0
8
3
1 |
prefix=@CMAKE_INSTALL_PREFIX@ |
|
2 |
exec_prefix=@CMAKE_INSTALL_PREFIX@/bin |
|
3 |
libdir=@CMAKE_INSTALL_PREFIX@/lib |
|
4 |
includedir=@CMAKE_INSTALL_PREFIX@/include |
|
5 |
|
|
6 |
Name: @PROJECT_NAME@ |
|
7 |
Description: Library for Efficient Modeling and Optimization in Networks |
|
8 |
Version: @PROJECT_VERSION@ |
|
9 |
Libs: -L${libdir} -lemon @GLPK_LIBS@ @CPLEX_LIBS@ @SOPLEX_LIBS@ @CLP_LIBS@ @CBC_LIBS@ |
|
10 |
Cflags: -I${includedir} |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2010 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_NAGAMOCHI_IBARAKI_H |
|
20 |
#define LEMON_NAGAMOCHI_IBARAKI_H |
|
21 |
|
|
22 |
|
|
23 |
/// \ingroup min_cut |
|
24 |
/// \file |
|
25 |
/// \brief Implementation of the Nagamochi-Ibaraki algorithm. |
|
26 |
|
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/bin_heap.h> |
|
29 |
#include <lemon/bucket_heap.h> |
|
30 |
#include <lemon/maps.h> |
|
31 |
#include <lemon/radix_sort.h> |
|
32 |
#include <lemon/unionfind.h> |
|
33 |
|
|
34 |
#include <cassert> |
|
35 |
|
|
36 |
namespace lemon { |
|
37 |
|
|
38 |
/// \brief Default traits class for NagamochiIbaraki class. |
|
39 |
/// |
|
40 |
/// Default traits class for NagamochiIbaraki class. |
|
41 |
/// \param GR The undirected graph type. |
|
42 |
/// \param CM Type of capacity map. |
|
43 |
template <typename GR, typename CM> |
|
44 |
struct NagamochiIbarakiDefaultTraits { |
|
45 |
/// The type of the capacity map. |
|
46 |
typedef typename CM::Value Value; |
|
47 |
|
|
48 |
/// The undirected graph type the algorithm runs on. |
|
49 |
typedef GR Graph; |
|
50 |
|
|
51 |
/// \brief The type of the map that stores the edge capacities. |
|
52 |
/// |
|
53 |
/// The type of the map that stores the edge capacities. |
|
54 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
55 |
typedef CM CapacityMap; |
|
56 |
|
|
57 |
/// \brief Instantiates a CapacityMap. |
|
58 |
/// |
|
59 |
/// This function instantiates a \ref CapacityMap. |
|
60 |
#ifdef DOXYGEN |
|
61 |
static CapacityMap *createCapacityMap(const Graph& graph) |
|
62 |
#else |
|
63 |
static CapacityMap *createCapacityMap(const Graph&) |
|
64 |
#endif |
|
65 |
{ |
|
66 |
LEMON_ASSERT(false, "CapacityMap is not initialized"); |
|
67 |
return 0; // ignore warnings |
|
68 |
} |
|
69 |
|
|
70 |
/// \brief The cross reference type used by heap. |
|
71 |
/// |
|
72 |
/// The cross reference type used by heap. |
|
73 |
/// Usually \c Graph::NodeMap<int>. |
|
74 |
typedef typename Graph::template NodeMap<int> HeapCrossRef; |
|
75 |
|
|
76 |
/// \brief Instantiates a HeapCrossRef. |
|
77 |
/// |
|
78 |
/// This function instantiates a \ref HeapCrossRef. |
|
79 |
/// \param g is the graph, to which we would like to define the |
|
80 |
/// \ref HeapCrossRef. |
|
81 |
static HeapCrossRef *createHeapCrossRef(const Graph& g) { |
|
82 |
return new HeapCrossRef(g); |
|
83 |
} |
|
84 |
|
|
85 |
/// \brief The heap type used by NagamochiIbaraki algorithm. |
|
86 |
/// |
|
87 |
/// The heap type used by NagamochiIbaraki algorithm. It has to |
|
88 |
/// maximize the priorities. |
|
89 |
/// |
|
90 |
/// \sa BinHeap |
|
91 |
/// \sa NagamochiIbaraki |
|
92 |
typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap; |
|
93 |
|
|
94 |
/// \brief Instantiates a Heap. |
|
95 |
/// |
|
96 |
/// This function instantiates a \ref Heap. |
|
97 |
/// \param r is the cross reference of the heap. |
|
98 |
static Heap *createHeap(HeapCrossRef& r) { |
|
99 |
return new Heap(r); |
|
100 |
} |
|
101 |
}; |
|
102 |
|
|
103 |
/// \ingroup min_cut |
|
104 |
/// |
|
105 |
/// \brief Calculates the minimum cut in an undirected graph. |
|
106 |
/// |
|
107 |
/// Calculates the minimum cut in an undirected graph with the |
|
108 |
/// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's |
|
109 |
/// nodes into two partitions with the minimum sum of edge capacities |
|
110 |
/// between the two partitions. The algorithm can be used to test |
|
111 |
/// the network reliability, especially to test how many links have |
