0
19
0
92
74
37
28
18
36
7
2
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 | 33 |
#include <lemon/bits/map_extender.h> |
34 | 34 |
#include <lemon/tolerance.h> |
35 | 35 |
|
36 | 36 |
#include <algorithm> |
37 | 37 |
|
38 | 38 |
namespace lemon { |
39 | 39 |
|
40 | 40 |
#ifdef _MSC_VER |
41 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
42 | 42 |
#else |
43 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
44 | 44 |
#endif |
45 | 45 |
|
46 | 46 |
template<typename DGR> |
47 | 47 |
class DigraphAdaptorBase { |
48 | 48 |
public: |
49 | 49 |
typedef DGR Digraph; |
50 | 50 |
typedef DigraphAdaptorBase Adaptor; |
51 | 51 |
|
52 | 52 |
protected: |
53 | 53 |
DGR* _digraph; |
54 | 54 |
DigraphAdaptorBase() : _digraph(0) { } |
55 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; } |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { } |
59 | 59 |
|
60 | 60 |
typedef typename DGR::Node Node; |
61 | 61 |
typedef typename DGR::Arc Arc; |
62 | 62 |
|
63 | 63 |
void first(Node& i) const { _digraph->first(i); } |
64 | 64 |
void first(Arc& i) const { _digraph->first(i); } |
65 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } |
66 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } |
67 | 67 |
|
68 | 68 |
void next(Node& i) const { _digraph->next(i); } |
69 | 69 |
void next(Arc& i) const { _digraph->next(i); } |
70 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); } |
71 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); } |
72 | 72 |
|
73 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); } |
74 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); } |
75 | 75 |
|
76 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
77 | 77 |
int nodeNum() const { return _digraph->nodeNum(); } |
78 | 78 |
|
79 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
80 | 80 |
int arcNum() const { return _digraph->arcNum(); } |
81 | 81 |
|
82 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
83 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { |
84 | 84 |
return _digraph->findArc(u, v, prev); |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
Node addNode() { return _digraph->addNode(); } |
88 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } |
89 | 89 |
|
90 | 90 |
void erase(const Node& n) { _digraph->erase(n); } |
91 | 91 |
void erase(const Arc& a) { _digraph->erase(a); } |
92 | 92 |
|
93 | 93 |
void clear() { _digraph->clear(); } |
94 | 94 |
|
95 | 95 |
int id(const Node& n) const { return _digraph->id(n); } |
96 | 96 |
int id(const Arc& a) const { return _digraph->id(a); } |
97 | 97 |
|
98 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
99 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } |
100 | 100 |
|
101 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
102 | 102 |
int maxArcId() const { return _digraph->maxArcId(); } |
103 | 103 |
|
104 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
105 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
106 | 106 |
|
107 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
108 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } |
109 | 109 |
|
110 | 110 |
template <typename V> |
111 | 111 |
class NodeMap : public DGR::template NodeMap<V> { |
112 |
typedef typename DGR::template NodeMap<V> Parent; |
|
113 |
|
|
112 | 114 |
public: |
113 |
|
|
114 |
typedef typename DGR::template NodeMap<V> Parent; |
|
115 |
|
|
116 | 115 |
explicit NodeMap(const Adaptor& adaptor) |
117 | 116 |
: Parent(*adaptor._digraph) {} |
118 |
|
|
119 | 117 |
NodeMap(const Adaptor& adaptor, const V& value) |
120 | 118 |
: Parent(*adaptor._digraph, value) { } |
121 | 119 |
|
122 | 120 |
private: |
123 | 121 |
NodeMap& operator=(const NodeMap& cmap) { |
124 | 122 |
return operator=<NodeMap>(cmap); |
125 | 123 |
} |
126 | 124 |
|
127 | 125 |
template <typename CMap> |
128 | 126 |
NodeMap& operator=(const CMap& cmap) { |
129 | 127 |
Parent::operator=(cmap); |
130 | 128 |
return *this; |
131 | 129 |
} |
132 | 130 |
|
133 | 131 |
}; |
134 | 132 |
|
135 | 133 |
template <typename V> |
136 | 134 |
class ArcMap : public DGR::template ArcMap<V> { |
135 |
typedef typename DGR::template ArcMap<V> Parent; |
|
136 |
|
|
137 | 137 |
public: |
138 |
|
|
139 |
typedef typename DGR::template ArcMap<V> Parent; |
|
140 |
|
|
141 | 138 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
142 | 139 |
: Parent(*adaptor._digraph) {} |
143 |
|
|
144 | 140 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
145 | 141 |
: Parent(*adaptor._digraph, value) {} |
146 | 142 |
|
147 | 143 |
private: |
148 | 144 |
ArcMap& operator=(const ArcMap& cmap) { |
149 | 145 |
return operator=<ArcMap>(cmap); |
150 | 146 |
} |
151 | 147 |
|
152 | 148 |
template <typename CMap> |
153 | 149 |
ArcMap& operator=(const CMap& cmap) { |
154 | 150 |
Parent::operator=(cmap); |
155 | 151 |
return *this; |
156 | 152 |
} |
157 | 153 |
|
158 | 154 |
}; |
159 | 155 |
|
160 | 156 |
}; |
161 | 157 |
|
162 | 158 |
template<typename GR> |
163 | 159 |
class GraphAdaptorBase { |
164 | 160 |
public: |
165 | 161 |
typedef GR Graph; |
166 | 162 |
|
167 | 163 |
protected: |
168 | 164 |
GR* _graph; |
169 | 165 |
|
170 | 166 |
GraphAdaptorBase() : _graph(0) {} |
171 | 167 |
|
172 | 168 |
void initialize(GR& graph) { _graph = &graph; } |
173 | 169 |
|
174 | 170 |
public: |
175 | 171 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {} |
176 | 172 |
|
177 | 173 |
typedef typename GR::Node Node; |
178 | 174 |
typedef typename GR::Arc Arc; |
179 | 175 |
typedef typename GR::Edge Edge; |
180 | 176 |
|
181 | 177 |
void first(Node& i) const { _graph->first(i); } |
182 | 178 |
void first(Arc& i) const { _graph->first(i); } |
183 | 179 |
void first(Edge& i) const { _graph->first(i); } |
184 | 180 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } |
185 | 181 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } |
186 | 182 |
void firstInc(Edge &i, bool &d, const Node &n) const { |
187 | 183 |
_graph->firstInc(i, d, n); |
188 | 184 |
} |
189 | 185 |
|
190 | 186 |
void next(Node& i) const { _graph->next(i); } |
191 | 187 |
void next(Arc& i) const { _graph->next(i); } |
192 | 188 |
void next(Edge& i) const { _graph->next(i); } |
193 | 189 |
void nextIn(Arc& i) const { _graph->nextIn(i); } |
194 | 190 |
void nextOut(Arc& i) const { _graph->nextOut(i); } |
195 | 191 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } |
196 | 192 |
|
197 | 193 |
Node u(const Edge& e) const { return _graph->u(e); } |
198 | 194 |
Node v(const Edge& e) const { return _graph->v(e); } |
199 | 195 |
|
200 | 196 |
Node source(const Arc& a) const { return _graph->source(a); } |
201 | 197 |
Node target(const Arc& a) const { return _graph->target(a); } |
202 | 198 |
|
203 | 199 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
204 | 200 |
int nodeNum() const { return _graph->nodeNum(); } |
205 | 201 |
|
206 | 202 |
typedef ArcNumTagIndicator<Graph> ArcNumTag; |
207 | 203 |
int arcNum() const { return _graph->arcNum(); } |
208 | 204 |
|
209 | 205 |
typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
210 | 206 |
int edgeNum() const { return _graph->edgeNum(); } |
211 | 207 |
|
212 | 208 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
213 | 209 |
Arc findArc(const Node& u, const Node& v, |
214 | 210 |
const Arc& prev = INVALID) const { |
215 | 211 |
return _graph->findArc(u, v, prev); |
216 | 212 |
} |
217 | 213 |
|
218 | 214 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
219 | 215 |
Edge findEdge(const Node& u, const Node& v, |
220 | 216 |
const Edge& prev = INVALID) const { |
221 | 217 |
return _graph->findEdge(u, v, prev); |
222 | 218 |
} |
223 | 219 |
|
224 | 220 |
Node addNode() { return _graph->addNode(); } |
225 | 221 |
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } |
226 | 222 |
|
227 | 223 |
void erase(const Node& i) { _graph->erase(i); } |
228 | 224 |
void erase(const Edge& i) { _graph->erase(i); } |
229 | 225 |
|
230 | 226 |
void clear() { _graph->clear(); } |
231 | 227 |
|
232 | 228 |
bool direction(const Arc& a) const { return _graph->direction(a); } |
233 | 229 |
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } |
234 | 230 |
|
235 | 231 |
int id(const Node& v) const { return _graph->id(v); } |
236 | 232 |
int id(const Arc& a) const { return _graph->id(a); } |
237 | 233 |
int id(const Edge& e) const { return _graph->id(e); } |
238 | 234 |
|
239 | 235 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
240 | 236 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } |
241 | 237 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } |
242 | 238 |
|
243 | 239 |
int maxNodeId() const { return _graph->maxNodeId(); } |
244 | 240 |
int maxArcId() const { return _graph->maxArcId(); } |
245 | 241 |
int maxEdgeId() const { return _graph->maxEdgeId(); } |
246 | 242 |
|
247 | 243 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
248 | 244 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
249 | 245 |
|
250 | 246 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
251 | 247 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
252 | 248 |
|
253 | 249 |
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier; |
254 | 250 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } |
255 | 251 |
|
256 | 252 |
template <typename V> |
257 | 253 |
class NodeMap : public GR::template NodeMap<V> { |
254 |
typedef typename GR::template NodeMap<V> Parent; |
|
255 |
|
|
258 | 256 |
public: |
259 |
typedef typename GR::template NodeMap<V> Parent; |
|
260 | 257 |
explicit NodeMap(const GraphAdaptorBase<GR>& adapter) |
261 | 258 |
: Parent(*adapter._graph) {} |
262 | 259 |
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
263 | 260 |
: Parent(*adapter._graph, value) {} |
264 | 261 |
|
265 | 262 |
private: |
266 | 263 |
NodeMap& operator=(const NodeMap& cmap) { |
267 | 264 |
return operator=<NodeMap>(cmap); |
268 | 265 |
} |
269 | 266 |
|
270 | 267 |
template <typename CMap> |
271 | 268 |
NodeMap& operator=(const CMap& cmap) { |
272 | 269 |
Parent::operator=(cmap); |
273 | 270 |
return *this; |
274 | 271 |
} |
275 | 272 |
|
276 | 273 |
}; |
277 | 274 |
|
278 | 275 |
template <typename V> |
279 | 276 |
class ArcMap : public GR::template ArcMap<V> { |
277 |
typedef typename GR::template ArcMap<V> Parent; |
|
278 |
|
|
280 | 279 |
public: |
281 |
typedef typename GR::template ArcMap<V> Parent; |
|
282 | 280 |
explicit ArcMap(const GraphAdaptorBase<GR>& adapter) |
283 | 281 |
: Parent(*adapter._graph) {} |
284 | 282 |
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
285 | 283 |
: Parent(*adapter._graph, value) {} |
286 | 284 |
|
287 | 285 |
private: |
288 | 286 |
ArcMap& operator=(const ArcMap& cmap) { |
289 | 287 |
return operator=<ArcMap>(cmap); |
290 | 288 |
} |
291 | 289 |
|
292 | 290 |
template <typename CMap> |
293 | 291 |
ArcMap& operator=(const CMap& cmap) { |
294 | 292 |
Parent::operator=(cmap); |
295 | 293 |
return *this; |
296 | 294 |
} |
297 | 295 |
}; |
298 | 296 |
|
299 | 297 |
template <typename V> |
300 | 298 |
class EdgeMap : public GR::template EdgeMap<V> { |
299 |
typedef typename GR::template EdgeMap<V> Parent; |
|
300 |
|
|
301 | 301 |
public: |
302 |
typedef typename GR::template EdgeMap<V> Parent; |
|
303 | 302 |
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter) |
304 | 303 |
: Parent(*adapter._graph) {} |
305 | 304 |
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
306 | 305 |
: Parent(*adapter._graph, value) {} |
307 | 306 |
|
308 | 307 |
private: |
309 | 308 |
EdgeMap& operator=(const EdgeMap& cmap) { |
310 | 309 |
return operator=<EdgeMap>(cmap); |
311 | 310 |
} |
312 | 311 |
|
313 | 312 |
template <typename CMap> |
314 | 313 |
EdgeMap& operator=(const CMap& cmap) { |
315 | 314 |
Parent::operator=(cmap); |
316 | 315 |
return *this; |
317 | 316 |
} |
318 | 317 |
}; |
319 | 318 |
|
320 | 319 |
}; |
321 | 320 |
|
322 | 321 |
template <typename DGR> |
323 | 322 |
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> { |
323 |
typedef DigraphAdaptorBase<DGR> Parent; |
|
324 | 324 |
public: |
325 | 325 |
typedef DGR Digraph; |
326 |
typedef DigraphAdaptorBase<DGR> Parent; |
|
327 | 326 |
protected: |
328 | 327 |
ReverseDigraphBase() : Parent() { } |
329 | 328 |
public: |
330 | 329 |
typedef typename Parent::Node Node; |
331 | 330 |
typedef typename Parent::Arc Arc; |
332 | 331 |
|
333 | 332 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } |
334 | 333 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } |
335 | 334 |
|
336 | 335 |
void nextIn(Arc& a) const { Parent::nextOut(a); } |
337 | 336 |
void nextOut(Arc& a) const { Parent::nextIn(a); } |
338 | 337 |
|
339 | 338 |
Node source(const Arc& a) const { return Parent::target(a); } |
340 | 339 |
Node target(const Arc& a) const { return Parent::source(a); } |
341 | 340 |
|
342 | 341 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } |
343 | 342 |
|
344 | 343 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
345 | 344 |
Arc findArc(const Node& u, const Node& v, |
346 | 345 |
const Arc& prev = INVALID) const { |
347 | 346 |
return Parent::findArc(v, u, prev); |
348 | 347 |
} |
349 | 348 |
|
350 | 349 |
}; |
351 | 350 |
|
352 | 351 |
/// \ingroup graph_adaptors |
353 | 352 |
/// |
354 | 353 |
/// \brief Adaptor class for reversing the orientation of the arcs in |
355 | 354 |
/// a digraph. |
356 | 355 |
/// |
357 | 356 |
/// ReverseDigraph can be used for reversing the arcs in a digraph. |
358 | 357 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
359 | 358 |
/// |
360 | 359 |
/// The adapted digraph can also be modified through this adaptor |
361 | 360 |
/// by adding or removing nodes or arcs, unless the \c GR template |
362 | 361 |
/// parameter is set to be \c const. |
363 | 362 |
/// |
364 | 363 |
/// \tparam DGR The type of the adapted digraph. |
365 | 364 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
366 | 365 |
/// It can also be specified to be \c const. |
367 | 366 |
/// |
368 | 367 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
369 | 368 |
/// digraph are convertible to each other. |
370 | 369 |
template<typename DGR> |
371 | 370 |
#ifdef DOXYGEN |
372 | 371 |
class ReverseDigraph { |
373 | 372 |
#else |
374 | 373 |
class ReverseDigraph : |
375 | 374 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > { |
376 | 375 |
#endif |
376 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
|
377 | 377 |
public: |
378 | 378 |
/// The type of the adapted digraph. |
379 | 379 |
typedef DGR Digraph; |
380 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
|
381 | 380 |
protected: |
382 | 381 |
ReverseDigraph() { } |
383 | 382 |
public: |
384 | 383 |
|
385 | 384 |
/// \brief Constructor |
386 | 385 |
/// |
387 | 386 |
/// Creates a reverse digraph adaptor for the given digraph. |
388 | 387 |
explicit ReverseDigraph(DGR& digraph) { |
389 | 388 |
Parent::initialize(digraph); |
390 | 389 |
} |
391 | 390 |
}; |
392 | 391 |
|
393 | 392 |
/// \brief Returns a read-only ReverseDigraph adaptor |
394 | 393 |
/// |
395 | 394 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
396 | 395 |
/// \ingroup graph_adaptors |
397 | 396 |
/// \relates ReverseDigraph |
398 | 397 |
template<typename DGR> |
399 | 398 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) { |
400 | 399 |
return ReverseDigraph<const DGR>(digraph); |
401 | 400 |
} |
402 | 401 |
|
403 | 402 |
|
404 | 403 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
405 | 404 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> { |
405 |
typedef DigraphAdaptorBase<DGR> Parent; |
|
406 | 406 |
public: |
407 | 407 |
typedef DGR Digraph; |
408 | 408 |
typedef NF NodeFilterMap; |
409 | 409 |
typedef AF ArcFilterMap; |
410 | 410 |
|
411 | 411 |
typedef SubDigraphBase Adaptor; |
412 |
typedef DigraphAdaptorBase<DGR> Parent; |
|
413 | 412 |
protected: |
414 | 413 |
NF* _node_filter; |
415 | 414 |
AF* _arc_filter; |
416 | 415 |
SubDigraphBase() |
417 | 416 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
418 | 417 |
|
419 | 418 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
420 | 419 |
Parent::initialize(digraph); |
421 | 420 |
_node_filter = &node_filter; |
422 | 421 |
_arc_filter = &arc_filter; |
423 | 422 |
} |
424 | 423 |
|
425 | 424 |
public: |
426 | 425 |
|
427 | 426 |
typedef typename Parent::Node Node; |
428 | 427 |
typedef typename Parent::Arc Arc; |
429 | 428 |
|
430 | 429 |
void first(Node& i) const { |
431 | 430 |
Parent::first(i); |
432 | 431 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
433 | 432 |
} |
434 | 433 |
|
435 | 434 |
void first(Arc& i) const { |
436 | 435 |
Parent::first(i); |
437 | 436 |
while (i != INVALID && (!(*_arc_filter)[i] |
438 | 437 |
|| !(*_node_filter)[Parent::source(i)] |
439 | 438 |
|| !(*_node_filter)[Parent::target(i)])) |
440 | 439 |
Parent::next(i); |
441 | 440 |
} |
442 | 441 |
|
443 | 442 |
void firstIn(Arc& i, const Node& n) const { |
444 | 443 |
Parent::firstIn(i, n); |
445 | 444 |
while (i != INVALID && (!(*_arc_filter)[i] |
446 | 445 |
|| !(*_node_filter)[Parent::source(i)])) |
447 | 446 |
Parent::nextIn(i); |
448 | 447 |
} |
449 | 448 |
|
450 | 449 |
void firstOut(Arc& i, const Node& n) const { |
451 | 450 |
Parent::firstOut(i, n); |
452 | 451 |
while (i != INVALID && (!(*_arc_filter)[i] |
453 | 452 |
|| !(*_node_filter)[Parent::target(i)])) |
454 | 453 |
Parent::nextOut(i); |
455 | 454 |
} |
456 | 455 |
|
457 | 456 |
void next(Node& i) const { |
458 | 457 |
Parent::next(i); |
459 | 458 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
460 | 459 |
} |
461 | 460 |
|
462 | 461 |
void next(Arc& i) const { |
463 | 462 |
Parent::next(i); |
464 | 463 |
while (i != INVALID && (!(*_arc_filter)[i] |
465 | 464 |
|| !(*_node_filter)[Parent::source(i)] |
466 | 465 |
|| !(*_node_filter)[Parent::target(i)])) |
467 | 466 |
Parent::next(i); |
468 | 467 |
} |
469 | 468 |
|
470 | 469 |
void nextIn(Arc& i) const { |
471 | 470 |
Parent::nextIn(i); |
472 | 471 |
while (i != INVALID && (!(*_arc_filter)[i] |
473 | 472 |
|| !(*_node_filter)[Parent::source(i)])) |
474 | 473 |
Parent::nextIn(i); |
475 | 474 |
} |
476 | 475 |
|
477 | 476 |
void nextOut(Arc& i) const { |
478 | 477 |
Parent::nextOut(i); |
479 | 478 |
while (i != INVALID && (!(*_arc_filter)[i] |
480 | 479 |
|| !(*_node_filter)[Parent::target(i)])) |
481 | 480 |
Parent::nextOut(i); |
482 | 481 |
} |
483 | 482 |
|
484 | 483 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
485 | 484 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
486 | 485 |
|
487 | 486 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
488 | 487 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
489 | 488 |
|
490 | 489 |
typedef False NodeNumTag; |
491 | 490 |
typedef False ArcNumTag; |
492 | 491 |
|
493 | 492 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
494 | 493 |
Arc findArc(const Node& source, const Node& target, |
495 | 494 |
const Arc& prev = INVALID) const { |
496 | 495 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
497 | 496 |
return INVALID; |
498 | 497 |
} |
499 | 498 |
Arc arc = Parent::findArc(source, target, prev); |
500 | 499 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
501 | 500 |
arc = Parent::findArc(source, target, arc); |
502 | 501 |
} |
503 | 502 |
return arc; |
504 | 503 |
} |
505 | 504 |
|
506 | 505 |
public: |
507 | 506 |
|
508 | 507 |
template <typename V> |
509 | 508 |
class NodeMap |
510 | 509 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
511 | 510 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
511 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
512 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
513 |
|
|
512 | 514 |
public: |
513 | 515 |
typedef V Value; |
514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
516 | 516 |
|
517 | 517 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
518 | 518 |
: Parent(adaptor) {} |
519 | 519 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
520 | 520 |
: Parent(adaptor, value) {} |
521 | 521 |
|
522 | 522 |
private: |
523 | 523 |
NodeMap& operator=(const NodeMap& cmap) { |
524 | 524 |
return operator=<NodeMap>(cmap); |
525 | 525 |
} |
526 | 526 |
|
527 | 527 |
template <typename CMap> |
528 | 528 |
NodeMap& operator=(const CMap& cmap) { |
529 | 529 |
Parent::operator=(cmap); |
530 | 530 |
return *this; |
531 | 531 |
} |
532 | 532 |
}; |
533 | 533 |
|
534 | 534 |
template <typename V> |
535 | 535 |
class ArcMap |
536 | 536 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
537 | 537 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
538 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
539 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
|
540 |
|
|
538 | 541 |
public: |
539 | 542 |
typedef V Value; |
540 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
541 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
|
542 | 543 |
|
543 | 544 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
544 | 545 |
: Parent(adaptor) {} |
545 | 546 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
546 | 547 |
: Parent(adaptor, value) {} |
547 | 548 |
|
548 | 549 |
private: |
549 | 550 |
ArcMap& operator=(const ArcMap& cmap) { |
550 | 551 |
return operator=<ArcMap>(cmap); |
551 | 552 |
} |
552 | 553 |
|
553 | 554 |
template <typename CMap> |
554 | 555 |
ArcMap& operator=(const CMap& cmap) { |
555 | 556 |
Parent::operator=(cmap); |
556 | 557 |
return *this; |
557 | 558 |
} |
558 | 559 |
}; |
559 | 560 |
|
560 | 561 |
}; |
561 | 562 |
|
562 | 563 |
template <typename DGR, typename NF, typename AF> |
563 | 564 |
class SubDigraphBase<DGR, NF, AF, false> |
564 | 565 |
: public DigraphAdaptorBase<DGR> { |
566 |
typedef DigraphAdaptorBase<DGR> Parent; |
|
565 | 567 |
public: |
566 | 568 |
typedef DGR Digraph; |
567 | 569 |
typedef NF NodeFilterMap; |
568 | 570 |
typedef AF ArcFilterMap; |
569 | 571 |
|
570 | 572 |
typedef SubDigraphBase Adaptor; |
571 |
typedef DigraphAdaptorBase<Digraph> Parent; |
|
572 | 573 |
protected: |
573 | 574 |
NF* _node_filter; |
574 | 575 |
AF* _arc_filter; |
575 | 576 |
SubDigraphBase() |
576 | 577 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
577 | 578 |
|
578 | 579 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
579 | 580 |
Parent::initialize(digraph); |
580 | 581 |
_node_filter = &node_filter; |
581 | 582 |
_arc_filter = &arc_filter; |
582 | 583 |
} |
583 | 584 |
|
584 | 585 |
public: |
585 | 586 |
|
586 | 587 |
typedef typename Parent::Node Node; |
587 | 588 |
typedef typename Parent::Arc Arc; |
588 | 589 |
|
589 | 590 |
void first(Node& i) const { |
590 | 591 |
Parent::first(i); |
591 | 592 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
592 | 593 |
} |
593 | 594 |
|
594 | 595 |
void first(Arc& i) const { |
595 | 596 |
Parent::first(i); |
596 | 597 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
597 | 598 |
} |
598 | 599 |
|
599 | 600 |
void firstIn(Arc& i, const Node& n) const { |
600 | 601 |
Parent::firstIn(i, n); |
601 | 602 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
602 | 603 |
} |
603 | 604 |
|
604 | 605 |
void firstOut(Arc& i, const Node& n) const { |
605 | 606 |
Parent::firstOut(i, n); |
606 | 607 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
607 | 608 |
} |
608 | 609 |
|
609 | 610 |
void next(Node& i) const { |
610 | 611 |
Parent::next(i); |
611 | 612 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
612 | 613 |
} |
613 | 614 |
void next(Arc& i) const { |
614 | 615 |
Parent::next(i); |
615 | 616 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); |
616 | 617 |
} |
617 | 618 |
void nextIn(Arc& i) const { |
618 | 619 |
Parent::nextIn(i); |
619 | 620 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); |
620 | 621 |
} |
621 | 622 |
|
622 | 623 |
void nextOut(Arc& i) const { |
623 | 624 |
Parent::nextOut(i); |
624 | 625 |
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); |
625 | 626 |
} |
626 | 627 |
|
627 | 628 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
628 | 629 |
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); } |
629 | 630 |
|
630 | 631 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
631 | 632 |
bool status(const Arc& a) const { return (*_arc_filter)[a]; } |
632 | 633 |
|
633 | 634 |
typedef False NodeNumTag; |
634 | 635 |
typedef False ArcNumTag; |
635 | 636 |
|
636 | 637 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
637 | 638 |
Arc findArc(const Node& source, const Node& target, |
638 | 639 |
const Arc& prev = INVALID) const { |
639 | 640 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
640 | 641 |
return INVALID; |
641 | 642 |
} |
642 | 643 |
Arc arc = Parent::findArc(source, target, prev); |
643 | 644 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
644 | 645 |
arc = Parent::findArc(source, target, arc); |
645 | 646 |
} |
646 | 647 |
return arc; |
647 | 648 |
} |
648 | 649 |
|
649 | 650 |
template <typename V> |
650 | 651 |
class NodeMap |
651 | 652 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
652 | 653 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
654 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
655 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
656 |
|
|
653 | 657 |
public: |
654 | 658 |
typedef V Value; |
655 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
657 | 659 |
|
658 | 660 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
659 | 661 |
: Parent(adaptor) {} |
660 | 662 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
661 | 663 |
: Parent(adaptor, value) {} |
662 | 664 |
|
663 | 665 |
private: |
664 | 666 |
NodeMap& operator=(const NodeMap& cmap) { |
665 | 667 |
return operator=<NodeMap>(cmap); |
666 | 668 |
} |
667 | 669 |
|
668 | 670 |
template <typename CMap> |
669 | 671 |
NodeMap& operator=(const CMap& cmap) { |
670 | 672 |
Parent::operator=(cmap); |
671 | 673 |
return *this; |
672 | 674 |
} |
673 | 675 |
}; |
674 | 676 |
|
675 | 677 |
template <typename V> |
676 | 678 |
class ArcMap |
677 | 679 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
678 | 680 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
681 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
682 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
|
683 |
|
|
679 | 684 |
public: |
680 | 685 |
typedef V Value; |
681 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
682 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
|
683 | 686 |
|
684 | 687 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
685 | 688 |
: Parent(adaptor) {} |
686 | 689 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
687 | 690 |
: Parent(adaptor, value) {} |
688 | 691 |
|
689 | 692 |
private: |
690 | 693 |
ArcMap& operator=(const ArcMap& cmap) { |
691 | 694 |
return operator=<ArcMap>(cmap); |
692 | 695 |
} |
693 | 696 |
|
694 | 697 |
template <typename CMap> |
695 | 698 |
ArcMap& operator=(const CMap& cmap) { |
696 | 699 |
Parent::operator=(cmap); |
697 | 700 |
return *this; |
698 | 701 |
} |
699 | 702 |
}; |
700 | 703 |
|
701 | 704 |
}; |
702 | 705 |
|
703 | 706 |
/// \ingroup graph_adaptors |
704 | 707 |
/// |
705 | 708 |
/// \brief Adaptor class for hiding nodes and arcs in a digraph |
706 | 709 |
/// |
707 | 710 |
/// SubDigraph can be used for hiding nodes and arcs in a digraph. |
708 | 711 |
/// A \c bool node map and a \c bool arc map must be specified, which |
709 | 712 |
/// define the filters for nodes and arcs. |
710 | 713 |
/// Only the nodes and arcs with \c true filter value are |
711 | 714 |
/// shown in the subdigraph. The arcs that are incident to hidden |
712 | 715 |
/// nodes are also filtered out. |
713 | 716 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
714 | 717 |
/// |
715 | 718 |
/// The adapted digraph can also be modified through this adaptor |
716 | 719 |
/// by adding or removing nodes or arcs, unless the \c GR template |
717 | 720 |
/// parameter is set to be \c const. |
718 | 721 |
/// |
719 | 722 |
/// \tparam DGR The type of the adapted digraph. |
720 | 723 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
721 | 724 |
/// It can also be specified to be \c const. |
722 | 725 |
/// \tparam NF The type of the node filter map. |
723 | 726 |
/// It must be a \c bool (or convertible) node map of the |
724 | 727 |
/// adapted digraph. The default type is |
725 | 728 |
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>". |
726 | 729 |
/// \tparam AF The type of the arc filter map. |
727 | 730 |
/// It must be \c bool (or convertible) arc map of the |
728 | 731 |
/// adapted digraph. The default type is |
729 | 732 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
730 | 733 |
/// |
731 | 734 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
732 | 735 |
/// digraph are convertible to each other. |
733 | 736 |
/// |
734 | 737 |
/// \see FilterNodes |
735 | 738 |
/// \see FilterArcs |
736 | 739 |
#ifdef DOXYGEN |
737 | 740 |
template<typename DGR, typename NF, typename AF> |
738 | 741 |
class SubDigraph { |
739 | 742 |
#else |
740 | 743 |
template<typename DGR, |
741 | 744 |
typename NF = typename DGR::template NodeMap<bool>, |
742 | 745 |
typename AF = typename DGR::template ArcMap<bool> > |
743 | 746 |
class SubDigraph : |
744 | 747 |
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > { |
745 | 748 |
#endif |
746 | 749 |
public: |
747 | 750 |
/// The type of the adapted digraph. |
748 | 751 |
typedef DGR Digraph; |
749 | 752 |
/// The type of the node filter map. |
750 | 753 |
typedef NF NodeFilterMap; |
751 | 754 |
/// The type of the arc filter map. |
752 | 755 |
typedef AF ArcFilterMap; |
753 | 756 |
|
754 | 757 |
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > |
755 | 758 |
Parent; |
756 | 759 |
|
757 | 760 |
typedef typename Parent::Node Node; |
758 | 761 |
typedef typename Parent::Arc Arc; |
759 | 762 |
|
760 | 763 |
protected: |
761 | 764 |
SubDigraph() { } |
762 | 765 |
public: |
763 | 766 |
|
764 | 767 |
/// \brief Constructor |
765 | 768 |
/// |
766 | 769 |
/// Creates a subdigraph for the given digraph with the |
767 | 770 |
/// given node and arc filter maps. |
768 | 771 |
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) { |
769 | 772 |
Parent::initialize(digraph, node_filter, arc_filter); |
770 | 773 |
} |
771 | 774 |
|
772 | 775 |
/// \brief Sets the status of the given node |
773 | 776 |
/// |
774 | 777 |
/// This function sets the status of the given node. |
775 | 778 |
/// It is done by simply setting the assigned value of \c n |
776 | 779 |
/// to \c v in the node filter map. |
777 | 780 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
778 | 781 |
|
779 | 782 |
/// \brief Sets the status of the given arc |
780 | 783 |
/// |
781 | 784 |
/// This function sets the status of the given arc. |
782 | 785 |
/// It is done by simply setting the assigned value of \c a |
783 | 786 |
/// to \c v in the arc filter map. |
784 | 787 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
785 | 788 |
|
786 | 789 |
/// \brief Returns the status of the given node |
787 | 790 |
/// |
788 | 791 |
/// This function returns the status of the given node. |
789 | 792 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
790 | 793 |
bool status(const Node& n) const { return Parent::status(n); } |
791 | 794 |
|
792 | 795 |
/// \brief Returns the status of the given arc |
793 | 796 |
/// |
794 | 797 |
/// This function returns the status of the given arc. |
795 | 798 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
796 | 799 |
bool status(const Arc& a) const { return Parent::status(a); } |
797 | 800 |
|
798 | 801 |
/// \brief Disables the given node |
799 | 802 |
/// |
800 | 803 |
/// This function disables the given node in the subdigraph, |
801 | 804 |
/// so the iteration jumps over it. |
802 | 805 |
/// It is the same as \ref status() "status(n, false)". |
803 | 806 |
void disable(const Node& n) const { Parent::status(n, false); } |
804 | 807 |
|
805 | 808 |
/// \brief Disables the given arc |
806 | 809 |
/// |
807 | 810 |
/// This function disables the given arc in the subdigraph, |
808 | 811 |
/// so the iteration jumps over it. |
809 | 812 |
/// It is the same as \ref status() "status(a, false)". |
810 | 813 |
void disable(const Arc& a) const { Parent::status(a, false); } |
811 | 814 |
|
812 | 815 |
/// \brief Enables the given node |
813 | 816 |
/// |
814 | 817 |
/// This function enables the given node in the subdigraph. |
815 | 818 |
/// It is the same as \ref status() "status(n, true)". |
816 | 819 |
void enable(const Node& n) const { Parent::status(n, true); } |
817 | 820 |
|
818 | 821 |
/// \brief Enables the given arc |
819 | 822 |
/// |
820 | 823 |
/// This function enables the given arc in the subdigraph. |
821 | 824 |
/// It is the same as \ref status() "status(a, true)". |
822 | 825 |
void enable(const Arc& a) const { Parent::status(a, true); } |
823 | 826 |
|
824 | 827 |
}; |
825 | 828 |
|
826 | 829 |
/// \brief Returns a read-only SubDigraph adaptor |
827 | 830 |
/// |
828 | 831 |
/// This function just returns a read-only \ref SubDigraph adaptor. |
829 | 832 |
/// \ingroup graph_adaptors |
830 | 833 |
/// \relates SubDigraph |
831 | 834 |
template<typename DGR, typename NF, typename AF> |
832 | 835 |
SubDigraph<const DGR, NF, AF> |
833 | 836 |
subDigraph(const DGR& digraph, |
834 | 837 |
NF& node_filter, AF& arc_filter) { |
835 | 838 |
return SubDigraph<const DGR, NF, AF> |
836 | 839 |
(digraph, node_filter, arc_filter); |
837 | 840 |
} |
838 | 841 |
|
839 | 842 |
template<typename DGR, typename NF, typename AF> |
840 | 843 |
SubDigraph<const DGR, const NF, AF> |
841 | 844 |
subDigraph(const DGR& digraph, |
842 | 845 |
const NF& node_filter, AF& arc_filter) { |
843 | 846 |
return SubDigraph<const DGR, const NF, AF> |
844 | 847 |
(digraph, node_filter, arc_filter); |
845 | 848 |
} |
846 | 849 |
|
847 | 850 |
template<typename DGR, typename NF, typename AF> |
848 | 851 |
SubDigraph<const DGR, NF, const AF> |
849 | 852 |
subDigraph(const DGR& digraph, |
850 | 853 |
NF& node_filter, const AF& arc_filter) { |
851 | 854 |
return SubDigraph<const DGR, NF, const AF> |
852 | 855 |
(digraph, node_filter, arc_filter); |
853 | 856 |
} |
854 | 857 |
|
855 | 858 |
template<typename DGR, typename NF, typename AF> |
856 | 859 |
SubDigraph<const DGR, const NF, const AF> |
857 | 860 |
subDigraph(const DGR& digraph, |
858 | 861 |
const NF& node_filter, const AF& arc_filter) { |
859 | 862 |
return SubDigraph<const DGR, const NF, const AF> |
860 | 863 |
(digraph, node_filter, arc_filter); |
861 | 864 |
} |
862 | 865 |
|
863 | 866 |
|
864 | 867 |
template <typename GR, typename NF, typename EF, bool ch = true> |
865 | 868 |
class SubGraphBase : public GraphAdaptorBase<GR> { |
869 |
typedef GraphAdaptorBase<GR> Parent; |
|
866 | 870 |
public: |
867 | 871 |
typedef GR Graph; |
868 | 872 |
typedef NF NodeFilterMap; |
869 | 873 |
typedef EF EdgeFilterMap; |
870 | 874 |
|
871 | 875 |
typedef SubGraphBase Adaptor; |
872 |
typedef GraphAdaptorBase<GR> Parent; |
|
873 | 876 |
protected: |
874 | 877 |
|
875 | 878 |
NF* _node_filter; |
876 | 879 |
EF* _edge_filter; |
877 | 880 |
|
878 | 881 |
SubGraphBase() |
879 | 882 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
880 | 883 |
|
881 | 884 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
882 | 885 |
Parent::initialize(graph); |
883 | 886 |
_node_filter = &node_filter; |
884 | 887 |
_edge_filter = &edge_filter; |
885 | 888 |
} |
886 | 889 |
|
887 | 890 |
public: |
888 | 891 |
|
889 | 892 |
typedef typename Parent::Node Node; |
890 | 893 |
typedef typename Parent::Arc Arc; |
891 | 894 |
typedef typename Parent::Edge Edge; |
892 | 895 |
|
893 | 896 |
void first(Node& i) const { |
894 | 897 |
Parent::first(i); |
895 | 898 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
896 | 899 |
} |
897 | 900 |
|
898 | 901 |
void first(Arc& i) const { |
899 | 902 |
Parent::first(i); |
900 | 903 |
while (i!=INVALID && (!(*_edge_filter)[i] |
901 | 904 |
|| !(*_node_filter)[Parent::source(i)] |
902 | 905 |
|| !(*_node_filter)[Parent::target(i)])) |
903 | 906 |
Parent::next(i); |
904 | 907 |
} |
905 | 908 |
|
906 | 909 |
void first(Edge& i) const { |
907 | 910 |
Parent::first(i); |
908 | 911 |
while (i!=INVALID && (!(*_edge_filter)[i] |
909 | 912 |
|| !(*_node_filter)[Parent::u(i)] |
910 | 913 |
|| !(*_node_filter)[Parent::v(i)])) |
911 | 914 |
Parent::next(i); |
912 | 915 |
} |
913 | 916 |
|
914 | 917 |
void firstIn(Arc& i, const Node& n) const { |
915 | 918 |
Parent::firstIn(i, n); |
916 | 919 |
while (i!=INVALID && (!(*_edge_filter)[i] |
917 | 920 |
|| !(*_node_filter)[Parent::source(i)])) |
918 | 921 |
Parent::nextIn(i); |
919 | 922 |
} |
920 | 923 |
|
921 | 924 |
void firstOut(Arc& i, const Node& n) const { |
922 | 925 |
Parent::firstOut(i, n); |
923 | 926 |
while (i!=INVALID && (!(*_edge_filter)[i] |
924 | 927 |
|| !(*_node_filter)[Parent::target(i)])) |
925 | 928 |
Parent::nextOut(i); |
926 | 929 |
} |
927 | 930 |
|
928 | 931 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
929 | 932 |
Parent::firstInc(i, d, n); |
930 | 933 |
while (i!=INVALID && (!(*_edge_filter)[i] |
931 | 934 |
|| !(*_node_filter)[Parent::u(i)] |
932 | 935 |
|| !(*_node_filter)[Parent::v(i)])) |
933 | 936 |
Parent::nextInc(i, d); |
934 | 937 |
} |
935 | 938 |
|
936 | 939 |
void next(Node& i) const { |
937 | 940 |
Parent::next(i); |
938 | 941 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
939 | 942 |
} |
940 | 943 |
|
941 | 944 |
void next(Arc& i) const { |
942 | 945 |
Parent::next(i); |
943 | 946 |
while (i!=INVALID && (!(*_edge_filter)[i] |
944 | 947 |
|| !(*_node_filter)[Parent::source(i)] |
945 | 948 |
|| !(*_node_filter)[Parent::target(i)])) |
946 | 949 |
Parent::next(i); |
947 | 950 |
} |
948 | 951 |
|
949 | 952 |
void next(Edge& i) const { |
950 | 953 |
Parent::next(i); |
951 | 954 |
while (i!=INVALID && (!(*_edge_filter)[i] |
952 | 955 |
|| !(*_node_filter)[Parent::u(i)] |
953 | 956 |
|| !(*_node_filter)[Parent::v(i)])) |
954 | 957 |
Parent::next(i); |
955 | 958 |
} |
956 | 959 |
|
957 | 960 |
void nextIn(Arc& i) const { |
958 | 961 |
Parent::nextIn(i); |
959 | 962 |
while (i!=INVALID && (!(*_edge_filter)[i] |
960 | 963 |
|| !(*_node_filter)[Parent::source(i)])) |
961 | 964 |
Parent::nextIn(i); |
962 | 965 |
} |
963 | 966 |
|
964 | 967 |
void nextOut(Arc& i) const { |
965 | 968 |
Parent::nextOut(i); |
966 | 969 |
while (i!=INVALID && (!(*_edge_filter)[i] |
967 | 970 |
|| !(*_node_filter)[Parent::target(i)])) |
968 | 971 |
Parent::nextOut(i); |
969 | 972 |
} |
970 | 973 |
|
971 | 974 |
void nextInc(Edge& i, bool& d) const { |
972 | 975 |
Parent::nextInc(i, d); |
973 | 976 |
while (i!=INVALID && (!(*_edge_filter)[i] |
974 | 977 |
|| !(*_node_filter)[Parent::u(i)] |
975 | 978 |
|| !(*_node_filter)[Parent::v(i)])) |
976 | 979 |
Parent::nextInc(i, d); |
977 | 980 |
} |
978 | 981 |
|
979 | 982 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
980 | 983 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
981 | 984 |
|
982 | 985 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
983 | 986 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
984 | 987 |
|
985 | 988 |
typedef False NodeNumTag; |
986 | 989 |
typedef False ArcNumTag; |
987 | 990 |
typedef False EdgeNumTag; |
988 | 991 |
|
989 | 992 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
990 | 993 |
Arc findArc(const Node& u, const Node& v, |
991 | 994 |
const Arc& prev = INVALID) const { |
992 | 995 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
993 | 996 |
return INVALID; |
994 | 997 |
} |
995 | 998 |
Arc arc = Parent::findArc(u, v, prev); |
996 | 999 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
997 | 1000 |
arc = Parent::findArc(u, v, arc); |
998 | 1001 |
} |
999 | 1002 |
return arc; |
1000 | 1003 |
} |
1001 | 1004 |
|
1002 | 1005 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1003 | 1006 |
Edge findEdge(const Node& u, const Node& v, |
1004 | 1007 |
const Edge& prev = INVALID) const { |
1005 | 1008 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1006 | 1009 |
return INVALID; |
1007 | 1010 |
} |
1008 | 1011 |
Edge edge = Parent::findEdge(u, v, prev); |
1009 | 1012 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1010 | 1013 |
edge = Parent::findEdge(u, v, edge); |
1011 | 1014 |
} |
1012 | 1015 |
return edge; |
1013 | 1016 |
} |
1014 | 1017 |
|
1015 | 1018 |
template <typename V> |
1016 | 1019 |
class NodeMap |
1017 | 1020 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1018 | 1021 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1022 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1023 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
|
1024 |
|
|
1019 | 1025 |
public: |
1020 | 1026 |
typedef V Value; |
1021 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1022 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
|
1023 | 1027 |
|
1024 | 1028 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1025 | 1029 |
: Parent(adaptor) {} |
1026 | 1030 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1027 | 1031 |
: Parent(adaptor, value) {} |
1028 | 1032 |
|
1029 | 1033 |
private: |
1030 | 1034 |
NodeMap& operator=(const NodeMap& cmap) { |
1031 | 1035 |
return operator=<NodeMap>(cmap); |
1032 | 1036 |
} |
1033 | 1037 |
|
1034 | 1038 |
template <typename CMap> |
1035 | 1039 |
NodeMap& operator=(const CMap& cmap) { |
1036 | 1040 |
Parent::operator=(cmap); |
1037 | 1041 |
return *this; |
1038 | 1042 |
} |
1039 | 1043 |
}; |
1040 | 1044 |
|
1041 | 1045 |
template <typename V> |
1042 | 1046 |
class ArcMap |
1043 | 1047 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1044 | 1048 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1049 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1050 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
|
1051 |
|
|
1045 | 1052 |
public: |
1046 | 1053 |
typedef V Value; |
1047 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1048 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
|
1049 | 1054 |
|
1050 | 1055 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1051 | 1056 |
: Parent(adaptor) {} |
1052 | 1057 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1053 | 1058 |
: Parent(adaptor, value) {} |
1054 | 1059 |
|
1055 | 1060 |
private: |
1056 | 1061 |
ArcMap& operator=(const ArcMap& cmap) { |
1057 | 1062 |
return operator=<ArcMap>(cmap); |
1058 | 1063 |
} |
1059 | 1064 |
|
1060 | 1065 |
template <typename CMap> |
1061 | 1066 |
ArcMap& operator=(const CMap& cmap) { |
1062 | 1067 |
Parent::operator=(cmap); |
1063 | 1068 |
return *this; |
1064 | 1069 |
} |
1065 | 1070 |
}; |
1066 | 1071 |
|
1067 | 1072 |
template <typename V> |
1068 | 1073 |
class EdgeMap |
1069 | 1074 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1070 | 1075 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1076 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1077 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1078 |
|
|
1071 | 1079 |
public: |
1072 | 1080 |
typedef V Value; |
1073 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1074 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1075 | 1081 |
|
1076 | 1082 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1077 | 1083 |
: Parent(adaptor) {} |
1078 | 1084 |
|
1079 | 1085 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1080 | 1086 |
: Parent(adaptor, value) {} |
1081 | 1087 |
|
1082 | 1088 |
private: |
1083 | 1089 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1084 | 1090 |
return operator=<EdgeMap>(cmap); |
1085 | 1091 |
} |
1086 | 1092 |
|
1087 | 1093 |
template <typename CMap> |
1088 | 1094 |
EdgeMap& operator=(const CMap& cmap) { |
1089 | 1095 |
Parent::operator=(cmap); |
1090 | 1096 |
return *this; |
1091 | 1097 |
} |
1092 | 1098 |
}; |
1093 | 1099 |
|
1094 | 1100 |
}; |
1095 | 1101 |
|
1096 | 1102 |
template <typename GR, typename NF, typename EF> |
1097 | 1103 |
class SubGraphBase<GR, NF, EF, false> |
1098 | 1104 |
: public GraphAdaptorBase<GR> { |
1105 |
typedef GraphAdaptorBase<GR> Parent; |
|
1099 | 1106 |
public: |
1100 | 1107 |
typedef GR Graph; |
1101 | 1108 |
typedef NF NodeFilterMap; |
1102 | 1109 |
typedef EF EdgeFilterMap; |
1103 | 1110 |
|
1104 | 1111 |
typedef SubGraphBase Adaptor; |
1105 |
typedef GraphAdaptorBase<GR> Parent; |
|
1106 | 1112 |
protected: |
1107 | 1113 |
NF* _node_filter; |
1108 | 1114 |
EF* _edge_filter; |
1109 | 1115 |
SubGraphBase() |
1110 | 1116 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
1111 | 1117 |
|
1112 | 1118 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
1113 | 1119 |
Parent::initialize(graph); |
1114 | 1120 |
_node_filter = &node_filter; |
1115 | 1121 |
_edge_filter = &edge_filter; |
1116 | 1122 |
} |
1117 | 1123 |
|
1118 | 1124 |
public: |
1119 | 1125 |
|
1120 | 1126 |
typedef typename Parent::Node Node; |
1121 | 1127 |
typedef typename Parent::Arc Arc; |
1122 | 1128 |
typedef typename Parent::Edge Edge; |
1123 | 1129 |
|
1124 | 1130 |
void first(Node& i) const { |
1125 | 1131 |
Parent::first(i); |
1126 | 1132 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1127 | 1133 |
} |
1128 | 1134 |
|
1129 | 1135 |
void first(Arc& i) const { |
1130 | 1136 |
Parent::first(i); |
1131 | 1137 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1132 | 1138 |
} |
1133 | 1139 |
|
1134 | 1140 |
void first(Edge& i) const { |
1135 | 1141 |
Parent::first(i); |
1136 | 1142 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1137 | 1143 |
} |
1138 | 1144 |
|
1139 | 1145 |
void firstIn(Arc& i, const Node& n) const { |
1140 | 1146 |
Parent::firstIn(i, n); |
1141 | 1147 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1142 | 1148 |
} |
1143 | 1149 |
|
1144 | 1150 |
void firstOut(Arc& i, const Node& n) const { |
1145 | 1151 |
Parent::firstOut(i, n); |
1146 | 1152 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1147 | 1153 |
} |
1148 | 1154 |
|
1149 | 1155 |
void firstInc(Edge& i, bool& d, const Node& n) const { |
1150 | 1156 |
Parent::firstInc(i, d, n); |
1151 | 1157 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1152 | 1158 |
} |
1153 | 1159 |
|
1154 | 1160 |
void next(Node& i) const { |
1155 | 1161 |
Parent::next(i); |
1156 | 1162 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
1157 | 1163 |
} |
1158 | 1164 |
void next(Arc& i) const { |
1159 | 1165 |
Parent::next(i); |
1160 | 1166 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1161 | 1167 |
} |
1162 | 1168 |
void next(Edge& i) const { |
1163 | 1169 |
Parent::next(i); |
1164 | 1170 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i); |
1165 | 1171 |
} |
1166 | 1172 |
void nextIn(Arc& i) const { |
1167 | 1173 |
Parent::nextIn(i); |
1168 | 1174 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i); |
1169 | 1175 |
} |
1170 | 1176 |
|
1171 | 1177 |
void nextOut(Arc& i) const { |
1172 | 1178 |
Parent::nextOut(i); |
1173 | 1179 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i); |
1174 | 1180 |
} |
1175 | 1181 |
void nextInc(Edge& i, bool& d) const { |
1176 | 1182 |
Parent::nextInc(i, d); |
1177 | 1183 |
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d); |
1178 | 1184 |
} |
1179 | 1185 |
|
1180 | 1186 |
void status(const Node& n, bool v) const { _node_filter->set(n, v); } |
1181 | 1187 |
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); } |
1182 | 1188 |
|
1183 | 1189 |
bool status(const Node& n) const { return (*_node_filter)[n]; } |
1184 | 1190 |
bool status(const Edge& e) const { return (*_edge_filter)[e]; } |
1185 | 1191 |
|
1186 | 1192 |
typedef False NodeNumTag; |
1187 | 1193 |
typedef False ArcNumTag; |
1188 | 1194 |
typedef False EdgeNumTag; |
1189 | 1195 |
|
1190 | 1196 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
1191 | 1197 |
Arc findArc(const Node& u, const Node& v, |
1192 | 1198 |
const Arc& prev = INVALID) const { |
1193 | 1199 |
Arc arc = Parent::findArc(u, v, prev); |
1194 | 1200 |
while (arc != INVALID && !(*_edge_filter)[arc]) { |
1195 | 1201 |
arc = Parent::findArc(u, v, arc); |
1196 | 1202 |
} |
1197 | 1203 |
return arc; |
1198 | 1204 |
} |
1199 | 1205 |
|
1200 | 1206 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1201 | 1207 |
Edge findEdge(const Node& u, const Node& v, |
1202 | 1208 |
const Edge& prev = INVALID) const { |
1203 | 1209 |
Edge edge = Parent::findEdge(u, v, prev); |
1204 | 1210 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1205 | 1211 |
edge = Parent::findEdge(u, v, edge); |
1206 | 1212 |
} |
1207 | 1213 |
return edge; |
1208 | 1214 |
} |
1209 | 1215 |
|
1210 | 1216 |
template <typename V> |
1211 | 1217 |
class NodeMap |
1212 | 1218 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1213 | 1219 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1220 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1221 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
|
1222 |
|
|
1214 | 1223 |
public: |
1215 | 1224 |
typedef V Value; |
1216 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1217 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
|
1218 | 1225 |
|
1219 | 1226 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1220 | 1227 |
: Parent(adaptor) {} |
1221 | 1228 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1222 | 1229 |
: Parent(adaptor, value) {} |
1223 | 1230 |
|
1224 | 1231 |
private: |
1225 | 1232 |
NodeMap& operator=(const NodeMap& cmap) { |
1226 | 1233 |
return operator=<NodeMap>(cmap); |
1227 | 1234 |
} |
1228 | 1235 |
|
1229 | 1236 |
template <typename CMap> |
1230 | 1237 |
NodeMap& operator=(const CMap& cmap) { |
1231 | 1238 |
Parent::operator=(cmap); |
1232 | 1239 |
return *this; |
1233 | 1240 |
} |
1234 | 1241 |
}; |
1235 | 1242 |
|
1236 | 1243 |
template <typename V> |
1237 | 1244 |
class ArcMap |
1238 | 1245 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1239 | 1246 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1247 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1248 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
|
1249 |
|
|
1240 | 1250 |
public: |
1241 | 1251 |
typedef V Value; |
1242 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1243 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
|
1244 | 1252 |
|
1245 | 1253 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1246 | 1254 |
: Parent(adaptor) {} |
1247 | 1255 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1248 | 1256 |
: Parent(adaptor, value) {} |
1249 | 1257 |
|
1250 | 1258 |
private: |
1251 | 1259 |
ArcMap& operator=(const ArcMap& cmap) { |
1252 | 1260 |
return operator=<ArcMap>(cmap); |
1253 | 1261 |
} |
1254 | 1262 |
|
1255 | 1263 |
template <typename CMap> |
1256 | 1264 |
ArcMap& operator=(const CMap& cmap) { |
1257 | 1265 |
Parent::operator=(cmap); |
1258 | 1266 |
return *this; |
1259 | 1267 |
} |
1260 | 1268 |
}; |
1261 | 1269 |
|
1262 | 1270 |
template <typename V> |
1263 | 1271 |
class EdgeMap |
1264 | 1272 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1265 | 1273 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1274 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1275 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1276 |
|
|
1266 | 1277 |
public: |
1267 | 1278 |
typedef V Value; |
1268 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1269 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1270 | 1279 |
|
1271 | 1280 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1272 | 1281 |
: Parent(adaptor) {} |
1273 | 1282 |
|
1274 | 1283 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1275 | 1284 |
: Parent(adaptor, value) {} |
1276 | 1285 |
|
1277 | 1286 |
private: |
1278 | 1287 |
EdgeMap& operator=(const EdgeMap& cmap) { |
1279 | 1288 |
return operator=<EdgeMap>(cmap); |
1280 | 1289 |
} |
1281 | 1290 |
|
1282 | 1291 |
template <typename CMap> |
1283 | 1292 |
EdgeMap& operator=(const CMap& cmap) { |
1284 | 1293 |
Parent::operator=(cmap); |
1285 | 1294 |
return *this; |
1286 | 1295 |
} |
1287 | 1296 |
}; |
1288 | 1297 |
|
1289 | 1298 |
}; |
1290 | 1299 |
|
1291 | 1300 |
/// \ingroup graph_adaptors |
1292 | 1301 |
/// |
1293 | 1302 |
/// \brief Adaptor class for hiding nodes and edges in an undirected |
1294 | 1303 |
/// graph. |
1295 | 1304 |
/// |
1296 | 1305 |
/// SubGraph can be used for hiding nodes and edges in a graph. |
1297 | 1306 |
/// A \c bool node map and a \c bool edge map must be specified, which |
1298 | 1307 |
/// define the filters for nodes and edges. |
1299 | 1308 |
/// Only the nodes and edges with \c true filter value are |
1300 | 1309 |
/// shown in the subgraph. The edges that are incident to hidden |
1301 | 1310 |
/// nodes are also filtered out. |
1302 | 1311 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
1303 | 1312 |
/// |
1304 | 1313 |
/// The adapted graph can also be modified through this adaptor |
1305 | 1314 |
/// by adding or removing nodes or edges, unless the \c GR template |
1306 | 1315 |
/// parameter is set to be \c const. |
1307 | 1316 |
/// |
1308 | 1317 |
/// \tparam GR The type of the adapted graph. |
1309 | 1318 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1310 | 1319 |
/// It can also be specified to be \c const. |
1311 | 1320 |
/// \tparam NF The type of the node filter map. |
1312 | 1321 |
/// It must be a \c bool (or convertible) node map of the |
1313 | 1322 |
/// adapted graph. The default type is |
1314 | 1323 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1315 | 1324 |
/// \tparam EF The type of the edge filter map. |
1316 | 1325 |
/// It must be a \c bool (or convertible) edge map of the |
1317 | 1326 |
/// adapted graph. The default type is |
1318 | 1327 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1319 | 1328 |
/// |
1320 | 1329 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1321 | 1330 |
/// adapted graph are convertible to each other. |
1322 | 1331 |
/// |
1323 | 1332 |
/// \see FilterNodes |
1324 | 1333 |
/// \see FilterEdges |
1325 | 1334 |
#ifdef DOXYGEN |
1326 | 1335 |
template<typename GR, typename NF, typename EF> |
1327 | 1336 |
class SubGraph { |
1328 | 1337 |
#else |
1329 | 1338 |
template<typename GR, |
1330 | 1339 |
typename NF = typename GR::template NodeMap<bool>, |
1331 | 1340 |
typename EF = typename GR::template EdgeMap<bool> > |
1332 | 1341 |
class SubGraph : |
1333 | 1342 |
public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > { |
1334 | 1343 |
#endif |
1335 | 1344 |
public: |
1336 | 1345 |
/// The type of the adapted graph. |
1337 | 1346 |
typedef GR Graph; |
1338 | 1347 |
/// The type of the node filter map. |
1339 | 1348 |
typedef NF NodeFilterMap; |
1340 | 1349 |
/// The type of the edge filter map. |
1341 | 1350 |
typedef EF EdgeFilterMap; |
1342 | 1351 |
|
1343 | 1352 |
typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > |
1344 | 1353 |
Parent; |
1345 | 1354 |
|
1346 | 1355 |
typedef typename Parent::Node Node; |
1347 | 1356 |
typedef typename Parent::Edge Edge; |
1348 | 1357 |
|
1349 | 1358 |
protected: |
1350 | 1359 |
SubGraph() { } |
1351 | 1360 |
public: |
1352 | 1361 |
|
1353 | 1362 |
/// \brief Constructor |
1354 | 1363 |
/// |
1355 | 1364 |
/// Creates a subgraph for the given graph with the given node |
1356 | 1365 |
/// and edge filter maps. |
1357 | 1366 |
SubGraph(GR& graph, NF& node_filter, EF& edge_filter) { |
1358 | 1367 |
initialize(graph, node_filter, edge_filter); |
1359 | 1368 |
} |
1360 | 1369 |
|
1361 | 1370 |
/// \brief Sets the status of the given node |
1362 | 1371 |
/// |
1363 | 1372 |
/// This function sets the status of the given node. |
1364 | 1373 |
/// It is done by simply setting the assigned value of \c n |
1365 | 1374 |
/// to \c v in the node filter map. |
1366 | 1375 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1367 | 1376 |
|
1368 | 1377 |
/// \brief Sets the status of the given edge |
1369 | 1378 |
/// |
1370 | 1379 |
/// This function sets the status of the given edge. |
1371 | 1380 |
/// It is done by simply setting the assigned value of \c e |
1372 | 1381 |
/// to \c v in the edge filter map. |
1373 | 1382 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1374 | 1383 |
|
1375 | 1384 |
/// \brief Returns the status of the given node |
1376 | 1385 |
/// |
1377 | 1386 |
/// This function returns the status of the given node. |
1378 | 1387 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1379 | 1388 |
bool status(const Node& n) const { return Parent::status(n); } |
1380 | 1389 |
|
1381 | 1390 |
/// \brief Returns the status of the given edge |
1382 | 1391 |
/// |
1383 | 1392 |
/// This function returns the status of the given edge. |
1384 | 1393 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1385 | 1394 |
bool status(const Edge& e) const { return Parent::status(e); } |
1386 | 1395 |
|
1387 | 1396 |
/// \brief Disables the given node |
1388 | 1397 |
/// |
1389 | 1398 |
/// This function disables the given node in the subdigraph, |
1390 | 1399 |
/// so the iteration jumps over it. |
1391 | 1400 |
/// It is the same as \ref status() "status(n, false)". |
1392 | 1401 |
void disable(const Node& n) const { Parent::status(n, false); } |
1393 | 1402 |
|
1394 | 1403 |
/// \brief Disables the given edge |
1395 | 1404 |
/// |
1396 | 1405 |
/// This function disables the given edge in the subgraph, |
1397 | 1406 |
/// so the iteration jumps over it. |
1398 | 1407 |
/// It is the same as \ref status() "status(e, false)". |
1399 | 1408 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1400 | 1409 |
|
1401 | 1410 |
/// \brief Enables the given node |
1402 | 1411 |
/// |
1403 | 1412 |
/// This function enables the given node in the subdigraph. |
1404 | 1413 |
/// It is the same as \ref status() "status(n, true)". |
1405 | 1414 |
void enable(const Node& n) const { Parent::status(n, true); } |
1406 | 1415 |
|
1407 | 1416 |
/// \brief Enables the given edge |
1408 | 1417 |
/// |
1409 | 1418 |
/// This function enables the given edge in the subgraph. |
1410 | 1419 |
/// It is the same as \ref status() "status(e, true)". |
1411 | 1420 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1412 | 1421 |
|
1413 | 1422 |
}; |
1414 | 1423 |
|
1415 | 1424 |
/// \brief Returns a read-only SubGraph adaptor |
1416 | 1425 |
/// |
1417 | 1426 |
/// This function just returns a read-only \ref SubGraph adaptor. |
1418 | 1427 |
/// \ingroup graph_adaptors |
1419 | 1428 |
/// \relates SubGraph |
1420 | 1429 |
template<typename GR, typename NF, typename EF> |
1421 | 1430 |
SubGraph<const GR, NF, EF> |
1422 | 1431 |
subGraph(const GR& graph, NF& node_filter, EF& edge_filter) { |
1423 | 1432 |
return SubGraph<const GR, NF, EF> |
1424 | 1433 |
(graph, node_filter, edge_filter); |
1425 | 1434 |
} |
1426 | 1435 |
|
1427 | 1436 |
template<typename GR, typename NF, typename EF> |
1428 | 1437 |
SubGraph<const GR, const NF, EF> |
1429 | 1438 |
subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) { |
1430 | 1439 |
return SubGraph<const GR, const NF, EF> |
1431 | 1440 |
(graph, node_filter, edge_filter); |
1432 | 1441 |
} |
1433 | 1442 |
|
1434 | 1443 |
template<typename GR, typename NF, typename EF> |
1435 | 1444 |
SubGraph<const GR, NF, const EF> |
1436 | 1445 |
subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) { |
1437 | 1446 |
return SubGraph<const GR, NF, const EF> |
1438 | 1447 |
(graph, node_filter, edge_filter); |
1439 | 1448 |
} |
1440 | 1449 |
|
1441 | 1450 |
template<typename GR, typename NF, typename EF> |
1442 | 1451 |
SubGraph<const GR, const NF, const EF> |
1443 | 1452 |
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) { |
1444 | 1453 |
return SubGraph<const GR, const NF, const EF> |
1445 | 1454 |
(graph, node_filter, edge_filter); |
1446 | 1455 |
} |
1447 | 1456 |
|
1448 | 1457 |
|
1449 | 1458 |
/// \ingroup graph_adaptors |
1450 | 1459 |
/// |
1451 | 1460 |
/// \brief Adaptor class for hiding nodes in a digraph or a graph. |
1452 | 1461 |
/// |
1453 | 1462 |
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a |
1454 | 1463 |
/// graph. A \c bool node map must be specified, which defines the filter |
1455 | 1464 |
/// for the nodes. Only the nodes with \c true filter value and the |
1456 | 1465 |
/// arcs/edges incident to nodes both with \c true filter value are shown |
1457 | 1466 |
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph |
1458 | 1467 |
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept |
1459 | 1468 |
/// depending on the \c GR template parameter. |
1460 | 1469 |
/// |
1461 | 1470 |
/// The adapted (di)graph can also be modified through this adaptor |
1462 | 1471 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
1463 | 1472 |
/// parameter is set to be \c const. |
1464 | 1473 |
/// |
1465 | 1474 |
/// \tparam GR The type of the adapted digraph or graph. |
1466 | 1475 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
1467 | 1476 |
/// or the \ref concepts::Graph "Graph" concept. |
1468 | 1477 |
/// It can also be specified to be \c const. |
1469 | 1478 |
/// \tparam NF The type of the node filter map. |
1470 | 1479 |
/// It must be a \c bool (or convertible) node map of the |
1471 | 1480 |
/// adapted (di)graph. The default type is |
1472 | 1481 |
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>". |
1473 | 1482 |
/// |
1474 | 1483 |
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the |
1475 | 1484 |
/// adapted (di)graph are convertible to each other. |
1476 | 1485 |
#ifdef DOXYGEN |
1477 | 1486 |
template<typename GR, typename NF> |
1478 | 1487 |
class FilterNodes { |
1479 | 1488 |
#else |
1480 | 1489 |
template<typename GR, |
1481 | 1490 |
typename NF = typename GR::template NodeMap<bool>, |
1482 | 1491 |
typename Enable = void> |
1483 | 1492 |
class FilterNodes : |
1484 | 1493 |
public DigraphAdaptorExtender< |
1485 | 1494 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1486 | 1495 |
true> > { |
1487 | 1496 |
#endif |
1488 |
public: |
|
1489 |
|
|
1490 |
typedef GR Digraph; |
|
1491 |
typedef NF NodeFilterMap; |
|
1492 |
|
|
1493 | 1497 |
typedef DigraphAdaptorExtender< |
1494 | 1498 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1495 | 1499 |
true> > Parent; |
1496 | 1500 |
|
1501 |
public: |
|
1502 |
|
|
1503 |
typedef GR Digraph; |
|
1504 |
typedef NF NodeFilterMap; |
|
1505 |
|
|
1497 | 1506 |
typedef typename Parent::Node Node; |
1498 | 1507 |
|
1499 | 1508 |
protected: |
1500 | 1509 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
1501 | 1510 |
|
1502 | 1511 |
FilterNodes() : const_true_map() {} |
1503 | 1512 |
|
1504 | 1513 |
public: |
1505 | 1514 |
|
1506 | 1515 |
/// \brief Constructor |
1507 | 1516 |
/// |
1508 | 1517 |
/// Creates a subgraph for the given digraph or graph with the |
1509 | 1518 |
/// given node filter map. |
1510 | 1519 |
FilterNodes(GR& graph, NF& node_filter) |
1511 | 1520 |
: Parent(), const_true_map() |
1512 | 1521 |
{ |
1513 | 1522 |
Parent::initialize(graph, node_filter, const_true_map); |
1514 | 1523 |
} |
1515 | 1524 |
|
1516 | 1525 |
/// \brief Sets the status of the given node |
1517 | 1526 |
/// |
1518 | 1527 |
/// This function sets the status of the given node. |
1519 | 1528 |
/// It is done by simply setting the assigned value of \c n |
1520 | 1529 |
/// to \c v in the node filter map. |
1521 | 1530 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1522 | 1531 |
|
1523 | 1532 |
/// \brief Returns the status of the given node |
1524 | 1533 |
/// |
1525 | 1534 |
/// This function returns the status of the given node. |
1526 | 1535 |
/// It is \c true if the given node is enabled (i.e. not hidden). |
1527 | 1536 |
bool status(const Node& n) const { return Parent::status(n); } |
1528 | 1537 |
|
1529 | 1538 |
/// \brief Disables the given node |
1530 | 1539 |
/// |
1531 | 1540 |
/// This function disables the given node, so the iteration |
1532 | 1541 |
/// jumps over it. |
1533 | 1542 |
/// It is the same as \ref status() "status(n, false)". |
1534 | 1543 |
void disable(const Node& n) const { Parent::status(n, false); } |
1535 | 1544 |
|
1536 | 1545 |
/// \brief Enables the given node |
1537 | 1546 |
/// |
1538 | 1547 |
/// This function enables the given node. |
1539 | 1548 |
/// It is the same as \ref status() "status(n, true)". |
1540 | 1549 |
void enable(const Node& n) const { Parent::status(n, true); } |
1541 | 1550 |
|
1542 | 1551 |
}; |
1543 | 1552 |
|
1544 | 1553 |
template<typename GR, typename NF> |
1545 | 1554 |
class FilterNodes<GR, NF, |
1546 | 1555 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
1547 | 1556 |
public GraphAdaptorExtender< |
1548 | 1557 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
1549 | 1558 |
true> > { |
1550 | 1559 |
|
1551 |
public: |
|
1552 |
typedef GR Graph; |
|
1553 |
typedef NF NodeFilterMap; |
|
1554 | 1560 |
typedef GraphAdaptorExtender< |
1555 | 1561 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
1556 | 1562 |
true> > Parent; |
1557 | 1563 |
|
1564 |
public: |
|
1565 |
|
|
1566 |
typedef GR Graph; |
|
1567 |
typedef NF NodeFilterMap; |
|
1568 |
|
|
1558 | 1569 |
typedef typename Parent::Node Node; |
1570 |
|
|
1559 | 1571 |
protected: |
1560 | 1572 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
1561 | 1573 |
|
1562 | 1574 |
FilterNodes() : const_true_map() {} |
1563 | 1575 |
|
1564 | 1576 |
public: |
1565 | 1577 |
|
1566 | 1578 |
FilterNodes(GR& graph, NodeFilterMap& node_filter) : |
1567 | 1579 |
Parent(), const_true_map() { |
1568 | 1580 |
Parent::initialize(graph, node_filter, const_true_map); |
1569 | 1581 |
} |
1570 | 1582 |
|
1571 | 1583 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1572 | 1584 |
bool status(const Node& n) const { return Parent::status(n); } |
1573 | 1585 |
void disable(const Node& n) const { Parent::status(n, false); } |
1574 | 1586 |
void enable(const Node& n) const { Parent::status(n, true); } |
1575 | 1587 |
|
1576 | 1588 |
}; |
1577 | 1589 |
|
1578 | 1590 |
|
1579 | 1591 |
/// \brief Returns a read-only FilterNodes adaptor |
1580 | 1592 |
/// |
1581 | 1593 |
/// This function just returns a read-only \ref FilterNodes adaptor. |
1582 | 1594 |
/// \ingroup graph_adaptors |
1583 | 1595 |
/// \relates FilterNodes |
1584 | 1596 |
template<typename GR, typename NF> |
1585 | 1597 |
FilterNodes<const GR, NF> |
1586 | 1598 |
filterNodes(const GR& graph, NF& node_filter) { |
1587 | 1599 |
return FilterNodes<const GR, NF>(graph, node_filter); |
1588 | 1600 |
} |
1589 | 1601 |
|
1590 | 1602 |
template<typename GR, typename NF> |
1591 | 1603 |
FilterNodes<const GR, const NF> |
1592 | 1604 |
filterNodes(const GR& graph, const NF& node_filter) { |
1593 | 1605 |
return FilterNodes<const GR, const NF>(graph, node_filter); |
1594 | 1606 |
} |
1595 | 1607 |
|
1596 | 1608 |
/// \ingroup graph_adaptors |
1597 | 1609 |
/// |
1598 | 1610 |
/// \brief Adaptor class for hiding arcs in a digraph. |
1599 | 1611 |
/// |
1600 | 1612 |
/// FilterArcs adaptor can be used for hiding arcs in a digraph. |
1601 | 1613 |
/// A \c bool arc map must be specified, which defines the filter for |
1602 | 1614 |
/// the arcs. Only the arcs with \c true filter value are shown in the |
1603 | 1615 |
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph |
1604 | 1616 |
/// "Digraph" concept. |
1605 | 1617 |
/// |
1606 | 1618 |
/// The adapted digraph can also be modified through this adaptor |
1607 | 1619 |
/// by adding or removing nodes or arcs, unless the \c GR template |
1608 | 1620 |
/// parameter is set to be \c const. |
1609 | 1621 |
/// |
1610 | 1622 |
/// \tparam DGR The type of the adapted digraph. |
1611 | 1623 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
1612 | 1624 |
/// It can also be specified to be \c const. |
1613 | 1625 |
/// \tparam AF The type of the arc filter map. |
1614 | 1626 |
/// It must be a \c bool (or convertible) arc map of the |
1615 | 1627 |
/// adapted digraph. The default type is |
1616 | 1628 |
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>". |
1617 | 1629 |
/// |
1618 | 1630 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
1619 | 1631 |
/// digraph are convertible to each other. |
1620 | 1632 |
#ifdef DOXYGEN |
1621 | 1633 |
template<typename DGR, |
1622 | 1634 |
typename AF> |
1623 | 1635 |
class FilterArcs { |
1624 | 1636 |
#else |
1625 | 1637 |
template<typename DGR, |
1626 | 1638 |
typename AF = typename DGR::template ArcMap<bool> > |
1627 | 1639 |
class FilterArcs : |
1628 | 1640 |
public DigraphAdaptorExtender< |
1629 | 1641 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1630 | 1642 |
AF, false> > { |
1631 | 1643 |
#endif |
1644 |
typedef DigraphAdaptorExtender< |
|
1645 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1646 |
AF, false> > Parent; |
|
1647 |
|
|
1632 | 1648 |
public: |
1649 |
|
|
1633 | 1650 |
/// The type of the adapted digraph. |
1634 | 1651 |
typedef DGR Digraph; |
1635 | 1652 |
/// The type of the arc filter map. |
1636 | 1653 |
typedef AF ArcFilterMap; |
1637 | 1654 |
|
1638 |
typedef DigraphAdaptorExtender< |
|
1639 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1640 |
AF, false> > Parent; |
|
1641 |
|
|
1642 | 1655 |
typedef typename Parent::Arc Arc; |
1643 | 1656 |
|
1644 | 1657 |
protected: |
1645 | 1658 |
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map; |
1646 | 1659 |
|
1647 | 1660 |
FilterArcs() : const_true_map() {} |
1648 | 1661 |
|
1649 | 1662 |
public: |
1650 | 1663 |
|
1651 | 1664 |
/// \brief Constructor |
1652 | 1665 |
/// |
1653 | 1666 |
/// Creates a subdigraph for the given digraph with the given arc |
1654 | 1667 |
/// filter map. |
1655 | 1668 |
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter) |
1656 | 1669 |
: Parent(), const_true_map() { |
1657 | 1670 |
Parent::initialize(digraph, const_true_map, arc_filter); |
1658 | 1671 |
} |
1659 | 1672 |
|
1660 | 1673 |
/// \brief Sets the status of the given arc |
1661 | 1674 |
/// |
1662 | 1675 |
/// This function sets the status of the given arc. |
1663 | 1676 |
/// It is done by simply setting the assigned value of \c a |
1664 | 1677 |
/// to \c v in the arc filter map. |
1665 | 1678 |
void status(const Arc& a, bool v) const { Parent::status(a, v); } |
1666 | 1679 |
|
1667 | 1680 |
/// \brief Returns the status of the given arc |
1668 | 1681 |
/// |
1669 | 1682 |
/// This function returns the status of the given arc. |
1670 | 1683 |
/// It is \c true if the given arc is enabled (i.e. not hidden). |
1671 | 1684 |
bool status(const Arc& a) const { return Parent::status(a); } |
1672 | 1685 |
|
1673 | 1686 |
/// \brief Disables the given arc |
1674 | 1687 |
/// |
1675 | 1688 |
/// This function disables the given arc in the subdigraph, |
1676 | 1689 |
/// so the iteration jumps over it. |
1677 | 1690 |
/// It is the same as \ref status() "status(a, false)". |
1678 | 1691 |
void disable(const Arc& a) const { Parent::status(a, false); } |
1679 | 1692 |
|
1680 | 1693 |
/// \brief Enables the given arc |
1681 | 1694 |
/// |
1682 | 1695 |
/// This function enables the given arc in the subdigraph. |
1683 | 1696 |
/// It is the same as \ref status() "status(a, true)". |
1684 | 1697 |
void enable(const Arc& a) const { Parent::status(a, true); } |
1685 | 1698 |
|
1686 | 1699 |
}; |
1687 | 1700 |
|
1688 | 1701 |
/// \brief Returns a read-only FilterArcs adaptor |
1689 | 1702 |
/// |
1690 | 1703 |
/// This function just returns a read-only \ref FilterArcs adaptor. |
1691 | 1704 |
/// \ingroup graph_adaptors |
1692 | 1705 |
/// \relates FilterArcs |
1693 | 1706 |
template<typename DGR, typename AF> |
1694 | 1707 |
FilterArcs<const DGR, AF> |
1695 | 1708 |
filterArcs(const DGR& digraph, AF& arc_filter) { |
1696 | 1709 |
return FilterArcs<const DGR, AF>(digraph, arc_filter); |
1697 | 1710 |
} |
1698 | 1711 |
|
1699 | 1712 |
template<typename DGR, typename AF> |
1700 | 1713 |
FilterArcs<const DGR, const AF> |
1701 | 1714 |
filterArcs(const DGR& digraph, const AF& arc_filter) { |
1702 | 1715 |
return FilterArcs<const DGR, const AF>(digraph, arc_filter); |
1703 | 1716 |
} |
1704 | 1717 |
|
1705 | 1718 |
/// \ingroup graph_adaptors |
1706 | 1719 |
/// |
1707 | 1720 |
/// \brief Adaptor class for hiding edges in a graph. |
1708 | 1721 |
/// |
1709 | 1722 |
/// FilterEdges adaptor can be used for hiding edges in a graph. |
1710 | 1723 |
/// A \c bool edge map must be specified, which defines the filter for |
1711 | 1724 |
/// the edges. Only the edges with \c true filter value are shown in the |
1712 | 1725 |
/// subgraph. This adaptor conforms to the \ref concepts::Graph |
1713 | 1726 |
/// "Graph" concept. |
1714 | 1727 |
/// |
1715 | 1728 |
/// The adapted graph can also be modified through this adaptor |
1716 | 1729 |
/// by adding or removing nodes or edges, unless the \c GR template |
1717 | 1730 |
/// parameter is set to be \c const. |
1718 | 1731 |
/// |
1719 | 1732 |
/// \tparam GR The type of the adapted graph. |
1720 | 1733 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
1721 | 1734 |
/// It can also be specified to be \c const. |
1722 | 1735 |
/// \tparam EF The type of the edge filter map. |
1723 | 1736 |
/// It must be a \c bool (or convertible) edge map of the |
1724 | 1737 |
/// adapted graph. The default type is |
1725 | 1738 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
1726 | 1739 |
/// |
1727 | 1740 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1728 | 1741 |
/// adapted graph are convertible to each other. |
1729 | 1742 |
#ifdef DOXYGEN |
1730 | 1743 |
template<typename GR, |
1731 | 1744 |
typename EF> |
1732 | 1745 |
class FilterEdges { |
1733 | 1746 |
#else |
1734 | 1747 |
template<typename GR, |
1735 | 1748 |
typename EF = typename GR::template EdgeMap<bool> > |
1736 | 1749 |
class FilterEdges : |
1737 | 1750 |
public GraphAdaptorExtender< |
1738 | 1751 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
1739 | 1752 |
EF, false> > { |
1740 | 1753 |
#endif |
1754 |
typedef GraphAdaptorExtender< |
|
1755 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1756 |
EF, false> > Parent; |
|
1757 |
|
|
1741 | 1758 |
public: |
1759 |
|
|
1742 | 1760 |
/// The type of the adapted graph. |
1743 | 1761 |
typedef GR Graph; |
1744 | 1762 |
/// The type of the edge filter map. |
1745 | 1763 |
typedef EF EdgeFilterMap; |
1746 | 1764 |
|
1747 |
typedef GraphAdaptorExtender< |
|
1748 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1749 |
EF, false> > Parent; |
|
1750 |
|
|
1751 | 1765 |
typedef typename Parent::Edge Edge; |
1752 | 1766 |
|
1753 | 1767 |
protected: |
1754 | 1768 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
1755 | 1769 |
|
1756 | 1770 |
FilterEdges() : const_true_map(true) { |
1757 | 1771 |
Parent::setNodeFilterMap(const_true_map); |
1758 | 1772 |
} |
1759 | 1773 |
|
1760 | 1774 |
public: |
1761 | 1775 |
|
1762 | 1776 |
/// \brief Constructor |
1763 | 1777 |
/// |
1764 | 1778 |
/// Creates a subgraph for the given graph with the given edge |
1765 | 1779 |
/// filter map. |
1766 | 1780 |
FilterEdges(GR& graph, EF& edge_filter) |
1767 | 1781 |
: Parent(), const_true_map() { |
1768 | 1782 |
Parent::initialize(graph, const_true_map, edge_filter); |
1769 | 1783 |
} |
1770 | 1784 |
|
1771 | 1785 |
/// \brief Sets the status of the given edge |
1772 | 1786 |
/// |
1773 | 1787 |
/// This function sets the status of the given edge. |
1774 | 1788 |
/// It is done by simply setting the assigned value of \c e |
1775 | 1789 |
/// to \c v in the edge filter map. |
1776 | 1790 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1777 | 1791 |
|
1778 | 1792 |
/// \brief Returns the status of the given edge |
1779 | 1793 |
/// |
1780 | 1794 |
/// This function returns the status of the given edge. |
1781 | 1795 |
/// It is \c true if the given edge is enabled (i.e. not hidden). |
1782 | 1796 |
bool status(const Edge& e) const { return Parent::status(e); } |
1783 | 1797 |
|
1784 | 1798 |
/// \brief Disables the given edge |
1785 | 1799 |
/// |
1786 | 1800 |
/// This function disables the given edge in the subgraph, |
1787 | 1801 |
/// so the iteration jumps over it. |
1788 | 1802 |
/// It is the same as \ref status() "status(e, false)". |
1789 | 1803 |
void disable(const Edge& e) const { Parent::status(e, false); } |
1790 | 1804 |
|
1791 | 1805 |
/// \brief Enables the given edge |
1792 | 1806 |
/// |
1793 | 1807 |
/// This function enables the given edge in the subgraph. |
1794 | 1808 |
/// It is the same as \ref status() "status(e, true)". |
1795 | 1809 |
void enable(const Edge& e) const { Parent::status(e, true); } |
1796 | 1810 |
|
1797 | 1811 |
}; |
1798 | 1812 |
|
1799 | 1813 |
/// \brief Returns a read-only FilterEdges adaptor |
1800 | 1814 |
/// |
1801 | 1815 |
/// This function just returns a read-only \ref FilterEdges adaptor. |
1802 | 1816 |
/// \ingroup graph_adaptors |
1803 | 1817 |
/// \relates FilterEdges |
1804 | 1818 |
template<typename GR, typename EF> |
1805 | 1819 |
FilterEdges<const GR, EF> |
1806 | 1820 |
filterEdges(const GR& graph, EF& edge_filter) { |
1807 | 1821 |
return FilterEdges<const GR, EF>(graph, edge_filter); |
1808 | 1822 |
} |
1809 | 1823 |
|
1810 | 1824 |
template<typename GR, typename EF> |
1811 | 1825 |
FilterEdges<const GR, const EF> |
1812 | 1826 |
filterEdges(const GR& graph, const EF& edge_filter) { |
1813 | 1827 |
return FilterEdges<const GR, const EF>(graph, edge_filter); |
1814 | 1828 |
} |
1815 | 1829 |
|
1816 | 1830 |
|
1817 | 1831 |
template <typename DGR> |
1818 | 1832 |
class UndirectorBase { |
1819 | 1833 |
public: |
1820 | 1834 |
typedef DGR Digraph; |
1821 | 1835 |
typedef UndirectorBase Adaptor; |
1822 | 1836 |
|
1823 | 1837 |
typedef True UndirectedTag; |
1824 | 1838 |
|
1825 | 1839 |
typedef typename Digraph::Arc Edge; |
1826 | 1840 |
typedef typename Digraph::Node Node; |
1827 | 1841 |
|
1828 | 1842 |
class Arc : public Edge { |
1829 | 1843 |
friend class UndirectorBase; |
1830 | 1844 |
protected: |
1831 | 1845 |
bool _forward; |
1832 | 1846 |
|
1833 | 1847 |
Arc(const Edge& edge, bool forward) : |
1834 | 1848 |
Edge(edge), _forward(forward) {} |
1835 | 1849 |
|
1836 | 1850 |
public: |
1837 | 1851 |
Arc() {} |
1838 | 1852 |
|
1839 | 1853 |
Arc(Invalid) : Edge(INVALID), _forward(true) {} |
1840 | 1854 |
|
1841 | 1855 |
bool operator==(const Arc &other) const { |
1842 | 1856 |
return _forward == other._forward && |
1843 | 1857 |
static_cast<const Edge&>(*this) == static_cast<const Edge&>(other); |
1844 | 1858 |
} |
1845 | 1859 |
bool operator!=(const Arc &other) const { |
1846 | 1860 |
return _forward != other._forward || |
1847 | 1861 |
static_cast<const Edge&>(*this) != static_cast<const Edge&>(other); |
1848 | 1862 |
} |
1849 | 1863 |
bool operator<(const Arc &other) const { |
1850 | 1864 |
return _forward < other._forward || |
1851 | 1865 |
(_forward == other._forward && |
1852 | 1866 |
static_cast<const Edge&>(*this) < static_cast<const Edge&>(other)); |
1853 | 1867 |
} |
1854 | 1868 |
}; |
1855 | 1869 |
|
1856 | 1870 |
void first(Node& n) const { |
1857 | 1871 |
_digraph->first(n); |
1858 | 1872 |
} |
1859 | 1873 |
|
1860 | 1874 |
void next(Node& n) const { |
1861 | 1875 |
_digraph->next(n); |
1862 | 1876 |
} |
1863 | 1877 |
|
1864 | 1878 |
void first(Arc& a) const { |
1865 | 1879 |
_digraph->first(a); |
1866 | 1880 |
a._forward = true; |
1867 | 1881 |
} |
1868 | 1882 |
|
1869 | 1883 |
void next(Arc& a) const { |
1870 | 1884 |
if (a._forward) { |
1871 | 1885 |
a._forward = false; |
1872 | 1886 |
} else { |
1873 | 1887 |
_digraph->next(a); |
1874 | 1888 |
a._forward = true; |
1875 | 1889 |
} |
1876 | 1890 |
} |
1877 | 1891 |
|
1878 | 1892 |
void first(Edge& e) const { |
1879 | 1893 |
_digraph->first(e); |
1880 | 1894 |
} |
1881 | 1895 |
|
1882 | 1896 |
void next(Edge& e) const { |
1883 | 1897 |
_digraph->next(e); |
1884 | 1898 |
} |
1885 | 1899 |
|
1886 | 1900 |
void firstOut(Arc& a, const Node& n) const { |
1887 | 1901 |
_digraph->firstIn(a, n); |
1888 | 1902 |
if( static_cast<const Edge&>(a) != INVALID ) { |
1889 | 1903 |
a._forward = false; |
1890 | 1904 |
} else { |
1891 | 1905 |
_digraph->firstOut(a, n); |
1892 | 1906 |
a._forward = true; |
1893 | 1907 |
} |
1894 | 1908 |
} |
1895 | 1909 |
void nextOut(Arc &a) const { |
1896 | 1910 |
if (!a._forward) { |
1897 | 1911 |
Node n = _digraph->target(a); |
1898 | 1912 |
_digraph->nextIn(a); |
1899 | 1913 |
if (static_cast<const Edge&>(a) == INVALID ) { |
1900 | 1914 |
_digraph->firstOut(a, n); |
