1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_EULER_H |
|
20 |
#define LEMON_EULER_H |
|
21 |
|
|
22 |
#include<lemon/core.h> |
|
23 |
#include<lemon/adaptors.h> |
|
24 |
#include<lemon/connectivity.h> |
|
25 |
#include <list> |
|
26 |
|
|
27 |
/// \ingroup graph_prop |
|
28 |
/// \file |
|
29 |
/// \brief Euler tour |
|
30 |
/// |
|
31 |
///This file provides an Euler tour iterator and ways to check |
|
32 |
///if a digraph is euler. |
|
33 |
|
|
34 |
|
|
35 |
namespace lemon { |
|
36 |
|
|
37 |
///Euler iterator for digraphs. |
|
38 |
|
|
39 |
/// \ingroup graph_prop |
|
40 |
///This iterator converts to the \c Arc type of the digraph and using |
|
41 |
///operator ++, it provides an Euler tour of a \e directed |
|
42 |
///graph (if there exists). |
|
43 |
/// |
|
44 |
///For example |
|
45 |
///if the given digraph is Euler (i.e it has only one nontrivial component |
|
46 |
///and the in-degree is equal to the out-degree for all nodes), |
|
47 |
///the following code will put the arcs of \c g |
|
48 |
///to the vector \c et according to an |
|
49 |
///Euler tour of \c g. |
|
50 |
///\code |
|
51 |
/// std::vector<ListDigraph::Arc> et; |
|
52 |
/// for(DiEulerIt<ListDigraph> e(g),e!=INVALID;++e) |
|
53 |
/// et.push_back(e); |
|
54 |
///\endcode |
|
55 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
|
56 |
///\sa EulerIt |
|
57 |
///\todo Test required |
|
58 |
template<class Digraph> |
|
59 |
class DiEulerIt |
|
60 |
{ |
|
61 |
typedef typename Digraph::Node Node; |
|
62 |
typedef typename Digraph::NodeIt NodeIt; |
|
63 |
typedef typename Digraph::Arc Arc; |
|
64 |
typedef typename Digraph::ArcIt ArcIt; |
|
65 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
66 |
typedef typename Digraph::InArcIt InArcIt; |
|
67 |
|
|
68 |
const Digraph &g; |
|
69 |
typename Digraph::template NodeMap<OutArcIt> nedge; |
|
70 |
std::list<Arc> euler; |
|
71 |
|
|
72 |
public: |
|
73 |
|
|
74 |
///Constructor |
|
75 |
|
|
76 |
///\param _g A digraph. |
|
77 |
///\param start The starting point of the tour. If it is not given |
|
78 |
/// the tour will start from the first node. |
|
79 |
DiEulerIt(const Digraph &_g,typename Digraph::Node start=INVALID) |
|
80 |
: g(_g), nedge(g) |
|
81 |
{ |
|
82 |
if(start==INVALID) start=NodeIt(g); |
|
83 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
84 |
while(nedge[start]!=INVALID) { |
|
85 |
euler.push_back(nedge[start]); |
|
86 |
Node next=g.target(nedge[start]); |
|
87 |
++nedge[start]; |
|
88 |
start=next; |
|
89 |
} |
|
90 |
} |
|
91 |
|
|
92 |
///Arc Conversion |
|
93 |
operator Arc() { return euler.empty()?INVALID:euler.front(); } |
|
94 |
bool operator==(Invalid) { return euler.empty(); } |
|
95 |
bool operator!=(Invalid) { return !euler.empty(); } |
|
96 |
|
|
97 |
///Next arc of the tour |
|
98 |
DiEulerIt &operator++() { |
|
99 |
Node s=g.target(euler.front()); |
|
100 |
euler.pop_front(); |
|
101 |
//This produces a warning.Strange. |
|
102 |
//std::list<Arc>::iterator next=euler.begin(); |
|
103 |
typename std::list<Arc>::iterator next=euler.begin(); |
|
104 |
while(nedge[s]!=INVALID) { |
|
105 |
euler.insert(next,nedge[s]); |
|
106 |
Node n=g.target(nedge[s]); |
|
107 |
++nedge[s]; |
|
108 |
s=n; |
|
109 |
} |
|
110 |
return *this; |
|
111 |
} |
|
112 |
///Postfix incrementation |
|
113 |
|
|
114 |
///\warning This incrementation |
|
115 |
///returns an \c Arc, not an \ref DiEulerIt, as one may |
|
116 |
///expect. |
|
117 |
Arc operator++(int) |
|
118 |
{ |
|
119 |
Arc e=*this; |
|
120 |
++(*this); |
|
121 |
return e; |
|
122 |
} |
|
123 |
}; |
|
124 |
|
|
125 |
///Euler iterator for graphs. |
|
126 |
|
|
127 |
/// \ingroup graph_prop |
|
128 |
///This iterator converts to the \c Arc (or \c Edge) |
|
129 |
///type of the digraph and using |
|
130 |
///operator ++, it provides an Euler tour of an undirected |
|
131 |
///digraph (if there exists). |
|
132 |
/// |
|
133 |
///For example |
|
134 |
///if the given digraph if Euler (i.e it has only one nontrivial component |
|
135 |
///and the degree of each node is even), |
|
136 |
///the following code will print the arc IDs according to an |
|
137 |
///Euler tour of \c g. |
|
138 |
///\code |
|
139 |
/// for(EulerIt<ListGraph> e(g),e!=INVALID;++e) { |
|
140 |
/// std::cout << g.id(Edge(e)) << std::eol; |
|
141 |
/// } |
|
142 |
///\endcode |
|
143 |
///Although the iterator provides an Euler tour of an graph, |
|
144 |
