0
7
0
1
1
120
40
9
17
| 1 | 1 |
LEMON code without an explicit copyright notice is covered by the following |
| 2 | 2 |
copyright/license. |
| 3 | 3 |
|
| 4 |
Copyright (C) 2003- |
|
| 4 |
Copyright (C) 2003-2010 Egervary Jeno Kombinatorikus Optimalizalasi |
|
| 5 | 5 |
Kutatocsoport (Egervary Combinatorial Optimization Research Group, |
| 6 | 6 |
EGRES). |
| 7 | 7 |
|
| 8 | 8 |
=========================================================================== |
| 9 | 9 |
Boost Software License, Version 1.0 |
| 10 | 10 |
=========================================================================== |
| 11 | 11 |
|
| 12 | 12 |
Permission is hereby granted, free of charge, to any person or organization |
| 13 | 13 |
obtaining a copy of the software and accompanying documentation covered by |
| 14 | 14 |
this license (the "Software") to use, reproduce, display, distribute, |
| 15 | 15 |
execute, and transmit the Software, and to prepare derivative works of the |
| 16 | 16 |
Software, and to permit third-parties to whom the Software is furnished to |
| 17 | 17 |
do so, all subject to the following: |
| 18 | 18 |
|
| 19 | 19 |
The copyright notices in the Software and this entire statement, including |
| 20 | 20 |
the above license grant, this restriction and the following disclaimer, |
| 21 | 21 |
must be included in all copies of the Software, in whole or in part, and |
| 22 | 22 |
all derivative works of the Software, unless such copies or derivative |
| 23 | 23 |
works are solely in the form of machine-executable object code generated by |
| 24 | 24 |
a source language processor. |
| 25 | 25 |
|
| 26 | 26 |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 27 | 27 |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 28 | 28 |
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT |
| 29 | 29 |
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE |
| 30 | 30 |
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, |
| 31 | 31 |
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| 32 | 32 |
DEALINGS IN THE SOFTWARE. |
| 1 |
2010-03-19 Version 1.2 released |
|
| 2 |
|
|
| 3 |
This is major feature release |
|
| 4 |
|
|
| 5 |
* New algorithms |
|
| 6 |
* Bellman-Ford algorithm (#51) |
|
| 7 |
* Minimum mean cycle algorithms (#179) |
|
| 8 |
* Karp, Hartman-Orlin and Howard algorithms |
|
| 9 |
* New minimum cost flow algorithms (#180) |
|
| 10 |
* Cost Scaling algorithms |
|
| 11 |
* Capacity Scaling algorithm |
|
| 12 |
* Cycle-Canceling algorithms |
|
| 13 |
* Planarity related algorithms (#62) |
|
| 14 |
* Planarity checking algorithm |
|
| 15 |
* Planar embedding algorithm |
|
| 16 |
* Schnyder's planar drawing algorithm |
|
| 17 |
* Coloring planar graphs with five or six colors |
|
| 18 |
* Fractional matching algorithms (#314) |
|
| 19 |
* New data structures |
|
| 20 |
* StaticDigraph structure (#68) |
|
| 21 |
* Several new priority queue structures (#50, #301) |
|
| 22 |
* Fibonacci, Radix, Bucket, Pairing, Binomial |
|
| 23 |
D-ary and fourary heaps (#301) |
|
| 24 |
* Iterable map structures (#73) |
|
| 25 |
* Other new tools and functionality |
|
| 26 |
* Map utility functions (#320) |
|
| 27 |
* Reserve functions are added to ListGraph and SmartGraph (#311) |
|
| 28 |
* A resize() function is added to HypercubeGraph (#311) |
|
| 29 |
* A count() function is added to CrossRefMap (#302) |
|
| 30 |
* Support for multiple targets in Suurballe using fullInit() (#181) |
|
| 31 |
* Traits class and named parameters for Suurballe (#323) |
|
| 32 |
* Separate reset() and resetParams() functions in NetworkSimplex |
|
| 33 |
to handle graph changes (#327) |
|
| 34 |
* tolerance() functions are added to HaoOrlin (#306) |
|
| 35 |
* Implementation improvements |
|
| 36 |
* Improvements in weighted matching algorithms (#314) |
|
| 37 |
* Jumpstart initialization |
|
| 38 |
* ArcIt iteration is based on out-arc lists instead of in-arc lists |
|
| 39 |
in ListDigraph (#311) |
|
| 40 |
* Faster add row operation in CbcMip (#203) |
|
| 41 |
* Better implementation for split() in ListDigraph (#311) |
|
| 42 |
* ArgParser can also throw exception instead of exit(1) (#332) |
|
| 43 |
* Miscellaneous |
|
| 44 |
* A simple interactive bootstrap script |
|
| 45 |
* Doc improvements (#62,#180,#299,#302,#303,#304,#307,#311,#331,#315, |
|
| 46 |
#316,#319) |
|
| 47 |
* BibTeX references in the doc (#184) |
|
| 48 |
* Optionally use valgrind when running tests |
|
| 49 |
* Also check ReferenceMapTag in concept checks (#312) |
|
| 50 |
* dimacs-solver uses long long type by default. |
|
| 51 |
* Several bugfixes (compared to release 1.1): |
|
| 52 |
#295: Suppress MSVC warnings using pragmas |
|
| 53 |
----: Various CMAKE related improvements |
|
| 54 |
* Remove duplications from doc/CMakeLists.txt |
|
| 55 |
* Rename documentation install folder from 'docs' to 'html' |
|
| 56 |
* Add tools/CMakeLists.txt to the tarball |
|
| 57 |
* Generate and install LEMONConfig.cmake |
|
| 58 |
* Change the label of the html project in Visual Studio |
|
| 59 |
* Fix the check for the 'long long' type |
|
| 60 |
* Put the version string into config.h |
|
| 61 |
* Minor CMake improvements |
|
| 62 |
* Set the version to 'hg-tip' if everything fails |
|
| 63 |
#311: Add missing 'explicit' keywords |
|
| 64 |
#302: Fix the implementation and doc of CrossRefMap |
|
| 65 |
#308: Remove duplicate list_graph.h entry from source list |
|
| 66 |
#307: Bugfix in Preflow and Circulation |
|
| 67 |
#305: Bugfix and extension in the rename script |
|
| 68 |
#312: Also check ReferenceMapTag in concept checks |
|
| 69 |
#250: Bugfix in pathSource() and pathTarget() |
|
| 70 |
#321: Use pathCopy(from,to) instead of copyPath(to,from) |
|
| 71 |
#322: Distribure LEMONConfig.cmake.in |
|
| 72 |
#330: Bug fix in map_extender.h |
|
| 73 |
#336: Fix the date field comment of graphToEps() output |
|
| 74 |
#323: Bug fix in Suurballe |
|
| 75 |
#335: Fix clear() function in ExtendFindEnum |
|
| 76 |
#337: Use void* as the LPX object pointer |
|
| 77 |
#317: Fix (and improve) error message in mip_test.cc |
|
| 78 |
Remove unnecessary OsiCbc dependency |
|
| 79 |
#356: Allow multiple executions of weighted matching algorithms (#356) |
|
| 80 |
|
|
| 1 | 81 |
2009-05-13 Version 1.1 released |
| 2 | 82 |
|
| 3 | 83 |
This is the second stable release of the 1.x series. It |
| 4 | 84 |
features a better coverage of the tools available in the 0.x |
| 5 | 85 |
series, a thoroughly reworked LP/MIP interface plus various |
| 6 | 86 |
improvements in the existing tools. |
| 7 | 87 |
|
| 8 | 88 |
* Much improved M$ Windows support |
| 9 | 89 |
* Various improvements in the CMAKE build system |
| 10 | 90 |
* Compilation warnings are fixed/suppressed |
| 11 | 91 |
* Support IBM xlC compiler |
| 12 | 92 |
* New algorithms |
| 13 | 93 |
* Connectivity related algorithms (#61) |
| 14 | 94 |
* Euler walks (#65) |
| 15 | 95 |
* Preflow push-relabel max. flow algorithm (#176) |
| 16 | 96 |
* Circulation algorithm (push-relabel based) (#175) |
| 17 | 97 |
* Suurballe algorithm (#47) |
| 18 | 98 |
* Gomory-Hu algorithm (#66) |
| 19 | 99 |
* Hao-Orlin algorithm (#58) |
| 20 | 100 |
* Edmond's maximum cardinality and weighted matching algorithms |
| 21 | 101 |
in general graphs (#48,#265) |
| 22 | 102 |
* Minimum cost arborescence/branching (#60) |
| 23 | 103 |
* Network Simplex min. cost flow algorithm (#234) |
| 24 | 104 |
* New data structures |
| 25 | 105 |
* Full graph structure (#57) |
| 26 | 106 |
* Grid graph structure (#57) |
| 27 | 107 |
* Hypercube graph structure (#57) |
| 28 | 108 |
* Graph adaptors (#67) |
| 29 | 109 |
* ArcSet and EdgeSet classes (#67) |
| 30 | 110 |
* Elevator class (#174) |
| 31 | 111 |
* Other new tools |
| 32 | 112 |
* LP/MIP interface (#44) |
| 33 | 113 |
* Support for GLPK, CPLEX, Soplex, COIN-OR CLP and CBC |
| 34 | 114 |
* Reader for the Nauty file format (#55) |
| 35 | 115 |
* DIMACS readers (#167) |
| 36 | 116 |
* Radix sort algorithms (#72) |
| 37 | 117 |
* RangeIdMap and CrossRefMap (#160) |
| 38 | 118 |
* New command line tools |
| 39 | 119 |
* DIMACS to LGF converter (#182) |
| 40 | 120 |
* lgf-gen - a graph generator (#45) |
| 41 | 121 |
* DIMACS solver utility (#226) |
| 42 | 122 |
* Other code improvements |
| 43 | 123 |
* Lognormal distribution added to Random (#102) |
| 44 | 124 |
* Better (i.e. O(1) time) item counting in SmartGraph (#3) |
| 45 | 125 |
* The standard maps of graphs are guaranteed to be |
| 46 | 126 |
reference maps (#190) |
| 47 | 127 |
* Miscellaneous |
| 48 | 128 |
* Various doc improvements |
| 49 | 129 |
* Improved 0.x -> 1.x converter script |
| 50 | 130 |
|
| 51 | 131 |
* Several bugfixes (compared to release 1.0): |
| 52 | 132 |
#170: Bugfix SmartDigraph::split() |
| 53 | 133 |
#171: Bugfix in SmartGraph::restoreSnapshot() |
| 54 | 134 |
#172: Extended test cases for graphs and digraphs |
| 55 | 135 |
#173: Bugfix in Random |
| 56 | 136 |
* operator()s always return a double now |
| 57 | 137 |
* the faulty real<Num>(Num) and real<Num>(Num,Num) |
| 58 | 138 |
have been removed |
| 59 | 139 |
#187: Remove DijkstraWidestPathOperationTraits |
| 60 | 140 |
#61: Bugfix in DfsVisit |
| 61 | 141 |
#193: Bugfix in GraphReader::skipSection() |
| 62 | 142 |
#195: Bugfix in ConEdgeIt() |
| 63 | 143 |
#197: Bugfix in heap unionfind |
| 64 | 144 |
* This bug affects Edmond's general matching algorithms |
| 65 | 145 |
#207: Fix 'make install' without 'make html' using CMAKE |
| 66 | 146 |
#208: Suppress or fix VS2008 compilation warnings |
| 67 | 147 |
----: Update the LEMON icon |
| 68 | 148 |
----: Enable the component-based installer |
| 69 | 149 |
(in installers made by CPACK) |
| 70 | 150 |
----: Set the proper version for CMAKE in the tarballs |
| 71 | 151 |
(made by autotools) |
| 72 | 152 |
----: Minor clarification in the LICENSE file |
| 73 | 153 |
----: Add missing unistd.h include to time_measure.h |
| 74 | 154 |
#204: Compilation bug fixed in graph_to_eps.h with VS2005 |
| 75 |
#214,#215: windows.h should never be included by |
|
| 155 |
#214,#215: windows.h should never be included by LEMON headers |
|
| 76 | 156 |
#230: Build systems check the availability of 'long long' type |
| 77 | 157 |
#229: Default implementation of Tolerance<> is used for integer types |
| 78 | 158 |
#211,#212: Various fixes for compiling on AIX |
| 79 | 159 |
----: Improvements in CMAKE config |
| 80 | 160 |
- docs is installed in share/doc/ |
| 81 | 161 |
- detects newer versions of Ghostscript |
| 82 | 162 |
#239: Fix missing 'inline' specifier in time_measure.h |
| 83 | 163 |
#274,#280: Install lemon/config.h |
| 84 | 164 |
#275: Prefix macro names with LEMON_ in lemon/config.h |
| 85 | 165 |
----: Small script for making the release tarballs added |
| 86 | 166 |
----: Minor improvement in unify-sources.sh (a76f55d7d397) |
| 87 | 167 |
|
| 88 | 168 |
2009-03-27 LEMON joins to the COIN-OR initiative |
| 89 | 169 |
|
| 90 | 170 |
COIN-OR (Computational Infrastructure for Operations Research, |
| 91 | 171 |
http://www.coin-or.org) project is an initiative to spur the |
| 92 | 172 |
development of open-source software for the operations research |
| 93 | 173 |
community. |
| 94 | 174 |
|
| 95 | 175 |
2008-10-13 Version 1.0 released |
| 96 | 176 |
|
| 97 |
This is the first stable release of LEMON. Compared to the 0.x |
|
| 98 |
release series, it features a considerably smaller but more |
|
| 99 |
matured set of tools. The API has also completely revised and |
|
| 100 |
changed in several places. |
|
| 177 |
This is the first stable release of LEMON. Compared to the 0.x |
|
| 178 |
release series, it features a considerably smaller but more |
|
| 179 |
matured set of tools. The API has also completely revised and |
|
| 180 |
changed in several places. |
|
| 101 | 181 |
|
| 102 |
|
|
| 182 |
* The major name changes compared to the 0.x series (see the |
|
| 103 | 183 |
Migration Guide in the doc for more details) |
| 104 | 184 |
* Graph -> Digraph, UGraph -> Graph |
| 105 | 185 |
* Edge -> Arc, UEdge -> Edge |
| 106 |
* source(UEdge)/target(UEdge) -> u(Edge)/v(Edge) |
|
| 107 |
* Other improvements |
|
| 108 |
* Better documentation |
|
| 109 |
* Reviewed and cleaned up codebase |
|
| 110 |
* CMake based build system (along with the autotools based one) |
|
| 111 |
* Contents of the library (ported from 0.x) |
|
| 112 |
* Algorithms |
|
| 113 |
* breadth-first search (bfs.h) |
|
| 114 |
* depth-first search (dfs.h) |
|
| 115 |
* Dijkstra's algorithm (dijkstra.h) |
|
| 116 |
* Kruskal's algorithm (kruskal.h) |
|
| 117 |
* Data structures |
|
| 118 |
* graph data structures (list_graph.h, smart_graph.h) |
|
| 119 |
* path data structures (path.h) |
|
| 120 |
* binary heap data structure (bin_heap.h) |
|
| 121 |
* union-find data structures (unionfind.h) |
|
| 122 |
* miscellaneous property maps (maps.h) |
|
| 123 |
* two dimensional vector and bounding box (dim2.h) |
|
| 186 |
* source(UEdge)/target(UEdge) -> u(Edge)/v(Edge) |
|
| 187 |
* Other improvements |
|
| 188 |
* Better documentation |
|
| 189 |
* Reviewed and cleaned up codebase |
|
| 190 |
* CMake based build system (along with the autotools based one) |
|
| 191 |
* Contents of the library (ported from 0.x) |
|
| 192 |
* Algorithms |
|
