
296 |
check(lp.rowLowerBound(upright) == -LpSolver::INF,
|
297 |
297 |
"The lower bound for the first row should be -infty.");
|
298 |
298 |
check(lp.rowUpperBound(upright)==1,
|
299 |
299 |
"The upper bound for the first row should be 1.");
|
300 |
300 |
LpSolver::Expr e = lp.row(upright);
|
301 |
301 |
check(e[x1] == 1, "The first coefficient should 1.");
|
302 |
302 |
check(e[x2] == 2, "The second coefficient should 1.");
|
303 |
303 |
|
304 |
304 |
lp.row(upright, x1+x2 <=1);
|
305 |
305 |
e = lp.row(upright);
|
306 |
306 |
check(e[x1] == 1, "The first coefficient should 1.");
|
307 |
307 |
check(e[x2] == 1, "The second coefficient should 1.");
|
308 |
308 |
|
309 |
309 |
LpSolver::DualExpr de = lp.col(x1);
|
310 |
310 |
check( de[upright] == 1, "The first coefficient should 1.");
|
311 |
311 |
|
312 |
312 |
LpSolver* clp = lp.cloneSolver();
|
313 |
313 |
|
314 |
314 |
//Testing the problem retrieving routines
|
315 |
315 |
check(clp->objCoeff(x1)==1,"First term should be 1 in the obj function!");
|
316 |
316 |
check(clp->sense() == clp->MAX,"This is a maximization!");
|
317 |
317 |
check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!");
|
318 |
318 |
// std::cout<<lp.colLowerBound(x1)<<std::endl;
|
319 |
319 |
check(clp->colLowerBound(x1)==0,
|
320 |
320 |
"The lower bound for variable x1 should be 0.");
|
321 |
321 |
check(clp->colUpperBound(x1)==LpSolver::INF,
|
322 |
322 |
"The upper bound for variable x1 should be infty.");
|
323 |
323 |
|
324 |
324 |
check(lp.rowLowerBound(upright)==-LpSolver::INF,
|
325 |
325 |
"The lower bound for the first row should be -infty.");
|
326 |
326 |
check(lp.rowUpperBound(upright)==1,
|
327 |
327 |
"The upper bound for the first row should be 1.");
|
328 |
328 |
e = clp->row(upright);
|
329 |
329 |
check(e[x1] == 1, "The first coefficient should 1.");
|
330 |
330 |
check(e[x2] == 1, "The second coefficient should 1.");
|
331 |
331 |
|
332 |
332 |
de = clp->col(x1);
|
333 |
333 |
check(de[upright] == 1, "The first coefficient should 1.");
|
334 |
334 |
|
335 |
335 |
delete clp;
|
336 |
336 |
|
337 |
337 |
//Maximization of x1+x2
|
338 |
338 |
//over the triangle with vertices (0,0) (0,1) (1,0)
|
339 |
339 |
double expected_opt=1;
|
340 |
340 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
|
341 |
341 |
|
342 |
342 |
//Minimization
|
343 |
343 |
lp.sense(lp.MIN);
|
344 |
344 |
expected_opt=0;
|
345 |
345 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
|
346 |
346 |
|
347 |
347 |
//Vertex (-1,0) instead of (0,0)
|
348 |
348 |
lp.colLowerBound(x1, -LpSolver::INF);
|
349 |
349 |
expected_opt=-1;
|
350 |
350 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
|
351 |
351 |
|
352 |
352 |
//Erase one constraint and return to maximization
|
353 |
353 |
lp.erase(upright);
|
354 |
354 |
lp.sense(lp.MAX);
|
355 |
355 |
expected_opt=LpSolver::INF;
|
356 |
356 |
solveAndCheck(lp, LpSolver::UNBOUNDED, expected_opt);
|
357 |
357 |
|
358 |
358 |
//Infeasibilty
|
359 |
359 |
lp.addRow(x1+x2 <=-2);
|
360 |
360 |
solveAndCheck(lp, LpSolver::INFEASIBLE, expected_opt);
|
361 |
361 |
|
362 |
362 |
}
|
363 |
363 |
|
364 |
364 |
template<class LP>
|
365 |
365 |
void cloneTest()
|
366 |
366 |
{
|
367 |
367 |
//Test for clone/new
|
368 |
368 |
|
369 |
369 |
LP* lp = new LP();
|
370 |
370 |
LP* lpnew = lp->newSolver();
|
371 |
371 |
LP* lpclone = lp->cloneSolver();
|
372 |
372 |
delete lp;
|
373 |
373 |
delete lpnew;
|
374 |
374 |
delete lpclone;
|
375 |
375 |
}
|
376 |
376 |
|
377 |
377 |
int main()
|
378 |
378 |
{
|
379 |
379 |
LpSkeleton lp_skel;
|
380 |
380 |
lpTest(lp_skel);
|
381 |
381 |
|
382 |
382 |
#ifdef HAVE_GLPK
|
383 |
383 |
{
|
384 |
384 |
GlpkLp lp_glpk1,lp_glpk2;
|
385 |
385 |
lpTest(lp_glpk1);
|
386 |
386 |
aTest(lp_glpk2);
|
387 |
387 |
cloneTest<GlpkLp>();
|
388 |
388 |
}
|
389 |
389 |
#endif
|
390 |
390 |
|
391 |
391 |
#ifdef HAVE_CPLEX
|
392 |
392 |
try {
|
393 |
393 |
CplexLp lp_cplex1,lp_cplex2;
|
394 |
394 |
lpTest(lp_cplex1);
|
395 |
395 |
aTest(lp_cplex2);
|
396 |
396 |
cloneTest<CplexLp>();
|
397 |
397 |
} catch (CplexEnv::LicenseError& error) {
|
398 |
|
#ifdef LEMON_FORCE_CPLEX_CHECK
|
399 |
398 |
check(false, error.what());
|
400 |
|
#else
|
401 |
|
std::cerr << error.what() << std::endl;
|
402 |
|
std::cerr << "Cplex license check failed, lp check skipped" << std::endl;
|
403 |
|
#endif
|
404 |
399 |
}
|
405 |
400 |
#endif
|
406 |
401 |
|
407 |
402 |
#ifdef HAVE_SOPLEX
|
408 |
403 |
{
|
409 |
404 |
SoplexLp lp_soplex1,lp_soplex2;
|
410 |
405 |
lpTest(lp_soplex1);
|
411 |
406 |
aTest(lp_soplex2);
|
412 |
407 |
cloneTest<SoplexLp>();
|
413 |
408 |
}
|
414 |
409 |
#endif
|
415 |
410 |
|
416 |
411 |
#ifdef HAVE_CLP
|
417 |
412 |
{
|
418 |
413 |
ClpLp lp_clp1,lp_clp2;
|
419 |
414 |
lpTest(lp_clp1);
|
420 |
415 |
aTest(lp_clp2);
|
421 |
416 |
cloneTest<ClpLp>();
|
422 |
417 |
}
|
423 |
418 |
#endif
|
424 |
419 |
|
425 |
420 |
return 0;
|
426 |
421 |
}
|