1901 | 1915 |
a._forward = true; |
1902 | 1916 |
} |
1903 | 1917 |
} |
1904 | 1918 |
else { |
1905 | 1919 |
_digraph->nextOut(a); |
1906 | 1920 |
} |
1907 | 1921 |
} |
1908 | 1922 |
|
1909 | 1923 |
void firstIn(Arc &a, const Node &n) const { |
1910 | 1924 |
_digraph->firstOut(a, n); |
1911 | 1925 |
if (static_cast<const Edge&>(a) != INVALID ) { |
1912 | 1926 |
a._forward = false; |
1913 | 1927 |
} else { |
1914 | 1928 |
_digraph->firstIn(a, n); |
1915 | 1929 |
a._forward = true; |
1916 | 1930 |
} |
1917 | 1931 |
} |
1918 | 1932 |
void nextIn(Arc &a) const { |
1919 | 1933 |
if (!a._forward) { |
1920 | 1934 |
Node n = _digraph->source(a); |
1921 | 1935 |
_digraph->nextOut(a); |
1922 | 1936 |
if( static_cast<const Edge&>(a) == INVALID ) { |
1923 | 1937 |
_digraph->firstIn(a, n); |
1924 | 1938 |
a._forward = true; |
1925 | 1939 |
} |
1926 | 1940 |
} |
1927 | 1941 |
else { |
1928 | 1942 |
_digraph->nextIn(a); |
1929 | 1943 |
} |
1930 | 1944 |
} |
1931 | 1945 |
|
1932 | 1946 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
1933 | 1947 |
d = true; |
1934 | 1948 |
_digraph->firstOut(e, n); |
1935 | 1949 |
if (e != INVALID) return; |
1936 | 1950 |
d = false; |
1937 | 1951 |
_digraph->firstIn(e, n); |
1938 | 1952 |
} |
1939 | 1953 |
|
1940 | 1954 |
void nextInc(Edge &e, bool &d) const { |
1941 | 1955 |
if (d) { |
1942 | 1956 |
Node s = _digraph->source(e); |
1943 | 1957 |
_digraph->nextOut(e); |
1944 | 1958 |
if (e != INVALID) return; |
1945 | 1959 |
d = false; |
1946 | 1960 |
_digraph->firstIn(e, s); |
1947 | 1961 |
} else { |
1948 | 1962 |
_digraph->nextIn(e); |
1949 | 1963 |
} |
1950 | 1964 |
} |
1951 | 1965 |
|
1952 | 1966 |
Node u(const Edge& e) const { |
1953 | 1967 |
return _digraph->source(e); |
1954 | 1968 |
} |
1955 | 1969 |
|
1956 | 1970 |
Node v(const Edge& e) const { |
1957 | 1971 |
return _digraph->target(e); |
1958 | 1972 |
} |
1959 | 1973 |
|
1960 | 1974 |
Node source(const Arc &a) const { |
1961 | 1975 |
return a._forward ? _digraph->source(a) : _digraph->target(a); |
1962 | 1976 |
} |
1963 | 1977 |
|
1964 | 1978 |
Node target(const Arc &a) const { |
1965 | 1979 |
return a._forward ? _digraph->target(a) : _digraph->source(a); |
1966 | 1980 |
} |
1967 | 1981 |
|
1968 | 1982 |
static Arc direct(const Edge &e, bool d) { |
1969 | 1983 |
return Arc(e, d); |
1970 | 1984 |
} |
1971 | 1985 |
Arc direct(const Edge &e, const Node& n) const { |
1972 | 1986 |
return Arc(e, _digraph->source(e) == n); |
1973 | 1987 |
} |
1974 | 1988 |
|
1975 | 1989 |
static bool direction(const Arc &a) { return a._forward; } |
1976 | 1990 |
|
1977 | 1991 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
1978 | 1992 |
Arc arcFromId(int ix) const { |
1979 | 1993 |
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); |
1980 | 1994 |
} |
1981 | 1995 |
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } |
1982 | 1996 |
|
1983 | 1997 |
int id(const Node &n) const { return _digraph->id(n); } |
1984 | 1998 |
int id(const Arc &a) const { |
1985 | 1999 |
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); |
1986 | 2000 |
} |
1987 | 2001 |
int id(const Edge &e) const { return _digraph->id(e); } |
1988 | 2002 |
|
1989 | 2003 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
1990 | 2004 |
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } |
1991 | 2005 |
int maxEdgeId() const { return _digraph->maxArcId(); } |
1992 | 2006 |
|
1993 | 2007 |
Node addNode() { return _digraph->addNode(); } |
1994 | 2008 |
Edge addEdge(const Node& u, const Node& v) { |
1995 | 2009 |
return _digraph->addArc(u, v); |
1996 | 2010 |
} |
1997 | 2011 |
|
1998 | 2012 |
void erase(const Node& i) { _digraph->erase(i); } |
1999 | 2013 |
void erase(const Edge& i) { _digraph->erase(i); } |
2000 | 2014 |
|
2001 | 2015 |
void clear() { _digraph->clear(); } |
2002 | 2016 |
|
2003 | 2017 |
typedef NodeNumTagIndicator<Digraph> NodeNumTag; |
2004 | 2018 |
int nodeNum() const { return _digraph->nodeNum(); } |
2005 | 2019 |
|
2006 | 2020 |
typedef ArcNumTagIndicator<Digraph> ArcNumTag; |
2007 | 2021 |
int arcNum() const { return 2 * _digraph->arcNum(); } |
2008 | 2022 |
|
2009 | 2023 |
typedef ArcNumTag EdgeNumTag; |
2010 | 2024 |
int edgeNum() const { return _digraph->arcNum(); } |
2011 | 2025 |
|
2012 | 2026 |
typedef FindArcTagIndicator<Digraph> FindArcTag; |
2013 | 2027 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
2014 | 2028 |
if (p == INVALID) { |
2015 | 2029 |
Edge arc = _digraph->findArc(s, t); |
2016 | 2030 |
if (arc != INVALID) return direct(arc, true); |
2017 | 2031 |
arc = _digraph->findArc(t, s); |
2018 | 2032 |
if (arc != INVALID) return direct(arc, false); |
2019 | 2033 |
} else if (direction(p)) { |
2020 | 2034 |
Edge arc = _digraph->findArc(s, t, p); |
2021 | 2035 |
if (arc != INVALID) return direct(arc, true); |
2022 | 2036 |
arc = _digraph->findArc(t, s); |
2023 | 2037 |
if (arc != INVALID) return direct(arc, false); |
2024 | 2038 |
} else { |
2025 | 2039 |
Edge arc = _digraph->findArc(t, s, p); |
2026 | 2040 |
if (arc != INVALID) return direct(arc, false); |
2027 | 2041 |
} |
2028 | 2042 |
return INVALID; |
2029 | 2043 |
} |
2030 | 2044 |
|
2031 | 2045 |
typedef FindArcTag FindEdgeTag; |
2032 | 2046 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
2033 | 2047 |
if (s != t) { |
2034 | 2048 |
if (p == INVALID) { |
2035 | 2049 |
Edge arc = _digraph->findArc(s, t); |
2036 | 2050 |
if (arc != INVALID) return arc; |
2037 | 2051 |
arc = _digraph->findArc(t, s); |
2038 | 2052 |
if (arc != INVALID) return arc; |
2039 | 2053 |
} else if (_digraph->source(p) == s) { |
2040 | 2054 |
Edge arc = _digraph->findArc(s, t, p); |
2041 | 2055 |
if (arc != INVALID) return arc; |
2042 | 2056 |
arc = _digraph->findArc(t, s); |
2043 | 2057 |
if (arc != INVALID) return arc; |
2044 | 2058 |
} else { |
2045 | 2059 |
Edge arc = _digraph->findArc(t, s, p); |
2046 | 2060 |
if (arc != INVALID) return arc; |
2047 | 2061 |
} |
2048 | 2062 |
} else { |
2049 | 2063 |
return _digraph->findArc(s, t, p); |
2050 | 2064 |
} |
2051 | 2065 |
return INVALID; |
2052 | 2066 |
} |
2053 | 2067 |
|
2054 | 2068 |
private: |
2055 | 2069 |
|
2056 | 2070 |
template <typename V> |
2057 | 2071 |
class ArcMapBase { |
2058 | 2072 |
private: |
2059 | 2073 |
|
2060 | 2074 |
typedef typename DGR::template ArcMap<V> MapImpl; |
2061 | 2075 |
|
2062 | 2076 |
public: |
2063 | 2077 |
|
2064 | 2078 |
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag; |
2065 | 2079 |
|
2066 | 2080 |
typedef V Value; |
2067 | 2081 |
typedef Arc Key; |
2068 | 2082 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
2069 | 2083 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
2070 | 2084 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
2071 | 2085 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
2072 | 2086 |
|
2073 | 2087 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
2074 | 2088 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {} |
2075 | 2089 |
|
2076 | 2090 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
2077 | 2091 |
: _forward(*adaptor._digraph, value), |
2078 | 2092 |
_backward(*adaptor._digraph, value) {} |
2079 | 2093 |
|
2080 | 2094 |
void set(const Arc& a, const V& value) { |
2081 | 2095 |
if (direction(a)) { |
2082 | 2096 |
_forward.set(a, value); |
2083 | 2097 |
} else { |
2084 | 2098 |
_backward.set(a, value); |
2085 | 2099 |
} |
2086 | 2100 |
} |
2087 | 2101 |
|
2088 | 2102 |
ConstReturnValue operator[](const Arc& a) const { |
2089 | 2103 |
if (direction(a)) { |
2090 | 2104 |
return _forward[a]; |
2091 | 2105 |
} else { |
2092 | 2106 |
return _backward[a]; |
2093 | 2107 |
} |
2094 | 2108 |
} |
2095 | 2109 |
|
2096 | 2110 |
ReturnValue operator[](const Arc& a) { |
2097 | 2111 |
if (direction(a)) { |
2098 | 2112 |
return _forward[a]; |
2099 | 2113 |
} else { |
2100 | 2114 |
return _backward[a]; |
2101 | 2115 |
} |
2102 | 2116 |
} |
2103 | 2117 |
|
2104 | 2118 |
protected: |
2105 | 2119 |
|
2106 | 2120 |
MapImpl _forward, _backward; |
2107 | 2121 |
|
2108 | 2122 |
}; |
2109 | 2123 |
|
2110 | 2124 |
public: |
2111 | 2125 |
|
2112 | 2126 |
template <typename V> |
2113 | 2127 |
class NodeMap : public DGR::template NodeMap<V> { |
2128 |
typedef typename DGR::template NodeMap<V> Parent; |
|
2129 |
|
|
2114 | 2130 |
public: |
2115 |
|
|
2116 | 2131 |
typedef V Value; |
2117 |
typedef typename DGR::template NodeMap<Value> Parent; |
|
2118 | 2132 |
|
2119 | 2133 |
explicit NodeMap(const UndirectorBase<DGR>& adaptor) |
2120 | 2134 |
: Parent(*adaptor._digraph) {} |
2121 | 2135 |
|
2122 | 2136 |
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2123 | 2137 |
: Parent(*adaptor._digraph, value) { } |
2124 | 2138 |
|
2125 | 2139 |
private: |
2126 | 2140 |
NodeMap& operator=(const NodeMap& cmap) { |
2127 | 2141 |
return operator=<NodeMap>(cmap); |
2128 | 2142 |
} |
2129 | 2143 |
|
2130 | 2144 |
template <typename CMap> |
2131 | 2145 |
NodeMap& operator=(const CMap& cmap) { |
2132 | 2146 |
Parent::operator=(cmap); |
2133 | 2147 |
return *this; |
2134 | 2148 |
} |
2135 | 2149 |
|
2136 | 2150 |
}; |
2137 | 2151 |
|
2138 | 2152 |
template <typename V> |
2139 | 2153 |
class ArcMap |
2140 |
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > |
|
2141 |
{ |
|
2154 |
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > { |
|
2155 |
typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent; |
|
2156 |
|
|
2142 | 2157 |
public: |
2143 | 2158 |
typedef V Value; |
2144 |
typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent; |
|
2145 | 2159 |
|
2146 | 2160 |
explicit ArcMap(const UndirectorBase<DGR>& adaptor) |
2147 | 2161 |
: Parent(adaptor) {} |
2148 | 2162 |
|
2149 | 2163 |
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2150 | 2164 |
: Parent(adaptor, value) {} |
2151 | 2165 |
|
2152 | 2166 |
private: |
2153 | 2167 |
ArcMap& operator=(const ArcMap& cmap) { |
2154 | 2168 |
return operator=<ArcMap>(cmap); |
2155 | 2169 |
} |
2156 | 2170 |
|
2157 | 2171 |
template <typename CMap> |
2158 | 2172 |
ArcMap& operator=(const CMap& cmap) { |
2159 | 2173 |
Parent::operator=(cmap); |
2160 | 2174 |
return *this; |
2161 | 2175 |
} |
2162 | 2176 |
}; |
2163 | 2177 |
|
2164 | 2178 |
template <typename V> |
2165 | 2179 |
class EdgeMap : public Digraph::template ArcMap<V> { |
2180 |
typedef typename Digraph::template ArcMap<V> Parent; |
|
2181 |
|
|
2166 | 2182 |
public: |
2167 |
|
|
2168 | 2183 |
typedef V Value; |
2169 |
typedef typename Digraph::template ArcMap<V> Parent; |
|
2170 | 2184 |
|
2171 | 2185 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
2172 | 2186 |
: Parent(*adaptor._digraph) {} |
2173 | 2187 |
|
2174 | 2188 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
2175 | 2189 |
: Parent(*adaptor._digraph, value) {} |
2176 | 2190 |
|
2177 | 2191 |
private: |
2178 | 2192 |
EdgeMap& operator=(const EdgeMap& cmap) { |
2179 | 2193 |
return operator=<EdgeMap>(cmap); |
2180 | 2194 |
} |
2181 | 2195 |
|
2182 | 2196 |
template <typename CMap> |
2183 | 2197 |
EdgeMap& operator=(const CMap& cmap) { |
2184 | 2198 |
Parent::operator=(cmap); |
2185 | 2199 |
return *this; |
2186 | 2200 |
} |
2187 | 2201 |
|
2188 | 2202 |
}; |
2189 | 2203 |
|
2190 | 2204 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
2191 | 2205 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
2192 | 2206 |
|
2193 | 2207 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
2194 | 2208 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); } |
2195 | 2209 |
|
2196 | 2210 |
typedef EdgeNotifier ArcNotifier; |
2197 | 2211 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); } |
2198 | 2212 |
|
2199 | 2213 |
protected: |
2200 | 2214 |
|
2201 | 2215 |
UndirectorBase() : _digraph(0) {} |
2202 | 2216 |
|
2203 | 2217 |
DGR* _digraph; |
2204 | 2218 |
|
2205 | 2219 |
void initialize(DGR& digraph) { |
2206 | 2220 |
_digraph = &digraph; |
2207 | 2221 |
} |
2208 | 2222 |
|
2209 | 2223 |
}; |
2210 | 2224 |
|
2211 | 2225 |
/// \ingroup graph_adaptors |
2212 | 2226 |
/// |
2213 | 2227 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
2214 | 2228 |
/// |
2215 | 2229 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
2216 | 2230 |
/// graph. All arcs of the underlying digraph are showed in the |
2217 | 2231 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
2218 | 2232 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
2219 | 2233 |
/// |
2220 | 2234 |
/// The adapted digraph can also be modified through this adaptor |
2221 | 2235 |
/// by adding or removing nodes or edges, unless the \c GR template |
2222 | 2236 |
/// parameter is set to be \c const. |
2223 | 2237 |
/// |
2224 | 2238 |
/// \tparam DGR The type of the adapted digraph. |
2225 | 2239 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2226 | 2240 |
/// It can also be specified to be \c const. |
2227 | 2241 |
/// |
2228 | 2242 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2229 | 2243 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
2230 | 2244 |
/// and the \c Arc type of the adapted digraph are also convertible to |
2231 | 2245 |
/// each other. |
2232 | 2246 |
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type |
2233 | 2247 |
/// of the adapted digraph.) |
2234 | 2248 |
template<typename DGR> |
2235 | 2249 |
#ifdef DOXYGEN |
2236 | 2250 |
class Undirector { |
2237 | 2251 |
#else |
2238 | 2252 |
class Undirector : |
2239 | 2253 |
public GraphAdaptorExtender<UndirectorBase<DGR> > { |
2240 | 2254 |
#endif |
2255 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
|
2241 | 2256 |
public: |
2242 | 2257 |
/// The type of the adapted digraph. |
2243 | 2258 |
typedef DGR Digraph; |
2244 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
|
2245 | 2259 |
protected: |
2246 | 2260 |
Undirector() { } |
2247 | 2261 |
public: |
2248 | 2262 |
|
2249 | 2263 |
/// \brief Constructor |
2250 | 2264 |
/// |
2251 | 2265 |
/// Creates an undirected graph from the given digraph. |
2252 | 2266 |
Undirector(DGR& digraph) { |
2253 | 2267 |
initialize(digraph); |
2254 | 2268 |
} |
2255 | 2269 |
|
2256 | 2270 |
/// \brief Arc map combined from two original arc maps |
2257 | 2271 |
/// |
2258 | 2272 |
/// This map adaptor class adapts two arc maps of the underlying |
2259 | 2273 |
/// digraph to get an arc map of the undirected graph. |
2260 | 2274 |
/// Its value type is inherited from the first arc map type (\c FW). |
2261 | 2275 |
/// \tparam FW The type of the "foward" arc map. |
2262 | 2276 |
/// \tparam BK The type of the "backward" arc map. |
2263 | 2277 |
template <typename FW, typename BK> |
2264 | 2278 |
class CombinedArcMap { |
2265 | 2279 |
public: |
2266 | 2280 |
|
2267 | 2281 |
/// The key type of the map |
2268 | 2282 |
typedef typename Parent::Arc Key; |
2269 | 2283 |
/// The value type of the map |
2270 | 2284 |
typedef typename FW::Value Value; |
2271 | 2285 |
|
2272 | 2286 |
typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag; |
2273 | 2287 |
|
2274 | 2288 |
typedef typename MapTraits<FW>::ReturnValue ReturnValue; |
2275 | 2289 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue; |
2276 | 2290 |
typedef typename MapTraits<FW>::ReturnValue Reference; |
2277 | 2291 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReference; |
2278 | 2292 |
|
2279 | 2293 |
/// Constructor |
2280 | 2294 |
CombinedArcMap(FW& forward, BK& backward) |
2281 | 2295 |
: _forward(&forward), _backward(&backward) {} |
2282 | 2296 |
|
2283 | 2297 |
/// Sets the value associated with the given key. |
2284 | 2298 |
void set(const Key& e, const Value& a) { |
2285 | 2299 |
if (Parent::direction(e)) { |
2286 | 2300 |
_forward->set(e, a); |
2287 | 2301 |
} else { |
2288 | 2302 |
_backward->set(e, a); |
2289 | 2303 |
} |
2290 | 2304 |
} |
2291 | 2305 |
|
2292 | 2306 |
/// Returns the value associated with the given key. |
2293 | 2307 |
ConstReturnValue operator[](const Key& e) const { |
2294 | 2308 |
if (Parent::direction(e)) { |
2295 | 2309 |
return (*_forward)[e]; |
2296 | 2310 |
} else { |
2297 | 2311 |
return (*_backward)[e]; |
2298 | 2312 |
} |
2299 | 2313 |
} |
2300 | 2314 |
|
2301 | 2315 |
/// Returns a reference to the value associated with the given key. |
2302 | 2316 |
ReturnValue operator[](const Key& e) { |
2303 | 2317 |
if (Parent::direction(e)) { |
2304 | 2318 |
return (*_forward)[e]; |
2305 | 2319 |
} else { |
2306 | 2320 |
return (*_backward)[e]; |
2307 | 2321 |
} |
2308 | 2322 |
} |
2309 | 2323 |
|
2310 | 2324 |
protected: |
2311 | 2325 |
|
2312 | 2326 |
FW* _forward; |
2313 | 2327 |
BK* _backward; |
2314 | 2328 |
|
2315 | 2329 |
}; |
2316 | 2330 |
|
2317 | 2331 |
/// \brief Returns a combined arc map |
2318 | 2332 |
/// |
2319 | 2333 |
/// This function just returns a combined arc map. |
2320 | 2334 |
template <typename FW, typename BK> |
2321 | 2335 |
static CombinedArcMap<FW, BK> |
2322 | 2336 |
combinedArcMap(FW& forward, BK& backward) { |
2323 | 2337 |
return CombinedArcMap<FW, BK>(forward, backward); |
2324 | 2338 |
} |
2325 | 2339 |
|
2326 | 2340 |
template <typename FW, typename BK> |
2327 | 2341 |
static CombinedArcMap<const FW, BK> |
2328 | 2342 |
combinedArcMap(const FW& forward, BK& backward) { |
2329 | 2343 |
return CombinedArcMap<const FW, BK>(forward, backward); |
2330 | 2344 |
} |
2331 | 2345 |
|
2332 | 2346 |
template <typename FW, typename BK> |
2333 | 2347 |
static CombinedArcMap<FW, const BK> |
2334 | 2348 |
combinedArcMap(FW& forward, const BK& backward) { |
2335 | 2349 |
return CombinedArcMap<FW, const BK>(forward, backward); |
2336 | 2350 |
} |
2337 | 2351 |
|
2338 | 2352 |
template <typename FW, typename BK> |
2339 | 2353 |
static CombinedArcMap<const FW, const BK> |
2340 | 2354 |
combinedArcMap(const FW& forward, const BK& backward) { |
2341 | 2355 |
return CombinedArcMap<const FW, const BK>(forward, backward); |
2342 | 2356 |
} |
2343 | 2357 |
|
2344 | 2358 |
}; |
2345 | 2359 |
|
2346 | 2360 |
/// \brief Returns a read-only Undirector adaptor |
2347 | 2361 |
/// |
2348 | 2362 |
/// This function just returns a read-only \ref Undirector adaptor. |
2349 | 2363 |
/// \ingroup graph_adaptors |
2350 | 2364 |
/// \relates Undirector |
2351 | 2365 |
template<typename DGR> |
2352 | 2366 |
Undirector<const DGR> undirector(const DGR& digraph) { |
2353 | 2367 |
return Undirector<const DGR>(digraph); |
2354 | 2368 |
} |
2355 | 2369 |
|
2356 | 2370 |
|
2357 | 2371 |
template <typename GR, typename DM> |
2358 | 2372 |
class OrienterBase { |
2359 | 2373 |
public: |
2360 | 2374 |
|
2361 | 2375 |
typedef GR Graph; |
2362 | 2376 |
typedef DM DirectionMap; |
2363 | 2377 |
|
2364 | 2378 |
typedef typename GR::Node Node; |
2365 | 2379 |
typedef typename GR::Edge Arc; |
2366 | 2380 |
|
2367 | 2381 |
void reverseArc(const Arc& arc) { |
2368 | 2382 |
_direction->set(arc, !(*_direction)[arc]); |
2369 | 2383 |
} |
2370 | 2384 |
|
2371 | 2385 |
void first(Node& i) const { _graph->first(i); } |
2372 | 2386 |
void first(Arc& i) const { _graph->first(i); } |
2373 | 2387 |
void firstIn(Arc& i, const Node& n) const { |
2374 | 2388 |
bool d = true; |
2375 | 2389 |
_graph->firstInc(i, d, n); |
2376 | 2390 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
2377 | 2391 |
} |
2378 | 2392 |
void firstOut(Arc& i, const Node& n ) const { |
2379 | 2393 |
bool d = true; |
2380 | 2394 |
_graph->firstInc(i, d, n); |
2381 | 2395 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
2382 | 2396 |
} |
2383 | 2397 |
|
2384 | 2398 |
void next(Node& i) const { _graph->next(i); } |
2385 | 2399 |
void next(Arc& i) const { _graph->next(i); } |
2386 | 2400 |
void nextIn(Arc& i) const { |
2387 | 2401 |
bool d = !(*_direction)[i]; |
2388 | 2402 |
_graph->nextInc(i, d); |
2389 | 2403 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
2390 | 2404 |
} |
2391 | 2405 |
void nextOut(Arc& i) const { |
2392 | 2406 |
bool d = (*_direction)[i]; |
2393 | 2407 |
_graph->nextInc(i, d); |
2394 | 2408 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
2395 | 2409 |
} |
2396 | 2410 |
|
2397 | 2411 |
Node source(const Arc& e) const { |
2398 | 2412 |
return (*_direction)[e] ? _graph->u(e) : _graph->v(e); |
2399 | 2413 |
} |
2400 | 2414 |
Node target(const Arc& e) const { |
2401 | 2415 |
return (*_direction)[e] ? _graph->v(e) : _graph->u(e); |
2402 | 2416 |
} |
2403 | 2417 |
|
2404 | 2418 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
2405 | 2419 |
int nodeNum() const { return _graph->nodeNum(); } |
2406 | 2420 |
|
2407 | 2421 |
typedef EdgeNumTagIndicator<Graph> ArcNumTag; |
2408 | 2422 |
int arcNum() const { return _graph->edgeNum(); } |
2409 | 2423 |
|
2410 | 2424 |
typedef FindEdgeTagIndicator<Graph> FindArcTag; |
2411 | 2425 |
Arc findArc(const Node& u, const Node& v, |
2412 | 2426 |
const Arc& prev = INVALID) const { |
2413 | 2427 |
Arc arc = _graph->findEdge(u, v, prev); |
2414 | 2428 |
while (arc != INVALID && source(arc) != u) { |
2415 | 2429 |
arc = _graph->findEdge(u, v, arc); |
2416 | 2430 |
} |
2417 | 2431 |
return arc; |
2418 | 2432 |
} |
2419 | 2433 |
|
2420 | 2434 |
Node addNode() { |
2421 | 2435 |
return Node(_graph->addNode()); |
2422 | 2436 |
} |
2423 | 2437 |
|
2424 | 2438 |
Arc addArc(const Node& u, const Node& v) { |
2425 | 2439 |
Arc arc = _graph->addEdge(u, v); |
2426 | 2440 |
_direction->set(arc, _graph->u(arc) == u); |
2427 | 2441 |
return arc; |
2428 | 2442 |
} |
2429 | 2443 |
|
2430 | 2444 |
void erase(const Node& i) { _graph->erase(i); } |
2431 | 2445 |
void erase(const Arc& i) { _graph->erase(i); } |
2432 | 2446 |
|
2433 | 2447 |
void clear() { _graph->clear(); } |
2434 | 2448 |
|
2435 | 2449 |
int id(const Node& v) const { return _graph->id(v); } |
2436 | 2450 |
int id(const Arc& e) const { return _graph->id(e); } |
2437 | 2451 |
|
2438 | 2452 |
Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); } |
2439 | 2453 |
Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); } |
2440 | 2454 |
|
2441 | 2455 |
int maxNodeId() const { return _graph->maxNodeId(); } |
2442 | 2456 |
int maxArcId() const { return _graph->maxEdgeId(); } |
2443 | 2457 |
|
2444 | 2458 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
2445 | 2459 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } |
2446 | 2460 |
|
2447 | 2461 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
2448 | 2462 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } |
2449 | 2463 |
|
2450 | 2464 |
template <typename V> |
2451 | 2465 |
class NodeMap : public GR::template NodeMap<V> { |
2466 |
typedef typename GR::template NodeMap<V> Parent; |
|
2467 |
|
|
2452 | 2468 |
public: |
2453 | 2469 |
|
2454 |
typedef typename GR::template NodeMap<V> Parent; |
|
2455 |
|
|
2456 | 2470 |
explicit NodeMap(const OrienterBase<GR, DM>& adapter) |
2457 | 2471 |
: Parent(*adapter._graph) {} |
2458 | 2472 |
|
2459 | 2473 |
NodeMap(const OrienterBase<GR, DM>& adapter, const V& value) |
2460 | 2474 |
: Parent(*adapter._graph, value) {} |
2461 | 2475 |
|
2462 | 2476 |
private: |
2463 | 2477 |
NodeMap& operator=(const NodeMap& cmap) { |
2464 | 2478 |
return operator=<NodeMap>(cmap); |
2465 | 2479 |
} |
2466 | 2480 |
|
2467 | 2481 |
template <typename CMap> |
2468 | 2482 |
NodeMap& operator=(const CMap& cmap) { |
2469 | 2483 |
Parent::operator=(cmap); |
2470 | 2484 |
return *this; |
2471 | 2485 |
} |
2472 | 2486 |
|
2473 | 2487 |
}; |
2474 | 2488 |
|
2475 | 2489 |
template <typename V> |
2476 | 2490 |
class ArcMap : public GR::template EdgeMap<V> { |
2491 |
typedef typename Graph::template EdgeMap<V> Parent; |
|
2492 |
|
|
2477 | 2493 |
public: |
2478 | 2494 |
|
2479 |
typedef typename Graph::template EdgeMap<V> Parent; |
|
2480 |
|
|
2481 | 2495 |
explicit ArcMap(const OrienterBase<GR, DM>& adapter) |
2482 | 2496 |
: Parent(*adapter._graph) { } |
2483 | 2497 |
|
2484 | 2498 |
ArcMap(const OrienterBase<GR, DM>& adapter, const V& value) |
2485 | 2499 |
: Parent(*adapter._graph, value) { } |
2486 | 2500 |
|
2487 | 2501 |
private: |
2488 | 2502 |
ArcMap& operator=(const ArcMap& cmap) { |
2489 | 2503 |
return operator=<ArcMap>(cmap); |
2490 | 2504 |
} |
2491 | 2505 |
|
2492 | 2506 |
template <typename CMap> |
2493 | 2507 |
ArcMap& operator=(const CMap& cmap) { |
2494 | 2508 |
Parent::operator=(cmap); |
2495 | 2509 |
return *this; |
2496 | 2510 |
} |
2497 | 2511 |
}; |
2498 | 2512 |
|
2499 | 2513 |
|
2500 | 2514 |
|
2501 | 2515 |
protected: |
2502 | 2516 |
Graph* _graph; |
2503 | 2517 |
DM* _direction; |
2504 | 2518 |
|
2505 | 2519 |
void initialize(GR& graph, DM& direction) { |
2506 | 2520 |
_graph = &graph; |
2507 | 2521 |
_direction = &direction; |
2508 | 2522 |
} |
2509 | 2523 |
|
2510 | 2524 |
}; |
2511 | 2525 |
|
2512 | 2526 |
/// \ingroup graph_adaptors |
2513 | 2527 |
/// |
2514 | 2528 |
/// \brief Adaptor class for orienting the edges of a graph to get a digraph |
2515 | 2529 |
/// |
2516 | 2530 |
/// Orienter adaptor can be used for orienting the edges of a graph to |
2517 | 2531 |
/// get a digraph. A \c bool edge map of the underlying graph must be |
2518 | 2532 |
/// specified, which define the direction of the arcs in the adaptor. |
2519 | 2533 |
/// The arcs can be easily reversed by the \c reverseArc() member function |
2520 | 2534 |
/// of the adaptor. |
2521 | 2535 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2522 | 2536 |
/// |
2523 | 2537 |
/// The adapted graph can also be modified through this adaptor |
2524 | 2538 |
/// by adding or removing nodes or arcs, unless the \c GR template |
2525 | 2539 |
/// parameter is set to be \c const. |
2526 | 2540 |
/// |
2527 | 2541 |
/// \tparam GR The type of the adapted graph. |
2528 | 2542 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
2529 | 2543 |
/// It can also be specified to be \c const. |
2530 | 2544 |
/// \tparam DM The type of the direction map. |
2531 | 2545 |
/// It must be a \c bool (or convertible) edge map of the |
2532 | 2546 |
/// adapted graph. The default type is |
2533 | 2547 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
2534 | 2548 |
/// |
2535 | 2549 |
/// \note The \c Node type of this adaptor and the adapted graph are |
2536 | 2550 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2537 | 2551 |
/// and the \c Edge type of the adapted graph are also convertible to |
2538 | 2552 |
/// each other. |
2539 | 2553 |
#ifdef DOXYGEN |
2540 | 2554 |
template<typename GR, |
2541 | 2555 |
typename DM> |
2542 | 2556 |
class Orienter { |
2543 | 2557 |
#else |
2544 | 2558 |
template<typename GR, |
2545 | 2559 |
typename DM = typename GR::template EdgeMap<bool> > |
2546 | 2560 |
class Orienter : |
2547 | 2561 |
public DigraphAdaptorExtender<OrienterBase<GR, DM> > { |
2548 | 2562 |
#endif |
2563 |
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent; |
|
2549 | 2564 |
public: |
2550 | 2565 |
|
2551 | 2566 |
/// The type of the adapted graph. |
2552 | 2567 |
typedef GR Graph; |
2553 | 2568 |
/// The type of the direction edge map. |
2554 | 2569 |
typedef DM DirectionMap; |
2555 | 2570 |
|
2556 |
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent; |
|
2557 | 2571 |
typedef typename Parent::Arc Arc; |
2572 |
|
|
2558 | 2573 |
protected: |
2559 | 2574 |
Orienter() { } |
2575 |
|
|
2560 | 2576 |
public: |
2561 | 2577 |
|
2562 | 2578 |
/// \brief Constructor |
2563 | 2579 |
/// |
2564 | 2580 |
/// Constructor of the adaptor. |
2565 | 2581 |
Orienter(GR& graph, DM& direction) { |
2566 | 2582 |
Parent::initialize(graph, direction); |
2567 | 2583 |
} |
2568 | 2584 |
|
2569 | 2585 |
/// \brief Reverses the given arc |
2570 | 2586 |
/// |
2571 | 2587 |
/// This function reverses the given arc. |
2572 | 2588 |
/// It is done by simply negate the assigned value of \c a |
2573 | 2589 |
/// in the direction map. |
2574 | 2590 |
void reverseArc(const Arc& a) { |
2575 | 2591 |
Parent::reverseArc(a); |
2576 | 2592 |
} |
2577 | 2593 |
}; |
2578 | 2594 |
|
2579 | 2595 |
/// \brief Returns a read-only Orienter adaptor |
2580 | 2596 |
/// |
2581 | 2597 |
/// This function just returns a read-only \ref Orienter adaptor. |
2582 | 2598 |
/// \ingroup graph_adaptors |
2583 | 2599 |
/// \relates Orienter |
2584 | 2600 |
template<typename GR, typename DM> |
2585 | 2601 |
Orienter<const GR, DM> |
2586 | 2602 |
orienter(const GR& graph, DM& direction) { |
2587 | 2603 |
return Orienter<const GR, DM>(graph, direction); |
2588 | 2604 |
} |
2589 | 2605 |
|
2590 | 2606 |
template<typename GR, typename DM> |
2591 | 2607 |
Orienter<const GR, const DM> |
2592 | 2608 |
orienter(const GR& graph, const DM& direction) { |
2593 | 2609 |
return Orienter<const GR, const DM>(graph, direction); |
2594 | 2610 |
} |
2595 | 2611 |
|
2596 | 2612 |
namespace _adaptor_bits { |
2597 | 2613 |
|
2598 | 2614 |
template <typename DGR, typename CM, typename FM, typename TL> |
2599 | 2615 |
class ResForwardFilter { |
2600 | 2616 |
public: |
2601 | 2617 |
|
2602 | 2618 |
typedef typename DGR::Arc Key; |
2603 | 2619 |
typedef bool Value; |
2604 | 2620 |
|
2605 | 2621 |
private: |
2606 | 2622 |
|
2607 | 2623 |
const CM* _capacity; |
2608 | 2624 |
const FM* _flow; |
2609 | 2625 |
TL _tolerance; |
2610 | 2626 |
|
2611 | 2627 |
public: |
2612 | 2628 |
|
2613 | 2629 |
ResForwardFilter(const CM& capacity, const FM& flow, |
2614 | 2630 |
const TL& tolerance = TL()) |
2615 | 2631 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2616 | 2632 |
|
2617 | 2633 |
bool operator[](const typename DGR::Arc& a) const { |
2618 | 2634 |
return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); |
2619 | 2635 |
} |
2620 | 2636 |
}; |
2621 | 2637 |
|
2622 | 2638 |
template<typename DGR,typename CM, typename FM, typename TL> |
2623 | 2639 |
class ResBackwardFilter { |
2624 | 2640 |
public: |
2625 | 2641 |
|
2626 | 2642 |
typedef typename DGR::Arc Key; |
2627 | 2643 |
typedef bool Value; |
2628 | 2644 |
|
2629 | 2645 |
private: |
2630 | 2646 |
|
2631 | 2647 |
const CM* _capacity; |
2632 | 2648 |
const FM* _flow; |
2633 | 2649 |
TL _tolerance; |
2634 | 2650 |
|
2635 | 2651 |
public: |
2636 | 2652 |
|
2637 | 2653 |
ResBackwardFilter(const CM& capacity, const FM& flow, |
2638 | 2654 |
const TL& tolerance = TL()) |
2639 | 2655 |
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } |
2640 | 2656 |
|
2641 | 2657 |
bool operator[](const typename DGR::Arc& a) const { |
2642 | 2658 |
return _tolerance.positive((*_flow)[a]); |
2643 | 2659 |
} |
2644 | 2660 |
}; |
2645 | 2661 |
|
2646 | 2662 |
} |
2647 | 2663 |
|
2648 | 2664 |
/// \ingroup graph_adaptors |
2649 | 2665 |
/// |
2650 | 2666 |
/// \brief Adaptor class for composing the residual digraph for directed |
2651 | 2667 |
/// flow and circulation problems. |
2652 | 2668 |
/// |
2653 | 2669 |
/// ResidualDigraph can be used for composing the \e residual digraph |
2654 | 2670 |
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$ |
2655 | 2671 |
/// be a directed graph and let \f$ F \f$ be a number type. |
2656 | 2672 |
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs. |
2657 | 2673 |
/// This adaptor implements a digraph structure with node set \f$ V \f$ |
2658 | 2674 |
/// and arc set \f$ A_{forward}\cup A_{backward} \f$, |
2659 | 2675 |
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and |
2660 | 2676 |
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so |
2661 | 2677 |
/// called residual digraph. |
2662 | 2678 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken, |
2663 | 2679 |
/// multiplicities are counted, i.e. the adaptor has exactly |
2664 | 2680 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel |
2665 | 2681 |
/// arcs). |
2666 | 2682 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
2667 | 2683 |
/// |
2668 | 2684 |
/// \tparam DGR The type of the adapted digraph. |
2669 | 2685 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
2670 | 2686 |
/// It is implicitly \c const. |
2671 | 2687 |
/// \tparam CM The type of the capacity map. |
2672 | 2688 |
/// It must be an arc map of some numerical type, which defines |
2673 | 2689 |
/// the capacities in the flow problem. It is implicitly \c const. |
2674 | 2690 |
/// The default type is |
2675 | 2691 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
2676 | 2692 |
/// \tparam FM The type of the flow map. |
2677 | 2693 |
/// It must be an arc map of some numerical type, which defines |
2678 | 2694 |
/// the flow values in the flow problem. The default type is \c CM. |
2679 | 2695 |
/// \tparam TL The tolerance type for handling inexact computation. |
2680 | 2696 |
/// The default tolerance type depends on the value type of the |
2681 | 2697 |
/// capacity map. |
2682 | 2698 |
/// |
2683 | 2699 |
/// \note This adaptor is implemented using Undirector and FilterArcs |
2684 | 2700 |
/// adaptors. |
2685 | 2701 |
/// |
2686 | 2702 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2687 | 2703 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2688 | 2704 |
/// is convertible to the \c Arc type of the adapted digraph. |
2689 | 2705 |
#ifdef DOXYGEN |
2690 | 2706 |
template<typename DGR, typename CM, typename FM, typename TL> |
2691 | 2707 |
class ResidualDigraph |
2692 | 2708 |
#else |
2693 | 2709 |
template<typename DGR, |
2694 | 2710 |
typename CM = typename DGR::template ArcMap<int>, |
2695 | 2711 |
typename FM = CM, |
2696 | 2712 |
typename TL = Tolerance<typename CM::Value> > |
2697 | 2713 |
class ResidualDigraph |
2698 | 2714 |
: public SubDigraph< |
2699 | 2715 |
Undirector<const DGR>, |
2700 | 2716 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
2701 | 2717 |
typename Undirector<const DGR>::template CombinedArcMap< |
2702 | 2718 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
2703 | 2719 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
2704 | 2720 |
#endif |
2705 | 2721 |
{ |
2706 | 2722 |
public: |
2707 | 2723 |
|
2708 | 2724 |
/// The type of the underlying digraph. |
2709 | 2725 |
typedef DGR Digraph; |
2710 | 2726 |
/// The type of the capacity map. |
2711 | 2727 |
typedef CM CapacityMap; |
2712 | 2728 |
/// The type of the flow map. |
2713 | 2729 |
typedef FM FlowMap; |
2714 | 2730 |
/// The tolerance type. |
2715 | 2731 |
typedef TL Tolerance; |
2716 | 2732 |
|
2717 | 2733 |
typedef typename CapacityMap::Value Value; |
2718 | 2734 |
typedef ResidualDigraph Adaptor; |
2719 | 2735 |
|
2720 | 2736 |
protected: |
2721 | 2737 |
|
2722 | 2738 |
typedef Undirector<const Digraph> Undirected; |
2723 | 2739 |
|
2724 | 2740 |
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter; |
2725 | 2741 |
|
2726 | 2742 |
typedef _adaptor_bits::ResForwardFilter<const DGR, CM, |
2727 | 2743 |
FM, TL> ForwardFilter; |
2728 | 2744 |
|
2729 | 2745 |
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM, |
2730 | 2746 |
FM, TL> BackwardFilter; |
2731 | 2747 |
|
2732 | 2748 |
typedef typename Undirected:: |
2733 | 2749 |
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter; |
2734 | 2750 |
|
2735 | 2751 |
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent; |
2736 | 2752 |
|
2737 | 2753 |
const CapacityMap* _capacity; |
2738 | 2754 |
FlowMap* _flow; |
2739 | 2755 |
|
2740 | 2756 |
Undirected _graph; |
2741 | 2757 |
NodeFilter _node_filter; |
2742 | 2758 |
ForwardFilter _forward_filter; |
2743 | 2759 |
BackwardFilter _backward_filter; |
2744 | 2760 |
ArcFilter _arc_filter; |
2745 | 2761 |
|
2746 | 2762 |
public: |
2747 | 2763 |
|
2748 | 2764 |
/// \brief Constructor |
2749 | 2765 |
/// |
2750 | 2766 |
/// Constructor of the residual digraph adaptor. The parameters are the |
2751 | 2767 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
2752 | 2768 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
2753 | 2769 |
FM& flow, const TL& tolerance = Tolerance()) |
2754 | 2770 |
: Parent(), _capacity(&capacity), _flow(&flow), |
2755 | 2771 |
_graph(digraph), _node_filter(), |
2756 | 2772 |
_forward_filter(capacity, flow, tolerance), |
2757 | 2773 |
_backward_filter(capacity, flow, tolerance), |
2758 | 2774 |
_arc_filter(_forward_filter, _backward_filter) |
2759 | 2775 |
{ |
2760 | 2776 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
2761 | 2777 |
} |
2762 | 2778 |
|
2763 | 2779 |
typedef typename Parent::Arc Arc; |
2764 | 2780 |
|
2765 | 2781 |
/// \brief Returns the residual capacity of the given arc. |
2766 | 2782 |
/// |
2767 | 2783 |
/// Returns the residual capacity of the given arc. |
2768 | 2784 |
Value residualCapacity(const Arc& a) const { |
2769 | 2785 |
if (Undirected::direction(a)) { |
2770 | 2786 |
return (*_capacity)[a] - (*_flow)[a]; |
2771 | 2787 |
} else { |
2772 | 2788 |
return (*_flow)[a]; |
2773 | 2789 |
} |
2774 | 2790 |
} |
2775 | 2791 |
|
2776 | 2792 |
/// \brief Augments on the given arc in the residual digraph. |
2777 | 2793 |
/// |
2778 | 2794 |
/// Augments on the given arc in the residual digraph. It increases |
2779 | 2795 |
/// or decreases the flow value on the original arc according to the |
2780 | 2796 |
/// direction of the residual arc. |
2781 | 2797 |
void augment(const Arc& a, const Value& v) const { |
2782 | 2798 |
if (Undirected::direction(a)) { |
2783 | 2799 |
_flow->set(a, (*_flow)[a] + v); |
2784 | 2800 |
} else { |
2785 | 2801 |
_flow->set(a, (*_flow)[a] - v); |
2786 | 2802 |
} |
2787 | 2803 |
} |
2788 | 2804 |
|
2789 | 2805 |
/// \brief Returns \c true if the given residual arc is a forward arc. |
2790 | 2806 |
/// |
2791 | 2807 |
/// Returns \c true if the given residual arc has the same orientation |
2792 | 2808 |
/// as the original arc, i.e. it is a so called forward arc. |
2793 | 2809 |
static bool forward(const Arc& a) { |
2794 | 2810 |
return Undirected::direction(a); |
2795 | 2811 |
} |
2796 | 2812 |
|
2797 | 2813 |
/// \brief Returns \c true if the given residual arc is a backward arc. |
2798 | 2814 |
/// |
2799 | 2815 |
/// Returns \c true if the given residual arc has the opposite orientation |
2800 | 2816 |
/// than the original arc, i.e. it is a so called backward arc. |
2801 | 2817 |
static bool backward(const Arc& a) { |
2802 | 2818 |
return !Undirected::direction(a); |
2803 | 2819 |
} |
2804 | 2820 |
|
2805 | 2821 |
/// \brief Returns the forward oriented residual arc. |
2806 | 2822 |
/// |
2807 | 2823 |
/// Returns the forward oriented residual arc related to the given |
2808 | 2824 |
/// arc of the underlying digraph. |
2809 | 2825 |
static Arc forward(const typename Digraph::Arc& a) { |
2810 | 2826 |
return Undirected::direct(a, true); |
2811 | 2827 |
} |
2812 | 2828 |
|
2813 | 2829 |
/// \brief Returns the backward oriented residual arc. |
2814 | 2830 |
/// |
2815 | 2831 |
/// Returns the backward oriented residual arc related to the given |
2816 | 2832 |
/// arc of the underlying digraph. |
2817 | 2833 |
static Arc backward(const typename Digraph::Arc& a) { |
2818 | 2834 |
return Undirected::direct(a, false); |
2819 | 2835 |
} |
2820 | 2836 |
|
2821 | 2837 |
/// \brief Residual capacity map. |
2822 | 2838 |
/// |
2823 | 2839 |
/// This map adaptor class can be used for obtaining the residual |
2824 | 2840 |
/// capacities as an arc map of the residual digraph. |
2825 | 2841 |
/// Its value type is inherited from the capacity map. |
2826 | 2842 |
class ResidualCapacity { |
2827 | 2843 |
protected: |
2828 | 2844 |
const Adaptor* _adaptor; |
2829 | 2845 |
public: |
2830 | 2846 |
/// The key type of the map |
2831 | 2847 |
typedef Arc Key; |
2832 | 2848 |
/// The value type of the map |
2833 | 2849 |
typedef typename CapacityMap::Value Value; |
2834 | 2850 |
|
2835 | 2851 |
/// Constructor |
2836 | 2852 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
2837 | 2853 |
: _adaptor(&adaptor) {} |
2838 | 2854 |
|
2839 | 2855 |
/// Returns the value associated with the given residual arc |
2840 | 2856 |
Value operator[](const Arc& a) const { |
2841 | 2857 |
return _adaptor->residualCapacity(a); |
2842 | 2858 |
} |
2843 | 2859 |
|
2844 | 2860 |
}; |
2845 | 2861 |
|
2846 | 2862 |
/// \brief Returns a residual capacity map |
2847 | 2863 |
/// |
2848 | 2864 |
/// This function just returns a residual capacity map. |
2849 | 2865 |
ResidualCapacity residualCapacity() const { |
2850 | 2866 |
return ResidualCapacity(*this); |
2851 | 2867 |
} |
2852 | 2868 |
|
2853 | 2869 |
}; |
2854 | 2870 |
|
2855 | 2871 |
/// \brief Returns a (read-only) Residual adaptor |
2856 | 2872 |
/// |
2857 | 2873 |
/// This function just returns a (read-only) \ref ResidualDigraph adaptor. |
2858 | 2874 |
/// \ingroup graph_adaptors |
2859 | 2875 |
/// \relates ResidualDigraph |
2860 | 2876 |
template<typename DGR, typename CM, typename FM> |
2861 | 2877 |
ResidualDigraph<DGR, CM, FM> |
2862 | 2878 |
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) { |
2863 | 2879 |
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map); |
2864 | 2880 |
} |
2865 | 2881 |
|
2866 | 2882 |
|
2867 | 2883 |
template <typename DGR> |
2868 | 2884 |
class SplitNodesBase { |
2885 |
typedef DigraphAdaptorBase<const DGR> Parent; |
|
2886 |
|
|
2869 | 2887 |
public: |
2870 | 2888 |
|
2871 | 2889 |
typedef DGR Digraph; |
2872 |
typedef DigraphAdaptorBase<const DGR> Parent; |
|
2873 | 2890 |
typedef SplitNodesBase Adaptor; |
2874 | 2891 |
|
2875 | 2892 |
typedef typename DGR::Node DigraphNode; |
2876 | 2893 |
typedef typename DGR::Arc DigraphArc; |
2877 | 2894 |
|
2878 | 2895 |
class Node; |
2879 | 2896 |
class Arc; |
2880 | 2897 |
|
2881 | 2898 |
private: |
2882 | 2899 |
|
2883 | 2900 |
template <typename T> class NodeMapBase; |
2884 | 2901 |
template <typename T> class ArcMapBase; |
2885 | 2902 |
|
2886 | 2903 |
public: |
2887 | 2904 |
|
2888 | 2905 |
class Node : public DigraphNode { |
2889 | 2906 |
friend class SplitNodesBase; |
2890 | 2907 |
template <typename T> friend class NodeMapBase; |
2891 | 2908 |
private: |
2892 | 2909 |
|
2893 | 2910 |
bool _in; |
2894 | 2911 |
Node(DigraphNode node, bool in) |
2895 | 2912 |
: DigraphNode(node), _in(in) {} |
2896 | 2913 |
|
2897 | 2914 |
public: |
2898 | 2915 |
|
2899 | 2916 |
Node() {} |
2900 | 2917 |
Node(Invalid) : DigraphNode(INVALID), _in(true) {} |
2901 | 2918 |
|
2902 | 2919 |
bool operator==(const Node& node) const { |
2903 | 2920 |
return DigraphNode::operator==(node) && _in == node._in; |
2904 | 2921 |
} |
2905 | 2922 |
|
2906 | 2923 |
bool operator!=(const Node& node) const { |
2907 | 2924 |
return !(*this == node); |
2908 | 2925 |
} |
2909 | 2926 |
|
2910 | 2927 |
bool operator<(const Node& node) const { |
2911 | 2928 |
return DigraphNode::operator<(node) || |
2912 | 2929 |
(DigraphNode::operator==(node) && _in < node._in); |
2913 | 2930 |
} |
2914 | 2931 |
}; |
2915 | 2932 |
|
2916 | 2933 |
class Arc { |
2917 | 2934 |
friend class SplitNodesBase; |
2918 | 2935 |
template <typename T> friend class ArcMapBase; |
2919 | 2936 |
private: |
2920 | 2937 |
typedef BiVariant<DigraphArc, DigraphNode> ArcImpl; |
2921 | 2938 |
|
2922 | 2939 |
explicit Arc(const DigraphArc& arc) : _item(arc) {} |
2923 | 2940 |
explicit Arc(const DigraphNode& node) : _item(node) {} |
2924 | 2941 |
|
2925 | 2942 |
ArcImpl _item; |
2926 | 2943 |
|
2927 | 2944 |
public: |
2928 | 2945 |
Arc() {} |
2929 | 2946 |
Arc(Invalid) : _item(DigraphArc(INVALID)) {} |
2930 | 2947 |
|
2931 | 2948 |
bool operator==(const Arc& arc) const { |
2932 | 2949 |
if (_item.firstState()) { |
2933 | 2950 |
if (arc._item.firstState()) { |
2934 | 2951 |
return _item.first() == arc._item.first(); |
2935 | 2952 |
} |
2936 | 2953 |
} else { |
2937 | 2954 |
if (arc._item.secondState()) { |
2938 | 2955 |
return _item.second() == arc._item.second(); |
2939 | 2956 |
} |
2940 | 2957 |
} |
2941 | 2958 |
return false; |
2942 | 2959 |
} |
2943 | 2960 |
|
2944 | 2961 |
bool operator!=(const Arc& arc) const { |
2945 | 2962 |
return !(*this == arc); |
2946 | 2963 |
} |
2947 | 2964 |
|
2948 | 2965 |
bool operator<(const Arc& arc) const { |
2949 | 2966 |
if (_item.firstState()) { |
2950 | 2967 |
if (arc._item.firstState()) { |
2951 | 2968 |
return _item.first() < arc._item.first(); |
2952 | 2969 |
} |
2953 | 2970 |
return false; |
2954 | 2971 |
} else { |
2955 | 2972 |
if (arc._item.secondState()) { |
2956 | 2973 |
return _item.second() < arc._item.second(); |
2957 | 2974 |
} |
2958 | 2975 |
return true; |
2959 | 2976 |
} |
2960 | 2977 |
} |
2961 | 2978 |
|
2962 | 2979 |
operator DigraphArc() const { return _item.first(); } |
2963 | 2980 |
operator DigraphNode() const { return _item.second(); } |
2964 | 2981 |
|
2965 | 2982 |
}; |
2966 | 2983 |
|
2967 | 2984 |
void first(Node& n) const { |
2968 | 2985 |
_digraph->first(n); |
2969 | 2986 |
n._in = true; |
2970 | 2987 |
} |
2971 | 2988 |
|
2972 | 2989 |
void next(Node& n) const { |
2973 | 2990 |
if (n._in) { |
2974 | 2991 |
n._in = false; |
2975 | 2992 |
} else { |
2976 | 2993 |
n._in = true; |
2977 | 2994 |
_digraph->next(n); |
2978 | 2995 |
} |
2979 | 2996 |
} |
2980 | 2997 |
|
2981 | 2998 |
void first(Arc& e) const { |
2982 | 2999 |
e._item.setSecond(); |
2983 | 3000 |
_digraph->first(e._item.second()); |
2984 | 3001 |
if (e._item.second() == INVALID) { |
2985 | 3002 |
e._item.setFirst(); |
2986 | 3003 |
_digraph->first(e._item.first()); |
2987 | 3004 |
} |
2988 | 3005 |
} |
2989 | 3006 |
|
2990 | 3007 |
void next(Arc& e) const { |
2991 | 3008 |
if (e._item.secondState()) { |
2992 | 3009 |
_digraph->next(e._item.second()); |
2993 | 3010 |
if (e._item.second() == INVALID) { |
2994 | 3011 |
e._item.setFirst(); |
2995 | 3012 |
_digraph->first(e._item.first()); |
2996 | 3013 |
} |
2997 | 3014 |
} else { |
2998 | 3015 |
_digraph->next(e._item.first()); |
2999 | 3016 |
} |
3000 | 3017 |
} |
3001 | 3018 |
|
3002 | 3019 |
void firstOut(Arc& e, const Node& n) const { |
3003 | 3020 |
if (n._in) { |
3004 | 3021 |
e._item.setSecond(n); |
3005 | 3022 |
} else { |
3006 | 3023 |
e._item.setFirst(); |
3007 | 3024 |
_digraph->firstOut(e._item.first(), n); |
3008 | 3025 |
} |
3009 | 3026 |
} |
3010 | 3027 |
|
3011 | 3028 |
void nextOut(Arc& e) const { |
3012 | 3029 |
if (!e._item.firstState()) { |
3013 | 3030 |
e._item.setFirst(INVALID); |
3014 | 3031 |
} else { |
3015 | 3032 |
_digraph->nextOut(e._item.first()); |
3016 | 3033 |
} |
3017 | 3034 |
} |
3018 | 3035 |
|
3019 | 3036 |
void firstIn(Arc& e, const Node& n) const { |
3020 | 3037 |
if (!n._in) { |
3021 | 3038 |
e._item.setSecond(n); |
3022 | 3039 |
} else { |
3023 | 3040 |
e._item.setFirst(); |
3024 | 3041 |
_digraph->firstIn(e._item.first(), n); |
3025 | 3042 |
} |
3026 | 3043 |
} |
3027 | 3044 |
|
3028 | 3045 |
void nextIn(Arc& e) const { |
3029 | 3046 |
if (!e._item.firstState()) { |
3030 | 3047 |
e._item.setFirst(INVALID); |
3031 | 3048 |
} else { |
3032 | 3049 |
_digraph->nextIn(e._item.first()); |
3033 | 3050 |
} |
3034 | 3051 |
} |
3035 | 3052 |
|
3036 | 3053 |
Node source(const Arc& e) const { |
3037 | 3054 |
if (e._item.firstState()) { |
3038 | 3055 |
return Node(_digraph->source(e._item.first()), false); |
3039 | 3056 |
} else { |
3040 | 3057 |
return Node(e._item.second(), true); |
3041 | 3058 |
} |
3042 | 3059 |
} |
3043 | 3060 |
|
3044 | 3061 |
Node target(const Arc& e) const { |
3045 | 3062 |
if (e._item.firstState()) { |
3046 | 3063 |
return Node(_digraph->target(e._item.first()), true); |
3047 | 3064 |
} else { |
3048 | 3065 |
return Node(e._item.second(), false); |
3049 | 3066 |
} |
3050 | 3067 |
} |
3051 | 3068 |
|
3052 | 3069 |
int id(const Node& n) const { |
3053 | 3070 |
return (_digraph->id(n) << 1) | (n._in ? 0 : 1); |
3054 | 3071 |
} |
3055 | 3072 |
Node nodeFromId(int ix) const { |
3056 | 3073 |
return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); |
3057 | 3074 |
} |
3058 | 3075 |
int maxNodeId() const { |
3059 | 3076 |
return 2 * _digraph->maxNodeId() + 1; |
3060 | 3077 |
} |
3061 | 3078 |
|
3062 | 3079 |
int id(const Arc& e) const { |
3063 | 3080 |
if (e._item.firstState()) { |
3064 | 3081 |
return _digraph->id(e._item.first()) << 1; |
3065 | 3082 |
} else { |
3066 | 3083 |
return (_digraph->id(e._item.second()) << 1) | 1; |
3067 | 3084 |
} |
3068 | 3085 |
} |
3069 | 3086 |
Arc arcFromId(int ix) const { |
3070 | 3087 |
if ((ix & 1) == 0) { |
3071 | 3088 |
return Arc(_digraph->arcFromId(ix >> 1)); |
3072 | 3089 |
} else { |
3073 | 3090 |
return Arc(_digraph->nodeFromId(ix >> 1)); |
3074 | 3091 |
} |
3075 | 3092 |
} |
3076 | 3093 |
int maxArcId() const { |
3077 | 3094 |
return std::max(_digraph->maxNodeId() << 1, |
3078 | 3095 |
(_digraph->maxArcId() << 1) | 1); |
3079 | 3096 |
} |
3080 | 3097 |
|
3081 | 3098 |
static bool inNode(const Node& n) { |
3082 | 3099 |
return n._in; |
3083 | 3100 |
} |
3084 | 3101 |
|
3085 | 3102 |
static bool outNode(const Node& n) { |
3086 | 3103 |
return !n._in; |
3087 | 3104 |
} |
3088 | 3105 |
|
3089 | 3106 |
static bool origArc(const Arc& e) { |
3090 | 3107 |
return e._item.firstState(); |
3091 | 3108 |
} |
3092 | 3109 |
|
3093 | 3110 |
static bool bindArc(const Arc& e) { |
3094 | 3111 |
return e._item.secondState(); |
3095 | 3112 |
} |
3096 | 3113 |
|
3097 | 3114 |
static Node inNode(const DigraphNode& n) { |
3098 | 3115 |
return Node(n, true); |
3099 | 3116 |
} |
3100 | 3117 |
|
3101 | 3118 |
static Node outNode(const DigraphNode& n) { |
3102 | 3119 |
return Node(n, false); |
3103 | 3120 |
} |
3104 | 3121 |
|
3105 | 3122 |
static Arc arc(const DigraphNode& n) { |
3106 | 3123 |
return Arc(n); |
3107 | 3124 |
} |
3108 | 3125 |
|
3109 | 3126 |
static Arc arc(const DigraphArc& e) { |
3110 | 3127 |
return Arc(e); |
3111 | 3128 |
} |
3112 | 3129 |
|
3113 | 3130 |
typedef True NodeNumTag; |
3114 | 3131 |
int nodeNum() const { |
3115 | 3132 |
return 2 * countNodes(*_digraph); |
3116 | 3133 |
} |
3117 | 3134 |
|
3118 | 3135 |
typedef True ArcNumTag; |
3119 | 3136 |
int arcNum() const { |
3120 | 3137 |
return countArcs(*_digraph) + countNodes(*_digraph); |
3121 | 3138 |
} |
3122 | 3139 |
|
3123 | 3140 |
typedef True FindArcTag; |
3124 | 3141 |
Arc findArc(const Node& u, const Node& v, |
3125 | 3142 |
const Arc& prev = INVALID) const { |
3126 | 3143 |
if (inNode(u) && outNode(v)) { |
3127 | 3144 |
if (static_cast<const DigraphNode&>(u) == |
3128 | 3145 |
static_cast<const DigraphNode&>(v) && prev == INVALID) { |
3129 | 3146 |
return Arc(u); |
3130 | 3147 |
} |
3131 | 3148 |
} |
3132 | 3149 |
else if (outNode(u) && inNode(v)) { |
3133 | 3150 |
return Arc(::lemon::findArc(*_digraph, u, v, prev)); |
3134 | 3151 |
} |
3135 | 3152 |
return INVALID; |
3136 | 3153 |
} |
3137 | 3154 |
|
3138 | 3155 |
private: |
3139 | 3156 |
|
3140 | 3157 |
template <typename V> |
3141 | 3158 |
class NodeMapBase |
3142 | 3159 |
: public MapTraits<typename Parent::template NodeMap<V> > { |
3143 | 3160 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
3144 | 3161 |
public: |
3145 | 3162 |
typedef Node Key; |
3146 | 3163 |
typedef V Value; |
3147 | 3164 |
typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag; |
3148 | 3165 |
typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue; |
3149 | 3166 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue; |
3150 | 3167 |
typedef typename MapTraits<NodeImpl>::ReturnValue Reference; |
3151 | 3168 |
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference; |
3152 | 3169 |
|
3153 | 3170 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor) |
3154 | 3171 |
: _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} |
3155 | 3172 |
NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
3156 | 3173 |
: _in_map(*adaptor._digraph, value), |
3157 | 3174 |
_out_map(*adaptor._digraph, value) {} |
3158 | 3175 |
|
3159 | 3176 |
void set(const Node& key, const V& val) { |
3160 | 3177 |
if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); } |
3161 | 3178 |
else {_out_map.set(key, val); } |
3162 | 3179 |
} |
3163 | 3180 |
|
3164 | 3181 |
ReturnValue operator[](const Node& key) { |
3165 | 3182 |
if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; } |
3166 | 3183 |
else { return _out_map[key]; } |
3167 | 3184 |
} |
3168 | 3185 |
|
3169 | 3186 |
ConstReturnValue operator[](const Node& key) const { |
3170 | 3187 |
if (Adaptor::inNode(key)) { return _in_map[key]; } |
3171 | 3188 |
else { return _out_map[key]; } |
3172 | 3189 |
} |
3173 | 3190 |
|
3174 | 3191 |
private: |
3175 | 3192 |
NodeImpl _in_map, _out_map; |
3176 | 3193 |
}; |
3177 | 3194 |
|
3178 | 3195 |
template <typename V> |
3179 | 3196 |
class ArcMapBase |
3180 | 3197 |
: public MapTraits<typename Parent::template ArcMap<V> > { |
3181 | 3198 |
typedef typename Parent::template ArcMap<V> ArcImpl; |
3182 | 3199 |
typedef typename Parent::template NodeMap<V> NodeImpl; |
3183 | 3200 |
public: |
3184 | 3201 |
typedef Arc Key; |
3185 | 3202 |
typedef V Value; |
3186 | 3203 |
typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag; |
3187 | 3204 |
typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue; |
3188 | 3205 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue; |
3189 | 3206 |
typedef typename MapTraits<ArcImpl>::ReturnValue Reference; |
3190 | 3207 |
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference; |
3191 | 3208 |
|
3192 | 3209 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor) |
3193 | 3210 |
: _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} |
3194 | 3211 |
ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value) |
3195 | 3212 |
: _arc_map(*adaptor._digraph, value), |
3196 | 3213 |
_node_map(*adaptor._digraph, value) {} |
3197 | 3214 |
|
3198 | 3215 |
void set(const Arc& key, const V& val) { |
3199 | 3216 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3200 | 3217 |
_arc_map.set(static_cast<const DigraphArc&>(key), val); |
3201 | 3218 |
} else { |
3202 | 3219 |
_node_map.set(static_cast<const DigraphNode&>(key), val); |
3203 | 3220 |
} |
3204 | 3221 |
} |
3205 | 3222 |
|
3206 | 3223 |
ReturnValue operator[](const Arc& key) { |
3207 | 3224 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3208 | 3225 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
3209 | 3226 |
} else { |
3210 | 3227 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
3211 | 3228 |
} |
3212 | 3229 |
} |
3213 | 3230 |
|
3214 | 3231 |
ConstReturnValue operator[](const Arc& key) const { |
3215 | 3232 |
if (SplitNodesBase<DGR>::origArc(key)) { |
3216 | 3233 |
return _arc_map[static_cast<const DigraphArc&>(key)]; |
3217 | 3234 |
} else { |
3218 | 3235 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
3219 | 3236 |
} |
3220 | 3237 |
} |
3221 | 3238 |
|
3222 | 3239 |
private: |
3223 | 3240 |
ArcImpl _arc_map; |
3224 | 3241 |
NodeImpl _node_map; |
3225 | 3242 |
}; |
3226 | 3243 |
|
3227 | 3244 |
public: |
3228 | 3245 |
|
3229 | 3246 |
template <typename V> |
3230 | 3247 |
class NodeMap |
3231 |
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > |
|
3232 |
{ |
|
3248 |
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > { |
|
3249 |
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent; |
|
3250 |
|
|
3233 | 3251 |
public: |
3234 | 3252 |
typedef V Value; |
3235 |
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent; |
|
3236 | 3253 |
|
3237 | 3254 |
NodeMap(const SplitNodesBase<DGR>& adaptor) |
3238 | 3255 |
: Parent(adaptor) {} |
3239 | 3256 |
|
3240 | 3257 |
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3241 | 3258 |
: Parent(adaptor, value) {} |
3242 | 3259 |
|
3243 | 3260 |
private: |
3244 | 3261 |
NodeMap& operator=(const NodeMap& cmap) { |
3245 | 3262 |
return operator=<NodeMap>(cmap); |
3246 | 3263 |
} |
3247 | 3264 |
|
3248 | 3265 |
template <typename CMap> |
3249 | 3266 |
NodeMap& operator=(const CMap& cmap) { |
3250 | 3267 |
Parent::operator=(cmap); |
3251 | 3268 |
return *this; |
3252 | 3269 |
} |
3253 | 3270 |
}; |
3254 | 3271 |
|
3255 | 3272 |
template <typename V> |
3256 | 3273 |
class ArcMap |
3257 |
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > |
|
3258 |
{ |
|
3274 |
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > { |
|
3275 |
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent; |
|
3276 |
|
|
3259 | 3277 |
public: |
3260 | 3278 |
typedef V Value; |
3261 |
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent; |
|
3262 | 3279 |
|
3263 | 3280 |
ArcMap(const SplitNodesBase<DGR>& adaptor) |
3264 | 3281 |
: Parent(adaptor) {} |
3265 | 3282 |
|
3266 | 3283 |
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
3267 | 3284 |
: Parent(adaptor, value) {} |
3268 | 3285 |
|
3269 | 3286 |
private: |
3270 | 3287 |
ArcMap& operator=(const ArcMap& cmap) { |
3271 | 3288 |
return operator=<ArcMap>(cmap); |
3272 | 3289 |
} |
3273 | 3290 |
|
3274 | 3291 |
template <typename CMap> |
3275 | 3292 |
ArcMap& operator=(const CMap& cmap) { |
3276 | 3293 |
Parent::operator=(cmap); |
3277 | 3294 |
return *this; |
3278 | 3295 |
} |
3279 | 3296 |
}; |
3280 | 3297 |
|
3281 | 3298 |
protected: |
3282 | 3299 |
|
3283 | 3300 |
SplitNodesBase() : _digraph(0) {} |
3284 | 3301 |
|
3285 | 3302 |
DGR* _digraph; |
3286 | 3303 |
|
3287 | 3304 |
void initialize(Digraph& digraph) { |
3288 | 3305 |
_digraph = &digraph; |
3289 | 3306 |
} |
3290 | 3307 |
|
3291 | 3308 |
}; |
3292 | 3309 |
|
3293 | 3310 |
/// \ingroup graph_adaptors |
3294 | 3311 |
/// |
3295 | 3312 |
/// \brief Adaptor class for splitting the nodes of a digraph. |
3296 | 3313 |
/// |
3297 | 3314 |
/// SplitNodes adaptor can be used for splitting each node into an |
3298 | 3315 |
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor |
3299 | 3316 |
/// replaces each node \f$ u \f$ in the digraph with two nodes, |
3300 | 3317 |
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$. |
3301 | 3318 |
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the |
3302 | 3319 |
/// new target of the arc will be \f$ u_{in} \f$ and similarly the |
3303 | 3320 |
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$. |
3304 | 3321 |
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$ |
3305 | 3322 |
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph. |
3306 | 3323 |
/// |
3307 | 3324 |
/// The aim of this class is running an algorithm with respect to node |
3308 | 3325 |
/// costs or capacities if the algorithm considers only arc costs or |
3309 | 3326 |
/// capacities directly. |
3310 | 3327 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
3311 | 3328 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
3312 | 3329 |
/// in the adaptor. |
3313 | 3330 |
/// |
3314 | 3331 |
/// \tparam DGR The type of the adapted digraph. |
3315 | 3332 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
3316 | 3333 |
/// It is implicitly \c const. |
3317 | 3334 |
/// |
3318 | 3335 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
3319 | 3336 |
/// type of the adapted digraph. |
3320 | 3337 |
template <typename DGR> |
3321 | 3338 |
#ifdef DOXYGEN |
3322 | 3339 |
class SplitNodes { |
3323 | 3340 |
#else |
3324 | 3341 |
class SplitNodes |
3325 | 3342 |
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > { |
3326 | 3343 |
#endif |
3344 |
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent; |
|
3345 |
|
|
3327 | 3346 |
public: |
3328 | 3347 |
typedef DGR Digraph; |
3329 |
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent; |
|
3330 | 3348 |
|
3331 | 3349 |
typedef typename DGR::Node DigraphNode; |
3332 | 3350 |
typedef typename DGR::Arc DigraphArc; |
3333 | 3351 |
|
3334 | 3352 |
typedef typename Parent::Node Node; |
3335 | 3353 |
typedef typename Parent::Arc Arc; |
3336 | 3354 |
|
3337 | 3355 |
/// \brief Constructor |
3338 | 3356 |
/// |
3339 | 3357 |
/// Constructor of the adaptor. |
3340 | 3358 |
SplitNodes(const DGR& g) { |
3341 | 3359 |
Parent::initialize(g); |
3342 | 3360 |
} |
3343 | 3361 |
|
3344 | 3362 |
/// \brief Returns \c true if the given node is an in-node. |
3345 | 3363 |
/// |
3346 | 3364 |
/// Returns \c true if the given node is an in-node. |
3347 | 3365 |
static bool inNode(const Node& n) { |
3348 | 3366 |
return Parent::inNode(n); |
3349 | 3367 |
} |
3350 | 3368 |
|
3351 | 3369 |
/// \brief Returns \c true if the given node is an out-node. |
3352 | 3370 |
/// |
3353 | 3371 |
/// Returns \c true if the given node is an out-node. |
3354 | 3372 |
static bool outNode(const Node& n) { |
3355 | 3373 |
return Parent::outNode(n); |
3356 | 3374 |
} |
3357 | 3375 |
|
3358 | 3376 |
/// \brief Returns \c true if the given arc is an original arc. |
3359 | 3377 |
/// |
3360 | 3378 |
/// Returns \c true if the given arc is one of the arcs in the |
3361 | 3379 |
/// original digraph. |
3362 | 3380 |
static bool origArc(const Arc& a) { |
3363 | 3381 |
return Parent::origArc(a); |
3364 | 3382 |
} |
3365 | 3383 |
|
3366 | 3384 |
/// \brief Returns \c true if the given arc is a bind arc. |
3367 | 3385 |
/// |
3368 | 3386 |
/// Returns \c true if the given arc is a bind arc, i.e. it connects |
3369 | 3387 |
/// an in-node and an out-node. |
3370 | 3388 |
static bool bindArc(const Arc& a) { |
3371 | 3389 |
return Parent::bindArc(a); |
3372 | 3390 |
} |
3373 | 3391 |
|
3374 | 3392 |
/// \brief Returns the in-node created from the given original node. |
3375 | 3393 |
/// |
3376 | 3394 |
/// Returns the in-node created from the given original node. |
3377 | 3395 |
static Node inNode(const DigraphNode& n) { |
3378 | 3396 |
return Parent::inNode(n); |
3379 | 3397 |
} |
3380 | 3398 |
|
3381 | 3399 |
/// \brief Returns the out-node created from the given original node. |
3382 | 3400 |
/// |
3383 | 3401 |
/// Returns the out-node created from the given original node. |
3384 | 3402 |
static Node outNode(const DigraphNode& n) { |
3385 | 3403 |
return Parent::outNode(n); |
3386 | 3404 |
} |
3387 | 3405 |
|
3388 | 3406 |
/// \brief Returns the bind arc that corresponds to the given |
3389 | 3407 |
/// original node. |
3390 | 3408 |
/// |
3391 | 3409 |
/// Returns the bind arc in the adaptor that corresponds to the given |
3392 | 3410 |
/// original node, i.e. the arc connecting the in-node and out-node |
3393 | 3411 |
/// of \c n. |
3394 | 3412 |
static Arc arc(const DigraphNode& n) { |
3395 | 3413 |
return Parent::arc(n); |
3396 | 3414 |
} |
3397 | 3415 |
|
3398 | 3416 |
/// \brief Returns the arc that corresponds to the given original arc. |
3399 | 3417 |
/// |
3400 | 3418 |
/// Returns the arc in the adaptor that corresponds to the given |
3401 | 3419 |
/// original arc. |
3402 | 3420 |
static Arc arc(const DigraphArc& a) { |
3403 | 3421 |
return Parent::arc(a); |
3404 | 3422 |
} |
3405 | 3423 |
|
3406 | 3424 |
/// \brief Node map combined from two original node maps |
3407 | 3425 |
/// |
3408 | 3426 |
/// This map adaptor class adapts two node maps of the original digraph |
3409 | 3427 |
/// to get a node map of the split digraph. |
3410 | 3428 |
/// Its value type is inherited from the first node map type (\c IN). |
3411 | 3429 |
/// \tparam IN The type of the node map for the in-nodes. |
3412 | 3430 |
/// \tparam OUT The type of the node map for the out-nodes. |
3413 | 3431 |
template <typename IN, typename OUT> |
3414 | 3432 |
class CombinedNodeMap { |
3415 | 3433 |
public: |
3416 | 3434 |
|
3417 | 3435 |
/// The key type of the map |
3418 | 3436 |
typedef Node Key; |
3419 | 3437 |
/// The value type of the map |
3420 | 3438 |
typedef typename IN::Value Value; |
3421 | 3439 |
|
3422 | 3440 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
3423 | 3441 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
3424 | 3442 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
3425 | 3443 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
3426 | 3444 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
3427 | 3445 |
|
3428 | 3446 |
/// Constructor |
3429 | 3447 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
3430 | 3448 |
: _in_map(in_map), _out_map(out_map) {} |
3431 | 3449 |
|
3432 | 3450 |
/// Returns the value associated with the given key. |
3433 | 3451 |
Value operator[](const Key& key) const { |
3434 | 3452 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3435 | 3453 |
return _in_map[key]; |
3436 | 3454 |
} else { |
3437 | 3455 |
return _out_map[key]; |
3438 | 3456 |
} |
3439 | 3457 |
} |
3440 | 3458 |
|
3441 | 3459 |
/// Returns a reference to the value associated with the given key. |
3442 | 3460 |
Value& operator[](const Key& key) { |
3443 | 3461 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3444 | 3462 |
return _in_map[key]; |
3445 | 3463 |
} else { |
3446 | 3464 |
return _out_map[key]; |
3447 | 3465 |
} |
3448 | 3466 |
} |
3449 | 3467 |
|
3450 | 3468 |
/// Sets the value associated with the given key. |
3451 | 3469 |
void set(const Key& key, const Value& value) { |
3452 | 3470 |
if (SplitNodesBase<const DGR>::inNode(key)) { |
3453 | 3471 |
_in_map.set(key, value); |
3454 | 3472 |
} else { |
3455 | 3473 |
_out_map.set(key, value); |
3456 | 3474 |
} |
3457 | 3475 |
} |
3458 | 3476 |
|
3459 | 3477 |
private: |
3460 | 3478 |
|
3461 | 3479 |
IN& _in_map; |
3462 | 3480 |
OUT& _out_map; |
3463 | 3481 |
|
3464 | 3482 |
}; |
3465 | 3483 |
|
3466 | 3484 |
|
3467 | 3485 |
/// \brief Returns a combined node map |
3468 | 3486 |
/// |
3469 | 3487 |
/// This function just returns a combined node map. |
3470 | 3488 |
template <typename IN, typename OUT> |
3471 | 3489 |
static CombinedNodeMap<IN, OUT> |
3472 | 3490 |
combinedNodeMap(IN& in_map, OUT& out_map) { |
3473 | 3491 |
return CombinedNodeMap<IN, OUT>(in_map, out_map); |
3474 | 3492 |
} |
3475 | 3493 |
|
3476 | 3494 |
template <typename IN, typename OUT> |
3477 | 3495 |
static CombinedNodeMap<const IN, OUT> |
3478 | 3496 |
combinedNodeMap(const IN& in_map, OUT& out_map) { |
3479 | 3497 |
return CombinedNodeMap<const IN, OUT>(in_map, out_map); |
3480 | 3498 |
} |
3481 | 3499 |
|
3482 | 3500 |
template <typename IN, typename OUT> |
3483 | 3501 |
static CombinedNodeMap<IN, const OUT> |
3484 | 3502 |
combinedNodeMap(IN& in_map, const OUT& out_map) { |
3485 | 3503 |
return CombinedNodeMap<IN, const OUT>(in_map, out_map); |
3486 | 3504 |
} |
3487 | 3505 |
|
3488 | 3506 |
template <typename IN, typename OUT> |
3489 | 3507 |
static CombinedNodeMap<const IN, const OUT> |
3490 | 3508 |
combinedNodeMap(const IN& in_map, const OUT& out_map) { |
3491 | 3509 |
return CombinedNodeMap<const IN, const OUT>(in_map, out_map); |
3492 | 3510 |
} |
3493 | 3511 |
|
3494 | 3512 |
/// \brief Arc map combined from an arc map and a node map of the |
3495 | 3513 |
/// original digraph. |
3496 | 3514 |
/// |
3497 | 3515 |
/// This map adaptor class adapts an arc map and a node map of the |
3498 | 3516 |
/// original digraph to get an arc map of the split digraph. |
3499 | 3517 |
/// Its value type is inherited from the original arc map type (\c AM). |
3500 | 3518 |
/// \tparam AM The type of the arc map. |
3501 | 3519 |
/// \tparam NM the type of the node map. |
3502 | 3520 |
template <typename AM, typename NM> |
3503 | 3521 |
class CombinedArcMap { |
3504 | 3522 |
public: |
3505 | 3523 |
|
3506 | 3524 |
/// The key type of the map |
3507 | 3525 |
typedef Arc Key; |
3508 | 3526 |
/// The value type of the map |
3509 | 3527 |
typedef typename AM::Value Value; |
3510 | 3528 |
|
3511 | 3529 |
typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag; |
3512 | 3530 |
typedef typename MapTraits<AM>::ReturnValue ReturnValue; |
3513 | 3531 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue; |
3514 | 3532 |
typedef typename MapTraits<AM>::ReturnValue Reference; |
3515 | 3533 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReference; |
3516 | 3534 |
|
3517 | 3535 |
/// Constructor |
3518 | 3536 |
CombinedArcMap(AM& arc_map, NM& node_map) |
3519 | 3537 |
: _arc_map(arc_map), _node_map(node_map) {} |
3520 | 3538 |
|
3521 | 3539 |
/// Returns the value associated with the given key. |
3522 | 3540 |
Value operator[](const Key& arc) const { |
3523 | 3541 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3524 | 3542 |
return _arc_map[arc]; |
3525 | 3543 |
} else { |
3526 | 3544 |
return _node_map[arc]; |
3527 | 3545 |
} |
3528 | 3546 |
} |
3529 | 3547 |
|
3530 | 3548 |
/// Returns a reference to the value associated with the given key. |
3531 | 3549 |
Value& operator[](const Key& arc) { |
3532 | 3550 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3533 | 3551 |
return _arc_map[arc]; |
3534 | 3552 |
} else { |
3535 | 3553 |
return _node_map[arc]; |
3536 | 3554 |
} |
3537 | 3555 |
} |
3538 | 3556 |
|
3539 | 3557 |
/// Sets the value associated with the given key. |
3540 | 3558 |
void set(const Arc& arc, const Value& val) { |
3541 | 3559 |
if (SplitNodesBase<const DGR>::origArc(arc)) { |
3542 | 3560 |
_arc_map.set(arc, val); |
3543 | 3561 |
} else { |
3544 | 3562 |
_node_map.set(arc, val); |
3545 | 3563 |
} |
3546 | 3564 |
} |
3547 | 3565 |
|
3548 | 3566 |
private: |
3549 | 3567 |
|
3550 | 3568 |
AM& _arc_map; |
3551 | 3569 |
NM& _node_map; |
3552 | 3570 |
|
3553 | 3571 |
}; |
3554 | 3572 |
|
3555 | 3573 |
/// \brief Returns a combined arc map |
3556 | 3574 |
/// |
3557 | 3575 |
/// This function just returns a combined arc map. |
3558 | 3576 |
template <typename ArcMap, typename NodeMap> |
3559 | 3577 |
static CombinedArcMap<ArcMap, NodeMap> |
3560 | 3578 |
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) { |
3561 | 3579 |
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map); |
3562 | 3580 |
} |
3563 | 3581 |
|
3564 | 3582 |
template <typename ArcMap, typename NodeMap> |
3565 | 3583 |
static CombinedArcMap<const ArcMap, NodeMap> |
3566 | 3584 |
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) { |
3567 | 3585 |
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map); |
3568 | 3586 |
} |
3569 | 3587 |
|
3570 | 3588 |
template <typename ArcMap, typename NodeMap> |
3571 | 3589 |
static CombinedArcMap<ArcMap, const NodeMap> |
3572 | 3590 |
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) { |
3573 | 3591 |
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map); |
3574 | 3592 |
} |
3575 | 3593 |
|
3576 | 3594 |
template <typename ArcMap, typename NodeMap> |
3577 | 3595 |
static CombinedArcMap<const ArcMap, const NodeMap> |
3578 | 3596 |
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) { |
3579 | 3597 |
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map); |
3580 | 3598 |
} |
3581 | 3599 |
|
3582 | 3600 |
}; |
3583 | 3601 |
|
3584 | 3602 |
/// \brief Returns a (read-only) SplitNodes adaptor |
3585 | 3603 |
/// |
3586 | 3604 |
/// This function just returns a (read-only) \ref SplitNodes adaptor. |
3587 | 3605 |
/// \ingroup graph_adaptors |
3588 | 3606 |
/// \relates SplitNodes |
3589 | 3607 |
template<typename DGR> |
3590 | 3608 |
SplitNodes<DGR> |
3591 | 3609 |
splitNodes(const DGR& digraph) { |
3592 | 3610 |
return SplitNodes<DGR>(digraph); |
3593 | 3611 |
} |
3594 | 3612 |
|
3595 | 3613 |
#undef LEMON_SCOPE_FIX |
3596 | 3614 |
|
3597 | 3615 |
} //namespace lemon |
3598 | 3616 |
|
3599 | 3617 |
#endif //LEMON_ADAPTORS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ARRAY_MAP_H |
20 | 20 |
#define LEMON_BITS_ARRAY_MAP_H |
21 | 21 |
|
22 | 22 |
#include <memory> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
#include <lemon/bits/alteration_notifier.h> |
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
// \ingroup graphbits |
30 | 30 |
// \file |
31 | 31 |
// \brief Graph map based on the array storage. |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
// \ingroup graphbits |
36 | 36 |
// |
37 | 37 |
// \brief Graph map based on the array storage. |
38 | 38 |
// |
39 | 39 |
// The ArrayMap template class is graph map structure that automatically |
40 | 40 |
// updates the map when a key is added to or erased from the graph. |
41 | 41 |
// This map uses the allocators to implement the container functionality. |
42 | 42 |
// |
43 | 43 |
// The template parameters are the Graph, the current Item type and |
44 | 44 |
// the Value type of the map. |
45 | 45 |
template <typename _Graph, typename _Item, typename _Value> |
46 | 46 |
class ArrayMap |
47 | 47 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
48 | 48 |
public: |
49 | 49 |
// The graph type. |
50 |
typedef _Graph |
|
50 |
typedef _Graph GraphType; |
|
51 | 51 |
// The item type. |
52 | 52 |
typedef _Item Item; |
53 | 53 |
// The reference map tag. |
54 | 54 |
typedef True ReferenceMapTag; |
55 | 55 |
|
56 | 56 |
// The key type of the map. |
57 | 57 |
typedef _Item Key; |
58 | 58 |
// The value type of the map. |
59 | 59 |
typedef _Value Value; |
60 | 60 |
|
61 | 61 |
// The const reference type of the map. |
62 | 62 |
typedef const _Value& ConstReference; |
63 | 63 |
// The reference type of the map. |
64 | 64 |
typedef _Value& Reference; |
65 | 65 |
|
66 |
// The map type. |
|
67 |
typedef ArrayMap Map; |
|
68 |
|
|
66 | 69 |
// The notifier type. |
67 | 70 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
68 | 71 |
|
72 |
private: |
|
73 |
|
|
69 | 74 |
// The MapBase of the Map which imlements the core regisitry function. |
70 | 75 |
typedef typename Notifier::ObserverBase Parent; |
71 | 76 |
|
72 |
private: |
|
73 | 77 |
typedef std::allocator<Value> Allocator; |
74 | 78 |
|
75 | 79 |
public: |
76 | 80 |
|
77 | 81 |
// \brief Graph initialized map constructor. |
78 | 82 |
// |
79 | 83 |
// Graph initialized map constructor. |
80 |
explicit ArrayMap(const |
|
84 |
explicit ArrayMap(const GraphType& graph) { |
|
81 | 85 |
Parent::attach(graph.notifier(Item())); |
82 | 86 |
allocate_memory(); |
83 | 87 |
Notifier* nf = Parent::notifier(); |
84 | 88 |
Item it; |
85 | 89 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
86 | 90 |
int id = nf->id(it);; |
87 | 91 |
allocator.construct(&(values[id]), Value()); |
88 | 92 |
} |
89 | 93 |
} |
90 | 94 |
|
91 | 95 |
// \brief Constructor to use default value to initialize the map. |
92 | 96 |
// |
93 | 97 |
// It constructs a map and initialize all of the the map. |
94 |
ArrayMap(const |
|
98 |
ArrayMap(const GraphType& graph, const Value& value) { |
|
95 | 99 |
Parent::attach(graph.notifier(Item())); |
96 | 100 |
allocate_memory(); |
97 | 101 |
Notifier* nf = Parent::notifier(); |
98 | 102 |
Item it; |
99 | 103 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
100 | 104 |
int id = nf->id(it);; |
101 | 105 |
allocator.construct(&(values[id]), value); |
102 | 106 |
} |
103 | 107 |
} |
104 | 108 |
|
105 | 109 |
private: |
106 | 110 |
// \brief Constructor to copy a map of the same map type. |
107 | 111 |
// |
108 | 112 |
// Constructor to copy a map of the same map type. |
109 | 113 |
ArrayMap(const ArrayMap& copy) : Parent() { |
110 | 114 |
if (copy.attached()) { |
111 | 115 |
attach(*copy.notifier()); |
112 | 116 |
} |
113 | 117 |
capacity = copy.capacity; |
114 | 118 |
if (capacity == 0) return; |
115 | 119 |
values = allocator.allocate(capacity); |
116 | 120 |
Notifier* nf = Parent::notifier(); |
117 | 121 |
Item it; |
118 | 122 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
119 | 123 |
int id = nf->id(it);; |
120 | 124 |
allocator.construct(&(values[id]), copy.values[id]); |
121 | 125 |
} |
122 | 126 |
} |
123 | 127 |
|
124 | 128 |
// \brief Assign operator. |
125 | 129 |
// |
126 | 130 |
// This operator assigns for each item in the map the |
127 | 131 |
// value mapped to the same item in the copied map. |
128 | 132 |
// The parameter map should be indiced with the same |
129 | 133 |
// itemset because this assign operator does not change |
130 | 134 |
// the container of the map. |
131 | 135 |
ArrayMap& operator=(const ArrayMap& cmap) { |
132 | 136 |
return operator=<ArrayMap>(cmap); |
133 | 137 |
} |
134 | 138 |
|
135 | 139 |
|
136 | 140 |
// \brief Template assign operator. |
137 | 141 |
// |
138 | 142 |
// The given parameter should conform to the ReadMap |
139 | 143 |
// concecpt and could be indiced by the current item set of |
140 | 144 |
// the NodeMap. In this case the value for each item |
141 | 145 |
// is assigned by the value of the given ReadMap. |
142 | 146 |
template <typename CMap> |
143 | 147 |
ArrayMap& operator=(const CMap& cmap) { |
144 | 148 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
145 | 149 |
const typename Parent::Notifier* nf = Parent::notifier(); |
146 | 150 |
Item it; |
147 | 151 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
148 | 152 |
set(it, cmap[it]); |
149 | 153 |
} |
150 | 154 |
return *this; |
151 | 155 |
} |
152 | 156 |
|
153 | 157 |
public: |
154 | 158 |
// \brief The destructor of the map. |
155 | 159 |
// |
156 | 160 |
// The destructor of the map. |
157 | 161 |
virtual ~ArrayMap() { |
158 | 162 |
if (attached()) { |
159 | 163 |
clear(); |
160 | 164 |
detach(); |
161 | 165 |
} |
162 | 166 |
} |
163 | 167 |
|
164 | 168 |
protected: |
165 | 169 |
|
166 | 170 |
using Parent::attach; |
167 | 171 |
using Parent::detach; |
168 | 172 |
using Parent::attached; |
169 | 173 |
|
170 | 174 |
public: |
171 | 175 |
|
172 | 176 |
// \brief The subscript operator. |
173 | 177 |
// |
174 | 178 |
// The subscript operator. The map can be subscripted by the |
175 | 179 |
// actual keys of the graph. |
176 | 180 |
Value& operator[](const Key& key) { |
177 | 181 |
int id = Parent::notifier()->id(key); |
178 | 182 |
return values[id]; |
179 | 183 |
} |
180 | 184 |
|
181 | 185 |
// \brief The const subscript operator. |
182 | 186 |
// |
183 | 187 |
// The const subscript operator. The map can be subscripted by the |
184 | 188 |
// actual keys of the graph. |
185 | 189 |
const Value& operator[](const Key& key) const { |
186 | 190 |
int id = Parent::notifier()->id(key); |
187 | 191 |
return values[id]; |
188 | 192 |
} |
189 | 193 |
|
190 | 194 |
// \brief Setter function of the map. |
191 | 195 |
// |
192 | 196 |
// Setter function of the map. Equivalent with map[key] = val. |
193 | 197 |
// This is a compatibility feature with the not dereferable maps. |
194 | 198 |
void set(const Key& key, const Value& val) { |
195 | 199 |
(*this)[key] = val; |
196 | 200 |
} |
197 | 201 |
|
198 | 202 |
protected: |
199 | 203 |
|
200 | 204 |
// \brief Adds a new key to the map. |
201 | 205 |
// |
202 | 206 |
// It adds a new key to the map. It is called by the observer notifier |
203 | 207 |
// and it overrides the add() member function of the observer base. |
204 | 208 |
virtual void add(const Key& key) { |
205 | 209 |
Notifier* nf = Parent::notifier(); |
206 | 210 |
int id = nf->id(key); |
207 | 211 |
if (id >= capacity) { |
208 | 212 |
int new_capacity = (capacity == 0 ? 1 : capacity); |
209 | 213 |
while (new_capacity <= id) { |
210 | 214 |
new_capacity <<= 1; |
211 | 215 |
} |
212 | 216 |
Value* new_values = allocator.allocate(new_capacity); |
213 | 217 |
Item it; |
214 | 218 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
215 | 219 |
int jd = nf->id(it);; |
216 | 220 |
if (id != jd) { |
217 | 221 |
allocator.construct(&(new_values[jd]), values[jd]); |
218 | 222 |
allocator.destroy(&(values[jd])); |
219 | 223 |
} |
220 | 224 |
} |
221 | 225 |
if (capacity != 0) allocator.deallocate(values, capacity); |
222 | 226 |
values = new_values; |
223 | 227 |
capacity = new_capacity; |
224 | 228 |
} |
225 | 229 |
allocator.construct(&(values[id]), Value()); |
226 | 230 |
} |
227 | 231 |
|
228 | 232 |
// \brief Adds more new keys to the map. |
229 | 233 |
// |
230 | 234 |
// It adds more new keys to the map. It is called by the observer notifier |
231 | 235 |
// and it overrides the add() member function of the observer base. |
232 | 236 |
virtual void add(const std::vector<Key>& keys) { |
233 | 237 |
Notifier* nf = Parent::notifier(); |
234 | 238 |
int max_id = -1; |
235 | 239 |
for (int i = 0; i < int(keys.size()); ++i) { |
236 | 240 |
int id = nf->id(keys[i]); |
237 | 241 |
if (id > max_id) { |
238 | 242 |
max_id = id; |
239 | 243 |
} |
240 | 244 |
} |
241 | 245 |
if (max_id >= capacity) { |
242 | 246 |
int new_capacity = (capacity == 0 ? 1 : capacity); |
243 | 247 |
while (new_capacity <= max_id) { |
244 | 248 |
new_capacity <<= 1; |
245 | 249 |
} |
246 | 250 |
Value* new_values = allocator.allocate(new_capacity); |
247 | 251 |
Item it; |
248 | 252 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
249 | 253 |
int id = nf->id(it); |
250 | 254 |
bool found = false; |
251 | 255 |
for (int i = 0; i < int(keys.size()); ++i) { |
252 | 256 |
int jd = nf->id(keys[i]); |
253 | 257 |
if (id == jd) { |
254 | 258 |
found = true; |
255 | 259 |
break; |
256 | 260 |
} |
257 | 261 |
} |
258 | 262 |
if (found) continue; |
259 | 263 |
allocator.construct(&(new_values[id]), values[id]); |
260 | 264 |
allocator.destroy(&(values[id])); |
261 | 265 |
} |
262 | 266 |
if (capacity != 0) allocator.deallocate(values, capacity); |