| 193 |
* breadth-first search (bfs.h) |
|
| 194 |
* depth-first search (dfs.h) |
|
| 195 |
* Dijkstra's algorithm (dijkstra.h) |
|
| 196 |
* Kruskal's algorithm (kruskal.h) |
|
| 197 |
* Data structures |
|
| 198 |
* graph data structures (list_graph.h, smart_graph.h) |
|
| 199 |
* path data structures (path.h) |
|
| 200 |
* binary heap data structure (bin_heap.h) |
|
| 201 |
* union-find data structures (unionfind.h) |
|
| 202 |
* miscellaneous property maps (maps.h) |
|
| 203 |
* two dimensional vector and bounding box (dim2.h) |
|
| 124 | 204 |
* Concepts |
| 125 |
|
|
| 205 |
* graph structure concepts (concepts/digraph.h, concepts/graph.h, |
|
| 126 | 206 |
concepts/graph_components.h) |
| 127 |
* concepts for other structures (concepts/heap.h, concepts/maps.h, |
|
| 128 |
concepts/path.h) |
|
| 129 |
* Tools |
|
| 130 |
* Mersenne twister random number generator (random.h) |
|
| 131 |
* tools for measuring cpu and wall clock time (time_measure.h) |
|
| 132 |
* tools for counting steps and events (counter.h) |
|
| 133 |
* tool for parsing command line arguments (arg_parser.h) |
|
| 134 |
* tool for visualizing graphs (graph_to_eps.h) |
|
| 135 |
|
|
| 207 |
* concepts for other structures (concepts/heap.h, concepts/maps.h, |
|
| 208 |
concepts/path.h) |
|
| 209 |
* Tools |
|
| 210 |
* Mersenne twister random number generator (random.h) |
|
| 211 |
* tools for measuring cpu and wall clock time (time_measure.h) |
|
| 212 |
* tools for counting steps and events (counter.h) |
|
| 213 |
* tool for parsing command line arguments (arg_parser.h) |
|
| 214 |
* tool for visualizing graphs (graph_to_eps.h) |
|
| 215 |
* tools for reading and writing data in LEMON Graph Format |
|
| 136 | 216 |
(lgf_reader.h, lgf_writer.h) |
| 137 | 217 |
* tools to handle the anomalies of calculations with |
| 138 |
|
|
| 218 |
floating point numbers (tolerance.h) |
|
| 139 | 219 |
* tools to manage RGB colors (color.h) |
| 140 |
* Infrastructure |
|
| 141 |
* extended assertion handling (assert.h) |
|
| 142 |
* exception classes and error handling (error.h) |
|
| 143 |
* concept checking (concept_check.h) |
|
| 144 |
|
|
| 220 |
* Infrastructure |
|
| 221 |
* extended assertion handling (assert.h) |
|
| 222 |
* exception classes and error handling (error.h) |
|
| 223 |
* concept checking (concept_check.h) |
|
| 224 |
* commonly used mathematical constants (math.h) |
| ... | ... |
@@ -74,582 +74,574 @@ |
| 74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
| 75 | 75 |
which serve for considering graph structures in different ways. |
| 76 | 76 |
|
| 77 | 77 |
A short example makes this much clearer. Suppose that we have an |
| 78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
| 79 | 79 |
\code |
| 80 | 80 |
template <typename Digraph> |
| 81 | 81 |
int algorithm(const Digraph&); |
| 82 | 82 |
\endcode |
| 83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
| 84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
| 85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
| 86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
| 87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
| 88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
| 89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
| 90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
| 91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
| 92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
| 93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
| 94 | 94 |
To come back to the reverse oriented graph, in this situation |
| 95 | 95 |
\code |
| 96 | 96 |
template<typename Digraph> class ReverseDigraph; |
| 97 | 97 |
\endcode |
| 98 | 98 |
template class can be used. The code looks as follows |
| 99 | 99 |
\code |
| 100 | 100 |
ListDigraph g; |
| 101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
| 102 | 102 |
int result = algorithm(rg); |
| 103 | 103 |
\endcode |
| 104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
| 105 | 105 |
This techniques give rise to an elegant code, and based on stable |
| 106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
| 107 | 107 |
|
| 108 | 108 |
In flow, circulation and matching problems, the residual |
| 109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
| 110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
| 111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
| 112 | 112 |
obtained. For other examples, the interested user is referred to the |
| 113 | 113 |
detailed documentation of particular adaptors. |
| 114 | 114 |
|
| 115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
| 116 | 116 |
capabilities of the original graph while in other cases this would be |
| 117 | 117 |
meaningless. This means that the concepts that they meet depend |
| 118 | 118 |
on the graph adaptor, and the wrapped graph. |
| 119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
| 120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
| 121 | 121 |
adaptor modifies the original digraph. |
| 122 | 122 |
However in case of a residual digraph, this operation has no sense. |
| 123 | 123 |
|
| 124 | 124 |
Let us stand one more example here to simplify your work. |
| 125 | 125 |
ReverseDigraph has constructor |
| 126 | 126 |
\code |
| 127 | 127 |
ReverseDigraph(Digraph& digraph); |
| 128 | 128 |
\endcode |
| 129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
| 130 | 130 |
reference to a graph is given, then it have to be instantiated with |
| 131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
| 132 | 132 |
\code |
| 133 | 133 |
int algorithm1(const ListDigraph& g) {
|
| 134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
| 135 | 135 |
return algorithm2(rg); |
| 136 | 136 |
} |
| 137 | 137 |
\endcode |
| 138 | 138 |
*/ |
| 139 | 139 |
|
| 140 | 140 |
/** |
| 141 | 141 |
@defgroup maps Maps |
| 142 | 142 |
@ingroup datas |
| 143 | 143 |
\brief Map structures implemented in LEMON. |
| 144 | 144 |
|
| 145 | 145 |
This group contains the map structures implemented in LEMON. |
| 146 | 146 |
|
| 147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
| 148 | 148 |
new maps from existing ones. |
| 149 | 149 |
|
| 150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
| 151 | 151 |
*/ |
| 152 | 152 |
|
| 153 | 153 |
/** |
| 154 | 154 |
@defgroup graph_maps Graph Maps |
| 155 | 155 |
@ingroup maps |
| 156 | 156 |
\brief Special graph-related maps. |
| 157 | 157 |
|
| 158 | 158 |
This group contains maps that are specifically designed to assign |
| 159 | 159 |
values to the nodes and arcs/edges of graphs. |
| 160 | 160 |
|
| 161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
| 162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
| 163 | 163 |
*/ |
| 164 | 164 |
|
| 165 | 165 |
/** |
| 166 | 166 |
\defgroup map_adaptors Map Adaptors |
| 167 | 167 |
\ingroup maps |
| 168 | 168 |
\brief Tools to create new maps from existing ones |
| 169 | 169 |
|
| 170 | 170 |
This group contains map adaptors that are used to create "implicit" |
| 171 | 171 |
maps from other maps. |
| 172 | 172 |
|
| 173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
| 174 | 174 |
They can make arithmetic and logical operations between one or two maps |
| 175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
| 176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
| 177 | 177 |
|
| 178 | 178 |
The typical usage of this classes is passing implicit maps to |
| 179 | 179 |
algorithms. If a function type algorithm is called then the function |
| 180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
| 181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
| 182 | 182 |
\code |
| 183 | 183 |
Color nodeColor(int deg) {
|
| 184 | 184 |
if (deg >= 2) {
|
| 185 | 185 |
return Color(0.5, 0.0, 0.5); |
| 186 | 186 |
} else if (deg == 1) {
|
| 187 | 187 |
return Color(1.0, 0.5, 1.0); |
| 188 | 188 |
} else {
|
| 189 | 189 |
return Color(0.0, 0.0, 0.0); |
| 190 | 190 |
} |
| 191 | 191 |
} |
| 192 | 192 |
|
| 193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
| 194 | 194 |
|
| 195 | 195 |
graphToEps(graph, "graph.eps") |
| 196 | 196 |
.coords(coords).scaleToA4().undirected() |
| 197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
| 198 | 198 |
.run(); |
| 199 | 199 |
\endcode |
| 200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
| 201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
| 202 | 202 |
and the previously created map. The composed map is a proper function to |
| 203 | 203 |
get the color of each node. |
| 204 | 204 |
|
| 205 | 205 |
The usage with class type algorithms is little bit harder. In this |
| 206 | 206 |
case the function type map adaptors can not be used, because the |
| 207 | 207 |
function map adaptors give back temporary objects. |
| 208 | 208 |
\code |
| 209 | 209 |
Digraph graph; |
| 210 | 210 |
|
| 211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
| 212 | 212 |
DoubleArcMap length(graph); |
| 213 | 213 |
DoubleArcMap speed(graph); |
| 214 | 214 |
|
| 215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
| 216 | 216 |
TimeMap time(length, speed); |
| 217 | 217 |
|
| 218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
| 219 | 219 |
dijkstra.run(source, target); |
| 220 | 220 |
\endcode |
| 221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
| 222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
| 223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
| 224 | 224 |
class. We use the implicit minimum time map as the length map of the |
| 225 | 225 |
\c Dijkstra algorithm. |
| 226 | 226 |
*/ |
| 227 | 227 |
|
| 228 | 228 |
/** |
| 229 | 229 |
@defgroup paths Path Structures |
| 230 | 230 |
@ingroup datas |
| 231 | 231 |
\brief %Path structures implemented in LEMON. |
| 232 | 232 |
|
| 233 | 233 |
This group contains the path structures implemented in LEMON. |
| 234 | 234 |
|
| 235 | 235 |
LEMON provides flexible data structures to work with paths. |
| 236 | 236 |
All of them have similar interfaces and they can be copied easily with |
| 237 | 237 |
assignment operators and copy constructors. This makes it easy and |
| 238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 239 | 239 |
any kind of path structure. |
| 240 | 240 |
|
| 241 | 241 |
\sa \ref concepts::Path "Path concept" |
| 242 | 242 |
*/ |
| 243 | 243 |
|
| 244 | 244 |
/** |
| 245 | 245 |
@defgroup heaps Heap Structures |
| 246 | 246 |
@ingroup datas |
| 247 | 247 |
\brief %Heap structures implemented in LEMON. |
| 248 | 248 |
|
| 249 | 249 |
This group contains the heap structures implemented in LEMON. |
| 250 | 250 |
|
| 251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
| 252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
| 253 | 253 |
specified values called \e priorities in such a way that finding and |
| 254 | 254 |
removing the item with minimum priority are efficient. |
| 255 | 255 |
The basic operations are adding and erasing items, changing the priority |
| 256 | 256 |
of an item, etc. |
| 257 | 257 |
|
| 258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
| 259 | 259 |
The heap implementations have the same interface, thus any of them can be |
| 260 | 260 |
used easily in such algorithms. |
| 261 | 261 |
|
| 262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
| 263 | 263 |
*/ |
| 264 | 264 |
|
| 265 | 265 |
/** |
| 266 |
@defgroup matrices Matrices |
|
| 267 |
@ingroup datas |
|
| 268 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 269 |
|
|
| 270 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 271 |
*/ |
|
| 272 |
|
|
| 273 |
/** |
|
| 274 | 266 |
@defgroup auxdat Auxiliary Data Structures |
| 275 | 267 |
@ingroup datas |
| 276 | 268 |
\brief Auxiliary data structures implemented in LEMON. |
| 277 | 269 |
|
| 278 | 270 |
This group contains some data structures implemented in LEMON in |
| 279 | 271 |
order to make it easier to implement combinatorial algorithms. |
| 280 | 272 |
*/ |
| 281 | 273 |
|
| 282 | 274 |
/** |
| 283 | 275 |
@defgroup geomdat Geometric Data Structures |
| 284 | 276 |
@ingroup auxdat |
| 285 | 277 |
\brief Geometric data structures implemented in LEMON. |
| 286 | 278 |
|
| 287 | 279 |
This group contains geometric data structures implemented in LEMON. |
| 288 | 280 |
|
| 289 | 281 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
| 290 | 282 |
vector with the usual operations. |
| 291 | 283 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
| 292 | 284 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
| 293 | 285 |
"dim2::Point"'s. |
| 294 | 286 |
*/ |
| 295 | 287 |
|
| 296 | 288 |
/** |
| 297 | 289 |
@defgroup algs Algorithms |
| 298 | 290 |
\brief This group contains the several algorithms |
| 299 | 291 |
implemented in LEMON. |
| 300 | 292 |
|
| 301 | 293 |
This group contains the several algorithms |
| 302 | 294 |
implemented in LEMON. |
| 303 | 295 |
*/ |
| 304 | 296 |
|
| 305 | 297 |
/** |
| 306 | 298 |
@defgroup search Graph Search |
| 307 | 299 |
@ingroup algs |
| 308 | 300 |
\brief Common graph search algorithms. |
| 309 | 301 |
|
| 310 | 302 |
This group contains the common graph search algorithms, namely |
| 311 | 303 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
| 312 | 304 |
\ref clrs01algorithms. |
| 313 | 305 |
*/ |
| 314 | 306 |
|