///it still returns Arcs in order to indicate the direction of the tour. |
|
145 |
///(But Arc will convert to Edges, of course). |
|
146 |
/// |
|
147 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
|
148 |
///\sa EulerIt |
|
149 |
///\todo Test required |
|
150 |
template<class Digraph> |
|
151 |
class EulerIt |
|
152 |
{ |
|
153 |
typedef typename Digraph::Node Node; |
|
154 |
typedef typename Digraph::NodeIt NodeIt; |
|
155 |
typedef typename Digraph::Arc Arc; |
|
156 |
typedef typename Digraph::Edge Edge; |
|
157 |
typedef typename Digraph::ArcIt ArcIt; |
|
158 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
159 |
typedef typename Digraph::InArcIt InArcIt; |
|
160 |
|
|
161 |
const Digraph &g; |
|
162 |
typename Digraph::template NodeMap<OutArcIt> nedge; |
|
163 |
typename Digraph::template EdgeMap<bool> visited; |
|
164 |
std::list<Arc> euler; |
|
165 |
|
|
166 |
public: |
|
167 |
|
|
168 |
///Constructor |
|
169 |
|
|
170 |
///\param _g An graph. |
|
171 |
///\param start The starting point of the tour. If it is not given |
|
172 |
/// the tour will start from the first node. |
|
173 |
EulerIt(const Digraph &_g,typename Digraph::Node start=INVALID) |
|
174 |
: g(_g), nedge(g), visited(g,false) |
|
175 |
{ |
|
176 |
if(start==INVALID) start=NodeIt(g); |
|
177 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
178 |
while(nedge[start]!=INVALID) { |
|
179 |
euler.push_back(nedge[start]); |
|
180 |
visited[nedge[start]]=true; |
|
181 |
Node next=g.target(nedge[start]); |
|
182 |
++nedge[start]; |
|
183 |
start=next; |
|
184 |
while(nedge[start]!=INVALID && visited[nedge[start]]) ++nedge[start]; |
|
185 |
} |
|
186 |
} |
|
187 |
|
|
188 |
///Arc Conversion |
|
189 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); } |
|
190 |
///Arc Conversion |
|
191 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
|
192 |
///\e |
|
193 |
bool operator==(Invalid) const { return euler.empty(); } |
|
194 |
///\e |
|
195 |
bool operator!=(Invalid) const { return !euler.empty(); } |
|
196 |
|
|
197 |
///Next arc of the tour |
|
198 |
EulerIt &operator++() { |
|
199 |
Node s=g.target(euler.front()); |
|
200 |
euler.pop_front(); |
|
201 |
typename std::list<Arc>::iterator next=euler.begin(); |
|
202 |
|
|
203 |
while(nedge[s]!=INVALID) { |
|
204 |
while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
|
205 |
if(nedge[s]==INVALID) break; |
|
206 |
else { |
|
207 |
euler.insert(next,nedge[s]); |
|
208 |
visited[nedge[s]]=true; |
|
209 |
Node n=g.target(nedge[s]); |
|
210 |
++nedge[s]; |
|
211 |
s=n; |
|
212 |
} |
|
213 |
} |
|
214 |
return *this; |
|
215 |
} |
|
216 |
|
|
217 |
///Postfix incrementation |
|
218 |
|
|
219 |
///\warning This incrementation |
|
220 |
///returns an \c Arc, not an \ref EulerIt, as one may |
|
221 |
///expect. |
|
222 |
Arc operator++(int) |
|
223 |
{ |
|
224 |
Arc e=*this; |
|
225 |
++(*this); |
|
226 |
return e; |
|
227 |
} |
|
228 |
}; |
|
229 |
|
|
230 |
|
|
231 |
///Checks if the graph is Euler |
|
232 |
|
|
233 |
/// \ingroup graph_prop |
|
234 |
///Checks if the graph is Euler. It works for both directed and undirected |
|
235 |
///graphs. |
|
236 |
///\note By definition, a digraph is called \e Euler if |
|
237 |
///and only if it is connected and the number of its incoming and outgoing |
|
238 |
///arcs are the same for each node. |
|
239 |
///Similarly, an undirected graph is called \e Euler if |
|
240 |
///and only if it is connected and the number of incident arcs is even |
|
241 |
///for each node. <em>Therefore, there are digraphs which are not Euler, but |
|
242 |
///still have an Euler tour</em>. |
|
243 |
///\todo Test required |
|
244 |
template<class Digraph> |
|
245 |
#ifdef DOXYGEN |
|
246 |
bool |
|
247 |
#else |
|
248 |
typename enable_if<UndirectedTagIndicator<Digraph>,bool>::type |
|
249 |
euler(const Digraph &g) |
|
250 |
{ |
|
251 |
for(typename Digraph::NodeIt n(g);n!=INVALID;++n) |
|
252 |
if(countIncEdges(g,n)%2) return false; |
|
253 |
return connected(g); |
|
254 |
} |
|
255 |
template<class Digraph> |
|
256 |
typename disable_if<UndirectedTagIndicator<Digraph>,bool>::type |
|
257 |
#endif |
|
258 |
euler(const Digraph &g) |
|
259 |
{ |
|
260 |
for(typename Digraph::NodeIt n(g);n!=INVALID;++n) |
|
261 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
|
262 |
return connected(Undirector<const Digraph>(g)); |
|
263 |
} |
|
264 |
|
|
265 |
} |
|
266 |
|
|
267 |
#endif |
0 comments (0 inline)