263 | 267 |
values = new_values; |
264 | 268 |
capacity = new_capacity; |
265 | 269 |
} |
266 | 270 |
for (int i = 0; i < int(keys.size()); ++i) { |
267 | 271 |
int id = nf->id(keys[i]); |
268 | 272 |
allocator.construct(&(values[id]), Value()); |
269 | 273 |
} |
270 | 274 |
} |
271 | 275 |
|
272 | 276 |
// \brief Erase a key from the map. |
273 | 277 |
// |
274 | 278 |
// Erase a key from the map. It is called by the observer notifier |
275 | 279 |
// and it overrides the erase() member function of the observer base. |
276 | 280 |
virtual void erase(const Key& key) { |
277 | 281 |
int id = Parent::notifier()->id(key); |
278 | 282 |
allocator.destroy(&(values[id])); |
279 | 283 |
} |
280 | 284 |
|
281 | 285 |
// \brief Erase more keys from the map. |
282 | 286 |
// |
283 | 287 |
// Erase more keys from the map. It is called by the observer notifier |
284 | 288 |
// and it overrides the erase() member function of the observer base. |
285 | 289 |
virtual void erase(const std::vector<Key>& keys) { |
286 | 290 |
for (int i = 0; i < int(keys.size()); ++i) { |
287 | 291 |
int id = Parent::notifier()->id(keys[i]); |
288 | 292 |
allocator.destroy(&(values[id])); |
289 | 293 |
} |
290 | 294 |
} |
291 | 295 |
|
292 | 296 |
// \brief Builds the map. |
293 | 297 |
// |
294 | 298 |
// It builds the map. It is called by the observer notifier |
295 | 299 |
// and it overrides the build() member function of the observer base. |
296 | 300 |
virtual void build() { |
297 | 301 |
Notifier* nf = Parent::notifier(); |
298 | 302 |
allocate_memory(); |
299 | 303 |
Item it; |
300 | 304 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
301 | 305 |
int id = nf->id(it);; |
302 | 306 |
allocator.construct(&(values[id]), Value()); |
303 | 307 |
} |
304 | 308 |
} |
305 | 309 |
|
306 | 310 |
// \brief Clear the map. |
307 | 311 |
// |
308 | 312 |
// It erase all items from the map. It is called by the observer notifier |
309 | 313 |
// and it overrides the clear() member function of the observer base. |
310 | 314 |
virtual void clear() { |
311 | 315 |
Notifier* nf = Parent::notifier(); |
312 | 316 |
if (capacity != 0) { |
313 | 317 |
Item it; |
314 | 318 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
315 | 319 |
int id = nf->id(it); |
316 | 320 |
allocator.destroy(&(values[id])); |
317 | 321 |
} |
318 | 322 |
allocator.deallocate(values, capacity); |
319 | 323 |
capacity = 0; |
320 | 324 |
} |
321 | 325 |
} |
322 | 326 |
|
323 | 327 |
private: |
324 | 328 |
|
325 | 329 |
void allocate_memory() { |
326 | 330 |
int max_id = Parent::notifier()->maxId(); |
327 | 331 |
if (max_id == -1) { |
328 | 332 |
capacity = 0; |
329 | 333 |
values = 0; |
330 | 334 |
return; |
331 | 335 |
} |
332 | 336 |
capacity = 1; |
333 | 337 |
while (capacity <= max_id) { |
334 | 338 |
capacity <<= 1; |
335 | 339 |
} |
336 | 340 |
values = allocator.allocate(capacity); |
337 | 341 |
} |
338 | 342 |
|
339 | 343 |
int capacity; |
340 | 344 |
Value* values; |
341 | 345 |
Allocator allocator; |
342 | 346 |
|
343 | 347 |
}; |
344 | 348 |
|
345 | 349 |
} |
346 | 350 |
|
347 | 351 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_BASE_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
|
25 | 25 |
#include <lemon/bits/map_extender.h> |
26 | 26 |
#include <lemon/bits/default_map.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/maps.h> |
30 | 30 |
|
31 | 31 |
//\ingroup digraphbits |
32 | 32 |
//\file |
33 | 33 |
//\brief Extenders for the graph types |
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
// \ingroup digraphbits |
37 | 37 |
// |
38 | 38 |
// \brief BaseDigraph to BaseGraph extender |
39 | 39 |
template <typename Base> |
40 | 40 |
class UndirDigraphExtender : public Base { |
41 |
typedef Base Parent; |
|
41 | 42 |
|
42 | 43 |
public: |
43 | 44 |
|
44 |
typedef Base Parent; |
|
45 | 45 |
typedef typename Parent::Arc Edge; |
46 | 46 |
typedef typename Parent::Node Node; |
47 | 47 |
|
48 | 48 |
typedef True UndirectedTag; |
49 | 49 |
|
50 | 50 |
class Arc : public Edge { |
51 | 51 |
friend class UndirDigraphExtender; |
52 | 52 |
|
53 | 53 |
protected: |
54 | 54 |
bool forward; |
55 | 55 |
|
56 | 56 |
Arc(const Edge &ue, bool _forward) : |
57 | 57 |
Edge(ue), forward(_forward) {} |
58 | 58 |
|
59 | 59 |
public: |
60 | 60 |
Arc() {} |
61 | 61 |
|
62 | 62 |
// Invalid arc constructor |
63 | 63 |
Arc(Invalid i) : Edge(i), forward(true) {} |
64 | 64 |
|
65 | 65 |
bool operator==(const Arc &that) const { |
66 | 66 |
return forward==that.forward && Edge(*this)==Edge(that); |
67 | 67 |
} |
68 | 68 |
bool operator!=(const Arc &that) const { |
69 | 69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
70 | 70 |
} |
71 | 71 |
bool operator<(const Arc &that) const { |
72 | 72 |
return forward<that.forward || |
73 | 73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
74 | 74 |
} |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
// First node of the edge |
78 | 78 |
Node u(const Edge &e) const { |
79 | 79 |
return Parent::source(e); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
// Source of the given arc |
83 | 83 |
Node source(const Arc &e) const { |
84 | 84 |
return e.forward ? Parent::source(e) : Parent::target(e); |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
// Second node of the edge |
88 | 88 |
Node v(const Edge &e) const { |
89 | 89 |
return Parent::target(e); |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
// Target of the given arc |
93 | 93 |
Node target(const Arc &e) const { |
94 | 94 |
return e.forward ? Parent::target(e) : Parent::source(e); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
// \brief Directed arc from an edge. |
98 | 98 |
// |
99 | 99 |
// Returns a directed arc corresponding to the specified edge. |
100 | 100 |
// If the given bool is true, the first node of the given edge and |
101 | 101 |
// the source node of the returned arc are the same. |
102 | 102 |
static Arc direct(const Edge &e, bool d) { |
103 | 103 |
return Arc(e, d); |
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
// Returns whether the given directed arc has the same orientation |
107 | 107 |
// as the corresponding edge. |
108 | 108 |
static bool direction(const Arc &a) { return a.forward; } |
109 | 109 |
|
110 | 110 |
using Parent::first; |
111 | 111 |
using Parent::next; |
112 | 112 |
|
113 | 113 |
void first(Arc &e) const { |
114 | 114 |
Parent::first(e); |
115 | 115 |
e.forward=true; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
void next(Arc &e) const { |
119 | 119 |
if( e.forward ) { |
120 | 120 |
e.forward = false; |
121 | 121 |
} |
122 | 122 |
else { |
123 | 123 |
Parent::next(e); |
124 | 124 |
e.forward = true; |
125 | 125 |
} |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
void firstOut(Arc &e, const Node &n) const { |
129 | 129 |
Parent::firstIn(e,n); |
130 | 130 |
if( Edge(e) != INVALID ) { |
131 | 131 |
e.forward = false; |
132 | 132 |
} |
133 | 133 |
else { |
134 | 134 |
Parent::firstOut(e,n); |
135 | 135 |
e.forward = true; |
136 | 136 |
} |
137 | 137 |
} |
138 | 138 |
void nextOut(Arc &e) const { |
139 | 139 |
if( ! e.forward ) { |
140 | 140 |
Node n = Parent::target(e); |
141 | 141 |
Parent::nextIn(e); |
142 | 142 |
if( Edge(e) == INVALID ) { |
143 | 143 |
Parent::firstOut(e, n); |
144 | 144 |
e.forward = true; |
145 | 145 |
} |
146 | 146 |
} |
147 | 147 |
else { |
148 | 148 |
Parent::nextOut(e); |
149 | 149 |
} |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
void firstIn(Arc &e, const Node &n) const { |
153 | 153 |
Parent::firstOut(e,n); |
154 | 154 |
if( Edge(e) != INVALID ) { |
155 | 155 |
e.forward = false; |
156 | 156 |
} |
157 | 157 |
else { |
158 | 158 |
Parent::firstIn(e,n); |
159 | 159 |
e.forward = true; |
160 | 160 |
} |
161 | 161 |
} |
162 | 162 |
void nextIn(Arc &e) const { |
163 | 163 |
if( ! e.forward ) { |
164 | 164 |
Node n = Parent::source(e); |
165 | 165 |
Parent::nextOut(e); |
166 | 166 |
if( Edge(e) == INVALID ) { |
167 | 167 |
Parent::firstIn(e, n); |
168 | 168 |
e.forward = true; |
169 | 169 |
} |
170 | 170 |
} |
171 | 171 |
else { |
172 | 172 |
Parent::nextIn(e); |
173 | 173 |
} |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
void firstInc(Edge &e, bool &d, const Node &n) const { |
177 | 177 |
d = true; |
178 | 178 |
Parent::firstOut(e, n); |
179 | 179 |
if (e != INVALID) return; |
180 | 180 |
d = false; |
181 | 181 |
Parent::firstIn(e, n); |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
void nextInc(Edge &e, bool &d) const { |
185 | 185 |
if (d) { |
186 | 186 |
Node s = Parent::source(e); |
187 | 187 |
Parent::nextOut(e); |
188 | 188 |
if (e != INVALID) return; |
189 | 189 |
d = false; |
190 | 190 |
Parent::firstIn(e, s); |
191 | 191 |
} else { |
192 | 192 |
Parent::nextIn(e); |
193 | 193 |
} |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
Node nodeFromId(int ix) const { |
197 | 197 |
return Parent::nodeFromId(ix); |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
Arc arcFromId(int ix) const { |
201 | 201 |
return direct(Parent::arcFromId(ix >> 1), bool(ix & 1)); |
202 | 202 |
} |
203 | 203 |
|
204 | 204 |
Edge edgeFromId(int ix) const { |
205 | 205 |
return Parent::arcFromId(ix); |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
int id(const Node &n) const { |
209 | 209 |
return Parent::id(n); |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
int id(const Edge &e) const { |
213 | 213 |
return Parent::id(e); |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
int id(const Arc &e) const { |
217 | 217 |
return 2 * Parent::id(e) + int(e.forward); |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
int maxNodeId() const { |
221 | 221 |
return Parent::maxNodeId(); |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
int maxArcId() const { |
225 | 225 |
return 2 * Parent::maxArcId() + 1; |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
int maxEdgeId() const { |
229 | 229 |
return Parent::maxArcId(); |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
int arcNum() const { |
233 | 233 |
return 2 * Parent::arcNum(); |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
int edgeNum() const { |
237 | 237 |
return Parent::arcNum(); |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
Arc findArc(Node s, Node t, Arc p = INVALID) const { |
241 | 241 |
if (p == INVALID) { |
242 | 242 |
Edge arc = Parent::findArc(s, t); |
243 | 243 |
if (arc != INVALID) return direct(arc, true); |
244 | 244 |
arc = Parent::findArc(t, s); |
245 | 245 |
if (arc != INVALID) return direct(arc, false); |
246 | 246 |
} else if (direction(p)) { |
247 | 247 |
Edge arc = Parent::findArc(s, t, p); |
248 | 248 |
if (arc != INVALID) return direct(arc, true); |
249 | 249 |
arc = Parent::findArc(t, s); |
250 | 250 |
if (arc != INVALID) return direct(arc, false); |
251 | 251 |
} else { |
252 | 252 |
Edge arc = Parent::findArc(t, s, p); |
253 | 253 |
if (arc != INVALID) return direct(arc, false); |
254 | 254 |
} |
255 | 255 |
return INVALID; |
256 | 256 |
} |
257 | 257 |
|
258 | 258 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const { |
259 | 259 |
if (s != t) { |
260 | 260 |
if (p == INVALID) { |
261 | 261 |
Edge arc = Parent::findArc(s, t); |
262 | 262 |
if (arc != INVALID) return arc; |
263 | 263 |
arc = Parent::findArc(t, s); |
264 | 264 |
if (arc != INVALID) return arc; |
265 | 265 |
} else if (Parent::s(p) == s) { |
266 | 266 |
Edge arc = Parent::findArc(s, t, p); |
267 | 267 |
if (arc != INVALID) return arc; |
268 | 268 |
arc = Parent::findArc(t, s); |
269 | 269 |
if (arc != INVALID) return arc; |
270 | 270 |
} else { |
271 | 271 |
Edge arc = Parent::findArc(t, s, p); |
272 | 272 |
if (arc != INVALID) return arc; |
273 | 273 |
} |
274 | 274 |
} else { |
275 | 275 |
return Parent::findArc(s, t, p); |
276 | 276 |
} |
277 | 277 |
return INVALID; |
278 | 278 |
} |
279 | 279 |
}; |
280 | 280 |
|
281 | 281 |
template <typename Base> |
282 | 282 |
class BidirBpGraphExtender : public Base { |
283 |
typedef Base Parent; |
|
284 |
|
|
283 | 285 |
public: |
284 |
typedef Base Parent; |
|
285 | 286 |
typedef BidirBpGraphExtender Digraph; |
286 | 287 |
|
287 | 288 |
typedef typename Parent::Node Node; |
288 | 289 |
typedef typename Parent::Edge Edge; |
289 | 290 |
|
290 | 291 |
|
291 | 292 |
using Parent::first; |
292 | 293 |
using Parent::next; |
293 | 294 |
|
294 | 295 |
using Parent::id; |
295 | 296 |
|
296 | 297 |
class Red : public Node { |
297 | 298 |
friend class BidirBpGraphExtender; |
298 | 299 |
public: |
299 | 300 |
Red() {} |
300 | 301 |
Red(const Node& node) : Node(node) { |
301 | 302 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
302 | 303 |
typename Parent::NodeSetError()); |
303 | 304 |
} |
304 | 305 |
Red& operator=(const Node& node) { |
305 | 306 |
LEMON_DEBUG(Parent::red(node) || node == INVALID, |
306 | 307 |
typename Parent::NodeSetError()); |
307 | 308 |
Node::operator=(node); |
308 | 309 |
return *this; |
309 | 310 |
} |
310 | 311 |
Red(Invalid) : Node(INVALID) {} |
311 | 312 |
Red& operator=(Invalid) { |
312 | 313 |
Node::operator=(INVALID); |
313 | 314 |
return *this; |
314 | 315 |
} |
315 | 316 |
}; |
316 | 317 |
|
317 | 318 |
void first(Red& node) const { |
318 | 319 |
Parent::firstRed(static_cast<Node&>(node)); |
319 | 320 |
} |
320 | 321 |
void next(Red& node) const { |
321 | 322 |
Parent::nextRed(static_cast<Node&>(node)); |
322 | 323 |
} |
323 | 324 |
|
324 | 325 |
int id(const Red& node) const { |
325 | 326 |
return Parent::redId(node); |
326 | 327 |
} |
327 | 328 |
|
328 | 329 |
class Blue : public Node { |
329 | 330 |
friend class BidirBpGraphExtender; |
330 | 331 |
public: |
331 | 332 |
Blue() {} |
332 | 333 |
Blue(const Node& node) : Node(node) { |
333 | 334 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
334 | 335 |
typename Parent::NodeSetError()); |
335 | 336 |
} |
336 | 337 |
Blue& operator=(const Node& node) { |
337 | 338 |
LEMON_DEBUG(Parent::blue(node) || node == INVALID, |
338 | 339 |
typename Parent::NodeSetError()); |
339 | 340 |
Node::operator=(node); |
340 | 341 |
return *this; |
341 | 342 |
} |
342 | 343 |
Blue(Invalid) : Node(INVALID) {} |
343 | 344 |
Blue& operator=(Invalid) { |
344 | 345 |
Node::operator=(INVALID); |
345 | 346 |
return *this; |
346 | 347 |
} |
347 | 348 |
}; |
348 | 349 |
|
349 | 350 |
void first(Blue& node) const { |
350 | 351 |
Parent::firstBlue(static_cast<Node&>(node)); |
351 | 352 |
} |
352 | 353 |
void next(Blue& node) const { |
353 | 354 |
Parent::nextBlue(static_cast<Node&>(node)); |
354 | 355 |
} |
355 | 356 |
|
356 | 357 |
int id(const Blue& node) const { |
357 | 358 |
return Parent::redId(node); |
358 | 359 |
} |
359 | 360 |
|
360 | 361 |
Node source(const Edge& arc) const { |
361 | 362 |
return red(arc); |
362 | 363 |
} |
363 | 364 |
Node target(const Edge& arc) const { |
364 | 365 |
return blue(arc); |
365 | 366 |
} |
366 | 367 |
|
367 | 368 |
void firstInc(Edge& arc, bool& dir, const Node& node) const { |
368 | 369 |
if (Parent::red(node)) { |
369 | 370 |
Parent::firstFromRed(arc, node); |
370 | 371 |
dir = true; |
371 | 372 |
} else { |
372 | 373 |
Parent::firstFromBlue(arc, node); |
373 | 374 |
dir = static_cast<Edge&>(arc) == INVALID; |
374 | 375 |
} |
375 | 376 |
} |
376 | 377 |
void nextInc(Edge& arc, bool& dir) const { |
377 | 378 |
if (dir) { |
378 | 379 |
Parent::nextFromRed(arc); |
379 | 380 |
} else { |
380 | 381 |
Parent::nextFromBlue(arc); |
381 | 382 |
if (arc == INVALID) dir = true; |
382 | 383 |
} |
383 | 384 |
} |
384 | 385 |
|
385 | 386 |
class Arc : public Edge { |
386 | 387 |
friend class BidirBpGraphExtender; |
387 | 388 |
protected: |
388 | 389 |
bool forward; |
389 | 390 |
|
390 | 391 |
Arc(const Edge& arc, bool _forward) |
391 | 392 |
: Edge(arc), forward(_forward) {} |
392 | 393 |
|
393 | 394 |
public: |
394 | 395 |
Arc() {} |
395 | 396 |
Arc (Invalid) : Edge(INVALID), forward(true) {} |
396 | 397 |
bool operator==(const Arc& i) const { |
397 | 398 |
return Edge::operator==(i) && forward == i.forward; |
398 | 399 |
} |
399 | 400 |
bool operator!=(const Arc& i) const { |
400 | 401 |
return Edge::operator!=(i) || forward != i.forward; |
401 | 402 |
} |
402 | 403 |
bool operator<(const Arc& i) const { |
403 | 404 |
return Edge::operator<(i) || |
404 | 405 |
(!(i.forward<forward) && Edge(*this)<Edge(i)); |
405 | 406 |
} |
406 | 407 |
}; |
407 | 408 |
|
408 | 409 |
void first(Arc& arc) const { |
409 | 410 |
Parent::first(static_cast<Edge&>(arc)); |
410 | 411 |
arc.forward = true; |
411 | 412 |
} |
412 | 413 |
|
413 | 414 |
void next(Arc& arc) const { |
414 | 415 |
if (!arc.forward) { |
415 | 416 |
Parent::next(static_cast<Edge&>(arc)); |
416 | 417 |
} |
417 | 418 |
arc.forward = !arc.forward; |
418 | 419 |
} |
419 | 420 |
|
420 | 421 |
void firstOut(Arc& arc, const Node& node) const { |
421 | 422 |
if (Parent::red(node)) { |
422 | 423 |
Parent::firstFromRed(arc, node); |
423 | 424 |
arc.forward = true; |
424 | 425 |
} else { |
425 | 426 |
Parent::firstFromBlue(arc, node); |
426 | 427 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
427 | 428 |
} |
428 | 429 |
} |
429 | 430 |
void nextOut(Arc& arc) const { |
430 | 431 |
if (arc.forward) { |
431 | 432 |
Parent::nextFromRed(arc); |
432 | 433 |
} else { |
433 | 434 |
Parent::nextFromBlue(arc); |
434 | 435 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
435 | 436 |
} |
436 | 437 |
} |
437 | 438 |
|
438 | 439 |
void firstIn(Arc& arc, const Node& node) const { |
439 | 440 |
if (Parent::blue(node)) { |
440 | 441 |
Parent::firstFromBlue(arc, node); |
441 | 442 |
arc.forward = true; |
442 | 443 |
} else { |
443 | 444 |
Parent::firstFromRed(arc, node); |
444 | 445 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
445 | 446 |
} |
446 | 447 |
} |
447 | 448 |
void nextIn(Arc& arc) const { |
448 | 449 |
if (arc.forward) { |
449 | 450 |
Parent::nextFromBlue(arc); |
450 | 451 |
} else { |
451 | 452 |
Parent::nextFromRed(arc); |
452 | 453 |
arc.forward = static_cast<Edge&>(arc) == INVALID; |
453 | 454 |
} |
454 | 455 |
} |
455 | 456 |
|
456 | 457 |
Node source(const Arc& arc) const { |
457 | 458 |
return arc.forward ? Parent::red(arc) : Parent::blue(arc); |
458 | 459 |
} |
459 | 460 |
Node target(const Arc& arc) const { |
460 | 461 |
return arc.forward ? Parent::blue(arc) : Parent::red(arc); |
461 | 462 |
} |
462 | 463 |
|
463 | 464 |
int id(const Arc& arc) const { |
464 | 465 |
return (Parent::id(static_cast<const Edge&>(arc)) << 1) + |
465 | 466 |
(arc.forward ? 0 : 1); |
466 | 467 |
} |
467 | 468 |
Arc arcFromId(int ix) const { |
468 | 469 |
return Arc(Parent::fromEdgeId(ix >> 1), (ix & 1) == 0); |
469 | 470 |
} |
470 | 471 |
int maxArcId() const { |
471 | 472 |
return (Parent::maxEdgeId() << 1) + 1; |
472 | 473 |
} |
473 | 474 |
|
474 | 475 |
bool direction(const Arc& arc) const { |
475 | 476 |
return arc.forward; |
476 | 477 |
} |
477 | 478 |
|
478 | 479 |
Arc direct(const Edge& arc, bool dir) const { |
479 | 480 |
return Arc(arc, dir); |
480 | 481 |
} |
481 | 482 |
|
482 | 483 |
int arcNum() const { |
483 | 484 |
return 2 * Parent::edgeNum(); |
484 | 485 |
} |
485 | 486 |
|
486 | 487 |
int edgeNum() const { |
487 | 488 |
return Parent::edgeNum(); |
488 | 489 |
} |
489 | 490 |
|
490 | 491 |
|
491 | 492 |
}; |
492 | 493 |
} |
493 | 494 |
|
494 | 495 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
21 | 21 |
|
22 | 22 |
#include <lemon/config.h> |
23 | 23 |
#include <lemon/bits/array_map.h> |
24 | 24 |
#include <lemon/bits/vector_map.h> |
25 | 25 |
//#include <lemon/bits/debug_map.h> |
26 | 26 |
|
27 | 27 |
//\ingroup graphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Graph maps that construct and destruct their elements dynamically. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
|
34 | 34 |
//#ifndef LEMON_USE_DEBUG_MAP |
35 | 35 |
|
36 | 36 |
template <typename _Graph, typename _Item, typename _Value> |
37 | 37 |
struct DefaultMapSelector { |
38 | 38 |
typedef ArrayMap<_Graph, _Item, _Value> Map; |
39 | 39 |
}; |
40 | 40 |
|
41 | 41 |
// bool |
42 | 42 |
template <typename _Graph, typename _Item> |
43 | 43 |
struct DefaultMapSelector<_Graph, _Item, bool> { |
44 | 44 |
typedef VectorMap<_Graph, _Item, bool> Map; |
45 | 45 |
}; |
46 | 46 |
|
47 | 47 |
// char |
48 | 48 |
template <typename _Graph, typename _Item> |
49 | 49 |
struct DefaultMapSelector<_Graph, _Item, char> { |
50 | 50 |
typedef VectorMap<_Graph, _Item, char> Map; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
template <typename _Graph, typename _Item> |
54 | 54 |
struct DefaultMapSelector<_Graph, _Item, signed char> { |
55 | 55 |
typedef VectorMap<_Graph, _Item, signed char> Map; |
56 | 56 |
}; |
57 | 57 |
|
58 | 58 |
template <typename _Graph, typename _Item> |
59 | 59 |
struct DefaultMapSelector<_Graph, _Item, unsigned char> { |
60 | 60 |
typedef VectorMap<_Graph, _Item, unsigned char> Map; |
61 | 61 |
}; |
62 | 62 |
|
63 | 63 |
|
64 | 64 |
// int |
65 | 65 |
template <typename _Graph, typename _Item> |
66 | 66 |
struct DefaultMapSelector<_Graph, _Item, signed int> { |
67 | 67 |
typedef VectorMap<_Graph, _Item, signed int> Map; |
68 | 68 |
}; |
69 | 69 |
|
70 | 70 |
template <typename _Graph, typename _Item> |
71 | 71 |
struct DefaultMapSelector<_Graph, _Item, unsigned int> { |
72 | 72 |
typedef VectorMap<_Graph, _Item, unsigned int> Map; |
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
// short |
77 | 77 |
template <typename _Graph, typename _Item> |
78 | 78 |
struct DefaultMapSelector<_Graph, _Item, signed short> { |
79 | 79 |
typedef VectorMap<_Graph, _Item, signed short> Map; |
80 | 80 |
}; |
81 | 81 |
|
82 | 82 |
template <typename _Graph, typename _Item> |
83 | 83 |
struct DefaultMapSelector<_Graph, _Item, unsigned short> { |
84 | 84 |
typedef VectorMap<_Graph, _Item, unsigned short> Map; |
85 | 85 |
}; |
86 | 86 |
|
87 | 87 |
|
88 | 88 |
// long |
89 | 89 |
template <typename _Graph, typename _Item> |
90 | 90 |
struct DefaultMapSelector<_Graph, _Item, signed long> { |
91 | 91 |
typedef VectorMap<_Graph, _Item, signed long> Map; |
92 | 92 |
}; |
93 | 93 |
|
94 | 94 |
template <typename _Graph, typename _Item> |
95 | 95 |
struct DefaultMapSelector<_Graph, _Item, unsigned long> { |
96 | 96 |
typedef VectorMap<_Graph, _Item, unsigned long> Map; |
97 | 97 |
}; |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
#if defined HAVE_LONG_LONG |
101 | 101 |
|
102 | 102 |
// long long |
103 | 103 |
template <typename _Graph, typename _Item> |
104 | 104 |
struct DefaultMapSelector<_Graph, _Item, signed long long> { |
105 | 105 |
typedef VectorMap<_Graph, _Item, signed long long> Map; |
106 | 106 |
}; |
107 | 107 |
|
108 | 108 |
template <typename _Graph, typename _Item> |
109 | 109 |
struct DefaultMapSelector<_Graph, _Item, unsigned long long> { |
110 | 110 |
typedef VectorMap<_Graph, _Item, unsigned long long> Map; |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
#endif |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
// float |
117 | 117 |
template <typename _Graph, typename _Item> |
118 | 118 |
struct DefaultMapSelector<_Graph, _Item, float> { |
119 | 119 |
typedef VectorMap<_Graph, _Item, float> Map; |
120 | 120 |
}; |
121 | 121 |
|
122 | 122 |
|
123 | 123 |
// double |
124 | 124 |
template <typename _Graph, typename _Item> |
125 | 125 |
struct DefaultMapSelector<_Graph, _Item, double> { |
126 | 126 |
typedef VectorMap<_Graph, _Item, double> Map; |
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
|
130 | 130 |
// long double |
131 | 131 |
template <typename _Graph, typename _Item> |
132 | 132 |
struct DefaultMapSelector<_Graph, _Item, long double> { |
133 | 133 |
typedef VectorMap<_Graph, _Item, long double> Map; |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
|
137 | 137 |
// pointer |
138 | 138 |
template <typename _Graph, typename _Item, typename _Ptr> |
139 | 139 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> { |
140 | 140 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
141 | 141 |
}; |
142 | 142 |
|
143 | 143 |
// #else |
144 | 144 |
|
145 | 145 |
// template <typename _Graph, typename _Item, typename _Value> |
146 | 146 |
// struct DefaultMapSelector { |
147 | 147 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
148 | 148 |
// }; |
149 | 149 |
|
150 | 150 |
// #endif |
151 | 151 |
|
152 | 152 |
// DefaultMap class |
153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
154 | 154 |
class DefaultMap |
155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map { |
156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
|
157 |
|
|
156 | 158 |
public: |
157 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
|
158 | 159 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
159 |
|
|
160 |
typedef typename Parent::Graph Graph; |
|
160 |
|
|
161 |
typedef typename Parent::GraphType GraphType; |
|
161 | 162 |
typedef typename Parent::Value Value; |
162 | 163 |
|
163 |
explicit DefaultMap(const Graph& graph) : Parent(graph) {} |
|
164 |
DefaultMap(const Graph& graph, const Value& value) |
|
164 |
explicit DefaultMap(const GraphType& graph) : Parent(graph) {} |
|
165 |
DefaultMap(const GraphType& graph, const Value& value) |
|
165 | 166 |
: Parent(graph, value) {} |
166 | 167 |
|
167 | 168 |
DefaultMap& operator=(const DefaultMap& cmap) { |
168 | 169 |
return operator=<DefaultMap>(cmap); |
169 | 170 |
} |
170 | 171 |
|
171 | 172 |
template <typename CMap> |
172 | 173 |
DefaultMap& operator=(const CMap& cmap) { |
173 | 174 |
Parent::operator=(cmap); |
174 | 175 |
return *this; |
175 | 176 |
} |
176 | 177 |
|
177 | 178 |
}; |
178 | 179 |
|
179 | 180 |
} |
180 | 181 |
|
181 | 182 |
#endif |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
#include <lemon/bits/default_map.h> |
25 | 25 |
#include <lemon/bits/map_extender.h> |
26 | 26 |
|
27 | 27 |
//\ingroup digraphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Extenders for the arc set types |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
// \ingroup digraphbits |
33 | 33 |
// |
34 | 34 |
// \brief Extender for the ArcSets |
35 | 35 |
template <typename Base> |
36 | 36 |
class ArcSetExtender : public Base { |
37 |
typedef Base Parent; |
|
38 |
|
|
37 | 39 |
public: |
38 | 40 |
|
39 |
typedef Base Parent; |
|
40 | 41 |
typedef ArcSetExtender Digraph; |
41 | 42 |
|
42 | 43 |
// Base extensions |
43 | 44 |
|
44 | 45 |
typedef typename Parent::Node Node; |
45 | 46 |
typedef typename Parent::Arc Arc; |
46 | 47 |
|
47 | 48 |
int maxId(Node) const { |
48 | 49 |
return Parent::maxNodeId(); |
49 | 50 |
} |
50 | 51 |
|
51 | 52 |
int maxId(Arc) const { |
52 | 53 |
return Parent::maxArcId(); |
53 | 54 |
} |
54 | 55 |
|
55 | 56 |
Node fromId(int id, Node) const { |
56 | 57 |
return Parent::nodeFromId(id); |
57 | 58 |
} |
58 | 59 |
|
59 | 60 |
Arc fromId(int id, Arc) const { |
60 | 61 |
return Parent::arcFromId(id); |
61 | 62 |
} |
62 | 63 |
|
63 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const { |
64 | 65 |
if (n == Parent::source(e)) |
65 | 66 |
return Parent::target(e); |
66 | 67 |
else if(n==Parent::target(e)) |
67 | 68 |
return Parent::source(e); |
68 | 69 |
else |
69 | 70 |
return INVALID; |
70 | 71 |
} |
71 | 72 |
|
72 | 73 |
|
73 | 74 |
// Alteration notifier extensions |
74 | 75 |
|
75 | 76 |
// The arc observer registry. |
76 | 77 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
77 | 78 |
|
78 | 79 |
protected: |
79 | 80 |
|
80 | 81 |
mutable ArcNotifier arc_notifier; |
81 | 82 |
|
82 | 83 |
public: |
83 | 84 |
|
84 | 85 |
using Parent::notifier; |
85 | 86 |
|
86 | 87 |
// Gives back the arc alteration notifier. |
87 | 88 |
ArcNotifier& notifier(Arc) const { |
88 | 89 |
return arc_notifier; |
89 | 90 |
} |
90 | 91 |
|
91 | 92 |
// Iterable extensions |
92 | 93 |
|
93 | 94 |
class NodeIt : public Node { |
94 | 95 |
const Digraph* digraph; |
95 | 96 |
public: |
96 | 97 |
|
97 | 98 |
NodeIt() {} |
98 | 99 |
|
99 | 100 |
NodeIt(Invalid i) : Node(i) { } |
100 | 101 |
|
101 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
102 | 103 |
_graph.first(static_cast<Node&>(*this)); |
103 | 104 |
} |
104 | 105 |
|
105 | 106 |
NodeIt(const Digraph& _graph, const Node& node) |
106 | 107 |
: Node(node), digraph(&_graph) {} |
107 | 108 |
|
108 | 109 |
NodeIt& operator++() { |
109 | 110 |
digraph->next(*this); |
110 | 111 |
return *this; |
111 | 112 |
} |
112 | 113 |
|
113 | 114 |
}; |
114 | 115 |
|
115 | 116 |
|
116 | 117 |
class ArcIt : public Arc { |
117 | 118 |
const Digraph* digraph; |
118 | 119 |
public: |
119 | 120 |
|
120 | 121 |
ArcIt() { } |
121 | 122 |
|
122 | 123 |
ArcIt(Invalid i) : Arc(i) { } |
123 | 124 |
|
124 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
125 | 126 |
_graph.first(static_cast<Arc&>(*this)); |
126 | 127 |
} |
127 | 128 |
|
128 | 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
129 | 130 |
Arc(e), digraph(&_graph) { } |
130 | 131 |
|
131 | 132 |
ArcIt& operator++() { |
132 | 133 |
digraph->next(*this); |
133 | 134 |
return *this; |
134 | 135 |
} |
135 | 136 |
|
136 | 137 |
}; |
137 | 138 |
|
138 | 139 |
|
139 | 140 |
class OutArcIt : public Arc { |
140 | 141 |
const Digraph* digraph; |
141 | 142 |
public: |
142 | 143 |
|
143 | 144 |
OutArcIt() { } |
144 | 145 |
|
145 | 146 |
OutArcIt(Invalid i) : Arc(i) { } |
146 | 147 |
|
147 | 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
148 | 149 |
: digraph(&_graph) { |
149 | 150 |
_graph.firstOut(*this, node); |
150 | 151 |
} |
151 | 152 |
|
152 | 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
153 | 154 |
: Arc(arc), digraph(&_graph) {} |
154 | 155 |
|
155 | 156 |
OutArcIt& operator++() { |
156 | 157 |
digraph->nextOut(*this); |
157 | 158 |
return *this; |
158 | 159 |
} |
159 | 160 |
|
160 | 161 |
}; |
161 | 162 |
|
162 | 163 |
|
163 | 164 |
class InArcIt : public Arc { |
164 | 165 |
const Digraph* digraph; |
165 | 166 |
public: |
166 | 167 |
|
167 | 168 |
InArcIt() { } |
168 | 169 |
|
169 | 170 |
InArcIt(Invalid i) : Arc(i) { } |
170 | 171 |
|
171 | 172 |
InArcIt(const Digraph& _graph, const Node& node) |
172 | 173 |
: digraph(&_graph) { |
173 | 174 |
_graph.firstIn(*this, node); |
174 | 175 |
} |
175 | 176 |
|
176 | 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
177 | 178 |
Arc(arc), digraph(&_graph) {} |
178 | 179 |
|
179 | 180 |
InArcIt& operator++() { |
180 | 181 |
digraph->nextIn(*this); |
181 | 182 |
return *this; |
182 | 183 |
} |
183 | 184 |
|
184 | 185 |
}; |
185 | 186 |
|
186 | 187 |
// \brief Base node of the iterator |
187 | 188 |
// |
188 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
189 | 190 |
Node baseNode(const OutArcIt &e) const { |
190 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
191 | 192 |
} |
192 | 193 |
// \brief Running node of the iterator |
193 | 194 |
// |
194 | 195 |
// Returns the running node (ie. the target in this case) of the |
195 | 196 |
// iterator |
196 | 197 |
Node runningNode(const OutArcIt &e) const { |
197 | 198 |
return Parent::target(static_cast<const Arc&>(e)); |
198 | 199 |
} |
199 | 200 |
|
200 | 201 |
// \brief Base node of the iterator |
201 | 202 |
// |
202 | 203 |
// Returns the base node (ie. the target in this case) of the iterator |
203 | 204 |
Node baseNode(const InArcIt &e) const { |
204 | 205 |
return Parent::target(static_cast<const Arc&>(e)); |
205 | 206 |
} |
206 | 207 |
// \brief Running node of the iterator |
207 | 208 |
// |
208 | 209 |
// Returns the running node (ie. the source in this case) of the |
209 | 210 |
// iterator |
210 | 211 |
Node runningNode(const InArcIt &e) const { |
211 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
212 | 213 |
} |
213 | 214 |
|
214 | 215 |
using Parent::first; |
215 | 216 |
|
216 | 217 |
// Mappable extension |
217 | 218 |
|
218 | 219 |
template <typename _Value> |
219 | 220 |
class ArcMap |
220 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
221 |
public: |
|
222 |
typedef ArcSetExtender Digraph; |
|
223 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
224 | 223 |
|
224 |
public: |
|
225 | 225 |
explicit ArcMap(const Digraph& _g) |
226 | 226 |
: Parent(_g) {} |
227 | 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
228 | 228 |
: Parent(_g, _v) {} |
229 | 229 |
|
230 | 230 |
ArcMap& operator=(const ArcMap& cmap) { |
231 | 231 |
return operator=<ArcMap>(cmap); |
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
template <typename CMap> |
235 | 235 |
ArcMap& operator=(const CMap& cmap) { |
236 | 236 |
Parent::operator=(cmap); |
237 | 237 |
return *this; |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
|
243 | 243 |
// Alteration extension |
244 | 244 |
|
245 | 245 |
Arc addArc(const Node& from, const Node& to) { |
246 | 246 |
Arc arc = Parent::addArc(from, to); |
247 | 247 |
notifier(Arc()).add(arc); |
248 | 248 |
return arc; |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
void clear() { |
252 | 252 |
notifier(Arc()).clear(); |
253 | 253 |
Parent::clear(); |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
void erase(const Arc& arc) { |
257 | 257 |
notifier(Arc()).erase(arc); |
258 | 258 |
Parent::erase(arc); |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
ArcSetExtender() { |
262 | 262 |
arc_notifier.setContainer(*this); |
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
~ArcSetExtender() { |
266 | 266 |
arc_notifier.clear(); |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
}; |
270 | 270 |
|
271 | 271 |
|
272 | 272 |
// \ingroup digraphbits |
273 | 273 |
// |
274 | 274 |
// \brief Extender for the EdgeSets |
275 | 275 |
template <typename Base> |
276 | 276 |
class EdgeSetExtender : public Base { |
277 |
typedef Base Parent; |
|
277 | 278 |
|
278 | 279 |
public: |
279 | 280 |
|
280 |
typedef Base Parent; |
|
281 |
typedef EdgeSetExtender Digraph; |
|
281 |
typedef EdgeSetExtender Graph; |
|
282 | 282 |
|
283 | 283 |
typedef typename Parent::Node Node; |
284 | 284 |
typedef typename Parent::Arc Arc; |
285 | 285 |
typedef typename Parent::Edge Edge; |
286 | 286 |
|
287 |
|
|
288 | 287 |
int maxId(Node) const { |
289 | 288 |
return Parent::maxNodeId(); |
290 | 289 |
} |
291 | 290 |
|
292 | 291 |
int maxId(Arc) const { |
293 | 292 |
return Parent::maxArcId(); |
294 | 293 |
} |
295 | 294 |
|
296 | 295 |
int maxId(Edge) const { |
297 | 296 |
return Parent::maxEdgeId(); |
298 | 297 |
} |
299 | 298 |
|
300 | 299 |
Node fromId(int id, Node) const { |
301 | 300 |
return Parent::nodeFromId(id); |
302 | 301 |
} |
303 | 302 |
|
304 | 303 |
Arc fromId(int id, Arc) const { |
305 | 304 |
return Parent::arcFromId(id); |
306 | 305 |
} |
307 | 306 |
|
308 | 307 |
Edge fromId(int id, Edge) const { |
309 | 308 |
return Parent::edgeFromId(id); |
310 | 309 |
} |
311 | 310 |
|
312 | 311 |
Node oppositeNode(const Node &n, const Edge &e) const { |
313 | 312 |
if( n == Parent::u(e)) |
314 | 313 |
return Parent::v(e); |
315 | 314 |
else if( n == Parent::v(e)) |
316 | 315 |
return Parent::u(e); |
317 | 316 |
else |
318 | 317 |
return INVALID; |
319 | 318 |
} |
320 | 319 |
|
321 | 320 |
Arc oppositeArc(const Arc &e) const { |
322 | 321 |
return Parent::direct(e, !Parent::direction(e)); |
323 | 322 |
} |
324 | 323 |
|
325 | 324 |
using Parent::direct; |
326 | 325 |
Arc direct(const Edge &e, const Node &s) const { |
327 | 326 |
return Parent::direct(e, Parent::u(e) == s); |
328 | 327 |
} |
329 | 328 |
|
330 | 329 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
331 | 330 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
332 | 331 |
|
333 | 332 |
|
334 | 333 |
protected: |
335 | 334 |
|
336 | 335 |
mutable ArcNotifier arc_notifier; |
337 | 336 |
mutable EdgeNotifier edge_notifier; |
338 | 337 |
|
339 | 338 |
public: |
340 | 339 |
|
341 | 340 |
using Parent::notifier; |
342 | 341 |
|
343 | 342 |
ArcNotifier& notifier(Arc) const { |
344 | 343 |
return arc_notifier; |
345 | 344 |
} |
346 | 345 |
|
347 | 346 |
EdgeNotifier& notifier(Edge) const { |
348 | 347 |
return edge_notifier; |
349 | 348 |
} |
350 | 349 |
|
351 | 350 |
|
352 | 351 |
class NodeIt : public Node { |
353 |
const |
|
352 |
const Graph* graph; |
|
354 | 353 |
public: |
355 | 354 |
|
356 | 355 |
NodeIt() {} |
357 | 356 |
|
358 | 357 |
NodeIt(Invalid i) : Node(i) { } |
359 | 358 |
|
360 |
explicit NodeIt(const |
|
359 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) { |
|
361 | 360 |
_graph.first(static_cast<Node&>(*this)); |
362 | 361 |
} |
363 | 362 |
|
364 |
NodeIt(const Digraph& _graph, const Node& node) |
|
365 |
: Node(node), digraph(&_graph) {} |
|
363 |
NodeIt(const Graph& _graph, const Node& node) |
|
364 |
: Node(node), graph(&_graph) {} |
|
366 | 365 |
|
367 | 366 |
NodeIt& operator++() { |
368 |
|
|
367 |
graph->next(*this); |
|
369 | 368 |
return *this; |
370 | 369 |
} |
371 | 370 |
|
372 | 371 |
}; |
373 | 372 |
|
374 | 373 |
|
375 | 374 |
class ArcIt : public Arc { |
376 |
const |
|
375 |
const Graph* graph; |
|
377 | 376 |
public: |
378 | 377 |
|
379 | 378 |
ArcIt() { } |
380 | 379 |
|
381 | 380 |
ArcIt(Invalid i) : Arc(i) { } |
382 | 381 |
|
383 |
explicit ArcIt(const |
|
382 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) { |
|
384 | 383 |
_graph.first(static_cast<Arc&>(*this)); |
385 | 384 |
} |
386 | 385 |
|
387 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
388 |
Arc(e), digraph(&_graph) { } |
|
386 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
387 |
Arc(e), graph(&_graph) { } |
|
389 | 388 |
|
390 | 389 |
ArcIt& operator++() { |
391 |
|
|
390 |
graph->next(*this); |
|
392 | 391 |
return *this; |
393 | 392 |
} |
394 | 393 |
|
395 | 394 |
}; |
396 | 395 |
|
397 | 396 |
|
398 | 397 |
class OutArcIt : public Arc { |
399 |
const |
|
398 |
const Graph* graph; |
|
400 | 399 |
public: |
401 | 400 |
|
402 | 401 |
OutArcIt() { } |
403 | 402 |
|
404 | 403 |
OutArcIt(Invalid i) : Arc(i) { } |
405 | 404 |
|
406 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
407 |
: digraph(&_graph) { |
|
405 |
OutArcIt(const Graph& _graph, const Node& node) |
|
406 |
: graph(&_graph) { |
|
408 | 407 |
_graph.firstOut(*this, node); |
409 | 408 |
} |
410 | 409 |
|
411 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
412 |
: Arc(arc), digraph(&_graph) {} |
|
410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
411 |
: Arc(arc), graph(&_graph) {} |
|
413 | 412 |
|
414 | 413 |
OutArcIt& operator++() { |
415 |
|
|
414 |
graph->nextOut(*this); |
|
416 | 415 |
return *this; |
417 | 416 |
} |
418 | 417 |
|
419 | 418 |
}; |
420 | 419 |
|
421 | 420 |
|
422 | 421 |
class InArcIt : public Arc { |
423 |
const |
|
422 |
const Graph* graph; |
|
424 | 423 |
public: |
425 | 424 |
|
426 | 425 |
InArcIt() { } |
427 | 426 |
|
428 | 427 |
InArcIt(Invalid i) : Arc(i) { } |
429 | 428 |
|
430 |
InArcIt(const Digraph& _graph, const Node& node) |
|
431 |
: digraph(&_graph) { |
|
429 |
InArcIt(const Graph& _graph, const Node& node) |
|
430 |
: graph(&_graph) { |
|
432 | 431 |
_graph.firstIn(*this, node); |
433 | 432 |
} |
434 | 433 |
|
435 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
436 |
Arc(arc), digraph(&_graph) {} |
|
434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
435 |
Arc(arc), graph(&_graph) {} |
|
437 | 436 |
|
438 | 437 |
InArcIt& operator++() { |
439 |
|
|
438 |
graph->nextIn(*this); |
|
440 | 439 |
return *this; |
441 | 440 |
} |
442 | 441 |
|
443 | 442 |
}; |
444 | 443 |
|
445 | 444 |
|
446 | 445 |
class EdgeIt : public Parent::Edge { |
447 |
const |
|
446 |
const Graph* graph; |
|
448 | 447 |
public: |
449 | 448 |
|
450 | 449 |
EdgeIt() { } |
451 | 450 |
|
452 | 451 |
EdgeIt(Invalid i) : Edge(i) { } |
453 | 452 |
|
454 |
explicit EdgeIt(const |
|
453 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) { |
|
455 | 454 |
_graph.first(static_cast<Edge&>(*this)); |
456 | 455 |
} |
457 | 456 |
|
458 |
EdgeIt(const Digraph& _graph, const Edge& e) : |
|
459 |
Edge(e), digraph(&_graph) { } |
|
457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
458 |
Edge(e), graph(&_graph) { } |
|
460 | 459 |
|
461 | 460 |
EdgeIt& operator++() { |
462 |
|
|
461 |
graph->next(*this); |
|
463 | 462 |
return *this; |
464 | 463 |
} |
465 | 464 |
|
466 | 465 |
}; |
467 | 466 |
|
468 | 467 |
class IncEdgeIt : public Parent::Edge { |
469 | 468 |
friend class EdgeSetExtender; |
470 |
const |
|
469 |
const Graph* graph; |
|
471 | 470 |
bool direction; |
472 | 471 |
public: |
473 | 472 |
|
474 | 473 |
IncEdgeIt() { } |
475 | 474 |
|
476 | 475 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
477 | 476 |
|
478 |
IncEdgeIt(const |
|
477 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) { |
|
479 | 478 |
_graph.firstInc(*this, direction, n); |
480 | 479 |
} |
481 | 480 |
|
482 |
IncEdgeIt(const Digraph& _graph, const Edge &ue, const Node &n) |
|
483 |
: digraph(&_graph), Edge(ue) { |
|
481 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
|
482 |
: graph(&_graph), Edge(ue) { |
|
484 | 483 |
direction = (_graph.source(ue) == n); |
485 | 484 |
} |
486 | 485 |
|
487 | 486 |
IncEdgeIt& operator++() { |
488 |
|
|
487 |
graph->nextInc(*this, direction); |
|
489 | 488 |
return *this; |
490 | 489 |
} |
491 | 490 |
}; |
492 | 491 |
|
493 | 492 |
// \brief Base node of the iterator |
494 | 493 |
// |
495 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
496 | 495 |
Node baseNode(const OutArcIt &e) const { |
497 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
498 | 497 |
} |
499 | 498 |
// \brief Running node of the iterator |
500 | 499 |
// |
501 | 500 |
// Returns the running node (ie. the target in this case) of the |
502 | 501 |
// iterator |
503 | 502 |
Node runningNode(const OutArcIt &e) const { |
504 | 503 |
return Parent::target(static_cast<const Arc&>(e)); |
505 | 504 |
} |
506 | 505 |
|
507 | 506 |
// \brief Base node of the iterator |
508 | 507 |
// |
509 | 508 |
// Returns the base node (ie. the target in this case) of the iterator |
510 | 509 |
Node baseNode(const InArcIt &e) const { |
511 | 510 |
return Parent::target(static_cast<const Arc&>(e)); |
512 | 511 |
} |
513 | 512 |
// \brief Running node of the iterator |
514 | 513 |
// |
515 | 514 |
// Returns the running node (ie. the source in this case) of the |
516 | 515 |
// iterator |
517 | 516 |
Node runningNode(const InArcIt &e) const { |
518 | 517 |
return Parent::source(static_cast<const Arc&>(e)); |
519 | 518 |
} |
520 | 519 |
|
521 | 520 |
// Base node of the iterator |
522 | 521 |
// |
523 | 522 |
// Returns the base node of the iterator |
524 | 523 |
Node baseNode(const IncEdgeIt &e) const { |
525 | 524 |
return e.direction ? u(e) : v(e); |
526 | 525 |
} |
527 | 526 |
// Running node of the iterator |
528 | 527 |
// |
529 | 528 |
// Returns the running node of the iterator |
530 | 529 |
Node runningNode(const IncEdgeIt &e) const { |
531 | 530 |
return e.direction ? v(e) : u(e); |
532 | 531 |
} |
533 | 532 |
|
534 | 533 |
|
535 | 534 |
template <typename _Value> |
536 | 535 |
class ArcMap |
537 |
: public MapExtender<DefaultMap< |
|
536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
|
537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
|
538 |
|
|
538 | 539 |
public: |
539 |
typedef EdgeSetExtender Digraph; |
|
540 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
|
541 |
|
|
542 |
ArcMap(const Digraph& _g) |
|
540 |
ArcMap(const Graph& _g) |
|
543 | 541 |
: Parent(_g) {} |
544 |
ArcMap(const |
|
542 |
ArcMap(const Graph& _g, const _Value& _v) |
|
545 | 543 |
: Parent(_g, _v) {} |
546 | 544 |
|
547 | 545 |
ArcMap& operator=(const ArcMap& cmap) { |
548 | 546 |
return operator=<ArcMap>(cmap); |
549 | 547 |
} |
550 | 548 |
|
551 | 549 |
template <typename CMap> |
552 | 550 |
ArcMap& operator=(const CMap& cmap) { |
553 | 551 |
Parent::operator=(cmap); |
554 | 552 |
return *this; |
555 | 553 |
} |
556 | 554 |
|
557 | 555 |
}; |
558 | 556 |
|
559 | 557 |
|
560 | 558 |
template <typename _Value> |
561 | 559 |
class EdgeMap |
562 |
: public MapExtender<DefaultMap< |
|
560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
|
561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
|
562 |
|
|
563 | 563 |
public: |
564 |
typedef EdgeSetExtender Digraph; |
|
565 |
typedef MapExtender<DefaultMap<Digraph, Edge, _Value> > Parent; |
|
566 |
|
|
567 |
EdgeMap(const Digraph& _g) |
|
564 |
EdgeMap(const Graph& _g) |
|
568 | 565 |
: Parent(_g) {} |
569 | 566 |
|
570 |
EdgeMap(const |
|
567 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
571 | 568 |
: Parent(_g, _v) {} |
572 | 569 |
|
573 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) { |
574 | 571 |
return operator=<EdgeMap>(cmap); |
575 | 572 |
} |
576 | 573 |
|
577 | 574 |
template <typename CMap> |
578 | 575 |
EdgeMap& operator=(const CMap& cmap) { |
579 | 576 |
Parent::operator=(cmap); |
580 | 577 |
return *this; |
581 | 578 |
} |
582 | 579 |
|
583 | 580 |
}; |
584 | 581 |
|
585 | 582 |
|
586 | 583 |
// Alteration extension |
587 | 584 |
|
588 | 585 |
Edge addEdge(const Node& from, const Node& to) { |
589 | 586 |
Edge edge = Parent::addEdge(from, to); |
590 | 587 |
notifier(Edge()).add(edge); |
591 | 588 |
std::vector<Arc> arcs; |
592 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
593 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
594 | 591 |
notifier(Arc()).add(arcs); |
595 | 592 |
return edge; |
596 | 593 |
} |
597 | 594 |
|
598 | 595 |
void clear() { |
599 | 596 |
notifier(Arc()).clear(); |
600 | 597 |
notifier(Edge()).clear(); |
601 | 598 |
Parent::clear(); |
602 | 599 |
} |
603 | 600 |
|
604 | 601 |
void erase(const Edge& edge) { |
605 | 602 |
std::vector<Arc> arcs; |
606 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
607 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
608 | 605 |
notifier(Arc()).erase(arcs); |
609 | 606 |
notifier(Edge()).erase(edge); |
610 | 607 |
Parent::erase(edge); |
611 | 608 |
} |
612 | 609 |
|
613 | 610 |
|
614 | 611 |
EdgeSetExtender() { |
615 | 612 |
arc_notifier.setContainer(*this); |
616 | 613 |
edge_notifier.setContainer(*this); |
617 | 614 |
} |
618 | 615 |
|
619 | 616 |
~EdgeSetExtender() { |
620 | 617 |
edge_notifier.clear(); |
621 | 618 |
arc_notifier.clear(); |
622 | 619 |
} |
623 | 620 |
|
624 | 621 |
}; |
625 | 622 |
|
626 | 623 |
} |
627 | 624 |
|
628 | 625 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
|
25 | 25 |
namespace lemon { |
26 | 26 |
|
27 | 27 |
template <typename _Digraph> |
28 | 28 |
class DigraphAdaptorExtender : public _Digraph { |
29 |
typedef _Digraph Parent; |
|
30 |
|
|
29 | 31 |
public: |
30 | 32 |
|
31 |
typedef _Digraph Parent; |
|
32 | 33 |
typedef _Digraph Digraph; |
33 | 34 |
typedef DigraphAdaptorExtender Adaptor; |
34 | 35 |
|
35 | 36 |
// Base extensions |
36 | 37 |
|
37 | 38 |
typedef typename Parent::Node Node; |
38 | 39 |
typedef typename Parent::Arc Arc; |
39 | 40 |
|
40 | 41 |
int maxId(Node) const { |
41 | 42 |
return Parent::maxNodeId(); |
42 | 43 |
} |
43 | 44 |
|
44 | 45 |
int maxId(Arc) const { |
45 | 46 |
return Parent::maxArcId(); |
46 | 47 |
} |
47 | 48 |
|
48 | 49 |
Node fromId(int id, Node) const { |
49 | 50 |
return Parent::nodeFromId(id); |
50 | 51 |
} |
51 | 52 |
|
52 | 53 |
Arc fromId(int id, Arc) const { |
53 | 54 |
return Parent::arcFromId(id); |
54 | 55 |
} |
55 | 56 |
|
56 | 57 |
Node oppositeNode(const Node &n, const Arc &e) const { |
57 | 58 |
if (n == Parent::source(e)) |
58 | 59 |
return Parent::target(e); |
59 | 60 |
else if(n==Parent::target(e)) |
60 | 61 |
return Parent::source(e); |
61 | 62 |
else |
62 | 63 |
return INVALID; |
63 | 64 |
} |
64 | 65 |
|
65 | 66 |
class NodeIt : public Node { |
66 | 67 |
const Adaptor* _adaptor; |
67 | 68 |
public: |
68 | 69 |
|
69 | 70 |
NodeIt() {} |
70 | 71 |
|
71 | 72 |
NodeIt(Invalid i) : Node(i) { } |
72 | 73 |
|
73 | 74 |
explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
74 | 75 |
_adaptor->first(static_cast<Node&>(*this)); |
75 | 76 |
} |
76 | 77 |
|
77 | 78 |
NodeIt(const Adaptor& adaptor, const Node& node) |
78 | 79 |
: Node(node), _adaptor(&adaptor) {} |
79 | 80 |
|
80 | 81 |
NodeIt& operator++() { |
81 | 82 |
_adaptor->next(*this); |
82 | 83 |
return *this; |
83 | 84 |
} |
84 | 85 |
|
85 | 86 |
}; |
86 | 87 |
|
87 | 88 |
|
88 | 89 |
class ArcIt : public Arc { |
89 | 90 |
const Adaptor* _adaptor; |
90 | 91 |
public: |
91 | 92 |
|
92 | 93 |
ArcIt() { } |
93 | 94 |
|
94 | 95 |
ArcIt(Invalid i) : Arc(i) { } |
95 | 96 |
|
96 | 97 |
explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
97 | 98 |
_adaptor->first(static_cast<Arc&>(*this)); |
98 | 99 |
} |
99 | 100 |
|
100 | 101 |
ArcIt(const Adaptor& adaptor, const Arc& e) : |
101 | 102 |
Arc(e), _adaptor(&adaptor) { } |
102 | 103 |
|
103 | 104 |
ArcIt& operator++() { |
104 | 105 |
_adaptor->next(*this); |
105 | 106 |
return *this; |
106 | 107 |
} |
107 | 108 |
|
108 | 109 |
}; |
109 | 110 |
|
110 | 111 |
|
111 | 112 |
class OutArcIt : public Arc { |
112 | 113 |
const Adaptor* _adaptor; |
113 | 114 |
public: |
114 | 115 |
|
115 | 116 |
OutArcIt() { } |
116 | 117 |
|
117 | 118 |
OutArcIt(Invalid i) : Arc(i) { } |
118 | 119 |
|
119 | 120 |
OutArcIt(const Adaptor& adaptor, const Node& node) |
120 | 121 |
: _adaptor(&adaptor) { |
121 | 122 |
_adaptor->firstOut(*this, node); |
122 | 123 |
} |
123 | 124 |
|
124 | 125 |
OutArcIt(const Adaptor& adaptor, const Arc& arc) |
125 | 126 |
: Arc(arc), _adaptor(&adaptor) {} |
126 | 127 |
|
127 | 128 |
OutArcIt& operator++() { |
128 | 129 |
_adaptor->nextOut(*this); |
129 | 130 |
return *this; |
130 | 131 |
} |
131 | 132 |
|
132 | 133 |
}; |
133 | 134 |
|
134 | 135 |
|
135 | 136 |
class InArcIt : public Arc { |
136 | 137 |
const Adaptor* _adaptor; |
137 | 138 |
public: |
138 | 139 |
|
139 | 140 |
InArcIt() { } |
140 | 141 |
|
141 | 142 |
InArcIt(Invalid i) : Arc(i) { } |
142 | 143 |
|
143 | 144 |
InArcIt(const Adaptor& adaptor, const Node& node) |
144 | 145 |
: _adaptor(&adaptor) { |
145 | 146 |
_adaptor->firstIn(*this, node); |
146 | 147 |
} |
147 | 148 |
|
148 | 149 |
InArcIt(const Adaptor& adaptor, const Arc& arc) : |
149 | 150 |
Arc(arc), _adaptor(&adaptor) {} |
150 | 151 |
|
151 | 152 |
InArcIt& operator++() { |
152 | 153 |
_adaptor->nextIn(*this); |
153 | 154 |
return *this; |
154 | 155 |
} |
155 | 156 |
|
156 | 157 |
}; |
157 | 158 |
|
158 | 159 |
Node baseNode(const OutArcIt &e) const { |
159 | 160 |
return Parent::source(e); |
160 | 161 |
} |
161 | 162 |
Node runningNode(const OutArcIt &e) const { |
162 | 163 |
return Parent::target(e); |
163 | 164 |
} |
164 | 165 |
|
165 | 166 |
Node baseNode(const InArcIt &e) const { |
166 | 167 |
return Parent::target(e); |
167 | 168 |
} |
168 | 169 |
Node runningNode(const InArcIt &e) const { |
169 | 170 |
return Parent::source(e); |
170 | 171 |
} |
171 | 172 |
|
172 | 173 |
}; |
173 | 174 |
|
174 | 175 |
template <typename _Graph> |
175 | 176 |
class GraphAdaptorExtender : public _Graph { |
177 |
typedef _Graph Parent; |
|
178 |
|
|
176 | 179 |
public: |
177 | 180 |
|
178 |
typedef _Graph Parent; |
|
179 | 181 |
typedef _Graph Graph; |
180 | 182 |
typedef GraphAdaptorExtender Adaptor; |
181 | 183 |
|
182 | 184 |
typedef typename Parent::Node Node; |
183 | 185 |
typedef typename Parent::Arc Arc; |
184 | 186 |
typedef typename Parent::Edge Edge; |
185 | 187 |
|
186 | 188 |
// Graph extension |
187 | 189 |
|
188 | 190 |
int maxId(Node) const { |
189 | 191 |
return Parent::maxNodeId(); |
190 | 192 |
} |
191 | 193 |
|
192 | 194 |
int maxId(Arc) const { |
193 | 195 |
return Parent::maxArcId(); |
194 | 196 |
} |
195 | 197 |
|
196 | 198 |
int maxId(Edge) const { |
197 | 199 |
return Parent::maxEdgeId(); |
198 | 200 |
} |
199 | 201 |
|
200 | 202 |
Node fromId(int id, Node) const { |
201 | 203 |
return Parent::nodeFromId(id); |
202 | 204 |
} |
203 | 205 |
|
204 | 206 |
Arc fromId(int id, Arc) const { |
205 | 207 |
return Parent::arcFromId(id); |
206 | 208 |
} |
207 | 209 |
|
208 | 210 |
Edge fromId(int id, Edge) const { |
209 | 211 |
return Parent::edgeFromId(id); |
210 | 212 |
} |
211 | 213 |
|
212 | 214 |
Node oppositeNode(const Node &n, const Edge &e) const { |
213 | 215 |
if( n == Parent::u(e)) |
214 | 216 |
return Parent::v(e); |
215 | 217 |
else if( n == Parent::v(e)) |
216 | 218 |
return Parent::u(e); |
217 | 219 |
else |
218 | 220 |
return INVALID; |
219 | 221 |
} |
220 | 222 |
|
221 | 223 |
Arc oppositeArc(const Arc &a) const { |
222 | 224 |
return Parent::direct(a, !Parent::direction(a)); |
223 | 225 |
} |
224 | 226 |
|
225 | 227 |
using Parent::direct; |
226 | 228 |
Arc direct(const Edge &e, const Node &s) const { |
227 | 229 |
return Parent::direct(e, Parent::u(e) == s); |
228 | 230 |
} |
229 | 231 |
|
230 | 232 |
|
231 | 233 |
class NodeIt : public Node { |
232 | 234 |
const Adaptor* _adaptor; |
233 | 235 |
public: |
234 | 236 |
|
235 | 237 |
NodeIt() {} |
236 | 238 |
|
237 | 239 |
NodeIt(Invalid i) : Node(i) { } |
238 | 240 |
|
239 | 241 |
explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
240 | 242 |
_adaptor->first(static_cast<Node&>(*this)); |
241 | 243 |
} |
242 | 244 |
|
243 | 245 |
NodeIt(const Adaptor& adaptor, const Node& node) |
244 | 246 |
: Node(node), _adaptor(&adaptor) {} |
245 | 247 |
|
246 | 248 |
NodeIt& operator++() { |
247 | 249 |
_adaptor->next(*this); |
248 | 250 |
return *this; |
249 | 251 |
} |
250 | 252 |
|
251 | 253 |
}; |
252 | 254 |
|
253 | 255 |
|
254 | 256 |
class ArcIt : public Arc { |
255 | 257 |
const Adaptor* _adaptor; |
256 | 258 |
public: |
257 | 259 |
|
258 | 260 |
ArcIt() { } |
259 | 261 |
|
260 | 262 |
ArcIt(Invalid i) : Arc(i) { } |
261 | 263 |
|
262 | 264 |
explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
263 | 265 |
_adaptor->first(static_cast<Arc&>(*this)); |
264 | 266 |
} |
265 | 267 |
|
266 | 268 |
ArcIt(const Adaptor& adaptor, const Arc& e) : |
267 | 269 |
Arc(e), _adaptor(&adaptor) { } |
268 | 270 |
|
269 | 271 |
ArcIt& operator++() { |
270 | 272 |
_adaptor->next(*this); |
271 | 273 |
return *this; |
272 | 274 |
} |
273 | 275 |
|
274 | 276 |
}; |
275 | 277 |
|
276 | 278 |
|
277 | 279 |
class OutArcIt : public Arc { |
278 | 280 |
const Adaptor* _adaptor; |
279 | 281 |
public: |
280 | 282 |
|
281 | 283 |
OutArcIt() { } |
282 | 284 |
|
283 | 285 |
OutArcIt(Invalid i) : Arc(i) { } |
284 | 286 |
|
285 | 287 |
OutArcIt(const Adaptor& adaptor, const Node& node) |
286 | 288 |
: _adaptor(&adaptor) { |
287 | 289 |
_adaptor->firstOut(*this, node); |
288 | 290 |
} |
289 | 291 |
|
290 | 292 |
OutArcIt(const Adaptor& adaptor, const Arc& arc) |
291 | 293 |
: Arc(arc), _adaptor(&adaptor) {} |
292 | 294 |
|
293 | 295 |
OutArcIt& operator++() { |
294 | 296 |
_adaptor->nextOut(*this); |
295 | 297 |
return *this; |
296 | 298 |
} |
297 | 299 |
|
298 | 300 |
}; |
299 | 301 |
|
300 | 302 |
|
301 | 303 |
class InArcIt : public Arc { |
302 | 304 |
const Adaptor* _adaptor; |
303 | 305 |
public: |
304 | 306 |
|
305 | 307 |
InArcIt() { } |
306 | 308 |
|
307 | 309 |
InArcIt(Invalid i) : Arc(i) { } |
308 | 310 |
|
309 | 311 |
InArcIt(const Adaptor& adaptor, const Node& node) |
310 | 312 |
: _adaptor(&adaptor) { |
311 | 313 |
_adaptor->firstIn(*this, node); |
312 | 314 |
} |
313 | 315 |
|
314 | 316 |
InArcIt(const Adaptor& adaptor, const Arc& arc) : |
315 | 317 |
Arc(arc), _adaptor(&adaptor) {} |
316 | 318 |
|
317 | 319 |
InArcIt& operator++() { |
318 | 320 |
_adaptor->nextIn(*this); |
319 | 321 |
return *this; |
320 | 322 |
} |
321 | 323 |
|
322 | 324 |
}; |
323 | 325 |
|
324 | 326 |
class EdgeIt : public Parent::Edge { |
325 | 327 |
const Adaptor* _adaptor; |
326 | 328 |
public: |
327 | 329 |
|
328 | 330 |
EdgeIt() { } |
329 | 331 |
|
330 | 332 |
EdgeIt(Invalid i) : Edge(i) { } |
331 | 333 |
|
332 | 334 |
explicit EdgeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { |
333 | 335 |
_adaptor->first(static_cast<Edge&>(*this)); |
334 | 336 |
} |
335 | 337 |
|
336 | 338 |
EdgeIt(const Adaptor& adaptor, const Edge& e) : |
337 | 339 |
Edge(e), _adaptor(&adaptor) { } |
338 | 340 |
|
339 | 341 |
EdgeIt& operator++() { |
340 | 342 |
_adaptor->next(*this); |
341 | 343 |
return *this; |
342 | 344 |
} |
343 | 345 |
|
344 | 346 |
}; |
345 | 347 |
|
346 | 348 |
class IncEdgeIt : public Edge { |
347 | 349 |
friend class GraphAdaptorExtender; |
348 | 350 |
const Adaptor* _adaptor; |
349 | 351 |
bool direction; |
350 | 352 |
public: |
351 | 353 |
|
352 | 354 |
IncEdgeIt() { } |
353 | 355 |
|
354 | 356 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
355 | 357 |
|
356 | 358 |
IncEdgeIt(const Adaptor& adaptor, const Node &n) : _adaptor(&adaptor) { |
357 | 359 |
_adaptor->firstInc(static_cast<Edge&>(*this), direction, n); |
358 | 360 |
} |
359 | 361 |
|
360 | 362 |
IncEdgeIt(const Adaptor& adaptor, const Edge &e, const Node &n) |
361 | 363 |
: _adaptor(&adaptor), Edge(e) { |
362 | 364 |
direction = (_adaptor->u(e) == n); |
363 | 365 |
} |
364 | 366 |
|
365 | 367 |
IncEdgeIt& operator++() { |
366 | 368 |
_adaptor->nextInc(*this, direction); |
367 | 369 |
return *this; |
368 | 370 |
} |
369 | 371 |
}; |
370 | 372 |
|
371 | 373 |
Node baseNode(const OutArcIt &a) const { |
372 | 374 |
return Parent::source(a); |
373 | 375 |
} |
374 | 376 |
Node runningNode(const OutArcIt &a) const { |
375 | 377 |
return Parent::target(a); |
376 | 378 |
} |
377 | 379 |
|
378 | 380 |
Node baseNode(const InArcIt &a) const { |
379 | 381 |
return Parent::target(a); |
380 | 382 |
} |
381 | 383 |
Node runningNode(const InArcIt &a) const { |
382 | 384 |
return Parent::source(a); |
383 | 385 |
} |
384 | 386 |
|
385 | 387 |
Node baseNode(const IncEdgeIt &e) const { |
386 | 388 |
return e.direction ? Parent::u(e) : Parent::v(e); |
387 | 389 |
} |
388 | 390 |
Node runningNode(const IncEdgeIt &e) const { |
389 | 391 |
return e.direction ? Parent::v(e) : Parent::u(e); |
390 | 392 |
} |
391 | 393 |
|
392 | 394 |
}; |
393 | 395 |
|
394 | 396 |
} |
395 | 397 |
|
396 | 398 |
|
397 | 399 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_GRAPH_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_GRAPH_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/map_extender.h> |
25 | 25 |
#include <lemon/bits/default_map.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
#include <lemon/concepts/maps.h> |
29 | 29 |
|
30 | 30 |
//\ingroup graphbits |
31 | 31 |
//\file |
32 | 32 |
//\brief Extenders for the graph types |
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
// \ingroup graphbits |
36 | 36 |
// |
37 | 37 |
// \brief Extender for the digraph implementations |
38 | 38 |
template <typename Base> |
39 | 39 |
class DigraphExtender : public Base { |
40 |
typedef Base Parent; |
|
41 |
|
|
40 | 42 |
public: |
41 | 43 |
|
42 |
typedef Base Parent; |
|
43 | 44 |
typedef DigraphExtender Digraph; |
44 | 45 |
|
45 | 46 |
// Base extensions |
46 | 47 |
|
47 | 48 |
typedef typename Parent::Node Node; |
48 | 49 |
typedef typename Parent::Arc Arc; |
49 | 50 |
|
50 | 51 |
int maxId(Node) const { |
51 | 52 |
return Parent::maxNodeId(); |
52 | 53 |
} |
53 | 54 |
|
54 | 55 |
int maxId(Arc) const { |
55 | 56 |
return Parent::maxArcId(); |
56 | 57 |
} |
57 | 58 |
|
58 | 59 |
Node fromId(int id, Node) const { |
59 | 60 |
return Parent::nodeFromId(id); |
60 | 61 |
} |
61 | 62 |
|
62 | 63 |
Arc fromId(int id, Arc) const { |
63 | 64 |
return Parent::arcFromId(id); |
64 | 65 |
} |
65 | 66 |
|
66 | 67 |
Node oppositeNode(const Node &node, const Arc &arc) const { |
67 | 68 |
if (node == Parent::source(arc)) |
68 | 69 |
return Parent::target(arc); |
69 | 70 |
else if(node == Parent::target(arc)) |
70 | 71 |
return Parent::source(arc); |
71 | 72 |
else |
72 | 73 |
return INVALID; |
73 | 74 |
} |
74 | 75 |
|
75 | 76 |
// Alterable extension |
76 | 77 |
|
77 | 78 |
typedef AlterationNotifier<DigraphExtender, Node> NodeNotifier; |
78 | 79 |
typedef AlterationNotifier<DigraphExtender, Arc> ArcNotifier; |
79 | 80 |
|
80 | 81 |
|
81 | 82 |
protected: |
82 | 83 |
|
83 | 84 |
mutable NodeNotifier node_notifier; |
84 | 85 |
mutable ArcNotifier arc_notifier; |
85 | 86 |
|
86 | 87 |
public: |
87 | 88 |
|
88 | 89 |
NodeNotifier& notifier(Node) const { |
89 | 90 |
return node_notifier; |
90 | 91 |
} |
91 | 92 |
|
92 | 93 |
ArcNotifier& notifier(Arc) const { |
93 | 94 |
return arc_notifier; |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
class NodeIt : public Node { |
97 | 98 |
const Digraph* _digraph; |
98 | 99 |
public: |
99 | 100 |
|
100 | 101 |
NodeIt() {} |
101 | 102 |
|
102 | 103 |
NodeIt(Invalid i) : Node(i) { } |
103 | 104 |
|
104 | 105 |
explicit NodeIt(const Digraph& digraph) : _digraph(&digraph) { |
105 | 106 |
_digraph->first(static_cast<Node&>(*this)); |
106 | 107 |
} |
107 | 108 |
|
108 | 109 |
NodeIt(const Digraph& digraph, const Node& node) |
109 | 110 |
: Node(node), _digraph(&digraph) {} |
110 | 111 |
|
111 | 112 |
NodeIt& operator++() { |
112 | 113 |
_digraph->next(*this); |
113 | 114 |
return *this; |
114 | 115 |
} |
115 | 116 |
|
116 | 117 |
}; |
117 | 118 |
|
118 | 119 |
|
119 | 120 |
class ArcIt : public Arc { |
120 | 121 |
const Digraph* _digraph; |
121 | 122 |
public: |
122 | 123 |
|
123 | 124 |
ArcIt() { } |
124 | 125 |
|
125 | 126 |
ArcIt(Invalid i) : Arc(i) { } |
126 | 127 |
|
127 | 128 |
explicit ArcIt(const Digraph& digraph) : _digraph(&digraph) { |
128 | 129 |
_digraph->first(static_cast<Arc&>(*this)); |
129 | 130 |
} |
130 | 131 |
|
131 | 132 |
ArcIt(const Digraph& digraph, const Arc& arc) : |
132 | 133 |
Arc(arc), _digraph(&digraph) { } |
133 | 134 |
|
134 | 135 |
ArcIt& operator++() { |
135 | 136 |
_digraph->next(*this); |
136 | 137 |
return *this; |
137 | 138 |
} |
138 | 139 |
|
139 | 140 |
}; |
140 | 141 |
|
141 | 142 |
|
142 | 143 |
class OutArcIt : public Arc { |
143 | 144 |
const Digraph* _digraph; |
144 | 145 |
public: |
145 | 146 |
|
146 | 147 |
OutArcIt() { } |
147 | 148 |
|
148 | 149 |
OutArcIt(Invalid i) : Arc(i) { } |
149 | 150 |
|
150 | 151 |
OutArcIt(const Digraph& digraph, const Node& node) |
151 | 152 |
: _digraph(&digraph) { |
152 | 153 |
_digraph->firstOut(*this, node); |
153 | 154 |
} |
154 | 155 |
|
155 | 156 |
OutArcIt(const Digraph& digraph, const Arc& arc) |
156 | 157 |
: Arc(arc), _digraph(&digraph) {} |
157 | 158 |
|
158 | 159 |
OutArcIt& operator++() { |
159 | 160 |
_digraph->nextOut(*this); |
160 | 161 |
return *this; |
161 | 162 |
} |
162 | 163 |
|
163 | 164 |
}; |
164 | 165 |
|
165 | 166 |
|
166 | 167 |
class InArcIt : public Arc { |
167 | 168 |
const Digraph* _digraph; |
168 | 169 |
public: |
169 | 170 |
|
170 | 171 |
InArcIt() { } |
171 | 172 |
|
172 | 173 |
InArcIt(Invalid i) : Arc(i) { } |
173 | 174 |
|
174 | 175 |
InArcIt(const Digraph& digraph, const Node& node) |
175 | 176 |
: _digraph(&digraph) { |
176 | 177 |
_digraph->firstIn(*this, node); |
177 | 178 |
} |
178 | 179 |
|
179 | 180 |
InArcIt(const Digraph& digraph, const Arc& arc) : |
180 | 181 |
Arc(arc), _digraph(&digraph) {} |
181 | 182 |
|
182 | 183 |
InArcIt& operator++() { |
183 | 184 |
_digraph->nextIn(*this); |
184 | 185 |
return *this; |
185 | 186 |
} |
186 | 187 |
|
187 | 188 |
}; |
188 | 189 |
|
189 | 190 |
// \brief Base node of the iterator |
190 | 191 |
// |
191 | 192 |
// Returns the base node (i.e. the source in this case) of the iterator |
192 | 193 |
Node baseNode(const OutArcIt &arc) const { |
193 | 194 |
return Parent::source(arc); |
194 | 195 |
} |
195 | 196 |
// \brief Running node of the iterator |
196 | 197 |
// |
197 | 198 |
// Returns the running node (i.e. the target in this case) of the |
198 | 199 |
// iterator |
199 | 200 |
Node runningNode(const OutArcIt &arc) const { |
200 | 201 |
return Parent::target(arc); |
201 | 202 |
} |
202 | 203 |
|
203 | 204 |
// \brief Base node of the iterator |
204 | 205 |
// |
205 | 206 |
// Returns the base node (i.e. the target in this case) of the iterator |
206 | 207 |
Node baseNode(const InArcIt &arc) const { |
207 | 208 |
return Parent::target(arc); |
208 | 209 |
} |
209 | 210 |
// \brief Running node of the iterator |
210 | 211 |
// |
211 | 212 |
// Returns the running node (i.e. the source in this case) of the |
212 | 213 |
// iterator |
213 | 214 |
Node runningNode(const InArcIt &arc) const { |
214 | 215 |
return Parent::source(arc); |
215 | 216 |
} |
216 | 217 |
|
217 | 218 |
|
218 | 219 |
template <typename _Value> |
219 | 220 |
class NodeMap |
220 | 221 |
: public MapExtender<DefaultMap<Digraph, Node, _Value> > { |
221 |
public: |
|
222 |
typedef DigraphExtender Digraph; |
|
223 | 222 |
typedef MapExtender<DefaultMap<Digraph, Node, _Value> > Parent; |
224 | 223 |
|
224 |
public: |
|
225 | 225 |
explicit NodeMap(const Digraph& digraph) |
226 | 226 |
: Parent(digraph) {} |
227 | 227 |
NodeMap(const Digraph& digraph, const _Value& value) |
228 | 228 |
: Parent(digraph, value) {} |
229 | 229 |
|
230 | 230 |
private: |
231 | 231 |
NodeMap& operator=(const NodeMap& cmap) { |
232 | 232 |
return operator=<NodeMap>(cmap); |
233 | 233 |
} |
234 | 234 |
|
235 | 235 |
template <typename CMap> |
236 | 236 |
NodeMap& operator=(const CMap& cmap) { |
237 | 237 |
Parent::operator=(cmap); |
238 | 238 |
return *this; |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
}; |
242 | 242 |
|
243 | 243 |
template <typename _Value> |
244 | 244 |
class ArcMap |
245 | 245 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
246 |
public: |
|
247 |
typedef DigraphExtender Digraph; |
|
248 | 246 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
249 | 247 |
|
248 |
public: |
|
250 | 249 |
explicit ArcMap(const Digraph& digraph) |
251 | 250 |
: Parent(digraph) {} |
252 | 251 |
ArcMap(const Digraph& digraph, const _Value& value) |
253 | 252 |
: Parent(digraph, value) {} |
254 | 253 |
|
255 | 254 |
private: |
256 | 255 |
ArcMap& operator=(const ArcMap& cmap) { |
257 | 256 |
return operator=<ArcMap>(cmap); |
258 | 257 |
} |
259 | 258 |
|
260 | 259 |
template <typename CMap> |
261 | 260 |
ArcMap& operator=(const CMap& cmap) { |
262 | 261 |
Parent::operator=(cmap); |
263 | 262 |
return *this; |
264 | 263 |
} |
265 | 264 |
}; |
266 | 265 |
|
267 | 266 |
|
268 | 267 |
Node addNode() { |
269 | 268 |
Node node = Parent::addNode(); |
270 | 269 |
notifier(Node()).add(node); |
271 | 270 |
return node; |
272 | 271 |
} |
273 | 272 |
|
274 | 273 |
Arc addArc(const Node& from, const Node& to) { |
275 | 274 |
Arc arc = Parent::addArc(from, to); |
276 | 275 |
notifier(Arc()).add(arc); |
277 | 276 |
return arc; |
278 | 277 |
} |
279 | 278 |
|
280 | 279 |
void clear() { |
281 | 280 |
notifier(Arc()).clear(); |
282 | 281 |
notifier(Node()).clear(); |
283 | 282 |
Parent::clear(); |
284 | 283 |
} |
285 | 284 |
|
286 | 285 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
287 | 286 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
288 | 287 |
Parent::build(digraph, nodeRef, arcRef); |
289 | 288 |
notifier(Node()).build(); |
290 | 289 |
notifier(Arc()).build(); |
291 | 290 |
} |
292 | 291 |
|
293 | 292 |
void erase(const Node& node) { |
294 | 293 |
Arc arc; |
295 | 294 |
Parent::firstOut(arc, node); |
296 | 295 |
while (arc != INVALID ) { |
297 | 296 |
erase(arc); |
298 | 297 |
Parent::firstOut(arc, node); |
299 | 298 |
} |
300 | 299 |
|
301 | 300 |
Parent::firstIn(arc, node); |
302 | 301 |
while (arc != INVALID ) { |
303 | 302 |
erase(arc); |
304 | 303 |
Parent::firstIn(arc, node); |
305 | 304 |
} |
306 | 305 |
|
307 | 306 |
notifier(Node()).erase(node); |
308 | 307 |
Parent::erase(node); |
309 | 308 |
} |
310 | 309 |
|
311 | 310 |
void erase(const Arc& arc) { |
312 | 311 |
notifier(Arc()).erase(arc); |
313 | 312 |
Parent::erase(arc); |
314 | 313 |
} |
315 | 314 |
|
316 | 315 |
DigraphExtender() { |
317 | 316 |
node_notifier.setContainer(*this); |
318 | 317 |
arc_notifier.setContainer(*this); |
319 | 318 |
} |
320 | 319 |
|
321 | 320 |
|
322 | 321 |
~DigraphExtender() { |
323 | 322 |
arc_notifier.clear(); |
324 | 323 |
node_notifier.clear(); |
325 | 324 |
} |
326 | 325 |
}; |
327 | 326 |
|
328 | 327 |
// \ingroup _graphbits |
329 | 328 |
// |
330 | 329 |
// \brief Extender for the Graphs |
331 | 330 |
template <typename Base> |
332 | 331 |
class GraphExtender : public Base { |
332 |
typedef Base Parent; |
|
333 |
|
|
333 | 334 |
public: |
334 | 335 |
|
335 |
typedef Base Parent; |
|
336 | 336 |
typedef GraphExtender Graph; |
337 | 337 |
|
338 | 338 |
typedef True UndirectedTag; |
339 | 339 |
|
340 | 340 |
typedef typename Parent::Node Node; |
341 | 341 |
typedef typename Parent::Arc Arc; |
342 | 342 |
typedef typename Parent::Edge Edge; |
343 | 343 |
|
344 | 344 |
// Graph extension |
345 | 345 |
|
346 | 346 |
int maxId(Node) const { |
347 | 347 |
return Parent::maxNodeId(); |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
int maxId(Arc) const { |
351 | 351 |
return Parent::maxArcId(); |
352 | 352 |
} |
353 | 353 |
|
354 | 354 |
int maxId(Edge) const { |
355 | 355 |
return Parent::maxEdgeId(); |
356 | 356 |
} |
357 | 357 |
|
358 | 358 |
Node fromId(int id, Node) const { |
359 | 359 |
return Parent::nodeFromId(id); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
Arc fromId(int id, Arc) const { |
363 | 363 |
return Parent::arcFromId(id); |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
Edge fromId(int id, Edge) const { |
367 | 367 |
return Parent::edgeFromId(id); |
368 | 368 |
} |
369 | 369 |
|
370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const { |
371 | 371 |
if( n == Parent::u(e)) |
372 | 372 |
return Parent::v(e); |
373 | 373 |
else if( n == Parent::v(e)) |
374 | 374 |
return Parent::u(e); |
375 | 375 |
else |
376 | 376 |
return INVALID; |
377 | 377 |
} |
378 | 378 |
|
379 | 379 |
Arc oppositeArc(const Arc &arc) const { |
380 | 380 |
return Parent::direct(arc, !Parent::direction(arc)); |
381 | 381 |
} |
382 | 382 |
|
383 | 383 |
using Parent::direct; |
384 | 384 |
Arc direct(const Edge &edge, const Node &node) const { |
385 | 385 |
return Parent::direct(edge, Parent::u(edge) == node); |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
// Alterable extension |
389 | 389 |
|
390 | 390 |
typedef AlterationNotifier<GraphExtender, Node> NodeNotifier; |
391 | 391 |
typedef AlterationNotifier<GraphExtender, Arc> ArcNotifier; |
392 | 392 |
typedef AlterationNotifier<GraphExtender, Edge> EdgeNotifier; |
393 | 393 |
|
394 | 394 |
|
395 | 395 |
protected: |
396 | 396 |
|
397 | 397 |
mutable NodeNotifier node_notifier; |
398 | 398 |
mutable ArcNotifier arc_notifier; |
399 | 399 |
mutable EdgeNotifier edge_notifier; |
400 | 400 |
|
401 | 401 |
public: |
402 | 402 |
|
403 | 403 |
NodeNotifier& notifier(Node) const { |
404 | 404 |
return node_notifier; |
405 | 405 |
} |
406 | 406 |
|
407 | 407 |
ArcNotifier& notifier(Arc) const { |
408 | 408 |
return arc_notifier; |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
EdgeNotifier& notifier(Edge) const { |
412 | 412 |
return edge_notifier; |
413 | 413 |
} |
414 | 414 |
|
415 | 415 |
|
416 | 416 |
|
417 | 417 |
class NodeIt : public Node { |
418 | 418 |
const Graph* _graph; |
419 | 419 |
public: |
420 | 420 |
|
421 | 421 |
NodeIt() {} |
422 | 422 |
|
423 | 423 |
NodeIt(Invalid i) : Node(i) { } |
424 | 424 |
|
425 | 425 |
explicit NodeIt(const Graph& graph) : _graph(&graph) { |
426 | 426 |
_graph->first(static_cast<Node&>(*this)); |
427 | 427 |
} |
428 | 428 |
|
429 | 429 |
NodeIt(const Graph& graph, const Node& node) |
430 | 430 |
: Node(node), _graph(&graph) {} |
431 | 431 |
|
432 | 432 |
NodeIt& operator++() { |
433 | 433 |
_graph->next(*this); |
434 | 434 |
return *this; |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
}; |
438 | 438 |
|
439 | 439 |
|
440 | 440 |
class ArcIt : public Arc { |
441 | 441 |
const Graph* _graph; |
442 | 442 |
public: |
443 | 443 |
|
444 | 444 |
ArcIt() { } |
445 | 445 |
|
446 | 446 |
ArcIt(Invalid i) : Arc(i) { } |
447 | 447 |
|
448 | 448 |
explicit ArcIt(const Graph& graph) : _graph(&graph) { |
449 | 449 |
_graph->first(static_cast<Arc&>(*this)); |
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
ArcIt(const Graph& graph, const Arc& arc) : |
453 | 453 |
Arc(arc), _graph(&graph) { } |
454 | 454 |
|
455 | 455 |
ArcIt& operator++() { |
456 | 456 |
_graph->next(*this); |
457 | 457 |
return *this; |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
}; |
461 | 461 |
|
462 | 462 |
|
463 | 463 |
class OutArcIt : public Arc { |
464 | 464 |
const Graph* _graph; |
465 | 465 |
public: |
466 | 466 |
|
467 | 467 |
OutArcIt() { } |
468 | 468 |
|
469 | 469 |
OutArcIt(Invalid i) : Arc(i) { } |
470 | 470 |
|
471 | 471 |
OutArcIt(const Graph& graph, const Node& node) |
472 | 472 |
: _graph(&graph) { |
473 | 473 |
_graph->firstOut(*this, node); |
474 | 474 |
} |
475 | 475 |
|
476 | 476 |
OutArcIt(const Graph& graph, const Arc& arc) |
477 | 477 |
: Arc(arc), _graph(&graph) {} |
478 | 478 |
|
479 | 479 |
OutArcIt& operator++() { |
480 | 480 |
_graph->nextOut(*this); |
481 | 481 |
return *this; |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
}; |
485 | 485 |
|
486 | 486 |
|
487 | 487 |
class InArcIt : public Arc { |
488 | 488 |
const Graph* _graph; |
489 | 489 |
public: |
490 | 490 |
|
491 | 491 |
InArcIt() { } |
492 | 492 |
|
493 | 493 |
InArcIt(Invalid i) : Arc(i) { } |
494 | 494 |
|
495 | 495 |
InArcIt(const Graph& graph, const Node& node) |
496 | 496 |
: _graph(&graph) { |
497 | 497 |
_graph->firstIn(*this, node); |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
InArcIt(const Graph& graph, const Arc& arc) : |
501 | 501 |
Arc(arc), _graph(&graph) {} |
502 | 502 |
|
503 | 503 |
InArcIt& operator++() { |
504 | 504 |
_graph->nextIn(*this); |
505 | 505 |
return *this; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
}; |
509 | 509 |
|
510 | 510 |
|
511 | 511 |
class EdgeIt : public Parent::Edge { |
512 | 512 |
const Graph* _graph; |
513 | 513 |
public: |
514 | 514 |
|
515 | 515 |
EdgeIt() { } |
516 | 516 |
|
517 | 517 |
EdgeIt(Invalid i) : Edge(i) { } |
518 | 518 |
|
519 | 519 |
explicit EdgeIt(const Graph& graph) : _graph(&graph) { |
520 | 520 |
_graph->first(static_cast<Edge&>(*this)); |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
EdgeIt(const Graph& graph, const Edge& edge) : |
524 | 524 |
Edge(edge), _graph(&graph) { } |
525 | 525 |
|
526 | 526 |
EdgeIt& operator++() { |
527 | 527 |
_graph->next(*this); |
528 | 528 |
return *this; |
529 | 529 |
} |
530 | 530 |
|
531 | 531 |
}; |
532 | 532 |
|
533 | 533 |
class IncEdgeIt : public Parent::Edge { |
534 | 534 |
friend class GraphExtender; |
535 | 535 |
const Graph* _graph; |
536 | 536 |
bool _direction; |
537 | 537 |
public: |
538 | 538 |
|
539 | 539 |
IncEdgeIt() { } |
540 | 540 |
|
541 | 541 |
IncEdgeIt(Invalid i) : Edge(i), _direction(false) { } |
542 | 542 |
|
543 | 543 |
IncEdgeIt(const Graph& graph, const Node &node) : _graph(&graph) { |
544 | 544 |
_graph->firstInc(*this, _direction, node); |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node) |
548 | 548 |
: _graph(&graph), Edge(edge) { |
549 | 549 |
_direction = (_graph->source(edge) == node); |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
IncEdgeIt& operator++() { |
553 | 553 |
_graph->nextInc(*this, _direction); |
554 | 554 |
return *this; |
555 | 555 |
} |
556 | 556 |
}; |
557 | 557 |
|
558 | 558 |
// \brief Base node of the iterator |
559 | 559 |
// |
560 | 560 |
// Returns the base node (ie. the source in this case) of the iterator |
561 | 561 |
Node baseNode(const OutArcIt &arc) const { |
562 | 562 |
return Parent::source(static_cast<const Arc&>(arc)); |
563 | 563 |
} |
564 | 564 |
// \brief Running node of the iterator |
565 | 565 |
// |
566 | 566 |
// Returns the running node (ie. the target in this case) of the |
567 | 567 |
// iterator |
568 | 568 |
Node runningNode(const OutArcIt &arc) const { |
569 | 569 |
return Parent::target(static_cast<const Arc&>(arc)); |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
// \brief Base node of the iterator |
573 | 573 |
// |
574 | 574 |
// Returns the base node (ie. the target in this case) of the iterator |
575 | 575 |
Node baseNode(const InArcIt &arc) const { |
576 | 576 |
return Parent::target(static_cast<const Arc&>(arc)); |
577 | 577 |
} |
578 | 578 |
// \brief Running node of the iterator |
579 | 579 |
// |
580 | 580 |
// Returns the running node (ie. the source in this case) of the |
581 | 581 |
// iterator |
582 | 582 |
Node runningNode(const InArcIt &arc) const { |
583 | 583 |
return Parent::source(static_cast<const Arc&>(arc)); |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
// Base node of the iterator |
587 | 587 |
// |
588 | 588 |
// Returns the base node of the iterator |
589 | 589 |
Node baseNode(const IncEdgeIt &edge) const { |
590 | 590 |
return edge._direction ? u(edge) : v(edge); |
591 | 591 |
} |
592 | 592 |
// Running node of the iterator |
593 | 593 |
// |
594 | 594 |
// Returns the running node of the iterator |
595 | 595 |
Node runningNode(const IncEdgeIt &edge) const { |
596 | 596 |
return edge._direction ? v(edge) : u(edge); |
597 | 597 |
} |
598 | 598 |
|
599 | 599 |
// Mappable extension |
600 | 600 |
|
601 | 601 |
template <typename _Value> |
602 | 602 |
class NodeMap |
603 | 603 |
: public MapExtender<DefaultMap<Graph, Node, _Value> > { |
604 |
public: |
|
605 |
typedef GraphExtender Graph; |
|
606 | 604 |
typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent; |
607 | 605 |
|
606 |
public: |
|
608 | 607 |
NodeMap(const Graph& graph) |
609 | 608 |
: Parent(graph) {} |
610 | 609 |
NodeMap(const Graph& graph, const _Value& value) |
611 | 610 |
: Parent(graph, value) {} |
612 | 611 |
|
613 | 612 |
private: |
614 | 613 |
NodeMap& operator=(const NodeMap& cmap) { |
615 | 614 |
return operator=<NodeMap>(cmap); |
616 | 615 |
} |
617 | 616 |
|
618 | 617 |
template <typename CMap> |
619 | 618 |
NodeMap& operator=(const CMap& cmap) { |
620 | 619 |
Parent::operator=(cmap); |
621 | 620 |
return *this; |
622 | 621 |
} |
623 | 622 |
|
624 | 623 |
}; |
625 | 624 |
|
626 | 625 |
template <typename _Value> |
627 | 626 |
class ArcMap |
628 | 627 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
629 |
public: |
|
630 |
typedef GraphExtender Graph; |
|
631 | 628 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
632 | 629 |
|
630 |
public: |
|
633 | 631 |
ArcMap(const Graph& graph) |
634 | 632 |
: Parent(graph) {} |
635 | 633 |
ArcMap(const Graph& graph, const _Value& value) |
636 | 634 |
: Parent(graph, value) {} |
637 | 635 |
|
638 | 636 |
private: |
639 | 637 |
ArcMap& operator=(const ArcMap& cmap) { |
640 | 638 |
return operator=<ArcMap>(cmap); |
641 | 639 |
} |
642 | 640 |
|
643 | 641 |
template <typename CMap> |
644 | 642 |
ArcMap& operator=(const CMap& cmap) { |
645 | 643 |
Parent::operator=(cmap); |
646 | 644 |
return *this; |
647 | 645 |
} |
648 | 646 |
}; |
649 | 647 |
|
650 | 648 |
|
651 | 649 |
template <typename _Value> |
652 | 650 |
class EdgeMap |
653 | 651 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
654 |
public: |
|
655 |
typedef GraphExtender Graph; |
|
656 | 652 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
657 | 653 |
|
654 |
public: |
|
658 | 655 |
EdgeMap(const Graph& graph) |
659 | 656 |
: Parent(graph) {} |
660 | 657 |
|
661 | 658 |
EdgeMap(const Graph& graph, const _Value& value) |
662 | 659 |
: Parent(graph, value) {} |
663 | 660 |
|
664 | 661 |
private: |
665 | 662 |
EdgeMap& operator=(const EdgeMap& cmap) { |
666 | 663 |
return operator=<EdgeMap>(cmap); |
667 | 664 |
} |
668 | 665 |
|
669 | 666 |
template <typename CMap> |
670 | 667 |
EdgeMap& operator=(const CMap& cmap) { |
671 | 668 |
Parent::operator=(cmap); |
672 | 669 |
return *this; |
673 | 670 |
} |
674 | 671 |
|
675 | 672 |
}; |
676 | 673 |
|
677 | 674 |
// Alteration extension |
678 | 675 |
|
679 | 676 |
Node addNode() { |
680 | 677 |
Node node = Parent::addNode(); |
681 | 678 |
notifier(Node()).add(node); |
682 | 679 |
return node; |
683 | 680 |
} |
684 | 681 |
|
685 | 682 |
Edge addEdge(const Node& from, const Node& to) { |
686 | 683 |
Edge edge = Parent::addEdge(from, to); |
687 | 684 |
notifier(Edge()).add(edge); |
688 | 685 |
std::vector<Arc> ev; |
689 | 686 |
ev.push_back(Parent::direct(edge, true)); |
690 | 687 |
ev.push_back(Parent::direct(edge, false)); |
691 | 688 |
notifier(Arc()).add(ev); |
692 | 689 |
return edge; |
693 | 690 |
} |
694 | 691 |
|
695 | 692 |
void clear() { |
696 | 693 |
notifier(Arc()).clear(); |
697 | 694 |
notifier(Edge()).clear(); |
698 | 695 |
notifier(Node()).clear(); |
699 | 696 |
Parent::clear(); |
700 | 697 |
} |
701 | 698 |
|
702 | 699 |