| 315 | 307 |
/** |
| 316 | 308 |
@defgroup shortest_path Shortest Path Algorithms |
| 317 | 309 |
@ingroup algs |
| 318 | 310 |
\brief Algorithms for finding shortest paths. |
| 319 | 311 |
|
| 320 | 312 |
This group contains the algorithms for finding shortest paths in digraphs |
| 321 | 313 |
\ref clrs01algorithms. |
| 322 | 314 |
|
| 323 | 315 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 324 | 316 |
when all arc lengths are non-negative. |
| 325 | 317 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 326 | 318 |
from a source node when arc lenghts can be either positive or negative, |
| 327 | 319 |
but the digraph should not contain directed cycles with negative total |
| 328 | 320 |
length. |
| 329 | 321 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 330 | 322 |
arc-disjoint paths between two nodes having minimum total length. |
| 331 | 323 |
*/ |
| 332 | 324 |
|
| 333 | 325 |
/** |
| 334 | 326 |
@defgroup spantree Minimum Spanning Tree Algorithms |
| 335 | 327 |
@ingroup algs |
| 336 | 328 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
| 337 | 329 |
|
| 338 | 330 |
This group contains the algorithms for finding minimum cost spanning |
| 339 | 331 |
trees and arborescences \ref clrs01algorithms. |
| 340 | 332 |
*/ |
| 341 | 333 |
|
| 342 | 334 |
/** |
| 343 | 335 |
@defgroup max_flow Maximum Flow Algorithms |
| 344 | 336 |
@ingroup algs |
| 345 | 337 |
\brief Algorithms for finding maximum flows. |
| 346 | 338 |
|
| 347 | 339 |
This group contains the algorithms for finding maximum flows and |
| 348 | 340 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
| 349 | 341 |
|
| 350 | 342 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 351 | 343 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 352 | 344 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 353 | 345 |
\f$s, t \in V\f$ source and target nodes. |
| 354 | 346 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 355 | 347 |
following optimization problem. |
| 356 | 348 |
|
| 357 | 349 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 358 | 350 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 359 | 351 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 360 | 352 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 361 | 353 |
|
| 362 | 354 |
\ref Preflow is an efficient implementation of Goldberg-Tarjan's |
| 363 | 355 |
preflow push-relabel algorithm \ref goldberg88newapproach for finding |
| 364 | 356 |
maximum flows. It also provides functions to query the minimum cut, |
| 365 | 357 |
which is the dual problem of maximum flow. |
| 366 | 358 |
|
| 367 | 359 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 368 | 360 |
for finding feasible circulations, which is a somewhat different problem, |
| 369 | 361 |
but it is strongly related to maximum flow. |
| 370 | 362 |
For more information, see \ref Circulation. |
| 371 | 363 |
*/ |
| 372 | 364 |
|
| 373 | 365 |
/** |
| 374 | 366 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 375 | 367 |
@ingroup algs |
| 376 | 368 |
|
| 377 | 369 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 378 | 370 |
|
| 379 | 371 |
This group contains the algorithms for finding minimum cost flows and |
| 380 | 372 |
circulations \ref amo93networkflows. For more information about this |
| 381 | 373 |
problem and its dual solution, see \ref min_cost_flow |
| 382 | 374 |
"Minimum Cost Flow Problem". |
| 383 | 375 |
|
| 384 | 376 |
LEMON contains several algorithms for this problem. |
| 385 | 377 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 386 | 378 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
| 387 | 379 |
- \ref CostScaling Cost Scaling algorithm based on push/augment and |
| 388 | 380 |
relabel operations \ref goldberg90approximation, \ref goldberg97efficient, |
| 389 | 381 |
\ref bunnagel98efficient. |
| 390 | 382 |
- \ref CapacityScaling Capacity Scaling algorithm based on the successive |
| 391 | 383 |
shortest path method \ref edmondskarp72theoretical. |
| 392 | 384 |
- \ref CycleCanceling Cycle-Canceling algorithms, two of which are |
| 393 | 385 |
strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling. |
| 394 | 386 |
|
| 395 | 387 |
In general NetworkSimplex is the most efficient implementation, |
| 396 | 388 |
but in special cases other algorithms could be faster. |
| 397 | 389 |
For example, if the total supply and/or capacities are rather small, |
| 398 | 390 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 399 | 391 |
*/ |
| 400 | 392 |
|
| 401 | 393 |
/** |
| 402 | 394 |
@defgroup min_cut Minimum Cut Algorithms |
| 403 | 395 |
@ingroup algs |
| 404 | 396 |
|
| 405 | 397 |
\brief Algorithms for finding minimum cut in graphs. |
| 406 | 398 |
|
| 407 | 399 |
This group contains the algorithms for finding minimum cut in graphs. |
| 408 | 400 |
|
| 409 | 401 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 410 | 402 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 411 | 403 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 412 | 404 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 413 | 405 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 414 | 406 |
|
| 415 | 407 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 416 | 408 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
| 417 | 409 |
|
| 418 | 410 |
LEMON contains several algorithms related to minimum cut problems: |
| 419 | 411 |
|
| 420 | 412 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 421 | 413 |
in directed graphs. |
| 422 | 414 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 423 | 415 |
all-pairs minimum cut in undirected graphs. |
| 424 | 416 |
|
| 425 | 417 |
If you want to find minimum cut just between two distinict nodes, |
| 426 | 418 |
see the \ref max_flow "maximum flow problem". |
| 427 | 419 |
*/ |
| 428 | 420 |
|
| 429 | 421 |
/** |
| 430 | 422 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
| 431 | 423 |
@ingroup algs |
| 432 | 424 |
\brief Algorithms for finding minimum mean cycles. |
| 433 | 425 |
|
| 434 | 426 |
This group contains the algorithms for finding minimum mean cycles |
| 435 | 427 |
\ref clrs01algorithms, \ref amo93networkflows. |
| 436 | 428 |
|
| 437 | 429 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
| 438 | 430 |
of minimum mean length (cost) in a digraph. |
| 439 | 431 |
The mean length of a cycle is the average length of its arcs, i.e. the |
| 440 | 432 |
ratio between the total length of the cycle and the number of arcs on it. |
| 441 | 433 |
|
| 442 | 434 |
This problem has an important connection to \e conservative \e length |
| 443 | 435 |
\e functions, too. A length function on the arcs of a digraph is called |
| 444 | 436 |
conservative if and only if there is no directed cycle of negative total |
| 445 | 437 |
length. For an arbitrary length function, the negative of the minimum |
| 446 | 438 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
| 447 | 439 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
| 448 | 440 |
function. |
| 449 | 441 |
|
| 450 | 442 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
| 451 |
- \ref |
|
| 443 |
- \ref KarpMmc Karp's original algorithm \ref amo93networkflows, |
|
| 452 | 444 |
\ref dasdan98minmeancycle. |
| 453 |
- \ref |
|
| 445 |
- \ref HartmannOrlinMmc Hartmann-Orlin's algorithm, which is an improved |
|
| 454 | 446 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
| 455 |
- \ref |
|
| 447 |
- \ref HowardMmc Howard's policy iteration algorithm |
|
| 456 | 448 |
\ref dasdan98minmeancycle. |
| 457 | 449 |
|
| 458 |
In practice, the Howard algorithm proved to be by far the most efficient |
|
| 459 |
one, though the best known theoretical bound on its running time is |
|
| 460 |
exponential. |
|
| 461 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
|
| 462 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
|
| 463 |
applied early termination scheme. |
|
| 450 |
In practice, the \ref HowardMmc "Howard" algorithm proved to be by far the |
|
| 451 |
most efficient one, though the best known theoretical bound on its running |
|
| 452 |
time is exponential. |
|
| 453 |
Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms |
|
| 454 |
run in time O(ne) and use space O(n<sup>2</sup>+e), but the latter one is |
|
| 455 |
typically faster due to the applied early termination scheme. |
|
| 464 | 456 |
*/ |
| 465 | 457 |
|
| 466 | 458 |
/** |
| 467 | 459 |
@defgroup matching Matching Algorithms |
| 468 | 460 |
@ingroup algs |
| 469 | 461 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 470 | 462 |
|
| 471 | 463 |
This group contains the algorithms for calculating |
| 472 | 464 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 473 | 465 |
finding a subset of the edges for which each node has at most one incident |
| 474 | 466 |
edge. |
| 475 | 467 |
|
| 476 | 468 |
There are several different algorithms for calculate matchings in |
| 477 | 469 |
graphs. The matching problems in bipartite graphs are generally |
| 478 | 470 |
easier than in general graphs. The goal of the matching optimization |
| 479 | 471 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 480 | 472 |
matching. The search can be constrained to find perfect or |
| 481 | 473 |
maximum cardinality matching. |
| 482 | 474 |
|
| 483 | 475 |
The matching algorithms implemented in LEMON: |
| 484 | 476 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 485 | 477 |
maximum cardinality matching in general graphs. |
| 486 | 478 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 487 | 479 |
maximum weighted matching in general graphs. |
| 488 | 480 |
- \ref MaxWeightedPerfectMatching |
| 489 | 481 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 490 | 482 |
perfect matching in general graphs. |
| 491 | 483 |
- \ref MaxFractionalMatching Push-relabel algorithm for calculating |
| 492 | 484 |
maximum cardinality fractional matching in general graphs. |
| 493 | 485 |
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating |
| 494 | 486 |
maximum weighted fractional matching in general graphs. |
| 495 | 487 |
- \ref MaxWeightedPerfectFractionalMatching |
| 496 | 488 |
Augmenting path algorithm for calculating maximum weighted |
| 497 | 489 |
perfect fractional matching in general graphs. |
| 498 | 490 |
|
| 499 | 491 |
\image html matching.png |
| 500 | 492 |
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth |
| 501 | 493 |
*/ |
| 502 | 494 |
|
| 503 | 495 |
/** |
| 504 | 496 |
@defgroup graph_properties Connectivity and Other Graph Properties |
| 505 | 497 |
@ingroup algs |
| 506 | 498 |
\brief Algorithms for discovering the graph properties |
| 507 | 499 |
|
| 508 | 500 |
This group contains the algorithms for discovering the graph properties |
| 509 | 501 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 510 | 502 |
|
| 511 | 503 |
\image html connected_components.png |
| 512 | 504 |
\image latex connected_components.eps "Connected components" width=\textwidth |
| 513 | 505 |
*/ |
| 514 | 506 |
|
| 515 | 507 |
/** |
| 516 | 508 |
@defgroup planar Planarity Embedding and Drawing |
| 517 | 509 |
@ingroup algs |
| 518 | 510 |
\brief Algorithms for planarity checking, embedding and drawing |
| 519 | 511 |
|
| 520 | 512 |
This group contains the algorithms for planarity checking, |
| 521 | 513 |
embedding and drawing. |
| 522 | 514 |
|
| 523 | 515 |
\image html planar.png |
| 524 | 516 |
\image latex planar.eps "Plane graph" width=\textwidth |
| 525 | 517 |
*/ |
| 526 | 518 |
|
| 527 | 519 |
/** |
| 528 | 520 |
@defgroup auxalg Auxiliary Algorithms |
| 529 | 521 |
@ingroup algs |
| 530 | 522 |
\brief Auxiliary algorithms implemented in LEMON. |
| 531 | 523 |
|
| 532 | 524 |
This group contains some algorithms implemented in LEMON |
| 533 | 525 |
in order to make it easier to implement complex algorithms. |
| 534 | 526 |
*/ |
| 535 | 527 |
|
| 536 | 528 |
/** |
| 537 | 529 |
@defgroup gen_opt_group General Optimization Tools |
| 538 | 530 |
\brief This group contains some general optimization frameworks |
| 539 | 531 |
implemented in LEMON. |
| 540 | 532 |
|
| 541 | 533 |
This group contains some general optimization frameworks |
| 542 | 534 |
implemented in LEMON. |
| 543 | 535 |
*/ |
| 544 | 536 |
|
| 545 | 537 |
/** |
| 546 | 538 |
@defgroup lp_group LP and MIP Solvers |
| 547 | 539 |
@ingroup gen_opt_group |
| 548 | 540 |
\brief LP and MIP solver interfaces for LEMON. |
| 549 | 541 |
|
| 550 | 542 |
This group contains LP and MIP solver interfaces for LEMON. |
| 551 | 543 |
Various LP solvers could be used in the same manner with this |
| 552 | 544 |
high-level interface. |
| 553 | 545 |
|
| 554 | 546 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
| 555 | 547 |
\ref cplex, \ref soplex. |
| 556 | 548 |
*/ |
| 557 | 549 |
|
| 558 | 550 |
/** |
| 559 | 551 |
@defgroup utils Tools and Utilities |
| 560 | 552 |
\brief Tools and utilities for programming in LEMON |
| 561 | 553 |
|
| 562 | 554 |
Tools and utilities for programming in LEMON. |
| 563 | 555 |
*/ |
| 564 | 556 |
|
| 565 | 557 |
/** |
| 566 | 558 |
@defgroup gutils Basic Graph Utilities |
| 567 | 559 |
@ingroup utils |
| 568 | 560 |
\brief Simple basic graph utilities. |
| 569 | 561 |
|
| 570 | 562 |