|
112 |
/// to be destroyed in the network to split it to at least two |
|
113 |
/// distinict subnetworks. |
|
114 |
/// |
|
115 |
/// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with |
|
116 |
/// \ref FibHeap "Fibonacci heap" it can be decreased to |
|
117 |
/// \f$ O(nm+n^2\log(n)) \f$. When the edges have unit capacities, |
|
118 |
/// \c BucketHeap can be used which yields \f$ O(nm) \f$ time |
|
119 |
/// complexity. |
|
120 |
/// |
|
121 |
/// \warning The value type of the capacity map should be able to |
|
122 |
/// hold any cut value of the graph, otherwise the result can |
|
123 |
/// overflow. |
|
124 |
/// \note This capacity is supposed to be integer type. |
|
125 |
#ifdef DOXYGEN |
|
126 |
template <typename GR, typename CM, typename TR> |
|
127 |
#else |
|
128 |
template <typename GR, |
|
129 |
typename CM = typename GR::template EdgeMap<int>, |
|
130 |
typename TR = NagamochiIbarakiDefaultTraits<GR, CM> > |
|
131 |
#endif |
|
132 |
class NagamochiIbaraki { |
|
133 |
public: |
|
134 |
|
|
135 |
typedef TR Traits; |
|
136 |
/// The type of the underlying graph. |
|
137 |
typedef typename Traits::Graph Graph; |
|
138 |
|
|
139 |
/// The type of the capacity map. |
|
140 |
typedef typename Traits::CapacityMap CapacityMap; |
|
141 |
/// The value type of the capacity map. |
|
142 |
typedef typename Traits::CapacityMap::Value Value; |
|
143 |
|
|
144 |
/// The heap type used by the algorithm. |
|
145 |
typedef typename Traits::Heap Heap; |
|
146 |
/// The cross reference type used for the heap. |
|
147 |
typedef typename Traits::HeapCrossRef HeapCrossRef; |
|
148 |
|
|
149 |
///\name Named template parameters |
|
150 |
|
|
151 |
///@{ |
|
152 |
|
|
153 |
struct SetUnitCapacityTraits : public Traits { |
|
154 |
typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap; |
|
155 |
static CapacityMap *createCapacityMap(const Graph&) { |
|
156 |
return new CapacityMap(); |
|
157 |
} |
|
158 |
}; |
|
159 |
|
|
160 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
161 |
/// the capacity map to a constMap<Edge, int, 1>() instance |
|
162 |
/// |
|
163 |
/// \ref named-templ-param "Named parameter" for setting |
|
164 |
/// the capacity map to a constMap<Edge, int, 1>() instance |
|
165 |
struct SetUnitCapacity |
|
166 |
: public NagamochiIbaraki<Graph, CapacityMap, |
|
167 |
SetUnitCapacityTraits> { |
|
168 |
typedef NagamochiIbaraki<Graph, CapacityMap, |
|
169 |
SetUnitCapacityTraits> Create; |
|
170 |
}; |
|
171 |
|
|
172 |
|
|
173 |
template <class H, class CR> |
|
174 |
struct SetHeapTraits : public Traits { |
|
175 |
typedef CR HeapCrossRef; |
|
176 |
typedef H Heap; |
|
177 |
static HeapCrossRef *createHeapCrossRef(int num) { |
|
178 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
|
179 |
return 0; // ignore warnings |
|
180 |
} |
|
181 |
static Heap *createHeap(HeapCrossRef &) { |
|
182 |
LEMON_ASSERT(false, "Heap is not initialized"); |
|
183 |
return 0; // ignore warnings |
|
184 |
} |
|
185 |
}; |
|
186 |
|
|
187 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
188 |
/// heap and cross reference type |
|
189 |
/// |
|
190 |
/// \ref named-templ-param "Named parameter" for setting heap and |
|
191 |
/// cross reference type. The heap has to maximize the priorities. |
|
192 |
template <class H, class CR = RangeMap<int> > |
|
193 |
struct SetHeap |
|
194 |
: public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > { |
|
195 |
typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> > |
|
196 |
Create; |
|
197 |
}; |
|
198 |
|
|
199 |
template <class H, class CR> |
|
200 |
struct SetStandardHeapTraits : public Traits { |
|
201 |
typedef CR HeapCrossRef; |
|
202 |
typedef H Heap; |
|
203 |
static HeapCrossRef *createHeapCrossRef(int size) { |
|
204 |
return new HeapCrossRef(size); |
|
205 |
} |
|
206 |
static Heap *createHeap(HeapCrossRef &crossref) { |
|
207 |
return new Heap(crossref); |
|
208 |
} |
|
209 |
}; |
|
210 |
|
|