template <typename Graph, typename NodeRefMap, typename EdgeRefMap> |
703 | 700 |
void build(const Graph& graph, NodeRefMap& nodeRef, |
704 | 701 |
EdgeRefMap& edgeRef) { |
705 | 702 |
Parent::build(graph, nodeRef, edgeRef); |
706 | 703 |
notifier(Node()).build(); |
707 | 704 |
notifier(Edge()).build(); |
708 | 705 |
notifier(Arc()).build(); |
709 | 706 |
} |
710 | 707 |
|
711 | 708 |
void erase(const Node& node) { |
712 | 709 |
Arc arc; |
713 | 710 |
Parent::firstOut(arc, node); |
714 | 711 |
while (arc != INVALID ) { |
715 | 712 |
erase(arc); |
716 | 713 |
Parent::firstOut(arc, node); |
717 | 714 |
} |
718 | 715 |
|
719 | 716 |
Parent::firstIn(arc, node); |
720 | 717 |
while (arc != INVALID ) { |
721 | 718 |
erase(arc); |
722 | 719 |
Parent::firstIn(arc, node); |
723 | 720 |
} |
724 | 721 |
|
725 | 722 |
notifier(Node()).erase(node); |
726 | 723 |
Parent::erase(node); |
727 | 724 |
} |
728 | 725 |
|
729 | 726 |
void erase(const Edge& edge) { |
730 | 727 |
std::vector<Arc> av; |
731 | 728 |
av.push_back(Parent::direct(edge, true)); |
732 | 729 |
av.push_back(Parent::direct(edge, false)); |
733 | 730 |
notifier(Arc()).erase(av); |
734 | 731 |
notifier(Edge()).erase(edge); |
735 | 732 |
Parent::erase(edge); |
736 | 733 |
} |
737 | 734 |
|
738 | 735 |
GraphExtender() { |
739 | 736 |
node_notifier.setContainer(*this); |
740 | 737 |
arc_notifier.setContainer(*this); |
741 | 738 |
edge_notifier.setContainer(*this); |
742 | 739 |
} |
743 | 740 |
|
744 | 741 |
~GraphExtender() { |
745 | 742 |
edge_notifier.clear(); |
746 | 743 |
arc_notifier.clear(); |
747 | 744 |
node_notifier.clear(); |
748 | 745 |
} |
749 | 746 |
|
750 | 747 |
}; |
751 | 748 |
|
752 | 749 |
} |
753 | 750 |
|
754 | 751 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
//\file |
30 | 30 |
//\brief Extenders for iterable maps. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
// \ingroup graphbits |
35 | 35 |
// |
36 | 36 |
// \brief Extender for maps |
37 | 37 |
template <typename _Map> |
38 | 38 |
class MapExtender : public _Map { |
39 |
typedef _Map Parent; |
|
40 |
typedef typename Parent::GraphType GraphType; |
|
41 |
|
|
39 | 42 |
public: |
40 | 43 |
|
41 |
typedef _Map Parent; |
|
42 | 44 |
typedef MapExtender Map; |
43 |
|
|
44 |
|
|
45 |
typedef typename Parent::Graph Graph; |
|
46 | 45 |
typedef typename Parent::Key Item; |
47 | 46 |
|
48 | 47 |
typedef typename Parent::Key Key; |
49 | 48 |
typedef typename Parent::Value Value; |
50 | 49 |
typedef typename Parent::Reference Reference; |
51 | 50 |
typedef typename Parent::ConstReference ConstReference; |
52 | 51 |
|
53 | 52 |
class MapIt; |
54 | 53 |
class ConstMapIt; |
55 | 54 |
|
56 | 55 |
friend class MapIt; |
57 | 56 |
friend class ConstMapIt; |
58 | 57 |
|
59 | 58 |
public: |
60 | 59 |
|
61 |
MapExtender(const |
|
60 |
MapExtender(const GraphType& graph) |
|
62 | 61 |
: Parent(graph) {} |
63 | 62 |
|
64 |
MapExtender(const |
|
63 |
MapExtender(const GraphType& graph, const Value& value) |
|
65 | 64 |
: Parent(graph, value) {} |
66 | 65 |
|
67 | 66 |
private: |
68 | 67 |
MapExtender& operator=(const MapExtender& cmap) { |
69 | 68 |
return operator=<MapExtender>(cmap); |
70 | 69 |
} |
71 | 70 |
|
72 | 71 |
template <typename CMap> |
73 | 72 |
MapExtender& operator=(const CMap& cmap) { |
74 | 73 |
Parent::operator=(cmap); |
75 | 74 |
return *this; |
76 | 75 |
} |
77 | 76 |
|
78 | 77 |
public: |
79 | 78 |
class MapIt : public Item { |
79 |
typedef Item Parent; |
|
80 |
|
|
80 | 81 |
public: |
81 | 82 |
|
82 |
typedef Item Parent; |
|
83 | 83 |
typedef typename Map::Value Value; |
84 | 84 |
|
85 | 85 |
MapIt() {} |
86 | 86 |
|
87 | 87 |
MapIt(Invalid i) : Parent(i) { } |
88 | 88 |
|
89 | 89 |
explicit MapIt(Map& _map) : map(_map) { |
90 | 90 |
map.notifier()->first(*this); |
91 | 91 |
} |
92 | 92 |
|
93 | 93 |
MapIt(const Map& _map, const Item& item) |
94 | 94 |
: Parent(item), map(_map) {} |
95 | 95 |
|
96 | 96 |
MapIt& operator++() { |
97 | 97 |
map.notifier()->next(*this); |
98 | 98 |
return *this; |
99 | 99 |
} |
100 | 100 |
|
101 | 101 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
102 | 102 |
return map[*this]; |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
typename MapTraits<Map>::ReturnValue operator*() { |
106 | 106 |
return map[*this]; |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
void set(const Value& value) { |
110 | 110 |
map.set(*this, value); |
111 | 111 |
} |
112 | 112 |
|
113 | 113 |
protected: |
114 | 114 |
Map& map; |
115 | 115 |
|
116 | 116 |
}; |
117 | 117 |
|
118 | 118 |
class ConstMapIt : public Item { |
119 |
typedef Item Parent; |
|
120 |
|
|
119 | 121 |
public: |
120 | 122 |
|
121 |
typedef Item Parent; |
|
122 |
|
|
123 | 123 |
typedef typename Map::Value Value; |
124 | 124 |
|
125 | 125 |
ConstMapIt() {} |
126 | 126 |
|
127 | 127 |
ConstMapIt(Invalid i) : Parent(i) { } |
128 | 128 |
|
129 | 129 |
explicit ConstMapIt(Map& _map) : map(_map) { |
130 | 130 |
map.notifier()->first(*this); |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
ConstMapIt(const Map& _map, const Item& item) |
134 | 134 |
: Parent(item), map(_map) {} |
135 | 135 |
|
136 | 136 |
ConstMapIt& operator++() { |
137 | 137 |
map.notifier()->next(*this); |
138 | 138 |
return *this; |
139 | 139 |
} |
140 | 140 |
|
141 | 141 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
142 | 142 |
return map[*this]; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
protected: |
146 | 146 |
const Map& map; |
147 | 147 |
}; |
148 | 148 |
|
149 | 149 |
class ItemIt : public Item { |
150 |
typedef Item Parent; |
|
151 |
|
|
150 | 152 |
public: |
151 | 153 |
|
152 |
typedef Item Parent; |
|
153 |
|
|
154 | 154 |
ItemIt() {} |
155 | 155 |
|
156 | 156 |
ItemIt(Invalid i) : Parent(i) { } |
157 | 157 |
|
158 | 158 |
explicit ItemIt(Map& _map) : map(_map) { |
159 | 159 |
map.notifier()->first(*this); |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
ItemIt(const Map& _map, const Item& item) |
163 | 163 |
: Parent(item), map(_map) {} |
164 | 164 |
|
165 | 165 |
ItemIt& operator++() { |
166 | 166 |
map.notifier()->next(*this); |
167 | 167 |
return *this; |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
protected: |
171 | 171 |
const Map& map; |
172 | 172 |
|
173 | 173 |
}; |
174 | 174 |
}; |
175 | 175 |
|
176 | 176 |
// \ingroup graphbits |
177 | 177 |
// |
178 | 178 |
// \brief Extender for maps which use a subset of the items. |
179 | 179 |
template <typename _Graph, typename _Map> |
180 | 180 |
class SubMapExtender : public _Map { |
181 |
typedef _Map Parent; |
|
182 |
typedef _Graph GraphType; |
|
183 |
|
|
181 | 184 |
public: |
182 | 185 |
|
183 |
typedef _Map Parent; |
|
184 | 186 |
typedef SubMapExtender Map; |
185 |
|
|
186 |
typedef _Graph Graph; |
|
187 |
|
|
188 | 187 |
typedef typename Parent::Key Item; |
189 | 188 |
|
190 | 189 |
typedef typename Parent::Key Key; |
191 | 190 |
typedef typename Parent::Value Value; |
192 | 191 |
typedef typename Parent::Reference Reference; |
193 | 192 |
typedef typename Parent::ConstReference ConstReference; |
194 | 193 |
|
195 | 194 |
class MapIt; |
196 | 195 |
class ConstMapIt; |
197 | 196 |
|
198 | 197 |
friend class MapIt; |
199 | 198 |
friend class ConstMapIt; |
200 | 199 |
|
201 | 200 |
public: |
202 | 201 |
|
203 |
SubMapExtender(const |
|
202 |
SubMapExtender(const GraphType& _graph) |
|
204 | 203 |
: Parent(_graph), graph(_graph) {} |
205 | 204 |
|
206 |
SubMapExtender(const |
|
205 |
SubMapExtender(const GraphType& _graph, const Value& _value) |
|
207 | 206 |
: Parent(_graph, _value), graph(_graph) {} |
208 | 207 |
|
209 | 208 |
private: |
210 | 209 |
SubMapExtender& operator=(const SubMapExtender& cmap) { |
211 | 210 |
return operator=<MapExtender>(cmap); |
212 | 211 |
} |
213 | 212 |
|
214 | 213 |
template <typename CMap> |
215 | 214 |
SubMapExtender& operator=(const CMap& cmap) { |
216 | 215 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
217 | 216 |
Item it; |
218 | 217 |
for (graph.first(it); it != INVALID; graph.next(it)) { |
219 | 218 |
Parent::set(it, cmap[it]); |
220 | 219 |
} |
221 | 220 |
return *this; |
222 | 221 |
} |
223 | 222 |
|
224 | 223 |
public: |
225 | 224 |
class MapIt : public Item { |
225 |
typedef Item Parent; |
|
226 |
|
|
226 | 227 |
public: |
227 |
|
|
228 |
typedef Item Parent; |
|
229 | 228 |
typedef typename Map::Value Value; |
230 | 229 |
|
231 | 230 |
MapIt() {} |
232 | 231 |
|
233 | 232 |
MapIt(Invalid i) : Parent(i) { } |
234 | 233 |
|
235 | 234 |
explicit MapIt(Map& _map) : map(_map) { |
236 | 235 |
map.graph.first(*this); |
237 | 236 |
} |
238 | 237 |
|
239 | 238 |
MapIt(const Map& _map, const Item& item) |
240 | 239 |
: Parent(item), map(_map) {} |
241 | 240 |
|
242 | 241 |
MapIt& operator++() { |
243 | 242 |
map.graph.next(*this); |
244 | 243 |
return *this; |
245 | 244 |
} |
246 | 245 |
|
247 | 246 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
248 | 247 |
return map[*this]; |
249 | 248 |
} |
250 | 249 |
|
251 | 250 |
typename MapTraits<Map>::ReturnValue operator*() { |
252 | 251 |
return map[*this]; |
253 | 252 |
} |
254 | 253 |
|
255 | 254 |
void set(const Value& value) { |
256 | 255 |
map.set(*this, value); |
257 | 256 |
} |
258 | 257 |
|
259 | 258 |
protected: |
260 | 259 |
Map& map; |
261 | 260 |
|
262 | 261 |
}; |
263 | 262 |
|
264 | 263 |
class ConstMapIt : public Item { |
264 |
typedef Item Parent; |
|
265 |
|
|
265 | 266 |
public: |
266 | 267 |
|
267 |
typedef Item Parent; |
|
268 |
|
|
269 | 268 |
typedef typename Map::Value Value; |
270 | 269 |
|
271 | 270 |
ConstMapIt() {} |
272 | 271 |
|
273 | 272 |
ConstMapIt(Invalid i) : Parent(i) { } |
274 | 273 |
|
275 | 274 |
explicit ConstMapIt(Map& _map) : map(_map) { |
276 | 275 |
map.graph.first(*this); |
277 | 276 |
} |
278 | 277 |
|
279 | 278 |
ConstMapIt(const Map& _map, const Item& item) |
280 | 279 |
: Parent(item), map(_map) {} |
281 | 280 |
|
282 | 281 |
ConstMapIt& operator++() { |
283 | 282 |
map.graph.next(*this); |
284 | 283 |
return *this; |
285 | 284 |
} |
286 | 285 |
|
287 | 286 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
288 | 287 |
return map[*this]; |
289 | 288 |
} |
290 | 289 |
|
291 | 290 |
protected: |
292 | 291 |
const Map& map; |
293 | 292 |
}; |
294 | 293 |
|
295 | 294 |
class ItemIt : public Item { |
295 |
typedef Item Parent; |
|
296 |
|
|
296 | 297 |
public: |
297 | 298 |
|
298 |
typedef Item Parent; |
|
299 |
|
|
300 | 299 |
ItemIt() {} |
301 | 300 |
|
302 | 301 |
ItemIt(Invalid i) : Parent(i) { } |
303 | 302 |
|
304 | 303 |
explicit ItemIt(Map& _map) : map(_map) { |
305 | 304 |
map.graph.first(*this); |
306 | 305 |
} |
307 | 306 |
|
308 | 307 |
ItemIt(const Map& _map, const Item& item) |
309 | 308 |
: Parent(item), map(_map) {} |
310 | 309 |
|
311 | 310 |
ItemIt& operator++() { |
312 | 311 |
map.graph.next(*this); |
313 | 312 |
return *this; |
314 | 313 |
} |
315 | 314 |
|
316 | 315 |
protected: |
317 | 316 |
const Map& map; |
318 | 317 |
|
319 | 318 |
}; |
320 | 319 |
|
321 | 320 |
private: |
322 | 321 |
|
323 |
const |
|
322 |
const GraphType& graph; |
|
324 | 323 |
|
325 | 324 |
}; |
326 | 325 |
|
327 | 326 |
} |
328 | 327 |
|
329 | 328 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/core.h> |
26 | 26 |
#include <lemon/bits/alteration_notifier.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/maps.h> |
30 | 30 |
|
31 | 31 |
//\ingroup graphbits |
32 | 32 |
// |
33 | 33 |
//\file |
34 | 34 |
//\brief Vector based graph maps. |
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
// \ingroup graphbits |
38 | 38 |
// |
39 | 39 |
// \brief Graph map based on the std::vector storage. |
40 | 40 |
// |
41 | 41 |
// The VectorMap template class is graph map structure that automatically |
42 | 42 |
// updates the map when a key is added to or erased from the graph. |
43 | 43 |
// This map type uses std::vector to store the values. |
44 | 44 |
// |
45 | 45 |
// \tparam _Graph The graph this map is attached to. |
46 | 46 |
// \tparam _Item The item type of the graph items. |
47 | 47 |
// \tparam _Value The value type of the map. |
48 | 48 |
template <typename _Graph, typename _Item, typename _Value> |
49 | 49 |
class VectorMap |
50 | 50 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
51 | 51 |
private: |
52 | 52 |
|
53 | 53 |
// The container type of the map. |
54 | 54 |
typedef std::vector<_Value> Container; |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
// The graph type of the map. |
59 |
typedef _Graph |
|
59 |
typedef _Graph GraphType; |
|
60 | 60 |
// The item type of the map. |
61 | 61 |
typedef _Item Item; |
62 | 62 |
// The reference map tag. |
63 | 63 |
typedef True ReferenceMapTag; |
64 | 64 |
|
65 | 65 |
// The key type of the map. |
66 | 66 |
typedef _Item Key; |
67 | 67 |
// The value type of the map. |
68 | 68 |
typedef _Value Value; |
69 | 69 |
|
70 | 70 |
// The notifier type. |
71 | 71 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
72 | 72 |
|
73 | 73 |
// The map type. |
74 | 74 |
typedef VectorMap Map; |
75 |
// The base class of the map. |
|
76 |
typedef typename Notifier::ObserverBase Parent; |
|
77 | 75 |
|
78 | 76 |
// The reference type of the map; |
79 | 77 |
typedef typename Container::reference Reference; |
80 | 78 |
// The const reference type of the map; |
81 | 79 |
typedef typename Container::const_reference ConstReference; |
82 | 80 |
|
81 |
private: |
|
82 |
|
|
83 |
// The base class of the map. |
|
84 |
typedef typename Notifier::ObserverBase Parent; |
|
85 |
|
|
86 |
public: |
|
83 | 87 |
|
84 | 88 |
// \brief Constructor to attach the new map into the notifier. |
85 | 89 |
// |
86 | 90 |
// It constructs a map and attachs it into the notifier. |
87 | 91 |
// It adds all the items of the graph to the map. |
88 |
VectorMap(const |
|
92 |
VectorMap(const GraphType& graph) { |
|
89 | 93 |
Parent::attach(graph.notifier(Item())); |
90 | 94 |
container.resize(Parent::notifier()->maxId() + 1); |
91 | 95 |
} |
92 | 96 |
|
93 | 97 |
// \brief Constructor uses given value to initialize the map. |
94 | 98 |
// |
95 | 99 |
// It constructs a map uses a given value to initialize the map. |
96 | 100 |
// It adds all the items of the graph to the map. |
97 |
VectorMap(const |
|
101 |
VectorMap(const GraphType& graph, const Value& value) { |
|
98 | 102 |
Parent::attach(graph.notifier(Item())); |
99 | 103 |
container.resize(Parent::notifier()->maxId() + 1, value); |
100 | 104 |
} |
101 | 105 |
|
102 | 106 |
private: |
103 | 107 |
// \brief Copy constructor |
104 | 108 |
// |
105 | 109 |
// Copy constructor. |
106 | 110 |
VectorMap(const VectorMap& _copy) : Parent() { |
107 | 111 |
if (_copy.attached()) { |
108 | 112 |
Parent::attach(*_copy.notifier()); |
109 | 113 |
container = _copy.container; |
110 | 114 |
} |
111 | 115 |
} |
112 | 116 |
|
113 | 117 |
// \brief Assign operator. |
114 | 118 |
// |
115 | 119 |
// This operator assigns for each item in the map the |
116 | 120 |
// value mapped to the same item in the copied map. |
117 | 121 |
// The parameter map should be indiced with the same |
118 | 122 |
// itemset because this assign operator does not change |
119 | 123 |
// the container of the map. |
120 | 124 |
VectorMap& operator=(const VectorMap& cmap) { |
121 | 125 |
return operator=<VectorMap>(cmap); |
122 | 126 |
} |
123 | 127 |
|
124 | 128 |
|
125 | 129 |
// \brief Template assign operator. |
126 | 130 |
// |
127 | 131 |
// The given parameter should conform to the ReadMap |
128 | 132 |
// concecpt and could be indiced by the current item set of |
129 | 133 |
// the NodeMap. In this case the value for each item |
130 | 134 |
// is assigned by the value of the given ReadMap. |
131 | 135 |
template <typename CMap> |
132 | 136 |
VectorMap& operator=(const CMap& cmap) { |
133 | 137 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
134 | 138 |
const typename Parent::Notifier* nf = Parent::notifier(); |
135 | 139 |
Item it; |
136 | 140 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
137 | 141 |
set(it, cmap[it]); |
138 | 142 |
} |
139 | 143 |
return *this; |
140 | 144 |
} |
141 | 145 |
|
142 | 146 |
public: |
143 | 147 |
|
144 | 148 |
// \brief The subcript operator. |
145 | 149 |
// |
146 | 150 |
// The subscript operator. The map can be subscripted by the |
147 | 151 |
// actual items of the graph. |
148 | 152 |
Reference operator[](const Key& key) { |
149 | 153 |
return container[Parent::notifier()->id(key)]; |
150 | 154 |
} |
151 | 155 |
|
152 | 156 |
// \brief The const subcript operator. |
153 | 157 |
// |
154 | 158 |
// The const subscript operator. The map can be subscripted by the |
155 | 159 |
// actual items of the graph. |
156 | 160 |
ConstReference operator[](const Key& key) const { |
157 | 161 |
return container[Parent::notifier()->id(key)]; |
158 | 162 |
} |
159 | 163 |
|
160 | 164 |
|
161 | 165 |
// \brief The setter function of the map. |
162 | 166 |
// |
163 | 167 |
// It the same as operator[](key) = value expression. |
164 | 168 |
void set(const Key& key, const Value& value) { |
165 | 169 |
(*this)[key] = value; |
166 | 170 |
} |
167 | 171 |
|
168 | 172 |
protected: |
169 | 173 |
|
170 | 174 |
// \brief Adds a new key to the map. |
171 | 175 |
// |
172 | 176 |
// It adds a new key to the map. It is called by the observer notifier |
173 | 177 |
// and it overrides the add() member function of the observer base. |
174 | 178 |
virtual void add(const Key& key) { |
175 | 179 |
int id = Parent::notifier()->id(key); |
176 | 180 |
if (id >= int(container.size())) { |
177 | 181 |
container.resize(id + 1); |
178 | 182 |
} |
179 | 183 |
} |
180 | 184 |
|
181 | 185 |
// \brief Adds more new keys to the map. |
182 | 186 |
// |
183 | 187 |
// It adds more new keys to the map. It is called by the observer notifier |
184 | 188 |
// and it overrides the add() member function of the observer base. |
185 | 189 |
virtual void add(const std::vector<Key>& keys) { |
186 | 190 |
int max = container.size() - 1; |
187 | 191 |
for (int i = 0; i < int(keys.size()); ++i) { |
188 | 192 |
int id = Parent::notifier()->id(keys[i]); |
189 | 193 |
if (id >= max) { |
190 | 194 |
max = id; |
191 | 195 |
} |
192 | 196 |
} |
193 | 197 |
container.resize(max + 1); |
194 | 198 |
} |
195 | 199 |
|
196 | 200 |
// \brief Erase a key from the map. |
197 | 201 |
// |
198 | 202 |
// Erase a key from the map. It is called by the observer notifier |
199 | 203 |
// and it overrides the erase() member function of the observer base. |
200 | 204 |
virtual void erase(const Key& key) { |
201 | 205 |
container[Parent::notifier()->id(key)] = Value(); |
202 | 206 |
} |
203 | 207 |
|
204 | 208 |
// \brief Erase more keys from the map. |
205 | 209 |
// |
206 | 210 |
// It erases more keys from the map. It is called by the observer notifier |
207 | 211 |
// and it overrides the erase() member function of the observer base. |
208 | 212 |
virtual void erase(const std::vector<Key>& keys) { |
209 | 213 |
for (int i = 0; i < int(keys.size()); ++i) { |
210 | 214 |
container[Parent::notifier()->id(keys[i])] = Value(); |
211 | 215 |
} |
212 | 216 |
} |
213 | 217 |
|
214 | 218 |
// \brief Build the map. |
215 | 219 |
// |
216 | 220 |
// It builds the map. It is called by the observer notifier |
217 | 221 |
// and it overrides the build() member function of the observer base. |
218 | 222 |
virtual void build() { |
219 | 223 |
int size = Parent::notifier()->maxId() + 1; |
220 | 224 |
container.reserve(size); |
221 | 225 |
container.resize(size); |
222 | 226 |
} |
223 | 227 |
|
224 | 228 |
// \brief Clear the map. |
225 | 229 |
// |
226 | 230 |
// It erases all items from the map. It is called by the observer notifier |
227 | 231 |
// and it overrides the clear() member function of the observer base. |
228 | 232 |
virtual void clear() { |
229 | 233 |
container.clear(); |
230 | 234 |
} |
231 | 235 |
|
232 | 236 |
private: |
233 | 237 |
|
234 | 238 |
Container container; |
235 | 239 |
|
236 | 240 |
}; |
237 | 241 |
|
238 | 242 |
} |
239 | 243 |
|
240 | 244 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of graph components. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
35 | 35 |
/// |
36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
37 | 37 |
/// subtypes of digraph and graph types. |
38 | 38 |
/// |
39 | 39 |
/// \note This class is a template class so that we can use it to |
40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
42 | 42 |
/// base class. For \c Node you should instantiate it with character |
43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
44 | 44 |
#ifndef DOXYGEN |
45 | 45 |
template <char sel = '0'> |
46 | 46 |
#endif |
47 | 47 |
class GraphItem { |
48 | 48 |
public: |
49 | 49 |
/// \brief Default constructor. |
50 | 50 |
/// |
51 | 51 |
/// Default constructor. |
52 | 52 |
/// \warning The default constructor is not required to set |
53 | 53 |
/// the item to some well-defined value. So you should consider it |
54 | 54 |
/// as uninitialized. |
55 | 55 |
GraphItem() {} |
56 | 56 |
|
57 | 57 |
/// \brief Copy constructor. |
58 | 58 |
/// |
59 | 59 |
/// Copy constructor. |
60 | 60 |
GraphItem(const GraphItem &) {} |
61 | 61 |
|
62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
63 | 63 |
/// |
64 | 64 |
/// Constructor for conversion from \c INVALID. |
65 | 65 |
/// It initializes the item to be invalid. |
66 | 66 |
/// \sa Invalid for more details. |
67 | 67 |
GraphItem(Invalid) {} |
68 | 68 |
|
69 | 69 |
/// \brief Assignment operator. |
70 | 70 |
/// |
71 | 71 |
/// Assignment operator for the item. |
72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; } |
73 | 73 |
|
74 | 74 |
/// \brief Equality operator. |
75 | 75 |
/// |
76 | 76 |
/// Equality operator. |
77 | 77 |
bool operator==(const GraphItem&) const { return false; } |
78 | 78 |
|
79 | 79 |
/// \brief Inequality operator. |
80 | 80 |
/// |
81 | 81 |
/// Inequality operator. |
82 | 82 |
bool operator!=(const GraphItem&) const { return false; } |
83 | 83 |
|
84 | 84 |
/// \brief Ordering operator. |
85 | 85 |
/// |
86 | 86 |
/// This operator defines an ordering of the items. |
87 | 87 |
/// It makes possible to use graph item types as key types in |
88 | 88 |
/// associative containers (e.g. \c std::map). |
89 | 89 |
/// |
90 | 90 |
/// \note This operator only have to define some strict ordering of |
91 | 91 |
/// the items; this order has nothing to do with the iteration |
92 | 92 |
/// ordering of the items. |
93 | 93 |
bool operator<(const GraphItem&) const { return false; } |
94 | 94 |
|
95 | 95 |
template<typename _GraphItem> |
96 | 96 |
struct Constraints { |
97 | 97 |
void constraints() { |
98 | 98 |
_GraphItem i1; |
99 | 99 |
_GraphItem i2 = i1; |
100 | 100 |
_GraphItem i3 = INVALID; |
101 | 101 |
|
102 | 102 |
i1 = i2 = i3; |
103 | 103 |
|
104 | 104 |
bool b; |
105 | 105 |
b = (ia == ib) && (ia != ib); |
106 | 106 |
b = (ia == INVALID) && (ib != INVALID); |
107 | 107 |
b = (ia < ib); |
108 | 108 |
} |
109 | 109 |
|
110 | 110 |
const _GraphItem &ia; |
111 | 111 |
const _GraphItem &ib; |
112 | 112 |
}; |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
/// \brief Base skeleton class for directed graphs. |
116 | 116 |
/// |
117 | 117 |
/// This class describes the base interface of directed graph types. |
118 | 118 |
/// All digraph %concepts have to conform to this class. |
119 | 119 |
/// It just provides types for nodes and arcs and functions |
120 | 120 |
/// to get the source and the target nodes of arcs. |
121 | 121 |
class BaseDigraphComponent { |
122 | 122 |
public: |
123 | 123 |
|
124 | 124 |
typedef BaseDigraphComponent Digraph; |
125 | 125 |
|
126 | 126 |
/// \brief Node class of the digraph. |
127 | 127 |
/// |
128 | 128 |
/// This class represents the nodes of the digraph. |
129 | 129 |
typedef GraphItem<'n'> Node; |
130 | 130 |
|
131 | 131 |
/// \brief Arc class of the digraph. |
132 | 132 |
/// |
133 | 133 |
/// This class represents the arcs of the digraph. |
134 | 134 |
typedef GraphItem<'a'> Arc; |
135 | 135 |
|
136 | 136 |
/// \brief Return the source node of an arc. |
137 | 137 |
/// |
138 | 138 |
/// This function returns the source node of an arc. |
139 | 139 |
Node source(const Arc&) const { return INVALID; } |
140 | 140 |
|
141 | 141 |
/// \brief Return the target node of an arc. |
142 | 142 |
/// |
143 | 143 |
/// This function returns the target node of an arc. |
144 | 144 |
Node target(const Arc&) const { return INVALID; } |
145 | 145 |
|
146 | 146 |
/// \brief Return the opposite node on the given arc. |
147 | 147 |
/// |
148 | 148 |
/// This function returns the opposite node on the given arc. |
149 | 149 |
Node oppositeNode(const Node&, const Arc&) const { |
150 | 150 |
return INVALID; |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
template <typename _Digraph> |
154 | 154 |
struct Constraints { |
155 | 155 |
typedef typename _Digraph::Node Node; |
156 | 156 |
typedef typename _Digraph::Arc Arc; |
157 | 157 |
|
158 | 158 |
void constraints() { |
159 | 159 |
checkConcept<GraphItem<'n'>, Node>(); |
160 | 160 |
checkConcept<GraphItem<'a'>, Arc>(); |
161 | 161 |
{ |
162 | 162 |
Node n; |
163 | 163 |
Arc e(INVALID); |
164 | 164 |
n = digraph.source(e); |
165 | 165 |
n = digraph.target(e); |
166 | 166 |
n = digraph.oppositeNode(n, e); |
167 | 167 |
} |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
const _Digraph& digraph; |
171 | 171 |
}; |
172 | 172 |
}; |
173 | 173 |
|
174 | 174 |
/// \brief Base skeleton class for undirected graphs. |
175 | 175 |
/// |
176 | 176 |
/// This class describes the base interface of undirected graph types. |
177 | 177 |
/// All graph %concepts have to conform to this class. |
178 | 178 |
/// It extends the interface of \ref BaseDigraphComponent with an |
179 | 179 |
/// \c Edge type and functions to get the end nodes of edges, |
180 | 180 |
/// to convert from arcs to edges and to get both direction of edges. |
181 | 181 |
class BaseGraphComponent : public BaseDigraphComponent { |
182 | 182 |
public: |
183 |
|
|
184 |
typedef BaseGraphComponent Graph; |
|
185 |
|
|
183 | 186 |
typedef BaseDigraphComponent::Node Node; |
184 | 187 |
typedef BaseDigraphComponent::Arc Arc; |
185 | 188 |
|
186 | 189 |
/// \brief Undirected edge class of the graph. |
187 | 190 |
/// |
188 | 191 |
/// This class represents the undirected edges of the graph. |
189 | 192 |
/// Undirected graphs can be used as directed graphs, each edge is |
190 | 193 |
/// represented by two opposite directed arcs. |
191 | 194 |
class Edge : public GraphItem<'e'> { |
192 |
public: |
|
193 | 195 |
typedef GraphItem<'e'> Parent; |
194 | 196 |
|
197 |
public: |
|
195 | 198 |
/// \brief Default constructor. |
196 | 199 |
/// |
197 | 200 |
/// Default constructor. |
198 | 201 |
/// \warning The default constructor is not required to set |
199 | 202 |
/// the item to some well-defined value. So you should consider it |
200 | 203 |
/// as uninitialized. |
201 | 204 |
Edge() {} |
202 | 205 |
|
203 | 206 |
/// \brief Copy constructor. |
204 | 207 |
/// |
205 | 208 |
/// Copy constructor. |
206 | 209 |
Edge(const Edge &) : Parent() {} |
207 | 210 |
|
208 | 211 |
/// \brief Constructor for conversion from \c INVALID. |
209 | 212 |
/// |
210 | 213 |
/// Constructor for conversion from \c INVALID. |
211 | 214 |
/// It initializes the item to be invalid. |
212 | 215 |
/// \sa Invalid for more details. |
213 | 216 |
Edge(Invalid) {} |
214 | 217 |
|
215 | 218 |
/// \brief Constructor for conversion from an arc. |
216 | 219 |
/// |
217 | 220 |
/// Constructor for conversion from an arc. |
218 | 221 |
/// Besides the core graph item functionality each arc should |
219 | 222 |
/// be convertible to the represented edge. |
220 | 223 |
Edge(const Arc&) {} |
221 | 224 |
|
222 | 225 |
/// \brief Assign an arc to an edge. |
223 | 226 |
/// |
224 | 227 |
/// This function assigns an arc to an edge. |
225 | 228 |
/// Besides the core graph item functionality each arc should |
226 | 229 |
/// be convertible to the represented edge. |
227 | 230 |
Edge& operator=(const Arc&) { return *this; } |
228 | 231 |
}; |
229 | 232 |
|
230 | 233 |
/// \brief Return one end node of an edge. |
231 | 234 |
/// |
232 | 235 |
/// This function returns one end node of an edge. |
233 | 236 |
Node u(const Edge&) const { return INVALID; } |
234 | 237 |
|
235 | 238 |
/// \brief Return the other end node of an edge. |
236 | 239 |
/// |
237 | 240 |
/// This function returns the other end node of an edge. |
238 | 241 |
Node v(const Edge&) const { return INVALID; } |
239 | 242 |
|
240 | 243 |
/// \brief Return a directed arc related to an edge. |
241 | 244 |
/// |
242 | 245 |
/// This function returns a directed arc from its direction and the |
243 | 246 |
/// represented edge. |
244 | 247 |
Arc direct(const Edge&, bool) const { return INVALID; } |
245 | 248 |
|
246 | 249 |
/// \brief Return a directed arc related to an edge. |
247 | 250 |
/// |
248 | 251 |
/// This function returns a directed arc from its source node and the |
249 | 252 |
/// represented edge. |
250 | 253 |
Arc direct(const Edge&, const Node&) const { return INVALID; } |
251 | 254 |
|
252 | 255 |
/// \brief Return the direction of the arc. |
253 | 256 |
/// |
254 | 257 |
/// Returns the direction of the arc. Each arc represents an |
255 | 258 |
/// edge with a direction. It gives back the |
256 | 259 |
/// direction. |
257 | 260 |
bool direction(const Arc&) const { return true; } |
258 | 261 |
|
259 | 262 |
/// \brief Return the opposite arc. |
260 | 263 |
/// |
261 | 264 |
/// This function returns the opposite arc, i.e. the arc representing |
262 | 265 |
/// the same edge and has opposite direction. |
263 | 266 |
Arc oppositeArc(const Arc&) const { return INVALID; } |
264 | 267 |
|
265 | 268 |
template <typename _Graph> |
266 | 269 |
struct Constraints { |
267 | 270 |
typedef typename _Graph::Node Node; |
268 | 271 |
typedef typename _Graph::Arc Arc; |
269 | 272 |
typedef typename _Graph::Edge Edge; |
270 | 273 |
|
271 | 274 |
void constraints() { |
272 | 275 |
checkConcept<BaseDigraphComponent, _Graph>(); |
273 | 276 |
checkConcept<GraphItem<'e'>, Edge>(); |
274 | 277 |
{ |
275 | 278 |
Node n; |
276 | 279 |
Edge ue(INVALID); |
277 | 280 |
Arc e; |
278 | 281 |
n = graph.u(ue); |
279 | 282 |
n = graph.v(ue); |
280 | 283 |
e = graph.direct(ue, true); |
281 | 284 |
e = graph.direct(ue, false); |
282 | 285 |
e = graph.direct(ue, n); |
283 | 286 |
e = graph.oppositeArc(e); |
284 | 287 |
ue = e; |
285 | 288 |
bool d = graph.direction(e); |
286 | 289 |
ignore_unused_variable_warning(d); |
287 | 290 |
} |
288 | 291 |
} |
289 | 292 |
|
290 | 293 |
const _Graph& graph; |
291 | 294 |
}; |
292 | 295 |
|
293 | 296 |
}; |
294 | 297 |
|
295 | 298 |
/// \brief Skeleton class for \e idable directed graphs. |
296 | 299 |
/// |
297 | 300 |
/// This class describes the interface of \e idable directed graphs. |
298 | 301 |
/// It extends \ref BaseDigraphComponent with the core ID functions. |
299 | 302 |
/// The ids of the items must be unique and immutable. |
300 | 303 |
/// This concept is part of the Digraph concept. |
301 | 304 |
template <typename BAS = BaseDigraphComponent> |
302 | 305 |
class IDableDigraphComponent : public BAS { |
303 | 306 |
public: |
304 | 307 |
|
305 | 308 |
typedef BAS Base; |
306 | 309 |
typedef typename Base::Node Node; |
307 | 310 |
typedef typename Base::Arc Arc; |
308 | 311 |
|
309 | 312 |
/// \brief Return a unique integer id for the given node. |
310 | 313 |
/// |
311 | 314 |
/// This function returns a unique integer id for the given node. |
312 | 315 |
int id(const Node&) const { return -1; } |
313 | 316 |
|
314 | 317 |
/// \brief Return the node by its unique id. |
315 | 318 |
/// |
316 | 319 |
/// This function returns the node by its unique id. |
317 | 320 |
/// If the digraph does not contain a node with the given id, |
318 | 321 |
/// then the result of the function is undefined. |
319 | 322 |
Node nodeFromId(int) const { return INVALID; } |
320 | 323 |
|
321 | 324 |
/// \brief Return a unique integer id for the given arc. |
322 | 325 |
/// |
323 | 326 |
/// This function returns a unique integer id for the given arc. |
324 | 327 |
int id(const Arc&) const { return -1; } |
325 | 328 |
|
326 | 329 |
/// \brief Return the arc by its unique id. |
327 | 330 |
/// |
328 | 331 |
/// This function returns the arc by its unique id. |
329 | 332 |
/// If the digraph does not contain an arc with the given id, |
330 | 333 |
/// then the result of the function is undefined. |
331 | 334 |
Arc arcFromId(int) const { return INVALID; } |
332 | 335 |
|
333 | 336 |
/// \brief Return an integer greater or equal to the maximum |
334 | 337 |
/// node id. |
335 | 338 |
/// |
336 | 339 |
/// This function returns an integer greater or equal to the |
337 | 340 |
/// maximum node id. |
338 | 341 |
int maxNodeId() const { return -1; } |
339 | 342 |
|
340 | 343 |
/// \brief Return an integer greater or equal to the maximum |
341 | 344 |
/// arc id. |
342 | 345 |
/// |
343 | 346 |
/// This function returns an integer greater or equal to the |
344 | 347 |
/// maximum arc id. |
345 | 348 |
int maxArcId() const { return -1; } |
346 | 349 |
|
347 | 350 |
template <typename _Digraph> |
348 | 351 |
struct Constraints { |
349 | 352 |
|
350 | 353 |
void constraints() { |
351 | 354 |
checkConcept<Base, _Digraph >(); |
352 | 355 |
typename _Digraph::Node node; |
353 | 356 |
int nid = digraph.id(node); |
354 | 357 |
nid = digraph.id(node); |
355 | 358 |
node = digraph.nodeFromId(nid); |
356 | 359 |
typename _Digraph::Arc arc; |
357 | 360 |
int eid = digraph.id(arc); |
358 | 361 |
eid = digraph.id(arc); |
359 | 362 |
arc = digraph.arcFromId(eid); |
360 | 363 |
|
361 | 364 |
nid = digraph.maxNodeId(); |
362 | 365 |
ignore_unused_variable_warning(nid); |
363 | 366 |
eid = digraph.maxArcId(); |
364 | 367 |
ignore_unused_variable_warning(eid); |
365 | 368 |
} |
366 | 369 |
|
367 | 370 |
const _Digraph& digraph; |
368 | 371 |
}; |
369 | 372 |
}; |
370 | 373 |
|
371 | 374 |
/// \brief Skeleton class for \e idable undirected graphs. |
372 | 375 |
/// |
373 | 376 |
/// This class describes the interface of \e idable undirected |
374 | 377 |
/// graphs. It extends \ref IDableDigraphComponent with the core ID |
375 | 378 |
/// functions of undirected graphs. |
376 | 379 |
/// The ids of the items must be unique and immutable. |
377 | 380 |
/// This concept is part of the Graph concept. |
378 | 381 |
template <typename BAS = BaseGraphComponent> |
379 | 382 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> { |
380 | 383 |
public: |
381 | 384 |
|
382 | 385 |
typedef BAS Base; |
383 | 386 |
typedef typename Base::Edge Edge; |
384 | 387 |
|
385 | 388 |
using IDableDigraphComponent<Base>::id; |
386 | 389 |
|
387 | 390 |
/// \brief Return a unique integer id for the given edge. |
388 | 391 |
/// |
389 | 392 |
/// This function returns a unique integer id for the given edge. |
390 | 393 |
int id(const Edge&) const { return -1; } |
391 | 394 |
|
392 | 395 |
/// \brief Return the edge by its unique id. |
393 | 396 |
/// |
394 | 397 |
/// This function returns the edge by its unique id. |
395 | 398 |
/// If the graph does not contain an edge with the given id, |
396 | 399 |
/// then the result of the function is undefined. |
397 | 400 |
Edge edgeFromId(int) const { return INVALID; } |
398 | 401 |
|
399 | 402 |
/// \brief Return an integer greater or equal to the maximum |
400 | 403 |
/// edge id. |
401 | 404 |
/// |
402 | 405 |
/// This function returns an integer greater or equal to the |
403 | 406 |
/// maximum edge id. |
404 | 407 |
int maxEdgeId() const { return -1; } |
405 | 408 |
|
406 | 409 |
template <typename _Graph> |
407 | 410 |
struct Constraints { |
408 | 411 |
|
409 | 412 |
void constraints() { |
410 | 413 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
411 | 414 |
typename _Graph::Edge edge; |
412 | 415 |
int ueid = graph.id(edge); |
413 | 416 |
ueid = graph.id(edge); |
414 | 417 |
edge = graph.edgeFromId(ueid); |
415 | 418 |
ueid = graph.maxEdgeId(); |
416 | 419 |
ignore_unused_variable_warning(ueid); |
417 | 420 |
} |
418 | 421 |
|
419 | 422 |
const _Graph& graph; |
420 | 423 |
}; |
421 | 424 |
}; |
422 | 425 |
|
423 | 426 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
424 | 427 |
/// |
425 | 428 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
426 | 429 |
/// \c EdgeIt subtypes of digraph and graph types. |
427 | 430 |
template <typename GR, typename Item> |
428 | 431 |
class GraphItemIt : public Item { |
429 | 432 |
public: |
430 | 433 |
/// \brief Default constructor. |
431 | 434 |
/// |
432 | 435 |
/// Default constructor. |
433 | 436 |
/// \warning The default constructor is not required to set |
434 | 437 |
/// the iterator to some well-defined value. So you should consider it |
435 | 438 |
/// as uninitialized. |
436 | 439 |
GraphItemIt() {} |
437 | 440 |
|
438 | 441 |
/// \brief Copy constructor. |
439 | 442 |
/// |
440 | 443 |
/// Copy constructor. |
441 | 444 |
GraphItemIt(const GraphItemIt& it) : Item(it) {} |
442 | 445 |
|
443 | 446 |
/// \brief Constructor that sets the iterator to the first item. |
444 | 447 |
/// |
445 | 448 |
/// Constructor that sets the iterator to the first item. |
446 | 449 |
explicit GraphItemIt(const GR&) {} |
447 | 450 |
|
448 | 451 |
/// \brief Constructor for conversion from \c INVALID. |
449 | 452 |
/// |
450 | 453 |
/// Constructor for conversion from \c INVALID. |
451 | 454 |
/// It initializes the iterator to be invalid. |
452 | 455 |
/// \sa Invalid for more details. |
453 | 456 |
GraphItemIt(Invalid) {} |
454 | 457 |
|
455 | 458 |
/// \brief Assignment operator. |
456 | 459 |
/// |
457 | 460 |
/// Assignment operator for the iterator. |
458 | 461 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; } |
459 | 462 |
|
460 | 463 |
/// \brief Increment the iterator. |
461 | 464 |
/// |
462 | 465 |
/// This operator increments the iterator, i.e. assigns it to the |
463 | 466 |
/// next item. |
464 | 467 |
GraphItemIt& operator++() { return *this; } |
465 | 468 |
|
466 | 469 |
/// \brief Equality operator |
467 | 470 |
/// |
468 | 471 |
/// Equality operator. |
469 | 472 |
/// Two iterators are equal if and only if they point to the |
470 | 473 |
/// same object or both are invalid. |
471 | 474 |
bool operator==(const GraphItemIt&) const { return true;} |
472 | 475 |
|
473 | 476 |
/// \brief Inequality operator |
474 | 477 |
/// |
475 | 478 |
/// Inequality operator. |
476 | 479 |
/// Two iterators are equal if and only if they point to the |
477 | 480 |
/// same object or both are invalid. |
478 | 481 |
bool operator!=(const GraphItemIt&) const { return true;} |
479 | 482 |
|
480 | 483 |
template<typename _GraphItemIt> |
481 | 484 |
struct Constraints { |
482 | 485 |
void constraints() { |
483 | 486 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
484 | 487 |
_GraphItemIt it1(g); |
485 | 488 |
_GraphItemIt it2; |
486 | 489 |
_GraphItemIt it3 = it1; |
487 | 490 |
_GraphItemIt it4 = INVALID; |
488 | 491 |
|
489 | 492 |
it2 = ++it1; |
490 | 493 |
++it2 = it1; |
491 | 494 |
++(++it1); |
492 | 495 |
|
493 | 496 |
Item bi = it1; |
494 | 497 |
bi = it2; |
495 | 498 |
} |
496 | 499 |
const GR& g; |
497 | 500 |
}; |
498 | 501 |
}; |
499 | 502 |
|
500 | 503 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
501 | 504 |
/// \c IncEdgeIt types. |
502 | 505 |
/// |
503 | 506 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
504 | 507 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
505 | 508 |
/// |
506 | 509 |
/// \note Since these iterator classes do not inherit from the same |
507 | 510 |
/// base class, there is an additional template parameter (selector) |
508 | 511 |
/// \c sel. For \c InArcIt you should instantiate it with character |
509 | 512 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
510 | 513 |
template <typename GR, |
511 | 514 |
typename Item = typename GR::Arc, |
512 | 515 |
typename Base = typename GR::Node, |
513 | 516 |
char sel = '0'> |
514 | 517 |
class GraphIncIt : public Item { |
515 | 518 |
public: |
516 | 519 |
/// \brief Default constructor. |
517 | 520 |
/// |
518 | 521 |
/// Default constructor. |
519 | 522 |
/// \warning The default constructor is not required to set |
520 | 523 |
/// the iterator to some well-defined value. So you should consider it |
521 | 524 |
/// as uninitialized. |
522 | 525 |
GraphIncIt() {} |
523 | 526 |
|
524 | 527 |
/// \brief Copy constructor. |
525 | 528 |
/// |
526 | 529 |
/// Copy constructor. |
527 | 530 |
GraphIncIt(const GraphIncIt& it) : Item(it) {} |
528 | 531 |
|
529 | 532 |
/// \brief Constructor that sets the iterator to the first |
530 | 533 |
/// incoming or outgoing arc. |
531 | 534 |
/// |
532 | 535 |
/// Constructor that sets the iterator to the first arc |
533 | 536 |
/// incoming to or outgoing from the given node. |
534 | 537 |
explicit GraphIncIt(const GR&, const Base&) {} |
535 | 538 |
|
536 | 539 |
/// \brief Constructor for conversion from \c INVALID. |
537 | 540 |
/// |
538 | 541 |
/// Constructor for conversion from \c INVALID. |
539 | 542 |
/// It initializes the iterator to be invalid. |
540 | 543 |
/// \sa Invalid for more details. |
541 | 544 |
GraphIncIt(Invalid) {} |
542 | 545 |
|
543 | 546 |
/// \brief Assignment operator. |
544 | 547 |
/// |
545 | 548 |
/// Assignment operator for the iterator. |
546 | 549 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; } |
547 | 550 |
|
548 | 551 |
/// \brief Increment the iterator. |
549 | 552 |
/// |
550 | 553 |
/// This operator increments the iterator, i.e. assigns it to the |
551 | 554 |
/// next arc incoming to or outgoing from the given node. |
552 | 555 |
GraphIncIt& operator++() { return *this; } |
553 | 556 |
|
554 | 557 |
/// \brief Equality operator |
555 | 558 |
/// |
556 | 559 |
/// Equality operator. |
557 | 560 |
/// Two iterators are equal if and only if they point to the |
558 | 561 |
/// same object or both are invalid. |
559 | 562 |
bool operator==(const GraphIncIt&) const { return true;} |
560 | 563 |
|
561 | 564 |
/// \brief Inequality operator |
562 | 565 |
/// |
563 | 566 |
/// Inequality operator. |
564 | 567 |
/// Two iterators are equal if and only if they point to the |
565 | 568 |
/// same object or both are invalid. |
566 | 569 |
bool operator!=(const GraphIncIt&) const { return true;} |
567 | 570 |
|
568 | 571 |
template <typename _GraphIncIt> |
569 | 572 |
struct Constraints { |
570 | 573 |
void constraints() { |
571 | 574 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
572 | 575 |
_GraphIncIt it1(graph, node); |
573 | 576 |
_GraphIncIt it2; |
574 | 577 |
_GraphIncIt it3 = it1; |
575 | 578 |
_GraphIncIt it4 = INVALID; |
576 | 579 |
|
577 | 580 |
it2 = ++it1; |
578 | 581 |
++it2 = it1; |
... | ... |
@@ -610,905 +613,903 @@ |
610 | 613 |
|
611 | 614 |
/// \brief Return the first node. |
612 | 615 |
/// |
613 | 616 |
/// This function gives back the first node in the iteration order. |
614 | 617 |
void first(Node&) const {} |
615 | 618 |
|
616 | 619 |
/// \brief Return the next node. |
617 | 620 |
/// |
618 | 621 |
/// This function gives back the next node in the iteration order. |
619 | 622 |
void next(Node&) const {} |
620 | 623 |
|
621 | 624 |
/// \brief Return the first arc. |
622 | 625 |
/// |
623 | 626 |
/// This function gives back the first arc in the iteration order. |
624 | 627 |
void first(Arc&) const {} |
625 | 628 |
|
626 | 629 |
/// \brief Return the next arc. |
627 | 630 |
/// |
628 | 631 |
/// This function gives back the next arc in the iteration order. |
629 | 632 |
void next(Arc&) const {} |
630 | 633 |
|
631 | 634 |
/// \brief Return the first arc incomming to the given node. |
632 | 635 |
/// |
633 | 636 |
/// This function gives back the first arc incomming to the |
634 | 637 |
/// given node. |
635 | 638 |
void firstIn(Arc&, const Node&) const {} |
636 | 639 |
|
637 | 640 |
/// \brief Return the next arc incomming to the given node. |
638 | 641 |
/// |
639 | 642 |
/// This function gives back the next arc incomming to the |
640 | 643 |
/// given node. |
641 | 644 |
void nextIn(Arc&) const {} |
642 | 645 |
|
643 | 646 |
/// \brief Return the first arc outgoing form the given node. |
644 | 647 |
/// |
645 | 648 |
/// This function gives back the first arc outgoing form the |
646 | 649 |
/// given node. |
647 | 650 |
void firstOut(Arc&, const Node&) const {} |
648 | 651 |
|
649 | 652 |
/// \brief Return the next arc outgoing form the given node. |
650 | 653 |
/// |
651 | 654 |
/// This function gives back the next arc outgoing form the |
652 | 655 |
/// given node. |
653 | 656 |
void nextOut(Arc&) const {} |
654 | 657 |
|
655 | 658 |
/// @} |
656 | 659 |
|
657 | 660 |
/// \name Class Based Iteration |
658 | 661 |
/// |
659 | 662 |
/// This interface provides iterator classes for digraph items. |
660 | 663 |
/// |
661 | 664 |
/// @{ |
662 | 665 |
|
663 | 666 |
/// \brief This iterator goes through each node. |
664 | 667 |
/// |
665 | 668 |
/// This iterator goes through each node. |
666 | 669 |
/// |
667 | 670 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
668 | 671 |
|
669 | 672 |
/// \brief This iterator goes through each arc. |
670 | 673 |
/// |
671 | 674 |
/// This iterator goes through each arc. |
672 | 675 |
/// |
673 | 676 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
674 | 677 |
|
675 | 678 |
/// \brief This iterator goes trough the incoming arcs of a node. |
676 | 679 |
/// |
677 | 680 |
/// This iterator goes trough the \e incoming arcs of a certain node |
678 | 681 |
/// of a digraph. |
679 | 682 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
680 | 683 |
|
681 | 684 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
682 | 685 |
/// |
683 | 686 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
684 | 687 |
/// of a digraph. |
685 | 688 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
686 | 689 |
|
687 | 690 |
/// \brief The base node of the iterator. |
688 | 691 |
/// |
689 | 692 |
/// This function gives back the base node of the iterator. |
690 | 693 |
/// It is always the target node of the pointed arc. |
691 | 694 |
Node baseNode(const InArcIt&) const { return INVALID; } |
692 | 695 |
|
693 | 696 |
/// \brief The running node of the iterator. |
694 | 697 |
/// |
695 | 698 |
/// This function gives back the running node of the iterator. |
696 | 699 |
/// It is always the source node of the pointed arc. |
697 | 700 |
Node runningNode(const InArcIt&) const { return INVALID; } |
698 | 701 |
|
699 | 702 |
/// \brief The base node of the iterator. |
700 | 703 |
/// |
701 | 704 |
/// This function gives back the base node of the iterator. |
702 | 705 |
/// It is always the source node of the pointed arc. |
703 | 706 |
Node baseNode(const OutArcIt&) const { return INVALID; } |
704 | 707 |
|
705 | 708 |
/// \brief The running node of the iterator. |
706 | 709 |
/// |
707 | 710 |
/// This function gives back the running node of the iterator. |
708 | 711 |
/// It is always the target node of the pointed arc. |
709 | 712 |
Node runningNode(const OutArcIt&) const { return INVALID; } |
710 | 713 |
|
711 | 714 |
/// @} |
712 | 715 |
|
713 | 716 |
template <typename _Digraph> |
714 | 717 |
struct Constraints { |
715 | 718 |
void constraints() { |
716 | 719 |
checkConcept<Base, _Digraph>(); |
717 | 720 |
|
718 | 721 |
{ |
719 | 722 |
typename _Digraph::Node node(INVALID); |
720 | 723 |
typename _Digraph::Arc arc(INVALID); |
721 | 724 |
{ |
722 | 725 |
digraph.first(node); |
723 | 726 |
digraph.next(node); |
724 | 727 |
} |
725 | 728 |
{ |
726 | 729 |
digraph.first(arc); |
727 | 730 |
digraph.next(arc); |
728 | 731 |
} |
729 | 732 |
{ |
730 | 733 |
digraph.firstIn(arc, node); |
731 | 734 |
digraph.nextIn(arc); |
732 | 735 |
} |
733 | 736 |
{ |
734 | 737 |
digraph.firstOut(arc, node); |
735 | 738 |
digraph.nextOut(arc); |
736 | 739 |
} |
737 | 740 |
} |
738 | 741 |
|
739 | 742 |
{ |
740 | 743 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
741 | 744 |
typename _Digraph::ArcIt >(); |
742 | 745 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
743 | 746 |
typename _Digraph::NodeIt >(); |
744 | 747 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
745 | 748 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
746 | 749 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
747 | 750 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
748 | 751 |
|
749 | 752 |
typename _Digraph::Node n; |
750 | 753 |
const typename _Digraph::InArcIt iait(INVALID); |
751 | 754 |
const typename _Digraph::OutArcIt oait(INVALID); |
752 | 755 |
n = digraph.baseNode(iait); |
753 | 756 |
n = digraph.runningNode(iait); |
754 | 757 |
n = digraph.baseNode(oait); |
755 | 758 |
n = digraph.runningNode(oait); |
756 | 759 |
ignore_unused_variable_warning(n); |
757 | 760 |
} |
758 | 761 |
} |
759 | 762 |
|
760 | 763 |
const _Digraph& digraph; |
761 | 764 |
}; |
762 | 765 |
}; |
763 | 766 |
|
764 | 767 |
/// \brief Skeleton class for iterable undirected graphs. |
765 | 768 |
/// |
766 | 769 |
/// This class describes the interface of iterable undirected |
767 | 770 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
768 | 771 |
/// iterable interface of undirected graphs. |
769 | 772 |
/// This concept is part of the Graph concept. |
770 | 773 |
template <typename BAS = BaseGraphComponent> |
771 | 774 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> { |
772 | 775 |
public: |
773 | 776 |
|
774 | 777 |
typedef BAS Base; |
775 | 778 |
typedef typename Base::Node Node; |
776 | 779 |
typedef typename Base::Arc Arc; |
777 | 780 |
typedef typename Base::Edge Edge; |
778 | 781 |
|
779 | 782 |
|
780 | 783 |
typedef IterableGraphComponent Graph; |
781 | 784 |
|
782 | 785 |
/// \name Base Iteration |
783 | 786 |
/// |
784 | 787 |
/// This interface provides functions for iteration on edges. |
785 | 788 |
/// |
786 | 789 |
/// @{ |
787 | 790 |
|
788 | 791 |
using IterableDigraphComponent<Base>::first; |
789 | 792 |
using IterableDigraphComponent<Base>::next; |
790 | 793 |
|
791 | 794 |
/// \brief Return the first edge. |
792 | 795 |
/// |
793 | 796 |
/// This function gives back the first edge in the iteration order. |
794 | 797 |
void first(Edge&) const {} |
795 | 798 |
|
796 | 799 |
/// \brief Return the next edge. |
797 | 800 |
/// |
798 | 801 |
/// This function gives back the next edge in the iteration order. |
799 | 802 |
void next(Edge&) const {} |
800 | 803 |
|
801 | 804 |
/// \brief Return the first edge incident to the given node. |
802 | 805 |
/// |
803 | 806 |
/// This function gives back the first edge incident to the given |
804 | 807 |
/// node. The bool parameter gives back the direction for which the |
805 | 808 |
/// source node of the directed arc representing the edge is the |
806 | 809 |
/// given node. |
807 | 810 |
void firstInc(Edge&, bool&, const Node&) const {} |
808 | 811 |
|
809 | 812 |
/// \brief Gives back the next of the edges from the |
810 | 813 |
/// given node. |
811 | 814 |
/// |
812 | 815 |
/// This function gives back the next edge incident to the given |
813 | 816 |
/// node. The bool parameter should be used as \c firstInc() use it. |
814 | 817 |
void nextInc(Edge&, bool&) const {} |
815 | 818 |
|
816 | 819 |
using IterableDigraphComponent<Base>::baseNode; |
817 | 820 |
using IterableDigraphComponent<Base>::runningNode; |
818 | 821 |
|
819 | 822 |
/// @} |
820 | 823 |
|
821 | 824 |
/// \name Class Based Iteration |
822 | 825 |
/// |
823 | 826 |
/// This interface provides iterator classes for edges. |
824 | 827 |
/// |
825 | 828 |
/// @{ |
826 | 829 |
|
827 | 830 |
/// \brief This iterator goes through each edge. |
828 | 831 |
/// |
829 | 832 |
/// This iterator goes through each edge. |
830 | 833 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
831 | 834 |
|
832 | 835 |
/// \brief This iterator goes trough the incident edges of a |
833 | 836 |
/// node. |
834 | 837 |
/// |
835 | 838 |
/// This iterator goes trough the incident edges of a certain |
836 | 839 |
/// node of a graph. |
837 | 840 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
838 | 841 |
|
839 | 842 |
/// \brief The base node of the iterator. |
840 | 843 |
/// |
841 | 844 |
/// This function gives back the base node of the iterator. |
842 | 845 |
Node baseNode(const IncEdgeIt&) const { return INVALID; } |
843 | 846 |
|
844 | 847 |
/// \brief The running node of the iterator. |
845 | 848 |
/// |
846 | 849 |
/// This function gives back the running node of the iterator. |
847 | 850 |
Node runningNode(const IncEdgeIt&) const { return INVALID; } |
848 | 851 |
|
849 | 852 |
/// @} |
850 | 853 |
|
851 | 854 |
template <typename _Graph> |
852 | 855 |
struct Constraints { |
853 | 856 |
void constraints() { |
854 | 857 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
855 | 858 |
|
856 | 859 |
{ |
857 | 860 |
typename _Graph::Node node(INVALID); |
858 | 861 |
typename _Graph::Edge edge(INVALID); |
859 | 862 |
bool dir; |
860 | 863 |
{ |
861 | 864 |
graph.first(edge); |
862 | 865 |
graph.next(edge); |
863 | 866 |
} |
864 | 867 |
{ |
865 | 868 |
graph.firstInc(edge, dir, node); |
866 | 869 |
graph.nextInc(edge, dir); |
867 | 870 |
} |
868 | 871 |
|
869 | 872 |
} |
870 | 873 |
|
871 | 874 |
{ |
872 | 875 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
873 | 876 |
typename _Graph::EdgeIt >(); |
874 | 877 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
875 | 878 |
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>(); |
876 | 879 |
|
877 | 880 |
typename _Graph::Node n; |
878 | 881 |
const typename _Graph::IncEdgeIt ieit(INVALID); |
879 | 882 |
n = graph.baseNode(ieit); |
880 | 883 |
n = graph.runningNode(ieit); |
881 | 884 |
} |
882 | 885 |
} |
883 | 886 |
|
884 | 887 |
const _Graph& graph; |
885 | 888 |
}; |
886 | 889 |
}; |
887 | 890 |
|
888 | 891 |
/// \brief Skeleton class for alterable directed graphs. |
889 | 892 |
/// |
890 | 893 |
/// This class describes the interface of alterable directed |
891 | 894 |
/// graphs. It extends \ref BaseDigraphComponent with the alteration |
892 | 895 |
/// notifier interface. It implements |
893 | 896 |
/// an observer-notifier pattern for each digraph item. More |
894 | 897 |
/// obsevers can be registered into the notifier and whenever an |
895 | 898 |
/// alteration occured in the digraph all the observers will be |
896 | 899 |
/// notified about it. |
897 | 900 |
template <typename BAS = BaseDigraphComponent> |
898 | 901 |
class AlterableDigraphComponent : public BAS { |
899 | 902 |
public: |
900 | 903 |
|
901 | 904 |
typedef BAS Base; |
902 | 905 |
typedef typename Base::Node Node; |
903 | 906 |
typedef typename Base::Arc Arc; |
904 | 907 |
|
905 | 908 |
|
906 | 909 |
/// Node alteration notifier class. |
907 | 910 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
908 | 911 |
NodeNotifier; |
909 | 912 |
/// Arc alteration notifier class. |
910 | 913 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
911 | 914 |
ArcNotifier; |
912 | 915 |
|
913 | 916 |
/// \brief Return the node alteration notifier. |
914 | 917 |
/// |
915 | 918 |
/// This function gives back the node alteration notifier. |
916 | 919 |
NodeNotifier& notifier(Node) const { |
917 | 920 |
return NodeNotifier(); |
918 | 921 |
} |
919 | 922 |
|
920 | 923 |
/// \brief Return the arc alteration notifier. |
921 | 924 |
/// |
922 | 925 |
/// This function gives back the arc alteration notifier. |
923 | 926 |
ArcNotifier& notifier(Arc) const { |
924 | 927 |
return ArcNotifier(); |
925 | 928 |
} |
926 | 929 |
|
927 | 930 |
template <typename _Digraph> |
928 | 931 |
struct Constraints { |
929 | 932 |
void constraints() { |
930 | 933 |
checkConcept<Base, _Digraph>(); |
931 | 934 |
typename _Digraph::NodeNotifier& nn |
932 | 935 |
= digraph.notifier(typename _Digraph::Node()); |
933 | 936 |
|
934 | 937 |
typename _Digraph::ArcNotifier& en |
935 | 938 |
= digraph.notifier(typename _Digraph::Arc()); |
936 | 939 |
|
937 | 940 |
ignore_unused_variable_warning(nn); |
938 | 941 |
ignore_unused_variable_warning(en); |
939 | 942 |
} |
940 | 943 |
|
941 | 944 |
const _Digraph& digraph; |
942 | 945 |
}; |
943 | 946 |
}; |
944 | 947 |
|
945 | 948 |
/// \brief Skeleton class for alterable undirected graphs. |
946 | 949 |
/// |
947 | 950 |
/// This class describes the interface of alterable undirected |
948 | 951 |
/// graphs. It extends \ref AlterableDigraphComponent with the alteration |
949 | 952 |
/// notifier interface of undirected graphs. It implements |
950 | 953 |
/// an observer-notifier pattern for the edges. More |
951 | 954 |
/// obsevers can be registered into the notifier and whenever an |
952 | 955 |
/// alteration occured in the graph all the observers will be |
953 | 956 |
/// notified about it. |
954 | 957 |
template <typename BAS = BaseGraphComponent> |
955 | 958 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> { |
956 | 959 |
public: |
957 | 960 |
|
958 | 961 |
typedef BAS Base; |
959 | 962 |
typedef typename Base::Edge Edge; |
960 | 963 |
|
961 | 964 |
|
962 | 965 |
/// Edge alteration notifier class. |
963 | 966 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
964 | 967 |
EdgeNotifier; |
965 | 968 |
|
966 | 969 |
/// \brief Return the edge alteration notifier. |
967 | 970 |
/// |
968 | 971 |
/// This function gives back the edge alteration notifier. |
969 | 972 |
EdgeNotifier& notifier(Edge) const { |
970 | 973 |
return EdgeNotifier(); |
971 | 974 |
} |
972 | 975 |
|
973 | 976 |
template <typename _Graph> |
974 | 977 |
struct Constraints { |
975 | 978 |
void constraints() { |
976 | 979 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
977 | 980 |
typename _Graph::EdgeNotifier& uen |
978 | 981 |
= graph.notifier(typename _Graph::Edge()); |
979 | 982 |
ignore_unused_variable_warning(uen); |
980 | 983 |
} |
981 | 984 |
|
982 | 985 |
const _Graph& graph; |
983 | 986 |
}; |
984 | 987 |
}; |
985 | 988 |
|
986 | 989 |
/// \brief Concept class for standard graph maps. |
987 | 990 |
/// |
988 | 991 |
/// This class describes the concept of standard graph maps, i.e. |
989 | 992 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
990 | 993 |
/// graph types, which can be used for associating data to graph items. |
991 | 994 |
/// The standard graph maps must conform to the ReferenceMap concept. |
992 | 995 |
template <typename GR, typename K, typename V> |
993 | 996 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> { |
997 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
|
998 |
|
|
994 | 999 |
public: |
995 | 1000 |
|
996 |
typedef ReadWriteMap<K, V> Parent; |
|
997 |
|
|
998 |
/// The graph type of the map. |
|
999 |
typedef GR Graph; |
|
1000 | 1001 |
/// The key type of the map. |
1001 | 1002 |
typedef K Key; |
1002 | 1003 |
/// The value type of the map. |
1003 | 1004 |
typedef V Value; |
1004 | 1005 |
/// The reference type of the map. |
1005 | 1006 |
typedef Value& Reference; |
1006 | 1007 |
/// The const reference type of the map. |
1007 | 1008 |
typedef const Value& ConstReference; |
1008 | 1009 |
|
1009 | 1010 |
// The reference map tag. |
1010 | 1011 |
typedef True ReferenceMapTag; |
1011 | 1012 |
|
1012 | 1013 |
/// \brief Construct a new map. |
1013 | 1014 |
/// |
1014 | 1015 |
/// Construct a new map for the graph. |
1015 |
explicit GraphMap(const |
|
1016 |
explicit GraphMap(const GR&) {} |
|
1016 | 1017 |
/// \brief Construct a new map with default value. |
1017 | 1018 |
/// |
1018 | 1019 |
/// Construct a new map for the graph and initalize the values. |
1019 |
GraphMap(const |
|
1020 |
GraphMap(const GR&, const Value&) {} |
|
1020 | 1021 |
|
1021 | 1022 |
private: |
1022 | 1023 |
/// \brief Copy constructor. |
1023 | 1024 |
/// |
1024 | 1025 |
/// Copy Constructor. |
1025 | 1026 |
GraphMap(const GraphMap&) : Parent() {} |
1026 | 1027 |
|
1027 | 1028 |
/// \brief Assignment operator. |
1028 | 1029 |
/// |
1029 | 1030 |
/// Assignment operator. It does not mofify the underlying graph, |
1030 | 1031 |
/// it just iterates on the current item set and set the map |
1031 | 1032 |
/// with the value returned by the assigned map. |
1032 | 1033 |
template <typename CMap> |
1033 | 1034 |
GraphMap& operator=(const CMap&) { |
1034 | 1035 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
1035 | 1036 |
return *this; |
1036 | 1037 |
} |
1037 | 1038 |
|
1038 | 1039 |
public: |
1039 | 1040 |
template<typename _Map> |
1040 | 1041 |
struct Constraints { |
1041 | 1042 |
void constraints() { |
1042 | 1043 |
checkConcept |
1043 | 1044 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
1044 | 1045 |
_Map m1(g); |
1045 | 1046 |
_Map m2(g,t); |
1046 | 1047 |
|
1047 | 1048 |
// Copy constructor |
1048 | 1049 |
// _Map m3(m); |
1049 | 1050 |
|
1050 | 1051 |
// Assignment operator |
1051 | 1052 |
// ReadMap<Key, Value> cmap; |
1052 | 1053 |
// m3 = cmap; |
1053 | 1054 |
|
1054 | 1055 |
ignore_unused_variable_warning(m1); |
1055 | 1056 |
ignore_unused_variable_warning(m2); |
1056 | 1057 |
// ignore_unused_variable_warning(m3); |
1057 | 1058 |
} |
1058 | 1059 |
|
1059 | 1060 |
const _Map &m; |
1060 |
const |
|
1061 |
const GR &g; |
|
1061 | 1062 |
const typename GraphMap::Value &t; |
1062 | 1063 |
}; |
1063 | 1064 |
|
1064 | 1065 |
}; |
1065 | 1066 |
|
1066 | 1067 |
/// \brief Skeleton class for mappable directed graphs. |
1067 | 1068 |
/// |
1068 | 1069 |
/// This class describes the interface of mappable directed graphs. |
1069 | 1070 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
1070 | 1071 |
/// map classes, namely \c NodeMap and \c ArcMap. |
1071 | 1072 |
/// This concept is part of the Digraph concept. |
1072 | 1073 |
template <typename BAS = BaseDigraphComponent> |
1073 | 1074 |
class MappableDigraphComponent : public BAS { |
1074 | 1075 |
public: |
1075 | 1076 |
|
1076 | 1077 |
typedef BAS Base; |
1077 | 1078 |
typedef typename Base::Node Node; |
1078 | 1079 |
typedef typename Base::Arc Arc; |
1079 | 1080 |
|
1080 | 1081 |
typedef MappableDigraphComponent Digraph; |
1081 | 1082 |
|
1082 | 1083 |
/// \brief Standard graph map for the nodes. |
1083 | 1084 |
/// |
1084 | 1085 |
/// Standard graph map for the nodes. |
1085 | 1086 |
/// It conforms to the ReferenceMap concept. |
1086 | 1087 |
template <typename V> |
1087 | 1088 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> { |
1088 |
public: |
|
1089 | 1089 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
1090 | 1090 |
|
1091 |
public: |
|
1091 | 1092 |
/// \brief Construct a new map. |
1092 | 1093 |
/// |
1093 | 1094 |
/// Construct a new map for the digraph. |
1094 | 1095 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
1095 | 1096 |
: Parent(digraph) {} |
1096 | 1097 |
|
1097 | 1098 |
/// \brief Construct a new map with default value. |
1098 | 1099 |
/// |
1099 | 1100 |
/// Construct a new map for the digraph and initalize the values. |
1100 | 1101 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
1101 | 1102 |
: Parent(digraph, value) {} |
1102 | 1103 |
|
1103 | 1104 |
private: |
1104 | 1105 |
/// \brief Copy constructor. |
1105 | 1106 |
/// |
1106 | 1107 |
/// Copy Constructor. |
1107 | 1108 |
NodeMap(const NodeMap& nm) : Parent(nm) {} |
1108 | 1109 |
|
1109 | 1110 |
/// \brief Assignment operator. |
1110 | 1111 |
/// |
1111 | 1112 |
/// Assignment operator. |
1112 | 1113 |
template <typename CMap> |
1113 | 1114 |
NodeMap& operator=(const CMap&) { |
1114 | 1115 |
checkConcept<ReadMap<Node, V>, CMap>(); |
1115 | 1116 |
return *this; |
1116 | 1117 |
} |
1117 | 1118 |
|
1118 | 1119 |
}; |
1119 | 1120 |
|
1120 | 1121 |
/// \brief Standard graph map for the arcs. |
1121 | 1122 |
/// |
1122 | 1123 |
/// Standard graph map for the arcs. |
1123 | 1124 |
/// It conforms to the ReferenceMap concept. |
1124 | 1125 |
template <typename V> |
1125 | 1126 |
class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> { |
1126 |
public: |
|
1127 | 1127 |
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent; |
1128 | 1128 |
|
1129 |
public: |
|
1129 | 1130 |
/// \brief Construct a new map. |
1130 | 1131 |
/// |
1131 | 1132 |
/// Construct a new map for the digraph. |
1132 | 1133 |
explicit ArcMap(const MappableDigraphComponent& digraph) |
1133 | 1134 |
: Parent(digraph) {} |
1134 | 1135 |
|
1135 | 1136 |
/// \brief Construct a new map with default value. |
1136 | 1137 |
/// |
1137 | 1138 |
/// Construct a new map for the digraph and initalize the values. |
1138 | 1139 |
ArcMap(const MappableDigraphComponent& digraph, const V& value) |
1139 | 1140 |
: Parent(digraph, value) {} |
1140 | 1141 |
|
1141 | 1142 |
private: |
1142 | 1143 |
/// \brief Copy constructor. |
1143 | 1144 |
/// |
1144 | 1145 |
/// Copy Constructor. |
1145 | 1146 |
ArcMap(const ArcMap& nm) : Parent(nm) {} |
1146 | 1147 |
|
1147 | 1148 |
/// \brief Assignment operator. |
1148 | 1149 |
/// |
1149 | 1150 |
/// Assignment operator. |
1150 | 1151 |
template <typename CMap> |
1151 | 1152 |
ArcMap& operator=(const CMap&) { |
1152 | 1153 |
checkConcept<ReadMap<Arc, V>, CMap>(); |
1153 | 1154 |
return *this; |
1154 | 1155 |
} |
1155 | 1156 |
|
1156 | 1157 |
}; |
1157 | 1158 |
|
1158 | 1159 |
|
1159 | 1160 |
template <typename _Digraph> |
1160 | 1161 |
struct Constraints { |
1161 | 1162 |
|
1162 | 1163 |
struct Dummy { |
1163 | 1164 |
int value; |
1164 | 1165 |
Dummy() : value(0) {} |
1165 | 1166 |
Dummy(int _v) : value(_v) {} |
1166 | 1167 |
}; |
1167 | 1168 |
|
1168 | 1169 |
void constraints() { |
1169 | 1170 |
checkConcept<Base, _Digraph>(); |
1170 | 1171 |
{ // int map test |
1171 | 1172 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
1172 | 1173 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
1173 | 1174 |
IntNodeMap >(); |
1174 | 1175 |
} { // bool map test |
1175 | 1176 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
1176 | 1177 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
1177 | 1178 |
BoolNodeMap >(); |
1178 | 1179 |
} { // Dummy map test |
1179 | 1180 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
1180 | 1181 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
1181 | 1182 |
DummyNodeMap >(); |
1182 | 1183 |
} |
1183 | 1184 |
|
1184 | 1185 |
{ // int map test |
1185 | 1186 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
1186 | 1187 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
1187 | 1188 |
IntArcMap >(); |
1188 | 1189 |
} { // bool map test |
1189 | 1190 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
1190 | 1191 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
1191 | 1192 |
BoolArcMap >(); |
1192 | 1193 |
} { // Dummy map test |
1193 | 1194 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
1194 | 1195 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
1195 | 1196 |
DummyArcMap >(); |
1196 | 1197 |
} |
1197 | 1198 |
} |
1198 | 1199 |
|
1199 | 1200 |
const _Digraph& digraph; |
1200 | 1201 |
}; |
1201 | 1202 |
}; |
1202 | 1203 |
|
1203 | 1204 |
/// \brief Skeleton class for mappable undirected graphs. |
1204 | 1205 |
/// |
1205 | 1206 |
/// This class describes the interface of mappable undirected graphs. |
1206 | 1207 |
/// It extends \ref MappableDigraphComponent with the standard graph |
1207 | 1208 |
/// map class for edges (\c EdgeMap). |
1208 | 1209 |
/// This concept is part of the Graph concept. |
1209 | 1210 |
template <typename BAS = BaseGraphComponent> |
1210 | 1211 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> { |
1211 | 1212 |
public: |
1212 | 1213 |
|
1213 | 1214 |
typedef BAS Base; |
1214 | 1215 |
typedef typename Base::Edge Edge; |
1215 | 1216 |
|
1216 | 1217 |
typedef MappableGraphComponent Graph; |
1217 | 1218 |
|
1218 | 1219 |
/// \brief Standard graph map for the edges. |
1219 | 1220 |
/// |
1220 | 1221 |
/// Standard graph map for the edges. |
1221 | 1222 |
/// It conforms to the ReferenceMap concept. |
1222 | 1223 |
template <typename V> |
1223 | 1224 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> { |
1224 |
public: |
|
1225 | 1225 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
1226 | 1226 |
|
1227 |
public: |
|
1227 | 1228 |
/// \brief Construct a new map. |
1228 | 1229 |
/// |
1229 | 1230 |
/// Construct a new map for the graph. |
1230 | 1231 |
explicit EdgeMap(const MappableGraphComponent& graph) |
1231 | 1232 |
: Parent(graph) {} |
1232 | 1233 |
|
1233 | 1234 |
/// \brief Construct a new map with default value. |
1234 | 1235 |
/// |
1235 | 1236 |
/// Construct a new map for the graph and initalize the values. |
1236 | 1237 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
1237 | 1238 |
: Parent(graph, value) {} |
1238 | 1239 |
|
1239 | 1240 |
private: |
1240 | 1241 |
/// \brief Copy constructor. |
1241 | 1242 |
/// |
1242 | 1243 |
/// Copy Constructor. |
1243 | 1244 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {} |
1244 | 1245 |
|
1245 | 1246 |
/// \brief Assignment operator. |
1246 | 1247 |
/// |
1247 | 1248 |
/// Assignment operator. |
1248 | 1249 |
template <typename CMap> |
1249 | 1250 |
EdgeMap& operator=(const CMap&) { |
1250 | 1251 |
checkConcept<ReadMap<Edge, V>, CMap>(); |
1251 | 1252 |
return *this; |
1252 | 1253 |
} |
1253 | 1254 |
|
1254 | 1255 |
}; |
1255 | 1256 |
|
1256 | 1257 |
|
1257 | 1258 |
template <typename _Graph> |
1258 | 1259 |
struct Constraints { |
1259 | 1260 |
|
1260 | 1261 |
struct Dummy { |
1261 | 1262 |
int value; |
1262 | 1263 |
Dummy() : value(0) {} |
1263 | 1264 |
Dummy(int _v) : value(_v) {} |
1264 | 1265 |
}; |
1265 | 1266 |
|
1266 | 1267 |
void constraints() { |
1267 | 1268 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
1268 | 1269 |
|
1269 | 1270 |
{ // int map test |
1270 | 1271 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
1271 | 1272 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
1272 | 1273 |
IntEdgeMap >(); |
1273 | 1274 |
} { // bool map test |
1274 | 1275 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
1275 | 1276 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
1276 | 1277 |
BoolEdgeMap >(); |
1277 | 1278 |
} { // Dummy map test |
1278 | 1279 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
1279 | 1280 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
1280 | 1281 |
DummyEdgeMap >(); |
1281 | 1282 |
} |
1282 | 1283 |
} |
1283 | 1284 |
|
1284 | 1285 |
const _Graph& graph; |
1285 | 1286 |
}; |
1286 | 1287 |
}; |
1287 | 1288 |
|
1288 | 1289 |
/// \brief Skeleton class for extendable directed graphs. |
1289 | 1290 |
/// |
1290 | 1291 |
/// This class describes the interface of extendable directed graphs. |
1291 | 1292 |
/// It extends \ref BaseDigraphComponent with functions for adding |
1292 | 1293 |
/// nodes and arcs to the digraph. |
1293 | 1294 |
/// This concept requires \ref AlterableDigraphComponent. |
1294 | 1295 |
template <typename BAS = BaseDigraphComponent> |
1295 | 1296 |
class ExtendableDigraphComponent : public BAS { |
1296 | 1297 |
public: |
1297 | 1298 |
typedef BAS Base; |
1298 | 1299 |
|
1299 | 1300 |
typedef typename Base::Node Node; |
1300 | 1301 |
typedef typename Base::Arc Arc; |
1301 | 1302 |
|
1302 | 1303 |
/// \brief Add a new node to the digraph. |
1303 | 1304 |
/// |
1304 | 1305 |
/// This function adds a new node to the digraph. |
1305 | 1306 |
Node addNode() { |
1306 | 1307 |
return INVALID; |
1307 | 1308 |
} |
1308 | 1309 |
|
1309 | 1310 |
/// \brief Add a new arc connecting the given two nodes. |
1310 | 1311 |
/// |
1311 | 1312 |
/// This function adds a new arc connecting the given two nodes |
1312 | 1313 |
/// of the digraph. |
1313 | 1314 |
Arc addArc(const Node&, const Node&) { |
1314 | 1315 |
return INVALID; |
1315 | 1316 |
} |
1316 | 1317 |
|
1317 | 1318 |
template <typename _Digraph> |
1318 | 1319 |
struct Constraints { |
1319 | 1320 |
void constraints() { |
1320 | 1321 |
checkConcept<Base, _Digraph>(); |
1321 | 1322 |
typename _Digraph::Node node_a, node_b; |
1322 | 1323 |
node_a = digraph.addNode(); |
1323 | 1324 |
node_b = digraph.addNode(); |
1324 | 1325 |
typename _Digraph::Arc arc; |
1325 | 1326 |
arc = digraph.addArc(node_a, node_b); |
1326 | 1327 |
} |
1327 | 1328 |
|
1328 | 1329 |
_Digraph& digraph; |
1329 | 1330 |
}; |
1330 | 1331 |
}; |
1331 | 1332 |
|
1332 | 1333 |
/// \brief Skeleton class for extendable undirected graphs. |
1333 | 1334 |
/// |
1334 | 1335 |
/// This class describes the interface of extendable undirected graphs. |
1335 | 1336 |
/// It extends \ref BaseGraphComponent with functions for adding |
1336 | 1337 |
/// nodes and edges to the graph. |
1337 | 1338 |
/// This concept requires \ref AlterableGraphComponent. |
1338 | 1339 |
template <typename BAS = BaseGraphComponent> |
1339 | 1340 |
class ExtendableGraphComponent : public BAS { |
1340 | 1341 |
public: |
1341 | 1342 |
|
1342 | 1343 |
typedef BAS Base; |
1343 | 1344 |
typedef typename Base::Node Node; |
1344 | 1345 |
typedef typename Base::Edge Edge; |
1345 | 1346 |
|
1346 | 1347 |
/// \brief Add a new node to the digraph. |
1347 | 1348 |
/// |
1348 | 1349 |
/// This function adds a new node to the digraph. |
1349 | 1350 |
Node addNode() { |
1350 | 1351 |
return INVALID; |
1351 | 1352 |
} |
1352 | 1353 |
|
1353 | 1354 |
/// \brief Add a new edge connecting the given two nodes. |
1354 | 1355 |
/// |
1355 | 1356 |
/// This function adds a new edge connecting the given two nodes |
1356 | 1357 |
/// of the graph. |
1357 | 1358 |
Edge addEdge(const Node&, const Node&) { |
1358 | 1359 |
return INVALID; |
1359 | 1360 |
} |
1360 | 1361 |
|
1361 | 1362 |
template <typename _Graph> |
1362 | 1363 |
struct Constraints { |
1363 | 1364 |
void constraints() { |
1364 | 1365 |
checkConcept<Base, _Graph>(); |
1365 | 1366 |
typename _Graph::Node node_a, node_b; |
1366 | 1367 |
node_a = graph.addNode(); |
1367 | 1368 |
node_b = graph.addNode(); |
1368 | 1369 |
typename _Graph::Edge edge; |
1369 | 1370 |
edge = graph.addEdge(node_a, node_b); |
1370 | 1371 |
} |
1371 | 1372 |
|
1372 | 1373 |
_Graph& graph; |
1373 | 1374 |
}; |
1374 | 1375 |
}; |
1375 | 1376 |
|
1376 | 1377 |
/// \brief Skeleton class for erasable directed graphs. |
1377 | 1378 |
/// |
1378 | 1379 |
/// This class describes the interface of erasable directed graphs. |
1379 | 1380 |
/// It extends \ref BaseDigraphComponent with functions for removing |
1380 | 1381 |
/// nodes and arcs from the digraph. |
1381 | 1382 |
/// This concept requires \ref AlterableDigraphComponent. |
1382 | 1383 |
template <typename BAS = BaseDigraphComponent> |
1383 | 1384 |
class ErasableDigraphComponent : public BAS { |
1384 | 1385 |
public: |
1385 | 1386 |
|
1386 | 1387 |
typedef BAS Base; |
1387 | 1388 |
typedef typename Base::Node Node; |
1388 | 1389 |
typedef typename Base::Arc Arc; |
1389 | 1390 |
|
1390 | 1391 |
/// \brief Erase a node from the digraph. |
1391 | 1392 |
/// |
1392 | 1393 |
/// This function erases the given node from the digraph and all arcs |
1393 | 1394 |
/// connected to the node. |
1394 | 1395 |
void erase(const Node&) {} |
1395 | 1396 |
|
1396 | 1397 |
/// \brief Erase an arc from the digraph. |
1397 | 1398 |
/// |
1398 | 1399 |
/// This function erases the given arc from the digraph. |
1399 | 1400 |
void erase(const Arc&) {} |
1400 | 1401 |
|
1401 | 1402 |
template <typename _Digraph> |
1402 | 1403 |
struct Constraints { |
1403 | 1404 |
void constraints() { |
1404 | 1405 |
checkConcept<Base, _Digraph>(); |
1405 | 1406 |
const typename _Digraph::Node node(INVALID); |
1406 | 1407 |
digraph.erase(node); |
1407 | 1408 |
const typename _Digraph::Arc arc(INVALID); |
1408 | 1409 |
digraph.erase(arc); |
1409 | 1410 |
} |
1410 | 1411 |
|
1411 | 1412 |
_Digraph& digraph; |
1412 | 1413 |
}; |
1413 | 1414 |
}; |
1414 | 1415 |
|
1415 | 1416 |
/// \brief Skeleton class for erasable undirected graphs. |
1416 | 1417 |
/// |
1417 | 1418 |
/// This class describes the interface of erasable undirected graphs. |
1418 | 1419 |
/// It extends \ref BaseGraphComponent with functions for removing |
1419 | 1420 |
/// nodes and edges from the graph. |
1420 | 1421 |
/// This concept requires \ref AlterableGraphComponent. |
1421 | 1422 |
template <typename BAS = BaseGraphComponent> |
1422 | 1423 |
class ErasableGraphComponent : public BAS { |
1423 | 1424 |
public: |
1424 | 1425 |
|
1425 | 1426 |
typedef BAS Base; |
1426 | 1427 |
typedef typename Base::Node Node; |
1427 | 1428 |
typedef typename Base::Edge Edge; |
1428 | 1429 |
|
1429 | 1430 |
/// \brief Erase a node from the graph. |
1430 | 1431 |
/// |
1431 | 1432 |
/// This function erases the given node from the graph and all edges |
1432 | 1433 |
/// connected to the node. |
1433 | 1434 |
void erase(const Node&) {} |
1434 | 1435 |
|
1435 | 1436 |
/// \brief Erase an edge from the digraph. |
1436 | 1437 |
/// |
1437 | 1438 |
/// This function erases the given edge from the digraph. |
1438 | 1439 |
void erase(const Edge&) {} |
1439 | 1440 |
|
1440 | 1441 |
template <typename _Graph> |
1441 | 1442 |
struct Constraints { |
1442 | 1443 |
void constraints() { |
1443 | 1444 |
checkConcept<Base, _Graph>(); |
1444 | 1445 |
const typename _Graph::Node node(INVALID); |
1445 | 1446 |
graph.erase(node); |
1446 | 1447 |
const typename _Graph::Edge edge(INVALID); |
1447 | 1448 |
graph.erase(edge); |
1448 | 1449 |
} |
1449 | 1450 |
|
1450 | 1451 |
_Graph& graph; |
1451 | 1452 |
}; |
1452 | 1453 |
}; |
1453 | 1454 |
|
1454 | 1455 |
/// \brief Skeleton class for clearable directed graphs. |
1455 | 1456 |
/// |
1456 | 1457 |
/// This class describes the interface of clearable directed graphs. |
1457 | 1458 |
/// It extends \ref BaseDigraphComponent with a function for clearing |
1458 | 1459 |
/// the digraph. |
1459 | 1460 |
/// This concept requires \ref AlterableDigraphComponent. |
1460 | 1461 |
template <typename BAS = BaseDigraphComponent> |
1461 | 1462 |
class ClearableDigraphComponent : public BAS { |
1462 | 1463 |
public: |
1463 | 1464 |
|
1464 | 1465 |
typedef BAS Base; |
1465 | 1466 |
|
1466 | 1467 |
/// \brief Erase all nodes and arcs from the digraph. |
1467 | 1468 |
/// |
1468 | 1469 |
/// This function erases all nodes and arcs from the digraph. |
1469 | 1470 |
void clear() {} |
1470 | 1471 |
|
1471 | 1472 |
template <typename _Digraph> |
1472 | 1473 |
struct Constraints { |
1473 | 1474 |
void constraints() { |
1474 | 1475 |
checkConcept<Base, _Digraph>(); |
1475 | 1476 |
digraph.clear(); |
1476 | 1477 |
} |
1477 | 1478 |
|
1478 | 1479 |
_Digraph& digraph; |
1479 | 1480 |
}; |
1480 | 1481 |
}; |
1481 | 1482 |
|
1482 | 1483 |
/// \brief Skeleton class for clearable undirected graphs. |
1483 | 1484 |
/// |
1484 | 1485 |
/// This class describes the interface of clearable undirected graphs. |
1485 | 1486 |
/// It extends \ref BaseGraphComponent with a function for clearing |
1486 | 1487 |
/// the graph. |
1487 | 1488 |
/// This concept requires \ref AlterableGraphComponent. |
1488 | 1489 |
template <typename BAS = BaseGraphComponent> |
1489 | 1490 |
class ClearableGraphComponent : public ClearableDigraphComponent<BAS> { |
1490 | 1491 |
public: |
1491 | 1492 |
|
1492 | 1493 |
typedef BAS Base; |
1493 | 1494 |
|
1494 | 1495 |
/// \brief Erase all nodes and edges from the graph. |
1495 | 1496 |
/// |
1496 | 1497 |
/// This function erases all nodes and edges from the graph. |
1497 | 1498 |
void clear() {} |
1498 | 1499 |
|
1499 | 1500 |
template <typename _Graph> |
1500 | 1501 |
struct Constraints { |
1501 | 1502 |
void constraints() { |
1502 | 1503 |
checkConcept<Base, _Graph>(); |
1503 | 1504 |
graph.clear(); |
1504 | 1505 |
} |
1505 | 1506 |
|
1506 | 1507 |
_Graph& graph; |
1507 | 1508 |
}; |
1508 | 1509 |
}; |
1509 | 1510 |
|
1510 | 1511 |
} |
1511 | 1512 |
|
1512 | 1513 |
} |
1513 | 1514 |
|
1514 | 1515 |
#endif |
... | ... |
@@ -655,1192 +655,1201 @@ |
655 | 655 |
return DigraphCopy<From, To>(from, to); |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
/// \brief Class to copy a graph. |
659 | 659 |
/// |
660 | 660 |
/// Class to copy a graph to another graph (duplicate a graph). The |
661 | 661 |
/// simplest way of using it is through the \c graphCopy() function. |
662 | 662 |
/// |
663 | 663 |
/// This class not only make a copy of a graph, but it can create |
664 | 664 |
/// references and cross references between the nodes, edges and arcs of |