This group contains some simple basic graph utilities. |
| 571 | 563 |
*/ |
| 572 | 564 |
|
| 573 | 565 |
/** |
| 574 | 566 |
@defgroup misc Miscellaneous Tools |
| 575 | 567 |
@ingroup utils |
| 576 | 568 |
\brief Tools for development, debugging and testing. |
| 577 | 569 |
|
| 578 | 570 |
This group contains several useful tools for development, |
| 579 | 571 |
debugging and testing. |
| 580 | 572 |
*/ |
| 581 | 573 |
|
| 582 | 574 |
/** |
| 583 | 575 |
@defgroup timecount Time Measuring and Counting |
| 584 | 576 |
@ingroup misc |
| 585 | 577 |
\brief Simple tools for measuring the performance of algorithms. |
| 586 | 578 |
|
| 587 | 579 |
This group contains simple tools for measuring the performance |
| 588 | 580 |
of algorithms. |
| 589 | 581 |
*/ |
| 590 | 582 |
|
| 591 | 583 |
/** |
| 592 | 584 |
@defgroup exceptions Exceptions |
| 593 | 585 |
@ingroup utils |
| 594 | 586 |
\brief Exceptions defined in LEMON. |
| 595 | 587 |
|
| 596 | 588 |
This group contains the exceptions defined in LEMON. |
| 597 | 589 |
*/ |
| 598 | 590 |
|
| 599 | 591 |
/** |
| 600 | 592 |
@defgroup io_group Input-Output |
| 601 | 593 |
\brief Graph Input-Output methods |
| 602 | 594 |
|
| 603 | 595 |
This group contains the tools for importing and exporting graphs |
| 604 | 596 |
and graph related data. Now it supports the \ref lgf-format |
| 605 | 597 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
| 606 | 598 |
postscript (EPS) format. |
| 607 | 599 |
*/ |
| 608 | 600 |
|
| 609 | 601 |
/** |
| 610 | 602 |
@defgroup lemon_io LEMON Graph Format |
| 611 | 603 |
@ingroup io_group |
| 612 | 604 |
\brief Reading and writing LEMON Graph Format. |
| 613 | 605 |
|
| 614 | 606 |
This group contains methods for reading and writing |
| 615 | 607 |
\ref lgf-format "LEMON Graph Format". |
| 616 | 608 |
*/ |
| 617 | 609 |
|
| 618 | 610 |
/** |
| 619 | 611 |
@defgroup eps_io Postscript Exporting |
| 620 | 612 |
@ingroup io_group |
| 621 | 613 |
\brief General \c EPS drawer and graph exporter |
| 622 | 614 |
|
| 623 | 615 |
This group contains general \c EPS drawing methods and special |
| 624 | 616 |
graph exporting tools. |
| 625 | 617 |
*/ |
| 626 | 618 |
|
| 627 | 619 |
/** |
| 628 | 620 |
@defgroup dimacs_group DIMACS Format |
| 629 | 621 |
@ingroup io_group |
| 630 | 622 |
\brief Read and write files in DIMACS format |
| 631 | 623 |
|
| 632 | 624 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 633 | 625 |
*/ |
| 634 | 626 |
|
| 635 | 627 |
/** |
| 636 | 628 |
@defgroup nauty_group NAUTY Format |
| 637 | 629 |
@ingroup io_group |
| 638 | 630 |
\brief Read \e Nauty format |
| 639 | 631 |
|
| 640 | 632 |
Tool to read graphs from \e Nauty format data. |
| 641 | 633 |
*/ |
| 642 | 634 |
|
| 643 | 635 |
/** |
| 644 | 636 |
@defgroup concept Concepts |
| 645 | 637 |
\brief Skeleton classes and concept checking classes |
| 646 | 638 |
|
| 647 | 639 |
This group contains the data/algorithm skeletons and concept checking |
| 648 | 640 |
classes implemented in LEMON. |
| 649 | 641 |
|
| 650 | 642 |
The purpose of the classes in this group is fourfold. |
| 651 | 643 |
|
| 652 | 644 |
- These classes contain the documentations of the %concepts. In order |
| 653 | 645 |
to avoid document multiplications, an implementation of a concept |
| 654 | 646 |
simply refers to the corresponding concept class. |
| 655 | 647 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2010 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ARG_PARSER_H |
| 20 | 20 |
#define LEMON_ARG_PARSER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <map> |
| 24 | 24 |
#include <list> |
| 25 | 25 |
#include <string> |
| 26 | 26 |
#include <iostream> |
| 27 | 27 |
#include <sstream> |
| 28 | 28 |
#include <algorithm> |
| 29 | 29 |
#include <lemon/assert.h> |
| 30 | 30 |
|
| 31 | 31 |
///\ingroup misc |
| 32 | 32 |
///\file |
| 33 | 33 |
///\brief A tool to parse command line arguments. |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
///Exception used by ArgParser |
| 38 |
|
|
| 39 |
///Exception used by ArgParser. |
|
| 40 |
/// |
|
| 38 | 41 |
class ArgParserException : public Exception {
|
| 39 | 42 |
public: |
| 43 |
/// Reasons for failure |
|
| 44 |
|
|
| 45 |
/// Reasons for failure. |
|
| 46 |
/// |
|
| 40 | 47 |
enum Reason {
|
| 41 |
HELP, /// <tt>--help</tt> option was given |
|
| 42 |
UNKNOWN_OPT, /// Unknown option was given |
|
| 43 |
|
|
| 48 |
HELP, ///< <tt>--help</tt> option was given. |
|
| 49 |
UNKNOWN_OPT, ///< Unknown option was given. |
|
| 50 |
INVALID_OPT ///< Invalid combination of options. |
|
| 44 | 51 |
}; |
| 45 | 52 |
|
| 46 | 53 |
private: |
| 47 | 54 |
Reason _reason; |
| 48 | 55 |
|
| 49 | 56 |
public: |
| 50 | 57 |
///Constructor |
| 51 | 58 |
ArgParserException(Reason r) throw() : _reason(r) {}
|
| 52 | 59 |
///Virtual destructor |
| 53 | 60 |
virtual ~ArgParserException() throw() {}
|
| 54 | 61 |
///A short description of the exception |
| 55 | 62 |
virtual const char* what() const throw() {
|
| 56 | 63 |
switch(_reason) |
| 57 | 64 |
{
|
| 58 | 65 |
case HELP: |
| 59 | 66 |
return "lemon::ArgParseException: ask for help"; |
| 60 | 67 |
break; |
| 61 | 68 |
case UNKNOWN_OPT: |
| 62 | 69 |
return "lemon::ArgParseException: unknown option"; |
| 63 | 70 |
break; |
| 64 | 71 |
case INVALID_OPT: |
| 65 | 72 |
return "lemon::ArgParseException: invalid combination of options"; |
| 66 | 73 |
break; |
| 67 | 74 |
} |
| 68 | 75 |
return ""; |
| 69 | 76 |
} |
| 70 | 77 |
///Return the reason for the failure |
| 71 | 78 |
Reason reason() const {return _reason; }
|
| 72 | 79 |
}; |
| 73 | 80 |
|
| 74 | 81 |
|
| 75 | 82 |
///Command line arguments parser |
| 76 | 83 |
|
| 77 | 84 |
///\ingroup misc |
| 78 | 85 |
///Command line arguments parser. |
| 79 | 86 |
/// |
| 80 | 87 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
| 81 | 88 |
class ArgParser {
|
| 82 | 89 |
|
| 83 | 90 |
static void _showHelp(void *p); |
| 84 | 91 |
protected: |
| 85 | 92 |
|
| 86 | 93 |
int _argc; |
| 87 | 94 |
const char * const *_argv; |
| 88 | 95 |
|
| 89 | 96 |
enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 };
|
| 90 | 97 |
|
| 91 | 98 |
class ParData {
|
| 92 | 99 |
public: |
| 93 | 100 |
union {
|
| 94 | 101 |
bool *bool_p; |
| 95 | 102 |
int *int_p; |
| 96 | 103 |
double *double_p; |
| 97 | 104 |
std::string *string_p; |
| 98 | 105 |
struct {
|
| 99 | 106 |
void (*p)(void *); |
| 100 | 107 |
void *data; |
| 101 | 108 |
} func_p; |
| 102 | 109 |
|
| 103 | 110 |
}; |
| 104 | 111 |
std::string help; |
| 105 | 112 |
bool mandatory; |
| 106 | 113 |
OptType type; |
| 107 | 114 |
bool set; |
| 108 | 115 |
bool ingroup; |
| 109 | 116 |
bool has_syn; |
| 110 | 117 |
bool syn; |
| 111 | 118 |
bool self_delete; |
| 112 | 119 |
ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false), |
| 113 | 120 |
has_syn(false), syn(false), self_delete(false) {}
|
| 114 | 121 |
}; |
| 115 | 122 |
|
| 116 | 123 |
typedef std::map<std::string,ParData> Opts; |
| 117 | 124 |
Opts _opts; |
| 118 | 125 |
|
| 119 | 126 |
class GroupData |
| 120 | 127 |
{
|
| 121 | 128 |
public: |
| 122 | 129 |
typedef std::list<std::string> Opts; |
| 123 | 130 |
Opts opts; |
| 124 | 131 |
bool only_one; |
| 125 | 132 |
bool mandatory; |
| 126 | 133 |
GroupData() :only_one(false), mandatory(false) {}
|
| 127 | 134 |
}; |
| 128 | 135 |
|
| 129 | 136 |
typedef std::map<std::string,GroupData> Groups; |
| 130 | 137 |
Groups _groups; |
| 131 | 138 |
|
| 132 | 139 |
struct OtherArg |
| 133 | 140 |
{
|
| 134 | 141 |
std::string name; |
| 135 | 142 |
std::string help; |
| 136 | 143 |
OtherArg(std::string n, std::string h) :name(n), help(h) {}
|
| 137 | 144 |
|
| 138 | 145 |
}; |
| 139 | 146 |
|
| 140 | 147 |
std::vector<OtherArg> _others_help; |
| 141 | 148 |
std::vector<std::string> _file_args; |
| 142 | 149 |
std::string _command_name; |
| 143 | 150 |
|
| 144 | 151 |
|
| 145 | 152 |
private: |
| 146 | 153 |
//Bind a function to an option. |
| 147 | 154 |
|
| 148 | 155 |
//\param name The name of the option. The leading '-' must be omitted. |
| 149 | 156 |
//\param help A help string. |
| 150 | 157 |
//\retval func The function to be called when the option is given. It |
| 151 | 158 |
// must be of type "void f(void *)" |
| 152 | 159 |
//\param data Data to be passed to \c func |
| 153 | 160 |
ArgParser &funcOption(const std::string &name, |
| 154 | 161 |
const std::string &help, |
| 155 | 162 |
void (*func)(void *),void *data); |
| 156 | 163 |
|
| 157 | 164 |
bool _exit_on_problems; |
| 158 | 165 |
|
| 159 | 166 |
void _terminate(ArgParserException::Reason reason) const; |
| 160 | 167 |
|
| 161 | 168 |
public: |
| 162 | 169 |
|
| 163 | 170 |
///Constructor |
| 164 | 171 |
ArgParser(int argc, const char * const *argv); |
| 165 | 172 |
|
| 166 | 173 |
~ArgParser(); |
| 167 | 174 |
|
| 168 | 175 |
///\name Options |
| 169 | 176 |
/// |
| 170 | 177 |
|
| 171 | 178 |
///@{
|
| 172 | 179 |
|
| 173 | 180 |
///Add a new integer type option |
| 174 | 181 |
|
| 175 | 182 |
///Add a new integer type option. |
| 176 | 183 |
///\param name The name of the option. The leading '-' must be omitted. |
| 177 | 184 |
///\param help A help string. |
| 178 | 185 |
///\param value A default value for the option. |
| 179 | 186 |
///\param obl Indicate if the option is mandatory. |
| 180 | 187 |
ArgParser &intOption(const std::string &name, |
| 181 | 188 |
const std::string &help, |
| 182 | 189 |
int value=0, bool obl=false); |
| 183 | 190 |
|
| 184 | 191 |
///Add a new floating point type option |
| 185 | 192 |
|
| 186 | 193 |
///Add a new floating point type option. |
| 187 | 194 |
///\param name The name of the option. The leading '-' must be omitted. |
| 188 | 195 |
///\param help A help string. |
| 189 | 196 |
///\param value A default value for the option. |
| 190 | 197 |
///\param obl Indicate if the option is mandatory. |
| 191 | 198 |
ArgParser &doubleOption(const std::string &name, |
| 192 | 199 |
const std::string &help, |
| 193 | 200 |
double value=0, bool obl=false); |
| 194 | 201 |
|
| 195 | 202 |
///Add a new bool type option |
| 196 | 203 |
|
| 197 | 204 |
///Add a new bool type option. |
| 198 | 205 |
///\param name The name of the option. The leading '-' must be omitted. |
| 199 | 206 |
///\param help A help string. |
| 200 | 207 |
///\param value A default value for the option. |
| 201 | 208 |
///\param obl Indicate if the option is mandatory. |
| 202 | 209 |
///\note A mandatory bool obtion is of very little use. |
| 203 | 210 |
ArgParser &boolOption(const std::string &name, |
| 204 | 211 |
const std::string &help, |
| 205 | 212 |
bool value=false, bool obl=false); |
| 206 | 213 |
|
| 207 | 214 |
///Add a new string type option |
| 208 | 215 |
|
| 209 | 216 |
///Add a new string type option. |
| 210 | 217 |
///\param name The name of the option. The leading '-' must be omitted. |
| 211 | 218 |
///\param help A help string. |
| 212 | 219 |
///\param value A default value for the option. |
| 213 | 220 |
///\param obl Indicate if the option is mandatory. |
| 214 | 221 |
ArgParser &stringOption(const std::string &name, |
| 215 | 222 |
const std::string &help, |
| 216 | 223 |
std::string value="", bool obl=false); |
| 217 | 224 |
|
| 218 | 225 |
///Give help string for non-parsed arguments. |
| 219 | 226 |
|
| 220 | 227 |
///With this function you can give help string for non-parsed arguments. |
| 221 | 228 |
///The parameter \c name will be printed in the short usage line, while |
| 222 | 229 |
///\c help gives a more detailed description. |
| 223 | 230 |
ArgParser &other(const std::string &name, |
| 224 | 231 |
const std::string &help=""); |
| 225 | 232 |
|
| 226 | 233 |
///@} |
| 227 | 234 |
|
| 228 | 235 |
///\name Options with External Storage |
| 229 | 236 |
///Using this functions, the value of the option will be directly written |
| 230 | 237 |
///into a variable once the option appears in the command line. |
| 231 | 238 |
|
| 232 | 239 |
///@{
|
| 233 | 240 |
|
| 234 | 241 |
///Add a new integer type option with a storage reference |
| 235 | 242 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2010 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
| 20 | 20 |
#define LEMON_BELLMAN_FORD_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup shortest_path |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Bellman-Ford algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 |
#include <lemon/tolerance.h> |
|
| 32 | 31 |
#include <lemon/path.h> |
| 33 | 32 |
|
| 34 | 33 |
#include <limits> |
| 35 | 34 |
|
| 36 | 35 |
namespace lemon {
|
| 37 | 36 |
|
| 38 |
/// \brief Default |
|
| 37 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
| 39 | 38 |
/// |
| 40 | 39 |
/// This operation traits class defines all computational operations |
| 41 | 40 |
/// and constants that are used in the Bellman-Ford algorithm. |
| 42 | 41 |
/// The default implementation is based on the \c numeric_limits class. |
| 43 | 42 |
/// If the numeric type does not have infinity value, then the maximum |
| 44 | 43 |
/// value is used as extremal infinity value. |
| 45 |
/// |
|
| 46 |
/// \see BellmanFordToleranceOperationTraits |
|
| 47 | 44 |
template < |
| 48 | 45 |
typename V, |
| 49 | 46 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
| 50 | 47 |
struct BellmanFordDefaultOperationTraits {