211 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
212 |
/// heap and cross reference type with automatic allocation |
|
213 |
/// |
|
214 |
/// \ref named-templ-param "Named parameter" for setting heap and |
|
215 |
/// cross reference type with automatic allocation. They should |
|
216 |
/// have standard constructor interfaces to be able to |
|
217 |
/// automatically created by the algorithm (i.e. the graph should |
|
218 |
/// be passed to the constructor of the cross reference and the |
|
219 |
/// cross reference should be passed to the constructor of the |
|
220 |
/// heap). However, external heap and cross reference objects |
|
221 |
/// could also be passed to the algorithm using the \ref heap() |
|
222 |
/// function before calling \ref run() or \ref init(). The heap |
|
223 |
/// has to maximize the priorities. |
|
224 |
/// \sa SetHeap |
|
225 |
template <class H, class CR = RangeMap<int> > |
|
226 |
struct SetStandardHeap |
|
227 |
: public NagamochiIbaraki<Graph, CapacityMap, |
|
228 |
SetStandardHeapTraits<H, CR> > { |
|
229 |
typedef NagamochiIbaraki<Graph, CapacityMap, |
|
230 |
SetStandardHeapTraits<H, CR> > Create; |
|
231 |
}; |
|
232 |
|
|
233 |
///@} |
|
234 |
|
|
235 |
|
|
236 |
private: |
|
237 |
|
|
238 |
const Graph &_graph; |
|
239 |
const CapacityMap *_capacity; |
|
240 |
bool _local_capacity; // unit capacity |
|
241 |
|
|
242 |
struct ArcData { |
|
243 |
typename Graph::Node target; |
|
244 |
int prev, next; |
|
245 |
}; |
|
246 |
struct EdgeData { |
|
247 |
Value capacity; |
|
248 |
Value cut; |
|
249 |
}; |
|
250 |
|
|
251 |
struct NodeData { |
|
252 |
int first_arc; |
|
253 |
typename Graph::Node prev, next; |
|
254 |
int curr_arc; |
|
255 |
typename Graph::Node last_rep; |
|
256 |
Value sum; |
|
257 |
}; |
|
258 |
|
|
259 |
typename Graph::template NodeMap<NodeData> *_nodes; |
|
260 |
std::vector<ArcData> _arcs; |
|
261 |
std::vector<EdgeData> _edges; |
|
262 |
|
|
263 |
typename Graph::Node _first_node; |
|
264 |
int _node_num; |
|
265 |
|
|
266 |
Value _min_cut; |
|
267 |
|
|
268 |
HeapCrossRef *_heap_cross_ref; |
|
269 |
bool _local_heap_cross_ref; |
|
270 |
Heap *_heap; |
|
271 |
bool _local_heap; |
|
272 |
|
|
273 |
typedef typename Graph::template NodeMap<typename Graph::Node> NodeList; |
|
274 |
NodeList *_next_rep; |
|
275 |
|
|
276 |
typedef typename Graph::template NodeMap<bool> MinCutMap; |
|
277 |
MinCutMap *_cut_map; |
|
278 |
|
|
279 |
void createStructures() { |
|
280 |
if (!_nodes) { |
|
281 |
_nodes = new (typename Graph::template NodeMap<NodeData>)(_graph); |
|
282 |
} |
|
283 |
if (!_capacity) { |
|
284 |
_local_capacity = true; |
|
285 |
_capacity = Traits::createCapacityMap(_graph); |
|
286 |
} |
|
287 |
if (!_heap_cross_ref) { |
|
288 |
_local_heap_cross_ref = true; |
|
289 |
_heap_cross_ref = Traits::createHeapCrossRef(_graph); |
|
290 |
} |
|
291 |
if (!_heap) { |
|
292 |
_local_heap = true; |
|
293 |
_heap = Traits::createHeap(*_heap_cross_ref); |
|
294 |
} |
|
295 |
if (!_next_rep) { |
|
296 |
_next_rep = new NodeList(_graph); |
|
297 |
} |
|
298 |
if (!_cut_map) { |
|
299 |
_cut_map = new MinCutMap(_graph); |
|
300 |
} |
|
301 |
} |
|
302 |
|
|
303 |
public : |
|
304 |
|
|
305 |
typedef NagamochiIbaraki Create; |
|
306 |
|
|
307 |
|
|
308 |
/// \brief Constructor. |
|
309 |
/// |
|
310 |
/// \param graph The graph the algorithm runs on. |
|
311 |
/// \param capacity The capacity map used by the algorithm. |
|
312 |
NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity) |
|
313 |
: _graph(graph), _capacity(&capacity), _local_capacity(false), |
|
314 |
_nodes(0), _arcs(), _edges(), _min_cut(), |
|
315 |
_heap_cross_ref(0), _local_heap_cross_ref(false), |
|
316 |
_heap(0), _local_heap(false), |
|
317 |
_next_rep(0), _cut_map(0) {} |
|
318 |
|
|
319 |
/// \brief Constructor. |
|
320 |
/// |
|
321 |
/// This constructor can be used only when the Traits class |
|
322 |
/// defines how can the local capacity map be instantiated. |
|
323 |
/// If the SetUnitCapacity used the algorithm automatically |