665 | 665 |
/// the two graphs, and it can copy maps for using with the newly created |
666 | 666 |
/// graph. |
667 | 667 |
/// |
668 | 668 |
/// To make a copy from a graph, first an instance of GraphCopy |
669 | 669 |
/// should be created, then the data belongs to the graph should |
670 | 670 |
/// assigned to copy. In the end, the \c run() member should be |
671 | 671 |
/// called. |
672 | 672 |
/// |
673 | 673 |
/// The next code copies a graph with several data: |
674 | 674 |
///\code |
675 | 675 |
/// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph); |
676 | 676 |
/// // Create references for the nodes |
677 | 677 |
/// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph); |
678 | 678 |
/// cg.nodeRef(nr); |
679 | 679 |
/// // Create cross references (inverse) for the edges |
680 | 680 |
/// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph); |
681 | 681 |
/// cg.edgeCrossRef(ecr); |
682 | 682 |
/// // Copy an edge map |
683 | 683 |
/// OrigGraph::EdgeMap<double> oemap(orig_graph); |
684 | 684 |
/// NewGraph::EdgeMap<double> nemap(new_graph); |
685 | 685 |
/// cg.edgeMap(oemap, nemap); |
686 | 686 |
/// // Copy a node |
687 | 687 |
/// OrigGraph::Node on; |
688 | 688 |
/// NewGraph::Node nn; |
689 | 689 |
/// cg.node(on, nn); |
690 | 690 |
/// // Execute copying |
691 | 691 |
/// cg.run(); |
692 | 692 |
///\endcode |
693 | 693 |
template <typename From, typename To> |
694 | 694 |
class GraphCopy { |
695 | 695 |
private: |
696 | 696 |
|
697 | 697 |
typedef typename From::Node Node; |
698 | 698 |
typedef typename From::NodeIt NodeIt; |
699 | 699 |
typedef typename From::Arc Arc; |
700 | 700 |
typedef typename From::ArcIt ArcIt; |
701 | 701 |
typedef typename From::Edge Edge; |
702 | 702 |
typedef typename From::EdgeIt EdgeIt; |
703 | 703 |
|
704 | 704 |
typedef typename To::Node TNode; |
705 | 705 |
typedef typename To::Arc TArc; |
706 | 706 |
typedef typename To::Edge TEdge; |
707 | 707 |
|
708 | 708 |
typedef typename From::template NodeMap<TNode> NodeRefMap; |
709 | 709 |
typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
710 | 710 |
|
711 | 711 |
struct ArcRefMap { |
712 | 712 |
ArcRefMap(const From& from, const To& to, |
713 | 713 |
const EdgeRefMap& edge_ref, const NodeRefMap& node_ref) |
714 | 714 |
: _from(from), _to(to), |
715 | 715 |
_edge_ref(edge_ref), _node_ref(node_ref) {} |
716 | 716 |
|
717 | 717 |
typedef typename From::Arc Key; |
718 | 718 |
typedef typename To::Arc Value; |
719 | 719 |
|
720 | 720 |
Value operator[](const Key& key) const { |
721 | 721 |
bool forward = _from.u(key) != _from.v(key) ? |
722 | 722 |
_node_ref[_from.source(key)] == |
723 | 723 |
_to.source(_to.direct(_edge_ref[key], true)) : |
724 | 724 |
_from.direction(key); |
725 | 725 |
return _to.direct(_edge_ref[key], forward); |
726 | 726 |
} |
727 | 727 |
|
728 | 728 |
const From& _from; |
729 | 729 |
const To& _to; |
730 | 730 |
const EdgeRefMap& _edge_ref; |
731 | 731 |
const NodeRefMap& _node_ref; |
732 | 732 |
}; |
733 | 733 |
|
734 | 734 |
public: |
735 | 735 |
|
736 | 736 |
/// \brief Constructor of GraphCopy. |
737 | 737 |
/// |
738 | 738 |
/// Constructor of GraphCopy for copying the content of the |
739 | 739 |
/// \c from graph into the \c to graph. |
740 | 740 |
GraphCopy(const From& from, To& to) |
741 | 741 |
: _from(from), _to(to) {} |
742 | 742 |
|
743 | 743 |
/// \brief Destructor of GraphCopy |
744 | 744 |
/// |
745 | 745 |
/// Destructor of GraphCopy. |
746 | 746 |
~GraphCopy() { |
747 | 747 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
748 | 748 |
delete _node_maps[i]; |
749 | 749 |
} |
750 | 750 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
751 | 751 |
delete _arc_maps[i]; |
752 | 752 |
} |
753 | 753 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
754 | 754 |
delete _edge_maps[i]; |
755 | 755 |
} |
756 | 756 |
} |
757 | 757 |
|
758 | 758 |
/// \brief Copy the node references into the given map. |
759 | 759 |
/// |
760 | 760 |
/// This function copies the node references into the given map. |
761 | 761 |
/// The parameter should be a map, whose key type is the Node type of |
762 | 762 |
/// the source graph, while the value type is the Node type of the |
763 | 763 |
/// destination graph. |
764 | 764 |
template <typename NodeRef> |
765 | 765 |
GraphCopy& nodeRef(NodeRef& map) { |
766 | 766 |
_node_maps.push_back(new _core_bits::RefCopy<From, Node, |
767 | 767 |
NodeRefMap, NodeRef>(map)); |
768 | 768 |
return *this; |
769 | 769 |
} |
770 | 770 |
|
771 | 771 |
/// \brief Copy the node cross references into the given map. |
772 | 772 |
/// |
773 | 773 |
/// This function copies the node cross references (reverse references) |
774 | 774 |
/// into the given map. The parameter should be a map, whose key type |
775 | 775 |
/// is the Node type of the destination graph, while the value type is |
776 | 776 |
/// the Node type of the source graph. |
777 | 777 |
template <typename NodeCrossRef> |
778 | 778 |
GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
779 | 779 |
_node_maps.push_back(new _core_bits::CrossRefCopy<From, Node, |
780 | 780 |
NodeRefMap, NodeCrossRef>(map)); |
781 | 781 |
return *this; |
782 | 782 |
} |
783 | 783 |
|
784 | 784 |
/// \brief Make a copy of the given node map. |
785 | 785 |
/// |
786 | 786 |
/// This function makes a copy of the given node map for the newly |
787 | 787 |
/// created graph. |
788 | 788 |
/// The key type of the new map \c tmap should be the Node type of the |
789 | 789 |
/// destination graph, and the key type of the original map \c map |
790 | 790 |
/// should be the Node type of the source graph. |
791 | 791 |
template <typename FromMap, typename ToMap> |
792 | 792 |
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
793 | 793 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
794 | 794 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
795 | 795 |
return *this; |
796 | 796 |
} |
797 | 797 |
|
798 | 798 |
/// \brief Make a copy of the given node. |
799 | 799 |
/// |
800 | 800 |
/// This function makes a copy of the given node. |
801 | 801 |
GraphCopy& node(const Node& node, TNode& tnode) { |
802 | 802 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
803 | 803 |
NodeRefMap, TNode>(node, tnode)); |
804 | 804 |
return *this; |
805 | 805 |
} |
806 | 806 |
|
807 | 807 |
/// \brief Copy the arc references into the given map. |
808 | 808 |
/// |
809 | 809 |
/// This function copies the arc references into the given map. |
810 | 810 |
/// The parameter should be a map, whose key type is the Arc type of |
811 | 811 |
/// the source graph, while the value type is the Arc type of the |
812 | 812 |
/// destination graph. |
813 | 813 |
template <typename ArcRef> |
814 | 814 |
GraphCopy& arcRef(ArcRef& map) { |
815 | 815 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
816 | 816 |
ArcRefMap, ArcRef>(map)); |
817 | 817 |
return *this; |
818 | 818 |
} |
819 | 819 |
|
820 | 820 |
/// \brief Copy the arc cross references into the given map. |
821 | 821 |
/// |
822 | 822 |
/// This function copies the arc cross references (reverse references) |
823 | 823 |
/// into the given map. The parameter should be a map, whose key type |
824 | 824 |
/// is the Arc type of the destination graph, while the value type is |
825 | 825 |
/// the Arc type of the source graph. |
826 | 826 |
template <typename ArcCrossRef> |
827 | 827 |
GraphCopy& arcCrossRef(ArcCrossRef& map) { |
828 | 828 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
829 | 829 |
ArcRefMap, ArcCrossRef>(map)); |
830 | 830 |
return *this; |
831 | 831 |
} |
832 | 832 |
|
833 | 833 |
/// \brief Make a copy of the given arc map. |
834 | 834 |
/// |
835 | 835 |
/// This function makes a copy of the given arc map for the newly |
836 | 836 |
/// created graph. |
837 | 837 |
/// The key type of the new map \c tmap should be the Arc type of the |
838 | 838 |
/// destination graph, and the key type of the original map \c map |
839 | 839 |
/// should be the Arc type of the source graph. |
840 | 840 |
template <typename FromMap, typename ToMap> |
841 | 841 |
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
842 | 842 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
843 | 843 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
844 | 844 |
return *this; |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
/// \brief Make a copy of the given arc. |
848 | 848 |
/// |
849 | 849 |
/// This function makes a copy of the given arc. |
850 | 850 |
GraphCopy& arc(const Arc& arc, TArc& tarc) { |
851 | 851 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
852 | 852 |
ArcRefMap, TArc>(arc, tarc)); |
853 | 853 |
return *this; |
854 | 854 |
} |
855 | 855 |
|
856 | 856 |
/// \brief Copy the edge references into the given map. |
857 | 857 |
/// |
858 | 858 |
/// This function copies the edge references into the given map. |
859 | 859 |
/// The parameter should be a map, whose key type is the Edge type of |
860 | 860 |
/// the source graph, while the value type is the Edge type of the |
861 | 861 |
/// destination graph. |
862 | 862 |
template <typename EdgeRef> |
863 | 863 |
GraphCopy& edgeRef(EdgeRef& map) { |
864 | 864 |
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
865 | 865 |
EdgeRefMap, EdgeRef>(map)); |
866 | 866 |
return *this; |
867 | 867 |
} |
868 | 868 |
|
869 | 869 |
/// \brief Copy the edge cross references into the given map. |
870 | 870 |
/// |
871 | 871 |
/// This function copies the edge cross references (reverse references) |
872 | 872 |
/// into the given map. The parameter should be a map, whose key type |
873 | 873 |
/// is the Edge type of the destination graph, while the value type is |
874 | 874 |
/// the Edge type of the source graph. |
875 | 875 |
template <typename EdgeCrossRef> |
876 | 876 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
877 | 877 |
_edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
878 | 878 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
879 | 879 |
return *this; |
880 | 880 |
} |
881 | 881 |
|
882 | 882 |
/// \brief Make a copy of the given edge map. |
883 | 883 |
/// |
884 | 884 |
/// This function makes a copy of the given edge map for the newly |
885 | 885 |
/// created graph. |
886 | 886 |
/// The key type of the new map \c tmap should be the Edge type of the |
887 | 887 |
/// destination graph, and the key type of the original map \c map |
888 | 888 |
/// should be the Edge type of the source graph. |
889 | 889 |
template <typename FromMap, typename ToMap> |
890 | 890 |
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { |
891 | 891 |
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
892 | 892 |
EdgeRefMap, FromMap, ToMap>(map, tmap)); |
893 | 893 |
return *this; |
894 | 894 |
} |
895 | 895 |
|
896 | 896 |
/// \brief Make a copy of the given edge. |
897 | 897 |
/// |
898 | 898 |
/// This function makes a copy of the given edge. |
899 | 899 |
GraphCopy& edge(const Edge& edge, TEdge& tedge) { |
900 | 900 |
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
901 | 901 |
EdgeRefMap, TEdge>(edge, tedge)); |
902 | 902 |
return *this; |
903 | 903 |
} |
904 | 904 |
|
905 | 905 |
/// \brief Execute copying. |
906 | 906 |
/// |
907 | 907 |
/// This function executes the copying of the graph along with the |
908 | 908 |
/// copying of the assigned data. |
909 | 909 |
void run() { |
910 | 910 |
NodeRefMap nodeRefMap(_from); |
911 | 911 |
EdgeRefMap edgeRefMap(_from); |
912 | 912 |
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); |
913 | 913 |
_core_bits::GraphCopySelector<To>:: |
914 | 914 |
copy(_from, _to, nodeRefMap, edgeRefMap); |
915 | 915 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
916 | 916 |
_node_maps[i]->copy(_from, nodeRefMap); |
917 | 917 |
} |
918 | 918 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
919 | 919 |
_edge_maps[i]->copy(_from, edgeRefMap); |
920 | 920 |
} |
921 | 921 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
922 | 922 |
_arc_maps[i]->copy(_from, arcRefMap); |
923 | 923 |
} |
924 | 924 |
} |
925 | 925 |
|
926 | 926 |
private: |
927 | 927 |
|
928 | 928 |
const From& _from; |
929 | 929 |
To& _to; |
930 | 930 |
|
931 | 931 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
932 | 932 |
_node_maps; |
933 | 933 |
|
934 | 934 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
935 | 935 |
_arc_maps; |
936 | 936 |
|
937 | 937 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
938 | 938 |
_edge_maps; |
939 | 939 |
|
940 | 940 |
}; |
941 | 941 |
|
942 | 942 |
/// \brief Copy a graph to another graph. |
943 | 943 |
/// |
944 | 944 |
/// This function copies a graph to another graph. |
945 | 945 |
/// The complete usage of it is detailed in the GraphCopy class, |
946 | 946 |
/// but a short example shows a basic work: |
947 | 947 |
///\code |
948 | 948 |
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
949 | 949 |
///\endcode |
950 | 950 |
/// |
951 | 951 |
/// After the copy the \c nr map will contain the mapping from the |
952 | 952 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
953 | 953 |
/// \c ecr will contain the mapping from the edges of the \c to graph |
954 | 954 |
/// to the edges of the \c from graph. |
955 | 955 |
/// |
956 | 956 |
/// \see GraphCopy |
957 | 957 |
template <typename From, typename To> |
958 | 958 |
GraphCopy<From, To> |
959 | 959 |
graphCopy(const From& from, To& to) { |
960 | 960 |
return GraphCopy<From, To>(from, to); |
961 | 961 |
} |
962 | 962 |
|
963 | 963 |
namespace _core_bits { |
964 | 964 |
|
965 | 965 |
template <typename Graph, typename Enable = void> |
966 | 966 |
struct FindArcSelector { |
967 | 967 |
typedef typename Graph::Node Node; |
968 | 968 |
typedef typename Graph::Arc Arc; |
969 | 969 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
970 | 970 |
if (e == INVALID) { |
971 | 971 |
g.firstOut(e, u); |
972 | 972 |
} else { |
973 | 973 |
g.nextOut(e); |
974 | 974 |
} |
975 | 975 |
while (e != INVALID && g.target(e) != v) { |
976 | 976 |
g.nextOut(e); |
977 | 977 |
} |
978 | 978 |
return e; |
979 | 979 |
} |
980 | 980 |
}; |
981 | 981 |
|
982 | 982 |
template <typename Graph> |
983 | 983 |
struct FindArcSelector< |
984 | 984 |
Graph, |
985 | 985 |
typename enable_if<typename Graph::FindArcTag, void>::type> |
986 | 986 |
{ |
987 | 987 |
typedef typename Graph::Node Node; |
988 | 988 |
typedef typename Graph::Arc Arc; |
989 | 989 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
990 | 990 |
return g.findArc(u, v, prev); |
991 | 991 |
} |
992 | 992 |
}; |
993 | 993 |
} |
994 | 994 |
|
995 | 995 |
/// \brief Find an arc between two nodes of a digraph. |
996 | 996 |
/// |
997 | 997 |
/// This function finds an arc from node \c u to node \c v in the |
998 | 998 |
/// digraph \c g. |
999 | 999 |
/// |
1000 | 1000 |
/// If \c prev is \ref INVALID (this is the default value), then |
1001 | 1001 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
1002 | 1002 |
/// the next arc from \c u to \c v after \c prev. |
1003 | 1003 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
1004 | 1004 |
/// |
1005 | 1005 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
1006 | 1006 |
///\code |
1007 | 1007 |
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { |
1008 | 1008 |
/// ... |
1009 | 1009 |
/// } |
1010 | 1010 |
///\endcode |
1011 | 1011 |
/// |
1012 | 1012 |
/// \note \ref ConArcIt provides iterator interface for the same |
1013 | 1013 |
/// functionality. |
1014 | 1014 |
/// |
1015 | 1015 |
///\sa ConArcIt |
1016 | 1016 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1017 | 1017 |
template <typename Graph> |
1018 | 1018 |
inline typename Graph::Arc |
1019 | 1019 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1020 | 1020 |
typename Graph::Arc prev = INVALID) { |
1021 | 1021 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
1022 | 1022 |
} |
1023 | 1023 |
|
1024 | 1024 |
/// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
1025 | 1025 |
/// |
1026 | 1026 |
/// Iterator for iterating on parallel arcs connecting the same nodes. It is |
1027 | 1027 |
/// a higher level interface for the \ref findArc() function. You can |
1028 | 1028 |
/// use it the following way: |
1029 | 1029 |
///\code |
1030 | 1030 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
1031 | 1031 |
/// ... |
1032 | 1032 |
/// } |
1033 | 1033 |
///\endcode |
1034 | 1034 |
/// |
1035 | 1035 |
///\sa findArc() |
1036 | 1036 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1037 | 1037 |
template <typename GR> |
1038 | 1038 |
class ConArcIt : public GR::Arc { |
1039 |
typedef typename GR::Arc Parent; |
|
1040 |
|
|
1039 | 1041 |
public: |
1040 | 1042 |
|
1041 |
typedef GR Graph; |
|
1042 |
typedef typename Graph::Arc Parent; |
|
1043 |
|
|
1044 |
typedef typename Graph::Arc Arc; |
|
1045 |
typedef typename |
|
1043 |
typedef typename GR::Arc Arc; |
|
1044 |
typedef typename GR::Node Node; |
|
1046 | 1045 |
|
1047 | 1046 |
/// \brief Constructor. |
1048 | 1047 |
/// |
1049 | 1048 |
/// Construct a new ConArcIt iterating on the arcs that |
1050 | 1049 |
/// connects nodes \c u and \c v. |
1051 |
ConArcIt(const |
|
1050 |
ConArcIt(const GR& g, Node u, Node v) : _graph(g) { |
|
1052 | 1051 |
Parent::operator=(findArc(_graph, u, v)); |
1053 | 1052 |
} |
1054 | 1053 |
|
1055 | 1054 |
/// \brief Constructor. |
1056 | 1055 |
/// |
1057 | 1056 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
1058 |
ConArcIt(const |
|
1057 |
ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {} |
|
1059 | 1058 |
|
1060 | 1059 |
/// \brief Increment operator. |
1061 | 1060 |
/// |
1062 | 1061 |
/// It increments the iterator and gives back the next arc. |
1063 | 1062 |
ConArcIt& operator++() { |
1064 | 1063 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
1065 | 1064 |
_graph.target(*this), *this)); |
1066 | 1065 |
return *this; |
1067 | 1066 |
} |
1068 | 1067 |
private: |
1069 |
const |
|
1068 |
const GR& _graph; |
|
1070 | 1069 |
}; |
1071 | 1070 |
|
1072 | 1071 |
namespace _core_bits { |
1073 | 1072 |
|
1074 | 1073 |
template <typename Graph, typename Enable = void> |
1075 | 1074 |
struct FindEdgeSelector { |
1076 | 1075 |
typedef typename Graph::Node Node; |
1077 | 1076 |
typedef typename Graph::Edge Edge; |
1078 | 1077 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
1079 | 1078 |
bool b; |
1080 | 1079 |
if (u != v) { |
1081 | 1080 |
if (e == INVALID) { |
1082 | 1081 |
g.firstInc(e, b, u); |
1083 | 1082 |
} else { |
1084 | 1083 |
b = g.u(e) == u; |
1085 | 1084 |
g.nextInc(e, b); |
1086 | 1085 |
} |
1087 | 1086 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
1088 | 1087 |
g.nextInc(e, b); |
1089 | 1088 |
} |
1090 | 1089 |
} else { |
1091 | 1090 |
if (e == INVALID) { |
1092 | 1091 |
g.firstInc(e, b, u); |
1093 | 1092 |
} else { |
1094 | 1093 |
b = true; |
1095 | 1094 |
g.nextInc(e, b); |
1096 | 1095 |
} |
1097 | 1096 |
while (e != INVALID && (!b || g.v(e) != v)) { |
1098 | 1097 |
g.nextInc(e, b); |
1099 | 1098 |
} |
1100 | 1099 |
} |
1101 | 1100 |
return e; |
1102 | 1101 |
} |
1103 | 1102 |
}; |
1104 | 1103 |
|
1105 | 1104 |
template <typename Graph> |
1106 | 1105 |
struct FindEdgeSelector< |
1107 | 1106 |
Graph, |
1108 | 1107 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
1109 | 1108 |
{ |
1110 | 1109 |
typedef typename Graph::Node Node; |
1111 | 1110 |
typedef typename Graph::Edge Edge; |
1112 | 1111 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
1113 | 1112 |
return g.findEdge(u, v, prev); |
1114 | 1113 |
} |
1115 | 1114 |
}; |
1116 | 1115 |
} |
1117 | 1116 |
|
1118 | 1117 |
/// \brief Find an edge between two nodes of a graph. |
1119 | 1118 |
/// |
1120 | 1119 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
1121 | 1120 |
/// If node \c u and node \c v is equal then each loop edge |
1122 | 1121 |
/// will be enumerated once. |
1123 | 1122 |
/// |
1124 | 1123 |
/// If \c prev is \ref INVALID (this is the default value), then |
1125 | 1124 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
1126 | 1125 |
/// the next edge from \c u to \c v after \c prev. |
1127 | 1126 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
1128 | 1127 |
/// |
1129 | 1128 |
/// Thus you can iterate through each edge between \c u and \c v |
1130 | 1129 |
/// as it follows. |
1131 | 1130 |
///\code |
1132 | 1131 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
1133 | 1132 |
/// ... |
1134 | 1133 |
/// } |
1135 | 1134 |
///\endcode |
1136 | 1135 |
/// |
1137 | 1136 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
1138 | 1137 |
/// functionality. |
1139 | 1138 |
/// |
1140 | 1139 |
///\sa ConEdgeIt |
1141 | 1140 |
template <typename Graph> |
1142 | 1141 |
inline typename Graph::Edge |
1143 | 1142 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1144 | 1143 |
typename Graph::Edge p = INVALID) { |
1145 | 1144 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
1146 | 1145 |
} |
1147 | 1146 |
|
1148 | 1147 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
1149 | 1148 |
/// |
1150 | 1149 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
1151 | 1150 |
/// It is a higher level interface for the findEdge() function. You can |
1152 | 1151 |
/// use it the following way: |
1153 | 1152 |
///\code |
1154 | 1153 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
1155 | 1154 |
/// ... |
1156 | 1155 |
/// } |
1157 | 1156 |
///\endcode |
1158 | 1157 |
/// |
1159 | 1158 |
///\sa findEdge() |
1160 | 1159 |
template <typename GR> |
1161 | 1160 |
class ConEdgeIt : public GR::Edge { |
1161 |
typedef typename GR::Edge Parent; |
|
1162 |
|
|
1162 | 1163 |
public: |
1163 | 1164 |
|
1164 |
typedef GR Graph; |
|
1165 |
typedef typename Graph::Edge Parent; |
|
1166 |
|
|
1167 |
typedef typename Graph::Edge Edge; |
|
1168 |
typedef typename |
|
1165 |
typedef typename GR::Edge Edge; |
|
1166 |
typedef typename GR::Node Node; |
|
1169 | 1167 |
|
1170 | 1168 |
/// \brief Constructor. |
1171 | 1169 |
/// |
1172 | 1170 |
/// Construct a new ConEdgeIt iterating on the edges that |
1173 | 1171 |
/// connects nodes \c u and \c v. |
1174 |
ConEdgeIt(const |
|
1172 |
ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) { |
|
1175 | 1173 |
Parent::operator=(findEdge(_graph, _u, _v)); |
1176 | 1174 |
} |
1177 | 1175 |
|
1178 | 1176 |
/// \brief Constructor. |
1179 | 1177 |
/// |
1180 | 1178 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
1181 |
ConEdgeIt(const |
|
1179 |
ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {} |
|
1182 | 1180 |
|
1183 | 1181 |
/// \brief Increment operator. |
1184 | 1182 |
/// |
1185 | 1183 |
/// It increments the iterator and gives back the next edge. |
1186 | 1184 |
ConEdgeIt& operator++() { |
1187 | 1185 |
Parent::operator=(findEdge(_graph, _u, _v, *this)); |
1188 | 1186 |
return *this; |
1189 | 1187 |
} |
1190 | 1188 |
private: |
1191 |
const |
|
1189 |
const GR& _graph; |
|
1192 | 1190 |
Node _u, _v; |
1193 | 1191 |
}; |
1194 | 1192 |
|
1195 | 1193 |
|
1196 | 1194 |
///Dynamic arc look-up between given endpoints. |
1197 | 1195 |
|
1198 | 1196 |
///Using this class, you can find an arc in a digraph from a given |
1199 | 1197 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
1200 | 1198 |
///where <em>d</em> is the out-degree of the source node. |
1201 | 1199 |
/// |
1202 | 1200 |
///It is possible to find \e all parallel arcs between two nodes with |
1203 | 1201 |
///the \c operator() member. |
1204 | 1202 |
/// |
1205 | 1203 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1206 | 1204 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1207 | 1205 |
/// |
1208 | 1206 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1209 | 1207 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1210 | 1208 |
///time bound for arc look-ups. This class also guarantees the |
1211 | 1209 |
///optimal time bound in a constant factor for any distribution of |
1212 | 1210 |
///queries. |
1213 | 1211 |
/// |
1214 | 1212 |
///\tparam GR The type of the underlying digraph. |
1215 | 1213 |
/// |
1216 | 1214 |
///\sa ArcLookUp |
1217 | 1215 |
///\sa AllArcLookUp |
1218 | 1216 |
template <typename GR> |
1219 | 1217 |
class DynArcLookUp |
1220 | 1218 |
: protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase |
1221 | 1219 |
{ |
1222 |
public: |
|
1223 | 1220 |
typedef typename ItemSetTraits<GR, typename GR::Arc> |
1224 | 1221 |
::ItemNotifier::ObserverBase Parent; |
1225 | 1222 |
|
1226 | 1223 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1224 |
|
|
1225 |
public: |
|
1226 |
|
|
1227 |
/// The Digraph type |
|
1227 | 1228 |
typedef GR Digraph; |
1228 | 1229 |
|
1229 | 1230 |
protected: |
1230 | 1231 |
|
1231 | 1232 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type { |
1233 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
|
1234 |
|
|
1232 | 1235 |
public: |
1233 | 1236 |
|
1234 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
|
1235 |
|
|
1236 | 1237 |
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {} |
1237 | 1238 |
|
1238 | 1239 |
virtual void add(const Node& node) { |
1239 | 1240 |
Parent::add(node); |
1240 | 1241 |
Parent::set(node, INVALID); |
1241 | 1242 |
} |
1242 | 1243 |
|
1243 | 1244 |
virtual void add(const std::vector<Node>& nodes) { |
1244 | 1245 |
Parent::add(nodes); |
1245 | 1246 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1246 | 1247 |
Parent::set(nodes[i], INVALID); |
1247 | 1248 |
} |
1248 | 1249 |
} |
1249 | 1250 |
|
1250 | 1251 |
virtual void build() { |
1251 | 1252 |
Parent::build(); |
1252 | 1253 |
Node it; |
1253 | 1254 |
typename Parent::Notifier* nf = Parent::notifier(); |
1254 | 1255 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1255 | 1256 |
Parent::set(it, INVALID); |
1256 | 1257 |
} |
1257 | 1258 |
} |
1258 | 1259 |
}; |
1259 | 1260 |
|
1260 |
const Digraph &_g; |
|
1261 |
AutoNodeMap _head; |
|
1262 |
typename Digraph::template ArcMap<Arc> _parent; |
|
1263 |
typename Digraph::template ArcMap<Arc> _left; |
|
1264 |
typename Digraph::template ArcMap<Arc> _right; |
|
1265 |
|
|
1266 | 1261 |
class ArcLess { |
1267 | 1262 |
const Digraph &g; |
1268 | 1263 |
public: |
1269 | 1264 |
ArcLess(const Digraph &_g) : g(_g) {} |
1270 | 1265 |
bool operator()(Arc a,Arc b) const |
1271 | 1266 |
{ |
1272 | 1267 |
return g.target(a)<g.target(b); |
1273 | 1268 |
} |
1274 | 1269 |
}; |
1275 | 1270 |
|
1271 |
protected: |
|
1272 |
|
|
1273 |
const Digraph &_g; |
|
1274 |
AutoNodeMap _head; |
|
1275 |
typename Digraph::template ArcMap<Arc> _parent; |
|
1276 |
typename Digraph::template ArcMap<Arc> _left; |
|
1277 |
typename Digraph::template ArcMap<Arc> _right; |
|
1278 |
|
|
1276 | 1279 |
public: |
1277 | 1280 |
|
1278 | 1281 |
///Constructor |
1279 | 1282 |
|
1280 | 1283 |
///Constructor. |
1281 | 1284 |
/// |
1282 | 1285 |
///It builds up the search database. |
1283 | 1286 |
DynArcLookUp(const Digraph &g) |
1284 | 1287 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1285 | 1288 |
{ |
1286 | 1289 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1287 | 1290 |
refresh(); |
1288 | 1291 |
} |
1289 | 1292 |
|
1290 | 1293 |
protected: |
1291 | 1294 |
|
1292 | 1295 |
virtual void add(const Arc& arc) { |
1293 | 1296 |
insert(arc); |
1294 | 1297 |
} |
1295 | 1298 |
|
1296 | 1299 |
virtual void add(const std::vector<Arc>& arcs) { |
1297 | 1300 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1298 | 1301 |
insert(arcs[i]); |
1299 | 1302 |
} |
1300 | 1303 |
} |
1301 | 1304 |
|
1302 | 1305 |
virtual void erase(const Arc& arc) { |
1303 | 1306 |
remove(arc); |
1304 | 1307 |
} |
1305 | 1308 |
|
1306 | 1309 |
virtual void erase(const std::vector<Arc>& arcs) { |
1307 | 1310 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1308 | 1311 |
remove(arcs[i]); |
1309 | 1312 |
} |
1310 | 1313 |
} |
1311 | 1314 |
|
1312 | 1315 |
virtual void build() { |
1313 | 1316 |
refresh(); |
1314 | 1317 |
} |
1315 | 1318 |
|
1316 | 1319 |
virtual void clear() { |
1317 | 1320 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1318 | 1321 |
_head[n] = INVALID; |
1319 | 1322 |
} |
1320 | 1323 |
} |
1321 | 1324 |
|
1322 | 1325 |
void insert(Arc arc) { |
1323 | 1326 |
Node s = _g.source(arc); |
1324 | 1327 |
Node t = _g.target(arc); |
1325 | 1328 |
_left[arc] = INVALID; |
1326 | 1329 |
_right[arc] = INVALID; |
1327 | 1330 |
|
1328 | 1331 |
Arc e = _head[s]; |
1329 | 1332 |
if (e == INVALID) { |
1330 | 1333 |
_head[s] = arc; |
1331 | 1334 |
_parent[arc] = INVALID; |
1332 | 1335 |
return; |
1333 | 1336 |
} |
1334 | 1337 |
while (true) { |
1335 | 1338 |
if (t < _g.target(e)) { |
1336 | 1339 |
if (_left[e] == INVALID) { |
1337 | 1340 |
_left[e] = arc; |
1338 | 1341 |
_parent[arc] = e; |
1339 | 1342 |
splay(arc); |
1340 | 1343 |
return; |
1341 | 1344 |
} else { |
1342 | 1345 |
e = _left[e]; |
1343 | 1346 |
} |
1344 | 1347 |
} else { |
1345 | 1348 |
if (_right[e] == INVALID) { |
1346 | 1349 |
_right[e] = arc; |
1347 | 1350 |
_parent[arc] = e; |
1348 | 1351 |
splay(arc); |
1349 | 1352 |
return; |
1350 | 1353 |
} else { |
1351 | 1354 |
e = _right[e]; |
1352 | 1355 |
} |
1353 | 1356 |
} |
1354 | 1357 |
} |
1355 | 1358 |
} |
1356 | 1359 |
|
1357 | 1360 |
void remove(Arc arc) { |
1358 | 1361 |
if (_left[arc] == INVALID) { |
1359 | 1362 |
if (_right[arc] != INVALID) { |
1360 | 1363 |
_parent[_right[arc]] = _parent[arc]; |
1361 | 1364 |
} |
1362 | 1365 |
if (_parent[arc] != INVALID) { |
1363 | 1366 |
if (_left[_parent[arc]] == arc) { |
1364 | 1367 |
_left[_parent[arc]] = _right[arc]; |
1365 | 1368 |
} else { |
1366 | 1369 |
_right[_parent[arc]] = _right[arc]; |
1367 | 1370 |
} |
1368 | 1371 |
} else { |
1369 | 1372 |
_head[_g.source(arc)] = _right[arc]; |
1370 | 1373 |
} |
1371 | 1374 |
} else if (_right[arc] == INVALID) { |
1372 | 1375 |
_parent[_left[arc]] = _parent[arc]; |
1373 | 1376 |
if (_parent[arc] != INVALID) { |
1374 | 1377 |
if (_left[_parent[arc]] == arc) { |
1375 | 1378 |
_left[_parent[arc]] = _left[arc]; |
1376 | 1379 |
} else { |
1377 | 1380 |
_right[_parent[arc]] = _left[arc]; |
1378 | 1381 |
} |
1379 | 1382 |
} else { |
1380 | 1383 |
_head[_g.source(arc)] = _left[arc]; |
1381 | 1384 |
} |
1382 | 1385 |
} else { |
1383 | 1386 |
Arc e = _left[arc]; |
1384 | 1387 |
if (_right[e] != INVALID) { |
1385 | 1388 |
e = _right[e]; |
1386 | 1389 |
while (_right[e] != INVALID) { |
1387 | 1390 |
e = _right[e]; |
1388 | 1391 |
} |
1389 | 1392 |
Arc s = _parent[e]; |
1390 | 1393 |
_right[_parent[e]] = _left[e]; |
1391 | 1394 |
if (_left[e] != INVALID) { |
1392 | 1395 |
_parent[_left[e]] = _parent[e]; |
1393 | 1396 |
} |
1394 | 1397 |
|
1395 | 1398 |
_left[e] = _left[arc]; |
1396 | 1399 |
_parent[_left[arc]] = e; |
1397 | 1400 |
_right[e] = _right[arc]; |
1398 | 1401 |
_parent[_right[arc]] = e; |
1399 | 1402 |
|
1400 | 1403 |
_parent[e] = _parent[arc]; |
1401 | 1404 |
if (_parent[arc] != INVALID) { |
1402 | 1405 |
if (_left[_parent[arc]] == arc) { |
1403 | 1406 |
_left[_parent[arc]] = e; |
1404 | 1407 |
} else { |
1405 | 1408 |
_right[_parent[arc]] = e; |
1406 | 1409 |
} |
1407 | 1410 |
} |
1408 | 1411 |
splay(s); |
1409 | 1412 |
} else { |
1410 | 1413 |
_right[e] = _right[arc]; |
1411 | 1414 |
_parent[_right[arc]] = e; |
1412 | 1415 |
_parent[e] = _parent[arc]; |
1413 | 1416 |
|
1414 | 1417 |
if (_parent[arc] != INVALID) { |
1415 | 1418 |
if (_left[_parent[arc]] == arc) { |
1416 | 1419 |
_left[_parent[arc]] = e; |
1417 | 1420 |
} else { |
1418 | 1421 |
_right[_parent[arc]] = e; |
1419 | 1422 |
} |
1420 | 1423 |
} else { |
1421 | 1424 |
_head[_g.source(arc)] = e; |
1422 | 1425 |
} |
1423 | 1426 |
} |
1424 | 1427 |
} |
1425 | 1428 |
} |
1426 | 1429 |
|
1427 | 1430 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1428 | 1431 |
{ |
1429 | 1432 |
int m=(a+b)/2; |
1430 | 1433 |
Arc me=v[m]; |
1431 | 1434 |
if (a < m) { |
1432 | 1435 |
Arc left = refreshRec(v,a,m-1); |
1433 | 1436 |
_left[me] = left; |
1434 | 1437 |
_parent[left] = me; |
1435 | 1438 |
} else { |
1436 | 1439 |
_left[me] = INVALID; |
1437 | 1440 |
} |
1438 | 1441 |
if (m < b) { |
1439 | 1442 |
Arc right = refreshRec(v,m+1,b); |
1440 | 1443 |
_right[me] = right; |
1441 | 1444 |
_parent[right] = me; |
1442 | 1445 |
} else { |
1443 | 1446 |
_right[me] = INVALID; |
1444 | 1447 |
} |
1445 | 1448 |
return me; |
1446 | 1449 |
} |
1447 | 1450 |
|
1448 | 1451 |
void refresh() { |
1449 | 1452 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1450 | 1453 |
std::vector<Arc> v; |
1451 | 1454 |
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); |
1452 | 1455 |
if (!v.empty()) { |
1453 | 1456 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1454 | 1457 |
Arc head = refreshRec(v,0,v.size()-1); |
1455 | 1458 |
_head[n] = head; |
1456 | 1459 |
_parent[head] = INVALID; |
1457 | 1460 |
} |
1458 | 1461 |
else _head[n] = INVALID; |
1459 | 1462 |
} |
1460 | 1463 |
} |
1461 | 1464 |
|
1462 | 1465 |
void zig(Arc v) { |
1463 | 1466 |
Arc w = _parent[v]; |
1464 | 1467 |
_parent[v] = _parent[w]; |
1465 | 1468 |
_parent[w] = v; |
1466 | 1469 |
_left[w] = _right[v]; |
1467 | 1470 |
_right[v] = w; |
1468 | 1471 |
if (_parent[v] != INVALID) { |
1469 | 1472 |
if (_right[_parent[v]] == w) { |
1470 | 1473 |
_right[_parent[v]] = v; |
1471 | 1474 |
} else { |
1472 | 1475 |
_left[_parent[v]] = v; |
1473 | 1476 |
} |
1474 | 1477 |
} |
1475 | 1478 |
if (_left[w] != INVALID){ |
1476 | 1479 |
_parent[_left[w]] = w; |
1477 | 1480 |
} |
1478 | 1481 |
} |
1479 | 1482 |
|
1480 | 1483 |
void zag(Arc v) { |
1481 | 1484 |
Arc w = _parent[v]; |
1482 | 1485 |
_parent[v] = _parent[w]; |
1483 | 1486 |
_parent[w] = v; |
1484 | 1487 |
_right[w] = _left[v]; |
1485 | 1488 |
_left[v] = w; |
1486 | 1489 |
if (_parent[v] != INVALID){ |
1487 | 1490 |
if (_left[_parent[v]] == w) { |
1488 | 1491 |
_left[_parent[v]] = v; |
1489 | 1492 |
} else { |
1490 | 1493 |
_right[_parent[v]] = v; |
1491 | 1494 |
} |
1492 | 1495 |
} |
1493 | 1496 |
if (_right[w] != INVALID){ |
1494 | 1497 |
_parent[_right[w]] = w; |
1495 | 1498 |
} |
1496 | 1499 |
} |
1497 | 1500 |
|
1498 | 1501 |
void splay(Arc v) { |
1499 | 1502 |
while (_parent[v] != INVALID) { |
1500 | 1503 |
if (v == _left[_parent[v]]) { |
1501 | 1504 |
if (_parent[_parent[v]] == INVALID) { |
1502 | 1505 |
zig(v); |
1503 | 1506 |
} else { |
1504 | 1507 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1505 | 1508 |
zig(_parent[v]); |
1506 | 1509 |
zig(v); |
1507 | 1510 |
} else { |
1508 | 1511 |
zig(v); |
1509 | 1512 |
zag(v); |
1510 | 1513 |
} |
1511 | 1514 |
} |
1512 | 1515 |
} else { |
1513 | 1516 |
if (_parent[_parent[v]] == INVALID) { |
1514 | 1517 |
zag(v); |
1515 | 1518 |
} else { |
1516 | 1519 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1517 | 1520 |
zag(v); |
1518 | 1521 |
zig(v); |
1519 | 1522 |
} else { |
1520 | 1523 |
zag(_parent[v]); |
1521 | 1524 |
zag(v); |
1522 | 1525 |
} |
1523 | 1526 |
} |
1524 | 1527 |
} |
1525 | 1528 |
} |
1526 | 1529 |
_head[_g.source(v)] = v; |
1527 | 1530 |
} |
1528 | 1531 |
|
1529 | 1532 |
|
1530 | 1533 |
public: |
1531 | 1534 |
|
1532 | 1535 |
///Find an arc between two nodes. |
1533 | 1536 |
|
1534 | 1537 |
///Find an arc between two nodes. |
1535 | 1538 |
///\param s The source node. |
1536 | 1539 |
///\param t The target node. |
1537 | 1540 |
///\param p The previous arc between \c s and \c t. It it is INVALID or |
1538 | 1541 |
///not given, the operator finds the first appropriate arc. |
1539 | 1542 |
///\return An arc from \c s to \c t after \c p or |
1540 | 1543 |
///\ref INVALID if there is no more. |
1541 | 1544 |
/// |
1542 | 1545 |
///For example, you can count the number of arcs from \c u to \c v in the |
1543 | 1546 |
///following way. |
1544 | 1547 |
///\code |
1545 | 1548 |
///DynArcLookUp<ListDigraph> ae(g); |
1546 | 1549 |
///... |
1547 | 1550 |
///int n = 0; |
1548 | 1551 |
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
1549 | 1552 |
///\endcode |
1550 | 1553 |
/// |
1551 | 1554 |
///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
1552 | 1555 |
///amortized time, specifically, the time complexity of the lookups |
1553 | 1556 |
///is equal to the optimal search tree implementation for the |
1554 | 1557 |
///current query distribution in a constant factor. |
1555 | 1558 |
/// |
1556 | 1559 |
///\note This is a dynamic data structure, therefore the data |
1557 | 1560 |
///structure is updated after each graph alteration. Thus although |
1558 | 1561 |
///this data structure is theoretically faster than \ref ArcLookUp |
1559 | 1562 |
///and \ref AllArcLookUp, it often provides worse performance than |
1560 | 1563 |
///them. |
1561 | 1564 |
Arc operator()(Node s, Node t, Arc p = INVALID) const { |
1562 | 1565 |
if (p == INVALID) { |
1563 | 1566 |
Arc a = _head[s]; |
1564 | 1567 |
if (a == INVALID) return INVALID; |
1565 | 1568 |
Arc r = INVALID; |
1566 | 1569 |
while (true) { |
1567 | 1570 |
if (_g.target(a) < t) { |
1568 | 1571 |
if (_right[a] == INVALID) { |
1569 | 1572 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1570 | 1573 |
return r; |
1571 | 1574 |
} else { |
1572 | 1575 |
a = _right[a]; |
1573 | 1576 |
} |
1574 | 1577 |
} else { |
1575 | 1578 |
if (_g.target(a) == t) { |
1576 | 1579 |
r = a; |
1577 | 1580 |
} |
1578 | 1581 |
if (_left[a] == INVALID) { |
1579 | 1582 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1580 | 1583 |
return r; |
1581 | 1584 |
} else { |
1582 | 1585 |
a = _left[a]; |
1583 | 1586 |
} |
1584 | 1587 |
} |
1585 | 1588 |
} |
1586 | 1589 |
} else { |
1587 | 1590 |
Arc a = p; |
1588 | 1591 |
if (_right[a] != INVALID) { |
1589 | 1592 |
a = _right[a]; |
1590 | 1593 |
while (_left[a] != INVALID) { |
1591 | 1594 |
a = _left[a]; |
1592 | 1595 |
} |
1593 | 1596 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1594 | 1597 |
} else { |
1595 | 1598 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
1596 | 1599 |
a = _parent[a]; |
1597 | 1600 |
} |
1598 | 1601 |
if (_parent[a] == INVALID) { |
1599 | 1602 |
return INVALID; |
1600 | 1603 |
} else { |
1601 | 1604 |
a = _parent[a]; |
1602 | 1605 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1603 | 1606 |
} |
1604 | 1607 |
} |
1605 | 1608 |
if (_g.target(a) == t) return a; |
1606 | 1609 |
else return INVALID; |
1607 | 1610 |
} |
1608 | 1611 |
} |
1609 | 1612 |
|
1610 | 1613 |
}; |
1611 | 1614 |
|
1612 | 1615 |
///Fast arc look-up between given endpoints. |
1613 | 1616 |
|
1614 | 1617 |
///Using this class, you can find an arc in a digraph from a given |
1615 | 1618 |
///source to a given target in time <em>O</em>(log<em>d</em>), |
1616 | 1619 |
///where <em>d</em> is the out-degree of the source node. |
1617 | 1620 |
/// |
1618 | 1621 |
///It is not possible to find \e all parallel arcs between two nodes. |
1619 | 1622 |
///Use \ref AllArcLookUp for this purpose. |
1620 | 1623 |
/// |
1621 | 1624 |
///\warning This class is static, so you should call refresh() (or at |
1622 | 1625 |
///least refresh(Node)) to refresh this data structure whenever the |
1623 | 1626 |
///digraph changes. This is a time consuming (superlinearly proportional |
1624 | 1627 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1625 | 1628 |
/// |
1626 | 1629 |
///\tparam GR The type of the underlying digraph. |
1627 | 1630 |
/// |
1628 | 1631 |
///\sa DynArcLookUp |
1629 | 1632 |
///\sa AllArcLookUp |
1630 | 1633 |
template<class GR> |
1631 | 1634 |
class ArcLookUp |
1632 | 1635 |
{ |
1636 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
1637 |
|
|
1633 | 1638 |
public: |
1634 |
|
|
1639 |
|
|
1640 |
/// The Digraph type |
|
1635 | 1641 |
typedef GR Digraph; |
1636 | 1642 |
|
1637 | 1643 |
protected: |
1638 | 1644 |
const Digraph &_g; |
1639 | 1645 |
typename Digraph::template NodeMap<Arc> _head; |
1640 | 1646 |
typename Digraph::template ArcMap<Arc> _left; |
1641 | 1647 |
typename Digraph::template ArcMap<Arc> _right; |
1642 | 1648 |
|
1643 | 1649 |
class ArcLess { |
1644 | 1650 |
const Digraph &g; |
1645 | 1651 |
public: |
1646 | 1652 |
ArcLess(const Digraph &_g) : g(_g) {} |
1647 | 1653 |
bool operator()(Arc a,Arc b) const |
1648 | 1654 |
{ |
1649 | 1655 |
return g.target(a)<g.target(b); |
1650 | 1656 |
} |
1651 | 1657 |
}; |
1652 | 1658 |
|
1653 | 1659 |
public: |
1654 | 1660 |
|
1655 | 1661 |
///Constructor |
1656 | 1662 |
|
1657 | 1663 |
///Constructor. |
1658 | 1664 |
/// |
1659 | 1665 |
///It builds up the search database, which remains valid until the digraph |
1660 | 1666 |
///changes. |
1661 | 1667 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
1662 | 1668 |
|
1663 | 1669 |
private: |
1664 | 1670 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1665 | 1671 |
{ |
1666 | 1672 |
int m=(a+b)/2; |
1667 | 1673 |
Arc me=v[m]; |
1668 | 1674 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
1669 | 1675 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
1670 | 1676 |
return me; |
1671 | 1677 |
} |
1672 | 1678 |
public: |
1673 | 1679 |
///Refresh the search data structure at a node. |
1674 | 1680 |
|
1675 | 1681 |
///Build up the search database of node \c n. |
1676 | 1682 |
/// |
1677 | 1683 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
1678 | 1684 |
///is the number of the outgoing arcs of \c n. |
1679 | 1685 |
void refresh(Node n) |
1680 | 1686 |
{ |
1681 | 1687 |
std::vector<Arc> v; |
1682 | 1688 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
1683 | 1689 |
if(v.size()) { |
1684 | 1690 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1685 | 1691 |
_head[n]=refreshRec(v,0,v.size()-1); |
1686 | 1692 |
} |
1687 | 1693 |
else _head[n]=INVALID; |
1688 | 1694 |
} |
1689 | 1695 |
///Refresh the full data structure. |
1690 | 1696 |
|
1691 | 1697 |
///Build up the full search database. In fact, it simply calls |
1692 | 1698 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1693 | 1699 |
/// |
1694 | 1700 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1695 | 1701 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1696 | 1702 |
///out-degree of the digraph. |
1697 | 1703 |
void refresh() |
1698 | 1704 |
{ |
1699 | 1705 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
1700 | 1706 |
} |
1701 | 1707 |
|
1702 | 1708 |
///Find an arc between two nodes. |
1703 | 1709 |
|
1704 | 1710 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), |
1705 | 1711 |
///where <em>d</em> is the number of outgoing arcs of \c s. |
1706 | 1712 |
///\param s The source node. |
1707 | 1713 |
///\param t The target node. |
1708 | 1714 |
///\return An arc from \c s to \c t if there exists, |
1709 | 1715 |
///\ref INVALID otherwise. |
1710 | 1716 |
/// |
1711 | 1717 |
///\warning If you change the digraph, refresh() must be called before using |
1712 | 1718 |
///this operator. If you change the outgoing arcs of |
1713 | 1719 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1714 | 1720 |
Arc operator()(Node s, Node t) const |
1715 | 1721 |
{ |
1716 | 1722 |
Arc e; |
1717 | 1723 |
for(e=_head[s]; |
1718 | 1724 |
e!=INVALID&&_g.target(e)!=t; |
1719 | 1725 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
1720 | 1726 |
return e; |
1721 | 1727 |
} |
1722 | 1728 |
|
1723 | 1729 |
}; |
1724 | 1730 |
|
1725 | 1731 |
///Fast look-up of all arcs between given endpoints. |
1726 | 1732 |
|
1727 | 1733 |
///This class is the same as \ref ArcLookUp, with the addition |
1728 | 1734 |
///that it makes it possible to find all parallel arcs between given |
1729 | 1735 |
///endpoints. |
1730 | 1736 |
/// |
1731 | 1737 |
///\warning This class is static, so you should call refresh() (or at |
1732 | 1738 |
///least refresh(Node)) to refresh this data structure whenever the |
1733 | 1739 |
///digraph changes. This is a time consuming (superlinearly proportional |
1734 | 1740 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1735 | 1741 |
/// |
1736 | 1742 |
///\tparam GR The type of the underlying digraph. |
1737 | 1743 |
/// |
1738 | 1744 |
///\sa DynArcLookUp |
1739 | 1745 |
///\sa ArcLookUp |
1740 | 1746 |
template<class GR> |
1741 | 1747 |
class AllArcLookUp : public ArcLookUp<GR> |
1742 | 1748 |
{ |
1743 | 1749 |
using ArcLookUp<GR>::_g; |
1744 | 1750 |
using ArcLookUp<GR>::_right; |
1745 | 1751 |
using ArcLookUp<GR>::_left; |
1746 | 1752 |
using ArcLookUp<GR>::_head; |
1747 | 1753 |
|
1748 | 1754 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1749 |
typedef GR Digraph; |
|
1750 | 1755 |
|
1751 |
typename |
|
1756 |
typename GR::template ArcMap<Arc> _next; |
|
1752 | 1757 |
|
1753 | 1758 |
Arc refreshNext(Arc head,Arc next=INVALID) |
1754 | 1759 |
{ |
1755 | 1760 |
if(head==INVALID) return next; |
1756 | 1761 |
else { |
1757 | 1762 |
next=refreshNext(_right[head],next); |
1758 | 1763 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
1759 | 1764 |
? next : INVALID; |
1760 | 1765 |
return refreshNext(_left[head],head); |
1761 | 1766 |
} |
1762 | 1767 |
} |
1763 | 1768 |
|
1764 | 1769 |
void refreshNext() |
1765 | 1770 |
{ |
1766 | 1771 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
1767 | 1772 |
} |
1768 | 1773 |
|
1769 | 1774 |
public: |
1775 |
|
|
1776 |
/// The Digraph type |
|
1777 |
typedef GR Digraph; |
|
1778 |
|
|
1770 | 1779 |
///Constructor |
1771 | 1780 |
|
1772 | 1781 |
///Constructor. |
1773 | 1782 |
/// |
1774 | 1783 |
///It builds up the search database, which remains valid until the digraph |
1775 | 1784 |
///changes. |
1776 | 1785 |
AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();} |
1777 | 1786 |
|
1778 | 1787 |
///Refresh the data structure at a node. |
1779 | 1788 |
|
1780 | 1789 |
///Build up the search database of node \c n. |
1781 | 1790 |
/// |
1782 | 1791 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
1783 | 1792 |
///the number of the outgoing arcs of \c n. |
1784 | 1793 |
void refresh(Node n) |
1785 | 1794 |
{ |
1786 | 1795 |
ArcLookUp<GR>::refresh(n); |
1787 | 1796 |
refreshNext(_head[n]); |
1788 | 1797 |
} |
1789 | 1798 |
|
1790 | 1799 |
///Refresh the full data structure. |
1791 | 1800 |
|
1792 | 1801 |
///Build up the full search database. In fact, it simply calls |
1793 | 1802 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1794 | 1803 |
/// |
1795 | 1804 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1796 | 1805 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1797 | 1806 |
///out-degree of the digraph. |
1798 | 1807 |
void refresh() |
1799 | 1808 |
{ |
1800 | 1809 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
1801 | 1810 |
} |
1802 | 1811 |
|
1803 | 1812 |
///Find an arc between two nodes. |
1804 | 1813 |
|
1805 | 1814 |
///Find an arc between two nodes. |
1806 | 1815 |
///\param s The source node. |
1807 | 1816 |
///\param t The target node. |
1808 | 1817 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
1809 | 1818 |
///not given, the operator finds the first appropriate arc. |
1810 | 1819 |
///\return An arc from \c s to \c t after \c prev or |
1811 | 1820 |
///\ref INVALID if there is no more. |
1812 | 1821 |
/// |
1813 | 1822 |
///For example, you can count the number of arcs from \c u to \c v in the |
1814 | 1823 |
///following way. |
1815 | 1824 |
///\code |
1816 | 1825 |
///AllArcLookUp<ListDigraph> ae(g); |
1817 | 1826 |
///... |
1818 | 1827 |
///int n = 0; |
1819 | 1828 |
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
1820 | 1829 |
///\endcode |
1821 | 1830 |
/// |
1822 | 1831 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, |
1823 | 1832 |
///where <em>d</em> is the number of outgoing arcs of \c s. Then the |
1824 | 1833 |
///consecutive arcs are found in constant time. |
1825 | 1834 |
/// |
1826 | 1835 |
///\warning If you change the digraph, refresh() must be called before using |
1827 | 1836 |
///this operator. If you change the outgoing arcs of |
1828 | 1837 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1829 | 1838 |
/// |
1830 | 1839 |
#ifdef DOXYGEN |
1831 | 1840 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
1832 | 1841 |
#else |
1833 | 1842 |
using ArcLookUp<GR>::operator() ; |
1834 | 1843 |
Arc operator()(Node s, Node t, Arc prev) const |
1835 | 1844 |
{ |
1836 | 1845 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
1837 | 1846 |
} |
1838 | 1847 |
#endif |
1839 | 1848 |
|
1840 | 1849 |
}; |
1841 | 1850 |
|
1842 | 1851 |
/// @} |
1843 | 1852 |
|
1844 | 1853 |
} //namespace lemon |
1845 | 1854 |
|
1846 | 1855 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EDGE_SET_H |
20 | 20 |
#define LEMON_EDGE_SET_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/edge_set_extender.h> |
24 | 24 |
|
25 | 25 |
/// \ingroup semi_adaptors |
26 | 26 |
/// \file |
27 | 27 |
/// \brief ArcSet and EdgeSet classes. |
28 | 28 |
/// |
29 | 29 |
/// Graphs which use another graph's node-set as own. |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
template <typename GR> |
33 | 33 |
class ListArcSetBase { |
34 | 34 |
public: |
35 | 35 |
|
36 |
typedef GR Graph; |
|
37 | 36 |
typedef typename GR::Node Node; |
38 | 37 |
typedef typename GR::NodeIt NodeIt; |
39 | 38 |
|
40 | 39 |
protected: |
41 | 40 |
|
42 | 41 |
struct NodeT { |
43 | 42 |
int first_out, first_in; |
44 | 43 |
NodeT() : first_out(-1), first_in(-1) {} |
45 | 44 |
}; |
46 | 45 |
|
47 | 46 |
typedef typename ItemSetTraits<GR, Node>:: |
48 | 47 |
template Map<NodeT>::Type NodesImplBase; |
49 | 48 |
|
50 | 49 |
NodesImplBase* _nodes; |
51 | 50 |
|
52 | 51 |
struct ArcT { |
53 | 52 |
Node source, target; |
54 | 53 |
int next_out, next_in; |
55 | 54 |
int prev_out, prev_in; |
56 | 55 |
ArcT() : prev_out(-1), prev_in(-1) {} |
57 | 56 |
}; |
58 | 57 |
|
59 | 58 |
std::vector<ArcT> arcs; |
60 | 59 |
|
61 | 60 |
int first_arc; |
62 | 61 |
int first_free_arc; |
63 | 62 |
|
64 | 63 |
const GR* _graph; |
65 | 64 |
|
66 | 65 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
67 | 66 |
_graph = &graph; |
68 | 67 |
_nodes = &nodes; |
69 | 68 |
} |
70 | 69 |
|
71 | 70 |
public: |
72 | 71 |
|
73 | 72 |
class Arc { |
74 | 73 |
friend class ListArcSetBase<GR>; |
75 | 74 |
protected: |
76 | 75 |
Arc(int _id) : id(_id) {} |
77 | 76 |
int id; |
78 | 77 |
public: |
79 | 78 |
Arc() {} |
80 | 79 |
Arc(Invalid) : id(-1) {} |
81 | 80 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
82 | 81 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
83 | 82 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
84 | 83 |
}; |
85 | 84 |
|
86 | 85 |
ListArcSetBase() : first_arc(-1), first_free_arc(-1) {} |
87 | 86 |
|
88 | 87 |
Arc addArc(const Node& u, const Node& v) { |
89 | 88 |
int n; |
90 | 89 |
if (first_free_arc == -1) { |
91 | 90 |
n = arcs.size(); |
92 | 91 |
arcs.push_back(ArcT()); |
93 | 92 |
} else { |
94 | 93 |
n = first_free_arc; |
95 | 94 |
first_free_arc = arcs[first_free_arc].next_in; |
96 | 95 |
} |
97 | 96 |
arcs[n].next_in = (*_nodes)[v].first_in; |
98 | 97 |
if ((*_nodes)[v].first_in != -1) { |
99 | 98 |
arcs[(*_nodes)[v].first_in].prev_in = n; |
100 | 99 |
} |
101 | 100 |
(*_nodes)[v].first_in = n; |
102 | 101 |
arcs[n].next_out = (*_nodes)[u].first_out; |
103 | 102 |
if ((*_nodes)[u].first_out != -1) { |
104 | 103 |
arcs[(*_nodes)[u].first_out].prev_out = n; |
105 | 104 |
} |
106 | 105 |
(*_nodes)[u].first_out = n; |
107 | 106 |
arcs[n].source = u; |
108 | 107 |
arcs[n].target = v; |
109 | 108 |
return Arc(n); |
110 | 109 |
} |
111 | 110 |
|
112 | 111 |
void erase(const Arc& arc) { |
113 | 112 |
int n = arc.id; |
114 | 113 |
if (arcs[n].prev_in != -1) { |
115 | 114 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
116 | 115 |
} else { |
117 | 116 |
(*_nodes)[arcs[n].target].first_in = arcs[n].next_in; |
118 | 117 |
} |
119 | 118 |
if (arcs[n].next_in != -1) { |
120 | 119 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
121 | 120 |
} |
122 | 121 |
|
123 | 122 |
if (arcs[n].prev_out != -1) { |
124 | 123 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
125 | 124 |
} else { |
126 | 125 |
(*_nodes)[arcs[n].source].first_out = arcs[n].next_out; |
127 | 126 |
} |
128 | 127 |
if (arcs[n].next_out != -1) { |
129 | 128 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
130 | 129 |
} |
131 | 130 |
|
132 | 131 |
} |
133 | 132 |
|
134 | 133 |
void clear() { |
135 | 134 |
Node node; |
136 | 135 |
for (first(node); node != INVALID; next(node)) { |
137 | 136 |
(*_nodes)[node].first_in = -1; |
138 | 137 |
(*_nodes)[node].first_out = -1; |
139 | 138 |
} |
140 | 139 |
arcs.clear(); |
141 | 140 |
first_arc = -1; |
142 | 141 |
first_free_arc = -1; |
143 | 142 |
} |
144 | 143 |
|
145 | 144 |
void first(Node& node) const { |
146 | 145 |
_graph->first(node); |
147 | 146 |
} |
148 | 147 |
|
149 | 148 |
void next(Node& node) const { |
150 | 149 |
_graph->next(node); |
151 | 150 |
} |
152 | 151 |
|
153 | 152 |
void first(Arc& arc) const { |
154 | 153 |
Node node; |
155 | 154 |
first(node); |
156 | 155 |
while (node != INVALID && (*_nodes)[node].first_in == -1) { |
157 | 156 |
next(node); |
158 | 157 |
} |
159 | 158 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; |
160 | 159 |
} |
161 | 160 |
|
162 | 161 |
void next(Arc& arc) const { |
163 | 162 |
if (arcs[arc.id].next_in != -1) { |
164 | 163 |
arc.id = arcs[arc.id].next_in; |
165 | 164 |
} else { |
166 | 165 |
Node node = arcs[arc.id].target; |
167 | 166 |
next(node); |
168 | 167 |
while (node != INVALID && (*_nodes)[node].first_in == -1) { |
169 | 168 |
next(node); |
170 | 169 |
} |
171 | 170 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_in; |
172 | 171 |
} |
173 | 172 |
} |
174 | 173 |
|
175 | 174 |
void firstOut(Arc& arc, const Node& node) const { |
176 | 175 |
arc.id = (*_nodes)[node].first_out; |
177 | 176 |
} |
178 | 177 |
|
179 | 178 |
void nextOut(Arc& arc) const { |
180 | 179 |
arc.id = arcs[arc.id].next_out; |
181 | 180 |
} |
182 | 181 |
|
183 | 182 |
void firstIn(Arc& arc, const Node& node) const { |
184 | 183 |
arc.id = (*_nodes)[node].first_in; |
185 | 184 |
} |
186 | 185 |
|
187 | 186 |
void nextIn(Arc& arc) const { |
188 | 187 |
arc.id = arcs[arc.id].next_in; |
189 | 188 |
} |
190 | 189 |
|
191 | 190 |
int id(const Node& node) const { return _graph->id(node); } |
192 | 191 |
int id(const Arc& arc) const { return arc.id; } |
193 | 192 |
|
194 | 193 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
195 | 194 |
Arc arcFromId(int ix) const { return Arc(ix); } |
196 | 195 |
|
197 | 196 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
198 | 197 |
int maxArcId() const { return arcs.size() - 1; } |
199 | 198 |
|
200 | 199 |
Node source(const Arc& arc) const { return arcs[arc.id].source;} |
201 | 200 |
Node target(const Arc& arc) const { return arcs[arc.id].target;} |
202 | 201 |
|
203 | 202 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
204 | 203 |
|
205 | 204 |
NodeNotifier& notifier(Node) const { |
206 | 205 |
return _graph->notifier(Node()); |
207 | 206 |
} |
208 | 207 |
|
209 | 208 |
template <typename V> |
210 | 209 |
class NodeMap : public GR::template NodeMap<V> { |
210 |
typedef typename GR::template NodeMap<V> Parent; |
|
211 |
|
|
211 | 212 |
public: |
212 | 213 |
|
213 |
typedef typename GR::template NodeMap<V> Parent; |
|
214 |
|
|
215 | 214 |
explicit NodeMap(const ListArcSetBase<GR>& arcset) |
216 | 215 |
: Parent(*arcset._graph) {} |
217 | 216 |
|
218 | 217 |
NodeMap(const ListArcSetBase<GR>& arcset, const V& value) |
219 | 218 |
: Parent(*arcset._graph, value) {} |
220 | 219 |
|
221 | 220 |
NodeMap& operator=(const NodeMap& cmap) { |
222 | 221 |
return operator=<NodeMap>(cmap); |
223 | 222 |
} |
224 | 223 |
|
225 | 224 |
template <typename CMap> |
226 | 225 |
NodeMap& operator=(const CMap& cmap) { |
227 | 226 |
Parent::operator=(cmap); |
228 | 227 |
return *this; |
229 | 228 |
} |
230 | 229 |
}; |
231 | 230 |
|
232 | 231 |
}; |
233 | 232 |
|
234 | 233 |
/// \ingroup semi_adaptors |
235 | 234 |
/// |
236 | 235 |
/// \brief Digraph using a node set of another digraph or graph and |
237 | 236 |
/// an own arc set. |
238 | 237 |
/// |
239 | 238 |
/// This structure can be used to establish another directed graph |
240 | 239 |
/// over a node set of an existing one. This class uses the same |
241 | 240 |
/// Node type as the underlying graph, and each valid node of the |
242 | 241 |
/// original graph is valid in this arc set, therefore the node |
243 | 242 |
/// objects of the original graph can be used directly with this |
244 | 243 |
/// class. The node handling functions (id handling, observing, and |
245 | 244 |
/// iterators) works equivalently as in the original graph. |
246 | 245 |
/// |
247 | 246 |
/// This implementation is based on doubly-linked lists, from each |
248 | 247 |
/// node the outgoing and the incoming arcs make up lists, therefore |
249 | 248 |
/// one arc can be erased in constant time. It also makes possible, |
250 | 249 |
/// that node can be removed from the underlying graph, in this case |
251 | 250 |
/// all arcs incident to the given node is erased from the arc set. |
252 | 251 |
/// |
253 | 252 |
/// \param GR The type of the graph which shares its node set with |
254 | 253 |
/// this class. Its interface must conform to the |
255 | 254 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
256 | 255 |
/// concept. |
257 | 256 |
/// |
258 | 257 |
/// This class fully conforms to the \ref concepts::Digraph |
259 | 258 |
/// "Digraph" concept. |
260 | 259 |
template <typename GR> |
261 | 260 |
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > { |
261 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
|
262 | 262 |
|
263 | 263 |
public: |
264 | 264 |
|
265 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
|
266 |
|
|
267 | 265 |
typedef typename Parent::Node Node; |
268 | 266 |
typedef typename Parent::Arc Arc; |
269 | 267 |
|
270 |
typedef GR Graph; |
|
271 |
|
|
272 |
|
|
273 | 268 |
typedef typename Parent::NodesImplBase NodesImplBase; |
274 | 269 |
|
275 | 270 |
void eraseNode(const Node& node) { |
276 | 271 |
Arc arc; |
277 | 272 |
Parent::firstOut(arc, node); |
278 | 273 |
while (arc != INVALID ) { |
279 | 274 |
erase(arc); |
280 | 275 |
Parent::firstOut(arc, node); |
281 | 276 |
} |
282 | 277 |
|
283 | 278 |
Parent::firstIn(arc, node); |
284 | 279 |
while (arc != INVALID ) { |
285 | 280 |
erase(arc); |
286 | 281 |
Parent::firstIn(arc, node); |
287 | 282 |
} |
288 | 283 |
} |
289 | 284 |
|
290 | 285 |
void clearNodes() { |
291 | 286 |
Parent::clear(); |
292 | 287 |
} |
293 | 288 |
|
294 | 289 |
class NodesImpl : public NodesImplBase { |
295 |
public: |
|
296 | 290 |
typedef NodesImplBase Parent; |
297 | 291 |
|
292 |
public: |
|
298 | 293 |
NodesImpl(const GR& graph, ListArcSet& arcset) |
299 | 294 |
: Parent(graph), _arcset(arcset) {} |
300 | 295 |
|
301 | 296 |
virtual ~NodesImpl() {} |
302 | 297 |
|
303 | 298 |
protected: |
304 | 299 |
|
305 | 300 |
virtual void erase(const Node& node) { |
306 | 301 |
_arcset.eraseNode(node); |
307 | 302 |
Parent::erase(node); |
308 | 303 |
} |
309 | 304 |
virtual void erase(const std::vector<Node>& nodes) { |
310 | 305 |
for (int i = 0; i < int(nodes.size()); ++i) { |
311 | 306 |
_arcset.eraseNode(nodes[i]); |
312 | 307 |
} |
313 | 308 |
Parent::erase(nodes); |
314 | 309 |
} |
315 | 310 |
virtual void clear() { |
316 | 311 |
_arcset.clearNodes(); |
317 | 312 |
Parent::clear(); |
318 | 313 |
} |
319 | 314 |
|
320 | 315 |
private: |
321 | 316 |
ListArcSet& _arcset; |
322 | 317 |
}; |
323 | 318 |
|
324 | 319 |
NodesImpl _nodes; |
325 | 320 |
|
326 | 321 |
public: |
327 | 322 |
|
328 | 323 |
/// \brief Constructor of the ArcSet. |
329 | 324 |
/// |
330 | 325 |
/// Constructor of the ArcSet. |
331 | 326 |
ListArcSet(const GR& graph) : _nodes(graph, *this) { |
332 | 327 |
Parent::initalize(graph, _nodes); |
333 | 328 |
} |
334 | 329 |
|
335 | 330 |
/// \brief Add a new arc to the digraph. |
336 | 331 |
/// |
337 | 332 |
/// Add a new arc to the digraph with source node \c s |
338 | 333 |
/// and target node \c t. |
339 | 334 |
/// \return The new arc. |
340 | 335 |
Arc addArc(const Node& s, const Node& t) { |
341 | 336 |
return Parent::addArc(s, t); |
342 | 337 |
} |
343 | 338 |
|
344 | 339 |
/// \brief Erase an arc from the digraph. |
345 | 340 |
/// |
346 | 341 |
/// Erase an arc \c a from the digraph. |
347 | 342 |
void erase(const Arc& a) { |
348 | 343 |
return Parent::erase(a); |
349 | 344 |
} |
350 | 345 |
|
351 | 346 |
}; |
352 | 347 |
|
353 | 348 |
template <typename GR> |
354 | 349 |
class ListEdgeSetBase { |
355 | 350 |
public: |
356 | 351 |
|
357 |
typedef GR Graph; |
|
358 | 352 |
typedef typename GR::Node Node; |
359 | 353 |
typedef typename GR::NodeIt NodeIt; |
360 | 354 |
|
361 | 355 |
protected: |
362 | 356 |
|
363 | 357 |
struct NodeT { |
364 | 358 |
int first_out; |
365 | 359 |
NodeT() : first_out(-1) {} |
366 | 360 |
}; |
367 | 361 |
|
368 | 362 |
typedef typename ItemSetTraits<GR, Node>:: |
369 | 363 |
template Map<NodeT>::Type NodesImplBase; |
370 | 364 |
|
371 | 365 |
NodesImplBase* _nodes; |
372 | 366 |
|
373 | 367 |
struct ArcT { |
374 | 368 |
Node target; |
375 | 369 |
int prev_out, next_out; |
376 | 370 |
ArcT() : prev_out(-1), next_out(-1) {} |
377 | 371 |
}; |
378 | 372 |
|
379 | 373 |
std::vector<ArcT> arcs; |
380 | 374 |
|
381 | 375 |
int first_arc; |
382 | 376 |
int first_free_arc; |
383 | 377 |
|
384 | 378 |
const GR* _graph; |
385 | 379 |
|
386 | 380 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
387 | 381 |
_graph = &graph; |
388 | 382 |
_nodes = &nodes; |
389 | 383 |
} |
390 | 384 |
|
391 | 385 |
public: |
392 | 386 |
|
393 | 387 |
class Edge { |
394 | 388 |
friend class ListEdgeSetBase; |
395 | 389 |
protected: |
396 | 390 |
|
397 | 391 |
int id; |
398 | 392 |
explicit Edge(int _id) { id = _id;} |
399 | 393 |
|
400 | 394 |
public: |
401 | 395 |
Edge() {} |
402 | 396 |
Edge (Invalid) { id = -1; } |
403 | 397 |
bool operator==(const Edge& arc) const {return id == arc.id;} |
404 | 398 |
bool operator!=(const Edge& arc) const {return id != arc.id;} |
405 | 399 |
bool operator<(const Edge& arc) const {return id < arc.id;} |
406 | 400 |
}; |
407 | 401 |
|
408 | 402 |
class Arc { |
409 | 403 |
friend class ListEdgeSetBase; |
410 | 404 |
protected: |
411 | 405 |
Arc(int _id) : id(_id) {} |
412 | 406 |
int id; |
413 | 407 |
public: |
414 | 408 |
operator Edge() const { return edgeFromId(id / 2); } |
415 | 409 |
|
416 | 410 |
Arc() {} |
417 | 411 |
Arc(Invalid) : id(-1) {} |
418 | 412 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
419 | 413 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
420 | 414 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
421 | 415 |
}; |
422 | 416 |
|
423 | 417 |
ListEdgeSetBase() : first_arc(-1), first_free_arc(-1) {} |
424 | 418 |
|
425 | 419 |
Edge addEdge(const Node& u, const Node& v) { |
426 | 420 |
int n; |
427 | 421 |
|
428 | 422 |
if (first_free_arc == -1) { |
429 | 423 |
n = arcs.size(); |
430 | 424 |
arcs.push_back(ArcT()); |
431 | 425 |
arcs.push_back(ArcT()); |
432 | 426 |
} else { |
433 | 427 |
n = first_free_arc; |
434 | 428 |
first_free_arc = arcs[n].next_out; |
435 | 429 |
} |
436 | 430 |
|
437 | 431 |
arcs[n].target = u; |
438 | 432 |
arcs[n | 1].target = v; |
439 | 433 |
|
440 | 434 |
arcs[n].next_out = (*_nodes)[v].first_out; |
441 | 435 |
if ((*_nodes)[v].first_out != -1) { |
442 | 436 |
arcs[(*_nodes)[v].first_out].prev_out = n; |
443 | 437 |
} |
444 | 438 |
(*_nodes)[v].first_out = n; |
445 | 439 |
arcs[n].prev_out = -1; |
446 | 440 |
|
447 | 441 |
if ((*_nodes)[u].first_out != -1) { |
448 | 442 |
arcs[(*_nodes)[u].first_out].prev_out = (n | 1); |
449 | 443 |
} |
450 | 444 |
arcs[n | 1].next_out = (*_nodes)[u].first_out; |
451 | 445 |
(*_nodes)[u].first_out = (n | 1); |
452 | 446 |
arcs[n | 1].prev_out = -1; |
453 | 447 |
|
454 | 448 |
return Edge(n / 2); |
455 | 449 |
} |
456 | 450 |
|
457 | 451 |
void erase(const Edge& arc) { |
458 | 452 |
int n = arc.id * 2; |
459 | 453 |
|
460 | 454 |
if (arcs[n].next_out != -1) { |
461 | 455 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
462 | 456 |
} |
463 | 457 |
|
464 | 458 |
if (arcs[n].prev_out != -1) { |
465 | 459 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
466 | 460 |
} else { |
467 | 461 |
(*_nodes)[arcs[n | 1].target].first_out = arcs[n].next_out; |
468 | 462 |
} |
469 | 463 |
|
470 | 464 |
if (arcs[n | 1].next_out != -1) { |
471 | 465 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
472 | 466 |
} |
473 | 467 |
|
474 | 468 |
if (arcs[n | 1].prev_out != -1) { |
475 | 469 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
476 | 470 |
} else { |
477 | 471 |
(*_nodes)[arcs[n].target].first_out = arcs[n | 1].next_out; |
478 | 472 |
} |
479 | 473 |
|
480 | 474 |
arcs[n].next_out = first_free_arc; |
481 | 475 |
first_free_arc = n; |
482 | 476 |
|
483 | 477 |
} |
484 | 478 |
|
485 | 479 |
void clear() { |
486 | 480 |
Node node; |
487 | 481 |
for (first(node); node != INVALID; next(node)) { |
488 | 482 |
(*_nodes)[node].first_out = -1; |
489 | 483 |
} |
490 | 484 |
arcs.clear(); |
491 | 485 |
first_arc = -1; |
492 | 486 |
first_free_arc = -1; |
493 | 487 |
} |
494 | 488 |
|
495 | 489 |
void first(Node& node) const { |
496 | 490 |
_graph->first(node); |
497 | 491 |
} |
498 | 492 |
|
499 | 493 |
void next(Node& node) const { |
500 | 494 |
_graph->next(node); |
501 | 495 |
} |
502 | 496 |
|
503 | 497 |
void first(Arc& arc) const { |
504 | 498 |
Node node; |
505 | 499 |
first(node); |
506 | 500 |
while (node != INVALID && (*_nodes)[node].first_out == -1) { |
507 | 501 |
next(node); |
508 | 502 |
} |
509 | 503 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; |
510 | 504 |
} |
511 | 505 |
|
512 | 506 |
void next(Arc& arc) const { |
513 | 507 |
if (arcs[arc.id].next_out != -1) { |
514 | 508 |
arc.id = arcs[arc.id].next_out; |
515 | 509 |
} else { |
516 | 510 |
Node node = arcs[arc.id ^ 1].target; |
517 | 511 |
next(node); |
518 | 512 |
while(node != INVALID && (*_nodes)[node].first_out == -1) { |
519 | 513 |
next(node); |
520 | 514 |
} |
521 | 515 |
arc.id = (node == INVALID) ? -1 : (*_nodes)[node].first_out; |
522 | 516 |
} |
523 | 517 |
} |
524 | 518 |
|
525 | 519 |
void first(Edge& edge) const { |
526 | 520 |
Node node; |
527 | 521 |
first(node); |
528 | 522 |
while (node != INVALID) { |
529 | 523 |
edge.id = (*_nodes)[node].first_out; |
530 | 524 |
while ((edge.id & 1) != 1) { |
531 | 525 |
edge.id = arcs[edge.id].next_out; |
532 | 526 |
} |
533 | 527 |
if (edge.id != -1) { |
534 | 528 |
edge.id /= 2; |
535 | 529 |
return; |
536 | 530 |
} |
537 | 531 |
next(node); |
538 | 532 |
} |
539 | 533 |
edge.id = -1; |
540 | 534 |
} |
541 | 535 |
|
542 | 536 |
void next(Edge& edge) const { |
543 | 537 |
Node node = arcs[edge.id * 2].target; |
544 | 538 |
edge.id = arcs[(edge.id * 2) | 1].next_out; |
545 | 539 |
while ((edge.id & 1) != 1) { |
546 | 540 |
edge.id = arcs[edge.id].next_out; |
547 | 541 |
} |
548 | 542 |
if (edge.id != -1) { |
549 | 543 |
edge.id /= 2; |
550 | 544 |
return; |
551 | 545 |
} |
552 | 546 |
next(node); |
553 | 547 |
while (node != INVALID) { |
554 | 548 |
edge.id = (*_nodes)[node].first_out; |
555 | 549 |
while ((edge.id & 1) != 1) { |
556 | 550 |
edge.id = arcs[edge.id].next_out; |
557 | 551 |
} |
558 | 552 |
if (edge.id != -1) { |
559 | 553 |
edge.id /= 2; |
560 | 554 |
return; |
561 | 555 |
} |
562 | 556 |
next(node); |
563 | 557 |
} |
564 | 558 |
edge.id = -1; |
565 | 559 |
} |
566 | 560 |
|
567 | 561 |
void firstOut(Arc& arc, const Node& node) const { |
568 | 562 |
arc.id = (*_nodes)[node].first_out; |
569 | 563 |
} |
570 | 564 |
|
571 | 565 |
void nextOut(Arc& arc) const { |
572 | 566 |
arc.id = arcs[arc.id].next_out; |
573 | 567 |
} |
574 | 568 |
|
575 | 569 |
void firstIn(Arc& arc, const Node& node) const { |
576 | 570 |
arc.id = (((*_nodes)[node].first_out) ^ 1); |
577 | 571 |
if (arc.id == -2) arc.id = -1; |
578 | 572 |
} |
579 | 573 |
|
580 | 574 |
void nextIn(Arc& arc) const { |
581 | 575 |
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); |
582 | 576 |
if (arc.id == -2) arc.id = -1; |
583 | 577 |
} |
584 | 578 |
|
585 | 579 |
void firstInc(Edge &arc, bool& dir, const Node& node) const { |
586 | 580 |
int de = (*_nodes)[node].first_out; |
587 | 581 |
if (de != -1 ) { |
588 | 582 |
arc.id = de / 2; |
589 | 583 |
dir = ((de & 1) == 1); |
590 | 584 |
} else { |
591 | 585 |
arc.id = -1; |
592 | 586 |
dir = true; |
593 | 587 |
} |
594 | 588 |
} |
595 | 589 |
void nextInc(Edge &arc, bool& dir) const { |
596 | 590 |
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); |
597 | 591 |
if (de != -1 ) { |
598 | 592 |
arc.id = de / 2; |
599 | 593 |
dir = ((de & 1) == 1); |
600 | 594 |
} else { |
601 | 595 |
arc.id = -1; |
602 | 596 |
dir = true; |
603 | 597 |
} |
604 | 598 |
} |
605 | 599 |
|
606 | 600 |
static bool direction(Arc arc) { |
607 | 601 |
return (arc.id & 1) == 1; |
608 | 602 |
} |
609 | 603 |
|
610 | 604 |
static Arc direct(Edge edge, bool dir) { |
611 | 605 |
return Arc(edge.id * 2 + (dir ? 1 : 0)); |
612 | 606 |
} |
613 | 607 |
|
614 | 608 |
int id(const Node& node) const { return _graph->id(node); } |
615 | 609 |
static int id(Arc e) { return e.id; } |
616 | 610 |
static int id(Edge e) { return e.id; } |
617 | 611 |
|
618 | 612 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); } |
619 | 613 |
static Arc arcFromId(int id) { return Arc(id);} |
620 | 614 |
static Edge edgeFromId(int id) { return Edge(id);} |
621 | 615 |
|
622 | 616 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
623 | 617 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
624 | 618 |
int maxArcId() const { return arcs.size()-1; } |
625 | 619 |
|
626 | 620 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; } |
627 | 621 |
Node target(Arc e) const { return arcs[e.id].target; } |
628 | 622 |
|
629 | 623 |
Node u(Edge e) const { return arcs[2 * e.id].target; } |
630 | 624 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; } |
631 | 625 |
|
632 | 626 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
633 | 627 |
|
634 | 628 |
NodeNotifier& notifier(Node) const { |
635 | 629 |
return _graph->notifier(Node()); |
636 | 630 |
} |
637 | 631 |
|
638 | 632 |
template <typename V> |
639 | 633 |
class NodeMap : public GR::template NodeMap<V> { |
634 |
typedef typename GR::template NodeMap<V> Parent; |
|
635 |
|
|
640 | 636 |
public: |
641 | 637 |
|
642 |
typedef typename GR::template NodeMap<V> Parent; |
|
643 |
|
|
644 | 638 |
explicit NodeMap(const ListEdgeSetBase<GR>& arcset) |
645 | 639 |
: Parent(*arcset._graph) {} |
646 | 640 |
|
647 | 641 |
NodeMap(const ListEdgeSetBase<GR>& arcset, const V& value) |
648 | 642 |
: Parent(*arcset._graph, value) {} |
649 | 643 |
|
650 | 644 |
NodeMap& operator=(const NodeMap& cmap) { |
651 | 645 |
return operator=<NodeMap>(cmap); |
652 | 646 |
} |
653 | 647 |
|
654 | 648 |
template <typename CMap> |
655 | 649 |
NodeMap& operator=(const CMap& cmap) { |
656 | 650 |
Parent::operator=(cmap); |
657 | 651 |
return *this; |
658 | 652 |
} |
659 | 653 |
}; |
660 | 654 |
|
661 | 655 |
}; |
662 | 656 |
|
663 | 657 |
/// \ingroup semi_adaptors |
664 | 658 |
/// |
665 | 659 |
/// \brief Graph using a node set of another digraph or graph and an |
666 | 660 |
/// own edge set. |
667 | 661 |
/// |
668 | 662 |
/// This structure can be used to establish another graph over a |
669 | 663 |
/// node set of an existing one. This class uses the same Node type |
670 | 664 |
/// as the underlying graph, and each valid node of the original |
671 | 665 |
/// graph is valid in this arc set, therefore the node objects of |
672 | 666 |
/// the original graph can be used directly with this class. The |
673 | 667 |
/// node handling functions (id handling, observing, and iterators) |
674 | 668 |
/// works equivalently as in the original graph. |
675 | 669 |
/// |
676 | 670 |
/// This implementation is based on doubly-linked lists, from each |
677 | 671 |
/// node the incident edges make up lists, therefore one edge can be |
678 | 672 |
/// erased in constant time. It also makes possible, that node can |
679 | 673 |
/// be removed from the underlying graph, in this case all edges |
680 | 674 |
/// incident to the given node is erased from the arc set. |
681 | 675 |
/// |
682 | 676 |
/// \param GR The type of the graph which shares its node set |
683 | 677 |
/// with this class. Its interface must conform to the |
684 | 678 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
685 | 679 |
/// concept. |
686 | 680 |
/// |
687 | 681 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
688 | 682 |
/// concept. |
689 | 683 |
template <typename GR> |
690 | 684 |
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > { |
685 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
|
691 | 686 |
|
692 | 687 |
public: |
693 | 688 |
|
694 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
|
695 |
|
|
696 | 689 |
typedef typename Parent::Node Node; |
697 | 690 |
typedef typename Parent::Arc Arc; |
698 | 691 |
typedef typename Parent::Edge Edge; |
699 | 692 |
|
700 |
typedef GR Graph; |
|
701 |
|
|
702 |
|
|
703 | 693 |
typedef typename Parent::NodesImplBase NodesImplBase; |
704 | 694 |
|
705 | 695 |
void eraseNode(const Node& node) { |
706 | 696 |
Arc arc; |
707 | 697 |
Parent::firstOut(arc, node); |
708 | 698 |
while (arc != INVALID ) { |
709 | 699 |
erase(arc); |
710 | 700 |
Parent::firstOut(arc, node); |
711 | 701 |
} |
712 | 702 |
|
713 | 703 |
} |
714 | 704 |
|
715 | 705 |
void clearNodes() { |
716 | 706 |
Parent::clear(); |
717 | 707 |
} |
718 | 708 |
|
719 | 709 |
class NodesImpl : public NodesImplBase { |
720 |
public: |
|
721 | 710 |
typedef NodesImplBase Parent; |
722 | 711 |
|
712 |
public: |
|
723 | 713 |
NodesImpl(const GR& graph, ListEdgeSet& arcset) |
724 | 714 |
: Parent(graph), _arcset(arcset) {} |
725 | 715 |
|
726 | 716 |
virtual ~NodesImpl() {} |
727 | 717 |
|
728 | 718 |
protected: |
729 | 719 |
|
730 | 720 |
virtual void erase(const Node& node) { |
731 | 721 |
_arcset.eraseNode(node); |
732 | 722 |
Parent::erase(node); |
733 | 723 |
} |
734 | 724 |
virtual void erase(const std::vector<Node>& nodes) { |
735 | 725 |
for (int i = 0; i < int(nodes.size()); ++i) { |
736 | 726 |
_arcset.eraseNode(nodes[i]); |
737 | 727 |
} |
738 | 728 |
Parent::erase(nodes); |
739 | 729 |
} |
740 | 730 |
virtual void clear() { |
741 | 731 |
_arcset.clearNodes(); |
742 | 732 |
Parent::clear(); |
743 | 733 |
} |
744 | 734 |
|
745 | 735 |
private: |
746 | 736 |
ListEdgeSet& _arcset; |
747 | 737 |
}; |
748 | 738 |
|
749 | 739 |
NodesImpl _nodes; |
750 | 740 |
|
751 | 741 |
public: |
752 | 742 |
|
753 | 743 |
/// \brief Constructor of the EdgeSet. |
754 | 744 |
/// |
755 | 745 |
/// Constructor of the EdgeSet. |
756 | 746 |
ListEdgeSet(const GR& graph) : _nodes(graph, *this) { |
757 | 747 |
Parent::initalize(graph, _nodes); |
758 | 748 |
} |
759 | 749 |
|
760 | 750 |
/// \brief Add a new edge to the graph. |
761 | 751 |
/// |
762 | 752 |
/// Add a new edge to the graph with node \c u |
763 | 753 |
/// and node \c v endpoints. |
764 | 754 |
/// \return The new edge. |
765 | 755 |
Edge addEdge(const Node& u, const Node& v) { |
766 | 756 |
return Parent::addEdge(u, v); |
767 | 757 |
} |
768 | 758 |
|
769 | 759 |
/// \brief Erase an edge from the graph. |
770 | 760 |
/// |
771 | 761 |
/// Erase the edge \c e from the graph. |
772 | 762 |
void erase(const Edge& e) { |
773 | 763 |
return Parent::erase(e); |
774 | 764 |
} |
775 | 765 |
|
776 | 766 |
}; |
777 | 767 |
|
778 | 768 |
template <typename GR> |
779 | 769 |
class SmartArcSetBase { |
780 | 770 |
public: |
781 | 771 |
|
782 |
typedef GR Graph; |
|
783 |
typedef typename Graph::Node Node; |
|
784 |
typedef typename |
|
772 |
typedef typename GR::Node Node; |
|
773 |
typedef typename GR::NodeIt NodeIt; |
|
785 | 774 |
|
786 | 775 |
protected: |
787 | 776 |
|
788 | 777 |
struct NodeT { |
789 | 778 |
int first_out, first_in; |
790 | 779 |
NodeT() : first_out(-1), first_in(-1) {} |
791 | 780 |
}; |
792 | 781 |
|
793 | 782 |
typedef typename ItemSetTraits<GR, Node>:: |
794 | 783 |
template Map<NodeT>::Type NodesImplBase; |
795 | 784 |
|
796 | 785 |
NodesImplBase* _nodes; |
797 | 786 |
|
798 | 787 |
struct ArcT { |
799 | 788 |
Node source, target; |
800 | 789 |
int next_out, next_in; |
801 | 790 |
ArcT() {} |
802 | 791 |
}; |
803 | 792 |
|
804 | 793 |
std::vector<ArcT> arcs; |
805 | 794 |
|
806 | 795 |
const GR* _graph; |
807 | 796 |
|
808 | 797 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
809 | 798 |
_graph = &graph; |
810 | 799 |
_nodes = &nodes; |
811 | 800 |
} |
812 | 801 |
|
813 | 802 |
public: |
814 | 803 |
|
815 | 804 |
class Arc { |
816 | 805 |
friend class SmartArcSetBase<GR>; |
817 | 806 |
protected: |
818 | 807 |
Arc(int _id) : id(_id) {} |
819 | 808 |
int id; |
820 | 809 |
public: |
821 | 810 |
Arc() {} |
822 | 811 |
Arc(Invalid) : id(-1) {} |
823 | 812 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
824 | 813 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
825 | 814 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
826 | 815 |
}; |
827 | 816 |
|
828 | 817 |
SmartArcSetBase() {} |
829 | 818 |
|
830 | 819 |
Arc addArc(const Node& u, const Node& v) { |
831 | 820 |
int n = arcs.size(); |
832 | 821 |
arcs.push_back(ArcT()); |
833 | 822 |
arcs[n].next_in = (*_nodes)[v].first_in; |
834 | 823 |
(*_nodes)[v].first_in = n; |
835 | 824 |
arcs[n].next_out = (*_nodes)[u].first_out; |
836 | 825 |
(*_nodes)[u].first_out = n; |
837 | 826 |
arcs[n].source = u; |
838 | 827 |
arcs[n].target = v; |
839 | 828 |
return Arc(n); |
840 | 829 |
} |
841 | 830 |
|
842 | 831 |
void clear() { |
843 | 832 |
Node node; |
844 | 833 |
for (first(node); node != INVALID; next(node)) { |
845 | 834 |
(*_nodes)[node].first_in = -1; |
846 | 835 |
(*_nodes)[node].first_out = -1; |
847 | 836 |
} |
848 | 837 |
arcs.clear(); |
849 | 838 |
} |
850 | 839 |
|
851 | 840 |
void first(Node& node) const { |
852 | 841 |
_graph->first(node); |
853 | 842 |
} |
854 | 843 |
|
855 | 844 |
void next(Node& node) const { |
856 | 845 |
_graph->next(node); |
857 | 846 |
} |
858 | 847 |
|
859 | 848 |
void first(Arc& arc) const { |
860 | 849 |
arc.id = arcs.size() - 1; |
861 | 850 |
} |
862 | 851 |
|
863 | 852 |
void next(Arc& arc) const { |
864 | 853 |
--arc.id; |
865 | 854 |
} |
866 | 855 |
|
867 | 856 |
void firstOut(Arc& arc, const Node& node) const { |
868 | 857 |
arc.id = (*_nodes)[node].first_out; |
869 | 858 |
} |
870 | 859 |
|
871 | 860 |
void nextOut(Arc& arc) const { |
872 | 861 |
arc.id = arcs[arc.id].next_out; |
873 | 862 |
} |
874 | 863 |
|
875 | 864 |
void firstIn(Arc& arc, const Node& node) const { |
876 | 865 |
arc.id = (*_nodes)[node].first_in; |
877 | 866 |
} |
878 | 867 |
|
879 | 868 |
void nextIn(Arc& arc) const { |
880 | 869 |
arc.id = arcs[arc.id].next_in; |
881 | 870 |
} |
882 | 871 |
|
883 | 872 |
int id(const Node& node) const { return _graph->id(node); } |
884 | 873 |
int id(const Arc& arc) const { return arc.id; } |
885 | 874 |
|
886 | 875 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } |
887 | 876 |
Arc arcFromId(int ix) const { return Arc(ix); } |
888 | 877 |
|
889 | 878 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
890 | 879 |
int maxArcId() const { return arcs.size() - 1; } |
891 | 880 |
|
892 | 881 |
Node source(const Arc& arc) const { return arcs[arc.id].source;} |
893 | 882 |
Node target(const Arc& arc) const { return arcs[arc.id].target;} |
894 | 883 |
|
895 | 884 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
896 | 885 |
|
897 | 886 |
NodeNotifier& notifier(Node) const { |
898 | 887 |
return _graph->notifier(Node()); |
899 | 888 |
} |
900 | 889 |
|
901 | 890 |
template <typename V> |
902 | 891 |
class NodeMap : public GR::template NodeMap<V> { |
892 |
typedef typename GR::template NodeMap<V> Parent; |
|
893 |
|
|
903 | 894 |
public: |
904 | 895 |
|
905 |
typedef typename GR::template NodeMap<V> Parent; |
|
906 |
|
|
907 | 896 |
explicit NodeMap(const SmartArcSetBase<GR>& arcset) |
908 | 897 |
: Parent(*arcset._graph) { } |
909 | 898 |
|
910 | 899 |
NodeMap(const SmartArcSetBase<GR>& arcset, const V& value) |
911 | 900 |
: Parent(*arcset._graph, value) { } |
912 | 901 |
|
913 | 902 |
NodeMap& operator=(const NodeMap& cmap) { |
914 | 903 |
return operator=<NodeMap>(cmap); |
915 | 904 |
} |
916 | 905 |
|
917 | 906 |
template <typename CMap> |
918 | 907 |
NodeMap& operator=(const CMap& cmap) { |