|
| 51 |
/// \ |
|
| 48 |
/// \e |
|
| 52 | 49 |
typedef V Value; |
| 53 | 50 |
/// \brief Gives back the zero value of the type. |
| 54 | 51 |
static Value zero() {
|
| 55 | 52 |
return static_cast<Value>(0); |
| 56 | 53 |
} |
| 57 | 54 |
/// \brief Gives back the positive infinity value of the type. |
| 58 | 55 |
static Value infinity() {
|
| 59 | 56 |
return std::numeric_limits<Value>::infinity(); |
| 60 | 57 |
} |
| 61 | 58 |
/// \brief Gives back the sum of the given two elements. |
| 62 | 59 |
static Value plus(const Value& left, const Value& right) {
|
| 63 | 60 |
return left + right; |
| 64 | 61 |
} |
| 65 | 62 |
/// \brief Gives back \c true only if the first value is less than |
| 66 | 63 |
/// the second. |
| 67 | 64 |
static bool less(const Value& left, const Value& right) {
|
| 68 | 65 |
return left < right; |
| 69 | 66 |
} |
| 70 | 67 |
}; |
| 71 | 68 |
|
| 72 | 69 |
template <typename V> |
| 73 | 70 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
| 74 | 71 |
typedef V Value; |
| 75 | 72 |
static Value zero() {
|
| 76 | 73 |
return static_cast<Value>(0); |
| 77 | 74 |
} |
| 78 | 75 |
static Value infinity() {
|
| 79 | 76 |
return std::numeric_limits<Value>::max(); |
| 80 | 77 |
} |
| 81 | 78 |
static Value plus(const Value& left, const Value& right) {
|
| 82 | 79 |
if (left == infinity() || right == infinity()) return infinity(); |
| 83 | 80 |
return left + right; |
| 84 | 81 |
} |
| 85 | 82 |
static bool less(const Value& left, const Value& right) {
|
| 86 | 83 |
return left < right; |
| 87 | 84 |
} |
| 88 | 85 |
}; |
| 89 | 86 |
|
| 90 |
/// \brief Operation traits for the BellmanFord algorithm class |
|
| 91 |
/// using tolerance. |
|
| 92 |
/// |
|
| 93 |
/// This operation traits class defines all computational operations |
|
| 94 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 95 |
/// The only difference between this implementation and |
|
| 96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
|
| 97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
|
| 98 |
/// function. |
|
| 99 |
/// |
|
| 100 |
/// \tparam V The value type. |
|
| 101 |
/// \tparam eps The epsilon value for the \ref less() function. |
|
| 102 |
/// By default, it is the epsilon value used by \ref Tolerance |
|
| 103 |
/// "Tolerance<V>". |
|
| 104 |
/// |
|
| 105 |
/// \see BellmanFordDefaultOperationTraits |
|
| 106 |
#ifdef DOXYGEN |
|
| 107 |
template <typename V, V eps> |
|
| 108 |
#else |
|
| 109 |
template < |
|
| 110 |
typename V, |
|
| 111 |
V eps = Tolerance<V>::def_epsilon> |
|
| 112 |
#endif |
|
| 113 |
struct BellmanFordToleranceOperationTraits {
|
|
| 114 |
/// \brief Value type for the algorithm. |
|
| 115 |
typedef V Value; |
|
| 116 |
/// \brief Gives back the zero value of the type. |
|
| 117 |
static Value zero() {
|
|
| 118 |
return static_cast<Value>(0); |
|
| 119 |
} |
|
| 120 |
/// \brief Gives back the positive infinity value of the type. |
|
| 121 |
static Value infinity() {
|
|
| 122 |
return std::numeric_limits<Value>::infinity(); |
|
| 123 |
} |
|
| 124 |
/// \brief Gives back the sum of the given two elements. |
|
| 125 |
static Value plus(const Value& left, const Value& right) {
|
|
| 126 |
return left + right; |
|
| 127 |
} |
|
| 128 |
/// \brief Gives back \c true only if the first value is less than |
|
| 129 |
/// the second. |
|
| 130 |
static bool less(const Value& left, const Value& right) {
|
|
| 131 |
return left + eps < right; |
|
| 132 |
} |
|
| 133 |
}; |
|
| 134 |
|
|
| 135 | 87 |
/// \brief Default traits class of BellmanFord class. |
| 136 | 88 |
/// |
| 137 | 89 |
/// Default traits class of BellmanFord class. |
| 138 | 90 |
/// \param GR The type of the digraph. |
| 139 | 91 |
/// \param LEN The type of the length map. |
| 140 | 92 |
template<typename GR, typename LEN> |
| 141 | 93 |
struct BellmanFordDefaultTraits {
|
| 142 | 94 |
/// The type of the digraph the algorithm runs on. |
| 143 | 95 |
typedef GR Digraph; |
| 144 | 96 |
|
| 145 | 97 |
/// \brief The type of the map that stores the arc lengths. |
| 146 | 98 |
/// |
| 147 | 99 |
/// The type of the map that stores the arc lengths. |
| 148 | 100 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 149 | 101 |
typedef LEN LengthMap; |
| 150 | 102 |
|
| 151 | 103 |
/// The type of the arc lengths. |
| 152 | 104 |
typedef typename LEN::Value Value; |
| 153 | 105 |
|
| 154 | 106 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 155 | 107 |
/// |
| 156 | 108 |
/// It defines the used operations and the infinity value for the |
| 157 | 109 |
/// given \c Value type. |
| 158 |
/// \see BellmanFordDefaultOperationTraits, |
|
| 159 |
/// BellmanFordToleranceOperationTraits |
|
| 110 |
/// \see BellmanFordDefaultOperationTraits |
|
| 160 | 111 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 161 | 112 |
|
| 162 | 113 |
/// \brief The type of the map that stores the last arcs of the |
| 163 | 114 |
/// shortest paths. |
| 164 | 115 |
/// |
| 165 | 116 |
/// The type of the map that stores the last |
| 166 | 117 |
/// arcs of the shortest paths. |
| 167 | 118 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 168 | 119 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 169 | 120 |
|
| 170 | 121 |
/// \brief Instantiates a \c PredMap. |
| 171 | 122 |
/// |
| 172 | 123 |
/// This function instantiates a \ref PredMap. |
| 173 | 124 |
/// \param g is the digraph to which we would like to define the |
| 174 | 125 |
/// \ref PredMap. |
| 175 | 126 |
static PredMap *createPredMap(const GR& g) {
|
| 176 | 127 |
return new PredMap(g); |
| 177 | 128 |
} |
| 178 | 129 |
|
| 179 | 130 |
/// \brief The type of the map that stores the distances of the nodes. |
| 180 | 131 |
/// |
| 181 | 132 |
/// The type of the map that stores the distances of the nodes. |
| 182 | 133 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 183 | 134 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
| 184 | 135 |
|
| 185 | 136 |
/// \brief Instantiates a \c DistMap. |
| 186 | 137 |
/// |
| 187 | 138 |
/// This function instantiates a \ref DistMap. |
| 188 | 139 |
/// \param g is the digraph to which we would like to define the |
| 189 | 140 |
/// \ref DistMap. |
| 190 | 141 |
static DistMap *createDistMap(const GR& g) {
|
| 191 | 142 |
return new DistMap(g); |
| 192 | 143 |
} |
| 193 | 144 |
|
| 194 | 145 |
}; |
| 195 | 146 |
|
| 196 | 147 |
/// \brief %BellmanFord algorithm class. |
| 197 | 148 |
/// |
| 198 | 149 |
/// \ingroup shortest_path |
| 199 | 150 |
/// This class provides an efficient implementation of the Bellman-Ford |
| 200 | 151 |
/// algorithm. The maximum time complexity of the algorithm is |
| 201 | 152 |
/// <tt>O(ne)</tt>. |
| 202 | 153 |
/// |
| 203 | 154 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
| 204 | 155 |
/// problem when the arcs can have negative lengths, but the digraph |
| 205 | 156 |
/// should not contain directed cycles with negative total length. |
| 206 | 157 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
| 207 | 158 |
/// algorithm instead, since it is more efficient. |
| 208 | 159 |
/// |
| 209 | 160 |
/// The arc lengths are passed to the algorithm using a |
| 210 | 161 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
| 211 | 162 |
/// kind of length. The type of the length values is determined by the |
| 212 | 163 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
| 213 | 164 |
/// |
| 214 | 165 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
| 215 | 166 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
| 216 | 167 |
/// it can be used easier. |
| 217 | 168 |
/// |
| 218 | 169 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 219 | 170 |
/// The default type is \ref ListDigraph. |
| 220 | 171 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 221 | 172 |
/// the lengths of the arcs. The default map type is |
| 222 | 173 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 223 | 174 |
/// \tparam TR The traits class that defines various types used by the |
| 224 | 175 |
/// algorithm. By default, it is \ref BellmanFordDefaultTraits |
| 225 | 176 |
/// "BellmanFordDefaultTraits<GR, LEN>". |
| 226 | 177 |
/// In most cases, this parameter should not be set directly, |
| 227 | 178 |
/// consider to use the named template parameters instead. |
| 228 | 179 |
#ifdef DOXYGEN |
| 229 | 180 |
template <typename GR, typename LEN, typename TR> |
| 230 | 181 |
#else |
| 231 | 182 |
template <typename GR=ListDigraph, |
| 232 | 183 |
typename LEN=typename GR::template ArcMap<int>, |
| 233 | 184 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
| 234 | 185 |
#endif |
| 235 | 186 |
class BellmanFord {
|
| 236 | 187 |
public: |
| 237 | 188 |
|
| 238 | 189 |
///The type of the underlying digraph. |
| 239 | 190 |
typedef typename TR::Digraph Digraph; |
| 240 | 191 |
|
| 241 | 192 |
/// \brief The type of the arc lengths. |
| 242 | 193 |
typedef typename TR::LengthMap::Value Value; |
| 243 | 194 |
/// \brief The type of the map that stores the arc lengths. |
| 244 | 195 |
typedef typename TR::LengthMap LengthMap; |
| 245 | 196 |
/// \brief The type of the map that stores the last |
| 246 | 197 |
/// arcs of the shortest paths. |
| 247 | 198 |
typedef typename TR::PredMap PredMap; |
| 248 | 199 |
/// \brief The type of the map that stores the distances of the nodes. |
| 249 | 200 |
typedef typename TR::DistMap DistMap; |
| 250 | 201 |
/// The type of the paths. |
| 251 | 202 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 252 | 203 |
///\brief The \ref BellmanFordDefaultOperationTraits |
| 253 | 204 |
/// "operation traits class" of the algorithm. |
| 254 | 205 |
typedef typename TR::OperationTraits OperationTraits; |
| 255 | 206 |
|
| 256 | 207 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
| 257 | 208 |
typedef TR Traits; |
| 258 | 209 |
|
| 259 | 210 |
private: |
| 260 | 211 |
|
| 261 | 212 |
typedef typename Digraph::Node Node; |
| 262 | 213 |
typedef typename Digraph::NodeIt NodeIt; |
| 263 | 214 |
typedef typename Digraph::Arc Arc; |
| 264 | 215 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 265 | 216 |
|
| 266 | 217 |
// Pointer to the underlying digraph. |
| 267 | 218 |
const Digraph *_gr; |
| 268 | 219 |
// Pointer to the length map |
| 269 | 220 |
const LengthMap *_length; |
| 270 | 221 |
// Pointer to the map of predecessors arcs. |
| 271 | 222 |
PredMap *_pred; |
| 272 | 223 |
// Indicates if _pred is locally allocated (true) or not. |
| 273 | 224 |
bool _local_pred; |
| 274 | 225 |
// Pointer to the map of distances. |
| 275 | 226 |
DistMap *_dist; |
| 276 | 227 |
// Indicates if _dist is locally allocated (true) or not. |
| 277 | 228 |
bool _local_dist; |
| 278 | 229 |
|
| 279 | 230 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
| 280 | 231 |
MaskMap *_mask; |
| 281 | 232 |
|
| 282 | 233 |
std::vector<Node> _process; |
| 283 | 234 |
|
| 284 | 235 |
// Creates the maps if necessary. |
| 285 | 236 |
void create_maps() {
|
| 286 | 237 |
if(!_pred) {
|
| 287 | 238 |
_local_pred = true; |
| 288 | 239 |
_pred = Traits::createPredMap(*_gr); |
| 289 | 240 |
} |
| 290 | 241 |
if(!_dist) {
|
| 291 | 242 |
_local_dist = true; |
| 292 | 243 |
_dist = Traits::createDistMap(*_gr); |
| 293 | 244 |
} |
| 294 | 245 |
if(!_mask) {
|
| 295 | 246 |
_mask = new MaskMap(*_gr); |
| 296 | 247 |
} |
| 297 | 248 |
} |
| 298 | 249 |
|
| 299 | 250 |
public : |
| 300 | 251 |
|
| 301 | 252 |
typedef BellmanFord Create; |
| 302 | 253 |
|
| 303 | 254 |
/// \name Named Template Parameters |
| 304 | 255 |
|
| 305 | 256 |
///@{
|
| 306 | 257 |
|
| 307 | 258 |
template <class T> |
| 308 | 259 |
struct SetPredMapTraits : public Traits {
|
| 309 | 260 |
typedef T PredMap; |
| 310 | 261 |
static PredMap *createPredMap(const Digraph&) {
|
| 311 | 262 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 312 | 263 |
return 0; // ignore warnings |
| 313 | 264 |
} |
| 314 | 265 |
}; |
| 315 | 266 |
|
| 316 | 267 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 317 | 268 |
/// \c PredMap type. |
| 318 | 269 |
/// |
| 319 | 270 |
/// \ref named-templ-param "Named parameter" for setting |
| 320 | 271 |
/// \c PredMap type. |
| 321 | 272 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 322 | 273 |
template <class T> |
| 323 | 274 |
struct SetPredMap |
| 324 | 275 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 325 | 276 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 326 | 277 |
}; |
| 327 | 278 |
|
| 328 | 279 |
template <class T> |
| 329 | 280 |
struct SetDistMapTraits : public Traits {
|
| 330 | 281 |
typedef T DistMap; |
| 331 | 282 |
static DistMap *createDistMap(const Digraph&) {
|
| 332 | 283 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 333 | 284 |
return 0; // ignore warnings |
| 334 | 285 |
} |
| 335 | 286 |
}; |
| 336 | 287 |
|
| 337 | 288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 338 | 289 |
/// \c DistMap type. |
| 339 | 290 |
/// |
| 340 | 291 |
/// \ref named-templ-param "Named parameter" for setting |
| 341 | 292 |
/// \c DistMap type. |
| 342 | 293 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 343 | 294 |
template <class T> |
| 344 | 295 |
struct SetDistMap |
| 345 | 296 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 346 | 297 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 347 | 298 |