|
324 |
/// constructs the capacity map. |
|
325 |
/// |
|
326 |
///\param graph The graph the algorithm runs on. |
|
327 |
NagamochiIbaraki(const Graph& graph) |
|
328 |
: _graph(graph), _capacity(0), _local_capacity(false), |
|
329 |
_nodes(0), _arcs(), _edges(), _min_cut(), |
|
330 |
_heap_cross_ref(0), _local_heap_cross_ref(false), |
|
331 |
_heap(0), _local_heap(false), |
|
332 |
_next_rep(0), _cut_map(0) {} |
|
333 |
|
|
334 |
/// \brief Destructor. |
|
335 |
/// |
|
336 |
/// Destructor. |
|
337 |
~NagamochiIbaraki() { |
|
338 |
if (_local_capacity) delete _capacity; |
|
339 |
if (_nodes) delete _nodes; |
|
340 |
if (_local_heap) delete _heap; |
|
341 |
if (_local_heap_cross_ref) delete _heap_cross_ref; |
|
342 |
if (_next_rep) delete _next_rep; |
|
343 |
if (_cut_map) delete _cut_map; |
|
344 |
} |
|
345 |
|
|
346 |
/// \brief Sets the heap and the cross reference used by algorithm. |
|
347 |
/// |
|
348 |
/// Sets the heap and the cross reference used by algorithm. |
|
349 |
/// If you don't use this function before calling \ref run(), |
|
350 |
/// it will allocate one. The destuctor deallocates this |
|
351 |
/// automatically allocated heap and cross reference, of course. |
|
352 |
/// \return <tt> (*this) </tt> |
|
353 |
NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr) |
|
354 |
{ |
|
355 |
if (_local_heap_cross_ref) { |
|
356 |
delete _heap_cross_ref; |
|
357 |
_local_heap_cross_ref = false; |
|
358 |
} |
|
359 |
_heap_cross_ref = &cr; |
|
360 |
if (_local_heap) { |
|
361 |
delete _heap; |
|
362 |
_local_heap = false; |
|
363 |
} |
|
364 |
_heap = &hp; |
|
365 |
return *this; |
|
366 |
} |
|
367 |
|
|
368 |
/// \name Execution control |
|
369 |
/// The simplest way to execute the algorithm is to use |
|
370 |
/// one of the member functions called \c run(). |
|
371 |
/// \n |
|
372 |
/// If you need more control on the execution, |
|
373 |
/// first you must call \ref init() and then call the start() |
|
374 |
/// or proper times the processNextPhase() member functions. |
|
375 |
|
|
376 |
///@{ |
|
377 |
|
|
378 |
/// \brief Initializes the internal data structures. |
|
379 |
/// |
|
380 |
/// Initializes the internal data structures. |
|
381 |
void init() { |
|
382 |
createStructures(); |
|
383 |
|
|
384 |
int edge_num = countEdges(_graph); |
|
385 |
_edges.resize(edge_num); |
|
386 |
_arcs.resize(2 * edge_num); |
|
387 |
|
|
388 |
typename Graph::Node prev = INVALID; |
|
389 |
_node_num = 0; |
|
390 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
|
391 |
(*_cut_map)[n] = false; |
|
392 |
(*_next_rep)[n] = INVALID; |
|
393 |
(*_nodes)[n].last_rep = n; |
|
394 |
(*_nodes)[n].first_arc = -1; |
|
395 |
(*_nodes)[n].curr_arc = -1; |
|
396 |
(*_nodes)[n].prev = prev; |
|
397 |
if (prev != INVALID) { |
|
398 |
(*_nodes)[prev].next = n; |
|
399 |
} |
|
400 |
(*_nodes)[n].next = INVALID; |
|
401 |
(*_nodes)[n].sum = 0; |
|
402 |
prev = n; |
|
403 |
++_node_num; |
|
404 |
} |
|
405 |
|
|
406 |
_first_node = typename Graph::NodeIt(_graph); |
|
407 |
|
|
408 |
int index = 0; |
|
409 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
|
410 |
for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) { |
|
411 |
typename Graph::Node m = _graph.target(a); |
|
412 |
|
|
413 |
if (!(n < m)) continue; |
|
414 |
|
|
415 |
(*_nodes)[n].sum += (*_capacity)[a]; |
|
416 |
(*_nodes)[m].sum += (*_capacity)[a]; |
|
417 |
|
|
418 |
int c = (*_nodes)[m].curr_arc; |
|
419 |
if (c != -1 && _arcs[c ^ 1].target == n) { |
|
420 |
_edges[c >> 1].capacity += (*_capacity)[a]; |
|
421 |
} else { |
|
422 |
_edges[index].capacity = (*_capacity)[a]; |
|
423 |
|
|
424 |
_arcs[index << 1].prev = -1; |
|
425 |
if ((*_nodes)[n].first_arc != -1) { |
|
426 |
_arcs[(*_nodes)[n].first_arc].prev = (index << 1); |
|
427 |
} |
|
428 |
_arcs[index << 1].next = (*_nodes)[n].first_arc; |
|
429 |
(*_nodes)[n].first_arc = (index << 1); |
|
430 |
_arcs[index << 1].target = m; |
|
431 |
|
|
432 |
(*_nodes)[m].curr_arc = (index << 1); |