919 | 908 |
Parent::operator=(cmap); |
920 | 909 |
return *this; |
921 | 910 |
} |
922 | 911 |
}; |
923 | 912 |
|
924 | 913 |
}; |
925 | 914 |
|
926 | 915 |
|
927 | 916 |
/// \ingroup semi_adaptors |
928 | 917 |
/// |
929 | 918 |
/// \brief Digraph using a node set of another digraph or graph and |
930 | 919 |
/// an own arc set. |
931 | 920 |
/// |
932 | 921 |
/// This structure can be used to establish another directed graph |
933 | 922 |
/// over a node set of an existing one. This class uses the same |
934 | 923 |
/// Node type as the underlying graph, and each valid node of the |
935 | 924 |
/// original graph is valid in this arc set, therefore the node |
936 | 925 |
/// objects of the original graph can be used directly with this |
937 | 926 |
/// class. The node handling functions (id handling, observing, and |
938 | 927 |
/// iterators) works equivalently as in the original graph. |
939 | 928 |
/// |
940 | 929 |
/// \param GR The type of the graph which shares its node set with |
941 | 930 |
/// this class. Its interface must conform to the |
942 | 931 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
943 | 932 |
/// concept. |
944 | 933 |
/// |
945 | 934 |
/// This implementation is slightly faster than the \c ListArcSet, |
946 | 935 |
/// because it uses continuous storage for arcs and it uses just |
947 | 936 |
/// single-linked lists for enumerate outgoing and incoming |
948 | 937 |
/// arcs. Therefore the arcs cannot be erased from the arc sets. |
949 | 938 |
/// |
950 | 939 |
/// \warning If a node is erased from the underlying graph and this |
951 | 940 |
/// node is the source or target of one arc in the arc set, then |
952 | 941 |
/// the arc set is invalidated, and it cannot be used anymore. The |
953 | 942 |
/// validity can be checked with the \c valid() member function. |
954 | 943 |
/// |
955 | 944 |
/// This class fully conforms to the \ref concepts::Digraph |
956 | 945 |
/// "Digraph" concept. |
957 | 946 |
template <typename GR> |
958 | 947 |
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > { |
948 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
|
959 | 949 |
|
960 | 950 |
public: |
961 | 951 |
|
962 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
|
963 |
|
|
964 | 952 |
typedef typename Parent::Node Node; |
965 | 953 |
typedef typename Parent::Arc Arc; |
966 | 954 |
|
967 |
typedef GR Graph; |
|
968 |
|
|
969 | 955 |
protected: |
970 | 956 |
|
971 | 957 |
typedef typename Parent::NodesImplBase NodesImplBase; |
972 | 958 |
|
973 | 959 |
void eraseNode(const Node& node) { |
974 | 960 |
if (typename Parent::InArcIt(*this, node) == INVALID && |
975 | 961 |
typename Parent::OutArcIt(*this, node) == INVALID) { |
976 | 962 |
return; |
977 | 963 |
} |
978 | 964 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
979 | 965 |
} |
980 | 966 |
|
981 | 967 |
void clearNodes() { |
982 | 968 |
Parent::clear(); |
983 | 969 |
} |
984 | 970 |
|
985 | 971 |
class NodesImpl : public NodesImplBase { |
986 |
public: |
|
987 | 972 |
typedef NodesImplBase Parent; |
988 | 973 |
|
974 |
public: |
|
989 | 975 |
NodesImpl(const GR& graph, SmartArcSet& arcset) |
990 | 976 |
: Parent(graph), _arcset(arcset) {} |
991 | 977 |
|
992 | 978 |
virtual ~NodesImpl() {} |
993 | 979 |
|
994 | 980 |
bool attached() const { |
995 | 981 |
return Parent::attached(); |
996 | 982 |
} |
997 | 983 |
|
998 | 984 |
protected: |
999 | 985 |
|
1000 | 986 |
virtual void erase(const Node& node) { |
1001 | 987 |
try { |
1002 | 988 |
_arcset.eraseNode(node); |
1003 | 989 |
Parent::erase(node); |
1004 | 990 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1005 | 991 |
Parent::clear(); |
1006 | 992 |
throw; |
1007 | 993 |
} |
1008 | 994 |
} |
1009 | 995 |
virtual void erase(const std::vector<Node>& nodes) { |
1010 | 996 |
try { |
1011 | 997 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1012 | 998 |
_arcset.eraseNode(nodes[i]); |
1013 | 999 |
} |
1014 | 1000 |
Parent::erase(nodes); |
1015 | 1001 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1016 | 1002 |
Parent::clear(); |
1017 | 1003 |
throw; |
1018 | 1004 |
} |
1019 | 1005 |
} |
1020 | 1006 |
virtual void clear() { |
1021 | 1007 |
_arcset.clearNodes(); |
1022 | 1008 |
Parent::clear(); |
1023 | 1009 |
} |
1024 | 1010 |
|
1025 | 1011 |
private: |
1026 | 1012 |
SmartArcSet& _arcset; |
1027 | 1013 |
}; |
1028 | 1014 |
|
1029 | 1015 |
NodesImpl _nodes; |
1030 | 1016 |
|
1031 | 1017 |
public: |
1032 | 1018 |
|
1033 | 1019 |
/// \brief Constructor of the ArcSet. |
1034 | 1020 |
/// |
1035 | 1021 |
/// Constructor of the ArcSet. |
1036 | 1022 |
SmartArcSet(const GR& graph) : _nodes(graph, *this) { |
1037 | 1023 |
Parent::initalize(graph, _nodes); |
1038 | 1024 |
} |
1039 | 1025 |
|
1040 | 1026 |
/// \brief Add a new arc to the digraph. |
1041 | 1027 |
/// |
1042 | 1028 |
/// Add a new arc to the digraph with source node \c s |
1043 | 1029 |
/// and target node \c t. |
1044 | 1030 |
/// \return The new arc. |
1045 | 1031 |
Arc addArc(const Node& s, const Node& t) { |
1046 | 1032 |
return Parent::addArc(s, t); |
1047 | 1033 |
} |
1048 | 1034 |
|
1049 | 1035 |
/// \brief Validity check |
1050 | 1036 |
/// |
1051 | 1037 |
/// This functions gives back false if the ArcSet is |
1052 | 1038 |
/// invalidated. It occurs when a node in the underlying graph is |
1053 | 1039 |
/// erased and it is not isolated in the ArcSet. |
1054 | 1040 |
bool valid() const { |
1055 | 1041 |
return _nodes.attached(); |
1056 | 1042 |
} |
1057 | 1043 |
|
1058 | 1044 |
}; |
1059 | 1045 |
|
1060 | 1046 |
|
1061 | 1047 |
template <typename GR> |
1062 | 1048 |
class SmartEdgeSetBase { |
1063 | 1049 |
public: |
1064 | 1050 |
|
1065 |
typedef GR Graph; |
|
1066 | 1051 |
typedef typename GR::Node Node; |
1067 | 1052 |
typedef typename GR::NodeIt NodeIt; |
1068 | 1053 |
|
1069 | 1054 |
protected: |
1070 | 1055 |
|
1071 | 1056 |
struct NodeT { |
1072 | 1057 |
int first_out; |
1073 | 1058 |
NodeT() : first_out(-1) {} |
1074 | 1059 |
}; |
1075 | 1060 |
|
1076 | 1061 |
typedef typename ItemSetTraits<GR, Node>:: |
1077 | 1062 |
template Map<NodeT>::Type NodesImplBase; |
1078 | 1063 |
|
1079 | 1064 |
NodesImplBase* _nodes; |
1080 | 1065 |
|
1081 | 1066 |
struct ArcT { |
1082 | 1067 |
Node target; |
1083 | 1068 |
int next_out; |
1084 | 1069 |
ArcT() {} |
1085 | 1070 |
}; |
1086 | 1071 |
|
1087 | 1072 |
std::vector<ArcT> arcs; |
1088 | 1073 |
|
1089 | 1074 |
const GR* _graph; |
1090 | 1075 |
|
1091 | 1076 |
void initalize(const GR& graph, NodesImplBase& nodes) { |
1092 | 1077 |
_graph = &graph; |
1093 | 1078 |
_nodes = &nodes; |
1094 | 1079 |
} |
1095 | 1080 |
|
1096 | 1081 |
public: |
1097 | 1082 |
|
1098 | 1083 |
class Edge { |
1099 | 1084 |
friend class SmartEdgeSetBase; |
1100 | 1085 |
protected: |
1101 | 1086 |
|
1102 | 1087 |
int id; |
1103 | 1088 |
explicit Edge(int _id) { id = _id;} |
1104 | 1089 |
|
1105 | 1090 |
public: |
1106 | 1091 |
Edge() {} |
1107 | 1092 |
Edge (Invalid) { id = -1; } |
1108 | 1093 |
bool operator==(const Edge& arc) const {return id == arc.id;} |
1109 | 1094 |
bool operator!=(const Edge& arc) const {return id != arc.id;} |
1110 | 1095 |
bool operator<(const Edge& arc) const {return id < arc.id;} |
1111 | 1096 |
}; |
1112 | 1097 |
|
1113 | 1098 |
class Arc { |
1114 | 1099 |
friend class SmartEdgeSetBase; |
1115 | 1100 |
protected: |
1116 | 1101 |
Arc(int _id) : id(_id) {} |
1117 | 1102 |
int id; |
1118 | 1103 |
public: |
1119 | 1104 |
operator Edge() const { return edgeFromId(id / 2); } |
1120 | 1105 |
|
1121 | 1106 |
Arc() {} |
1122 | 1107 |
Arc(Invalid) : id(-1) {} |
1123 | 1108 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
1124 | 1109 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
1125 | 1110 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
1126 | 1111 |
}; |
1127 | 1112 |
|
1128 | 1113 |
SmartEdgeSetBase() {} |
1129 | 1114 |
|
1130 | 1115 |
Edge addEdge(const Node& u, const Node& v) { |
1131 | 1116 |
int n = arcs.size(); |
1132 | 1117 |
arcs.push_back(ArcT()); |
1133 | 1118 |
arcs.push_back(ArcT()); |
1134 | 1119 |
|
1135 | 1120 |
arcs[n].target = u; |
1136 | 1121 |
arcs[n | 1].target = v; |
1137 | 1122 |
|
1138 | 1123 |
arcs[n].next_out = (*_nodes)[v].first_out; |
1139 | 1124 |
(*_nodes)[v].first_out = n; |
1140 | 1125 |
|
1141 | 1126 |
arcs[n | 1].next_out = (*_nodes)[u].first_out; |
1142 | 1127 |
(*_nodes)[u].first_out = (n | 1); |
1143 | 1128 |
|
1144 | 1129 |
return Edge(n / 2); |
1145 | 1130 |
} |
1146 | 1131 |
|
1147 | 1132 |
void clear() { |
1148 | 1133 |
Node node; |
1149 | 1134 |
for (first(node); node != INVALID; next(node)) { |
1150 | 1135 |
(*_nodes)[node].first_out = -1; |
1151 | 1136 |
} |
1152 | 1137 |
arcs.clear(); |
1153 | 1138 |
} |
1154 | 1139 |
|
1155 | 1140 |
void first(Node& node) const { |
1156 | 1141 |
_graph->first(node); |
1157 | 1142 |
} |
1158 | 1143 |
|
1159 | 1144 |
void next(Node& node) const { |
1160 | 1145 |
_graph->next(node); |
1161 | 1146 |
} |
1162 | 1147 |
|
1163 | 1148 |
void first(Arc& arc) const { |
1164 | 1149 |
arc.id = arcs.size() - 1; |
1165 | 1150 |
} |
1166 | 1151 |
|
1167 | 1152 |
void next(Arc& arc) const { |
1168 | 1153 |
--arc.id; |
1169 | 1154 |
} |
1170 | 1155 |
|
1171 | 1156 |
void first(Edge& arc) const { |
1172 | 1157 |
arc.id = arcs.size() / 2 - 1; |
1173 | 1158 |
} |
1174 | 1159 |
|
1175 | 1160 |
void next(Edge& arc) const { |
1176 | 1161 |
--arc.id; |
1177 | 1162 |
} |
1178 | 1163 |
|
1179 | 1164 |
void firstOut(Arc& arc, const Node& node) const { |
1180 | 1165 |
arc.id = (*_nodes)[node].first_out; |
1181 | 1166 |
} |
1182 | 1167 |
|
1183 | 1168 |
void nextOut(Arc& arc) const { |
1184 | 1169 |
arc.id = arcs[arc.id].next_out; |
1185 | 1170 |
} |
1186 | 1171 |
|
1187 | 1172 |
void firstIn(Arc& arc, const Node& node) const { |
1188 | 1173 |
arc.id = (((*_nodes)[node].first_out) ^ 1); |
1189 | 1174 |
if (arc.id == -2) arc.id = -1; |
1190 | 1175 |
} |
1191 | 1176 |
|
1192 | 1177 |
void nextIn(Arc& arc) const { |
1193 | 1178 |
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); |
1194 | 1179 |
if (arc.id == -2) arc.id = -1; |
1195 | 1180 |
} |
1196 | 1181 |
|
1197 | 1182 |
void firstInc(Edge &arc, bool& dir, const Node& node) const { |
1198 | 1183 |
int de = (*_nodes)[node].first_out; |
1199 | 1184 |
if (de != -1 ) { |
1200 | 1185 |
arc.id = de / 2; |
1201 | 1186 |
dir = ((de & 1) == 1); |
1202 | 1187 |
} else { |
1203 | 1188 |
arc.id = -1; |
1204 | 1189 |
dir = true; |
1205 | 1190 |
} |
1206 | 1191 |
} |
1207 | 1192 |
void nextInc(Edge &arc, bool& dir) const { |
1208 | 1193 |
int de = (arcs[(arc.id * 2) | (dir ? 1 : 0)].next_out); |
1209 | 1194 |
if (de != -1 ) { |
1210 | 1195 |
arc.id = de / 2; |
1211 | 1196 |
dir = ((de & 1) == 1); |
1212 | 1197 |
} else { |
1213 | 1198 |
arc.id = -1; |
1214 | 1199 |
dir = true; |
1215 | 1200 |
} |
1216 | 1201 |
} |
1217 | 1202 |
|
1218 | 1203 |
static bool direction(Arc arc) { |
1219 | 1204 |
return (arc.id & 1) == 1; |
1220 | 1205 |
} |
1221 | 1206 |
|
1222 | 1207 |
static Arc direct(Edge edge, bool dir) { |
1223 | 1208 |
return Arc(edge.id * 2 + (dir ? 1 : 0)); |
1224 | 1209 |
} |
1225 | 1210 |
|
1226 | 1211 |
int id(Node node) const { return _graph->id(node); } |
1227 | 1212 |
static int id(Arc arc) { return arc.id; } |
1228 | 1213 |
static int id(Edge arc) { return arc.id; } |
1229 | 1214 |
|
1230 | 1215 |
Node nodeFromId(int id) const { return _graph->nodeFromId(id); } |
1231 | 1216 |
static Arc arcFromId(int id) { return Arc(id); } |
1232 | 1217 |
static Edge edgeFromId(int id) { return Edge(id);} |
1233 | 1218 |
|
1234 | 1219 |
int maxNodeId() const { return _graph->maxNodeId(); }; |
1235 | 1220 |
int maxArcId() const { return arcs.size() - 1; } |
1236 | 1221 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
1237 | 1222 |
|
1238 | 1223 |
Node source(Arc e) const { return arcs[e.id ^ 1].target; } |
1239 | 1224 |
Node target(Arc e) const { return arcs[e.id].target; } |
1240 | 1225 |
|
1241 | 1226 |
Node u(Edge e) const { return arcs[2 * e.id].target; } |
1242 | 1227 |
Node v(Edge e) const { return arcs[2 * e.id + 1].target; } |
1243 | 1228 |
|
1244 | 1229 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
1245 | 1230 |
|
1246 | 1231 |
NodeNotifier& notifier(Node) const { |
1247 | 1232 |
return _graph->notifier(Node()); |
1248 | 1233 |
} |
1249 | 1234 |
|
1250 | 1235 |
template <typename V> |
1251 | 1236 |
class NodeMap : public GR::template NodeMap<V> { |
1237 |
typedef typename GR::template NodeMap<V> Parent; |
|
1238 |
|
|
1252 | 1239 |
public: |
1253 | 1240 |
|
1254 |
typedef typename GR::template NodeMap<V> Parent; |
|
1255 |
|
|
1256 | 1241 |
explicit NodeMap(const SmartEdgeSetBase<GR>& arcset) |
1257 | 1242 |
: Parent(*arcset._graph) { } |
1258 | 1243 |
|
1259 | 1244 |
NodeMap(const SmartEdgeSetBase<GR>& arcset, const V& value) |
1260 | 1245 |
: Parent(*arcset._graph, value) { } |
1261 | 1246 |
|
1262 | 1247 |
NodeMap& operator=(const NodeMap& cmap) { |
1263 | 1248 |
return operator=<NodeMap>(cmap); |
1264 | 1249 |
} |
1265 | 1250 |
|
1266 | 1251 |
template <typename CMap> |
1267 | 1252 |
NodeMap& operator=(const CMap& cmap) { |
1268 | 1253 |
Parent::operator=(cmap); |
1269 | 1254 |
return *this; |
1270 | 1255 |
} |
1271 | 1256 |
}; |
1272 | 1257 |
|
1273 | 1258 |
}; |
1274 | 1259 |
|
1275 | 1260 |
/// \ingroup semi_adaptors |
1276 | 1261 |
/// |
1277 | 1262 |
/// \brief Graph using a node set of another digraph or graph and an |
1278 | 1263 |
/// own edge set. |
1279 | 1264 |
/// |
1280 | 1265 |
/// This structure can be used to establish another graph over a |
1281 | 1266 |
/// node set of an existing one. This class uses the same Node type |
1282 | 1267 |
/// as the underlying graph, and each valid node of the original |
1283 | 1268 |
/// graph is valid in this arc set, therefore the node objects of |
1284 | 1269 |
/// the original graph can be used directly with this class. The |
1285 | 1270 |
/// node handling functions (id handling, observing, and iterators) |
1286 | 1271 |
/// works equivalently as in the original graph. |
1287 | 1272 |
/// |
1288 | 1273 |
/// \param GR The type of the graph which shares its node set |
1289 | 1274 |
/// with this class. Its interface must conform to the |
1290 | 1275 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
1291 | 1276 |
/// concept. |
1292 | 1277 |
/// |
1293 | 1278 |
/// This implementation is slightly faster than the \c ListEdgeSet, |
1294 | 1279 |
/// because it uses continuous storage for edges and it uses just |
1295 | 1280 |
/// single-linked lists for enumerate incident edges. Therefore the |
1296 | 1281 |
/// edges cannot be erased from the edge sets. |
1297 | 1282 |
/// |
1298 | 1283 |
/// \warning If a node is erased from the underlying graph and this |
1299 | 1284 |
/// node is incident to one edge in the edge set, then the edge set |
1300 | 1285 |
/// is invalidated, and it cannot be used anymore. The validity can |
1301 | 1286 |
/// be checked with the \c valid() member function. |
1302 | 1287 |
/// |
1303 | 1288 |
/// This class fully conforms to the \ref concepts::Graph |
1304 | 1289 |
/// "Graph" concept. |
1305 | 1290 |
template <typename GR> |
1306 | 1291 |
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > { |
1292 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
|
1307 | 1293 |
|
1308 | 1294 |
public: |
1309 | 1295 |
|
1310 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
|
1311 |
|
|
1312 | 1296 |
typedef typename Parent::Node Node; |
1313 | 1297 |
typedef typename Parent::Arc Arc; |
1314 | 1298 |
typedef typename Parent::Edge Edge; |
1315 | 1299 |
|
1316 |
typedef GR Graph; |
|
1317 |
|
|
1318 | 1300 |
protected: |
1319 | 1301 |
|
1320 | 1302 |
typedef typename Parent::NodesImplBase NodesImplBase; |
1321 | 1303 |
|
1322 | 1304 |
void eraseNode(const Node& node) { |
1323 | 1305 |
if (typename Parent::IncEdgeIt(*this, node) == INVALID) { |
1324 | 1306 |
return; |
1325 | 1307 |
} |
1326 | 1308 |
throw typename NodesImplBase::Notifier::ImmediateDetach(); |
1327 | 1309 |
} |
1328 | 1310 |
|
1329 | 1311 |
void clearNodes() { |
1330 | 1312 |
Parent::clear(); |
1331 | 1313 |
} |
1332 | 1314 |
|
1333 | 1315 |
class NodesImpl : public NodesImplBase { |
1334 |
public: |
|
1335 | 1316 |
typedef NodesImplBase Parent; |
1336 | 1317 |
|
1318 |
public: |
|
1337 | 1319 |
NodesImpl(const GR& graph, SmartEdgeSet& arcset) |
1338 | 1320 |
: Parent(graph), _arcset(arcset) {} |
1339 | 1321 |
|
1340 | 1322 |
virtual ~NodesImpl() {} |
1341 | 1323 |
|
1342 | 1324 |
bool attached() const { |
1343 | 1325 |
return Parent::attached(); |
1344 | 1326 |
} |
1345 | 1327 |
|
1346 | 1328 |
protected: |
1347 | 1329 |
|
1348 | 1330 |
virtual void erase(const Node& node) { |
1349 | 1331 |
try { |
1350 | 1332 |
_arcset.eraseNode(node); |
1351 | 1333 |
Parent::erase(node); |
1352 | 1334 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1353 | 1335 |
Parent::clear(); |
1354 | 1336 |
throw; |
1355 | 1337 |
} |
1356 | 1338 |
} |
1357 | 1339 |
virtual void erase(const std::vector<Node>& nodes) { |
1358 | 1340 |
try { |
1359 | 1341 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1360 | 1342 |
_arcset.eraseNode(nodes[i]); |
1361 | 1343 |
} |
1362 | 1344 |
Parent::erase(nodes); |
1363 | 1345 |
} catch (const typename NodesImplBase::Notifier::ImmediateDetach&) { |
1364 | 1346 |
Parent::clear(); |
1365 | 1347 |
throw; |
1366 | 1348 |
} |
1367 | 1349 |
} |
1368 | 1350 |
virtual void clear() { |
1369 | 1351 |
_arcset.clearNodes(); |
1370 | 1352 |
Parent::clear(); |
1371 | 1353 |
} |
1372 | 1354 |
|
1373 | 1355 |
private: |
1374 | 1356 |
SmartEdgeSet& _arcset; |
1375 | 1357 |
}; |
1376 | 1358 |
|
1377 | 1359 |
NodesImpl _nodes; |
1378 | 1360 |
|
1379 | 1361 |
public: |
1380 | 1362 |
|
1381 | 1363 |
/// \brief Constructor of the EdgeSet. |
1382 | 1364 |
/// |
1383 | 1365 |
/// Constructor of the EdgeSet. |
1384 | 1366 |
SmartEdgeSet(const GR& graph) : _nodes(graph, *this) { |
1385 | 1367 |
Parent::initalize(graph, _nodes); |
1386 | 1368 |
} |
1387 | 1369 |
|
1388 | 1370 |
/// \brief Add a new edge to the graph. |
1389 | 1371 |
/// |
1390 | 1372 |
/// Add a new edge to the graph with node \c u |
1391 | 1373 |
/// and node \c v endpoints. |
1392 | 1374 |
/// \return The new edge. |
1393 | 1375 |
Edge addEdge(const Node& u, const Node& v) { |
1394 | 1376 |
return Parent::addEdge(u, v); |
1395 | 1377 |
} |
1396 | 1378 |
|
1397 | 1379 |
/// \brief Validity check |
1398 | 1380 |
/// |
1399 | 1381 |
/// This functions gives back false if the EdgeSet is |
1400 | 1382 |
/// invalidated. It occurs when a node in the underlying graph is |
1401 | 1383 |
/// erased and it is not isolated in the EdgeSet. |
1402 | 1384 |
bool valid() const { |
1403 | 1385 |
return _nodes.attached(); |
1404 | 1386 |
} |
1405 | 1387 |
|
1406 | 1388 |
}; |
1407 | 1389 |
|
1408 | 1390 |
} |
1409 | 1391 |
|
1410 | 1392 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_FULL_GRAPH_H |
20 | 20 |
#define LEMON_FULL_GRAPH_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/bits/graph_extender.h> |
24 | 24 |
|
25 | 25 |
///\ingroup graphs |
26 | 26 |
///\file |
27 | 27 |
///\brief FullGraph and FullDigraph classes. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
class FullDigraphBase { |
32 | 32 |
public: |
33 | 33 |
|
34 |
typedef FullDigraphBase |
|
34 |
typedef FullDigraphBase Digraph; |
|
35 | 35 |
|
36 | 36 |
class Node; |
37 | 37 |
class Arc; |
38 | 38 |
|
39 | 39 |
protected: |
40 | 40 |
|
41 | 41 |
int _node_num; |
42 | 42 |
int _arc_num; |
43 | 43 |
|
44 | 44 |
FullDigraphBase() {} |
45 | 45 |
|
46 | 46 |
void construct(int n) { _node_num = n; _arc_num = n * n; } |
47 | 47 |
|
48 | 48 |
public: |
49 | 49 |
|
50 | 50 |
typedef True NodeNumTag; |
51 | 51 |
typedef True ArcNumTag; |
52 | 52 |
|
53 | 53 |
Node operator()(int ix) const { return Node(ix); } |
54 | 54 |
int index(const Node& node) const { return node._id; } |
55 | 55 |
|
56 | 56 |
Arc arc(const Node& s, const Node& t) const { |
57 | 57 |
return Arc(s._id * _node_num + t._id); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
int nodeNum() const { return _node_num; } |
61 | 61 |
int arcNum() const { return _arc_num; } |
62 | 62 |
|
63 | 63 |
int maxNodeId() const { return _node_num - 1; } |
64 | 64 |
int maxArcId() const { return _arc_num - 1; } |
65 | 65 |
|
66 | 66 |
Node source(Arc arc) const { return arc._id / _node_num; } |
67 | 67 |
Node target(Arc arc) const { return arc._id % _node_num; } |
68 | 68 |
|
69 | 69 |
static int id(Node node) { return node._id; } |
70 | 70 |
static int id(Arc arc) { return arc._id; } |
71 | 71 |
|
72 | 72 |
static Node nodeFromId(int id) { return Node(id);} |
73 | 73 |
static Arc arcFromId(int id) { return Arc(id);} |
74 | 74 |
|
75 | 75 |
typedef True FindArcTag; |
76 | 76 |
|
77 | 77 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const { |
78 | 78 |
return prev == INVALID ? arc(s, t) : INVALID; |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
class Node { |
82 | 82 |
friend class FullDigraphBase; |
83 | 83 |
|
84 | 84 |
protected: |
85 | 85 |
int _id; |
86 | 86 |
Node(int id) : _id(id) {} |
87 | 87 |
public: |
88 | 88 |
Node() {} |
89 | 89 |
Node (Invalid) : _id(-1) {} |
90 | 90 |
bool operator==(const Node node) const {return _id == node._id;} |
91 | 91 |
bool operator!=(const Node node) const {return _id != node._id;} |
92 | 92 |
bool operator<(const Node node) const {return _id < node._id;} |
93 | 93 |
}; |
94 | 94 |
|
95 | 95 |
class Arc { |
96 | 96 |
friend class FullDigraphBase; |
97 | 97 |
|
98 | 98 |
protected: |
99 | 99 |
int _id; // _node_num * source + target; |
100 | 100 |
|
101 | 101 |
Arc(int id) : _id(id) {} |
102 | 102 |
|
103 | 103 |
public: |
104 | 104 |
Arc() { } |
105 | 105 |
Arc (Invalid) { _id = -1; } |
106 | 106 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
107 | 107 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
108 | 108 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
void first(Node& node) const { |
112 | 112 |
node._id = _node_num - 1; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
static void next(Node& node) { |
116 | 116 |
--node._id; |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
void first(Arc& arc) const { |
120 | 120 |
arc._id = _arc_num - 1; |
121 | 121 |
} |
122 | 122 |
|
123 | 123 |
static void next(Arc& arc) { |
124 | 124 |
--arc._id; |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
void firstOut(Arc& arc, const Node& node) const { |
128 | 128 |
arc._id = (node._id + 1) * _node_num - 1; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
void nextOut(Arc& arc) const { |
132 | 132 |
if (arc._id % _node_num == 0) arc._id = 0; |
133 | 133 |
--arc._id; |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
void firstIn(Arc& arc, const Node& node) const { |
137 | 137 |
arc._id = _arc_num + node._id - _node_num; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
void nextIn(Arc& arc) const { |
141 | 141 |
arc._id -= _node_num; |
142 | 142 |
if (arc._id < 0) arc._id = -1; |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
148 | 148 |
|
149 | 149 |
/// \ingroup graphs |
150 | 150 |
/// |
151 | 151 |
/// \brief A full digraph class. |
152 | 152 |
/// |
153 | 153 |
/// This is a simple and fast directed full graph implementation. |
154 | 154 |
/// From each node go arcs to each node (including the source node), |
155 | 155 |
/// therefore the number of the arcs in the digraph is the square of |
156 | 156 |
/// the node number. This digraph type is completely static, so you |
157 | 157 |
/// can neither add nor delete either arcs or nodes, and it needs |
158 | 158 |
/// constant space in memory. |
159 | 159 |
/// |
160 | 160 |
/// This class fully conforms to the \ref concepts::Digraph |
161 | 161 |
/// "Digraph concept". |
162 | 162 |
/// |
163 | 163 |
/// The \c FullDigraph and \c FullGraph classes are very similar, |
164 | 164 |
/// but there are two differences. While this class conforms only |
165 | 165 |
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph |
166 | 166 |
/// class conforms to the \ref concepts::Graph "Graph" concept, |
167 | 167 |
/// moreover \c FullGraph does not contain a loop arc for each |
168 | 168 |
/// node as \c FullDigraph does. |
169 | 169 |
/// |
170 | 170 |
/// \sa FullGraph |
171 | 171 |
class FullDigraph : public ExtendedFullDigraphBase { |
172 |
typedef ExtendedFullDigraphBase Parent; |
|
173 |
|
|
172 | 174 |
public: |
173 | 175 |
|
174 |
typedef ExtendedFullDigraphBase Parent; |
|
175 |
|
|
176 | 176 |
/// \brief Constructor |
177 | 177 |
FullDigraph() { construct(0); } |
178 | 178 |
|
179 | 179 |
/// \brief Constructor |
180 | 180 |
/// |
181 | 181 |
/// Constructor. |
182 | 182 |
/// \param n The number of the nodes. |
183 | 183 |
FullDigraph(int n) { construct(n); } |
184 | 184 |
|
185 | 185 |
/// \brief Resizes the digraph |
186 | 186 |
/// |
187 | 187 |
/// Resizes the digraph. The function will fully destroy and |
188 | 188 |
/// rebuild the digraph. This cause that the maps of the digraph will |
189 | 189 |
/// reallocated automatically and the previous values will be lost. |
190 | 190 |
void resize(int n) { |
191 | 191 |
Parent::notifier(Arc()).clear(); |
192 | 192 |
Parent::notifier(Node()).clear(); |
193 | 193 |
construct(n); |
194 | 194 |
Parent::notifier(Node()).build(); |
195 | 195 |
Parent::notifier(Arc()).build(); |
196 | 196 |
} |
197 | 197 |
|
198 | 198 |
/// \brief Returns the node with the given index. |
199 | 199 |
/// |
200 | 200 |
/// Returns the node with the given index. Since it is a static |
201 | 201 |
/// digraph its nodes can be indexed with integers from the range |
202 | 202 |
/// <tt>[0..nodeNum()-1]</tt>. |
203 | 203 |
/// \sa index() |
204 | 204 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
205 | 205 |
|
206 | 206 |
/// \brief Returns the index of the given node. |
207 | 207 |
/// |
208 | 208 |
/// Returns the index of the given node. Since it is a static |
209 | 209 |
/// digraph its nodes can be indexed with integers from the range |
210 | 210 |
/// <tt>[0..nodeNum()-1]</tt>. |
211 | 211 |
/// \sa operator() |
212 | 212 |
int index(const Node& node) const { return Parent::index(node); } |
213 | 213 |
|
214 | 214 |
/// \brief Returns the arc connecting the given nodes. |
215 | 215 |
/// |
216 | 216 |
/// Returns the arc connecting the given nodes. |
217 | 217 |
Arc arc(const Node& u, const Node& v) const { |
218 | 218 |
return Parent::arc(u, v); |
219 | 219 |
} |
220 | 220 |
|
221 | 221 |
/// \brief Number of nodes. |
222 | 222 |
int nodeNum() const { return Parent::nodeNum(); } |
223 | 223 |
/// \brief Number of arcs. |
224 | 224 |
int arcNum() const { return Parent::arcNum(); } |
225 | 225 |
}; |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
class FullGraphBase { |
229 |
int _node_num; |
|
230 |
int _edge_num; |
|
231 | 229 |
public: |
232 | 230 |
|
233 | 231 |
typedef FullGraphBase Graph; |
234 | 232 |
|
235 | 233 |
class Node; |
236 | 234 |
class Arc; |
237 | 235 |
class Edge; |
238 | 236 |
|
239 | 237 |
protected: |
240 | 238 |
|
239 |
int _node_num; |
|
240 |
int _edge_num; |
|
241 |
|
|
241 | 242 |
FullGraphBase() {} |
242 | 243 |
|
243 | 244 |
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; } |
244 | 245 |
|
245 | 246 |
int _uid(int e) const { |
246 | 247 |
int u = e / _node_num; |
247 | 248 |
int v = e % _node_num; |
248 | 249 |
return u < v ? u : _node_num - 2 - u; |
249 | 250 |
} |
250 | 251 |
|
251 | 252 |
int _vid(int e) const { |
252 | 253 |
int u = e / _node_num; |
253 | 254 |
int v = e % _node_num; |
254 | 255 |
return u < v ? v : _node_num - 1 - v; |
255 | 256 |
} |
256 | 257 |
|
257 | 258 |
void _uvid(int e, int& u, int& v) const { |
258 | 259 |
u = e / _node_num; |
259 | 260 |
v = e % _node_num; |
260 | 261 |
if (u >= v) { |
261 | 262 |
u = _node_num - 2 - u; |
262 | 263 |
v = _node_num - 1 - v; |
263 | 264 |
} |
264 | 265 |
} |
265 | 266 |
|
266 | 267 |
void _stid(int a, int& s, int& t) const { |
267 | 268 |
if ((a & 1) == 1) { |
268 | 269 |
_uvid(a >> 1, s, t); |
269 | 270 |
} else { |
270 | 271 |
_uvid(a >> 1, t, s); |
271 | 272 |
} |
272 | 273 |
} |
273 | 274 |
|
274 | 275 |
int _eid(int u, int v) const { |
275 | 276 |
if (u < (_node_num - 1) / 2) { |
276 | 277 |
return u * _node_num + v; |
277 | 278 |
} else { |
278 | 279 |
return (_node_num - 1 - u) * _node_num - v - 1; |
279 | 280 |
} |
280 | 281 |
} |
281 | 282 |
|
282 | 283 |
public: |
283 | 284 |
|
284 | 285 |
Node operator()(int ix) const { return Node(ix); } |
285 | 286 |
int index(const Node& node) const { return node._id; } |
286 | 287 |
|
287 | 288 |
Edge edge(const Node& u, const Node& v) const { |
288 | 289 |
if (u._id < v._id) { |
289 | 290 |
return Edge(_eid(u._id, v._id)); |
290 | 291 |
} else if (u._id != v._id) { |
291 | 292 |
return Edge(_eid(v._id, u._id)); |
292 | 293 |
} else { |
293 | 294 |
return INVALID; |
294 | 295 |
} |
295 | 296 |
} |
296 | 297 |
|
297 | 298 |
Arc arc(const Node& s, const Node& t) const { |
298 | 299 |
if (s._id < t._id) { |
299 | 300 |
return Arc((_eid(s._id, t._id) << 1) | 1); |
300 | 301 |
} else if (s._id != t._id) { |
301 | 302 |
return Arc(_eid(t._id, s._id) << 1); |
302 | 303 |
} else { |
303 | 304 |
return INVALID; |
304 | 305 |
} |
305 | 306 |
} |
306 | 307 |
|
307 | 308 |
typedef True NodeNumTag; |
308 | 309 |
typedef True ArcNumTag; |
309 | 310 |
typedef True EdgeNumTag; |
310 | 311 |
|
311 | 312 |
int nodeNum() const { return _node_num; } |
312 | 313 |
int arcNum() const { return 2 * _edge_num; } |
313 | 314 |
int edgeNum() const { return _edge_num; } |
314 | 315 |
|
315 | 316 |
static int id(Node node) { return node._id; } |
316 | 317 |
static int id(Arc arc) { return arc._id; } |
317 | 318 |
static int id(Edge edge) { return edge._id; } |
318 | 319 |
|
319 | 320 |
int maxNodeId() const { return _node_num-1; } |
320 | 321 |
int maxArcId() const { return 2 * _edge_num-1; } |
321 | 322 |
int maxEdgeId() const { return _edge_num-1; } |
322 | 323 |
|
323 | 324 |
static Node nodeFromId(int id) { return Node(id);} |
324 | 325 |
static Arc arcFromId(int id) { return Arc(id);} |
325 | 326 |
static Edge edgeFromId(int id) { return Edge(id);} |
326 | 327 |
|
327 | 328 |
Node u(Edge edge) const { |
328 | 329 |
return Node(_uid(edge._id)); |
329 | 330 |
} |
330 | 331 |
|
331 | 332 |
Node v(Edge edge) const { |
332 | 333 |
return Node(_vid(edge._id)); |
333 | 334 |
} |
334 | 335 |
|
335 | 336 |
Node source(Arc arc) const { |
336 | 337 |
return Node((arc._id & 1) == 1 ? |
337 | 338 |
_uid(arc._id >> 1) : _vid(arc._id >> 1)); |
338 | 339 |
} |
339 | 340 |
|
340 | 341 |
Node target(Arc arc) const { |
341 | 342 |
return Node((arc._id & 1) == 1 ? |
342 | 343 |
_vid(arc._id >> 1) : _uid(arc._id >> 1)); |
343 | 344 |
} |
344 | 345 |
|
345 | 346 |
typedef True FindEdgeTag; |
346 | 347 |
typedef True FindArcTag; |
347 | 348 |
|
348 | 349 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
349 | 350 |
return prev != INVALID ? INVALID : edge(u, v); |
350 | 351 |
} |
351 | 352 |
|
352 | 353 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const { |
353 | 354 |
return prev != INVALID ? INVALID : arc(s, t); |
354 | 355 |
} |
355 | 356 |
|
356 | 357 |
class Node { |
357 | 358 |
friend class FullGraphBase; |
358 | 359 |
|
359 | 360 |
protected: |
360 | 361 |
int _id; |
361 | 362 |
Node(int id) : _id(id) {} |
362 | 363 |
public: |
363 | 364 |
Node() {} |
364 | 365 |
Node (Invalid) { _id = -1; } |
365 | 366 |
bool operator==(const Node node) const {return _id == node._id;} |
366 | 367 |
bool operator!=(const Node node) const {return _id != node._id;} |
367 | 368 |
bool operator<(const Node node) const {return _id < node._id;} |
368 | 369 |
}; |
369 | 370 |
|
370 | 371 |
class Edge { |
371 | 372 |
friend class FullGraphBase; |
372 | 373 |
friend class Arc; |
373 | 374 |
|
374 | 375 |
protected: |
375 | 376 |
int _id; |
376 | 377 |
|
377 | 378 |
Edge(int id) : _id(id) {} |
378 | 379 |
|
379 | 380 |
public: |
380 | 381 |
Edge() { } |
381 | 382 |
Edge (Invalid) { _id = -1; } |
382 | 383 |
|
383 | 384 |
bool operator==(const Edge edge) const {return _id == edge._id;} |
384 | 385 |
bool operator!=(const Edge edge) const {return _id != edge._id;} |
385 | 386 |
bool operator<(const Edge edge) const {return _id < edge._id;} |
386 | 387 |
}; |
387 | 388 |
|
388 | 389 |
class Arc { |
389 | 390 |
friend class FullGraphBase; |
390 | 391 |
|
391 | 392 |
protected: |
392 | 393 |
int _id; |
393 | 394 |
|
394 | 395 |
Arc(int id) : _id(id) {} |
395 | 396 |
|
396 | 397 |
public: |
397 | 398 |
Arc() { } |
398 | 399 |
Arc (Invalid) { _id = -1; } |
399 | 400 |
|
400 | 401 |
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); } |
401 | 402 |
|
402 | 403 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
403 | 404 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
404 | 405 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
405 | 406 |
}; |
406 | 407 |
|
407 | 408 |
static bool direction(Arc arc) { |
408 | 409 |
return (arc._id & 1) == 1; |
409 | 410 |
} |
410 | 411 |
|
411 | 412 |
static Arc direct(Edge edge, bool dir) { |
412 | 413 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
413 | 414 |
} |
414 | 415 |
|
415 | 416 |
void first(Node& node) const { |
416 | 417 |
node._id = _node_num - 1; |
417 | 418 |
} |
418 | 419 |
|
419 | 420 |
static void next(Node& node) { |
420 | 421 |
--node._id; |
421 | 422 |
} |
422 | 423 |
|
423 | 424 |
void first(Arc& arc) const { |
424 | 425 |
arc._id = (_edge_num << 1) - 1; |
425 | 426 |
} |
426 | 427 |
|
427 | 428 |
static void next(Arc& arc) { |
428 | 429 |
--arc._id; |
429 | 430 |
} |
430 | 431 |
|
431 | 432 |
void first(Edge& edge) const { |
432 | 433 |
edge._id = _edge_num - 1; |
433 | 434 |
} |
434 | 435 |
|
435 | 436 |
static void next(Edge& edge) { |
436 | 437 |
--edge._id; |
437 | 438 |
} |
438 | 439 |
|
439 | 440 |
void firstOut(Arc& arc, const Node& node) const { |
440 | 441 |
int s = node._id, t = _node_num - 1; |
441 | 442 |
if (s < t) { |
442 | 443 |
arc._id = (_eid(s, t) << 1) | 1; |
443 | 444 |
} else { |
444 | 445 |
--t; |
445 | 446 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
446 | 447 |
} |
447 | 448 |
} |
448 | 449 |
|
449 | 450 |
void nextOut(Arc& arc) const { |
450 | 451 |
int s, t; |
451 | 452 |
_stid(arc._id, s, t); |
452 | 453 |
--t; |
453 | 454 |
if (s < t) { |
454 | 455 |
arc._id = (_eid(s, t) << 1) | 1; |
455 | 456 |
} else { |
456 | 457 |
if (s == t) --t; |
457 | 458 |
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1); |
458 | 459 |
} |
459 | 460 |
} |
460 | 461 |
|
461 | 462 |
void firstIn(Arc& arc, const Node& node) const { |
462 | 463 |
int s = _node_num - 1, t = node._id; |
463 | 464 |
if (s > t) { |
464 | 465 |
arc._id = (_eid(t, s) << 1); |
465 | 466 |
} else { |
466 | 467 |
--s; |
467 | 468 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
468 | 469 |
} |
469 | 470 |
} |
470 | 471 |
|
471 | 472 |
void nextIn(Arc& arc) const { |
472 | 473 |
int s, t; |
473 | 474 |
_stid(arc._id, s, t); |
474 | 475 |
--s; |
475 | 476 |
if (s > t) { |
476 | 477 |
arc._id = (_eid(t, s) << 1); |
477 | 478 |
} else { |
478 | 479 |
if (s == t) --s; |
479 | 480 |
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1); |
480 | 481 |
} |
481 | 482 |
} |
482 | 483 |
|
483 | 484 |
void firstInc(Edge& edge, bool& dir, const Node& node) const { |
484 | 485 |
int u = node._id, v = _node_num - 1; |
485 | 486 |
if (u < v) { |
486 | 487 |
edge._id = _eid(u, v); |
487 | 488 |
dir = true; |
488 | 489 |
} else { |
489 | 490 |
--v; |
490 | 491 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
491 | 492 |
dir = false; |
492 | 493 |
} |
493 | 494 |
} |
494 | 495 |
|
495 | 496 |
void nextInc(Edge& edge, bool& dir) const { |
496 | 497 |
int u, v; |
497 | 498 |
if (dir) { |
498 | 499 |
_uvid(edge._id, u, v); |
499 | 500 |
--v; |
500 | 501 |
if (u < v) { |
501 | 502 |
edge._id = _eid(u, v); |
502 | 503 |
} else { |
503 | 504 |
--v; |
504 | 505 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
505 | 506 |
dir = false; |
506 | 507 |
} |
507 | 508 |
} else { |
508 | 509 |
_uvid(edge._id, v, u); |
509 | 510 |
--v; |
510 | 511 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
511 | 512 |
} |
512 | 513 |
} |
513 | 514 |
|
514 | 515 |
}; |
515 | 516 |
|
516 | 517 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
517 | 518 |
|
518 | 519 |
/// \ingroup graphs |
519 | 520 |
/// |
520 | 521 |
/// \brief An undirected full graph class. |
521 | 522 |
/// |
522 | 523 |
/// This is a simple and fast undirected full graph |
523 | 524 |
/// implementation. From each node go edge to each other node, |
524 | 525 |
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$. |
525 | 526 |
/// This graph type is completely static, so you can neither |
526 | 527 |
/// add nor delete either edges or nodes, and it needs constant |
527 | 528 |
/// space in memory. |
528 | 529 |
/// |
529 | 530 |
/// This class fully conforms to the \ref concepts::Graph "Graph concept". |
530 | 531 |
/// |
531 | 532 |
/// The \c FullGraph and \c FullDigraph classes are very similar, |
532 | 533 |
/// but there are two differences. While the \c FullDigraph class |
533 | 534 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
534 | 535 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
535 | 536 |
/// moreover \c FullGraph does not contain a loop arc for each |
536 | 537 |
/// node as \c FullDigraph does. |
537 | 538 |
/// |
538 | 539 |
/// \sa FullDigraph |
539 | 540 |
class FullGraph : public ExtendedFullGraphBase { |
541 |
typedef ExtendedFullGraphBase Parent; |
|
542 |
|
|
540 | 543 |
public: |
541 | 544 |
|
542 |
typedef ExtendedFullGraphBase Parent; |
|
543 |
|
|
544 | 545 |
/// \brief Constructor |
545 | 546 |
FullGraph() { construct(0); } |
546 | 547 |
|
547 | 548 |
/// \brief Constructor |
548 | 549 |
/// |
549 | 550 |
/// Constructor. |
550 | 551 |
/// \param n The number of the nodes. |
551 | 552 |
FullGraph(int n) { construct(n); } |
552 | 553 |
|
553 | 554 |
/// \brief Resizes the graph |
554 | 555 |
/// |
555 | 556 |
/// Resizes the graph. The function will fully destroy and |
556 | 557 |
/// rebuild the graph. This cause that the maps of the graph will |
557 | 558 |
/// reallocated automatically and the previous values will be lost. |
558 | 559 |
void resize(int n) { |
559 | 560 |
Parent::notifier(Arc()).clear(); |
560 | 561 |
Parent::notifier(Edge()).clear(); |
561 | 562 |
Parent::notifier(Node()).clear(); |
562 | 563 |
construct(n); |
563 | 564 |
Parent::notifier(Node()).build(); |
564 | 565 |
Parent::notifier(Edge()).build(); |
565 | 566 |
Parent::notifier(Arc()).build(); |
566 | 567 |
} |
567 | 568 |
|
568 | 569 |
/// \brief Returns the node with the given index. |
569 | 570 |
/// |
570 | 571 |
/// Returns the node with the given index. Since it is a static |
571 | 572 |
/// graph its nodes can be indexed with integers from the range |
572 | 573 |
/// <tt>[0..nodeNum()-1]</tt>. |
573 | 574 |
/// \sa index() |
574 | 575 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
575 | 576 |
|
576 | 577 |
/// \brief Returns the index of the given node. |
577 | 578 |
/// |
578 | 579 |
/// Returns the index of the given node. Since it is a static |
579 | 580 |
/// graph its nodes can be indexed with integers from the range |
580 | 581 |
/// <tt>[0..nodeNum()-1]</tt>. |
581 | 582 |
/// \sa operator() |
582 | 583 |
int index(const Node& node) const { return Parent::index(node); } |
583 | 584 |
|
584 | 585 |
/// \brief Returns the arc connecting the given nodes. |
585 | 586 |
/// |
586 | 587 |
/// Returns the arc connecting the given nodes. |
587 | 588 |
Arc arc(const Node& s, const Node& t) const { |
588 | 589 |
return Parent::arc(s, t); |
589 | 590 |
} |
590 | 591 |
|
591 | 592 |
/// \brief Returns the edge connects the given nodes. |
592 | 593 |
/// |
593 | 594 |
/// Returns the edge connects the given nodes. |
594 | 595 |
Edge edge(const Node& u, const Node& v) const { |
595 | 596 |
return Parent::edge(u, v); |
596 | 597 |
} |
597 | 598 |
|
598 | 599 |
/// \brief Number of nodes. |
599 | 600 |
int nodeNum() const { return Parent::nodeNum(); } |
600 | 601 |
/// \brief Number of arcs. |
601 | 602 |
int arcNum() const { return Parent::arcNum(); } |
602 | 603 |
/// \brief Number of edges. |
603 | 604 |
int edgeNum() const { return Parent::edgeNum(); } |
604 | 605 |
|
605 | 606 |
}; |
606 | 607 |
|
607 | 608 |
|
608 | 609 |
} //namespace lemon |
609 | 610 |
|
610 | 611 |
|
611 | 612 |
#endif //LEMON_FULL_GRAPH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#include<lemon/bits/windows.h> |
33 | 33 |
#endif |
34 | 34 |
|
35 | 35 |
#include<lemon/math.h> |
36 | 36 |
#include<lemon/core.h> |
37 | 37 |
#include<lemon/dim2.h> |
38 | 38 |
#include<lemon/maps.h> |
39 | 39 |
#include<lemon/color.h> |
40 | 40 |
#include<lemon/bits/bezier.h> |
41 | 41 |
#include<lemon/error.h> |
42 | 42 |
|
43 | 43 |
|
44 | 44 |
///\ingroup eps_io |
45 | 45 |
///\file |
46 | 46 |
///\brief A well configurable tool for visualizing graphs |
47 | 47 |
|
48 | 48 |
namespace lemon { |
49 | 49 |
|
50 | 50 |
namespace _graph_to_eps_bits { |
51 | 51 |
template<class MT> |
52 | 52 |
class _NegY { |
53 | 53 |
public: |
54 | 54 |
typedef typename MT::Key Key; |
55 | 55 |
typedef typename MT::Value Value; |
56 | 56 |
const MT ↦ |
57 | 57 |
int yscale; |
58 | 58 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
59 | 59 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
60 | 60 |
}; |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
///Default traits class of GraphToEps |
64 | 64 |
|
65 | 65 |
///Default traits class of \ref GraphToEps. |
66 | 66 |
/// |
67 | 67 |
///\param GR is the type of the underlying graph. |
68 | 68 |
template<class GR> |
69 | 69 |
struct DefaultGraphToEpsTraits |
70 | 70 |
{ |
71 | 71 |
typedef GR Graph; |
72 |
typedef GR Digraph; |
|
72 | 73 |
typedef typename Graph::Node Node; |
73 | 74 |
typedef typename Graph::NodeIt NodeIt; |
74 | 75 |
typedef typename Graph::Arc Arc; |
75 | 76 |
typedef typename Graph::ArcIt ArcIt; |
76 | 77 |
typedef typename Graph::InArcIt InArcIt; |
77 | 78 |
typedef typename Graph::OutArcIt OutArcIt; |
78 | 79 |
|
79 | 80 |
|
80 | 81 |
const Graph &g; |
81 | 82 |
|
82 | 83 |
std::ostream& os; |
83 | 84 |
|
84 | 85 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
85 | 86 |
CoordsMapType _coords; |
86 | 87 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
87 | 88 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
88 | 89 |
|
89 | 90 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
90 | 91 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
91 | 92 |
|
92 | 93 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
93 | 94 |
|
94 | 95 |
double _arcWidthScale; |
95 | 96 |
|
96 | 97 |
double _nodeScale; |
97 | 98 |
double _xBorder, _yBorder; |
98 | 99 |
double _scale; |
99 | 100 |
double _nodeBorderQuotient; |
100 | 101 |
|
101 | 102 |
bool _drawArrows; |
102 | 103 |
double _arrowLength, _arrowWidth; |
103 | 104 |
|
104 | 105 |
bool _showNodes, _showArcs; |
105 | 106 |
|
106 | 107 |
bool _enableParallel; |
107 | 108 |
double _parArcDist; |
108 | 109 |
|
109 | 110 |
bool _showNodeText; |
110 | 111 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
111 | 112 |
double _nodeTextSize; |
112 | 113 |
|
113 | 114 |
bool _showNodePsText; |
114 | 115 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
115 | 116 |
char *_nodePsTextsPreamble; |
116 | 117 |
|
117 | 118 |
bool _undirected; |
118 | 119 |
|
119 | 120 |
bool _pleaseRemoveOsStream; |
120 | 121 |
|
121 | 122 |
bool _scaleToA4; |
122 | 123 |
|
123 | 124 |
std::string _title; |
124 | 125 |
std::string _copyright; |
125 | 126 |
|
126 | 127 |
enum NodeTextColorType |
127 | 128 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
128 | 129 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
129 | 130 |
|
130 | 131 |
bool _autoNodeScale; |
131 | 132 |
bool _autoArcWidthScale; |
132 | 133 |
|
133 | 134 |
bool _absoluteNodeSizes; |
134 | 135 |
bool _absoluteArcWidths; |
135 | 136 |
|
136 | 137 |
bool _negY; |
137 | 138 |
|
138 | 139 |
bool _preScale; |
139 | 140 |
///Constructor |
140 | 141 |
|
141 | 142 |
///Constructor |
142 | 143 |
///\param gr Reference to the graph to be printed. |
143 | 144 |
///\param ost Reference to the output stream. |
144 | 145 |
///By default it is <tt>std::cout</tt>. |
145 | 146 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
146 | 147 |
///will be explicitly deallocated by the destructor. |
147 | 148 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
148 | 149 |
bool pros = false) : |
149 | 150 |
g(gr), os(ost), |
150 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
151 | 152 |
_nodeColors(WHITE), _arcColors(BLACK), |
152 | 153 |
_arcWidths(1.0), _arcWidthScale(0.003), |
153 | 154 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
154 | 155 |
_nodeBorderQuotient(.1), |
155 | 156 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
156 | 157 |
_showNodes(true), _showArcs(true), |
157 | 158 |
_enableParallel(false), _parArcDist(1), |
158 | 159 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
159 | 160 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
160 | 161 |
_undirected(lemon::UndirectedTagIndicator<GR>::value), |
161 | 162 |
_pleaseRemoveOsStream(pros), _scaleToA4(false), |
162 | 163 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
163 | 164 |
_autoNodeScale(false), |
164 | 165 |
_autoArcWidthScale(false), |
165 | 166 |
_absoluteNodeSizes(false), |
166 | 167 |
_absoluteArcWidths(false), |
167 | 168 |
_negY(false), |
168 | 169 |
_preScale(true) |
169 | 170 |
{} |
170 | 171 |
}; |
171 | 172 |
|
172 | 173 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
173 | 174 |
|
174 | 175 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
175 | 176 |
/// |
176 | 177 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
177 | 178 |
template<class T> class GraphToEps : public T |
178 | 179 |
{ |
179 | 180 |
// Can't believe it is required by the C++ standard |
180 | 181 |
using T::g; |
181 | 182 |
using T::os; |
182 | 183 |
|
183 | 184 |
using T::_coords; |
184 | 185 |
using T::_nodeSizes; |
185 | 186 |
using T::_nodeShapes; |
186 | 187 |
using T::_nodeColors; |
187 | 188 |
using T::_arcColors; |
188 | 189 |
using T::_arcWidths; |
189 | 190 |
|
190 | 191 |
using T::_arcWidthScale; |
191 | 192 |
using T::_nodeScale; |
192 | 193 |
using T::_xBorder; |
193 | 194 |
using T::_yBorder; |
194 | 195 |
using T::_scale; |
195 | 196 |
using T::_nodeBorderQuotient; |
196 | 197 |
|
197 | 198 |
using T::_drawArrows; |
198 | 199 |
using T::_arrowLength; |
199 | 200 |
using T::_arrowWidth; |
200 | 201 |
|
201 | 202 |
using T::_showNodes; |
202 | 203 |
using T::_showArcs; |
203 | 204 |
|
204 | 205 |
using T::_enableParallel; |
205 | 206 |
using T::_parArcDist; |
206 | 207 |
|
207 | 208 |
using T::_showNodeText; |
208 | 209 |
using T::_nodeTexts; |
209 | 210 |
using T::_nodeTextSize; |
210 | 211 |
|
211 | 212 |
using T::_showNodePsText; |
212 | 213 |
using T::_nodePsTexts; |
213 | 214 |
using T::_nodePsTextsPreamble; |
214 | 215 |
|
215 | 216 |
using T::_undirected; |
216 | 217 |
|
217 | 218 |
using T::_pleaseRemoveOsStream; |
218 | 219 |
|
219 | 220 |
using T::_scaleToA4; |
220 | 221 |
|
221 | 222 |
using T::_title; |
222 | 223 |
using T::_copyright; |
223 | 224 |
|
224 | 225 |
using T::NodeTextColorType; |
225 | 226 |
using T::CUST_COL; |
226 | 227 |
using T::DIST_COL; |
227 | 228 |
using T::DIST_BW; |
228 | 229 |
using T::_nodeTextColorType; |
229 | 230 |
using T::_nodeTextColors; |
230 | 231 |
|
231 | 232 |
using T::_autoNodeScale; |
232 | 233 |
using T::_autoArcWidthScale; |
233 | 234 |
|
234 | 235 |
using T::_absoluteNodeSizes; |
235 | 236 |
using T::_absoluteArcWidths; |
236 | 237 |
|
237 | 238 |
|
238 | 239 |
using T::_negY; |
239 | 240 |
using T::_preScale; |
240 | 241 |
|
241 | 242 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
242 | 243 |
|
243 | 244 |
typedef typename T::Graph Graph; |
245 |
typedef typename T::Digraph Digraph; |
|
244 | 246 |
typedef typename Graph::Node Node; |
245 | 247 |
typedef typename Graph::NodeIt NodeIt; |
246 | 248 |
typedef typename Graph::Arc Arc; |
247 | 249 |
typedef typename Graph::ArcIt ArcIt; |
248 | 250 |
typedef typename Graph::InArcIt InArcIt; |
249 | 251 |
typedef typename Graph::OutArcIt OutArcIt; |
250 | 252 |
|
251 | 253 |
static const int INTERPOL_PREC; |
252 | 254 |
static const double A4HEIGHT; |
253 | 255 |
static const double A4WIDTH; |
254 | 256 |
static const double A4BORDER; |
255 | 257 |
|
256 | 258 |
bool dontPrint; |
257 | 259 |
|
258 | 260 |
public: |
259 | 261 |
///Node shapes |
260 | 262 |
|
261 | 263 |
///Node shapes. |
262 | 264 |
/// |
263 | 265 |
enum NodeShapes { |
264 | 266 |
/// = 0 |
265 | 267 |
///\image html nodeshape_0.png |
266 | 268 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
267 | 269 |
CIRCLE=0, |
268 | 270 |
/// = 1 |
269 | 271 |
///\image html nodeshape_1.png |
270 | 272 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
271 | 273 |
SQUARE=1, |
272 | 274 |
/// = 2 |
273 | 275 |
///\image html nodeshape_2.png |
274 | 276 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
275 | 277 |
DIAMOND=2, |
276 | 278 |
/// = 3 |
277 | 279 |
///\image html nodeshape_3.png |
278 | 280 |
///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm |
279 | 281 |
MALE=3, |
280 | 282 |
/// = 4 |
281 | 283 |
///\image html nodeshape_4.png |
282 | 284 |
///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm |
283 | 285 |
FEMALE=4 |
284 | 286 |
}; |
285 | 287 |
|
286 | 288 |
private: |
287 | 289 |
class arcLess { |
288 | 290 |
const Graph &g; |
289 | 291 |
public: |
290 | 292 |
arcLess(const Graph &_g) : g(_g) {} |
291 | 293 |
bool operator()(Arc a,Arc b) const |
292 | 294 |
{ |
293 | 295 |
Node ai=std::min(g.source(a),g.target(a)); |
294 | 296 |
Node aa=std::max(g.source(a),g.target(a)); |
295 | 297 |
Node bi=std::min(g.source(b),g.target(b)); |
296 | 298 |
Node ba=std::max(g.source(b),g.target(b)); |
297 | 299 |
return ai<bi || |
298 | 300 |
(ai==bi && (aa < ba || |
299 | 301 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
300 | 302 |
} |
301 | 303 |
}; |
302 | 304 |
bool isParallel(Arc e,Arc f) const |
303 | 305 |
{ |
304 | 306 |
return (g.source(e)==g.source(f)&& |
305 | 307 |
g.target(e)==g.target(f)) || |
306 | 308 |
(g.source(e)==g.target(f)&& |
307 | 309 |
g.target(e)==g.source(f)); |
308 | 310 |
} |
309 | 311 |
template<class TT> |
310 | 312 |
static std::string psOut(const dim2::Point<TT> &p) |
311 | 313 |
{ |
312 | 314 |
std::ostringstream os; |
313 | 315 |
os << p.x << ' ' << p.y; |
314 | 316 |
return os.str(); |
315 | 317 |
} |
316 | 318 |
static std::string psOut(const Color &c) |
317 | 319 |
{ |
318 | 320 |
std::ostringstream os; |
319 | 321 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
320 | 322 |
return os.str(); |
321 | 323 |
} |
322 | 324 |
|
323 | 325 |
public: |
324 | 326 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
325 | 327 |
|
326 | 328 |
template<class X> struct CoordsTraits : public T { |
327 | 329 |
typedef X CoordsMapType; |
328 | 330 |
const X &_coords; |
329 | 331 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
330 | 332 |
}; |
331 | 333 |
///Sets the map of the node coordinates |
332 | 334 |
|
333 | 335 |
///Sets the map of the node coordinates. |
334 | 336 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
335 | 337 |
///\ref dim2::Point "dim2::Point<int>" values. |
336 | 338 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
337 | 339 |
dontPrint=true; |
338 | 340 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
339 | 341 |
} |
340 | 342 |
template<class X> struct NodeSizesTraits : public T { |
341 | 343 |
const X &_nodeSizes; |
342 | 344 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
343 | 345 |
}; |
344 | 346 |
///Sets the map of the node sizes |
345 | 347 |
|
346 | 348 |
///Sets the map of the node sizes. |
347 | 349 |
///\param x must be a node map with \c double (or convertible) values. |
348 | 350 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
349 | 351 |
{ |
350 | 352 |
dontPrint=true; |
351 | 353 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
352 | 354 |
} |
353 | 355 |
template<class X> struct NodeShapesTraits : public T { |
354 | 356 |
const X &_nodeShapes; |
355 | 357 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
356 | 358 |
}; |
357 | 359 |
///Sets the map of the node shapes |
358 | 360 |
|
359 | 361 |
///Sets the map of the node shapes. |
360 | 362 |
///The available shape values |
361 | 363 |
///can be found in \ref NodeShapes "enum NodeShapes". |
362 | 364 |
///\param x must be a node map with \c int (or convertible) values. |
363 | 365 |
///\sa NodeShapes |
364 | 366 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
365 | 367 |
{ |
366 | 368 |
dontPrint=true; |
367 | 369 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
368 | 370 |
} |
369 | 371 |
template<class X> struct NodeTextsTraits : public T { |
370 | 372 |
const X &_nodeTexts; |
371 | 373 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
372 | 374 |
}; |
373 | 375 |
///Sets the text printed on the nodes |
374 | 376 |
|
375 | 377 |
///Sets the text printed on the nodes. |
376 | 378 |
///\param x must be a node map with type that can be pushed to a standard |
377 | 379 |
///\c ostream. |
378 | 380 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
379 | 381 |
{ |
380 | 382 |
dontPrint=true; |
381 | 383 |
_showNodeText=true; |
382 | 384 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
383 | 385 |
} |
384 | 386 |
template<class X> struct NodePsTextsTraits : public T { |
385 | 387 |
const X &_nodePsTexts; |
386 | 388 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
387 | 389 |
}; |
388 | 390 |
///Inserts a PostScript block to the nodes |
389 | 391 |
|
390 | 392 |
///With this command it is possible to insert a verbatim PostScript |
391 | 393 |
///block to the nodes. |
392 | 394 |
///The PS current point will be moved to the center of the node before |
393 | 395 |
///the PostScript block inserted. |
394 | 396 |
/// |
395 | 397 |
///Before and after the block a newline character is inserted so you |
396 | 398 |
///don't have to bother with the separators. |
397 | 399 |
/// |
398 | 400 |
///\param x must be a node map with type that can be pushed to a standard |
399 | 401 |
///\c ostream. |
400 | 402 |
/// |
401 | 403 |
///\sa nodePsTextsPreamble() |
402 | 404 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
403 | 405 |
{ |
404 | 406 |
dontPrint=true; |
405 | 407 |
_showNodePsText=true; |
406 | 408 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
407 | 409 |
} |
408 | 410 |
template<class X> struct ArcWidthsTraits : public T { |
409 | 411 |
const X &_arcWidths; |
410 | 412 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
411 | 413 |
}; |
412 | 414 |
///Sets the map of the arc widths |
413 | 415 |
|
414 | 416 |
///Sets the map of the arc widths. |
415 | 417 |
///\param x must be an arc map with \c double (or convertible) values. |
416 | 418 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
417 | 419 |
{ |
418 | 420 |
dontPrint=true; |
419 | 421 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
420 | 422 |
} |
421 | 423 |
|
422 | 424 |
template<class X> struct NodeColorsTraits : public T { |
423 | 425 |
const X &_nodeColors; |
424 | 426 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
425 | 427 |
}; |
426 | 428 |
///Sets the map of the node colors |
427 | 429 |
|
428 | 430 |
///Sets the map of the node colors. |
429 | 431 |
///\param x must be a node map with \ref Color values. |
430 | 432 |
/// |
431 | 433 |
///\sa Palette |
432 | 434 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
433 | 435 |
nodeColors(const X &x) |
434 | 436 |
{ |
435 | 437 |
dontPrint=true; |
436 | 438 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
437 | 439 |
} |
438 | 440 |
template<class X> struct NodeTextColorsTraits : public T { |
439 | 441 |
const X &_nodeTextColors; |
440 | 442 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
441 | 443 |
}; |
442 | 444 |
///Sets the map of the node text colors |
443 | 445 |
|
444 | 446 |
///Sets the map of the node text colors. |
445 | 447 |
///\param x must be a node map with \ref Color values. |
446 | 448 |
/// |
447 | 449 |
///\sa Palette |
448 | 450 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
449 | 451 |
nodeTextColors(const X &x) |
450 | 452 |
{ |
451 | 453 |
dontPrint=true; |
452 | 454 |
_nodeTextColorType=CUST_COL; |
453 | 455 |
return GraphToEps<NodeTextColorsTraits<X> > |
454 | 456 |
(NodeTextColorsTraits<X>(*this,x)); |
455 | 457 |
} |
456 | 458 |
template<class X> struct ArcColorsTraits : public T { |
457 | 459 |
const X &_arcColors; |
458 | 460 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
459 | 461 |
}; |
460 | 462 |
///Sets the map of the arc colors |
461 | 463 |
|
462 | 464 |
///Sets the map of the arc colors. |
463 | 465 |
///\param x must be an arc map with \ref Color values. |
464 | 466 |
/// |
465 | 467 |
///\sa Palette |
466 | 468 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
467 | 469 |
arcColors(const X &x) |
468 | 470 |
{ |
469 | 471 |
dontPrint=true; |
470 | 472 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
471 | 473 |
} |
472 | 474 |
///Sets a global scale factor for node sizes |
473 | 475 |
|
474 | 476 |
///Sets a global scale factor for node sizes. |
475 | 477 |
/// |
476 | 478 |
/// If nodeSizes() is not given, this function simply sets the node |
477 | 479 |
/// sizes to \c d. If nodeSizes() is given, but |
478 | 480 |
/// autoNodeScale() is not, then the node size given by |
479 | 481 |
/// nodeSizes() will be multiplied by the value \c d. |
480 | 482 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
481 | 483 |
/// node sizes will be scaled in such a way that the greatest size will be |
482 | 484 |
/// equal to \c d. |
483 | 485 |
/// \sa nodeSizes() |
484 | 486 |
/// \sa autoNodeScale() |
485 | 487 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
486 | 488 |
///Turns on/off the automatic node size scaling. |
487 | 489 |
|
488 | 490 |
///Turns on/off the automatic node size scaling. |
489 | 491 |
/// |
490 | 492 |
///\sa nodeScale() |
491 | 493 |
/// |
492 | 494 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
493 | 495 |
_autoNodeScale=b;return *this; |
494 | 496 |
} |
495 | 497 |
|
496 | 498 |
///Turns on/off the absolutematic node size scaling. |
497 | 499 |
|
498 | 500 |
///Turns on/off the absolutematic node size scaling. |
499 | 501 |
/// |
500 | 502 |
///\sa nodeScale() |
501 | 503 |
/// |
502 | 504 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
503 | 505 |
_absoluteNodeSizes=b;return *this; |
504 | 506 |
} |
505 | 507 |
|
506 | 508 |
///Negates the Y coordinates. |
507 | 509 |
GraphToEps<T> &negateY(bool b=true) { |
508 | 510 |
_negY=b;return *this; |
509 | 511 |
} |
510 | 512 |
|
511 | 513 |
///Turn on/off pre-scaling |
512 | 514 |
|
513 | 515 |
///By default graphToEps() rescales the whole image in order to avoid |
514 | 516 |
///very big or very small bounding boxes. |
515 | 517 |
/// |
516 | 518 |
///This (p)rescaling can be turned off with this function. |
517 | 519 |
/// |
518 | 520 |
GraphToEps<T> &preScale(bool b=true) { |
519 | 521 |
_preScale=b;return *this; |
520 | 522 |
} |
521 | 523 |
|
522 | 524 |
///Sets a global scale factor for arc widths |
523 | 525 |
|
524 | 526 |
/// Sets a global scale factor for arc widths. |
525 | 527 |
/// |
526 | 528 |
/// If arcWidths() is not given, this function simply sets the arc |
527 | 529 |
/// widths to \c d. If arcWidths() is given, but |
528 | 530 |
/// autoArcWidthScale() is not, then the arc withs given by |
529 | 531 |
/// arcWidths() will be multiplied by the value \c d. |
530 | 532 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
531 | 533 |
/// arc withs will be scaled in such a way that the greatest width will be |
532 | 534 |
/// equal to \c d. |
533 | 535 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
534 | 536 |
///Turns on/off the automatic arc width scaling. |
535 | 537 |
|
536 | 538 |
///Turns on/off the automatic arc width scaling. |
537 | 539 |
/// |
538 | 540 |
///\sa arcWidthScale() |
539 | 541 |
/// |
540 | 542 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
541 | 543 |
_autoArcWidthScale=b;return *this; |
542 | 544 |
} |
543 | 545 |
///Turns on/off the absolutematic arc width scaling. |
544 | 546 |
|
545 | 547 |
///Turns on/off the absolutematic arc width scaling. |
546 | 548 |
/// |
547 | 549 |
///\sa arcWidthScale() |
548 | 550 |
/// |
549 | 551 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
550 | 552 |
_absoluteArcWidths=b;return *this; |
551 | 553 |
} |
552 | 554 |
///Sets a global scale factor for the whole picture |
553 | 555 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
554 | 556 |
///Sets the width of the border around the picture |
555 | 557 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
556 | 558 |
///Sets the width of the border around the picture |
557 | 559 |
GraphToEps<T> &border(double x, double y) { |
558 | 560 |
_xBorder=x;_yBorder=y;return *this; |
559 | 561 |
} |
560 | 562 |
///Sets whether to draw arrows |
561 | 563 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
562 | 564 |
///Sets the length of the arrowheads |
563 | 565 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
564 | 566 |
///Sets the width of the arrowheads |
565 | 567 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
566 | 568 |
|
567 | 569 |
///Scales the drawing to fit to A4 page |
568 | 570 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
569 | 571 |
|
570 | 572 |
///Enables parallel arcs |
571 | 573 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
572 | 574 |
|
573 | 575 |
///Sets the distance between parallel arcs |
574 | 576 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
575 | 577 |
|
576 | 578 |
///Hides the arcs |
577 | 579 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
578 | 580 |
///Hides the nodes |
579 | 581 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
580 | 582 |
|
581 | 583 |
///Sets the size of the node texts |
582 | 584 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
583 | 585 |
|
584 | 586 |
///Sets the color of the node texts to be different from the node color |
585 | 587 |
|
586 | 588 |
///Sets the color of the node texts to be as different from the node color |
587 | 589 |
///as it is possible. |
588 | 590 |
GraphToEps<T> &distantColorNodeTexts() |
589 | 591 |
{_nodeTextColorType=DIST_COL;return *this;} |
590 | 592 |
///Sets the color of the node texts to be black or white and always visible. |
591 | 593 |
|
592 | 594 |
///Sets the color of the node texts to be black or white according to |
593 | 595 |
///which is more different from the node color. |
594 | 596 |
GraphToEps<T> &distantBWNodeTexts() |
595 | 597 |
{_nodeTextColorType=DIST_BW;return *this;} |
596 | 598 |
|
597 | 599 |
///Gives a preamble block for node Postscript block. |
598 | 600 |
|
599 | 601 |
///Gives a preamble block for node Postscript block. |
600 | 602 |
/// |
601 | 603 |
///\sa nodePsTexts() |
602 | 604 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
603 | 605 |
_nodePsTextsPreamble=str ;return *this; |
604 | 606 |
} |
605 | 607 |
///Sets whether the graph is undirected |
606 | 608 |
|
607 | 609 |
///Sets whether the graph is undirected. |
608 | 610 |
/// |
609 | 611 |
///This setting is the default for undirected graphs. |
610 | 612 |
/// |
611 | 613 |
///\sa directed() |
612 | 614 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
613 | 615 |
|
614 | 616 |
///Sets whether the graph is directed |
615 | 617 |
|
616 | 618 |
///Sets whether the graph is directed. |
617 | 619 |
///Use it to show the edges as a pair of directed ones. |
618 | 620 |
/// |
619 | 621 |
///This setting is the default for digraphs. |
620 | 622 |
/// |
621 | 623 |
///\sa undirected() |
622 | 624 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
623 | 625 |
|
624 | 626 |
///Sets the title. |
625 | 627 |
|
626 | 628 |
///Sets the title of the generated image, |
627 | 629 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
... | ... |
@@ -118,586 +118,586 @@ |
118 | 118 |
static int id(Node node) { return node._id; } |
119 | 119 |
static int id(Edge edge) { return edge._id; } |
120 | 120 |
static int id(Arc arc) { return arc._id; } |
121 | 121 |
|
122 | 122 |
int maxNodeId() const { return _node_num - 1; } |
123 | 123 |
int maxEdgeId() const { return _edge_num - 1; } |
124 | 124 |
int maxArcId() const { return 2 * _edge_num - 1; } |
125 | 125 |
|
126 | 126 |
static Node nodeFromId(int id) { return Node(id);} |
127 | 127 |
static Edge edgeFromId(int id) { return Edge(id);} |
128 | 128 |
static Arc arcFromId(int id) { return Arc(id);} |
129 | 129 |
|
130 | 130 |
typedef True FindEdgeTag; |
131 | 131 |
typedef True FindArcTag; |
132 | 132 |
|
133 | 133 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
134 | 134 |
if (prev != INVALID) return INVALID; |
135 | 135 |
if (v._id > u._id) { |
136 | 136 |
if (v._id - u._id == _width) |
137 | 137 |
return Edge(u._id); |
138 | 138 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) { |
139 | 139 |
return Edge(u._id / _width * (_width - 1) + |
140 | 140 |
u._id % _width + _edge_limit); |
141 | 141 |
} |
142 | 142 |
} else { |
143 | 143 |
if (u._id - v._id == _width) |
144 | 144 |
return Edge(v._id); |
145 | 145 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) { |
146 | 146 |
return Edge(v._id / _width * (_width - 1) + |
147 | 147 |
v._id % _width + _edge_limit); |
148 | 148 |
} |
149 | 149 |
} |
150 | 150 |
return INVALID; |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const { |
154 | 154 |
if (prev != INVALID) return INVALID; |
155 | 155 |
if (v._id > u._id) { |
156 | 156 |
if (v._id - u._id == _width) |
157 | 157 |
return Arc((u._id << 1) | 1); |
158 | 158 |
if (v._id - u._id == 1 && u._id % _width < _width - 1) { |
159 | 159 |
return Arc(((u._id / _width * (_width - 1) + |
160 | 160 |
u._id % _width + _edge_limit) << 1) | 1); |
161 | 161 |
} |
162 | 162 |
} else { |
163 | 163 |
if (u._id - v._id == _width) |
164 | 164 |
return Arc(v._id << 1); |
165 | 165 |
if (u._id - v._id == 1 && v._id % _width < _width - 1) { |
166 | 166 |
return Arc((v._id / _width * (_width - 1) + |
167 | 167 |
v._id % _width + _edge_limit) << 1); |
168 | 168 |
} |
169 | 169 |
} |
170 | 170 |
return INVALID; |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
class Node { |
174 | 174 |
friend class GridGraphBase; |
175 | 175 |
|
176 | 176 |
protected: |
177 | 177 |
int _id; |
178 | 178 |
Node(int id) : _id(id) {} |
179 | 179 |
public: |
180 | 180 |
Node() {} |
181 | 181 |
Node (Invalid) : _id(-1) {} |
182 | 182 |
bool operator==(const Node node) const {return _id == node._id;} |
183 | 183 |
bool operator!=(const Node node) const {return _id != node._id;} |
184 | 184 |
bool operator<(const Node node) const {return _id < node._id;} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
class Edge { |
188 | 188 |
friend class GridGraphBase; |
189 | 189 |
friend class Arc; |
190 | 190 |
|
191 | 191 |
protected: |
192 | 192 |
int _id; |
193 | 193 |
|
194 | 194 |
Edge(int id) : _id(id) {} |
195 | 195 |
|
196 | 196 |
public: |
197 | 197 |
Edge() {} |
198 | 198 |
Edge (Invalid) : _id(-1) {} |
199 | 199 |
bool operator==(const Edge edge) const {return _id == edge._id;} |
200 | 200 |
bool operator!=(const Edge edge) const {return _id != edge._id;} |
201 | 201 |
bool operator<(const Edge edge) const {return _id < edge._id;} |
202 | 202 |
}; |
203 | 203 |
|
204 | 204 |
class Arc { |
205 | 205 |
friend class GridGraphBase; |
206 | 206 |
|
207 | 207 |
protected: |
208 | 208 |
int _id; |
209 | 209 |
|
210 | 210 |
Arc(int id) : _id(id) {} |
211 | 211 |
|
212 | 212 |
public: |
213 | 213 |
Arc() {} |
214 | 214 |
Arc (Invalid) : _id(-1) {} |
215 | 215 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; } |
216 | 216 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
217 | 217 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
218 | 218 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
219 | 219 |
}; |
220 | 220 |
|
221 | 221 |
static bool direction(Arc arc) { |
222 | 222 |
return (arc._id & 1) == 1; |
223 | 223 |
} |
224 | 224 |
|
225 | 225 |
static Arc direct(Edge edge, bool dir) { |
226 | 226 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
void first(Node& node) const { |
230 | 230 |
node._id = _node_num - 1; |
231 | 231 |
} |
232 | 232 |
|
233 | 233 |
static void next(Node& node) { |
234 | 234 |
--node._id; |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
void first(Edge& edge) const { |
238 | 238 |
edge._id = _edge_num - 1; |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
static void next(Edge& edge) { |
242 | 242 |
--edge._id; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
void first(Arc& arc) const { |
246 | 246 |
arc._id = 2 * _edge_num - 1; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
static void next(Arc& arc) { |
250 | 250 |
--arc._id; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
void firstOut(Arc& arc, const Node& node) const { |
254 | 254 |
if (node._id % _width < _width - 1) { |
255 | 255 |
arc._id = (_edge_limit + node._id % _width + |
256 | 256 |
(node._id / _width) * (_width - 1)) << 1 | 1; |
257 | 257 |
return; |
258 | 258 |
} |
259 | 259 |
if (node._id < _node_num - _width) { |
260 | 260 |
arc._id = node._id << 1 | 1; |
261 | 261 |
return; |
262 | 262 |
} |
263 | 263 |
if (node._id % _width > 0) { |
264 | 264 |
arc._id = (_edge_limit + node._id % _width + |
265 | 265 |
(node._id / _width) * (_width - 1) - 1) << 1; |
266 | 266 |
return; |
267 | 267 |
} |
268 | 268 |
if (node._id >= _width) { |
269 | 269 |
arc._id = (node._id - _width) << 1; |
270 | 270 |
return; |
271 | 271 |
} |
272 | 272 |
arc._id = -1; |
273 | 273 |
} |
274 | 274 |
|
275 | 275 |
void nextOut(Arc& arc) const { |
276 | 276 |
int nid = arc._id >> 1; |
277 | 277 |
if ((arc._id & 1) == 1) { |
278 | 278 |
if (nid >= _edge_limit) { |
279 | 279 |
nid = (nid - _edge_limit) % (_width - 1) + |
280 | 280 |
(nid - _edge_limit) / (_width - 1) * _width; |
281 | 281 |
if (nid < _node_num - _width) { |
282 | 282 |
arc._id = nid << 1 | 1; |
283 | 283 |
return; |
284 | 284 |
} |
285 | 285 |
} |
286 | 286 |
if (nid % _width > 0) { |
287 | 287 |
arc._id = (_edge_limit + nid % _width + |
288 | 288 |
(nid / _width) * (_width - 1) - 1) << 1; |
289 | 289 |
return; |
290 | 290 |
} |
291 | 291 |
if (nid >= _width) { |
292 | 292 |
arc._id = (nid - _width) << 1; |
293 | 293 |
return; |
294 | 294 |
} |
295 | 295 |
} else { |
296 | 296 |
if (nid >= _edge_limit) { |
297 | 297 |
nid = (nid - _edge_limit) % (_width - 1) + |
298 | 298 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
299 | 299 |
if (nid >= _width) { |
300 | 300 |
arc._id = (nid - _width) << 1; |
301 | 301 |
return; |
302 | 302 |
} |
303 | 303 |
} |
304 | 304 |
} |
305 | 305 |
arc._id = -1; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
void firstIn(Arc& arc, const Node& node) const { |
309 | 309 |
if (node._id % _width < _width - 1) { |
310 | 310 |
arc._id = (_edge_limit + node._id % _width + |
311 | 311 |
(node._id / _width) * (_width - 1)) << 1; |
312 | 312 |
return; |
313 | 313 |
} |
314 | 314 |
if (node._id < _node_num - _width) { |
315 | 315 |
arc._id = node._id << 1; |
316 | 316 |
return; |
317 | 317 |
} |
318 | 318 |
if (node._id % _width > 0) { |
319 | 319 |
arc._id = (_edge_limit + node._id % _width + |
320 | 320 |
(node._id / _width) * (_width - 1) - 1) << 1 | 1; |
321 | 321 |
return; |
322 | 322 |
} |
323 | 323 |
if (node._id >= _width) { |
324 | 324 |
arc._id = (node._id - _width) << 1 | 1; |
325 | 325 |
return; |
326 | 326 |
} |
327 | 327 |
arc._id = -1; |
328 | 328 |
} |
329 | 329 |
|
330 | 330 |
void nextIn(Arc& arc) const { |
331 | 331 |
int nid = arc._id >> 1; |
332 | 332 |
if ((arc._id & 1) == 0) { |
333 | 333 |
if (nid >= _edge_limit) { |
334 | 334 |
nid = (nid - _edge_limit) % (_width - 1) + |
335 | 335 |
(nid - _edge_limit) / (_width - 1) * _width; |
336 | 336 |
if (nid < _node_num - _width) { |
337 | 337 |
arc._id = nid << 1; |
338 | 338 |
return; |
339 | 339 |
} |
340 | 340 |
} |
341 | 341 |
if (nid % _width > 0) { |
342 | 342 |
arc._id = (_edge_limit + nid % _width + |
343 | 343 |
(nid / _width) * (_width - 1) - 1) << 1 | 1; |
344 | 344 |
return; |
345 | 345 |
} |
346 | 346 |
if (nid >= _width) { |
347 | 347 |
arc._id = (nid - _width) << 1 | 1; |
348 | 348 |
return; |
349 | 349 |
} |
350 | 350 |
} else { |
351 | 351 |
if (nid >= _edge_limit) { |
352 | 352 |
nid = (nid - _edge_limit) % (_width - 1) + |
353 | 353 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
354 | 354 |
if (nid >= _width) { |
355 | 355 |
arc._id = (nid - _width) << 1 | 1; |
356 | 356 |
return; |
357 | 357 |
} |
358 | 358 |
} |
359 | 359 |
} |
360 | 360 |
arc._id = -1; |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
void firstInc(Edge& edge, bool& dir, const Node& node) const { |
364 | 364 |
if (node._id % _width < _width - 1) { |
365 | 365 |
edge._id = _edge_limit + node._id % _width + |
366 | 366 |
(node._id / _width) * (_width - 1); |
367 | 367 |
dir = true; |
368 | 368 |
return; |
369 | 369 |
} |
370 | 370 |
if (node._id < _node_num - _width) { |
371 | 371 |
edge._id = node._id; |
372 | 372 |
dir = true; |
373 | 373 |
return; |
374 | 374 |
} |
375 | 375 |
if (node._id % _width > 0) { |
376 | 376 |
edge._id = _edge_limit + node._id % _width + |
377 | 377 |
(node._id / _width) * (_width - 1) - 1; |
378 | 378 |
dir = false; |
379 | 379 |
return; |
380 | 380 |
} |
381 | 381 |
if (node._id >= _width) { |
382 | 382 |
edge._id = node._id - _width; |
383 | 383 |
dir = false; |
384 | 384 |
return; |
385 | 385 |
} |
386 | 386 |
edge._id = -1; |
387 | 387 |
dir = true; |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
void nextInc(Edge& edge, bool& dir) const { |
391 | 391 |
int nid = edge._id; |
392 | 392 |
if (dir) { |
393 | 393 |
if (nid >= _edge_limit) { |
394 | 394 |
nid = (nid - _edge_limit) % (_width - 1) + |
395 | 395 |
(nid - _edge_limit) / (_width - 1) * _width; |
396 | 396 |
if (nid < _node_num - _width) { |
397 | 397 |
edge._id = nid; |
398 | 398 |
return; |
399 | 399 |
} |
400 | 400 |
} |
401 | 401 |
if (nid % _width > 0) { |
402 | 402 |
edge._id = _edge_limit + nid % _width + |
403 | 403 |
(nid / _width) * (_width - 1) - 1; |
404 | 404 |
dir = false; |
405 | 405 |
return; |
406 | 406 |
} |
407 | 407 |
if (nid >= _width) { |
408 | 408 |
edge._id = nid - _width; |
409 | 409 |
dir = false; |
410 | 410 |
return; |
411 | 411 |
} |
412 | 412 |
} else { |
413 | 413 |
if (nid >= _edge_limit) { |
414 | 414 |
nid = (nid - _edge_limit) % (_width - 1) + |
415 | 415 |
(nid - _edge_limit) / (_width - 1) * _width + 1; |
416 | 416 |
if (nid >= _width) { |
417 | 417 |
edge._id = nid - _width; |
418 | 418 |
return; |
419 | 419 |
} |
420 | 420 |
} |
421 | 421 |
} |
422 | 422 |
edge._id = -1; |
423 | 423 |
dir = true; |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
Arc right(Node n) const { |
427 | 427 |
if (n._id % _width < _width - 1) { |
428 | 428 |
return Arc(((_edge_limit + n._id % _width + |
429 | 429 |
(n._id / _width) * (_width - 1)) << 1) | 1); |
430 | 430 |
} else { |
431 | 431 |
return INVALID; |
432 | 432 |
} |
433 | 433 |
} |
434 | 434 |
|
435 | 435 |
Arc left(Node n) const { |
436 | 436 |
if (n._id % _width > 0) { |
437 | 437 |
return Arc((_edge_limit + n._id % _width + |
438 | 438 |
(n._id / _width) * (_width - 1) - 1) << 1); |
439 | 439 |
} else { |
440 | 440 |
return INVALID; |
441 | 441 |
} |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
Arc up(Node n) const { |
445 | 445 |
if (n._id < _edge_limit) { |
446 | 446 |
return Arc((n._id << 1) | 1); |
447 | 447 |
} else { |
448 | 448 |
return INVALID; |
449 | 449 |
} |
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
Arc down(Node n) const { |
453 | 453 |
if (n._id >= _width) { |
454 | 454 |
return Arc((n._id - _width) << 1); |
455 | 455 |
} else { |
456 | 456 |
return INVALID; |
457 | 457 |
} |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
private: |
461 | 461 |
int _width, _height; |
462 | 462 |
int _node_num, _edge_num; |
463 | 463 |
int _edge_limit; |
464 | 464 |
}; |
465 | 465 |
|
466 | 466 |
|
467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
468 | 468 |
|
469 | 469 |
/// \ingroup graphs |
470 | 470 |
/// |
471 | 471 |
/// \brief Grid graph class |
472 | 472 |
/// |
473 | 473 |
/// This class implements a special graph type. The nodes of the |
474 | 474 |
/// graph can be indexed by two integer \c (i,j) value where \c i is |
475 | 475 |
/// in the \c [0..width()-1] range and j is in the \c |
476 | 476 |
/// [0..height()-1] range. Two nodes are connected in the graph if |
477 | 477 |
/// the indexes differ exactly on one position and exactly one is |
478 | 478 |
/// the difference. The nodes of the graph can be indexed by position |
479 | 479 |
/// with the \c operator()() function. The positions of the nodes can be |
480 | 480 |
/// get with \c pos(), \c col() and \c row() members. The outgoing |
481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
483 | 483 |
/// origin. |
484 | 484 |
/// |
485 | 485 |
/// \image html grid_graph.png |
486 | 486 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
487 | 487 |
/// |
488 | 488 |
/// A short example about the basic usage: |
489 | 489 |
///\code |
490 | 490 |
/// GridGraph graph(rows, cols); |
491 | 491 |
/// GridGraph::NodeMap<int> val(graph); |
492 | 492 |
/// for (int i = 0; i < graph.width(); ++i) { |
493 | 493 |
/// for (int j = 0; j < graph.height(); ++j) { |
494 | 494 |
/// val[graph(i, j)] = i + j; |
495 | 495 |
/// } |
496 | 496 |
/// } |
497 | 497 |
///\endcode |
498 | 498 |
/// |
499 | 499 |
/// This graph type fully conforms to the \ref concepts::Graph |
500 | 500 |
/// "Graph concept". |
501 | 501 |
class GridGraph : public ExtendedGridGraphBase { |
502 |
typedef ExtendedGridGraphBase Parent; |
|
503 |
|
|
502 | 504 |
public: |
503 | 505 |
|
504 |
typedef ExtendedGridGraphBase Parent; |
|
505 |
|
|
506 | 506 |
/// \brief Map to get the indices of the nodes as dim2::Point<int>. |
507 | 507 |
/// |
508 | 508 |
/// Map to get the indices of the nodes as dim2::Point<int>. |
509 | 509 |
class IndexMap { |
510 | 510 |
public: |
511 | 511 |
/// \brief The key type of the map |
512 | 512 |
typedef GridGraph::Node Key; |
513 | 513 |
/// \brief The value type of the map |
514 | 514 |
typedef dim2::Point<int> Value; |
515 | 515 |
|
516 | 516 |
/// \brief Constructor |
517 | 517 |
/// |
518 | 518 |
/// Constructor |
519 | 519 |
IndexMap(const GridGraph& graph) : _graph(graph) {} |
520 | 520 |
|
521 | 521 |
/// \brief The subscript operator |
522 | 522 |
/// |
523 | 523 |
/// The subscript operator. |
524 | 524 |
Value operator[](Key key) const { |
525 | 525 |
return _graph.pos(key); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
private: |
529 | 529 |
const GridGraph& _graph; |
530 | 530 |
}; |
531 | 531 |
|
532 | 532 |
/// \brief Map to get the column of the nodes. |
533 | 533 |
/// |
534 | 534 |
/// Map to get the column of the nodes. |
535 | 535 |
class ColMap { |
536 | 536 |
public: |
537 | 537 |
/// \brief The key type of the map |
538 | 538 |
typedef GridGraph::Node Key; |
539 | 539 |
/// \brief The value type of the map |
540 | 540 |
typedef int Value; |
541 | 541 |
|
542 | 542 |
/// \brief Constructor |
543 | 543 |
/// |
544 | 544 |
/// Constructor |
545 | 545 |
ColMap(const GridGraph& graph) : _graph(graph) {} |
546 | 546 |
|
547 | 547 |
/// \brief The subscript operator |
548 | 548 |
/// |
549 | 549 |
/// The subscript operator. |
550 | 550 |
Value operator[](Key key) const { |
551 | 551 |
return _graph.col(key); |
552 | 552 |
} |
553 | 553 |
|
554 | 554 |
private: |
555 | 555 |
const GridGraph& _graph; |
556 | 556 |
}; |
557 | 557 |
|
558 | 558 |
/// \brief Map to get the row of the nodes. |
559 | 559 |
/// |
560 | 560 |