}; |
| 348 | 299 |
|
| 349 | 300 |
template <class T> |
| 350 | 301 |
struct SetOperationTraitsTraits : public Traits {
|
| 351 | 302 |
typedef T OperationTraits; |
| ... | ... |
@@ -697,386 +648,385 @@ |
| 697 | 648 |
/// \brief Constructor. |
| 698 | 649 |
/// |
| 699 | 650 |
/// Constructor for getting the active nodes of the given BellmanFord |
| 700 | 651 |
/// instance. |
| 701 | 652 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| 702 | 653 |
{
|
| 703 | 654 |
_index = _algorithm->_process.size() - 1; |
| 704 | 655 |
} |
| 705 | 656 |
|
| 706 | 657 |
/// \brief Invalid constructor. |
| 707 | 658 |
/// |
| 708 | 659 |
/// Invalid constructor. |
| 709 | 660 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
| 710 | 661 |
|
| 711 | 662 |
/// \brief Conversion to \c Node. |
| 712 | 663 |
/// |
| 713 | 664 |
/// Conversion to \c Node. |
| 714 | 665 |
operator Node() const {
|
| 715 | 666 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| 716 | 667 |
} |
| 717 | 668 |
|
| 718 | 669 |
/// \brief Increment operator. |
| 719 | 670 |
/// |
| 720 | 671 |
/// Increment operator. |
| 721 | 672 |
ActiveIt& operator++() {
|
| 722 | 673 |
--_index; |
| 723 | 674 |
return *this; |
| 724 | 675 |
} |
| 725 | 676 |
|
| 726 | 677 |
bool operator==(const ActiveIt& it) const {
|
| 727 | 678 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
| 728 | 679 |
} |
| 729 | 680 |
bool operator!=(const ActiveIt& it) const {
|
| 730 | 681 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
| 731 | 682 |
} |
| 732 | 683 |
bool operator<(const ActiveIt& it) const {
|
| 733 | 684 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
| 734 | 685 |
} |
| 735 | 686 |
|
| 736 | 687 |
private: |
| 737 | 688 |
const BellmanFord* _algorithm; |
| 738 | 689 |
int _index; |
| 739 | 690 |
}; |
| 740 | 691 |
|
| 741 | 692 |
/// \name Query Functions |
| 742 | 693 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
| 743 | 694 |
/// functions.\n |
| 744 | 695 |
/// Either \ref run() or \ref init() should be called before using them. |
| 745 | 696 |
|
| 746 | 697 |
///@{
|
| 747 | 698 |
|
| 748 | 699 |
/// \brief The shortest path to the given node. |
| 749 | 700 |
/// |
| 750 | 701 |
/// Gives back the shortest path to the given node from the root(s). |
| 751 | 702 |
/// |
| 752 | 703 |
/// \warning \c t should be reached from the root(s). |
| 753 | 704 |
/// |
| 754 | 705 |
/// \pre Either \ref run() or \ref init() must be called before |
| 755 | 706 |
/// using this function. |
| 756 | 707 |
Path path(Node t) const |
| 757 | 708 |
{
|
| 758 | 709 |
return Path(*_gr, *_pred, t); |
| 759 | 710 |
} |
| 760 | 711 |
|
| 761 | 712 |
/// \brief The distance of the given node from the root(s). |
| 762 | 713 |
/// |
| 763 | 714 |
/// Returns the distance of the given node from the root(s). |
| 764 | 715 |
/// |
| 765 | 716 |
/// \warning If node \c v is not reached from the root(s), then |
| 766 | 717 |
/// the return value of this function is undefined. |
| 767 | 718 |
/// |
| 768 | 719 |
/// \pre Either \ref run() or \ref init() must be called before |
| 769 | 720 |
/// using this function. |
| 770 | 721 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 771 | 722 |
|
| 772 | 723 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
| 773 | 724 |
/// the given node. |
| 774 | 725 |
/// |
| 775 | 726 |
/// This function returns the 'previous arc' of the shortest path |
| 776 | 727 |
/// tree for node \c v, i.e. it returns the last arc of a |
| 777 | 728 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
| 778 | 729 |
/// is not reached from the root(s) or if \c v is a root. |
| 779 | 730 |
/// |
| 780 | 731 |
/// The shortest path tree used here is equal to the shortest path |
| 781 | 732 |
/// tree used in \ref predNode() and \ref predMap(). |
| 782 | 733 |
/// |
| 783 | 734 |
/// \pre Either \ref run() or \ref init() must be called before |
| 784 | 735 |
/// using this function. |
| 785 | 736 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 786 | 737 |
|
| 787 | 738 |
/// \brief Returns the 'previous node' of the shortest path tree for |
| 788 | 739 |
/// the given node. |
| 789 | 740 |
/// |
| 790 | 741 |
/// This function returns the 'previous node' of the shortest path |
| 791 | 742 |
/// tree for node \c v, i.e. it returns the last but one node of |
| 792 | 743 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
| 793 | 744 |
/// is not reached from the root(s) or if \c v is a root. |
| 794 | 745 |
/// |
| 795 | 746 |
/// The shortest path tree used here is equal to the shortest path |
| 796 | 747 |
/// tree used in \ref predArc() and \ref predMap(). |
| 797 | 748 |
/// |
| 798 | 749 |
/// \pre Either \ref run() or \ref init() must be called before |
| 799 | 750 |
/// using this function. |
| 800 | 751 |
Node predNode(Node v) const {
|
| 801 | 752 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
| 802 | 753 |
} |
| 803 | 754 |
|
| 804 | 755 |
/// \brief Returns a const reference to the node map that stores the |
| 805 | 756 |
/// distances of the nodes. |
| 806 | 757 |
/// |
| 807 | 758 |
/// Returns a const reference to the node map that stores the distances |
| 808 | 759 |
/// of the nodes calculated by the algorithm. |
| 809 | 760 |
/// |
| 810 | 761 |
/// \pre Either \ref run() or \ref init() must be called before |
| 811 | 762 |
/// using this function. |
| 812 | 763 |
const DistMap &distMap() const { return *_dist;}
|
| 813 | 764 |
|
| 814 | 765 |
/// \brief Returns a const reference to the node map that stores the |
| 815 | 766 |
/// predecessor arcs. |
| 816 | 767 |
/// |
| 817 | 768 |
/// Returns a const reference to the node map that stores the predecessor |
| 818 | 769 |
/// arcs, which form the shortest path tree (forest). |
| 819 | 770 |
/// |
| 820 | 771 |
/// \pre Either \ref run() or \ref init() must be called before |
| 821 | 772 |
/// using this function. |
| 822 | 773 |
const PredMap &predMap() const { return *_pred; }
|
| 823 | 774 |
|
| 824 | 775 |
/// \brief Checks if a node is reached from the root(s). |
| 825 | 776 |
/// |
| 826 | 777 |
/// Returns \c true if \c v is reached from the root(s). |
| 827 | 778 |
/// |
| 828 | 779 |
/// \pre Either \ref run() or \ref init() must be called before |
| 829 | 780 |
/// using this function. |
| 830 | 781 |
bool reached(Node v) const {
|
| 831 | 782 |
return (*_dist)[v] != OperationTraits::infinity(); |
| 832 | 783 |
} |
| 833 | 784 |
|
| 834 | 785 |
/// \brief Gives back a negative cycle. |
| 835 | 786 |
/// |
| 836 | 787 |
/// This function gives back a directed cycle with negative total |
| 837 | 788 |
/// length if the algorithm has already found one. |
| 838 | 789 |
/// Otherwise it gives back an empty path. |
| 839 | 790 |
lemon::Path<Digraph> negativeCycle() const {
|
| 840 | 791 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
| 841 | 792 |
lemon::Path<Digraph> cycle; |
| 842 | 793 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 843 | 794 |
if (state[_process[i]] != -1) continue; |
| 844 | 795 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
| 845 | 796 |
v = _gr->source((*_pred)[v])) {
|
| 846 | 797 |
if (state[v] == i) {
|
| 847 | 798 |
cycle.addFront((*_pred)[v]); |
| 848 | 799 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
| 849 | 800 |
u = _gr->source((*_pred)[u])) {
|
| 850 | 801 |
cycle.addFront((*_pred)[u]); |
| 851 | 802 |
} |
| 852 | 803 |
return cycle; |
| 853 | 804 |
} |
| 854 | 805 |
else if (state[v] >= 0) {
|
| 855 | 806 |
break; |
| 856 | 807 |
} |
| 857 | 808 |
state[v] = i; |
| 858 | 809 |
} |
| 859 | 810 |
} |
| 860 | 811 |
return cycle; |
| 861 | 812 |
} |
| 862 | 813 |
|
| 863 | 814 |
///@} |
| 864 | 815 |
}; |
| 865 | 816 |
|
| 866 | 817 |
/// \brief Default traits class of bellmanFord() function. |
| 867 | 818 |
/// |
| 868 | 819 |
/// Default traits class of bellmanFord() function. |
| 869 | 820 |
/// \tparam GR The type of the digraph. |
| 870 | 821 |
/// \tparam LEN The type of the length map. |
| 871 | 822 |
template <typename GR, typename LEN> |
| 872 | 823 |
struct BellmanFordWizardDefaultTraits {
|
| 873 | 824 |
/// The type of the digraph the algorithm runs on. |
| 874 | 825 |
typedef GR Digraph; |
| 875 | 826 |
|
| 876 | 827 |
/// \brief The type of the map that stores the arc lengths. |
| 877 | 828 |
/// |
| 878 | 829 |
/// The type of the map that stores the arc lengths. |
| 879 | 830 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 880 | 831 |
typedef LEN LengthMap; |
| 881 | 832 |
|
| 882 | 833 |
/// The type of the arc lengths. |
| 883 | 834 |
typedef typename LEN::Value Value; |
| 884 | 835 |
|
| 885 | 836 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 886 | 837 |
/// |
| 887 | 838 |
/// It defines the used operations and the infinity value for the |
| 888 | 839 |
/// given \c Value type. |
| 889 |
/// \see BellmanFordDefaultOperationTraits, |
|
| 890 |
/// BellmanFordToleranceOperationTraits |
|
| 840 |
/// \see BellmanFordDefaultOperationTraits |
|
| 891 | 841 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 892 | 842 |
|
| 893 | 843 |
/// \brief The type of the map that stores the last |
| 894 | 844 |
/// arcs of the shortest paths. |
| 895 | 845 |
/// |
| 896 | 846 |
/// The type of the map that stores the last arcs of the shortest paths. |
| 897 | 847 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 898 | 848 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 899 | 849 |
|
| 900 | 850 |
/// \brief Instantiates a \c PredMap. |
| 901 | 851 |
/// |
| 902 | 852 |
/// This function instantiates a \ref PredMap. |
| 903 | 853 |
/// \param g is the digraph to which we would like to define the |
| 904 | 854 |
/// \ref PredMap. |
| 905 | 855 |
static PredMap *createPredMap(const GR &g) {
|
| 906 | 856 |
return new PredMap(g); |
| 907 | 857 |
} |
| 908 | 858 |
|
| 909 | 859 |
/// \brief The type of the map that stores the distances of the nodes. |
| 910 | 860 |
/// |
| 911 | 861 |
/// The type of the map that stores the distances of the nodes. |
| 912 | 862 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 913 | 863 |
typedef typename GR::template NodeMap<Value> DistMap; |
| 914 | 864 |
|
| 915 | 865 |
/// \brief Instantiates a \c DistMap. |
| 916 | 866 |
/// |
| 917 | 867 |
/// This function instantiates a \ref DistMap. |
| 918 | 868 |
/// \param g is the digraph to which we would like to define the |
| 919 | 869 |
/// \ref DistMap. |
| 920 | 870 |
static DistMap *createDistMap(const GR &g) {
|
| 921 | 871 |
return new DistMap(g); |
| 922 | 872 |
} |
| 923 | 873 |
|
| 924 | 874 |
///The type of the shortest paths. |
| 925 | 875 |
|
| 926 | 876 |
///The type of the shortest paths. |
| 927 | 877 |
///It must meet the \ref concepts::Path "Path" concept. |
| 928 | 878 |
typedef lemon::Path<Digraph> Path; |
| 929 | 879 |
}; |
| 930 | 880 |
|
| 931 | 881 |
/// \brief Default traits class used by BellmanFordWizard. |
| 932 | 882 |
/// |
| 933 | 883 |
/// Default traits class used by BellmanFordWizard. |
| 934 | 884 |
/// \tparam GR The type of the digraph. |
| 935 | 885 |
/// \tparam LEN The type of the length map. |
| 936 | 886 |
template <typename GR, typename LEN> |
| 937 | 887 |
class BellmanFordWizardBase |
| 938 | 888 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
| 939 | 889 |
|
| 940 | 890 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
| 941 | 891 |
protected: |
| 942 | 892 |
// Type of the nodes in the digraph. |
| 943 | 893 |
typedef typename Base::Digraph::Node Node; |
| 944 | 894 |
|
| 945 | 895 |
// Pointer to the underlying digraph. |
| 946 | 896 |
void *_graph; |
| 947 | 897 |
// Pointer to the length map |
| 948 | 898 |
void *_length; |
| 949 | 899 |
// Pointer to the map of predecessors arcs. |
| 950 | 900 |
void *_pred; |
| 951 | 901 |
// Pointer to the map of distances. |
| 952 | 902 |
void *_dist; |
| 953 | 903 |
//Pointer to the shortest path to the target node. |
| 954 | 904 |
void *_path; |
| 955 | 905 |
//Pointer to the distance of the target node. |
| 956 | 906 |
void *_di; |
| 957 | 907 |
|
| 958 | 908 |
public: |
| 959 | 909 |
/// Constructor. |
| 960 | 910 |
|
| 961 | 911 |
/// This constructor does not require parameters, it initiates |
| 962 | 912 |
/// all of the attributes to default values \c 0. |
| 963 | 913 |
BellmanFordWizardBase() : |
| 964 | 914 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 965 | 915 |
|
| 966 | 916 |
/// Constructor. |
| 967 | 917 |
|
| 968 | 918 |
/// This constructor requires two parameters, |
| 969 | 919 |
/// others are initiated to \c 0. |
| 970 | 920 |
/// \param gr The digraph the algorithm runs on. |
| 971 | 921 |
/// \param len The length map. |
| 972 | 922 |
BellmanFordWizardBase(const GR& gr, |
| 973 | 923 |
const LEN& len) : |
| 974 | 924 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
| 975 | 925 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
| 976 | 926 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
| 977 | 927 |
|
| 978 | 928 |
}; |
| 979 | 929 |
|
| 980 | 930 |
/// \brief Auxiliary class for the function-type interface of the |
| 981 | 931 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 982 | 932 |
/// |
| 983 | 933 |