|
433 |
|
|
434 |
_arcs[(index << 1) | 1].prev = -1; |
|
435 |
if ((*_nodes)[m].first_arc != -1) { |
|
436 |
_arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1); |
|
437 |
} |
|
438 |
_arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc; |
|
439 |
(*_nodes)[m].first_arc = ((index << 1) | 1); |
|
440 |
_arcs[(index << 1) | 1].target = n; |
|
441 |
|
|
442 |
++index; |
|
443 |
} |
|
444 |
} |
|
445 |
} |
|
446 |
|
|
447 |
typename Graph::Node cut_node = INVALID; |
|
448 |
_min_cut = std::numeric_limits<Value>::max(); |
|
449 |
|
|
450 |
for (typename Graph::Node n = _first_node; |
|
451 |
n != INVALID; n = (*_nodes)[n].next) { |
|
452 |
if ((*_nodes)[n].sum < _min_cut) { |
|
453 |
cut_node = n; |
|
454 |
_min_cut = (*_nodes)[n].sum; |
|
455 |
} |
|
456 |
} |
|
457 |
(*_cut_map)[cut_node] = true; |
|
458 |
if (_min_cut == 0) { |
|
459 |
_first_node = INVALID; |
|
460 |
} |
|
461 |
} |
|
462 |
|
|
463 |
public: |
|
464 |
|
|
465 |
/// \brief Processes the next phase |
|
466 |
/// |
|
467 |
/// Processes the next phase in the algorithm. It must be called |
|
468 |
/// at most one less the number of the nodes in the graph. |
|
469 |
/// |
|
470 |
///\return %True when the algorithm finished. |
|
471 |
bool processNextPhase() { |
|
472 |
if (_first_node == INVALID) return true; |
|
473 |
|
|
474 |
_heap->clear(); |
|
475 |
for (typename Graph::Node n = _first_node; |
|
476 |
n != INVALID; n = (*_nodes)[n].next) { |
|
477 |
(*_heap_cross_ref)[n] = Heap::PRE_HEAP; |
|
478 |
} |
|
479 |
|
|
480 |
std::vector<typename Graph::Node> order; |
|
481 |
order.reserve(_node_num); |
|
482 |
int sep = 0; |
|
483 |
|
|
484 |
Value alpha = 0; |
|
485 |
Value pmc = std::numeric_limits<Value>::max(); |
|
486 |
|
|
487 |
_heap->push(_first_node, static_cast<Value>(0)); |
|
488 |
while (!_heap->empty()) { |
|
489 |
typename Graph::Node n = _heap->top(); |
|
490 |
Value v = _heap->prio(); |
|
491 |
|
|
492 |
_heap->pop(); |
|
493 |
for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { |
|
494 |
switch (_heap->state(_arcs[a].target)) { |
|
495 |
case Heap::PRE_HEAP: |
|
496 |
{ |
|
497 |
Value nv = _edges[a >> 1].capacity; |
|
498 |
_heap->push(_arcs[a].target, nv); |
|
499 |
_edges[a >> 1].cut = nv; |
|
500 |
} break; |
|
501 |
case Heap::IN_HEAP: |
|
502 |
{ |
|
503 |
Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target]; |
|
504 |
_heap->decrease(_arcs[a].target, nv); |
|
505 |
_edges[a >> 1].cut = nv; |
|
506 |
} break; |
|
507 |
case Heap::POST_HEAP: |
|
508 |
break; |
|
509 |
} |
|
510 |
} |
|
511 |
|
|
512 |
alpha += (*_nodes)[n].sum; |
|
513 |
alpha -= 2 * v; |
|
514 |
|
|
515 |
order.push_back(n); |
|
516 |
if (!_heap->empty()) { |
|
517 |
if (alpha < pmc) { |
|
518 |
pmc = alpha; |
|
519 |
sep = order.size(); |
|
520 |
} |
|
521 |
} |
|
522 |
} |
|
523 |
|
|
524 |
if (static_cast<int>(order.size()) < _node_num) { |
|
525 |
_first_node = INVALID; |
|
526 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
|
527 |
(*_cut_map)[n] = false; |
|
528 |
} |
|
529 |
for (int i = 0; i < static_cast<int>(order.size()); ++i) { |
|
530 |
typename Graph::Node n = order[i]; |
|
531 |
while (n != INVALID) { |
|
532 |
(*_cut_map)[n] = true; |
|
533 |
n = (*_next_rep)[n]; |
|
534 |
} |
|
535 |
} |
|
536 |
_min_cut = 0; |
|
537 |
return true; |
|
538 |
} |
|
539 |
|
|
540 |
if (pmc < _min_cut) { |
|
541 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
|
542 |
(*_cut_map)[n] = false; |
|
543 |
} |
|
544 |
for (int i = 0; i < sep; ++i) { |
|
545 |
typename Graph::Node n = order[i]; |
|
546 |
while (n != INVALID) { |
|
547 |
(*_cut_map)[n] = true; |
|
548 |
n = (*_next_rep)[n]; |
|
549 |
} |
|
550 |
} |
|
551 |
_min_cut = pmc; |
|
552 |
} |
|
553 |
|
|
554 |
for (typename Graph::Node n = _first_node; |
|
555 |
n != INVALID; n = (*_nodes)[n].next) { |
|
556 |
bool merged = false; |
|
557 |
for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) { |
|
558 |
if (!(_edges[a >> 1].cut < pmc)) { |
|
559 |
if (!merged) { |
|
560 |