/// Map to get the row of the nodes. |
561 | 561 |
class RowMap { |
562 | 562 |
public: |
563 | 563 |
/// \brief The key type of the map |
564 | 564 |
typedef GridGraph::Node Key; |
565 | 565 |
/// \brief The value type of the map |
566 | 566 |
typedef int Value; |
567 | 567 |
|
568 | 568 |
/// \brief Constructor |
569 | 569 |
/// |
570 | 570 |
/// Constructor |
571 | 571 |
RowMap(const GridGraph& graph) : _graph(graph) {} |
572 | 572 |
|
573 | 573 |
/// \brief The subscript operator |
574 | 574 |
/// |
575 | 575 |
/// The subscript operator. |
576 | 576 |
Value operator[](Key key) const { |
577 | 577 |
return _graph.row(key); |
578 | 578 |
} |
579 | 579 |
|
580 | 580 |
private: |
581 | 581 |
const GridGraph& _graph; |
582 | 582 |
}; |
583 | 583 |
|
584 | 584 |
/// \brief Constructor |
585 | 585 |
/// |
586 | 586 |
/// Construct a grid graph with given size. |
587 | 587 |
GridGraph(int width, int height) { construct(width, height); } |
588 | 588 |
|
589 | 589 |
/// \brief Resize the graph |
590 | 590 |
/// |
591 | 591 |
/// Resize the graph. The function will fully destroy and rebuild |
592 | 592 |
/// the graph. This cause that the maps of the graph will |
593 | 593 |
/// reallocated automatically and the previous values will be |
594 | 594 |
/// lost. |
595 | 595 |
void resize(int width, int height) { |
596 | 596 |
Parent::notifier(Arc()).clear(); |
597 | 597 |
Parent::notifier(Edge()).clear(); |
598 | 598 |
Parent::notifier(Node()).clear(); |
599 | 599 |
construct(width, height); |
600 | 600 |
Parent::notifier(Node()).build(); |
601 | 601 |
Parent::notifier(Edge()).build(); |
602 | 602 |
Parent::notifier(Arc()).build(); |
603 | 603 |
} |
604 | 604 |
|
605 | 605 |
/// \brief The node on the given position. |
606 | 606 |
/// |
607 | 607 |
/// Gives back the node on the given position. |
608 | 608 |
Node operator()(int i, int j) const { |
609 | 609 |
return Parent::operator()(i, j); |
610 | 610 |
} |
611 | 611 |
|
612 | 612 |
/// \brief Gives back the column index of the node. |
613 | 613 |
/// |
614 | 614 |
/// Gives back the column index of the node. |
615 | 615 |
int col(Node n) const { |
616 | 616 |
return Parent::col(n); |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
/// \brief Gives back the row index of the node. |
620 | 620 |
/// |
621 | 621 |
/// Gives back the row index of the node. |
622 | 622 |
int row(Node n) const { |
623 | 623 |
return Parent::row(n); |
624 | 624 |
} |
625 | 625 |
|
626 | 626 |
/// \brief Gives back the position of the node. |
627 | 627 |
/// |
628 | 628 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
629 | 629 |
dim2::Point<int> pos(Node n) const { |
630 | 630 |
return Parent::pos(n); |
631 | 631 |
} |
632 | 632 |
|
633 | 633 |
/// \brief Gives back the number of the columns. |
634 | 634 |
/// |
635 | 635 |
/// Gives back the number of the columns. |
636 | 636 |
int width() const { |
637 | 637 |
return Parent::width(); |
638 | 638 |
} |
639 | 639 |
|
640 | 640 |
/// \brief Gives back the number of the rows. |
641 | 641 |
/// |
642 | 642 |
/// Gives back the number of the rows. |
643 | 643 |
int height() const { |
644 | 644 |
return Parent::height(); |
645 | 645 |
} |
646 | 646 |
|
647 | 647 |
/// \brief Gives back the arc goes right from the node. |
648 | 648 |
/// |
649 | 649 |
/// Gives back the arc goes right from the node. If there is not |
650 | 650 |
/// outgoing arc then it gives back INVALID. |
651 | 651 |
Arc right(Node n) const { |
652 | 652 |
return Parent::right(n); |
653 | 653 |
} |
654 | 654 |
|
655 | 655 |
/// \brief Gives back the arc goes left from the node. |
656 | 656 |
/// |
657 | 657 |
/// Gives back the arc goes left from the node. If there is not |
658 | 658 |
/// outgoing arc then it gives back INVALID. |
659 | 659 |
Arc left(Node n) const { |
660 | 660 |
return Parent::left(n); |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
/// \brief Gives back the arc goes up from the node. |
664 | 664 |
/// |
665 | 665 |
/// Gives back the arc goes up from the node. If there is not |
666 | 666 |
/// outgoing arc then it gives back INVALID. |
667 | 667 |
Arc up(Node n) const { |
668 | 668 |
return Parent::up(n); |
669 | 669 |
} |
670 | 670 |
|
671 | 671 |
/// \brief Gives back the arc goes down from the node. |
672 | 672 |
/// |
673 | 673 |
/// Gives back the arc goes down from the node. If there is not |
674 | 674 |
/// outgoing arc then it gives back INVALID. |
675 | 675 |
Arc down(Node n) const { |
676 | 676 |
return Parent::down(n); |
677 | 677 |
} |
678 | 678 |
|
679 | 679 |
/// \brief Index map of the grid graph |
680 | 680 |
/// |
681 | 681 |
/// Just returns an IndexMap for the grid graph. |
682 | 682 |
IndexMap indexMap() const { |
683 | 683 |
return IndexMap(*this); |
684 | 684 |
} |
685 | 685 |
|
686 | 686 |
/// \brief Row map of the grid graph |
687 | 687 |
/// |
688 | 688 |
/// Just returns a RowMap for the grid graph. |
689 | 689 |
RowMap rowMap() const { |
690 | 690 |
return RowMap(*this); |
691 | 691 |
} |
692 | 692 |
|
693 | 693 |
/// \brief Column map of the grid graph |
694 | 694 |
/// |
695 | 695 |
/// Just returns a ColMap for the grid graph. |
696 | 696 |
ColMap colMap() const { |
697 | 697 |
return ColMap(*this); |
698 | 698 |
} |
699 | 699 |
|
700 | 700 |
}; |
701 | 701 |
|
702 | 702 |
} |
703 | 703 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef HYPERCUBE_GRAPH_H |
20 | 20 |
#define HYPERCUBE_GRAPH_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <lemon/core.h> |
24 | 24 |
#include <lemon/assert.h> |
25 | 25 |
#include <lemon/bits/graph_extender.h> |
26 | 26 |
|
27 | 27 |
///\ingroup graphs |
28 | 28 |
///\file |
29 | 29 |
///\brief HypercubeGraph class. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
class HypercubeGraphBase { |
34 | 34 |
|
35 | 35 |
public: |
36 | 36 |
|
37 | 37 |
typedef HypercubeGraphBase Graph; |
38 | 38 |
|
39 | 39 |
class Node; |
40 | 40 |
class Edge; |
41 | 41 |
class Arc; |
42 | 42 |
|
43 | 43 |
public: |
44 | 44 |
|
45 | 45 |
HypercubeGraphBase() {} |
46 | 46 |
|
47 | 47 |
protected: |
48 | 48 |
|
49 | 49 |
void construct(int dim) { |
50 | 50 |
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1."); |
51 | 51 |
_dim = dim; |
52 | 52 |
_node_num = 1 << dim; |
53 | 53 |
_edge_num = dim * (1 << (dim-1)); |
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
typedef True NodeNumTag; |
59 | 59 |
typedef True EdgeNumTag; |
60 | 60 |
typedef True ArcNumTag; |
61 | 61 |
|
62 | 62 |
int nodeNum() const { return _node_num; } |
63 | 63 |
int edgeNum() const { return _edge_num; } |
64 | 64 |
int arcNum() const { return 2 * _edge_num; } |
65 | 65 |
|
66 | 66 |
int maxNodeId() const { return _node_num - 1; } |
67 | 67 |
int maxEdgeId() const { return _edge_num - 1; } |
68 | 68 |
int maxArcId() const { return 2 * _edge_num - 1; } |
69 | 69 |
|
70 | 70 |
static Node nodeFromId(int id) { return Node(id); } |
71 | 71 |
static Edge edgeFromId(int id) { return Edge(id); } |
72 | 72 |
static Arc arcFromId(int id) { return Arc(id); } |
73 | 73 |
|
74 | 74 |
static int id(Node node) { return node._id; } |
75 | 75 |
static int id(Edge edge) { return edge._id; } |
76 | 76 |
static int id(Arc arc) { return arc._id; } |
77 | 77 |
|
78 | 78 |
Node u(Edge edge) const { |
79 | 79 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
80 | 80 |
int k = edge._id >> (_dim-1); |
81 | 81 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)); |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
Node v(Edge edge) const { |
85 | 85 |
int base = edge._id & ((1 << (_dim-1)) - 1); |
86 | 86 |
int k = edge._id >> (_dim-1); |
87 | 87 |
return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k); |
88 | 88 |
} |
89 | 89 |
|
90 | 90 |
Node source(Arc arc) const { |
91 | 91 |
return (arc._id & 1) == 1 ? u(arc) : v(arc); |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
Node target(Arc arc) const { |
95 | 95 |
return (arc._id & 1) == 1 ? v(arc) : u(arc); |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
typedef True FindEdgeTag; |
99 | 99 |
typedef True FindArcTag; |
100 | 100 |
|
101 | 101 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const { |
102 | 102 |
if (prev != INVALID) return INVALID; |
103 | 103 |
int d = u._id ^ v._id; |
104 | 104 |
int k = 0; |
105 | 105 |
if (d == 0) return INVALID; |
106 | 106 |
for ( ; (d & 1) == 0; d >>= 1) ++k; |
107 | 107 |
if (d >> 1 != 0) return INVALID; |
108 | 108 |
return (k << (_dim-1)) | ((u._id >> (k+1)) << k) | |
109 | 109 |
(u._id & ((1 << k) - 1)); |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const { |
113 | 113 |
Edge edge = findEdge(u, v, prev); |
114 | 114 |
if (edge == INVALID) return INVALID; |
115 | 115 |
int k = edge._id >> (_dim-1); |
116 | 116 |
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1; |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
class Node { |
120 | 120 |
friend class HypercubeGraphBase; |
121 | 121 |
|
122 | 122 |
protected: |
123 | 123 |
int _id; |
124 | 124 |
Node(int id) : _id(id) {} |
125 | 125 |
public: |
126 | 126 |
Node() {} |
127 | 127 |
Node (Invalid) : _id(-1) {} |
128 | 128 |
bool operator==(const Node node) const {return _id == node._id;} |
129 | 129 |
bool operator!=(const Node node) const {return _id != node._id;} |
130 | 130 |
bool operator<(const Node node) const {return _id < node._id;} |
131 | 131 |
}; |
132 | 132 |
|
133 | 133 |
class Edge { |
134 | 134 |
friend class HypercubeGraphBase; |
135 | 135 |
friend class Arc; |
136 | 136 |
|
137 | 137 |
protected: |
138 | 138 |
int _id; |
139 | 139 |
|
140 | 140 |
Edge(int id) : _id(id) {} |
141 | 141 |
|
142 | 142 |
public: |
143 | 143 |
Edge() {} |
144 | 144 |
Edge (Invalid) : _id(-1) {} |
145 | 145 |
bool operator==(const Edge edge) const {return _id == edge._id;} |
146 | 146 |
bool operator!=(const Edge edge) const {return _id != edge._id;} |
147 | 147 |
bool operator<(const Edge edge) const {return _id < edge._id;} |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
class Arc { |
151 | 151 |
friend class HypercubeGraphBase; |
152 | 152 |
|
153 | 153 |
protected: |
154 | 154 |
int _id; |
155 | 155 |
|
156 | 156 |
Arc(int id) : _id(id) {} |
157 | 157 |
|
158 | 158 |
public: |
159 | 159 |
Arc() {} |
160 | 160 |
Arc (Invalid) : _id(-1) {} |
161 | 161 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; } |
162 | 162 |
bool operator==(const Arc arc) const {return _id == arc._id;} |
163 | 163 |
bool operator!=(const Arc arc) const {return _id != arc._id;} |
164 | 164 |
bool operator<(const Arc arc) const {return _id < arc._id;} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
void first(Node& node) const { |
168 | 168 |
node._id = _node_num - 1; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
static void next(Node& node) { |
172 | 172 |
--node._id; |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
void first(Edge& edge) const { |
176 | 176 |
edge._id = _edge_num - 1; |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
static void next(Edge& edge) { |
180 | 180 |
--edge._id; |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
void first(Arc& arc) const { |
184 | 184 |
arc._id = 2 * _edge_num - 1; |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
static void next(Arc& arc) { |
188 | 188 |
--arc._id; |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
void firstInc(Edge& edge, bool& dir, const Node& node) const { |
192 | 192 |
edge._id = node._id >> 1; |
193 | 193 |
dir = (node._id & 1) == 0; |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
void nextInc(Edge& edge, bool& dir) const { |
197 | 197 |
Node n = dir ? u(edge) : v(edge); |
198 | 198 |
int k = (edge._id >> (_dim-1)) + 1; |
199 | 199 |
if (k < _dim) { |
200 | 200 |
edge._id = (k << (_dim-1)) | |
201 | 201 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
202 | 202 |
dir = ((n._id >> k) & 1) == 0; |
203 | 203 |
} else { |
204 | 204 |
edge._id = -1; |
205 | 205 |
dir = true; |
206 | 206 |
} |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
void firstOut(Arc& arc, const Node& node) const { |
210 | 210 |
arc._id = ((node._id >> 1) << 1) | (~node._id & 1); |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
void nextOut(Arc& arc) const { |
214 | 214 |
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc); |
215 | 215 |
int k = (arc._id >> _dim) + 1; |
216 | 216 |
if (k < _dim) { |
217 | 217 |
arc._id = (k << (_dim-1)) | |
218 | 218 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
219 | 219 |
arc._id = (arc._id << 1) | (~(n._id >> k) & 1); |
220 | 220 |
} else { |
221 | 221 |
arc._id = -1; |
222 | 222 |
} |
223 | 223 |
} |
224 | 224 |
|
225 | 225 |
void firstIn(Arc& arc, const Node& node) const { |
226 | 226 |
arc._id = ((node._id >> 1) << 1) | (node._id & 1); |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
void nextIn(Arc& arc) const { |
230 | 230 |
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc); |
231 | 231 |
int k = (arc._id >> _dim) + 1; |
232 | 232 |
if (k < _dim) { |
233 | 233 |
arc._id = (k << (_dim-1)) | |
234 | 234 |
((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); |
235 | 235 |
arc._id = (arc._id << 1) | ((n._id >> k) & 1); |
236 | 236 |
} else { |
237 | 237 |
arc._id = -1; |
238 | 238 |
} |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
static bool direction(Arc arc) { |
242 | 242 |
return (arc._id & 1) == 1; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
static Arc direct(Edge edge, bool dir) { |
246 | 246 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
int dimension() const { |
250 | 250 |
return _dim; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
bool projection(Node node, int n) const { |
254 | 254 |
return static_cast<bool>(node._id & (1 << n)); |
255 | 255 |
} |
256 | 256 |
|
257 | 257 |
int dimension(Edge edge) const { |
258 | 258 |
return edge._id >> (_dim-1); |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
int dimension(Arc arc) const { |
262 | 262 |
return arc._id >> _dim; |
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
int index(Node node) const { |
266 | 266 |
return node._id; |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
Node operator()(int ix) const { |
270 | 270 |
return Node(ix); |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
private: |
274 | 274 |
int _dim; |
275 | 275 |
int _node_num, _edge_num; |
276 | 276 |
}; |
277 | 277 |
|
278 | 278 |
|
279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
280 | 280 |
|
281 | 281 |
/// \ingroup graphs |
282 | 282 |
/// |
283 | 283 |
/// \brief Hypercube graph class |
284 | 284 |
/// |
285 | 285 |
/// This class implements a special graph type. The nodes of the graph |
286 | 286 |
/// are indiced with integers with at most \c dim binary digits. |
287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
288 | 288 |
/// differ only on one position in the binary form. |
289 | 289 |
/// |
290 | 290 |
/// \note The type of the indices is chosen to \c int for efficiency |
291 | 291 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
292 | 292 |
/// (assuming that the size of \c int is 32 bit). |
293 | 293 |
/// |
294 | 294 |
/// This graph type fully conforms to the \ref concepts::Graph |
295 | 295 |
/// "Graph concept". |
296 | 296 |
class HypercubeGraph : public ExtendedHypercubeGraphBase { |
297 |
typedef ExtendedHypercubeGraphBase Parent; |
|
298 |
|
|
297 | 299 |
public: |
298 | 300 |
|
299 |
typedef ExtendedHypercubeGraphBase Parent; |
|
300 |
|
|
301 | 301 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
302 | 302 |
/// |
303 | 303 |
/// Constructs a hypercube graph with \c dim dimensions. |
304 | 304 |
HypercubeGraph(int dim) { construct(dim); } |
305 | 305 |
|
306 | 306 |
/// \brief The number of dimensions. |
307 | 307 |
/// |
308 | 308 |
/// Gives back the number of dimensions. |
309 | 309 |
int dimension() const { |
310 | 310 |
return Parent::dimension(); |
311 | 311 |
} |
312 | 312 |
|
313 | 313 |
/// \brief Returns \c true if the n'th bit of the node is one. |
314 | 314 |
/// |
315 | 315 |
/// Returns \c true if the n'th bit of the node is one. |
316 | 316 |
bool projection(Node node, int n) const { |
317 | 317 |
return Parent::projection(node, n); |
318 | 318 |
} |
319 | 319 |
|
320 | 320 |
/// \brief The dimension id of an edge. |
321 | 321 |
/// |
322 | 322 |
/// Gives back the dimension id of the given edge. |
323 | 323 |
/// It is in the [0..dim-1] range. |
324 | 324 |
int dimension(Edge edge) const { |
325 | 325 |
return Parent::dimension(edge); |
326 | 326 |
} |
327 | 327 |
|
328 | 328 |
/// \brief The dimension id of an arc. |
329 | 329 |
/// |
330 | 330 |
/// Gives back the dimension id of the given arc. |
331 | 331 |
/// It is in the [0..dim-1] range. |
332 | 332 |
int dimension(Arc arc) const { |
333 | 333 |
return Parent::dimension(arc); |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
/// \brief The index of a node. |
337 | 337 |
/// |
338 | 338 |
/// Gives back the index of the given node. |
339 | 339 |
/// The lower bits of the integer describes the node. |
340 | 340 |
int index(Node node) const { |
341 | 341 |
return Parent::index(node); |
342 | 342 |
} |
343 | 343 |
|
344 | 344 |
/// \brief Gives back a node by its index. |
345 | 345 |
/// |
346 | 346 |
/// Gives back a node by its index. |
347 | 347 |
Node operator()(int ix) const { |
348 | 348 |
return Parent::operator()(ix); |
349 | 349 |
} |
350 | 350 |
|
351 | 351 |
/// \brief Number of nodes. |
352 | 352 |
int nodeNum() const { return Parent::nodeNum(); } |
353 | 353 |
/// \brief Number of edges. |
354 | 354 |
int edgeNum() const { return Parent::edgeNum(); } |
355 | 355 |
/// \brief Number of arcs. |
356 | 356 |
int arcNum() const { return Parent::arcNum(); } |
357 | 357 |
|
358 | 358 |
/// \brief Linear combination map. |
359 | 359 |
/// |
360 | 360 |
/// This map makes possible to give back a linear combination |
361 | 361 |
/// for each node. It works like the \c std::accumulate function, |
362 | 362 |
/// so it accumulates the \c bf binary function with the \c fv first |
363 | 363 |
/// value. The map accumulates only on that positions (dimensions) |
364 | 364 |
/// where the index of the node is one. The values that have to be |
365 | 365 |
/// accumulated should be given by the \c begin and \c end iterators |
366 | 366 |
/// and the length of this range should be equal to the dimension |
367 | 367 |
/// number of the graph. |
368 | 368 |
/// |
369 | 369 |
///\code |
370 | 370 |
/// const int DIM = 3; |
371 | 371 |
/// HypercubeGraph graph(DIM); |
372 | 372 |
/// dim2::Point<double> base[DIM]; |
373 | 373 |
/// for (int k = 0; k < DIM; ++k) { |
374 | 374 |
/// base[k].x = rnd(); |
375 | 375 |
/// base[k].y = rnd(); |
376 | 376 |
/// } |
377 | 377 |
/// HypercubeGraph::HyperMap<dim2::Point<double> > |
378 | 378 |
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0)); |
379 | 379 |
///\endcode |
380 | 380 |
/// |
381 | 381 |
/// \see HypercubeGraph |
382 | 382 |
template <typename T, typename BF = std::plus<T> > |
383 | 383 |
class HyperMap { |
384 | 384 |
public: |
385 | 385 |
|
386 | 386 |
/// \brief The key type of the map |
387 | 387 |
typedef Node Key; |
388 | 388 |
/// \brief The value type of the map |
389 | 389 |
typedef T Value; |
390 | 390 |
|
391 | 391 |
/// \brief Constructor for HyperMap. |
392 | 392 |
/// |
393 | 393 |
/// Construct a HyperMap for the given graph. The values that have |
394 | 394 |
/// to be accumulated should be given by the \c begin and \c end |
395 | 395 |
/// iterators and the length of this range should be equal to the |
396 | 396 |
/// dimension number of the graph. |
397 | 397 |
/// |
398 | 398 |
/// This map accumulates the \c bf binary function with the \c fv |
399 | 399 |
/// first value on that positions (dimensions) where the index of |
400 | 400 |
/// the node is one. |
401 | 401 |
template <typename It> |
402 | 402 |
HyperMap(const Graph& graph, It begin, It end, |
403 | 403 |
T fv = 0, const BF& bf = BF()) |
404 | 404 |
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) |
405 | 405 |
{ |
406 | 406 |
LEMON_ASSERT(_values.size() == graph.dimension(), |
407 | 407 |
"Wrong size of range"); |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
/// \brief The partial accumulated value. |
411 | 411 |
/// |
412 | 412 |
/// Gives back the partial accumulated value. |
413 | 413 |
Value operator[](const Key& k) const { |
414 | 414 |
Value val = _first_value; |
415 | 415 |
int id = _graph.index(k); |
416 | 416 |
int n = 0; |
417 | 417 |
while (id != 0) { |
418 | 418 |
if (id & 1) { |
419 | 419 |
val = _bin_func(val, _values[n]); |
420 | 420 |
} |
421 | 421 |
id >>= 1; |
422 | 422 |
++n; |
423 | 423 |
} |
424 | 424 |
return val; |
425 | 425 |
} |
426 | 426 |
|
427 | 427 |
private: |
428 | 428 |
const Graph& _graph; |
429 | 429 |
std::vector<T> _values; |
430 | 430 |
T _first_value; |
431 | 431 |
BF _bin_func; |
432 | 432 |
}; |
433 | 433 |
|
434 | 434 |
}; |
435 | 435 |
|
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief ListDigraph, ListGraph classes. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
#include <lemon/bits/graph_extender.h> |
29 | 29 |
|
30 | 30 |
#include <vector> |
31 | 31 |
#include <list> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
class ListDigraphBase { |
36 | 36 |
|
37 | 37 |
protected: |
38 | 38 |
struct NodeT { |
39 | 39 |
int first_in, first_out; |
40 | 40 |
int prev, next; |
41 | 41 |
}; |
42 | 42 |
|
43 | 43 |
struct ArcT { |
44 | 44 |
int target, source; |
45 | 45 |
int prev_in, prev_out; |
46 | 46 |
int next_in, next_out; |
47 | 47 |
}; |
48 | 48 |
|
49 | 49 |
std::vector<NodeT> nodes; |
50 | 50 |
|
51 | 51 |
int first_node; |
52 | 52 |
|
53 | 53 |
int first_free_node; |
54 | 54 |
|
55 | 55 |
std::vector<ArcT> arcs; |
56 | 56 |
|
57 | 57 |
int first_free_arc; |
58 | 58 |
|
59 | 59 |
public: |
60 | 60 |
|
61 | 61 |
typedef ListDigraphBase Digraph; |
62 | 62 |
|
63 | 63 |
class Node { |
64 | 64 |
friend class ListDigraphBase; |
65 | 65 |
protected: |
66 | 66 |
|
67 | 67 |
int id; |
68 | 68 |
explicit Node(int pid) { id = pid;} |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
Node() {} |
72 | 72 |
Node (Invalid) { id = -1; } |
73 | 73 |
bool operator==(const Node& node) const {return id == node.id;} |
74 | 74 |
bool operator!=(const Node& node) const {return id != node.id;} |
75 | 75 |
bool operator<(const Node& node) const {return id < node.id;} |
76 | 76 |
}; |
77 | 77 |
|
78 | 78 |
class Arc { |
79 | 79 |
friend class ListDigraphBase; |
80 | 80 |
protected: |
81 | 81 |
|
82 | 82 |
int id; |
83 | 83 |
explicit Arc(int pid) { id = pid;} |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
Arc() {} |
87 | 87 |
Arc (Invalid) { id = -1; } |
88 | 88 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
89 | 89 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
90 | 90 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
91 | 91 |
}; |
92 | 92 |
|
93 | 93 |
|
94 | 94 |
|
95 | 95 |
ListDigraphBase() |
96 | 96 |
: nodes(), first_node(-1), |
97 | 97 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
int maxNodeId() const { return nodes.size()-1; } |
101 | 101 |
int maxArcId() const { return arcs.size()-1; } |
102 | 102 |
|
103 | 103 |
Node source(Arc e) const { return Node(arcs[e.id].source); } |
104 | 104 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
void first(Node& node) const { |
108 | 108 |
node.id = first_node; |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
void next(Node& node) const { |
112 | 112 |
node.id = nodes[node.id].next; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
void first(Arc& arc) const { |
117 | 117 |
int n; |
118 | 118 |
for(n = first_node; |
119 | 119 |
n!=-1 && nodes[n].first_in == -1; |
120 | 120 |
n = nodes[n].next) {} |
121 | 121 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
void next(Arc& arc) const { |
125 | 125 |
if (arcs[arc.id].next_in != -1) { |
126 | 126 |
arc.id = arcs[arc.id].next_in; |
127 | 127 |
} else { |
128 | 128 |
int n; |
129 | 129 |
for(n = nodes[arcs[arc.id].target].next; |
130 | 130 |
n!=-1 && nodes[n].first_in == -1; |
131 | 131 |
n = nodes[n].next) {} |
132 | 132 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
133 | 133 |
} |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
void firstOut(Arc &e, const Node& v) const { |
137 | 137 |
e.id = nodes[v.id].first_out; |
138 | 138 |
} |
139 | 139 |
void nextOut(Arc &e) const { |
140 | 140 |
e.id=arcs[e.id].next_out; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
void firstIn(Arc &e, const Node& v) const { |
144 | 144 |
e.id = nodes[v.id].first_in; |
145 | 145 |
} |
146 | 146 |
void nextIn(Arc &e) const { |
147 | 147 |
e.id=arcs[e.id].next_in; |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
|
151 | 151 |
static int id(Node v) { return v.id; } |
152 | 152 |
static int id(Arc e) { return e.id; } |
153 | 153 |
|
154 | 154 |
static Node nodeFromId(int id) { return Node(id);} |
155 | 155 |
static Arc arcFromId(int id) { return Arc(id);} |
156 | 156 |
|
157 | 157 |
bool valid(Node n) const { |
158 | 158 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
159 | 159 |
nodes[n.id].prev != -2; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
bool valid(Arc a) const { |
163 | 163 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
164 | 164 |
arcs[a.id].prev_in != -2; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
Node addNode() { |
168 | 168 |
int n; |
169 | 169 |
|
170 | 170 |
if(first_free_node==-1) { |
171 | 171 |
n = nodes.size(); |
172 | 172 |
nodes.push_back(NodeT()); |
173 | 173 |
} else { |
174 | 174 |
n = first_free_node; |
175 | 175 |
first_free_node = nodes[n].next; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
nodes[n].next = first_node; |
179 | 179 |
if(first_node != -1) nodes[first_node].prev = n; |
180 | 180 |
first_node = n; |
181 | 181 |
nodes[n].prev = -1; |
182 | 182 |
|
183 | 183 |
nodes[n].first_in = nodes[n].first_out = -1; |
184 | 184 |
|
185 | 185 |
return Node(n); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
Arc addArc(Node u, Node v) { |
189 | 189 |
int n; |
190 | 190 |
|
191 | 191 |
if (first_free_arc == -1) { |
192 | 192 |
n = arcs.size(); |
193 | 193 |
arcs.push_back(ArcT()); |
194 | 194 |
} else { |
195 | 195 |
n = first_free_arc; |
196 | 196 |
first_free_arc = arcs[n].next_in; |
197 | 197 |
} |
198 | 198 |
|
199 | 199 |
arcs[n].source = u.id; |
200 | 200 |
arcs[n].target = v.id; |
201 | 201 |
|
202 | 202 |
arcs[n].next_out = nodes[u.id].first_out; |
203 | 203 |
if(nodes[u.id].first_out != -1) { |
204 | 204 |
arcs[nodes[u.id].first_out].prev_out = n; |
205 | 205 |
} |
206 | 206 |
|
207 | 207 |
arcs[n].next_in = nodes[v.id].first_in; |
208 | 208 |
if(nodes[v.id].first_in != -1) { |
209 | 209 |
arcs[nodes[v.id].first_in].prev_in = n; |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
213 | 213 |
|
214 | 214 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
215 | 215 |
|
216 | 216 |
return Arc(n); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
void erase(const Node& node) { |
220 | 220 |
int n = node.id; |
221 | 221 |
|
222 | 222 |
if(nodes[n].next != -1) { |
223 | 223 |
nodes[nodes[n].next].prev = nodes[n].prev; |
224 | 224 |
} |
225 | 225 |
|
226 | 226 |
if(nodes[n].prev != -1) { |
227 | 227 |
nodes[nodes[n].prev].next = nodes[n].next; |
228 | 228 |
} else { |
229 | 229 |
first_node = nodes[n].next; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
nodes[n].next = first_free_node; |
233 | 233 |
first_free_node = n; |
234 | 234 |
nodes[n].prev = -2; |
235 | 235 |
|
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
void erase(const Arc& arc) { |
239 | 239 |
int n = arc.id; |
240 | 240 |
|
241 | 241 |
if(arcs[n].next_in!=-1) { |
242 | 242 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
if(arcs[n].prev_in!=-1) { |
246 | 246 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
247 | 247 |
} else { |
248 | 248 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
|
252 | 252 |
if(arcs[n].next_out!=-1) { |
253 | 253 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
if(arcs[n].prev_out!=-1) { |
257 | 257 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
258 | 258 |
} else { |
259 | 259 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
arcs[n].next_in = first_free_arc; |
263 | 263 |
first_free_arc = n; |
264 | 264 |
arcs[n].prev_in = -2; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
void clear() { |
268 | 268 |
arcs.clear(); |
269 | 269 |
nodes.clear(); |
270 | 270 |
first_node = first_free_node = first_free_arc = -1; |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
protected: |
274 | 274 |
void changeTarget(Arc e, Node n) |
275 | 275 |
{ |
276 | 276 |
if(arcs[e.id].next_in != -1) |
277 | 277 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
278 | 278 |
if(arcs[e.id].prev_in != -1) |
279 | 279 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
280 | 280 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
281 | 281 |
if (nodes[n.id].first_in != -1) { |
282 | 282 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
283 | 283 |
} |
284 | 284 |
arcs[e.id].target = n.id; |
285 | 285 |
arcs[e.id].prev_in = -1; |
286 | 286 |
arcs[e.id].next_in = nodes[n.id].first_in; |
287 | 287 |
nodes[n.id].first_in = e.id; |
288 | 288 |
} |
289 | 289 |
void changeSource(Arc e, Node n) |
290 | 290 |
{ |
291 | 291 |
if(arcs[e.id].next_out != -1) |
292 | 292 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
293 | 293 |
if(arcs[e.id].prev_out != -1) |
294 | 294 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
295 | 295 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
296 | 296 |
if (nodes[n.id].first_out != -1) { |
297 | 297 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
298 | 298 |
} |
299 | 299 |
arcs[e.id].source = n.id; |
300 | 300 |
arcs[e.id].prev_out = -1; |
301 | 301 |
arcs[e.id].next_out = nodes[n.id].first_out; |
302 | 302 |
nodes[n.id].first_out = e.id; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
}; |
306 | 306 |
|
307 | 307 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
308 | 308 |
|
309 | 309 |
/// \addtogroup graphs |
310 | 310 |
/// @{ |
311 | 311 |
|
312 | 312 |
///A general directed graph structure. |
313 | 313 |
|
314 | 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
315 | 315 |
///implementation based on static linked lists that are stored in |
316 | 316 |
///\c std::vector structures. |
317 | 317 |
/// |
318 | 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
319 | 319 |
///also provides several useful additional functionalities. |
320 | 320 |
///Most of the member functions and nested classes are documented |
321 | 321 |
///only in the concept class. |
322 | 322 |
/// |
323 | 323 |
///\sa concepts::Digraph |
324 | 324 |
|
325 | 325 |
class ListDigraph : public ExtendedListDigraphBase { |
326 |
typedef ExtendedListDigraphBase Parent; |
|
327 |
|
|
326 | 328 |
private: |
327 | 329 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
328 | 330 |
|
329 | 331 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
330 | 332 |
/// |
331 | 333 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
332 | 334 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
333 | 335 |
///Use copyDigraph() instead. |
334 | 336 |
|
335 | 337 |
///Assignment of ListDigraph to another one is \e not allowed. |
336 | 338 |
///Use copyDigraph() instead. |
337 | 339 |
void operator=(const ListDigraph &) {} |
338 | 340 |
public: |
339 | 341 |
|
340 |
typedef ExtendedListDigraphBase Parent; |
|
341 |
|
|
342 | 342 |
/// Constructor |
343 | 343 |
|
344 | 344 |
/// Constructor. |
345 | 345 |
/// |
346 | 346 |
ListDigraph() {} |
347 | 347 |
|
348 | 348 |
///Add a new node to the digraph. |
349 | 349 |
|
350 | 350 |
///Add a new node to the digraph. |
351 | 351 |
///\return The new node. |
352 | 352 |
Node addNode() { return Parent::addNode(); } |
353 | 353 |
|
354 | 354 |
///Add a new arc to the digraph. |
355 | 355 |
|
356 | 356 |
///Add a new arc to the digraph with source node \c s |
357 | 357 |
///and target node \c t. |
358 | 358 |
///\return The new arc. |
359 | 359 |
Arc addArc(const Node& s, const Node& t) { |
360 | 360 |
return Parent::addArc(s, t); |
361 | 361 |
} |
362 | 362 |
|
363 | 363 |
///\brief Erase a node from the digraph. |
364 | 364 |
/// |
365 | 365 |
///Erase a node from the digraph. |
366 | 366 |
/// |
367 | 367 |
void erase(const Node& n) { Parent::erase(n); } |
368 | 368 |
|
369 | 369 |
///\brief Erase an arc from the digraph. |
370 | 370 |
/// |
371 | 371 |
///Erase an arc from the digraph. |
372 | 372 |
/// |
373 | 373 |
void erase(const Arc& a) { Parent::erase(a); } |
374 | 374 |
|
375 | 375 |
/// Node validity check |
376 | 376 |
|
377 | 377 |
/// This function gives back true if the given node is valid, |
378 | 378 |
/// ie. it is a real node of the graph. |
379 | 379 |
/// |
380 | 380 |
/// \warning A Node pointing to a removed item |
381 | 381 |
/// could become valid again later if new nodes are |
382 | 382 |
/// added to the graph. |
383 | 383 |
bool valid(Node n) const { return Parent::valid(n); } |
384 | 384 |
|
385 | 385 |
/// Arc validity check |
386 | 386 |
|
387 | 387 |
/// This function gives back true if the given arc is valid, |
388 | 388 |
/// ie. it is a real arc of the graph. |
389 | 389 |
/// |
390 | 390 |
/// \warning An Arc pointing to a removed item |
391 | 391 |
/// could become valid again later if new nodes are |
392 | 392 |
/// added to the graph. |
393 | 393 |
bool valid(Arc a) const { return Parent::valid(a); } |
394 | 394 |
|
395 | 395 |
/// Change the target of \c a to \c n |
396 | 396 |
|
397 | 397 |
/// Change the target of \c a to \c n |
398 | 398 |
/// |
399 | 399 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
400 | 400 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
401 | 401 |
///invalidated. |
402 | 402 |
/// |
403 | 403 |
///\warning This functionality cannot be used together with the Snapshot |
404 | 404 |
///feature. |
405 | 405 |
void changeTarget(Arc a, Node n) { |
406 | 406 |
Parent::changeTarget(a,n); |
407 | 407 |
} |
408 | 408 |
/// Change the source of \c a to \c n |
409 | 409 |
|
410 | 410 |
/// Change the source of \c a to \c n |
411 | 411 |
/// |
412 | 412 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
413 | 413 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
414 | 414 |
///invalidated. |
415 | 415 |
/// |
416 | 416 |
///\warning This functionality cannot be used together with the Snapshot |
417 | 417 |
///feature. |
418 | 418 |
void changeSource(Arc a, Node n) { |
419 | 419 |
Parent::changeSource(a,n); |
420 | 420 |
} |
421 | 421 |
|
422 | 422 |
/// Invert the direction of an arc. |
423 | 423 |
|
424 | 424 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
425 | 425 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
426 | 426 |
///invalidated. |
427 | 427 |
/// |
428 | 428 |
///\warning This functionality cannot be used together with the Snapshot |
429 | 429 |
///feature. |
430 | 430 |
void reverseArc(Arc e) { |
431 | 431 |
Node t=target(e); |
432 | 432 |
changeTarget(e,source(e)); |
433 | 433 |
changeSource(e,t); |
434 | 434 |
} |
435 | 435 |
|
436 | 436 |
/// Reserve memory for nodes. |
437 | 437 |
|
438 | 438 |
/// Using this function it is possible to avoid the superfluous memory |
439 | 439 |
/// allocation: if you know that the digraph you want to build will |
440 | 440 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
441 | 441 |
/// then it is worth reserving space for this amount before starting |
442 | 442 |
/// to build the digraph. |
443 | 443 |
/// \sa reserveArc |
444 | 444 |
void reserveNode(int n) { nodes.reserve(n); }; |
445 | 445 |
|
446 | 446 |
/// Reserve memory for arcs. |
447 | 447 |
|
448 | 448 |
/// Using this function it is possible to avoid the superfluous memory |
449 | 449 |
/// allocation: if you know that the digraph you want to build will |
450 | 450 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
451 | 451 |
/// then it is worth reserving space for this amount before starting |
452 | 452 |
/// to build the digraph. |
453 | 453 |
/// \sa reserveNode |
454 | 454 |
void reserveArc(int m) { arcs.reserve(m); }; |
455 | 455 |
|
456 | 456 |
///Contract two nodes. |
457 | 457 |
|
458 | 458 |
///This function contracts two nodes. |
459 | 459 |
///Node \p b will be removed but instead of deleting |
460 | 460 |
///incident arcs, they will be joined to \p a. |
461 | 461 |
///The last parameter \p r controls whether to remove loops. \c true |
462 | 462 |
///means that loops will be removed. |
463 | 463 |
/// |
464 | 464 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
465 | 465 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
466 | 466 |
///may be invalidated. |
467 | 467 |
/// |
468 | 468 |
///\warning This functionality cannot be used together with the Snapshot |
469 | 469 |
///feature. |
470 | 470 |
void contract(Node a, Node b, bool r = true) |
471 | 471 |
{ |
472 | 472 |
for(OutArcIt e(*this,b);e!=INVALID;) { |
473 | 473 |
OutArcIt f=e; |
474 | 474 |
++f; |
475 | 475 |
if(r && target(e)==a) erase(e); |
476 | 476 |
else changeSource(e,a); |
477 | 477 |
e=f; |
478 | 478 |
} |
479 | 479 |
for(InArcIt e(*this,b);e!=INVALID;) { |
480 | 480 |
InArcIt f=e; |
481 | 481 |
++f; |
482 | 482 |
if(r && source(e)==a) erase(e); |
483 | 483 |
else changeTarget(e,a); |
484 | 484 |
e=f; |
485 | 485 |
} |
486 | 486 |
erase(b); |
487 | 487 |
} |
488 | 488 |
|
489 | 489 |
///Split a node. |
490 | 490 |
|
491 | 491 |
///This function splits a node. First a new node is added to the digraph, |
492 | 492 |
///then the source of each outgoing arc of \c n is moved to this new node. |
493 | 493 |
///If \c connect is \c true (this is the default value), then a new arc |
494 | 494 |
///from \c n to the newly created node is also added. |
495 | 495 |
///\return The newly created node. |
496 | 496 |
/// |
497 | 497 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
498 | 498 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
499 | 499 |
///be invalidated. |
500 | 500 |
/// |
501 | 501 |
///\warning This functionality cannot be used in conjunction with the |
502 | 502 |
///Snapshot feature. |
503 | 503 |
Node split(Node n, bool connect = true) { |
504 | 504 |
Node b = addNode(); |
505 | 505 |
for(OutArcIt e(*this,n);e!=INVALID;) { |
506 | 506 |
OutArcIt f=e; |
507 | 507 |
++f; |
508 | 508 |
changeSource(e,b); |
509 | 509 |
e=f; |
510 | 510 |
} |
511 | 511 |
if (connect) addArc(n,b); |
512 | 512 |
return b; |
513 | 513 |
} |
514 | 514 |
|
515 | 515 |
///Split an arc. |
516 | 516 |
|
517 | 517 |
///This function splits an arc. First a new node \c b is added to |
518 | 518 |
///the digraph, then the original arc is re-targeted to \c |
519 | 519 |
///b. Finally an arc from \c b to the original target is added. |
520 | 520 |
/// |
521 | 521 |
///\return The newly created node. |
522 | 522 |
/// |
523 | 523 |
///\warning This functionality cannot be used together with the |
524 | 524 |
///Snapshot feature. |
525 | 525 |
Node split(Arc e) { |
526 | 526 |
Node b = addNode(); |
527 | 527 |
addArc(b,target(e)); |
528 | 528 |
changeTarget(e,b); |
529 | 529 |
return b; |
530 | 530 |
} |
531 | 531 |
|
532 | 532 |
/// \brief Class to make a snapshot of the digraph and restore |
533 | 533 |
/// it later. |
534 | 534 |
/// |
535 | 535 |
/// Class to make a snapshot of the digraph and restore it later. |
536 | 536 |
/// |
537 | 537 |
/// The newly added nodes and arcs can be removed using the |
538 | 538 |
/// restore() function. |
539 | 539 |
/// |
540 | 540 |
/// \warning Arc and node deletions and other modifications (e.g. |
541 | 541 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
542 | 542 |
/// restored. These events invalidate the snapshot. |
543 | 543 |
class Snapshot { |
544 | 544 |
protected: |
545 | 545 |
|
546 | 546 |
typedef Parent::NodeNotifier NodeNotifier; |
547 | 547 |
|
548 | 548 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
549 | 549 |
public: |
550 | 550 |
|
551 | 551 |
NodeObserverProxy(Snapshot& _snapshot) |
552 | 552 |
: snapshot(_snapshot) {} |
553 | 553 |
|
554 | 554 |
using NodeNotifier::ObserverBase::attach; |
555 | 555 |
using NodeNotifier::ObserverBase::detach; |
556 | 556 |
using NodeNotifier::ObserverBase::attached; |
557 | 557 |
|
558 | 558 |
protected: |
559 | 559 |
|
560 | 560 |
virtual void add(const Node& node) { |
561 | 561 |
snapshot.addNode(node); |
562 | 562 |
} |
563 | 563 |
virtual void add(const std::vector<Node>& nodes) { |
564 | 564 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
565 | 565 |
snapshot.addNode(nodes[i]); |
566 | 566 |
} |
567 | 567 |
} |
568 | 568 |
virtual void erase(const Node& node) { |
569 | 569 |
snapshot.eraseNode(node); |
570 | 570 |
} |
571 | 571 |
virtual void erase(const std::vector<Node>& nodes) { |
572 | 572 |
for (int i = 0; i < int(nodes.size()); ++i) { |
573 | 573 |
snapshot.eraseNode(nodes[i]); |
574 | 574 |
} |
575 | 575 |
} |
576 | 576 |
virtual void build() { |
577 | 577 |
Node node; |
578 | 578 |
std::vector<Node> nodes; |
579 | 579 |
for (notifier()->first(node); node != INVALID; |
580 | 580 |
notifier()->next(node)) { |
581 | 581 |
nodes.push_back(node); |
582 | 582 |
} |
583 | 583 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
584 | 584 |
snapshot.addNode(nodes[i]); |
585 | 585 |
} |
586 | 586 |
} |
587 | 587 |
virtual void clear() { |
588 | 588 |
Node node; |
589 | 589 |
for (notifier()->first(node); node != INVALID; |
590 | 590 |
notifier()->next(node)) { |
591 | 591 |
snapshot.eraseNode(node); |
592 | 592 |
} |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
Snapshot& snapshot; |
596 | 596 |
}; |
597 | 597 |
|
598 | 598 |
class ArcObserverProxy : public ArcNotifier::ObserverBase { |
599 | 599 |
public: |
600 | 600 |
|
601 | 601 |
ArcObserverProxy(Snapshot& _snapshot) |
602 | 602 |
: snapshot(_snapshot) {} |
603 | 603 |
|
604 | 604 |
using ArcNotifier::ObserverBase::attach; |
605 | 605 |
using ArcNotifier::ObserverBase::detach; |
606 | 606 |
using ArcNotifier::ObserverBase::attached; |
607 | 607 |
|
608 | 608 |
protected: |
609 | 609 |
|
610 | 610 |
virtual void add(const Arc& arc) { |
611 | 611 |
snapshot.addArc(arc); |
612 | 612 |
} |
613 | 613 |
virtual void add(const std::vector<Arc>& arcs) { |
614 | 614 |
for (int i = arcs.size() - 1; i >= 0; ++i) { |
615 | 615 |
snapshot.addArc(arcs[i]); |
616 | 616 |
} |
617 | 617 |
} |
618 | 618 |
virtual void erase(const Arc& arc) { |
619 | 619 |
snapshot.eraseArc(arc); |
620 | 620 |
} |
621 | 621 |
virtual void erase(const std::vector<Arc>& arcs) { |
622 | 622 |
for (int i = 0; i < int(arcs.size()); ++i) { |
623 | 623 |
snapshot.eraseArc(arcs[i]); |
624 | 624 |
} |
625 | 625 |
} |
626 | 626 |
virtual void build() { |
627 | 627 |
Arc arc; |
628 | 628 |
std::vector<Arc> arcs; |
629 | 629 |
for (notifier()->first(arc); arc != INVALID; |
630 | 630 |
notifier()->next(arc)) { |
631 | 631 |
arcs.push_back(arc); |
632 | 632 |
} |
633 | 633 |
for (int i = arcs.size() - 1; i >= 0; --i) { |
634 | 634 |
snapshot.addArc(arcs[i]); |
635 | 635 |
} |
636 | 636 |
} |
637 | 637 |
virtual void clear() { |
638 | 638 |
Arc arc; |
639 | 639 |
for (notifier()->first(arc); arc != INVALID; |
640 | 640 |
notifier()->next(arc)) { |
641 | 641 |
snapshot.eraseArc(arc); |
642 | 642 |
} |
643 | 643 |
} |
644 | 644 |
|
645 | 645 |
Snapshot& snapshot; |
646 | 646 |
}; |
647 | 647 |
|
648 | 648 |
ListDigraph *digraph; |
649 | 649 |
|
650 | 650 |
NodeObserverProxy node_observer_proxy; |
651 | 651 |
ArcObserverProxy arc_observer_proxy; |
652 | 652 |
|
653 | 653 |
std::list<Node> added_nodes; |
654 | 654 |
std::list<Arc> added_arcs; |
655 | 655 |
|
656 | 656 |
|
657 | 657 |
void addNode(const Node& node) { |
658 | 658 |
added_nodes.push_front(node); |
659 | 659 |
} |
660 | 660 |
void eraseNode(const Node& node) { |
661 | 661 |
std::list<Node>::iterator it = |
662 | 662 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
663 | 663 |
if (it == added_nodes.end()) { |
664 | 664 |
clear(); |
665 | 665 |
arc_observer_proxy.detach(); |
666 | 666 |
throw NodeNotifier::ImmediateDetach(); |
667 | 667 |
} else { |
668 | 668 |
added_nodes.erase(it); |
669 | 669 |
} |
670 | 670 |
} |
671 | 671 |
|
672 | 672 |
void addArc(const Arc& arc) { |
673 | 673 |
added_arcs.push_front(arc); |
674 | 674 |
} |
675 | 675 |
void eraseArc(const Arc& arc) { |
676 | 676 |
std::list<Arc>::iterator it = |
677 | 677 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
678 | 678 |
if (it == added_arcs.end()) { |
679 | 679 |
clear(); |
680 | 680 |
node_observer_proxy.detach(); |
681 | 681 |
throw ArcNotifier::ImmediateDetach(); |
682 | 682 |
} else { |
683 | 683 |
added_arcs.erase(it); |
684 | 684 |
} |
685 | 685 |
} |
686 | 686 |
|
687 | 687 |
void attach(ListDigraph &_digraph) { |
688 | 688 |
digraph = &_digraph; |
689 | 689 |
node_observer_proxy.attach(digraph->notifier(Node())); |
690 | 690 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
691 | 691 |
} |
692 | 692 |
|
693 | 693 |
void detach() { |
694 | 694 |
node_observer_proxy.detach(); |
695 | 695 |
arc_observer_proxy.detach(); |
696 | 696 |
} |
697 | 697 |
|
698 | 698 |
bool attached() const { |
699 | 699 |
return node_observer_proxy.attached(); |
700 | 700 |
} |
701 | 701 |
|
702 | 702 |
void clear() { |
703 | 703 |
added_nodes.clear(); |
704 | 704 |
added_arcs.clear(); |
705 | 705 |
} |
706 | 706 |
|
707 | 707 |
public: |
708 | 708 |
|
709 | 709 |
/// \brief Default constructor. |
710 | 710 |
/// |
711 | 711 |
/// Default constructor. |
712 | 712 |
/// To actually make a snapshot you must call save(). |
713 | 713 |
Snapshot() |
714 | 714 |
: digraph(0), node_observer_proxy(*this), |
715 | 715 |
arc_observer_proxy(*this) {} |
716 | 716 |
|
717 | 717 |
/// \brief Constructor that immediately makes a snapshot. |
718 | 718 |
/// |
719 | 719 |
/// This constructor immediately makes a snapshot of the digraph. |
720 | 720 |
/// \param _digraph The digraph we make a snapshot of. |
721 | 721 |
Snapshot(ListDigraph &_digraph) |
722 | 722 |
: node_observer_proxy(*this), |
723 | 723 |
arc_observer_proxy(*this) { |
724 | 724 |
attach(_digraph); |
725 | 725 |
} |
726 | 726 |
|
727 | 727 |
/// \brief Make a snapshot. |
728 | 728 |
/// |
729 | 729 |
/// Make a snapshot of the digraph. |
730 | 730 |
/// |
731 | 731 |
/// This function can be called more than once. In case of a repeated |
732 | 732 |
/// call, the previous snapshot gets lost. |
733 | 733 |
/// \param _digraph The digraph we make the snapshot of. |
734 | 734 |
void save(ListDigraph &_digraph) { |
735 | 735 |
if (attached()) { |
736 | 736 |
detach(); |
737 | 737 |
clear(); |
738 | 738 |
} |
739 | 739 |
attach(_digraph); |
740 | 740 |
} |
741 | 741 |
|
742 | 742 |
/// \brief Undo the changes until the last snapshot. |
743 | 743 |
// |
744 | 744 |
/// Undo the changes until the last snapshot created by save(). |
745 | 745 |
void restore() { |
746 | 746 |
detach(); |
747 | 747 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
748 | 748 |
it != added_arcs.end(); ++it) { |
749 | 749 |
digraph->erase(*it); |
750 | 750 |
} |
751 | 751 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
752 | 752 |
it != added_nodes.end(); ++it) { |
753 | 753 |
digraph->erase(*it); |
754 | 754 |
} |
755 | 755 |
clear(); |
756 | 756 |
} |
757 | 757 |
|
758 | 758 |
/// \brief Gives back true when the snapshot is valid. |
759 | 759 |
/// |
760 | 760 |
/// Gives back true when the snapshot is valid. |
761 | 761 |
bool valid() const { |
762 | 762 |
return attached(); |
763 | 763 |
} |
764 | 764 |
}; |
765 | 765 |
|
766 | 766 |
}; |
767 | 767 |
|
768 | 768 |
///@} |
769 | 769 |
|
770 | 770 |
class ListGraphBase { |
771 | 771 |
|
772 | 772 |
protected: |
773 | 773 |
|
774 | 774 |
struct NodeT { |
775 | 775 |
int first_out; |
776 | 776 |
int prev, next; |
777 | 777 |
}; |
778 | 778 |
|
779 | 779 |
struct ArcT { |
780 | 780 |
int target; |
781 | 781 |
int prev_out, next_out; |
782 | 782 |
}; |
783 | 783 |
|
784 | 784 |
std::vector<NodeT> nodes; |
785 | 785 |
|
786 | 786 |
int first_node; |
787 | 787 |
|
788 | 788 |
int first_free_node; |
789 | 789 |
|
790 | 790 |
std::vector<ArcT> arcs; |
791 | 791 |
|
792 | 792 |
int first_free_arc; |
793 | 793 |
|
794 | 794 |
public: |
795 | 795 |
|
796 |
typedef ListGraphBase |
|
796 |
typedef ListGraphBase Graph; |
|
797 | 797 |
|
798 | 798 |
class Node; |
799 | 799 |
class Arc; |
800 | 800 |
class Edge; |
801 | 801 |
|
802 | 802 |
class Node { |
803 | 803 |
friend class ListGraphBase; |
804 | 804 |
protected: |
805 | 805 |
|
806 | 806 |
int id; |
807 | 807 |
explicit Node(int pid) { id = pid;} |
808 | 808 |
|
809 | 809 |
public: |
810 | 810 |
Node() {} |
811 | 811 |
Node (Invalid) { id = -1; } |
812 | 812 |
bool operator==(const Node& node) const {return id == node.id;} |
813 | 813 |
bool operator!=(const Node& node) const {return id != node.id;} |
814 | 814 |
bool operator<(const Node& node) const {return id < node.id;} |
815 | 815 |
}; |
816 | 816 |
|
817 | 817 |
class Edge { |
818 | 818 |
friend class ListGraphBase; |
819 | 819 |
protected: |
820 | 820 |
|
821 | 821 |
int id; |
822 | 822 |
explicit Edge(int pid) { id = pid;} |
823 | 823 |
|
824 | 824 |
public: |
825 | 825 |
Edge() {} |
826 | 826 |
Edge (Invalid) { id = -1; } |
827 | 827 |
bool operator==(const Edge& edge) const {return id == edge.id;} |
828 | 828 |
bool operator!=(const Edge& edge) const {return id != edge.id;} |
829 | 829 |
bool operator<(const Edge& edge) const {return id < edge.id;} |
830 | 830 |
}; |
831 | 831 |
|
832 | 832 |
class Arc { |
833 | 833 |
friend class ListGraphBase; |
834 | 834 |
protected: |
835 | 835 |
|
836 | 836 |
int id; |
837 | 837 |
explicit Arc(int pid) { id = pid;} |
838 | 838 |
|
839 | 839 |
public: |
840 | 840 |
operator Edge() const { |
841 | 841 |
return id != -1 ? edgeFromId(id / 2) : INVALID; |
842 | 842 |
} |
843 | 843 |
|
844 | 844 |
Arc() {} |
845 | 845 |
Arc (Invalid) { id = -1; } |
846 | 846 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
847 | 847 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
848 | 848 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
849 | 849 |
}; |
850 | 850 |
|
851 | 851 |
|
852 | 852 |
|
853 | 853 |
ListGraphBase() |
854 | 854 |
: nodes(), first_node(-1), |
855 | 855 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
856 | 856 |
|
857 | 857 |
|
858 | 858 |
int maxNodeId() const { return nodes.size()-1; } |
859 | 859 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
860 | 860 |
int maxArcId() const { return arcs.size()-1; } |
861 | 861 |
|
862 | 862 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); } |
863 | 863 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
864 | 864 |
|
865 | 865 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); } |
866 | 866 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); } |
867 | 867 |
|
868 | 868 |
static bool direction(Arc e) { |
869 | 869 |
return (e.id & 1) == 1; |
870 | 870 |
} |
871 | 871 |
|
872 | 872 |
static Arc direct(Edge e, bool d) { |
873 | 873 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
874 | 874 |
} |
875 | 875 |
|
876 | 876 |
void first(Node& node) const { |
877 | 877 |
node.id = first_node; |
878 | 878 |
} |
879 | 879 |
|
880 | 880 |
void next(Node& node) const { |
881 | 881 |
node.id = nodes[node.id].next; |
882 | 882 |
} |
883 | 883 |
|
884 | 884 |
void first(Arc& e) const { |
885 | 885 |
int n = first_node; |
886 | 886 |
while (n != -1 && nodes[n].first_out == -1) { |
887 | 887 |
n = nodes[n].next; |
888 | 888 |
} |
889 | 889 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
890 | 890 |
} |
891 | 891 |
|
892 | 892 |
void next(Arc& e) const { |
893 | 893 |
if (arcs[e.id].next_out != -1) { |
894 | 894 |
e.id = arcs[e.id].next_out; |
895 | 895 |
} else { |
896 | 896 |
int n = nodes[arcs[e.id ^ 1].target].next; |
897 | 897 |
while(n != -1 && nodes[n].first_out == -1) { |
898 | 898 |
n = nodes[n].next; |
899 | 899 |
} |
900 | 900 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
901 | 901 |
} |
902 | 902 |
} |
903 | 903 |
|
904 | 904 |
void first(Edge& e) const { |
905 | 905 |
int n = first_node; |
906 | 906 |
while (n != -1) { |
907 | 907 |
e.id = nodes[n].first_out; |
908 | 908 |
while ((e.id & 1) != 1) { |
909 | 909 |
e.id = arcs[e.id].next_out; |
910 | 910 |
} |
911 | 911 |
if (e.id != -1) { |
912 | 912 |
e.id /= 2; |
913 | 913 |
return; |
914 | 914 |
} |
915 | 915 |
n = nodes[n].next; |
916 | 916 |
} |
917 | 917 |
e.id = -1; |
918 | 918 |
} |
919 | 919 |
|
920 | 920 |
void next(Edge& e) const { |
921 | 921 |
int n = arcs[e.id * 2].target; |
922 | 922 |
e.id = arcs[(e.id * 2) | 1].next_out; |
923 | 923 |
while ((e.id & 1) != 1) { |
924 | 924 |
e.id = arcs[e.id].next_out; |
925 | 925 |
} |
926 | 926 |
if (e.id != -1) { |
927 | 927 |
e.id /= 2; |
928 | 928 |
return; |
929 | 929 |
} |
930 | 930 |
n = nodes[n].next; |
931 | 931 |
while (n != -1) { |
932 | 932 |
e.id = nodes[n].first_out; |
933 | 933 |
while ((e.id & 1) != 1) { |
934 | 934 |
e.id = arcs[e.id].next_out; |
935 | 935 |
} |
936 | 936 |
if (e.id != -1) { |
937 | 937 |
e.id /= 2; |
938 | 938 |
return; |
939 | 939 |
} |
940 | 940 |
n = nodes[n].next; |
941 | 941 |
} |
942 | 942 |
e.id = -1; |
943 | 943 |
} |
944 | 944 |
|
945 | 945 |
void firstOut(Arc &e, const Node& v) const { |
946 | 946 |
e.id = nodes[v.id].first_out; |
947 | 947 |
} |
948 | 948 |
void nextOut(Arc &e) const { |
949 | 949 |
e.id = arcs[e.id].next_out; |
950 | 950 |
} |
951 | 951 |
|
952 | 952 |
void firstIn(Arc &e, const Node& v) const { |
953 | 953 |
e.id = ((nodes[v.id].first_out) ^ 1); |
954 | 954 |
if (e.id == -2) e.id = -1; |
955 | 955 |
} |
956 | 956 |
void nextIn(Arc &e) const { |
957 | 957 |
e.id = ((arcs[e.id ^ 1].next_out) ^ 1); |
958 | 958 |
if (e.id == -2) e.id = -1; |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
void firstInc(Edge &e, bool& d, const Node& v) const { |
962 | 962 |
int a = nodes[v.id].first_out; |
963 | 963 |
if (a != -1 ) { |
964 | 964 |
e.id = a / 2; |
965 | 965 |
d = ((a & 1) == 1); |
966 | 966 |
} else { |
967 | 967 |
e.id = -1; |
968 | 968 |
d = true; |
969 | 969 |
} |
970 | 970 |
} |
971 | 971 |
void nextInc(Edge &e, bool& d) const { |
972 | 972 |
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); |
973 | 973 |
if (a != -1 ) { |
974 | 974 |
e.id = a / 2; |
975 | 975 |
d = ((a & 1) == 1); |
976 | 976 |
} else { |
977 | 977 |
e.id = -1; |
978 | 978 |
d = true; |
979 | 979 |
} |
980 | 980 |
} |
981 | 981 |
|
982 | 982 |
static int id(Node v) { return v.id; } |
983 | 983 |
static int id(Arc e) { return e.id; } |
984 | 984 |
static int id(Edge e) { return e.id; } |
985 | 985 |
|
986 | 986 |
static Node nodeFromId(int id) { return Node(id);} |
987 | 987 |
static Arc arcFromId(int id) { return Arc(id);} |
988 | 988 |
static Edge edgeFromId(int id) { return Edge(id);} |
989 | 989 |
|
990 | 990 |
bool valid(Node n) const { |
991 | 991 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
992 | 992 |
nodes[n.id].prev != -2; |
993 | 993 |
} |
994 | 994 |
|
995 | 995 |
bool valid(Arc a) const { |
996 | 996 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
997 | 997 |
arcs[a.id].prev_out != -2; |
998 | 998 |
} |
999 | 999 |
|
1000 | 1000 |
bool valid(Edge e) const { |
1001 | 1001 |
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) && |
1002 | 1002 |
arcs[2 * e.id].prev_out != -2; |
1003 | 1003 |
} |
1004 | 1004 |
|
1005 | 1005 |
Node addNode() { |
1006 | 1006 |
int n; |
1007 | 1007 |
|
1008 | 1008 |
if(first_free_node==-1) { |
1009 | 1009 |
n = nodes.size(); |
1010 | 1010 |
nodes.push_back(NodeT()); |
1011 | 1011 |
} else { |
1012 | 1012 |
n = first_free_node; |
1013 | 1013 |
first_free_node = nodes[n].next; |
1014 | 1014 |
} |
1015 | 1015 |
|
1016 | 1016 |
nodes[n].next = first_node; |
1017 | 1017 |
if (first_node != -1) nodes[first_node].prev = n; |
1018 | 1018 |
first_node = n; |
1019 | 1019 |
nodes[n].prev = -1; |
1020 | 1020 |
|
1021 | 1021 |
nodes[n].first_out = -1; |
1022 | 1022 |
|
1023 | 1023 |
return Node(n); |
1024 | 1024 |
} |
1025 | 1025 |
|
1026 | 1026 |
Edge addEdge(Node u, Node v) { |
1027 | 1027 |
int n; |
1028 | 1028 |
|
1029 | 1029 |
if (first_free_arc == -1) { |
1030 | 1030 |
n = arcs.size(); |
1031 | 1031 |
arcs.push_back(ArcT()); |
1032 | 1032 |
arcs.push_back(ArcT()); |
1033 | 1033 |
} else { |
1034 | 1034 |
n = first_free_arc; |
1035 | 1035 |
first_free_arc = arcs[n].next_out; |
1036 | 1036 |
} |
1037 | 1037 |
|
1038 | 1038 |
arcs[n].target = u.id; |
1039 | 1039 |
arcs[n | 1].target = v.id; |
1040 | 1040 |
|
1041 | 1041 |
arcs[n].next_out = nodes[v.id].first_out; |
1042 | 1042 |
if (nodes[v.id].first_out != -1) { |
1043 | 1043 |
arcs[nodes[v.id].first_out].prev_out = n; |
1044 | 1044 |
} |
1045 | 1045 |
arcs[n].prev_out = -1; |
1046 | 1046 |
nodes[v.id].first_out = n; |
1047 | 1047 |
|
1048 | 1048 |
arcs[n | 1].next_out = nodes[u.id].first_out; |
1049 | 1049 |
if (nodes[u.id].first_out != -1) { |
1050 | 1050 |
arcs[nodes[u.id].first_out].prev_out = (n | 1); |
1051 | 1051 |
} |
1052 | 1052 |
arcs[n | 1].prev_out = -1; |
1053 | 1053 |
nodes[u.id].first_out = (n | 1); |
1054 | 1054 |
|
1055 | 1055 |
return Edge(n / 2); |
1056 | 1056 |
} |
1057 | 1057 |
|
1058 | 1058 |
void erase(const Node& node) { |
1059 | 1059 |
int n = node.id; |
1060 | 1060 |
|
1061 | 1061 |
if(nodes[n].next != -1) { |
1062 | 1062 |
nodes[nodes[n].next].prev = nodes[n].prev; |
1063 | 1063 |
} |
1064 | 1064 |
|
1065 | 1065 |
if(nodes[n].prev != -1) { |
1066 | 1066 |
nodes[nodes[n].prev].next = nodes[n].next; |
1067 | 1067 |
} else { |
1068 | 1068 |
first_node = nodes[n].next; |
1069 | 1069 |
} |
1070 | 1070 |
|
1071 | 1071 |
nodes[n].next = first_free_node; |
1072 | 1072 |
first_free_node = n; |
1073 | 1073 |
nodes[n].prev = -2; |
1074 | 1074 |
} |
1075 | 1075 |
|
1076 | 1076 |
void erase(const Edge& edge) { |
1077 | 1077 |
int n = edge.id * 2; |
1078 | 1078 |
|
1079 | 1079 |
if (arcs[n].next_out != -1) { |
1080 | 1080 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
1081 | 1081 |
} |
1082 | 1082 |
|
1083 | 1083 |
if (arcs[n].prev_out != -1) { |
1084 | 1084 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
1085 | 1085 |
} else { |
1086 | 1086 |
nodes[arcs[n | 1].target].first_out = arcs[n].next_out; |
1087 | 1087 |
} |
1088 | 1088 |
|
1089 | 1089 |
if (arcs[n | 1].next_out != -1) { |
1090 | 1090 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
1091 | 1091 |
} |
1092 | 1092 |
|
1093 | 1093 |
if (arcs[n | 1].prev_out != -1) { |
1094 | 1094 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
1095 | 1095 |
} else { |
1096 | 1096 |
nodes[arcs[n].target].first_out = arcs[n | 1].next_out; |
1097 | 1097 |
} |
1098 | 1098 |
|
1099 | 1099 |
arcs[n].next_out = first_free_arc; |
1100 | 1100 |
first_free_arc = n; |
1101 | 1101 |
arcs[n].prev_out = -2; |
1102 | 1102 |
arcs[n | 1].prev_out = -2; |
1103 | 1103 |
|
1104 | 1104 |
} |
1105 | 1105 |
|
1106 | 1106 |
void clear() { |
1107 | 1107 |
arcs.clear(); |
1108 | 1108 |
nodes.clear(); |
1109 | 1109 |
first_node = first_free_node = first_free_arc = -1; |
1110 | 1110 |
} |
1111 | 1111 |
|
1112 | 1112 |
protected: |
1113 | 1113 |
|
1114 | 1114 |
void changeV(Edge e, Node n) { |
1115 | 1115 |
if(arcs[2 * e.id].next_out != -1) { |
1116 | 1116 |
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; |
1117 | 1117 |
} |
1118 | 1118 |
if(arcs[2 * e.id].prev_out != -1) { |
1119 | 1119 |
arcs[arcs[2 * e.id].prev_out].next_out = |
1120 | 1120 |
arcs[2 * e.id].next_out; |
1121 | 1121 |
} else { |
1122 | 1122 |
nodes[arcs[(2 * e.id) | 1].target].first_out = |
1123 | 1123 |
arcs[2 * e.id].next_out; |
1124 | 1124 |
} |
1125 | 1125 |
|
1126 | 1126 |
if (nodes[n.id].first_out != -1) { |
1127 | 1127 |
arcs[nodes[n.id].first_out].prev_out = 2 * e.id; |
1128 | 1128 |
} |
1129 | 1129 |
arcs[(2 * e.id) | 1].target = n.id; |
1130 | 1130 |
arcs[2 * e.id].prev_out = -1; |
1131 | 1131 |
arcs[2 * e.id].next_out = nodes[n.id].first_out; |
1132 | 1132 |
nodes[n.id].first_out = 2 * e.id; |
1133 | 1133 |
} |
1134 | 1134 |
|
1135 | 1135 |
void changeU(Edge e, Node n) { |
1136 | 1136 |
if(arcs[(2 * e.id) | 1].next_out != -1) { |
1137 | 1137 |
arcs[arcs[(2 * e.id) | 1].next_out].prev_out = |
1138 | 1138 |
arcs[(2 * e.id) | 1].prev_out; |
1139 | 1139 |
} |
1140 | 1140 |
if(arcs[(2 * e.id) | 1].prev_out != -1) { |
1141 | 1141 |
arcs[arcs[(2 * e.id) | 1].prev_out].next_out = |
1142 | 1142 |
arcs[(2 * e.id) | 1].next_out; |
1143 | 1143 |
} else { |
1144 | 1144 |
nodes[arcs[2 * e.id].target].first_out = |
1145 | 1145 |
arcs[(2 * e.id) | 1].next_out; |
1146 | 1146 |
} |
1147 | 1147 |
|
1148 | 1148 |
if (nodes[n.id].first_out != -1) { |
1149 | 1149 |
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); |
1150 | 1150 |
} |
1151 | 1151 |
arcs[2 * e.id].target = n.id; |
1152 | 1152 |
arcs[(2 * e.id) | 1].prev_out = -1; |
1153 | 1153 |
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; |
1154 | 1154 |
nodes[n.id].first_out = ((2 * e.id) | 1); |
1155 | 1155 |
} |
1156 | 1156 |
|
1157 | 1157 |
}; |
1158 | 1158 |
|
1159 | 1159 |
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase; |
1160 | 1160 |
|
1161 | 1161 |
|
1162 | 1162 |
/// \addtogroup graphs |
1163 | 1163 |
/// @{ |
1164 | 1164 |
|
1165 | 1165 |
///A general undirected graph structure. |
1166 | 1166 |
|
1167 | 1167 |
///\ref ListGraph is a simple and fast <em>undirected graph</em> |
1168 | 1168 |
///implementation based on static linked lists that are stored in |
1169 | 1169 |
///\c std::vector structures. |
1170 | 1170 |
/// |
1171 | 1171 |
///It conforms to the \ref concepts::Graph "Graph concept" and it |
1172 | 1172 |
///also provides several useful additional functionalities. |
1173 | 1173 |
///Most of the member functions and nested classes are documented |
1174 | 1174 |
///only in the concept class. |
1175 | 1175 |
/// |
1176 | 1176 |
///\sa concepts::Graph |
1177 | 1177 |
|
1178 | 1178 |
class ListGraph : public ExtendedListGraphBase { |
1179 |
typedef ExtendedListGraphBase Parent; |
|
1180 |
|
|
1179 | 1181 |
private: |
1180 | 1182 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
1181 | 1183 |
|
1182 | 1184 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
1183 | 1185 |
/// |
1184 | 1186 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {}; |
1185 | 1187 |
///\brief Assignment of ListGraph to another one is \e not allowed. |
1186 | 1188 |
///Use copyGraph() instead. |
1187 | 1189 |
|
1188 | 1190 |
///Assignment of ListGraph to another one is \e not allowed. |
1189 | 1191 |
///Use copyGraph() instead. |
1190 | 1192 |
void operator=(const ListGraph &) {} |
1191 | 1193 |
public: |
1192 | 1194 |
/// Constructor |
1193 | 1195 |
|
1194 | 1196 |
/// Constructor. |
1195 | 1197 |
/// |
1196 | 1198 |
ListGraph() {} |
1197 | 1199 |
|
1198 |
typedef ExtendedListGraphBase Parent; |
|
1199 |
|
|
1200 | 1200 |
typedef Parent::OutArcIt IncEdgeIt; |
1201 | 1201 |
|
1202 | 1202 |
/// \brief Add a new node to the graph. |
1203 | 1203 |
/// |
1204 | 1204 |
/// Add a new node to the graph. |
1205 | 1205 |
/// \return The new node. |
1206 | 1206 |
Node addNode() { return Parent::addNode(); } |
1207 | 1207 |
|
1208 | 1208 |
/// \brief Add a new edge to the graph. |
1209 | 1209 |
/// |
1210 | 1210 |
/// Add a new edge to the graph with source node \c s |
1211 | 1211 |
/// and target node \c t. |
1212 | 1212 |
/// \return The new edge. |
1213 | 1213 |
Edge addEdge(const Node& s, const Node& t) { |
1214 | 1214 |
return Parent::addEdge(s, t); |
1215 | 1215 |
} |
1216 | 1216 |
|
1217 | 1217 |
/// \brief Erase a node from the graph. |
1218 | 1218 |
/// |
1219 | 1219 |
/// Erase a node from the graph. |
1220 | 1220 |
/// |
1221 | 1221 |
void erase(const Node& n) { Parent::erase(n); } |
1222 | 1222 |
|
1223 | 1223 |
/// \brief Erase an edge from the graph. |
1224 | 1224 |
/// |
1225 | 1225 |
/// Erase an edge from the graph. |
1226 | 1226 |
/// |
1227 | 1227 |
void erase(const Edge& e) { Parent::erase(e); } |
1228 | 1228 |
/// Node validity check |
1229 | 1229 |
|
1230 | 1230 |
/// This function gives back true if the given node is valid, |
1231 | 1231 |
/// ie. it is a real node of the graph. |
1232 | 1232 |
/// |
1233 | 1233 |
/// \warning A Node pointing to a removed item |
1234 | 1234 |
/// could become valid again later if new nodes are |
1235 | 1235 |
/// added to the graph. |
1236 | 1236 |
bool valid(Node n) const { return Parent::valid(n); } |
1237 | 1237 |
/// Arc validity check |
1238 | 1238 |
|
1239 | 1239 |
/// This function gives back true if the given arc is valid, |
1240 | 1240 |
/// ie. it is a real arc of the graph. |
1241 | 1241 |
/// |
1242 | 1242 |
/// \warning An Arc pointing to a removed item |
1243 | 1243 |
/// could become valid again later if new edges are |
1244 | 1244 |
/// added to the graph. |
1245 | 1245 |
bool valid(Arc a) const { return Parent::valid(a); } |
1246 | 1246 |
/// Edge validity check |
1247 | 1247 |
|
1248 | 1248 |
/// This function gives back true if the given edge is valid, |
1249 | 1249 |
/// ie. it is a real arc of the graph. |
1250 | 1250 |
/// |
1251 | 1251 |
/// \warning A Edge pointing to a removed item |
1252 | 1252 |
/// could become valid again later if new edges are |
1253 | 1253 |
/// added to the graph. |
1254 | 1254 |
bool valid(Edge e) const { return Parent::valid(e); } |
1255 | 1255 |
/// \brief Change the end \c u of \c e to \c n |
1256 | 1256 |
/// |
1257 | 1257 |
/// This function changes the end \c u of \c e to node \c n. |
1258 | 1258 |
/// |
1259 | 1259 |
///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the |
1260 | 1260 |
///changed edge are invalidated and if the changed node is the |
1261 | 1261 |
///base node of an iterator then this iterator is also |
1262 | 1262 |
///invalidated. |
1263 | 1263 |
/// |
1264 | 1264 |
///\warning This functionality cannot be used together with the |
1265 | 1265 |
///Snapshot feature. |
1266 | 1266 |
void changeU(Edge e, Node n) { |
1267 | 1267 |
Parent::changeU(e,n); |
1268 | 1268 |
} |
1269 | 1269 |
/// \brief Change the end \c v of \c e to \c n |
1270 | 1270 |
/// |
1271 | 1271 |
/// This function changes the end \c v of \c e to \c n. |
1272 | 1272 |
/// |
1273 | 1273 |
///\note The <tt>EdgeIt</tt>s referencing the changed edge remain |
1274 | 1274 |
///valid, however <tt>ArcIt</tt>s and if the changed node is the |
1275 | 1275 |
///base node of an iterator then this iterator is invalidated. |
1276 | 1276 |
/// |
1277 | 1277 |
///\warning This functionality cannot be used together with the |
1278 | 1278 |
///Snapshot feature. |
1279 | 1279 |
void changeV(Edge e, Node n) { |
1280 | 1280 |
Parent::changeV(e,n); |
1281 | 1281 |
} |
1282 | 1282 |
/// \brief Contract two nodes. |
1283 | 1283 |
/// |
1284 | 1284 |
/// This function contracts two nodes. |
1285 | 1285 |
/// Node \p b will be removed but instead of deleting |
1286 | 1286 |
/// its neighboring arcs, they will be joined to \p a. |
1287 | 1287 |
/// The last parameter \p r controls whether to remove loops. \c true |
1288 | 1288 |
/// means that loops will be removed. |
1289 | 1289 |
/// |
1290 | 1290 |
/// \note The <tt>ArcIt</tt>s referencing a moved arc remain |
1291 | 1291 |
/// valid. |
1292 | 1292 |
/// |
1293 | 1293 |
///\warning This functionality cannot be used together with the |
1294 | 1294 |
///Snapshot feature. |
1295 | 1295 |
void contract(Node a, Node b, bool r = true) { |
1296 | 1296 |
for(IncEdgeIt e(*this, b); e!=INVALID;) { |
1297 | 1297 |
IncEdgeIt f = e; ++f; |
1298 | 1298 |
if (r && runningNode(e) == a) { |
1299 | 1299 |
erase(e); |
1300 | 1300 |
} else if (u(e) == b) { |
1301 | 1301 |
changeU(e, a); |
1302 | 1302 |
} else { |
1303 | 1303 |
changeV(e, a); |
1304 | 1304 |
} |
1305 | 1305 |
e = f; |
1306 | 1306 |
} |
1307 | 1307 |
erase(b); |
1308 | 1308 |
} |
1309 | 1309 |
|
1310 | 1310 |
|
1311 | 1311 |
/// \brief Class to make a snapshot of the graph and restore |
1312 | 1312 |
/// it later. |
1313 | 1313 |
/// |
1314 | 1314 |
/// Class to make a snapshot of the graph and restore it later. |
1315 | 1315 |
/// |
1316 | 1316 |
/// The newly added nodes and edges can be removed |
1317 | 1317 |
/// using the restore() function. |
1318 | 1318 |
/// |
1319 | 1319 |
/// \warning Edge and node deletions and other modifications |
1320 | 1320 |
/// (e.g. changing nodes of edges, contracting nodes) cannot be |
1321 | 1321 |
/// restored. These events invalidate the snapshot. |
1322 | 1322 |
class Snapshot { |
1323 | 1323 |
protected: |
1324 | 1324 |
|
1325 | 1325 |
typedef Parent::NodeNotifier NodeNotifier; |
1326 | 1326 |
|
1327 | 1327 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
1328 | 1328 |
public: |
1329 | 1329 |
|
1330 | 1330 |
NodeObserverProxy(Snapshot& _snapshot) |
1331 | 1331 |
: snapshot(_snapshot) {} |
1332 | 1332 |
|
1333 | 1333 |
using NodeNotifier::ObserverBase::attach; |
1334 | 1334 |
using NodeNotifier::ObserverBase::detach; |
1335 | 1335 |
using NodeNotifier::ObserverBase::attached; |
1336 | 1336 |
|
1337 | 1337 |
protected: |
1338 | 1338 |
|
1339 | 1339 |
virtual void add(const Node& node) { |
1340 | 1340 |
snapshot.addNode(node); |
1341 | 1341 |
} |
1342 | 1342 |
virtual void add(const std::vector<Node>& nodes) { |
1343 | 1343 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
1344 | 1344 |
snapshot.addNode(nodes[i]); |
1345 | 1345 |
} |
1346 | 1346 |
} |
1347 | 1347 |
virtual void erase(const Node& node) { |
1348 | 1348 |
snapshot.eraseNode(node); |
1349 | 1349 |
} |
1350 | 1350 |
virtual void erase(const std::vector<Node>& nodes) { |
1351 | 1351 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1352 | 1352 |
snapshot.eraseNode(nodes[i]); |
1353 | 1353 |
} |
1354 | 1354 |
} |
1355 | 1355 |
virtual void build() { |
1356 | 1356 |
Node node; |
1357 | 1357 |
std::vector<Node> nodes; |
1358 | 1358 |
for (notifier()->first(node); node != INVALID; |
1359 | 1359 |
notifier()->next(node)) { |
1360 | 1360 |
nodes.push_back(node); |
1361 | 1361 |
} |
1362 | 1362 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
1363 | 1363 |
snapshot.addNode(nodes[i]); |
1364 | 1364 |
} |
1365 | 1365 |
} |
1366 | 1366 |
virtual void clear() { |
1367 | 1367 |
Node node; |
1368 | 1368 |
for (notifier()->first(node); node != INVALID; |
1369 | 1369 |
notifier()->next(node)) { |
1370 | 1370 |
snapshot.eraseNode(node); |
1371 | 1371 |
} |
1372 | 1372 |
} |
1373 | 1373 |
|
1374 | 1374 |
Snapshot& snapshot; |
1375 | 1375 |
}; |
1376 | 1376 |
|
1377 | 1377 |
class EdgeObserverProxy : public EdgeNotifier::ObserverBase { |
1378 | 1378 |
public: |
1379 | 1379 |
|
1380 | 1380 |
EdgeObserverProxy(Snapshot& _snapshot) |
1381 | 1381 |
: snapshot(_snapshot) {} |
1382 | 1382 |
|
1383 | 1383 |
using EdgeNotifier::ObserverBase::attach; |
1384 | 1384 |
using EdgeNotifier::ObserverBase::detach; |
1385 | 1385 |
using EdgeNotifier::ObserverBase::attached; |
1386 | 1386 |
|
1387 | 1387 |
protected: |
1388 | 1388 |
|
1389 | 1389 |
virtual void add(const Edge& edge) { |
1390 | 1390 |
snapshot.addEdge(edge); |
1391 | 1391 |
} |
1392 | 1392 |
virtual void add(const std::vector<Edge>& edges) { |
1393 | 1393 |
for (int i = edges.size() - 1; i >= 0; ++i) { |
1394 | 1394 |
snapshot.addEdge(edges[i]); |
1395 | 1395 |
} |
1396 | 1396 |
} |
1397 | 1397 |
virtual void erase(const Edge& edge) { |
1398 | 1398 |
snapshot.eraseEdge(edge); |
1399 | 1399 |
} |
1400 | 1400 |
virtual void erase(const std::vector<Edge>& edges) { |
1401 | 1401 |
for (int i = 0; i < int(edges.size()); ++i) { |
1402 | 1402 |
snapshot.eraseEdge(edges[i]); |
1403 | 1403 |
} |
1404 | 1404 |
} |
1405 | 1405 |
virtual void build() { |
1406 | 1406 |
Edge edge; |
1407 | 1407 |
std::vector<Edge> edges; |
1408 | 1408 |
for (notifier()->first(edge); edge != INVALID; |
1409 | 1409 |
notifier()->next(edge)) { |
1410 | 1410 |
edges.push_back(edge); |
1411 | 1411 |
} |
1412 | 1412 |
for (int i = edges.size() - 1; i >= 0; --i) { |
1413 | 1413 |
snapshot.addEdge(edges[i]); |
1414 | 1414 |
} |
1415 | 1415 |
} |
1416 | 1416 |
virtual void clear() { |
1417 | 1417 |
Edge edge; |
1418 | 1418 |
for (notifier()->first(edge); edge != INVALID; |
1419 | 1419 |
notifier()->next(edge)) { |
1420 | 1420 |
snapshot.eraseEdge(edge); |
1421 | 1421 |
} |
1422 | 1422 |
} |
1423 | 1423 |
|
1424 | 1424 |
Snapshot& snapshot; |
1425 | 1425 |
}; |
1426 | 1426 |
|
1427 | 1427 |
ListGraph *graph; |
1428 | 1428 |
|
1429 | 1429 |
NodeObserverProxy node_observer_proxy; |
1430 | 1430 |
EdgeObserverProxy edge_observer_proxy; |
1431 | 1431 |
|
1432 | 1432 |
std::list<Node> added_nodes; |
1433 | 1433 |
std::list<Edge> added_edges; |
1434 | 1434 |
|
1435 | 1435 |
|
1436 | 1436 |
void addNode(const Node& node) { |
1437 | 1437 |
added_nodes.push_front(node); |
1438 | 1438 |
} |
1439 | 1439 |
void eraseNode(const Node& node) { |
1440 | 1440 |
std::list<Node>::iterator it = |
1441 | 1441 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
1442 | 1442 |
if (it == added_nodes.end()) { |
1443 | 1443 |
clear(); |
1444 | 1444 |
edge_observer_proxy.detach(); |
1445 | 1445 |
throw NodeNotifier::ImmediateDetach(); |
1446 | 1446 |
} else { |
1447 | 1447 |
added_nodes.erase(it); |
1448 | 1448 |
} |
1449 | 1449 |
} |
1450 | 1450 |
|
1451 | 1451 |
void addEdge(const Edge& edge) { |
1452 | 1452 |
added_edges.push_front(edge); |
1453 | 1453 |
} |
1454 | 1454 |
void eraseEdge(const Edge& edge) { |
1455 | 1455 |
std::list<Edge>::iterator it = |
1456 | 1456 |
std::find(added_edges.begin(), added_edges.end(), edge); |
1457 | 1457 |
if (it == added_edges.end()) { |
1458 | 1458 |
clear(); |
1459 | 1459 |
node_observer_proxy.detach(); |
1460 | 1460 |
throw EdgeNotifier::ImmediateDetach(); |
1461 | 1461 |
} else { |
1462 | 1462 |
added_edges.erase(it); |
1463 | 1463 |
} |
1464 | 1464 |
} |
1465 | 1465 |
|
1466 | 1466 |
void attach(ListGraph &_graph) { |
1467 | 1467 |
graph = &_graph; |
1468 | 1468 |
node_observer_proxy.attach(graph->notifier(Node())); |
1469 | 1469 |
edge_observer_proxy.attach(graph->notifier(Edge())); |
1470 | 1470 |
} |
1471 | 1471 |
|
1472 | 1472 |
void detach() { |
1473 | 1473 |
node_observer_proxy.detach(); |
1474 | 1474 |
edge_observer_proxy.detach(); |
1475 | 1475 |
} |
1476 | 1476 |
|
1477 | 1477 |
bool attached() const { |
1478 | 1478 |
return node_observer_proxy.attached(); |
1479 | 1479 |
} |
1480 | 1480 |
|
1481 | 1481 |
void clear() { |
1482 | 1482 |
added_nodes.clear(); |
1483 | 1483 |
added_edges.clear(); |
1484 | 1484 |
} |
1485 | 1485 |
|
1486 | 1486 |
public: |
1487 | 1487 |
|
1488 | 1488 |
/// \brief Default constructor. |
1489 | 1489 |
/// |
1490 | 1490 |
/// Default constructor. |
1491 | 1491 |
/// To actually make a snapshot you must call save(). |
1492 | 1492 |
Snapshot() |
1493 | 1493 |
: graph(0), node_observer_proxy(*this), |
1494 | 1494 |
edge_observer_proxy(*this) {} |
1495 | 1495 |
|
1496 | 1496 |
/// \brief Constructor that immediately makes a snapshot. |
1497 | 1497 |
/// |
1498 | 1498 |
/// This constructor immediately makes a snapshot of the graph. |
1499 | 1499 |
/// \param _graph The graph we make a snapshot of. |
1500 | 1500 |
Snapshot(ListGraph &_graph) |
1501 | 1501 |
: node_observer_proxy(*this), |
1502 | 1502 |
edge_observer_proxy(*this) { |
1503 | 1503 |
attach(_graph); |
1504 | 1504 |
} |
1505 | 1505 |
|
1506 | 1506 |
/// \brief Make a snapshot. |
1507 | 1507 |
/// |
1508 | 1508 |
/// Make a snapshot of the graph. |
1509 | 1509 |
/// |
1510 | 1510 |
/// This function can be called more than once. In case of a repeated |
1511 | 1511 |
/// call, the previous snapshot gets lost. |
1512 | 1512 |
/// \param _graph The graph we make the snapshot of. |
1513 | 1513 |
void save(ListGraph &_graph) { |
1514 | 1514 |
if (attached()) { |
1515 | 1515 |
detach(); |
1516 | 1516 |
clear(); |
1517 | 1517 |
} |
1518 | 1518 |
attach(_graph); |
1519 | 1519 |
} |
1520 | 1520 |
|
1521 | 1521 |
/// \brief Undo the changes until the last snapshot. |
1522 | 1522 |
// |
1523 | 1523 |
/// Undo the changes until the last snapshot created by save(). |
1524 | 1524 |
void restore() { |
1525 | 1525 |
detach(); |
1526 | 1526 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
1527 | 1527 |
it != added_edges.end(); ++it) { |
1528 | 1528 |
graph->erase(*it); |
1529 | 1529 |
} |
1530 | 1530 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
1531 | 1531 |
it != added_nodes.end(); ++it) { |
1532 | 1532 |
graph->erase(*it); |
1533 | 1533 |
} |
1534 | 1534 |
clear(); |
1535 | 1535 |
} |
1536 | 1536 |
|
1537 | 1537 |
/// \brief Gives back true when the snapshot is valid. |
1538 | 1538 |
/// |
1539 | 1539 |
/// Gives back true when the snapshot is valid. |
1540 | 1540 |
bool valid() const { |
1541 | 1541 |
return attached(); |
1542 | 1542 |
} |
1543 | 1543 |
}; |
1544 | 1544 |
}; |
1545 | 1545 |
|
1546 | 1546 |
/// @} |
1547 | 1547 |
} //namespace lemon |
1548 | 1548 |
|
1549 | 1549 |
|
1550 | 1550 |
#endif |
... | ... |
@@ -1457,1326 +1457,1331 @@ |
1457 | 1457 |
/// |
1458 | 1458 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1459 | 1459 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
1460 | 1460 |
/// <tt>m1[x]&&m2[x]</tt>. |
1461 | 1461 |
/// |
1462 | 1462 |
/// \relates AndMap |
1463 | 1463 |
template<typename M1, typename M2> |
1464 | 1464 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
1465 | 1465 |
return AndMap<M1, M2>(m1,m2); |
1466 | 1466 |
} |
1467 | 1467 |
|
1468 | 1468 |
|
1469 | 1469 |
/// Logical 'or' of two maps |
1470 | 1470 |
|
1471 | 1471 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1472 | 1472 |
/// 'or' of the values of the two given maps. |
1473 | 1473 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1474 | 1474 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1475 | 1475 |
/// |
1476 | 1476 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1477 | 1477 |
/// \code |
1478 | 1478 |
/// OrMap<M1,M2> om(m1,m2); |
1479 | 1479 |
/// \endcode |
1480 | 1480 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
1481 | 1481 |
/// |
1482 | 1482 |
/// The simplest way of using this map is through the orMap() |
1483 | 1483 |
/// function. |
1484 | 1484 |
/// |
1485 | 1485 |
/// \sa AndMap |
1486 | 1486 |
/// \sa NotMap, NotWriteMap |
1487 | 1487 |
template<typename M1, typename M2> |
1488 | 1488 |
class OrMap : public MapBase<typename M1::Key, bool> { |
1489 | 1489 |
const M1 &_m1; |
1490 | 1490 |
const M2 &_m2; |
1491 | 1491 |
public: |
1492 | 1492 |
///\e |
1493 | 1493 |
typedef typename M1::Key Key; |
1494 | 1494 |
///\e |
1495 | 1495 |
typedef bool Value; |
1496 | 1496 |
|
1497 | 1497 |
/// Constructor |
1498 | 1498 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1499 | 1499 |
///\e |
1500 | 1500 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
1501 | 1501 |
}; |
1502 | 1502 |
|
1503 | 1503 |
/// Returns an \c OrMap class |
1504 | 1504 |
|
1505 | 1505 |
/// This function just returns an \c OrMap class. |
1506 | 1506 |
/// |
1507 | 1507 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1508 | 1508 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
1509 | 1509 |
/// <tt>m1[x]||m2[x]</tt>. |
1510 | 1510 |
/// |
1511 | 1511 |
/// \relates OrMap |
1512 | 1512 |
template<typename M1, typename M2> |
1513 | 1513 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
1514 | 1514 |
return OrMap<M1, M2>(m1,m2); |
1515 | 1515 |
} |
1516 | 1516 |
|
1517 | 1517 |
|
1518 | 1518 |
/// Logical 'not' of a map |
1519 | 1519 |
|
1520 | 1520 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1521 | 1521 |
/// negation of the values of the given map. |
1522 | 1522 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1523 | 1523 |
/// |
1524 | 1524 |
/// The simplest way of using this map is through the notMap() |
1525 | 1525 |
/// function. |
1526 | 1526 |
/// |
1527 | 1527 |
/// \sa NotWriteMap |
1528 | 1528 |
template <typename M> |
1529 | 1529 |
class NotMap : public MapBase<typename M::Key, bool> { |
1530 | 1530 |
const M &_m; |
1531 | 1531 |
public: |
1532 | 1532 |
///\e |
1533 | 1533 |
typedef typename M::Key Key; |
1534 | 1534 |
///\e |
1535 | 1535 |
typedef bool Value; |
1536 | 1536 |
|
1537 | 1537 |
/// Constructor |