/// This auxiliary class is created to implement the |
| 984 | 934 |
/// \ref bellmanFord() "function-type interface" of the |
| 985 | 935 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 986 | 936 |
/// It does not have own \ref run() method, it uses the |
| 987 | 937 |
/// functions and features of the plain \ref BellmanFord. |
| 988 | 938 |
/// |
| 989 | 939 |
/// This class should only be used through the \ref bellmanFord() |
| 990 | 940 |
/// function, which makes it easier to use the algorithm. |
| 991 | 941 |
/// |
| 992 | 942 |
/// \tparam TR The traits class that defines various types used by the |
| 993 | 943 |
/// algorithm. |
| 994 | 944 |
template<class TR> |
| 995 | 945 |
class BellmanFordWizard : public TR {
|
| 996 | 946 |
typedef TR Base; |
| 997 | 947 |
|
| 998 | 948 |
typedef typename TR::Digraph Digraph; |
| 999 | 949 |
|
| 1000 | 950 |
typedef typename Digraph::Node Node; |
| 1001 | 951 |
typedef typename Digraph::NodeIt NodeIt; |
| 1002 | 952 |
typedef typename Digraph::Arc Arc; |
| 1003 | 953 |
typedef typename Digraph::OutArcIt ArcIt; |
| 1004 | 954 |
|
| 1005 | 955 |
typedef typename TR::LengthMap LengthMap; |
| 1006 | 956 |
typedef typename LengthMap::Value Value; |
| 1007 | 957 |
typedef typename TR::PredMap PredMap; |
| 1008 | 958 |
typedef typename TR::DistMap DistMap; |
| 1009 | 959 |
typedef typename TR::Path Path; |
| 1010 | 960 |
|
| 1011 | 961 |
public: |
| 1012 | 962 |
/// Constructor. |
| 1013 | 963 |
BellmanFordWizard() : TR() {}
|
| 1014 | 964 |
|
| 1015 | 965 |
/// \brief Constructor that requires parameters. |
| 1016 | 966 |
/// |
| 1017 | 967 |
/// Constructor that requires parameters. |
| 1018 | 968 |
/// These parameters will be the default values for the traits class. |
| 1019 | 969 |
/// \param gr The digraph the algorithm runs on. |
| 1020 | 970 |
/// \param len The length map. |
| 1021 | 971 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
| 1022 | 972 |
: TR(gr, len) {}
|
| 1023 | 973 |
|
| 1024 | 974 |
/// \brief Copy constructor |
| 1025 | 975 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
| 1026 | 976 |
|
| 1027 | 977 |
~BellmanFordWizard() {}
|
| 1028 | 978 |
|
| 1029 | 979 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
| 1030 | 980 |
/// |
| 1031 | 981 |
/// This method runs the Bellman-Ford algorithm from the given source |
| 1032 | 982 |
/// node in order to compute the shortest path to each node. |
| 1033 | 983 |
void run(Node s) {
|
| 1034 | 984 |
BellmanFord<Digraph,LengthMap,TR> |
| 1035 | 985 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 1036 | 986 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1037 | 987 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1038 | 988 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1039 | 989 |
bf.run(s); |
| 1040 | 990 |
} |
| 1041 | 991 |
|
| 1042 | 992 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
| 1043 | 993 |
/// between \c s and \c t. |
| 1044 | 994 |
/// |
| 1045 | 995 |
/// This method runs the Bellman-Ford algorithm from node \c s |
| 1046 | 996 |
/// in order to compute the shortest path to node \c t. |
| 1047 | 997 |
/// Actually, it computes the shortest path to each node, but using |
| 1048 | 998 |
/// this function you can retrieve the distance and the shortest path |
| 1049 | 999 |
/// for a single target node easier. |
| 1050 | 1000 |
/// |
| 1051 | 1001 |
/// \return \c true if \c t is reachable form \c s. |
| 1052 | 1002 |
bool run(Node s, Node t) {
|
| 1053 | 1003 |
BellmanFord<Digraph,LengthMap,TR> |
| 1054 | 1004 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 1055 | 1005 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1056 | 1006 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1057 | 1007 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1058 | 1008 |
bf.run(s); |
| 1059 | 1009 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
| 1060 | 1010 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
| 1061 | 1011 |
return bf.reached(t); |
| 1062 | 1012 |
} |
| 1063 | 1013 |
|
| 1064 | 1014 |
template<class T> |
| 1065 | 1015 |
struct SetPredMapBase : public Base {
|
| 1066 | 1016 |
typedef T PredMap; |
| 1067 | 1017 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1018 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1019 |
}; |
| 1070 | 1020 |
|
| 1071 | 1021 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1072 | 1022 |
/// the predecessor map. |
| 1073 | 1023 |
/// |
| 1074 | 1024 |
/// \ref named-templ-param "Named parameter" for setting |
| 1075 | 1025 |
/// the map that stores the predecessor arcs of the nodes. |
| 1076 | 1026 |
template<class T> |
| 1077 | 1027 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
| 1078 | 1028 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1029 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1030 |
} |
| 1081 | 1031 |
|
| 1082 | 1032 |
template<class T> |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2010 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_HARTMANN_ORLIN_MMC_H |
| 20 | 20 |
#define LEMON_HARTMANN_ORLIN_MMC_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_mean_cycle |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <lemon/core.h> |
| 30 | 30 |
#include <lemon/path.h> |
| 31 | 31 |
#include <lemon/tolerance.h> |
| 32 | 32 |
#include <lemon/connectivity.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief Default traits class of HartmannOrlinMmc class. |
| 37 | 37 |
/// |
| 38 | 38 |
/// Default traits class of HartmannOrlinMmc class. |
| 39 | 39 |
/// \tparam GR The type of the digraph. |
| 40 | 40 |
/// \tparam CM The type of the cost map. |
| 41 |
/// It must conform to the \ref concepts:: |
|
| 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 42 | 42 |
#ifdef DOXYGEN |
| 43 | 43 |
template <typename GR, typename CM> |
| 44 | 44 |
#else |
| 45 | 45 |
template <typename GR, typename CM, |
| 46 | 46 |
bool integer = std::numeric_limits<typename CM::Value>::is_integer> |
| 47 | 47 |
#endif |
| 48 | 48 |
struct HartmannOrlinMmcDefaultTraits |
| 49 | 49 |
{
|
| 50 | 50 |
/// The type of the digraph |
| 51 | 51 |
typedef GR Digraph; |
| 52 | 52 |
/// The type of the cost map |
| 53 | 53 |
typedef CM CostMap; |
| 54 | 54 |
/// The type of the arc costs |
| 55 | 55 |
typedef typename CostMap::Value Cost; |
| 56 | 56 |
|
| 57 | 57 |
/// \brief The large cost type used for internal computations |
| 58 | 58 |
/// |
| 59 | 59 |
/// The large cost type used for internal computations. |
| 60 | 60 |
/// It is \c long \c long if the \c Cost type is integer, |
| 61 | 61 |
/// otherwise it is \c double. |
| 62 | 62 |
/// \c Cost must be convertible to \c LargeCost. |
| 63 | 63 |
typedef double LargeCost; |
| 64 | 64 |
|
| 65 | 65 |
/// The tolerance type used for internal computations |
| 66 | 66 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
| 67 | 67 |
|
| 68 | 68 |
/// \brief The path type of the found cycles |
| 69 | 69 |
/// |
| 70 | 70 |
/// The path type of the found cycles. |
| 71 | 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
| 72 | 72 |
/// and it must have an \c addFront() function. |
| 73 | 73 |
typedef lemon::Path<Digraph> Path; |
| 74 | 74 |
}; |
| 75 | 75 |
|
| 76 | 76 |
// Default traits class for integer cost types |
| 77 | 77 |
template <typename GR, typename CM> |
| 78 | 78 |
struct HartmannOrlinMmcDefaultTraits<GR, CM, true> |
| 79 | 79 |
{
|
| 80 | 80 |
typedef GR Digraph; |
| 81 | 81 |
typedef CM CostMap; |
| 82 | 82 |
typedef typename CostMap::Value Cost; |
| 83 | 83 |
#ifdef LEMON_HAVE_LONG_LONG |
| 84 | 84 |
typedef long long LargeCost; |
| 85 | 85 |
#else |
| 86 | 86 |
typedef long LargeCost; |
| 87 | 87 |
#endif |
| 88 | 88 |
typedef lemon::Tolerance<LargeCost> Tolerance; |
| 89 | 89 |
typedef lemon::Path<Digraph> Path; |
| 90 | 90 |
}; |
| 91 | 91 |
|
| 92 | 92 |
|
| 93 | 93 |
/// \addtogroup min_mean_cycle |
| 94 | 94 |
/// @{
|
| 95 | 95 |
|
| 96 | 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
| 97 | 97 |
/// a minimum mean cycle. |
| 98 | 98 |
/// |
| 99 | 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
| 100 | 100 |
/// a directed cycle of minimum mean cost in a digraph |
| 101 | 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
| 102 |
/// It is an improved version of \ref |
|
| 102 |
/// It is an improved version of \ref KarpMmc "Karp"'s original algorithm, |
|
| 103 | 103 |
/// it applies an efficient early termination scheme. |
| 104 | 104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
| 105 | 105 |
/// |
| 106 | 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 107 | 107 |
/// \tparam CM The type of the cost map. The default |
| 108 | 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 109 | 109 |
/// \tparam TR The traits class that defines various types used by the |
| 110 | 110 |
/// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits |
| 111 | 111 |
/// "HartmannOrlinMmcDefaultTraits<GR, CM>". |
| 112 | 112 |
/// In most cases, this parameter should not be set directly, |
| 113 | 113 |
/// consider to use the named template parameters instead. |
| 114 | 114 |
#ifdef DOXYGEN |
| 115 | 115 |
template <typename GR, typename CM, typename TR> |
| 116 | 116 |
#else |
| 117 | 117 |
template < typename GR, |
| 118 | 118 |
typename CM = typename GR::template ArcMap<int>, |
| 119 | 119 |
typename TR = HartmannOrlinMmcDefaultTraits<GR, CM> > |
| 120 | 120 |
#endif |
| 121 | 121 |
class HartmannOrlinMmc |
| 122 | 122 |
{
|
| 123 | 123 |
public: |
| 124 | 124 |
|
| 125 | 125 |
/// The type of the digraph |
| 126 | 126 |
typedef typename TR::Digraph Digraph; |
| 127 | 127 |
/// The type of the cost map |
| 128 | 128 |
typedef typename TR::CostMap CostMap; |
| 129 | 129 |
/// The type of the arc costs |
| 130 | 130 |
typedef typename TR::Cost Cost; |
| 131 | 131 |
|
| 132 | 132 |
/// \brief The large cost type |
| 133 | 133 |
/// |
| 134 | 134 |
/// The large cost type used for internal computations. |
| 135 | 135 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
| 136 | 136 |
/// otherwise it is \c double. |
| 137 | 137 |
typedef typename TR::LargeCost LargeCost; |
| 138 | 138 |
|
| 139 | 139 |
/// The tolerance type |
| 140 | 140 |
typedef typename TR::Tolerance Tolerance; |
| 141 | 141 |
|
| 142 | 142 |
/// \brief The path type of the found cycles |
| 143 | 143 |
/// |
| 144 | 144 |
/// The path type of the found cycles. |
| 145 | 145 |
/// Using the \ref HartmannOrlinMmcDefaultTraits "default traits class", |
| 146 | 146 |
/// it is \ref lemon::Path "Path<Digraph>". |
| 147 | 147 |
typedef typename TR::Path Path; |
| 148 | 148 |
|
| 149 | 149 |
/// The \ref HartmannOrlinMmcDefaultTraits "traits class" of the algorithm |
| 150 | 150 |
typedef TR Traits; |
| 151 | 151 |
|
| 152 | 152 |
private: |
| 153 | 153 |
|
| 154 | 154 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 155 | 155 |
|
| 156 | 156 |
// Data sturcture for path data |
| 157 | 157 |
struct PathData |
| 158 | 158 |
{
|
| 159 | 159 |
LargeCost dist; |
| 160 | 160 |
Arc pred; |
| 161 | 161 |
PathData(LargeCost d, Arc p = INVALID) : |
| 162 | 162 |
dist(d), pred(p) {}
|
| 163 | 163 |
}; |
| 164 | 164 |
|
| 165 | 165 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
| 166 | 166 |
PathDataNodeMap; |
| 167 | 167 |
|
| 168 | 168 |
private: |
| 169 | 169 |
|
| 170 | 170 |
// The digraph the algorithm runs on |
| 171 | 171 |
const Digraph &_gr; |
| 172 | 172 |
// The cost of the arcs |
| 173 | 173 |
const CostMap &_cost; |
| 174 | 174 |
|
| 175 | 175 |
// Data for storing the strongly connected components |
| 176 | 176 |
int _comp_num; |
| 177 | 177 |
typename Digraph::template NodeMap<int> _comp; |
| 178 | 178 |
std::vector<std::vector<Node> > _comp_nodes; |
| 179 | 179 |
std::vector<Node>* _nodes; |
| 180 | 180 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
| 181 | 181 |
|
| 182 | 182 |
// Data for the found cycles |
| 183 | 183 |
bool _curr_found, _best_found; |
| 184 | 184 |
LargeCost _curr_cost, _best_cost; |
| 185 | 185 |
int _curr_size, _best_size; |
| 186 | 186 |
Node _curr_node, _best_node; |
| 187 | 187 |
int _curr_level, _best_level; |
| 188 | 188 |
|
| 189 | 189 |
Path *_cycle_path; |
| 190 | 190 |
bool _local_path; |
| 191 | 191 |
|
| 192 | 192 |
// Node map for storing path data |
| 193 | 193 |
PathDataNodeMap _data; |
| 194 | 194 |
// The processed nodes in the last round |
| 195 | 195 |
std::vector<Node> _process; |
| 196 | 196 |
|
| 197 | 197 |
Tolerance _tolerance; |
| 198 | 198 |
|
| 199 | 199 |
// Infinite constant |
| 200 | 200 |
const LargeCost INF; |
| 201 | 201 |
|
| 202 | 202 |
public: |
| 203 | 203 |
|
| 204 | 204 |
/// \name Named Template Parameters |
| 205 | 205 |
/// @{
|
| 206 | 206 |
|
| 207 | 207 |
template <typename T> |
| 208 | 208 |
struct SetLargeCostTraits : public Traits {
|
| 209 | 209 |
typedef T LargeCost; |
| 210 | 210 |
typedef lemon::Tolerance<T> Tolerance; |
| 211 | 211 |
}; |
| 212 | 212 |
|
| 213 | 213 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 214 | 214 |
/// \c LargeCost type. |
| 215 | 215 |
/// |
| 216 | 216 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
| 217 | 217 |
/// type. It is used for internal computations in the algorithm. |
| 218 | 218 |
template <typename T> |
| 219 | 219 |