for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) { |
|
561 |
(*_nodes)[_arcs[b].target].curr_arc = b; |
|
562 |
} |
|
563 |
merged = true; |
|
564 |
} |
|
565 |
typename Graph::Node m = _arcs[a].target; |
|
566 |
int nb = 0; |
|
567 |
for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) { |
|
568 |
nb = _arcs[b].next; |
|
569 |
if ((b ^ a) == 1) continue; |
|
570 |
typename Graph::Node o = _arcs[b].target; |
|
571 |
int c = (*_nodes)[o].curr_arc; |
|
572 |
if (c != -1 && _arcs[c ^ 1].target == n) { |
|
573 |
_edges[c >> 1].capacity += _edges[b >> 1].capacity; |
|
574 |
(*_nodes)[n].sum += _edges[b >> 1].capacity; |
|
575 |
if (_edges[b >> 1].cut < _edges[c >> 1].cut) { |
|
576 |
_edges[b >> 1].cut = _edges[c >> 1].cut; |
|
577 |
} |
|
578 |
if (_arcs[b ^ 1].prev != -1) { |
|
579 |
_arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next; |
|
580 |
} else { |
|
581 |
(*_nodes)[o].first_arc = _arcs[b ^ 1].next; |
|
582 |
} |
|
583 |
if (_arcs[b ^ 1].next != -1) { |
|
584 |
_arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev; |
|
585 |
} |
|
586 |
} else { |
|
587 |
if (_arcs[a].next != -1) { |
|
588 |
_arcs[_arcs[a].next].prev = b; |
|
589 |
} |
|
590 |
_arcs[b].next = _arcs[a].next; |
|
591 |
_arcs[b].prev = a; |
|
592 |
_arcs[a].next = b; |
|
593 |
_arcs[b ^ 1].target = n; |
|
594 |
|
|
595 |
(*_nodes)[n].sum += _edges[b >> 1].capacity; |
|
596 |
(*_nodes)[o].curr_arc = b; |
|
597 |
} |
|
598 |
} |
|
599 |
|
|
600 |
if (_arcs[a].prev != -1) { |
|
601 |
_arcs[_arcs[a].prev].next = _arcs[a].next; |
|
602 |
} else { |
|
603 |
(*_nodes)[n].first_arc = _arcs[a].next; |
|
604 |
} |
|
605 |
if (_arcs[a].next != -1) { |
|
606 |
_arcs[_arcs[a].next].prev = _arcs[a].prev; |
|
607 |
} |
|
608 |
|
|
609 |
(*_nodes)[n].sum -= _edges[a >> 1].capacity; |
|
610 |
(*_next_rep)[(*_nodes)[n].last_rep] = m; |
|
611 |
(*_nodes)[n].last_rep = (*_nodes)[m].last_rep; |
|
612 |
|
|
613 |
if ((*_nodes)[m].prev != INVALID) { |
|
614 |
(*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next; |
|
615 |
} else{ |
|
616 |
_first_node = (*_nodes)[m].next; |
|
617 |
} |
|
618 |
if ((*_nodes)[m].next != INVALID) { |
|
619 |
(*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev; |
|
620 |
} |
|
621 |
--_node_num; |
|
622 |
} |
|
623 |
} |
|
624 |
} |
|
625 |
|
|
626 |
if (_node_num == 1) { |
|
627 |
_first_node = INVALID; |
|
628 |
return true; |
|
629 |
} |
|
630 |
|
|
631 |
return false; |
|
632 |
} |
|
633 |
|
|
634 |
/// \brief Executes the algorithm. |
|
635 |
/// |
|
636 |
/// Executes the algorithm. |
|
637 |
/// |
|
638 |
/// \pre init() must be called |
|
639 |
void start() { |
|
640 |
while (!processNextPhase()) {} |
|
641 |
} |
|
642 |
|
|
643 |
|
|
644 |
/// \brief Runs %NagamochiIbaraki algorithm. |
|
645 |
/// |
|
646 |
/// This method runs the %Min cut algorithm |
|
647 |
/// |
|
648 |
/// \note mc.run(s) is just a shortcut of the following code. |
|
649 |
///\code |
|
650 |
/// mc.init(); |
|
651 |
/// mc.start(); |
|
652 |
///\endcode |
|
653 |
void run() { |
|
654 |
init(); |
|
655 |
start(); |
|
656 |
} |
|
657 |
|
|
658 |
///@} |
|
659 |
|
|
660 |
/// \name Query Functions |
|
661 |
/// |
|
662 |
/// The result of the %NagamochiIbaraki |
|
663 |
/// algorithm can be obtained using these functions.\n |
|
664 |
/// Before the use of these functions, either run() or start() |
|
665 |
/// must be called. |
|
666 |
|
|
667 |
///@{ |
|
668 |
|
|
669 |
/// \brief Returns the min cut value. |
|
670 |
/// |
|
671 |
/// Returns the min cut value if the algorithm finished. |
|
672 |
/// After the first processNextPhase() it is a value of a |
|
673 |
/// valid cut in the graph. |
|
674 |
Value minCutValue() const { |
|
675 |
return _min_cut; |
|
676 |
} |
|
677 |
|
|
678 |
/// \brief Returns a min cut in a NodeMap. |
|
679 |
/// |
|
680 |
/// It sets the nodes of one of the two partitions to true and |
|
681 |
/// the other partition to false. |
|
682 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with |
|
683 |