1538 | 1538 |
NotMap(const M &m) : _m(m) {} |
1539 | 1539 |
///\e |
1540 | 1540 |
Value operator[](const Key &k) const { return !_m[k]; } |
1541 | 1541 |
}; |
1542 | 1542 |
|
1543 | 1543 |
/// Logical 'not' of a map (read-write version) |
1544 | 1544 |
|
1545 | 1545 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1546 | 1546 |
/// logical negation of the values of the given map. |
1547 | 1547 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1548 | 1548 |
/// It makes also possible to write the map. When a value is set, |
1549 | 1549 |
/// the opposite value is set to the original map. |
1550 | 1550 |
/// |
1551 | 1551 |
/// The simplest way of using this map is through the notWriteMap() |
1552 | 1552 |
/// function. |
1553 | 1553 |
/// |
1554 | 1554 |
/// \sa NotMap |
1555 | 1555 |
template <typename M> |
1556 | 1556 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1557 | 1557 |
M &_m; |
1558 | 1558 |
public: |
1559 | 1559 |
///\e |
1560 | 1560 |
typedef typename M::Key Key; |
1561 | 1561 |
///\e |
1562 | 1562 |
typedef bool Value; |
1563 | 1563 |
|
1564 | 1564 |
/// Constructor |
1565 | 1565 |
NotWriteMap(M &m) : _m(m) {} |
1566 | 1566 |
///\e |
1567 | 1567 |
Value operator[](const Key &k) const { return !_m[k]; } |
1568 | 1568 |
///\e |
1569 | 1569 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1570 | 1570 |
}; |
1571 | 1571 |
|
1572 | 1572 |
/// Returns a \c NotMap class |
1573 | 1573 |
|
1574 | 1574 |
/// This function just returns a \c NotMap class. |
1575 | 1575 |
/// |
1576 | 1576 |
/// For example, if \c m is a map with \c bool values, then |
1577 | 1577 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1578 | 1578 |
/// |
1579 | 1579 |
/// \relates NotMap |
1580 | 1580 |
template <typename M> |
1581 | 1581 |
inline NotMap<M> notMap(const M &m) { |
1582 | 1582 |
return NotMap<M>(m); |
1583 | 1583 |
} |
1584 | 1584 |
|
1585 | 1585 |
/// Returns a \c NotWriteMap class |
1586 | 1586 |
|
1587 | 1587 |
/// This function just returns a \c NotWriteMap class. |
1588 | 1588 |
/// |
1589 | 1589 |
/// For example, if \c m is a map with \c bool values, then |
1590 | 1590 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1591 | 1591 |
/// Moreover it makes also possible to write the map. |
1592 | 1592 |
/// |
1593 | 1593 |
/// \relates NotWriteMap |
1594 | 1594 |
template <typename M> |
1595 | 1595 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1596 | 1596 |
return NotWriteMap<M>(m); |
1597 | 1597 |
} |
1598 | 1598 |
|
1599 | 1599 |
|
1600 | 1600 |
/// Combination of two maps using the \c == operator |
1601 | 1601 |
|
1602 | 1602 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1603 | 1603 |
/// the keys for which the corresponding values of the two maps are |
1604 | 1604 |
/// equal. |
1605 | 1605 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1606 | 1606 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1607 | 1607 |
/// |
1608 | 1608 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1609 | 1609 |
/// \code |
1610 | 1610 |
/// EqualMap<M1,M2> em(m1,m2); |
1611 | 1611 |
/// \endcode |
1612 | 1612 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1613 | 1613 |
/// |
1614 | 1614 |
/// The simplest way of using this map is through the equalMap() |
1615 | 1615 |
/// function. |
1616 | 1616 |
/// |
1617 | 1617 |
/// \sa LessMap |
1618 | 1618 |
template<typename M1, typename M2> |
1619 | 1619 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1620 | 1620 |
const M1 &_m1; |
1621 | 1621 |
const M2 &_m2; |
1622 | 1622 |
public: |
1623 | 1623 |
///\e |
1624 | 1624 |
typedef typename M1::Key Key; |
1625 | 1625 |
///\e |
1626 | 1626 |
typedef bool Value; |
1627 | 1627 |
|
1628 | 1628 |
/// Constructor |
1629 | 1629 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1630 | 1630 |
///\e |
1631 | 1631 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1632 | 1632 |
}; |
1633 | 1633 |
|
1634 | 1634 |
/// Returns an \c EqualMap class |
1635 | 1635 |
|
1636 | 1636 |
/// This function just returns an \c EqualMap class. |
1637 | 1637 |
/// |
1638 | 1638 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1639 | 1639 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1640 | 1640 |
/// <tt>m1[x]==m2[x]</tt>. |
1641 | 1641 |
/// |
1642 | 1642 |
/// \relates EqualMap |
1643 | 1643 |
template<typename M1, typename M2> |
1644 | 1644 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1645 | 1645 |
return EqualMap<M1, M2>(m1,m2); |
1646 | 1646 |
} |
1647 | 1647 |
|
1648 | 1648 |
|
1649 | 1649 |
/// Combination of two maps using the \c < operator |
1650 | 1650 |
|
1651 | 1651 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1652 | 1652 |
/// the keys for which the corresponding value of the first map is |
1653 | 1653 |
/// less then the value of the second map. |
1654 | 1654 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1655 | 1655 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1656 | 1656 |
/// |
1657 | 1657 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1658 | 1658 |
/// \code |
1659 | 1659 |
/// LessMap<M1,M2> lm(m1,m2); |
1660 | 1660 |
/// \endcode |
1661 | 1661 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1662 | 1662 |
/// |
1663 | 1663 |
/// The simplest way of using this map is through the lessMap() |
1664 | 1664 |
/// function. |
1665 | 1665 |
/// |
1666 | 1666 |
/// \sa EqualMap |
1667 | 1667 |
template<typename M1, typename M2> |
1668 | 1668 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1669 | 1669 |
const M1 &_m1; |
1670 | 1670 |
const M2 &_m2; |
1671 | 1671 |
public: |
1672 | 1672 |
///\e |
1673 | 1673 |
typedef typename M1::Key Key; |
1674 | 1674 |
///\e |
1675 | 1675 |
typedef bool Value; |
1676 | 1676 |
|
1677 | 1677 |
/// Constructor |
1678 | 1678 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1679 | 1679 |
///\e |
1680 | 1680 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1681 | 1681 |
}; |
1682 | 1682 |
|
1683 | 1683 |
/// Returns an \c LessMap class |
1684 | 1684 |
|
1685 | 1685 |
/// This function just returns an \c LessMap class. |
1686 | 1686 |
/// |
1687 | 1687 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1688 | 1688 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1689 | 1689 |
/// <tt>m1[x]<m2[x]</tt>. |
1690 | 1690 |
/// |
1691 | 1691 |
/// \relates LessMap |
1692 | 1692 |
template<typename M1, typename M2> |
1693 | 1693 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1694 | 1694 |
return LessMap<M1, M2>(m1,m2); |
1695 | 1695 |
} |
1696 | 1696 |
|
1697 | 1697 |
namespace _maps_bits { |
1698 | 1698 |
|
1699 | 1699 |
template <typename _Iterator, typename Enable = void> |
1700 | 1700 |
struct IteratorTraits { |
1701 | 1701 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1702 | 1702 |
}; |
1703 | 1703 |
|
1704 | 1704 |
template <typename _Iterator> |
1705 | 1705 |
struct IteratorTraits<_Iterator, |
1706 | 1706 |
typename exists<typename _Iterator::container_type>::type> |
1707 | 1707 |
{ |
1708 | 1708 |
typedef typename _Iterator::container_type::value_type Value; |
1709 | 1709 |
}; |
1710 | 1710 |
|
1711 | 1711 |
} |
1712 | 1712 |
|
1713 | 1713 |
/// @} |
1714 | 1714 |
|
1715 | 1715 |
/// \addtogroup maps |
1716 | 1716 |
/// @{ |
1717 | 1717 |
|
1718 | 1718 |
/// \brief Writable bool map for logging each \c true assigned element |
1719 | 1719 |
/// |
1720 | 1720 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1721 | 1721 |
/// each \c true assigned element, i.e it copies subsequently each |
1722 | 1722 |
/// keys set to \c true to the given iterator. |
1723 | 1723 |
/// The most important usage of it is storing certain nodes or arcs |
1724 | 1724 |
/// that were marked \c true by an algorithm. |
1725 | 1725 |
/// |
1726 | 1726 |
/// There are several algorithms that provide solutions through bool |
1727 | 1727 |
/// maps and most of them assign \c true at most once for each key. |
1728 | 1728 |
/// In these cases it is a natural request to store each \c true |
1729 | 1729 |
/// assigned elements (in order of the assignment), which can be |
1730 | 1730 |
/// easily done with LoggerBoolMap. |
1731 | 1731 |
/// |
1732 | 1732 |
/// The simplest way of using this map is through the loggerBoolMap() |
1733 | 1733 |
/// function. |
1734 | 1734 |
/// |
1735 | 1735 |
/// \tparam IT The type of the iterator. |
1736 | 1736 |
/// \tparam KEY The key type of the map. The default value set |
1737 | 1737 |
/// according to the iterator type should work in most cases. |
1738 | 1738 |
/// |
1739 | 1739 |
/// \note The container of the iterator must contain enough space |
1740 | 1740 |
/// for the elements or the iterator should be an inserter iterator. |
1741 | 1741 |
#ifdef DOXYGEN |
1742 | 1742 |
template <typename IT, typename KEY> |
1743 | 1743 |
#else |
1744 | 1744 |
template <typename IT, |
1745 | 1745 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1746 | 1746 |
#endif |
1747 | 1747 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1748 | 1748 |
public: |
1749 | 1749 |
|
1750 | 1750 |
///\e |
1751 | 1751 |
typedef KEY Key; |
1752 | 1752 |
///\e |
1753 | 1753 |
typedef bool Value; |
1754 | 1754 |
///\e |
1755 | 1755 |
typedef IT Iterator; |
1756 | 1756 |
|
1757 | 1757 |
/// Constructor |
1758 | 1758 |
LoggerBoolMap(Iterator it) |
1759 | 1759 |
: _begin(it), _end(it) {} |
1760 | 1760 |
|
1761 | 1761 |
/// Gives back the given iterator set for the first key |
1762 | 1762 |
Iterator begin() const { |
1763 | 1763 |
return _begin; |
1764 | 1764 |
} |
1765 | 1765 |
|
1766 | 1766 |
/// Gives back the the 'after the last' iterator |
1767 | 1767 |
Iterator end() const { |
1768 | 1768 |
return _end; |
1769 | 1769 |
} |
1770 | 1770 |
|
1771 | 1771 |
/// The set function of the map |
1772 | 1772 |
void set(const Key& key, Value value) { |
1773 | 1773 |
if (value) { |
1774 | 1774 |
*_end++ = key; |
1775 | 1775 |
} |
1776 | 1776 |
} |
1777 | 1777 |
|
1778 | 1778 |
private: |
1779 | 1779 |
Iterator _begin; |
1780 | 1780 |
Iterator _end; |
1781 | 1781 |
}; |
1782 | 1782 |
|
1783 | 1783 |
/// Returns a \c LoggerBoolMap class |
1784 | 1784 |
|
1785 | 1785 |
/// This function just returns a \c LoggerBoolMap class. |
1786 | 1786 |
/// |
1787 | 1787 |
/// The most important usage of it is storing certain nodes or arcs |
1788 | 1788 |
/// that were marked \c true by an algorithm. |
1789 | 1789 |
/// For example it makes easier to store the nodes in the processing |
1790 | 1790 |
/// order of Dfs algorithm, as the following examples show. |
1791 | 1791 |
/// \code |
1792 | 1792 |
/// std::vector<Node> v; |
1793 | 1793 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1794 | 1794 |
/// \endcode |
1795 | 1795 |
/// \code |
1796 | 1796 |
/// std::vector<Node> v(countNodes(g)); |
1797 | 1797 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1798 | 1798 |
/// \endcode |
1799 | 1799 |
/// |
1800 | 1800 |
/// \note The container of the iterator must contain enough space |
1801 | 1801 |
/// for the elements or the iterator should be an inserter iterator. |
1802 | 1802 |
/// |
1803 | 1803 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1804 | 1804 |
/// it cannot be used when a readable map is needed, for example as |
1805 | 1805 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1806 | 1806 |
/// |
1807 | 1807 |
/// \relates LoggerBoolMap |
1808 | 1808 |
template<typename Iterator> |
1809 | 1809 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1810 | 1810 |
return LoggerBoolMap<Iterator>(it); |
1811 | 1811 |
} |
1812 | 1812 |
|
1813 | 1813 |
/// @} |
1814 | 1814 |
|
1815 | 1815 |
/// \addtogroup graph_maps |
1816 | 1816 |
/// @{ |
1817 | 1817 |
|
1818 | 1818 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1819 | 1819 |
/// |
1820 | 1820 |
/// IdMap provides a unique and immutable id for each item of the |
1821 | 1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1822 | 1822 |
/// - \b unique: different items get different ids, |
1823 | 1823 |
/// - \b immutable: the id of an item does not change (even if you |
1824 | 1824 |
/// delete other nodes). |
1825 | 1825 |
/// |
1826 | 1826 |
/// Using this map you get access (i.e. can read) the inner id values of |
1827 | 1827 |
/// the items stored in the graph, which is returned by the \c id() |
1828 | 1828 |
/// function of the graph. This map can be inverted with its member |
1829 | 1829 |
/// class \c InverseMap or with the \c operator() member. |
1830 | 1830 |
/// |
1831 | 1831 |
/// \tparam GR The graph type. |
1832 | 1832 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1833 | 1833 |
/// \c GR::Edge). |
1834 | 1834 |
/// |
1835 | 1835 |
/// \see RangeIdMap |
1836 | 1836 |
template <typename GR, typename K> |
1837 | 1837 |
class IdMap : public MapBase<K, int> { |
1838 | 1838 |
public: |
1839 | 1839 |
/// The graph type of IdMap. |
1840 | 1840 |
typedef GR Graph; |
1841 |
typedef GR Digraph; |
|
1841 | 1842 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1842 | 1843 |
typedef K Item; |
1843 | 1844 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1844 | 1845 |
typedef K Key; |
1845 | 1846 |
/// The value type of IdMap. |
1846 | 1847 |
typedef int Value; |
1847 | 1848 |
|
1848 | 1849 |
/// \brief Constructor. |
1849 | 1850 |
/// |
1850 | 1851 |
/// Constructor of the map. |
1851 | 1852 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1852 | 1853 |
|
1853 | 1854 |
/// \brief Gives back the \e id of the item. |
1854 | 1855 |
/// |
1855 | 1856 |
/// Gives back the immutable and unique \e id of the item. |
1856 | 1857 |
int operator[](const Item& item) const { return _graph->id(item);} |
1857 | 1858 |
|
1858 | 1859 |
/// \brief Gives back the \e item by its id. |
1859 | 1860 |
/// |
1860 | 1861 |
/// Gives back the \e item by its id. |
1861 | 1862 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1862 | 1863 |
|
1863 | 1864 |
private: |
1864 | 1865 |
const Graph* _graph; |
1865 | 1866 |
|
1866 | 1867 |
public: |
1867 | 1868 |
|
1868 | 1869 |
/// \brief This class represents the inverse of its owner (IdMap). |
1869 | 1870 |
/// |
1870 | 1871 |
/// This class represents the inverse of its owner (IdMap). |
1871 | 1872 |
/// \see inverse() |
1872 | 1873 |
class InverseMap { |
1873 | 1874 |
public: |
1874 | 1875 |
|
1875 | 1876 |
/// \brief Constructor. |
1876 | 1877 |
/// |
1877 | 1878 |
/// Constructor for creating an id-to-item map. |
1878 | 1879 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1879 | 1880 |
|
1880 | 1881 |
/// \brief Constructor. |
1881 | 1882 |
/// |
1882 | 1883 |
/// Constructor for creating an id-to-item map. |
1883 | 1884 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1884 | 1885 |
|
1885 | 1886 |
/// \brief Gives back the given item from its id. |
1886 | 1887 |
/// |
1887 | 1888 |
/// Gives back the given item from its id. |
1888 | 1889 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1889 | 1890 |
|
1890 | 1891 |
private: |
1891 | 1892 |
const Graph* _graph; |
1892 | 1893 |
}; |
1893 | 1894 |
|
1894 | 1895 |
/// \brief Gives back the inverse of the map. |
1895 | 1896 |
/// |
1896 | 1897 |
/// Gives back the inverse of the IdMap. |
1897 | 1898 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1898 | 1899 |
}; |
1899 | 1900 |
|
1900 | 1901 |
|
1901 | 1902 |
/// \brief General cross reference graph map type. |
1902 | 1903 |
|
1903 | 1904 |
/// This class provides simple invertable graph maps. |
1904 | 1905 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
1905 | 1906 |
/// and if a key is set to a new value then store it |
1906 | 1907 |
/// in the inverse map. |
1907 | 1908 |
/// |
1908 | 1909 |
/// The values of the map can be accessed |
1909 | 1910 |
/// with stl compatible forward iterator. |
1910 | 1911 |
/// |
1911 | 1912 |
/// \tparam GR The graph type. |
1912 | 1913 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1913 | 1914 |
/// \c GR::Edge). |
1914 | 1915 |
/// \tparam V The value type of the map. |
1915 | 1916 |
/// |
1916 | 1917 |
/// \see IterableValueMap |
1917 | 1918 |
template <typename GR, typename K, typename V> |
1918 | 1919 |
class CrossRefMap |
1919 | 1920 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1920 | 1921 |
private: |
1921 | 1922 |
|
1922 | 1923 |
typedef typename ItemSetTraits<GR, K>:: |
1923 | 1924 |
template Map<V>::Type Map; |
1924 | 1925 |
|
1925 | 1926 |
typedef std::map<V, K> Container; |
1926 | 1927 |
Container _inv_map; |
1927 | 1928 |
|
1928 | 1929 |
public: |
1929 | 1930 |
|
1930 | 1931 |
/// The graph type of CrossRefMap. |
1931 | 1932 |
typedef GR Graph; |
1933 |
typedef GR Digraph; |
|
1932 | 1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1933 | 1935 |
typedef K Item; |
1934 | 1936 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1935 | 1937 |
typedef K Key; |
1936 | 1938 |
/// The value type of CrossRefMap. |
1937 | 1939 |
typedef V Value; |
1938 | 1940 |
|
1939 | 1941 |
/// \brief Constructor. |
1940 | 1942 |
/// |
1941 | 1943 |
/// Construct a new CrossRefMap for the given graph. |
1942 | 1944 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1943 | 1945 |
|
1944 | 1946 |
/// \brief Forward iterator for values. |
1945 | 1947 |
/// |
1946 | 1948 |
/// This iterator is an stl compatible forward |
1947 | 1949 |
/// iterator on the values of the map. The values can |
1948 | 1950 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1949 | 1951 |
class ValueIterator |
1950 | 1952 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1951 | 1953 |
friend class CrossRefMap; |
1952 | 1954 |
private: |
1953 | 1955 |
ValueIterator(typename Container::const_iterator _it) |
1954 | 1956 |
: it(_it) {} |
1955 | 1957 |
public: |
1956 | 1958 |
|
1957 | 1959 |
ValueIterator() {} |
1958 | 1960 |
|
1959 | 1961 |
ValueIterator& operator++() { ++it; return *this; } |
1960 | 1962 |
ValueIterator operator++(int) { |
1961 | 1963 |
ValueIterator tmp(*this); |
1962 | 1964 |
operator++(); |
1963 | 1965 |
return tmp; |
1964 | 1966 |
} |
1965 | 1967 |
|
1966 | 1968 |
const Value& operator*() const { return it->first; } |
1967 | 1969 |
const Value* operator->() const { return &(it->first); } |
1968 | 1970 |
|
1969 | 1971 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1970 | 1972 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1971 | 1973 |
|
1972 | 1974 |
private: |
1973 | 1975 |
typename Container::const_iterator it; |
1974 | 1976 |
}; |
1975 | 1977 |
|
1976 | 1978 |
/// \brief Returns an iterator to the first value. |
1977 | 1979 |
/// |
1978 | 1980 |
/// Returns an stl compatible iterator to the |
1979 | 1981 |
/// first value of the map. The values of the |
1980 | 1982 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1981 | 1983 |
/// range. |
1982 | 1984 |
ValueIterator beginValue() const { |
1983 | 1985 |
return ValueIterator(_inv_map.begin()); |
1984 | 1986 |
} |
1985 | 1987 |
|
1986 | 1988 |
/// \brief Returns an iterator after the last value. |
1987 | 1989 |
/// |
1988 | 1990 |
/// Returns an stl compatible iterator after the |
1989 | 1991 |
/// last value of the map. The values of the |
1990 | 1992 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1991 | 1993 |
/// range. |
1992 | 1994 |
ValueIterator endValue() const { |
1993 | 1995 |
return ValueIterator(_inv_map.end()); |
1994 | 1996 |
} |
1995 | 1997 |
|
1996 | 1998 |
/// \brief Sets the value associated with the given key. |
1997 | 1999 |
/// |
1998 | 2000 |
/// Sets the value associated with the given key. |
1999 | 2001 |
void set(const Key& key, const Value& val) { |
2000 | 2002 |
Value oldval = Map::operator[](key); |
2001 | 2003 |
typename Container::iterator it = _inv_map.find(oldval); |
2002 | 2004 |
if (it != _inv_map.end() && it->second == key) { |
2003 | 2005 |
_inv_map.erase(it); |
2004 | 2006 |
} |
2005 | 2007 |
_inv_map.insert(make_pair(val, key)); |
2006 | 2008 |
Map::set(key, val); |
2007 | 2009 |
} |
2008 | 2010 |
|
2009 | 2011 |
/// \brief Returns the value associated with the given key. |
2010 | 2012 |
/// |
2011 | 2013 |
/// Returns the value associated with the given key. |
2012 | 2014 |
typename MapTraits<Map>::ConstReturnValue |
2013 | 2015 |
operator[](const Key& key) const { |
2014 | 2016 |
return Map::operator[](key); |
2015 | 2017 |
} |
2016 | 2018 |
|
2017 | 2019 |
/// \brief Gives back the item by its value. |
2018 | 2020 |
/// |
2019 | 2021 |
/// Gives back the item by its value. |
2020 | 2022 |
Key operator()(const Value& key) const { |
2021 | 2023 |
typename Container::const_iterator it = _inv_map.find(key); |
2022 | 2024 |
return it != _inv_map.end() ? it->second : INVALID; |
2023 | 2025 |
} |
2024 | 2026 |
|
2025 | 2027 |
protected: |
2026 | 2028 |
|
2027 | 2029 |
/// \brief Erase the key from the map and the inverse map. |
2028 | 2030 |
/// |
2029 | 2031 |
/// Erase the key from the map and the inverse map. It is called by the |
2030 | 2032 |
/// \c AlterationNotifier. |
2031 | 2033 |
virtual void erase(const Key& key) { |
2032 | 2034 |
Value val = Map::operator[](key); |
2033 | 2035 |
typename Container::iterator it = _inv_map.find(val); |
2034 | 2036 |
if (it != _inv_map.end() && it->second == key) { |
2035 | 2037 |
_inv_map.erase(it); |
2036 | 2038 |
} |
2037 | 2039 |
Map::erase(key); |
2038 | 2040 |
} |
2039 | 2041 |
|
2040 | 2042 |
/// \brief Erase more keys from the map and the inverse map. |
2041 | 2043 |
/// |
2042 | 2044 |
/// Erase more keys from the map and the inverse map. It is called by the |
2043 | 2045 |
/// \c AlterationNotifier. |
2044 | 2046 |
virtual void erase(const std::vector<Key>& keys) { |
2045 | 2047 |
for (int i = 0; i < int(keys.size()); ++i) { |
2046 | 2048 |
Value val = Map::operator[](keys[i]); |
2047 | 2049 |
typename Container::iterator it = _inv_map.find(val); |
2048 | 2050 |
if (it != _inv_map.end() && it->second == keys[i]) { |
2049 | 2051 |
_inv_map.erase(it); |
2050 | 2052 |
} |
2051 | 2053 |
} |
2052 | 2054 |
Map::erase(keys); |
2053 | 2055 |
} |
2054 | 2056 |
|
2055 | 2057 |
/// \brief Clear the keys from the map and the inverse map. |
2056 | 2058 |
/// |
2057 | 2059 |
/// Clear the keys from the map and the inverse map. It is called by the |
2058 | 2060 |
/// \c AlterationNotifier. |
2059 | 2061 |
virtual void clear() { |
2060 | 2062 |
_inv_map.clear(); |
2061 | 2063 |
Map::clear(); |
2062 | 2064 |
} |
2063 | 2065 |
|
2064 | 2066 |
public: |
2065 | 2067 |
|
2066 | 2068 |
/// \brief The inverse map type. |
2067 | 2069 |
/// |
2068 | 2070 |
/// The inverse of this map. The subscript operator of the map |
2069 | 2071 |
/// gives back the item that was last assigned to the value. |
2070 | 2072 |
class InverseMap { |
2071 | 2073 |
public: |
2072 | 2074 |
/// \brief Constructor |
2073 | 2075 |
/// |
2074 | 2076 |
/// Constructor of the InverseMap. |
2075 | 2077 |
explicit InverseMap(const CrossRefMap& inverted) |
2076 | 2078 |
: _inverted(inverted) {} |
2077 | 2079 |
|
2078 | 2080 |
/// The value type of the InverseMap. |
2079 | 2081 |
typedef typename CrossRefMap::Key Value; |
2080 | 2082 |
/// The key type of the InverseMap. |
2081 | 2083 |
typedef typename CrossRefMap::Value Key; |
2082 | 2084 |
|
2083 | 2085 |
/// \brief Subscript operator. |
2084 | 2086 |
/// |
2085 | 2087 |
/// Subscript operator. It gives back the item |
2086 | 2088 |
/// that was last assigned to the given value. |
2087 | 2089 |
Value operator[](const Key& key) const { |
2088 | 2090 |
return _inverted(key); |
2089 | 2091 |
} |
2090 | 2092 |
|
2091 | 2093 |
private: |
2092 | 2094 |
const CrossRefMap& _inverted; |
2093 | 2095 |
}; |
2094 | 2096 |
|
2095 | 2097 |
/// \brief It gives back the read-only inverse map. |
2096 | 2098 |
/// |
2097 | 2099 |
/// It gives back the read-only inverse map. |
2098 | 2100 |
InverseMap inverse() const { |
2099 | 2101 |
return InverseMap(*this); |
2100 | 2102 |
} |
2101 | 2103 |
|
2102 | 2104 |
}; |
2103 | 2105 |
|
2104 | 2106 |
/// \brief Provides continuous and unique ID for the |
2105 | 2107 |
/// items of a graph. |
2106 | 2108 |
/// |
2107 | 2109 |
/// RangeIdMap provides a unique and continuous |
2108 | 2110 |
/// ID for each item of a given type (\c Node, \c Arc or |
2109 | 2111 |
/// \c Edge) in a graph. This id is |
2110 | 2112 |
/// - \b unique: different items get different ids, |
2111 | 2113 |
/// - \b continuous: the range of the ids is the set of integers |
2112 | 2114 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2113 | 2115 |
/// this type (\c Node, \c Arc or \c Edge). |
2114 | 2116 |
/// - So, the ids can change when deleting an item of the same type. |
2115 | 2117 |
/// |
2116 | 2118 |
/// Thus this id is not (necessarily) the same as what can get using |
2117 | 2119 |
/// the \c id() function of the graph or \ref IdMap. |
2118 | 2120 |
/// This map can be inverted with its member class \c InverseMap, |
2119 | 2121 |
/// or with the \c operator() member. |
2120 | 2122 |
/// |
2121 | 2123 |
/// \tparam GR The graph type. |
2122 | 2124 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2123 | 2125 |
/// \c GR::Edge). |
2124 | 2126 |
/// |
2125 | 2127 |
/// \see IdMap |
2126 | 2128 |
template <typename GR, typename K> |
2127 | 2129 |
class RangeIdMap |
2128 | 2130 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2129 | 2131 |
|
2130 | 2132 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2131 | 2133 |
|
2132 | 2134 |
public: |
2133 | 2135 |
/// The graph type of RangeIdMap. |
2134 | 2136 |
typedef GR Graph; |
2137 |
typedef GR Digraph; |
|
2135 | 2138 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2136 | 2139 |
typedef K Item; |
2137 | 2140 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2138 | 2141 |
typedef K Key; |
2139 | 2142 |
/// The value type of RangeIdMap. |
2140 | 2143 |
typedef int Value; |
2141 | 2144 |
|
2142 | 2145 |
/// \brief Constructor. |
2143 | 2146 |
/// |
2144 | 2147 |
/// Constructor. |
2145 | 2148 |
explicit RangeIdMap(const Graph& gr) : Map(gr) { |
2146 | 2149 |
Item it; |
2147 | 2150 |
const typename Map::Notifier* nf = Map::notifier(); |
2148 | 2151 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2149 | 2152 |
Map::set(it, _inv_map.size()); |
2150 | 2153 |
_inv_map.push_back(it); |
2151 | 2154 |
} |
2152 | 2155 |
} |
2153 | 2156 |
|
2154 | 2157 |
protected: |
2155 | 2158 |
|
2156 | 2159 |
/// \brief Adds a new key to the map. |
2157 | 2160 |
/// |
2158 | 2161 |
/// Add a new key to the map. It is called by the |
2159 | 2162 |
/// \c AlterationNotifier. |
2160 | 2163 |
virtual void add(const Item& item) { |
2161 | 2164 |
Map::add(item); |
2162 | 2165 |
Map::set(item, _inv_map.size()); |
2163 | 2166 |
_inv_map.push_back(item); |
2164 | 2167 |
} |
2165 | 2168 |
|
2166 | 2169 |
/// \brief Add more new keys to the map. |
2167 | 2170 |
/// |
2168 | 2171 |
/// Add more new keys to the map. It is called by the |
2169 | 2172 |
/// \c AlterationNotifier. |
2170 | 2173 |
virtual void add(const std::vector<Item>& items) { |
2171 | 2174 |
Map::add(items); |
2172 | 2175 |
for (int i = 0; i < int(items.size()); ++i) { |
2173 | 2176 |
Map::set(items[i], _inv_map.size()); |
2174 | 2177 |
_inv_map.push_back(items[i]); |
2175 | 2178 |
} |
2176 | 2179 |
} |
2177 | 2180 |
|
2178 | 2181 |
/// \brief Erase the key from the map. |
2179 | 2182 |
/// |
2180 | 2183 |
/// Erase the key from the map. It is called by the |
2181 | 2184 |
/// \c AlterationNotifier. |
2182 | 2185 |
virtual void erase(const Item& item) { |
2183 | 2186 |
Map::set(_inv_map.back(), Map::operator[](item)); |
2184 | 2187 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
2185 | 2188 |
_inv_map.pop_back(); |
2186 | 2189 |
Map::erase(item); |
2187 | 2190 |
} |
2188 | 2191 |
|
2189 | 2192 |
/// \brief Erase more keys from the map. |
2190 | 2193 |
/// |
2191 | 2194 |
/// Erase more keys from the map. It is called by the |
2192 | 2195 |
/// \c AlterationNotifier. |
2193 | 2196 |
virtual void erase(const std::vector<Item>& items) { |
2194 | 2197 |
for (int i = 0; i < int(items.size()); ++i) { |
2195 | 2198 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
2196 | 2199 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
2197 | 2200 |
_inv_map.pop_back(); |
2198 | 2201 |
} |
2199 | 2202 |
Map::erase(items); |
2200 | 2203 |
} |
2201 | 2204 |
|
2202 | 2205 |
/// \brief Build the unique map. |
2203 | 2206 |
/// |
2204 | 2207 |
/// Build the unique map. It is called by the |
2205 | 2208 |
/// \c AlterationNotifier. |
2206 | 2209 |
virtual void build() { |
2207 | 2210 |
Map::build(); |
2208 | 2211 |
Item it; |
2209 | 2212 |
const typename Map::Notifier* nf = Map::notifier(); |
2210 | 2213 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2211 | 2214 |
Map::set(it, _inv_map.size()); |
2212 | 2215 |
_inv_map.push_back(it); |
2213 | 2216 |
} |
2214 | 2217 |
} |
2215 | 2218 |
|
2216 | 2219 |
/// \brief Clear the keys from the map. |
2217 | 2220 |
/// |
2218 | 2221 |
/// Clear the keys from the map. It is called by the |
2219 | 2222 |
/// \c AlterationNotifier. |
2220 | 2223 |
virtual void clear() { |
2221 | 2224 |
_inv_map.clear(); |
2222 | 2225 |
Map::clear(); |
2223 | 2226 |
} |
2224 | 2227 |
|
2225 | 2228 |
public: |
2226 | 2229 |
|
2227 | 2230 |
/// \brief Returns the maximal value plus one. |
2228 | 2231 |
/// |
2229 | 2232 |
/// Returns the maximal value plus one in the map. |
2230 | 2233 |
unsigned int size() const { |
2231 | 2234 |
return _inv_map.size(); |
2232 | 2235 |
} |
2233 | 2236 |
|
2234 | 2237 |
/// \brief Swaps the position of the two items in the map. |
2235 | 2238 |
/// |
2236 | 2239 |
/// Swaps the position of the two items in the map. |
2237 | 2240 |
void swap(const Item& p, const Item& q) { |
2238 | 2241 |
int pi = Map::operator[](p); |
2239 | 2242 |
int qi = Map::operator[](q); |
2240 | 2243 |
Map::set(p, qi); |
2241 | 2244 |
_inv_map[qi] = p; |
2242 | 2245 |
Map::set(q, pi); |
2243 | 2246 |
_inv_map[pi] = q; |
2244 | 2247 |
} |
2245 | 2248 |
|
2246 | 2249 |
/// \brief Gives back the \e RangeId of the item |
2247 | 2250 |
/// |
2248 | 2251 |
/// Gives back the \e RangeId of the item. |
2249 | 2252 |
int operator[](const Item& item) const { |
2250 | 2253 |
return Map::operator[](item); |
2251 | 2254 |
} |
2252 | 2255 |
|
2253 | 2256 |
/// \brief Gives back the item belonging to a \e RangeId |
2254 | 2257 |
/// |
2255 | 2258 |
/// Gives back the item belonging to a \e RangeId. |
2256 | 2259 |
Item operator()(int id) const { |
2257 | 2260 |
return _inv_map[id]; |
2258 | 2261 |
} |
2259 | 2262 |
|
2260 | 2263 |
private: |
2261 | 2264 |
|
2262 | 2265 |
typedef std::vector<Item> Container; |
2263 | 2266 |
Container _inv_map; |
2264 | 2267 |
|
2265 | 2268 |
public: |
2266 | 2269 |
|
2267 | 2270 |
/// \brief The inverse map type of RangeIdMap. |
2268 | 2271 |
/// |
2269 | 2272 |
/// The inverse map type of RangeIdMap. |
2270 | 2273 |
class InverseMap { |
2271 | 2274 |
public: |
2272 | 2275 |
/// \brief Constructor |
2273 | 2276 |
/// |
2274 | 2277 |
/// Constructor of the InverseMap. |
2275 | 2278 |
explicit InverseMap(const RangeIdMap& inverted) |
2276 | 2279 |
: _inverted(inverted) {} |
2277 | 2280 |
|
2278 | 2281 |
|
2279 | 2282 |
/// The value type of the InverseMap. |
2280 | 2283 |
typedef typename RangeIdMap::Key Value; |
2281 | 2284 |
/// The key type of the InverseMap. |
2282 | 2285 |
typedef typename RangeIdMap::Value Key; |
2283 | 2286 |
|
2284 | 2287 |
/// \brief Subscript operator. |
2285 | 2288 |
/// |
2286 | 2289 |
/// Subscript operator. It gives back the item |
2287 | 2290 |
/// that the descriptor currently belongs to. |
2288 | 2291 |
Value operator[](const Key& key) const { |
2289 | 2292 |
return _inverted(key); |
2290 | 2293 |
} |
2291 | 2294 |
|
2292 | 2295 |
/// \brief Size of the map. |
2293 | 2296 |
/// |
2294 | 2297 |
/// Returns the size of the map. |
2295 | 2298 |
unsigned int size() const { |
2296 | 2299 |
return _inverted.size(); |
2297 | 2300 |
} |
2298 | 2301 |
|
2299 | 2302 |
private: |
2300 | 2303 |
const RangeIdMap& _inverted; |
2301 | 2304 |
}; |
2302 | 2305 |
|
2303 | 2306 |
/// \brief Gives back the inverse of the map. |
2304 | 2307 |
/// |
2305 | 2308 |
/// Gives back the inverse of the map. |
2306 | 2309 |
const InverseMap inverse() const { |
2307 | 2310 |
return InverseMap(*this); |
2308 | 2311 |
} |
2309 | 2312 |
}; |
2310 | 2313 |
|
2311 | 2314 |
/// \brief Map of the source nodes of arcs in a digraph. |
2312 | 2315 |
/// |
2313 | 2316 |
/// SourceMap provides access for the source node of each arc in a digraph, |
2314 | 2317 |
/// which is returned by the \c source() function of the digraph. |
2315 | 2318 |
/// \tparam GR The digraph type. |
2316 | 2319 |
/// \see TargetMap |
2317 | 2320 |
template <typename GR> |
2318 | 2321 |
class SourceMap { |
2319 | 2322 |
public: |
2320 | 2323 |
|
2321 | 2324 |
///\e |
2322 | 2325 |
typedef typename GR::Arc Key; |
2323 | 2326 |
///\e |
2324 | 2327 |
typedef typename GR::Node Value; |
2325 | 2328 |
|
2326 | 2329 |
/// \brief Constructor |
2327 | 2330 |
/// |
2328 | 2331 |
/// Constructor. |
2329 | 2332 |
/// \param digraph The digraph that the map belongs to. |
2330 | 2333 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
2331 | 2334 |
|
2332 | 2335 |
/// \brief Returns the source node of the given arc. |
2333 | 2336 |
/// |
2334 | 2337 |
/// Returns the source node of the given arc. |
2335 | 2338 |
Value operator[](const Key& arc) const { |
2336 | 2339 |
return _graph.source(arc); |
2337 | 2340 |
} |
2338 | 2341 |
|
2339 | 2342 |
private: |
2340 | 2343 |
const GR& _graph; |
2341 | 2344 |
}; |
2342 | 2345 |
|
2343 | 2346 |
/// \brief Returns a \c SourceMap class. |
2344 | 2347 |
/// |
2345 | 2348 |
/// This function just returns an \c SourceMap class. |
2346 | 2349 |
/// \relates SourceMap |
2347 | 2350 |
template <typename GR> |
2348 | 2351 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
2349 | 2352 |
return SourceMap<GR>(graph); |
2350 | 2353 |
} |
2351 | 2354 |
|
2352 | 2355 |
/// \brief Map of the target nodes of arcs in a digraph. |
2353 | 2356 |
/// |
2354 | 2357 |
/// TargetMap provides access for the target node of each arc in a digraph, |
2355 | 2358 |
/// which is returned by the \c target() function of the digraph. |
2356 | 2359 |
/// \tparam GR The digraph type. |
2357 | 2360 |
/// \see SourceMap |
2358 | 2361 |
template <typename GR> |
2359 | 2362 |
class TargetMap { |
2360 | 2363 |
public: |
2361 | 2364 |
|
2362 | 2365 |
///\e |
2363 | 2366 |
typedef typename GR::Arc Key; |
2364 | 2367 |
///\e |
2365 | 2368 |
typedef typename GR::Node Value; |
2366 | 2369 |
|
2367 | 2370 |
/// \brief Constructor |
2368 | 2371 |
/// |
2369 | 2372 |
/// Constructor. |
2370 | 2373 |
/// \param digraph The digraph that the map belongs to. |
2371 | 2374 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
2372 | 2375 |
|
2373 | 2376 |
/// \brief Returns the target node of the given arc. |
2374 | 2377 |
/// |
2375 | 2378 |
/// Returns the target node of the given arc. |
2376 | 2379 |
Value operator[](const Key& e) const { |
2377 | 2380 |
return _graph.target(e); |
2378 | 2381 |
} |
2379 | 2382 |
|
2380 | 2383 |
private: |
2381 | 2384 |
const GR& _graph; |
2382 | 2385 |
}; |
2383 | 2386 |
|
2384 | 2387 |
/// \brief Returns a \c TargetMap class. |
2385 | 2388 |
/// |
2386 | 2389 |
/// This function just returns a \c TargetMap class. |
2387 | 2390 |
/// \relates TargetMap |
2388 | 2391 |
template <typename GR> |
2389 | 2392 |
inline TargetMap<GR> targetMap(const GR& graph) { |
2390 | 2393 |
return TargetMap<GR>(graph); |
2391 | 2394 |
} |
2392 | 2395 |
|
2393 | 2396 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
2394 | 2397 |
/// |
2395 | 2398 |
/// ForwardMap provides access for the "forward" directed arc view of |
2396 | 2399 |
/// each edge in a graph, which is returned by the \c direct() function |
2397 | 2400 |
/// of the graph with \c true parameter. |
2398 | 2401 |
/// \tparam GR The graph type. |
2399 | 2402 |
/// \see BackwardMap |
2400 | 2403 |
template <typename GR> |
2401 | 2404 |
class ForwardMap { |
2402 | 2405 |
public: |
2403 | 2406 |
|
2404 | 2407 |
typedef typename GR::Arc Value; |
2405 | 2408 |
typedef typename GR::Edge Key; |
2406 | 2409 |
|
2407 | 2410 |
/// \brief Constructor |
2408 | 2411 |
/// |
2409 | 2412 |
/// Constructor. |
2410 | 2413 |
/// \param graph The graph that the map belongs to. |
2411 | 2414 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
2412 | 2415 |
|
2413 | 2416 |
/// \brief Returns the "forward" directed arc view of the given edge. |
2414 | 2417 |
/// |
2415 | 2418 |
/// Returns the "forward" directed arc view of the given edge. |
2416 | 2419 |
Value operator[](const Key& key) const { |
2417 | 2420 |
return _graph.direct(key, true); |
2418 | 2421 |
} |
2419 | 2422 |
|
2420 | 2423 |
private: |
2421 | 2424 |
const GR& _graph; |
2422 | 2425 |
}; |
2423 | 2426 |
|
2424 | 2427 |
/// \brief Returns a \c ForwardMap class. |
2425 | 2428 |
/// |
2426 | 2429 |
/// This function just returns an \c ForwardMap class. |
2427 | 2430 |
/// \relates ForwardMap |
2428 | 2431 |
template <typename GR> |
2429 | 2432 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
2430 | 2433 |
return ForwardMap<GR>(graph); |
2431 | 2434 |
} |
2432 | 2435 |
|
2433 | 2436 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
2434 | 2437 |
/// |
2435 | 2438 |
/// BackwardMap provides access for the "backward" directed arc view of |
2436 | 2439 |
/// each edge in a graph, which is returned by the \c direct() function |
2437 | 2440 |
/// of the graph with \c false parameter. |
2438 | 2441 |
/// \tparam GR The graph type. |
2439 | 2442 |
/// \see ForwardMap |
2440 | 2443 |
template <typename GR> |
2441 | 2444 |
class BackwardMap { |
2442 | 2445 |
public: |
2443 | 2446 |
|
2444 | 2447 |
typedef typename GR::Arc Value; |
2445 | 2448 |
typedef typename GR::Edge Key; |
2446 | 2449 |
|
2447 | 2450 |
/// \brief Constructor |
2448 | 2451 |
/// |
2449 | 2452 |
/// Constructor. |
2450 | 2453 |
/// \param graph The graph that the map belongs to. |
2451 | 2454 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
2452 | 2455 |
|
2453 | 2456 |
/// \brief Returns the "backward" directed arc view of the given edge. |
2454 | 2457 |
/// |
2455 | 2458 |
/// Returns the "backward" directed arc view of the given edge. |
2456 | 2459 |
Value operator[](const Key& key) const { |
2457 | 2460 |
return _graph.direct(key, false); |
2458 | 2461 |
} |
2459 | 2462 |
|
2460 | 2463 |
private: |
2461 | 2464 |
const GR& _graph; |
2462 | 2465 |
}; |
2463 | 2466 |
|
2464 | 2467 |
/// \brief Returns a \c BackwardMap class |
2465 | 2468 |
|
2466 | 2469 |
/// This function just returns a \c BackwardMap class. |
2467 | 2470 |
/// \relates BackwardMap |
2468 | 2471 |
template <typename GR> |
2469 | 2472 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
2470 | 2473 |
return BackwardMap<GR>(graph); |
2471 | 2474 |
} |
2472 | 2475 |
|
2473 | 2476 |
/// \brief Map of the in-degrees of nodes in a digraph. |
2474 | 2477 |
/// |
2475 | 2478 |
/// This map returns the in-degree of a node. Once it is constructed, |
2476 | 2479 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2477 | 2480 |
/// in constant time. On the other hand, the values are updated automatically |
2478 | 2481 |
/// whenever the digraph changes. |
2479 | 2482 |
/// |
2480 | 2483 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
2481 | 2484 |
/// may provide alternative ways to modify the digraph. |
2482 | 2485 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2483 | 2486 |
/// features are used. For example the functions |
2484 | 2487 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2485 | 2488 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2486 | 2489 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2487 | 2490 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2488 | 2491 |
/// |
2489 | 2492 |
/// \sa OutDegMap |
2490 | 2493 |
template <typename GR> |
2491 | 2494 |
class InDegMap |
2492 | 2495 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2493 | 2496 |
::ItemNotifier::ObserverBase { |
2494 | 2497 |
|
2495 | 2498 |
public: |
2496 | 2499 |
|
2497 |
/// The |
|
2500 |
/// The graph type of InDegMap |
|
2501 |
typedef GR Graph; |
|
2498 | 2502 |
typedef GR Digraph; |
2499 | 2503 |
/// The key type |
2500 | 2504 |
typedef typename Digraph::Node Key; |
2501 | 2505 |
/// The value type |
2502 | 2506 |
typedef int Value; |
2503 | 2507 |
|
2504 | 2508 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2505 | 2509 |
::ItemNotifier::ObserverBase Parent; |
2506 | 2510 |
|
2507 | 2511 |
private: |
2508 | 2512 |
|
2509 | 2513 |
class AutoNodeMap |
2510 | 2514 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2511 | 2515 |
public: |
2512 | 2516 |
|
2513 | 2517 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2514 | 2518 |
template Map<int>::Type Parent; |
2515 | 2519 |
|
2516 | 2520 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2517 | 2521 |
|
2518 | 2522 |
virtual void add(const Key& key) { |
2519 | 2523 |
Parent::add(key); |
2520 | 2524 |
Parent::set(key, 0); |
2521 | 2525 |
} |
2522 | 2526 |
|
2523 | 2527 |
virtual void add(const std::vector<Key>& keys) { |
2524 | 2528 |
Parent::add(keys); |
2525 | 2529 |
for (int i = 0; i < int(keys.size()); ++i) { |
2526 | 2530 |
Parent::set(keys[i], 0); |
2527 | 2531 |
} |
2528 | 2532 |
} |
2529 | 2533 |
|
2530 | 2534 |
virtual void build() { |
2531 | 2535 |
Parent::build(); |
2532 | 2536 |
Key it; |
2533 | 2537 |
typename Parent::Notifier* nf = Parent::notifier(); |
2534 | 2538 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2535 | 2539 |
Parent::set(it, 0); |
2536 | 2540 |
} |
2537 | 2541 |
} |
2538 | 2542 |
}; |
2539 | 2543 |
|
2540 | 2544 |
public: |
2541 | 2545 |
|
2542 | 2546 |
/// \brief Constructor. |
2543 | 2547 |
/// |
2544 | 2548 |
/// Constructor for creating an in-degree map. |
2545 | 2549 |
explicit InDegMap(const Digraph& graph) |
2546 | 2550 |
: _digraph(graph), _deg(graph) { |
2547 | 2551 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2548 | 2552 |
|
2549 | 2553 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2550 | 2554 |
_deg[it] = countInArcs(_digraph, it); |
2551 | 2555 |
} |
2552 | 2556 |
} |
2553 | 2557 |
|
2554 | 2558 |
/// \brief Gives back the in-degree of a Node. |
2555 | 2559 |
/// |
2556 | 2560 |
/// Gives back the in-degree of a Node. |
2557 | 2561 |
int operator[](const Key& key) const { |
2558 | 2562 |
return _deg[key]; |
2559 | 2563 |
} |
2560 | 2564 |
|
2561 | 2565 |
protected: |
2562 | 2566 |
|
2563 | 2567 |
typedef typename Digraph::Arc Arc; |
2564 | 2568 |
|
2565 | 2569 |
virtual void add(const Arc& arc) { |
2566 | 2570 |
++_deg[_digraph.target(arc)]; |
2567 | 2571 |
} |
2568 | 2572 |
|
2569 | 2573 |
virtual void add(const std::vector<Arc>& arcs) { |
2570 | 2574 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2571 | 2575 |
++_deg[_digraph.target(arcs[i])]; |
2572 | 2576 |
} |
2573 | 2577 |
} |
2574 | 2578 |
|
2575 | 2579 |
virtual void erase(const Arc& arc) { |
2576 | 2580 |
--_deg[_digraph.target(arc)]; |
2577 | 2581 |
} |
2578 | 2582 |
|
2579 | 2583 |
virtual void erase(const std::vector<Arc>& arcs) { |
2580 | 2584 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2581 | 2585 |
--_deg[_digraph.target(arcs[i])]; |
2582 | 2586 |
} |
2583 | 2587 |
} |
2584 | 2588 |
|
2585 | 2589 |
virtual void build() { |
2586 | 2590 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2587 | 2591 |
_deg[it] = countInArcs(_digraph, it); |
2588 | 2592 |
} |
2589 | 2593 |
} |
2590 | 2594 |
|
2591 | 2595 |
virtual void clear() { |
2592 | 2596 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2593 | 2597 |
_deg[it] = 0; |
2594 | 2598 |
} |
2595 | 2599 |
} |
2596 | 2600 |
private: |
2597 | 2601 |
|
2598 | 2602 |
const Digraph& _digraph; |
2599 | 2603 |
AutoNodeMap _deg; |
2600 | 2604 |
}; |
2601 | 2605 |
|
2602 | 2606 |
/// \brief Map of the out-degrees of nodes in a digraph. |
2603 | 2607 |
/// |
2604 | 2608 |
/// This map returns the out-degree of a node. Once it is constructed, |
2605 | 2609 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2606 | 2610 |
/// in constant time. On the other hand, the values are updated automatically |
2607 | 2611 |
/// whenever the digraph changes. |
2608 | 2612 |
/// |
2609 | 2613 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
2610 | 2614 |
/// may provide alternative ways to modify the digraph. |
2611 | 2615 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2612 | 2616 |
/// features are used. For example the functions |
2613 | 2617 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2614 | 2618 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2615 | 2619 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2616 | 2620 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2617 | 2621 |
/// |
2618 | 2622 |
/// \sa InDegMap |
2619 | 2623 |
template <typename GR> |
2620 | 2624 |
class OutDegMap |
2621 | 2625 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2622 | 2626 |
::ItemNotifier::ObserverBase { |
2623 | 2627 |
|
2624 | 2628 |
public: |
2625 | 2629 |
|
2626 |
/// The |
|
2630 |
/// The graph type of OutDegMap |
|
2631 |
typedef GR Graph; |
|
2627 | 2632 |
typedef GR Digraph; |
2628 | 2633 |
/// The key type |
2629 | 2634 |
typedef typename Digraph::Node Key; |
2630 | 2635 |
/// The value type |
2631 | 2636 |
typedef int Value; |
2632 | 2637 |
|
2633 | 2638 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2634 | 2639 |
::ItemNotifier::ObserverBase Parent; |
2635 | 2640 |
|
2636 | 2641 |
private: |
2637 | 2642 |
|
2638 | 2643 |
class AutoNodeMap |
2639 | 2644 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2640 | 2645 |
public: |
2641 | 2646 |
|
2642 | 2647 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2643 | 2648 |
template Map<int>::Type Parent; |
2644 | 2649 |
|
2645 | 2650 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2646 | 2651 |
|
2647 | 2652 |
virtual void add(const Key& key) { |
2648 | 2653 |
Parent::add(key); |
2649 | 2654 |
Parent::set(key, 0); |
2650 | 2655 |
} |
2651 | 2656 |
virtual void add(const std::vector<Key>& keys) { |
2652 | 2657 |
Parent::add(keys); |
2653 | 2658 |
for (int i = 0; i < int(keys.size()); ++i) { |
2654 | 2659 |
Parent::set(keys[i], 0); |
2655 | 2660 |
} |
2656 | 2661 |
} |
2657 | 2662 |
virtual void build() { |
2658 | 2663 |
Parent::build(); |
2659 | 2664 |
Key it; |
2660 | 2665 |
typename Parent::Notifier* nf = Parent::notifier(); |
2661 | 2666 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2662 | 2667 |
Parent::set(it, 0); |
2663 | 2668 |
} |
2664 | 2669 |
} |
2665 | 2670 |
}; |
2666 | 2671 |
|
2667 | 2672 |
public: |
2668 | 2673 |
|
2669 | 2674 |
/// \brief Constructor. |
2670 | 2675 |
/// |
2671 | 2676 |
/// Constructor for creating an out-degree map. |
2672 | 2677 |
explicit OutDegMap(const Digraph& graph) |
2673 | 2678 |
: _digraph(graph), _deg(graph) { |
2674 | 2679 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2675 | 2680 |
|
2676 | 2681 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2677 | 2682 |
_deg[it] = countOutArcs(_digraph, it); |
2678 | 2683 |
} |
2679 | 2684 |
} |
2680 | 2685 |
|
2681 | 2686 |
/// \brief Gives back the out-degree of a Node. |
2682 | 2687 |
/// |
2683 | 2688 |
/// Gives back the out-degree of a Node. |
2684 | 2689 |
int operator[](const Key& key) const { |
2685 | 2690 |
return _deg[key]; |
2686 | 2691 |
} |
2687 | 2692 |
|
2688 | 2693 |
protected: |
2689 | 2694 |
|
2690 | 2695 |
typedef typename Digraph::Arc Arc; |
2691 | 2696 |
|
2692 | 2697 |
virtual void add(const Arc& arc) { |
2693 | 2698 |
++_deg[_digraph.source(arc)]; |
2694 | 2699 |
} |
2695 | 2700 |
|
2696 | 2701 |
virtual void add(const std::vector<Arc>& arcs) { |
2697 | 2702 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2698 | 2703 |
++_deg[_digraph.source(arcs[i])]; |
2699 | 2704 |
} |
2700 | 2705 |
} |
2701 | 2706 |
|
2702 | 2707 |
virtual void erase(const Arc& arc) { |
2703 | 2708 |
--_deg[_digraph.source(arc)]; |
2704 | 2709 |
} |
2705 | 2710 |
|
2706 | 2711 |
virtual void erase(const std::vector<Arc>& arcs) { |
2707 | 2712 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2708 | 2713 |
--_deg[_digraph.source(arcs[i])]; |
2709 | 2714 |
} |
2710 | 2715 |
} |
2711 | 2716 |
|
2712 | 2717 |
virtual void build() { |
2713 | 2718 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2714 | 2719 |
_deg[it] = countOutArcs(_digraph, it); |
2715 | 2720 |
} |
2716 | 2721 |
} |
2717 | 2722 |
|
2718 | 2723 |
virtual void clear() { |
2719 | 2724 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2720 | 2725 |
_deg[it] = 0; |
2721 | 2726 |
} |
2722 | 2727 |
} |
2723 | 2728 |
private: |
2724 | 2729 |
|
2725 | 2730 |
const Digraph& _digraph; |
2726 | 2731 |
AutoNodeMap _deg; |
2727 | 2732 |
}; |
2728 | 2733 |
|
2729 | 2734 |
/// \brief Potential difference map |
2730 | 2735 |
/// |
2731 | 2736 |
/// PotentialDifferenceMap returns the difference between the potentials of |
2732 | 2737 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
2733 | 2738 |
/// \code |
2734 | 2739 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2735 | 2740 |
/// \endcode |
2736 | 2741 |
/// \tparam GR The digraph type. |
2737 | 2742 |
/// \tparam POT A node map storing the potentials. |
2738 | 2743 |
template <typename GR, typename POT> |
2739 | 2744 |
class PotentialDifferenceMap { |
2740 | 2745 |
public: |
2741 | 2746 |
/// Key type |
2742 | 2747 |
typedef typename GR::Arc Key; |
2743 | 2748 |
/// Value type |
2744 | 2749 |
typedef typename POT::Value Value; |
2745 | 2750 |
|
2746 | 2751 |
/// \brief Constructor |
2747 | 2752 |
/// |
2748 | 2753 |
/// Contructor of the map. |
2749 | 2754 |
explicit PotentialDifferenceMap(const GR& gr, |
2750 | 2755 |
const POT& potential) |
2751 | 2756 |
: _digraph(gr), _potential(potential) {} |
2752 | 2757 |
|
2753 | 2758 |
/// \brief Returns the potential difference for the given arc. |
2754 | 2759 |
/// |
2755 | 2760 |
/// Returns the potential difference for the given arc, i.e. |
2756 | 2761 |
/// \code |
2757 | 2762 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
2758 | 2763 |
/// \endcode |
2759 | 2764 |
Value operator[](const Key& arc) const { |
2760 | 2765 |
return _potential[_digraph.target(arc)] - |
2761 | 2766 |
_potential[_digraph.source(arc)]; |
2762 | 2767 |
} |
2763 | 2768 |
|
2764 | 2769 |
private: |
2765 | 2770 |
const GR& _digraph; |
2766 | 2771 |
const POT& _potential; |
2767 | 2772 |
}; |
2768 | 2773 |
|
2769 | 2774 |
/// \brief Returns a PotentialDifferenceMap. |
2770 | 2775 |
/// |
2771 | 2776 |
/// This function just returns a PotentialDifferenceMap. |
2772 | 2777 |
/// \relates PotentialDifferenceMap |
2773 | 2778 |
template <typename GR, typename POT> |
2774 | 2779 |
PotentialDifferenceMap<GR, POT> |
2775 | 2780 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
2776 | 2781 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
2777 | 2782 |
} |
2778 | 2783 |
|
2779 | 2784 |
/// @} |
2780 | 2785 |
} |
2781 | 2786 |
|
2782 | 2787 |
#endif // LEMON_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SMART_GRAPH_H |
20 | 20 |
#define LEMON_SMART_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief SmartDigraph and SmartGraph classes. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/bits/graph_extender.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
class SmartDigraph; |
35 | 35 |
///Base of SmartDigraph |
36 | 36 |
|
37 | 37 |
///Base of SmartDigraph |
38 | 38 |
/// |
39 | 39 |
class SmartDigraphBase { |
40 | 40 |
protected: |
41 | 41 |
|
42 | 42 |
struct NodeT |
43 | 43 |
{ |
44 | 44 |
int first_in, first_out; |
45 | 45 |
NodeT() {} |
46 | 46 |
}; |
47 | 47 |
struct ArcT |
48 | 48 |
{ |
49 | 49 |
int target, source, next_in, next_out; |
50 | 50 |
ArcT() {} |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
std::vector<NodeT> nodes; |
54 | 54 |
std::vector<ArcT> arcs; |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 |
typedef SmartDigraphBase |
|
58 |
typedef SmartDigraphBase Digraph; |
|
59 | 59 |
|
60 | 60 |
class Node; |
61 | 61 |
class Arc; |
62 | 62 |
|
63 | 63 |
public: |
64 | 64 |
|
65 | 65 |
SmartDigraphBase() : nodes(), arcs() { } |
66 | 66 |
SmartDigraphBase(const SmartDigraphBase &_g) |
67 | 67 |
: nodes(_g.nodes), arcs(_g.arcs) { } |
68 | 68 |
|
69 | 69 |
typedef True NodeNumTag; |
70 | 70 |
typedef True ArcNumTag; |
71 | 71 |
|
72 | 72 |
int nodeNum() const { return nodes.size(); } |
73 | 73 |
int arcNum() const { return arcs.size(); } |
74 | 74 |
|
75 | 75 |
int maxNodeId() const { return nodes.size()-1; } |
76 | 76 |
int maxArcId() const { return arcs.size()-1; } |
77 | 77 |
|
78 | 78 |
Node addNode() { |
79 | 79 |
int n = nodes.size(); |
80 | 80 |
nodes.push_back(NodeT()); |
81 | 81 |
nodes[n].first_in = -1; |
82 | 82 |
nodes[n].first_out = -1; |
83 | 83 |
return Node(n); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
Arc addArc(Node u, Node v) { |
87 | 87 |
int n = arcs.size(); |
88 | 88 |
arcs.push_back(ArcT()); |
89 | 89 |
arcs[n].source = u._id; |
90 | 90 |
arcs[n].target = v._id; |
91 | 91 |
arcs[n].next_out = nodes[u._id].first_out; |
92 | 92 |
arcs[n].next_in = nodes[v._id].first_in; |
93 | 93 |
nodes[u._id].first_out = nodes[v._id].first_in = n; |
94 | 94 |
|
95 | 95 |
return Arc(n); |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
void clear() { |
99 | 99 |
arcs.clear(); |
100 | 100 |
nodes.clear(); |
101 | 101 |
} |
102 | 102 |
|
103 | 103 |
Node source(Arc a) const { return Node(arcs[a._id].source); } |
104 | 104 |
Node target(Arc a) const { return Node(arcs[a._id].target); } |
105 | 105 |
|
106 | 106 |
static int id(Node v) { return v._id; } |
107 | 107 |
static int id(Arc a) { return a._id; } |
108 | 108 |
|
109 | 109 |
static Node nodeFromId(int id) { return Node(id);} |
110 | 110 |
static Arc arcFromId(int id) { return Arc(id);} |
111 | 111 |
|
112 | 112 |
bool valid(Node n) const { |
113 | 113 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
114 | 114 |
} |
115 | 115 |
bool valid(Arc a) const { |
116 | 116 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
class Node { |
120 | 120 |
friend class SmartDigraphBase; |
121 | 121 |
friend class SmartDigraph; |
122 | 122 |
|
123 | 123 |
protected: |
124 | 124 |
int _id; |
125 | 125 |
explicit Node(int id) : _id(id) {} |
126 | 126 |
public: |
127 | 127 |
Node() {} |
128 | 128 |
Node (Invalid) : _id(-1) {} |
129 | 129 |
bool operator==(const Node i) const {return _id == i._id;} |
130 | 130 |
bool operator!=(const Node i) const {return _id != i._id;} |
131 | 131 |
bool operator<(const Node i) const {return _id < i._id;} |
132 | 132 |
}; |
133 | 133 |
|
134 | 134 |
|
135 | 135 |
class Arc { |
136 | 136 |
friend class SmartDigraphBase; |
137 | 137 |
friend class SmartDigraph; |
138 | 138 |
|
139 | 139 |
protected: |
140 | 140 |
int _id; |
141 | 141 |
explicit Arc(int id) : _id(id) {} |
142 | 142 |
public: |
143 | 143 |
Arc() { } |
144 | 144 |
Arc (Invalid) : _id(-1) {} |
145 | 145 |
bool operator==(const Arc i) const {return _id == i._id;} |
146 | 146 |
bool operator!=(const Arc i) const {return _id != i._id;} |
147 | 147 |
bool operator<(const Arc i) const {return _id < i._id;} |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
void first(Node& node) const { |
151 | 151 |
node._id = nodes.size() - 1; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
static void next(Node& node) { |
155 | 155 |
--node._id; |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
void first(Arc& arc) const { |
159 | 159 |
arc._id = arcs.size() - 1; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
static void next(Arc& arc) { |
163 | 163 |
--arc._id; |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
void firstOut(Arc& arc, const Node& node) const { |
167 | 167 |
arc._id = nodes[node._id].first_out; |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
void nextOut(Arc& arc) const { |
171 | 171 |
arc._id = arcs[arc._id].next_out; |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
void firstIn(Arc& arc, const Node& node) const { |
175 | 175 |
arc._id = nodes[node._id].first_in; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
void nextIn(Arc& arc) const { |
179 | 179 |
arc._id = arcs[arc._id].next_in; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
185 | 185 |
|
186 | 186 |
///\ingroup graphs |
187 | 187 |
/// |
188 | 188 |
///\brief A smart directed graph class. |
189 | 189 |
/// |
190 | 190 |
///This is a simple and fast digraph implementation. |
191 | 191 |
///It is also quite memory efficient, but at the price |
192 | 192 |
///that <b> it does support only limited (only stack-like) |
193 | 193 |
///node and arc deletions</b>. |
194 | 194 |
///It fully conforms to the \ref concepts::Digraph "Digraph concept". |
195 | 195 |
/// |
196 | 196 |
///\sa concepts::Digraph. |
197 | 197 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
198 |
public: |
|
199 |
|
|
200 | 198 |
typedef ExtendedSmartDigraphBase Parent; |
201 | 199 |
|
202 | 200 |
private: |
203 | 201 |
|
204 | 202 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
205 | 203 |
|
206 | 204 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
207 | 205 |
/// |
208 | 206 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {}; |
209 | 207 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
210 | 208 |
///Use DigraphCopy() instead. |
211 | 209 |
|
212 | 210 |
///Assignment of SmartDigraph to another one is \e not allowed. |
213 | 211 |
///Use DigraphCopy() instead. |
214 | 212 |
void operator=(const SmartDigraph &) {} |
215 | 213 |
|
216 | 214 |
public: |
217 | 215 |
|
218 | 216 |
/// Constructor |
219 | 217 |
|
220 | 218 |
/// Constructor. |
221 | 219 |
/// |
222 | 220 |
SmartDigraph() {}; |
223 | 221 |
|
224 | 222 |
///Add a new node to the digraph. |
225 | 223 |
|
226 | 224 |
/// Add a new node to the digraph. |
227 | 225 |
/// \return The new node. |
228 | 226 |
Node addNode() { return Parent::addNode(); } |
229 | 227 |
|
230 | 228 |
///Add a new arc to the digraph. |
231 | 229 |
|
232 | 230 |
///Add a new arc to the digraph with source node \c s |
233 | 231 |
///and target node \c t. |
234 | 232 |
///\return The new arc. |
235 | 233 |
Arc addArc(const Node& s, const Node& t) { |
236 | 234 |
return Parent::addArc(s, t); |
237 | 235 |
} |
238 | 236 |
|
239 | 237 |
/// \brief Using this it is possible to avoid the superfluous memory |
240 | 238 |
/// allocation. |
241 | 239 |
|
242 | 240 |
/// Using this it is possible to avoid the superfluous memory |
243 | 241 |
/// allocation: if you know that the digraph you want to build will |
244 | 242 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
245 | 243 |
/// then it is worth reserving space for this amount before starting |
246 | 244 |
/// to build the digraph. |
247 | 245 |
/// \sa reserveArc |
248 | 246 |
void reserveNode(int n) { nodes.reserve(n); }; |
249 | 247 |
|
250 | 248 |
/// \brief Using this it is possible to avoid the superfluous memory |
251 | 249 |
/// allocation. |
252 | 250 |
|
253 | 251 |
/// Using this it is possible to avoid the superfluous memory |
254 | 252 |
/// allocation: if you know that the digraph you want to build will |
255 | 253 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
256 | 254 |
/// then it is worth reserving space for this amount before starting |
257 | 255 |
/// to build the digraph. |
258 | 256 |
/// \sa reserveNode |
259 | 257 |
void reserveArc(int m) { arcs.reserve(m); }; |
260 | 258 |
|
261 | 259 |
/// \brief Node validity check |
262 | 260 |
/// |
263 | 261 |
/// This function gives back true if the given node is valid, |
264 | 262 |
/// ie. it is a real node of the graph. |
265 | 263 |
/// |
266 | 264 |
/// \warning A removed node (using Snapshot) could become valid again |
267 | 265 |
/// when new nodes are added to the graph. |
268 | 266 |
bool valid(Node n) const { return Parent::valid(n); } |
269 | 267 |
|
270 | 268 |
/// \brief Arc validity check |
271 | 269 |
/// |
272 | 270 |
/// This function gives back true if the given arc is valid, |
273 | 271 |
/// ie. it is a real arc of the graph. |
274 | 272 |
/// |
275 | 273 |
/// \warning A removed arc (using Snapshot) could become valid again |
276 | 274 |
/// when new arcs are added to the graph. |
277 | 275 |
bool valid(Arc a) const { return Parent::valid(a); } |
278 | 276 |
|
279 | 277 |
///Clear the digraph. |
280 | 278 |
|
281 | 279 |
///Erase all the nodes and arcs from the digraph. |
282 | 280 |
/// |
283 | 281 |
void clear() { |
284 | 282 |
Parent::clear(); |
285 | 283 |
} |
286 | 284 |
|
287 | 285 |
///Split a node. |
288 | 286 |
|
289 | 287 |
///This function splits a node. First a new node is added to the digraph, |
290 | 288 |
///then the source of each outgoing arc of \c n is moved to this new node. |
291 | 289 |
///If \c connect is \c true (this is the default value), then a new arc |
292 | 290 |
///from \c n to the newly created node is also added. |
293 | 291 |
///\return The newly created node. |
294 | 292 |
/// |
295 | 293 |
///\note The <tt>Arc</tt>s |
296 | 294 |
///referencing a moved arc remain |
297 | 295 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
298 | 296 |
///may be invalidated. |
299 | 297 |
///\warning This functionality cannot be used together with the Snapshot |
300 | 298 |
///feature. |
301 | 299 |
Node split(Node n, bool connect = true) |
302 | 300 |
{ |
303 | 301 |
Node b = addNode(); |
304 | 302 |
nodes[b._id].first_out=nodes[n._id].first_out; |
305 | 303 |
nodes[n._id].first_out=-1; |
306 | 304 |
for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) { |
307 | 305 |
arcs[i].source=b._id; |
308 | 306 |
} |
309 | 307 |
if(connect) addArc(n,b); |
310 | 308 |
return b; |
311 | 309 |
} |
312 | 310 |
|
313 | 311 |
public: |
314 | 312 |
|
315 | 313 |
class Snapshot; |
316 | 314 |
|
317 | 315 |
protected: |
318 | 316 |
|
319 | 317 |
void restoreSnapshot(const Snapshot &s) |
320 | 318 |
{ |
321 | 319 |
while(s.arc_num<arcs.size()) { |
322 | 320 |
Arc arc = arcFromId(arcs.size()-1); |
323 | 321 |
Parent::notifier(Arc()).erase(arc); |
324 | 322 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
325 | 323 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
326 | 324 |
arcs.pop_back(); |
327 | 325 |
} |
328 | 326 |
while(s.node_num<nodes.size()) { |
329 | 327 |
Node node = nodeFromId(nodes.size()-1); |
330 | 328 |
Parent::notifier(Node()).erase(node); |
331 | 329 |
nodes.pop_back(); |
332 | 330 |
} |
333 | 331 |
} |
334 | 332 |
|
335 | 333 |
public: |
336 | 334 |
|
337 | 335 |
///Class to make a snapshot of the digraph and to restrore to it later. |
338 | 336 |
|
339 | 337 |
///Class to make a snapshot of the digraph and to restrore to it later. |
340 | 338 |
/// |
341 | 339 |
///The newly added nodes and arcs can be removed using the |
342 | 340 |
///restore() function. |
343 | 341 |
///\note After you restore a state, you cannot restore |
344 | 342 |
///a later state, in other word you cannot add again the arcs deleted |
345 | 343 |
///by restore() using another one Snapshot instance. |
346 | 344 |
/// |
347 | 345 |
///\warning If you do not use correctly the snapshot that can cause |
348 | 346 |
///either broken program, invalid state of the digraph, valid but |
349 | 347 |
///not the restored digraph or no change. Because the runtime performance |
350 | 348 |
///the validity of the snapshot is not stored. |
351 | 349 |
class Snapshot |
352 | 350 |
{ |
353 | 351 |
SmartDigraph *_graph; |
354 | 352 |
protected: |
355 | 353 |
friend class SmartDigraph; |
356 | 354 |
unsigned int node_num; |
357 | 355 |
unsigned int arc_num; |
358 | 356 |
public: |
359 | 357 |
///Default constructor. |
360 | 358 |
|
361 | 359 |
///Default constructor. |
362 | 360 |
///To actually make a snapshot you must call save(). |
363 | 361 |
/// |
364 | 362 |
Snapshot() : _graph(0) {} |
365 | 363 |
///Constructor that immediately makes a snapshot |
366 | 364 |
|
367 | 365 |
///This constructor immediately makes a snapshot of the digraph. |
368 | 366 |
///\param graph The digraph we make a snapshot of. |
369 | 367 |
Snapshot(SmartDigraph &graph) : _graph(&graph) { |
370 | 368 |
node_num=_graph->nodes.size(); |
371 | 369 |
arc_num=_graph->arcs.size(); |
372 | 370 |
} |
373 | 371 |
|
374 | 372 |
///Make a snapshot. |
375 | 373 |
|
376 | 374 |
///Make a snapshot of the digraph. |
377 | 375 |
/// |
378 | 376 |
///This function can be called more than once. In case of a repeated |
379 | 377 |
///call, the previous snapshot gets lost. |
380 | 378 |
///\param graph The digraph we make the snapshot of. |
381 | 379 |
void save(SmartDigraph &graph) |
382 | 380 |
{ |
383 | 381 |
_graph=&graph; |
384 | 382 |
node_num=_graph->nodes.size(); |
385 | 383 |
arc_num=_graph->arcs.size(); |
386 | 384 |
} |
387 | 385 |
|
388 | 386 |
///Undo the changes until a snapshot. |
389 | 387 |
|
390 | 388 |
///Undo the changes until a snapshot created by save(). |
391 | 389 |
/// |
392 | 390 |
///\note After you restored a state, you cannot restore |
393 | 391 |
///a later state, in other word you cannot add again the arcs deleted |
394 | 392 |
///by restore(). |
395 | 393 |
void restore() |
396 | 394 |
{ |
397 | 395 |
_graph->restoreSnapshot(*this); |
398 | 396 |
} |
399 | 397 |
}; |
400 | 398 |
}; |
401 | 399 |
|
402 | 400 |
|
403 | 401 |
class SmartGraphBase { |
404 | 402 |
|
405 | 403 |
protected: |
406 | 404 |
|
407 | 405 |
struct NodeT { |
408 | 406 |
int first_out; |
409 | 407 |
}; |
410 | 408 |
|
411 | 409 |
struct ArcT { |
412 | 410 |
int target; |
413 | 411 |
int next_out; |
414 | 412 |
}; |
415 | 413 |
|
416 | 414 |
std::vector<NodeT> nodes; |
417 | 415 |
std::vector<ArcT> arcs; |
418 | 416 |
|
419 | 417 |
int first_free_arc; |
420 | 418 |
|
421 | 419 |
public: |
422 | 420 |
|
423 |
typedef SmartGraphBase |
|
421 |
typedef SmartGraphBase Graph; |
|
424 | 422 |
|
425 | 423 |
class Node; |
426 | 424 |
class Arc; |
427 | 425 |
class Edge; |
428 | 426 |
|
429 | 427 |
class Node { |
430 | 428 |
friend class SmartGraphBase; |
431 | 429 |
protected: |
432 | 430 |
|
433 | 431 |
int _id; |
434 | 432 |
explicit Node(int id) { _id = id;} |
435 | 433 |
|
436 | 434 |
public: |
437 | 435 |
Node() {} |
438 | 436 |
Node (Invalid) { _id = -1; } |
439 | 437 |
bool operator==(const Node& node) const {return _id == node._id;} |
440 | 438 |
bool operator!=(const Node& node) const {return _id != node._id;} |
441 | 439 |
bool operator<(const Node& node) const {return _id < node._id;} |
442 | 440 |
}; |
443 | 441 |
|
444 | 442 |
class Edge { |
445 | 443 |
friend class SmartGraphBase; |
446 | 444 |
protected: |
447 | 445 |
|
448 | 446 |
int _id; |
449 | 447 |
explicit Edge(int id) { _id = id;} |
450 | 448 |
|
451 | 449 |
public: |
452 | 450 |
Edge() {} |
453 | 451 |
Edge (Invalid) { _id = -1; } |
454 | 452 |
bool operator==(const Edge& arc) const {return _id == arc._id;} |
455 | 453 |
bool operator!=(const Edge& arc) const {return _id != arc._id;} |
456 | 454 |
bool operator<(const Edge& arc) const {return _id < arc._id;} |
457 | 455 |
}; |
458 | 456 |
|
459 | 457 |
class Arc { |
460 | 458 |
friend class SmartGraphBase; |
461 | 459 |
protected: |
462 | 460 |
|
463 | 461 |
int _id; |
464 | 462 |
explicit Arc(int id) { _id = id;} |
465 | 463 |
|
466 | 464 |
public: |
467 | 465 |
operator Edge() const { |
468 | 466 |
return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
469 | 467 |
} |
470 | 468 |
|
471 | 469 |
Arc() {} |
472 | 470 |
Arc (Invalid) { _id = -1; } |
473 | 471 |
bool operator==(const Arc& arc) const {return _id == arc._id;} |
474 | 472 |
bool operator!=(const Arc& arc) const {return _id != arc._id;} |
475 | 473 |
bool operator<(const Arc& arc) const {return _id < arc._id;} |
476 | 474 |
}; |
477 | 475 |
|
478 | 476 |
|
479 | 477 |
|
480 | 478 |
SmartGraphBase() |
481 | 479 |
: nodes(), arcs() {} |
482 | 480 |
|
483 | 481 |
typedef True NodeNumTag; |
484 | 482 |
typedef True EdgeNumTag; |
485 | 483 |
typedef True ArcNumTag; |
486 | 484 |
|
487 | 485 |
int nodeNum() const { return nodes.size(); } |
488 | 486 |
int edgeNum() const { return arcs.size() / 2; } |
489 | 487 |
int arcNum() const { return arcs.size(); } |
490 | 488 |
|
491 | 489 |
int maxNodeId() const { return nodes.size()-1; } |
492 | 490 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
493 | 491 |
int maxArcId() const { return arcs.size()-1; } |
494 | 492 |
|
495 | 493 |
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); } |
496 | 494 |
Node target(Arc e) const { return Node(arcs[e._id].target); } |
497 | 495 |
|
498 | 496 |
Node u(Edge e) const { return Node(arcs[2 * e._id].target); } |
499 | 497 |
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); } |
500 | 498 |
|
501 | 499 |
static bool direction(Arc e) { |
502 | 500 |
return (e._id & 1) == 1; |
503 | 501 |
} |
504 | 502 |
|
505 | 503 |
static Arc direct(Edge e, bool d) { |
506 | 504 |
return Arc(e._id * 2 + (d ? 1 : 0)); |
507 | 505 |
} |
508 | 506 |
|
509 | 507 |
void first(Node& node) const { |
510 | 508 |
node._id = nodes.size() - 1; |
511 | 509 |
} |
512 | 510 |
|
513 | 511 |
void next(Node& node) const { |
514 | 512 |
--node._id; |
515 | 513 |
} |
516 | 514 |
|
517 | 515 |
void first(Arc& arc) const { |
518 | 516 |
arc._id = arcs.size() - 1; |
519 | 517 |
} |
520 | 518 |
|
521 | 519 |
void next(Arc& arc) const { |
522 | 520 |
--arc._id; |
523 | 521 |
} |
524 | 522 |
|
525 | 523 |
void first(Edge& arc) const { |
526 | 524 |
arc._id = arcs.size() / 2 - 1; |
527 | 525 |
} |
528 | 526 |
|
529 | 527 |
void next(Edge& arc) const { |
530 | 528 |
--arc._id; |
531 | 529 |
} |
532 | 530 |
|
533 | 531 |
void firstOut(Arc &arc, const Node& v) const { |
534 | 532 |
arc._id = nodes[v._id].first_out; |
535 | 533 |
} |
536 | 534 |
void nextOut(Arc &arc) const { |
537 | 535 |
arc._id = arcs[arc._id].next_out; |
538 | 536 |
} |
539 | 537 |
|
540 | 538 |
void firstIn(Arc &arc, const Node& v) const { |
541 | 539 |
arc._id = ((nodes[v._id].first_out) ^ 1); |
542 | 540 |
if (arc._id == -2) arc._id = -1; |
543 | 541 |
} |
544 | 542 |
void nextIn(Arc &arc) const { |
545 | 543 |
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1); |
546 | 544 |
if (arc._id == -2) arc._id = -1; |
547 | 545 |
} |
548 | 546 |
|
549 | 547 |
void firstInc(Edge &arc, bool& d, const Node& v) const { |
550 | 548 |
int de = nodes[v._id].first_out; |
551 | 549 |
if (de != -1) { |
552 | 550 |
arc._id = de / 2; |
553 | 551 |
d = ((de & 1) == 1); |
554 | 552 |
} else { |
555 | 553 |
arc._id = -1; |
556 | 554 |
d = true; |
557 | 555 |
} |
558 | 556 |
} |
559 | 557 |
void nextInc(Edge &arc, bool& d) const { |
560 | 558 |
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out); |
561 | 559 |
if (de != -1) { |
562 | 560 |
arc._id = de / 2; |
563 | 561 |
d = ((de & 1) == 1); |
564 | 562 |
} else { |
565 | 563 |
arc._id = -1; |
566 | 564 |
d = true; |
567 | 565 |
} |
568 | 566 |
} |
569 | 567 |
|
570 | 568 |
static int id(Node v) { return v._id; } |
571 | 569 |
static int id(Arc e) { return e._id; } |
572 | 570 |
static int id(Edge e) { return e._id; } |
573 | 571 |
|
574 | 572 |
static Node nodeFromId(int id) { return Node(id);} |
575 | 573 |
static Arc arcFromId(int id) { return Arc(id);} |
576 | 574 |
static Edge edgeFromId(int id) { return Edge(id);} |
577 | 575 |
|
578 | 576 |
bool valid(Node n) const { |
579 | 577 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
580 | 578 |
} |
581 | 579 |
bool valid(Arc a) const { |
582 | 580 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
583 | 581 |
} |
584 | 582 |
bool valid(Edge e) const { |
585 | 583 |
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size()); |
586 | 584 |
} |
587 | 585 |
|
588 | 586 |
Node addNode() { |
589 | 587 |
int n = nodes.size(); |
590 | 588 |
nodes.push_back(NodeT()); |
591 | 589 |
nodes[n].first_out = -1; |
592 | 590 |
|
593 | 591 |
return Node(n); |
594 | 592 |
} |
595 | 593 |
|
596 | 594 |
Edge addEdge(Node u, Node v) { |
597 | 595 |
int n = arcs.size(); |
598 | 596 |
arcs.push_back(ArcT()); |
599 | 597 |
arcs.push_back(ArcT()); |
600 | 598 |
|
601 | 599 |
arcs[n].target = u._id; |
602 | 600 |
arcs[n | 1].target = v._id; |
603 | 601 |
|
604 | 602 |
arcs[n].next_out = nodes[v._id].first_out; |
605 | 603 |
nodes[v._id].first_out = n; |
606 | 604 |
|
607 | 605 |
arcs[n | 1].next_out = nodes[u._id].first_out; |
608 | 606 |
nodes[u._id].first_out = (n | 1); |
609 | 607 |
|
610 | 608 |
return Edge(n / 2); |
611 | 609 |
} |
612 | 610 |
|
613 | 611 |
void clear() { |
614 | 612 |
arcs.clear(); |
615 | 613 |
nodes.clear(); |
616 | 614 |
} |
617 | 615 |
|
618 | 616 |
}; |
619 | 617 |
|
620 | 618 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
621 | 619 |
|
622 | 620 |
/// \ingroup graphs |
623 | 621 |
/// |
624 | 622 |
/// \brief A smart undirected graph class. |
625 | 623 |
/// |
626 | 624 |
/// This is a simple and fast graph implementation. |
627 | 625 |
/// It is also quite memory efficient, but at the price |
628 | 626 |
/// that <b> it does support only limited (only stack-like) |
629 | 627 |
/// node and arc deletions</b>. |
630 | 628 |
/// It fully conforms to the \ref concepts::Graph "Graph concept". |
631 | 629 |
/// |
632 | 630 |
/// \sa concepts::Graph. |
633 | 631 |
class SmartGraph : public ExtendedSmartGraphBase { |
632 |
typedef ExtendedSmartGraphBase Parent; |
|
633 |
|
|
634 | 634 |
private: |
635 | 635 |
|
636 | 636 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
637 | 637 |
|
638 | 638 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
639 | 639 |
/// |
640 | 640 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {}; |
641 | 641 |
|
642 | 642 |
///\brief Assignment of SmartGraph to another one is \e not allowed. |
643 | 643 |
///Use GraphCopy() instead. |
644 | 644 |
|
645 | 645 |
///Assignment of SmartGraph to another one is \e not allowed. |
646 | 646 |
///Use GraphCopy() instead. |
647 | 647 |
void operator=(const SmartGraph &) {} |
648 | 648 |
|
649 | 649 |
public: |
650 | 650 |
|
651 |
typedef ExtendedSmartGraphBase Parent; |
|
652 |
|
|
653 | 651 |
/// Constructor |
654 | 652 |
|
655 | 653 |
/// Constructor. |
656 | 654 |
/// |
657 | 655 |
SmartGraph() {} |
658 | 656 |
|
659 | 657 |
///Add a new node to the graph. |
660 | 658 |
|
661 | 659 |
/// Add a new node to the graph. |
662 | 660 |
/// \return The new node. |
663 | 661 |
Node addNode() { return Parent::addNode(); } |
664 | 662 |
|
665 | 663 |
///Add a new edge to the graph. |
666 | 664 |
|
667 | 665 |
///Add a new edge to the graph with node \c s |
668 | 666 |
///and \c t. |
669 | 667 |
///\return The new edge. |
670 | 668 |
Edge addEdge(const Node& s, const Node& t) { |
671 | 669 |
return Parent::addEdge(s, t); |
672 | 670 |
} |
673 | 671 |
|
674 | 672 |
/// \brief Node validity check |
675 | 673 |
/// |
676 | 674 |
/// This function gives back true if the given node is valid, |
677 | 675 |
/// ie. it is a real node of the graph. |
678 | 676 |
/// |
679 | 677 |
/// \warning A removed node (using Snapshot) could become valid again |
680 | 678 |
/// when new nodes are added to the graph. |
681 | 679 |
bool valid(Node n) const { return Parent::valid(n); } |
682 | 680 |
|
683 | 681 |
/// \brief Arc validity check |
684 | 682 |
/// |
685 | 683 |
/// This function gives back true if the given arc is valid, |
686 | 684 |
/// ie. it is a real arc of the graph. |
687 | 685 |
/// |
688 | 686 |
/// \warning A removed arc (using Snapshot) could become valid again |
689 | 687 |
/// when new edges are added to the graph. |
690 | 688 |
bool valid(Arc a) const { return Parent::valid(a); } |
691 | 689 |
|
692 | 690 |
/// \brief Edge validity check |
693 | 691 |
/// |
694 | 692 |
/// This function gives back true if the given edge is valid, |
695 | 693 |
/// ie. it is a real edge of the graph. |
696 | 694 |
/// |
697 | 695 |
/// \warning A removed edge (using Snapshot) could become valid again |
698 | 696 |
/// when new edges are added to the graph. |
699 | 697 |
bool valid(Edge e) const { return Parent::valid(e); } |
700 | 698 |
|
701 | 699 |
///Clear the graph. |
702 | 700 |
|
703 | 701 |
///Erase all the nodes and edges from the graph. |
704 | 702 |
/// |
705 | 703 |
void clear() { |
706 | 704 |
Parent::clear(); |
707 | 705 |
} |
708 | 706 |
|
709 | 707 |
public: |
710 | 708 |
|
711 | 709 |
class Snapshot; |
712 | 710 |
|
713 | 711 |
protected: |
714 | 712 |
|
715 | 713 |
void saveSnapshot(Snapshot &s) |
716 | 714 |
{ |
717 | 715 |
s._graph = this; |
718 | 716 |
s.node_num = nodes.size(); |
719 | 717 |
s.arc_num = arcs.size(); |
720 | 718 |
} |
721 | 719 |
|
722 | 720 |
void restoreSnapshot(const Snapshot &s) |
723 | 721 |
{ |
724 | 722 |
while(s.arc_num<arcs.size()) { |
725 | 723 |
int n=arcs.size()-1; |
726 | 724 |
Edge arc=edgeFromId(n/2); |
727 | 725 |
Parent::notifier(Edge()).erase(arc); |
728 | 726 |
std::vector<Arc> dir; |
729 | 727 |
dir.push_back(arcFromId(n)); |
730 | 728 |
dir.push_back(arcFromId(n-1)); |
731 | 729 |
Parent::notifier(Arc()).erase(dir); |
732 | 730 |
nodes[arcs[n-1].target].first_out=arcs[n].next_out; |
733 | 731 |
nodes[arcs[n].target].first_out=arcs[n-1].next_out; |
734 | 732 |
arcs.pop_back(); |
735 | 733 |
arcs.pop_back(); |
736 | 734 |
} |
737 | 735 |
while(s.node_num<nodes.size()) { |
738 | 736 |
int n=nodes.size()-1; |
739 | 737 |
Node node = nodeFromId(n); |
740 | 738 |
Parent::notifier(Node()).erase(node); |
741 | 739 |
nodes.pop_back(); |
742 | 740 |
} |
743 | 741 |
} |
744 | 742 |
|
745 | 743 |
public: |
746 | 744 |
|
747 | 745 |
///Class to make a snapshot of the digraph and to restrore to it later. |
748 | 746 |
|
749 | 747 |
///Class to make a snapshot of the digraph and to restrore to it later. |
750 | 748 |
/// |
751 | 749 |
///The newly added nodes and arcs can be removed using the |
752 | 750 |
///restore() function. |
753 | 751 |
/// |
754 | 752 |
///\note After you restore a state, you cannot restore |
755 | 753 |
///a later state, in other word you cannot add again the arcs deleted |
756 | 754 |
///by restore() using another one Snapshot instance. |
757 | 755 |
/// |
758 | 756 |
///\warning If you do not use correctly the snapshot that can cause |
759 | 757 |
///either broken program, invalid state of the digraph, valid but |
760 | 758 |
///not the restored digraph or no change. Because the runtime performance |
761 | 759 |
///the validity of the snapshot is not stored. |
762 | 760 |
class Snapshot |
763 | 761 |
{ |
764 | 762 |
SmartGraph *_graph; |
765 | 763 |
protected: |
766 | 764 |
friend class SmartGraph; |
767 | 765 |
unsigned int node_num; |
768 | 766 |
unsigned int arc_num; |
769 | 767 |
public: |
770 | 768 |
///Default constructor. |
771 | 769 |
|
772 | 770 |
///Default constructor. |
773 | 771 |
///To actually make a snapshot you must call save(). |
774 | 772 |
/// |
775 | 773 |
Snapshot() : _graph(0) {} |
776 | 774 |
///Constructor that immediately makes a snapshot |
777 | 775 |
|
778 | 776 |
///This constructor immediately makes a snapshot of the digraph. |
779 | 777 |
///\param graph The digraph we make a snapshot of. |
780 | 778 |
Snapshot(SmartGraph &graph) { |
781 | 779 |
graph.saveSnapshot(*this); |
782 | 780 |
} |
783 | 781 |
|
784 | 782 |
///Make a snapshot. |
785 | 783 |
|
786 | 784 |
///Make a snapshot of the graph. |
787 | 785 |
/// |
788 | 786 |
///This function can be called more than once. In case of a repeated |
789 | 787 |
///call, the previous snapshot gets lost. |
790 | 788 |
///\param graph The digraph we make the snapshot of. |
791 | 789 |
void save(SmartGraph &graph) |
792 | 790 |
{ |
793 | 791 |
graph.saveSnapshot(*this); |
794 | 792 |
} |
795 | 793 |
|
796 | 794 |
///Undo the changes until a snapshot. |
797 | 795 |
|
798 | 796 |
///Undo the changes until a snapshot created by save(). |
799 | 797 |
/// |
800 | 798 |
///\note After you restored a state, you cannot restore |
801 | 799 |
///a later state, in other word you cannot add again the arcs deleted |
802 | 800 |
///by restore(). |
803 | 801 |
void restore() |
804 | 802 |
{ |
805 | 803 |
_graph->restoreSnapshot(*this); |
806 | 804 |
} |
807 | 805 |
}; |
808 | 806 |
}; |
809 | 807 |
|
810 | 808 |
} //namespace lemon |
811 | 809 |
|
812 | 810 |
|
813 | 811 |
#endif //LEMON_SMART_GRAPH_H |
0 comments (0 inline)