struct SetLargeCost |
| 220 | 220 |
: public HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > {
|
| 221 | 221 |
typedef HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > Create; |
| 222 | 222 |
}; |
| 223 | 223 |
|
| 224 | 224 |
template <typename T> |
| 225 | 225 |
struct SetPathTraits : public Traits {
|
| 226 | 226 |
typedef T Path; |
| 227 | 227 |
}; |
| 228 | 228 |
|
| 229 | 229 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 230 | 230 |
/// \c %Path type. |
| 231 | 231 |
/// |
| 232 | 232 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
| 233 | 233 |
/// type of the found cycles. |
| 234 | 234 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
| 235 | 235 |
/// and it must have an \c addFront() function. |
| 236 | 236 |
template <typename T> |
| 237 | 237 |
struct SetPath |
| 238 | 238 |
: public HartmannOrlinMmc<GR, CM, SetPathTraits<T> > {
|
| 239 | 239 |
typedef HartmannOrlinMmc<GR, CM, SetPathTraits<T> > Create; |
| 240 | 240 |
}; |
| 241 | 241 |
|
| 242 | 242 |
/// @} |
| 243 | 243 |
|
| 244 | 244 |
protected: |
| 245 | 245 |
|
| 246 | 246 |
HartmannOrlinMmc() {}
|
| 247 | 247 |
|
| 248 | 248 |
public: |
| 249 | 249 |
|
| 250 | 250 |
/// \brief Constructor. |
| 251 | 251 |
/// |
| 252 | 252 |
/// The constructor of the class. |
| 253 | 253 |
/// |
| 254 | 254 |
/// \param digraph The digraph the algorithm runs on. |
| 255 | 255 |
/// \param cost The costs of the arcs. |
| 256 | 256 |
HartmannOrlinMmc( const Digraph &digraph, |
| 257 | 257 |
const CostMap &cost ) : |
| 258 | 258 |
_gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph), |
| 259 | 259 |
_best_found(false), _best_cost(0), _best_size(1), |
| 260 | 260 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
| 261 | 261 |
INF(std::numeric_limits<LargeCost>::has_infinity ? |
| 262 | 262 |
std::numeric_limits<LargeCost>::infinity() : |
| 263 | 263 |
std::numeric_limits<LargeCost>::max()) |
| 264 | 264 |
{}
|
| 265 | 265 |
|
| 266 | 266 |
/// Destructor. |
| 267 | 267 |
~HartmannOrlinMmc() {
|
| 268 | 268 |
if (_local_path) delete _cycle_path; |
| 269 | 269 |
} |
| 270 | 270 |
|
| 271 | 271 |
/// \brief Set the path structure for storing the found cycle. |
| 272 | 272 |
/// |
| 273 | 273 |
/// This function sets an external path structure for storing the |
| 274 | 274 |
/// found cycle. |
| 275 | 275 |
/// |
| 276 | 276 |
/// If you don't call this function before calling \ref run() or |
| 277 | 277 |
/// \ref findCycleMean(), it will allocate a local \ref Path "path" |
| 278 | 278 |
/// structure. The destuctor deallocates this automatically |
| 279 | 279 |
/// allocated object, of course. |
| 280 | 280 |
/// |
| 281 | 281 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
| 282 | 282 |
/// "addFront()" function of the given path structure. |
| 283 | 283 |
/// |
| 284 | 284 |
/// \return <tt>(*this)</tt> |
| 285 | 285 |
HartmannOrlinMmc& cycle(Path &path) {
|
| 286 | 286 |
if (_local_path) {
|
| 287 | 287 |
delete _cycle_path; |
| 288 | 288 |
_local_path = false; |
| 289 | 289 |
} |
| 290 | 290 |
_cycle_path = &path; |
| 291 | 291 |
return *this; |
| 292 | 292 |
} |
| 293 | 293 |
|
| 294 | 294 |
/// \brief Set the tolerance used by the algorithm. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2010 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <lemon/concepts/digraph.h> |
| 20 | 20 |
#include <lemon/smart_graph.h> |
| 21 | 21 |
#include <lemon/list_graph.h> |
| 22 | 22 |
#include <lemon/lgf_reader.h> |
| 23 | 23 |
#include <lemon/bellman_ford.h> |
| 24 | 24 |
#include <lemon/path.h> |
| 25 | 25 |
|
| 26 | 26 |
#include "graph_test.h" |
| 27 | 27 |
#include "test_tools.h" |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
|
| 31 | 31 |
char test_lgf[] = |
| 32 | 32 |
"@nodes\n" |
| 33 | 33 |
"label\n" |
| 34 | 34 |
"0\n" |
| 35 | 35 |
"1\n" |
| 36 | 36 |
"2\n" |
| 37 | 37 |
"3\n" |
| 38 | 38 |
"4\n" |
| 39 | 39 |
"@arcs\n" |
| 40 | 40 |
" length\n" |
| 41 | 41 |
"0 1 3\n" |
| 42 | 42 |
"1 2 -3\n" |
| 43 | 43 |
"1 2 -5\n" |
| 44 | 44 |
"1 3 -2\n" |
| 45 | 45 |
"0 2 -1\n" |
| 46 | 46 |
"1 2 -4\n" |
| 47 | 47 |
"0 3 2\n" |
| 48 | 48 |
"4 2 -5\n" |
| 49 | 49 |
"2 3 1\n" |
| 50 | 50 |
"@attributes\n" |
| 51 | 51 |
"source 0\n" |
| 52 | 52 |
"target 3\n"; |
| 53 | 53 |
|
| 54 | 54 |
|
| 55 | 55 |
void checkBellmanFordCompile() |
| 56 | 56 |
{
|
| 57 | 57 |
typedef int Value; |
| 58 | 58 |
typedef concepts::Digraph Digraph; |
| 59 | 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
| 60 | 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
| 61 | 61 |
typedef Digraph::Node Node; |
| 62 | 62 |
typedef Digraph::Arc Arc; |
| 63 | 63 |
|
| 64 | 64 |
Digraph gr; |
| 65 | 65 |
Node s, t, n; |
| 66 | 66 |
Arc e; |
| 67 | 67 |
Value l; |
| 68 | 68 |
int k=3; |
| 69 | 69 |
bool b; |
| 70 | 70 |
BF::DistMap d(gr); |
| 71 | 71 |
BF::PredMap p(gr); |
| 72 | 72 |
LengthMap length; |
| 73 | 73 |
concepts::Path<Digraph> pp; |
| 74 | 74 |
|
| 75 | 75 |
{
|
| 76 | 76 |
BF bf_test(gr,length); |
| 77 | 77 |
const BF& const_bf_test = bf_test; |
| 78 | 78 |
|
| 79 | 79 |
bf_test.run(s); |
| 80 | 80 |
bf_test.run(s,k); |
| 81 | 81 |
|
| 82 | 82 |
bf_test.init(); |
| 83 | 83 |
bf_test.addSource(s); |
| 84 | 84 |
bf_test.addSource(s, 1); |
| 85 | 85 |
b = bf_test.processNextRound(); |
| 86 | 86 |
b = bf_test.processNextWeakRound(); |
| 87 | 87 |
|
| 88 | 88 |
bf_test.start(); |
| 89 | 89 |
bf_test.checkedStart(); |
| 90 | 90 |
bf_test.limitedStart(k); |
| 91 | 91 |
|
| 92 | 92 |
l = const_bf_test.dist(t); |
| 93 | 93 |
e = const_bf_test.predArc(t); |
| 94 | 94 |
s = const_bf_test.predNode(t); |
| 95 | 95 |
b = const_bf_test.reached(t); |
| 96 | 96 |
d = const_bf_test.distMap(); |
| 97 | 97 |
p = const_bf_test.predMap(); |
| 98 | 98 |
pp = const_bf_test.path(t); |
| 99 | 99 |
pp = const_bf_test.negativeCycle(); |
| 100 | 100 |
|
| 101 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
|
| 102 | 102 |
} |
| 103 | 103 |
{
|
| 104 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
| 105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
| 106 | 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
| 107 |
::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > |
|
| 108 | 107 |
::Create bf_test(gr,length); |
| 109 | 108 |
|
| 110 | 109 |
LengthMap length_map; |
| 111 | 110 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
| 112 | 111 |
concepts::ReadWriteMap<Node,Value> dist_map; |
| 113 | 112 |
|
| 114 | 113 |
bf_test |
| 115 | 114 |
.lengthMap(length_map) |
| 116 | 115 |
.predMap(pred_map) |
| 117 | 116 |
.distMap(dist_map); |
| 118 | 117 |
|
| 119 | 118 |
bf_test.run(s); |
| 120 | 119 |
bf_test.run(s,k); |
| 121 | 120 |
|
| 122 | 121 |
bf_test.init(); |
| 123 | 122 |
bf_test.addSource(s); |
| 124 | 123 |
bf_test.addSource(s, 1); |
| 125 | 124 |
b = bf_test.processNextRound(); |
| 126 | 125 |
b = bf_test.processNextWeakRound(); |
| 127 | 126 |
|
| 128 | 127 |
bf_test.start(); |
| 129 | 128 |
bf_test.checkedStart(); |
| 130 | 129 |
bf_test.limitedStart(k); |
| 131 | 130 |
|
| 132 | 131 |
l = bf_test.dist(t); |
| 133 | 132 |
e = bf_test.predArc(t); |
| 134 | 133 |
s = bf_test.predNode(t); |
| 135 | 134 |
b = bf_test.reached(t); |
| 136 | 135 |
pp = bf_test.path(t); |
| 137 | 136 |
pp = bf_test.negativeCycle(); |
| 138 | 137 |
} |
| 139 | 138 |
} |
| 140 | 139 |
|
| 141 | 140 |
void checkBellmanFordFunctionCompile() |
| 142 | 141 |
{
|
| 143 | 142 |
typedef int Value; |
| 144 | 143 |
typedef concepts::Digraph Digraph; |
| 145 | 144 |
typedef Digraph::Arc Arc; |
| 146 | 145 |
typedef Digraph::Node Node; |
| 147 | 146 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
| 148 | 147 |
|
| 149 | 148 |
Digraph g; |
| 150 | 149 |
bool b; |
| 151 | 150 |
bellmanFord(g,LengthMap()).run(Node()); |
| 152 | 151 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
| 153 | 152 |
bellmanFord(g,LengthMap()) |
| 154 | 153 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 155 | 154 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
| 156 | 155 |
.run(Node()); |
| 157 | 156 |
b=bellmanFord(g,LengthMap()) |
| 158 | 157 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
| 159 | 158 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
| 160 | 159 |
.path(concepts::Path<Digraph>()) |
| 161 | 160 |
.dist(Value()) |
| 162 | 161 |
.run(Node(),Node()); |
| 163 | 162 |
} |
| 164 | 163 |
|
| 165 | 164 |
|
| 166 | 165 |
template <typename Digraph, typename Value> |
| 167 | 166 |
void checkBellmanFord() {
|
| 168 | 167 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 169 | 168 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
| 170 | 169 |
|
| 171 | 170 |
Digraph gr; |
| 172 | 171 |
Node s, t; |
| 173 | 172 |
LengthMap length(gr); |
| 174 | 173 |
|
| 175 | 174 |
std::istringstream input(test_lgf); |
| 176 | 175 |
digraphReader(gr, input). |
| 177 | 176 |
arcMap("length", length).
|
| 178 | 177 |
node("source", s).
|
| 179 | 178 |
node("target", t).
|
| 180 | 179 |
run(); |
| 181 | 180 |
|
| 182 | 181 |
BellmanFord<Digraph, LengthMap> |
| 183 | 182 |
bf(gr, length); |
| 184 | 183 |
bf.run(s); |
| 185 | 184 |
Path<Digraph> p = bf.path(t); |
| 186 | 185 |
|
| 187 | 186 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
| 188 | 187 |
check(p.length() == 3, "path() found a wrong path."); |
| 189 | 188 |
check(checkPath(gr, p), "path() found a wrong path."); |
| 190 | 189 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
| 191 | 190 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
| 192 | 191 |
|
| 193 | 192 |
ListPath<Digraph> path; |
| 194 | 193 |
Value dist; |
| 195 | 194 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
| 196 | 195 |
|
| 197 | 196 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
| 198 | 197 |
check(path.length() == 3, "path() found a wrong path."); |
| 199 | 198 |
check(checkPath(gr, path), "path() found a wrong path."); |
| 200 | 199 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
| 201 | 200 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
| 202 | 201 |
|
| 203 | 202 |
for(ArcIt e(gr); e!=INVALID; ++e) {
|
| 204 | 203 |
Node u=gr.source(e); |
| 205 | 204 |
Node v=gr.target(e); |
| 206 | 205 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
| 207 | 206 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
| 208 | 207 |
bf.dist(v) - bf.dist(u) - length[e]); |
| 209 | 208 |
} |
| 210 | 209 |
|
| 211 | 210 |
for(NodeIt v(gr); v!=INVALID; ++v) {
|
| 212 | 211 |
if (bf.reached(v)) {
|
| 213 | 212 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
| 214 | 213 |
if (bf.predArc(v)!=INVALID ) {
|
| 215 | 214 |
Arc e=bf.predArc(v); |
| 216 | 215 |
Node u=gr.source(e); |
| 217 | 216 |
check(u==bf.predNode(v),"Wrong tree."); |
| 218 | 217 |
check(bf.dist(v) - bf.dist(u) == length[e], |
| 219 | 218 |
"Wrong distance! Difference: " << |
| 220 | 219 |
bf.dist(v) - bf.dist(u) - length[e]); |
| 221 | 220 |
} |
| 222 | 221 |
} |
| 223 | 222 |
} |
| 224 | 223 |
} |
| 225 | 224 |
|
| 226 | 225 |
void checkBellmanFordNegativeCycle() {
|
| 227 | 226 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
| 228 | 227 |
|
| 229 | 228 |
SmartDigraph gr; |
| 230 | 229 |
IntArcMap length(gr); |
| 231 | 230 |
|
| 232 | 231 |
Node n1 = gr.addNode(); |
| 233 | 232 |
Node n2 = gr.addNode(); |
| 234 | 233 |
Node n3 = gr.addNode(); |
| 235 | 234 |
Node n4 = gr.addNode(); |
| 236 | 235 |
|
| 237 | 236 |
Arc a1 = gr.addArc(n1, n2); |
| 238 | 237 |
Arc a2 = gr.addArc(n2, n2); |
| 239 | 238 |
|
| 240 | 239 |
length[a1] = 2; |
| 241 | 240 |
length[a2] = -1; |
| 242 | 241 |
|
| 243 | 242 |
{
|
| 244 | 243 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
| 245 | 244 |
bf.run(n1); |
| 246 | 245 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
| 247 | 246 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
| 248 | 247 |
"Wrong negative cycle."); |
| 249 | 248 |
} |
| 250 | 249 |
|
| 251 | 250 |
length[a2] = 0; |
| 252 | 251 |
|
| 253 | 252 |
{
|
| 254 | 253 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
| 255 | 254 |
bf.run(n1); |
| 256 | 255 |
check(bf.negativeCycle().empty(), |
| 257 | 256 |
"Negative cycle should not be found."); |
| 258 | 257 |
} |
| 259 | 258 |
|
| 260 | 259 |
length[gr.addArc(n1, n3)] = 5; |
| 261 | 260 |
length[gr.addArc(n4, n3)] = 1; |
| 262 | 261 |
length[gr.addArc(n2, n4)] = 2; |
| 263 | 262 |
length[gr.addArc(n3, n2)] = -4; |
| 264 | 263 |
|
| 265 | 264 |
{
|
| 266 | 265 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
| 267 | 266 |
bf.init(); |
| 268 | 267 |
bf.addSource(n1); |
| 269 | 268 |
for (int i = 0; i < 4; ++i) {
|
| 270 | 269 |
check(bf.negativeCycle().empty(), |
| 271 | 270 |
"Negative cycle should not be found."); |
| 272 | 271 |
bf.processNextRound(); |
| 273 | 272 |
} |
| 274 | 273 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
| 275 | 274 |
check(p.length() == 3, "Wrong negative cycle."); |
| 276 | 275 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
| 277 | 276 |
"Wrong negative cycle."); |
| 278 | 277 |
} |
| 279 | 278 |
} |
| 280 | 279 |
|
| 281 | 280 |
int main() {
|
| 282 | 281 |
checkBellmanFord<ListDigraph, int>(); |
| 283 | 282 |
checkBellmanFord<SmartDigraph, double>(); |
| 284 | 283 |
checkBellmanFordNegativeCycle(); |
| 285 | 284 |
return 0; |
| 286 | 285 |
} |
0 comments (0 inline)