/// \c bool (or convertible) value type. |
|
684 |
template <typename CutMap> |
|
685 |
Value minCutMap(CutMap& cutMap) const { |
|
686 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) { |
|
687 |
cutMap.set(n, (*_cut_map)[n]); |
|
688 |
} |
|
689 |
return minCutValue(); |
|
690 |
} |
|
691 |
|
|
692 |
///@} |
|
693 |
|
|
694 |
}; |
|
695 |
} |
|
696 |
|
|
697 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2010 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <sstream> |
|
20 |
|
|
21 |
#include <lemon/smart_graph.h> |
|
22 |
#include <lemon/adaptors.h> |
|
23 |
#include <lemon/concepts/graph.h> |
|
24 |
#include <lemon/concepts/maps.h> |
|
25 |
#include <lemon/lgf_reader.h> |
|
26 |
#include <lemon/nagamochi_ibaraki.h> |
|
27 |
|
|
28 |
#include "test_tools.h" |
|
29 |
|
|
30 |
using namespace lemon; |
|
31 |
using namespace std; |
|
32 |
|
|
33 |
const std::string lgf = |
|
34 |
"@nodes\n" |
|
35 |
"label\n" |
|
36 |
"0\n" |
|
37 |
"1\n" |
|
38 |
"2\n" |
|
39 |
"3\n" |
|
40 |
"4\n" |
|
41 |
"5\n" |
|
42 |
"@edges\n" |
|
43 |
" cap1 cap2 cap3\n" |
|
44 |
"0 1 1 1 1 \n" |
|
45 |
"0 2 2 2 4 \n" |
|
46 |
"1 2 4 4 4 \n" |
|
47 |
"3 4 1 1 1 \n" |
|
48 |
"3 5 2 2 4 \n" |
|
49 |
"4 5 4 4 4 \n" |
|
50 |
"2 3 1 6 6 \n"; |
|
51 |
|
|
52 |
void checkNagamochiIbarakiCompile() |
|
53 |
{ |
|
54 |
typedef int Value; |
|
55 |
typedef concepts::Graph Graph; |
|
56 |
|
|
57 |
typedef Graph::Node Node; |
|
58 |
typedef Graph::Edge Edge; |
|
59 |
typedef concepts::ReadMap<Edge, Value> CapMap; |
|
60 |
typedef concepts::WriteMap<Node, bool> CutMap; |
|
61 |
|
|
62 |
Graph g; |
|
63 |
Node n; |
|
64 |
CapMap cap; |
|
65 |
CutMap cut; |
|
66 |
Value v; |
|
67 |
bool b; |
|
68 |
|
|
69 |
NagamochiIbaraki<Graph, CapMap> ni_test(g, cap); |
|
70 |
const NagamochiIbaraki<Graph, CapMap>& const_ni_test = ni_test; |
|
71 |
|
|
72 |
ni_test.init(); |
|
73 |
ni_test.start(); |
|
74 |
b = ni_test.processNextPhase(); |
|
75 |
ni_test.run(); |
|
76 |
|
|
77 |
v = const_ni_test.minCutValue(); |
|
78 |
v = const_ni_test.minCutMap(cut); |
|
79 |
} |
|
80 |
|
|
81 |
template <typename Graph, typename CapMap, typename CutMap> |
|
82 |
typename CapMap::Value |
|
83 |
cutValue(const Graph& graph, const CapMap& cap, const CutMap& cut) |
|
84 |
{ |
|
85 |
typename CapMap::Value sum = 0; |
|
86 |
for (typename Graph::EdgeIt e(graph); e != INVALID; ++e) { |
|
87 |
if (cut[graph.u(e)] != cut[graph.v(e)]) { |
|
88 |
sum += cap[e]; |
|
89 |
} |
|
90 |
} |
|
91 |
return sum; |
|
92 |
} |
|
93 |
|
|
94 |
int main() { |
|
95 |
SmartGraph graph; |
|
96 |
SmartGraph::EdgeMap<int> cap1(graph), cap2(graph), cap3(graph); |
|
97 |
SmartGraph::NodeMap<bool> cut(graph); |
|
98 |
|
|
99 |
istringstream input(lgf); |
|
100 |
graphReader(graph, input) |
|
101 |
.edgeMap("cap1", cap1) |
|
102 |
.edgeMap("cap2", cap2) |
|
103 |
.edgeMap("cap3", cap3) |
|
104 |
.run(); |
|
105 |
|
|
106 |
{ |
|
107 |
NagamochiIbaraki<SmartGraph> ni(graph, cap1); |
|
108 |
ni.run(); |
|
109 |
ni.minCutMap(cut); |
|
110 |
|
|
111 |
check(ni.minCutValue() == 1, "Wrong cut value"); |
|
112 |
check(ni.minCutValue() == cutValue(graph, cap1, cut), "Wrong cut value"); |
|
113 |
} |
|
114 |
{ |
|
115 |
NagamochiIbaraki<SmartGraph> ni(graph, cap2); |
|
116 |
ni.run(); |
|
117 |
ni.minCutMap(cut); |
|
118 |
|
|
119 |
check(ni.minCutValue() == 3, "Wrong cut value"); |
|
120 |
check(ni.minCutValue() == cutValue(graph, cap2, cut), "Wrong cut value"); |
|
121 |
} |
|
122 |
{ |
|
123 |
NagamochiIbaraki<SmartGraph> ni(graph, cap3); |
|
124 |
ni.run(); |
|
125 |
ni.minCutMap(cut); |
|
126 |
|
|
127 |
check(ni.minCutValue() == 5, "Wrong cut value"); |
|
128 |
check(ni.minCutValue() == cutValue(graph, cap3, cut), "Wrong cut value"); |
|
129 |
} |
|
130 |
{ |
|
131 |
NagamochiIbaraki<SmartGraph>::SetUnitCapacity::Create ni(graph); |
|
132 |
ni.run(); |
|
133 |
ni.minCutMap(cut); |
|
134 |
|
|
135 |
ConstMap<SmartGraph::Edge, int> cap4(1); |
|
136 |
check(ni.minCutValue() == 1, "Wrong cut value"); |
|
137 |
check(ni.minCutValue() == cutValue(graph, cap4, cut), "Wrong cut value"); |
|
138 |
} |
|
139 |
|
|
140 |
return 0; |
|
141 |
} |
... | ... |
@@ -2,8 +2,10 @@ |
2 | 2 |
SET(PACKAGE_VERSION ${PROJECT_VERSION}) |
3 | 3 |
SET(abs_top_srcdir ${PROJECT_SOURCE_DIR}) |
4 | 4 |
SET(abs_top_builddir ${PROJECT_BINARY_DIR}) |
5 | 5 |
|
6 |
SET(LEMON_DOC_SOURCE_BROWSER "NO" CACHE STRING "Include source into the doc (YES/NO).") |
|
7 |
|
|
6 | 8 |
CONFIGURE_FILE( |
7 | 9 |
${PROJECT_SOURCE_DIR}/doc/Doxyfile.in |
8 | 10 |
${PROJECT_BINARY_DIR}/doc/Doxyfile |
9 | 11 |
@ONLY |
... | ... |
@@ -51,4 +53,16 @@ |
51 | 53 |
) |
52 | 54 |
ENDIF() |
53 | 55 |
|
54 | 56 |
ENDIF() |
57 |
|
|
58 |
IF(WGET_FOUND) |
|
59 |
ADD_CUSTOM_TARGET(update-external-tags |
|
60 |
COMMAND ${CMAKE_COMMAND} -E make_directory dl |
|
61 |
# COMMAND ${CMAKE_COMMAND} -E copy libstdc++.tag dl |
|
62 |
COMMAND ${WGET_EXECUTABLE} wget -P dl -N libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag |
|
63 |
COMMAND ${CMAKE_COMMAND} -E rename dl/libstdc++.tag libstdc++.tag |
|
64 |
COMMAND ${CMAKE_COMMAND} -E remove dl/libstdc++.tag |
|
65 |
COMMAND ${CMAKE_COMMAND} -E remove_directory dl |
|
66 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} |
|
67 |
) |
|
68 |
ENDIF() |
... | ... |
@@ -69,9 +69,9 @@ |
69 | 69 |
SHOW_DIRECTORIES = YES |
70 | 70 |
SHOW_FILES = YES |
71 | 71 |
SHOW_NAMESPACES = YES |
72 | 72 |
FILE_VERSION_FILTER = |
73 |
LAYOUT_FILE = DoxygenLayout.xml |
|
73 |
LAYOUT_FILE = "@abs_top_srcdir@/doc/DoxygenLayout.xml" |
|
74 | 74 |
#--------------------------------------------------------------------------- |
75 | 75 |
# configuration options related to warning and progress messages |
76 | 76 |
#--------------------------------------------------------------------------- |
77 | 77 |
QUIET = NO |
... | ... |
@@ -113,9 +113,9 @@ |
113 | 113 |
FILTER_SOURCE_FILES = NO |
114 | 114 |
#--------------------------------------------------------------------------- |
115 | 115 |
# configuration options related to source browsing |
116 | 116 |
#--------------------------------------------------------------------------- |
117 |
SOURCE_BROWSER = |
|
117 |
SOURCE_BROWSER = @LEMON_DOC_SOURCE_BROWSER@ |
|
118 | 118 |
INLINE_SOURCES = NO |
119 | 119 |
STRIP_CODE_COMMENTS = YES |
120 | 120 |
REFERENCED_BY_RELATION = NO |
121 | 121 |
REFERENCES_RELATION = NO |
... | ... |
@@ -224,9 +224,9 @@ |
224 | 224 |
SKIP_FUNCTION_MACROS = YES |
225 | 225 |
#--------------------------------------------------------------------------- |
226 | 226 |
# Options related to the search engine |
227 | 227 |
#--------------------------------------------------------------------------- |
228 |
TAGFILES = "@ |
|
228 |
TAGFILES = "@abs_top_builddir@/doc/libstdc++.tag = http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/ " |
|
229 | 229 |
GENERATE_TAGFILE = html/lemon.tag |
230 | 230 |
ALLEXTERNALS = NO |
231 | 231 |
EXTERNAL_GROUPS = NO |
232 | 232 |
PERL_PATH = /usr/bin/perl |
... | ... |
@@ -7,8 +7,14 @@ |
7 | 7 |
${CMAKE_CURRENT_SOURCE_DIR}/config.h.cmake |
8 | 8 |
${CMAKE_CURRENT_BINARY_DIR}/config.h |
9 | 9 |
) |
10 | 10 |
|
11 |
CONFIGURE_FILE( |
|
12 |
${CMAKE_CURRENT_SOURCE_DIR}/lemon.pc.cmake |
|
13 |
${CMAKE_CURRENT_BINARY_DIR}/lemon.pc |
|
14 |
@ONLY |
|
15 |
) |
|
16 |
|
|
11 | 17 |
SET(LEMON_SOURCES |
12 | 18 |
arg_parser.cc |
13 | 19 |
base.cc |
14 | 20 |
color.cc |
... | ... |
@@ -65,4 +71,10 @@ |
65 | 71 |
FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h |
66 | 72 |
DESTINATION include/lemon |
67 | 73 |
COMPONENT headers |
68 | 74 |
) |
75 |
|
|
76 |
INSTALL( |
|
77 |
FILES ${CMAKE_CURRENT_BINARY_DIR}/lemon.pc |
|
78 |
DESTINATION lib/pkgconfig |
|
79 |
) |
|
80 |
... | ... |
@@ -107,8 +107,9 @@ |
107 | 107 |
lemon/matching.h \ |
108 | 108 |
lemon/math.h \ |
109 | 109 |
lemon/min_cost_arborescence.h \ |
110 | 110 |
lemon/max_cardinality_search.h \ |
111 |
lemon/nagamochi_ibaraki.h \ |
|
111 | 112 |
lemon/nauty_reader.h \ |
112 | 113 |
lemon/network_simplex.h \ |
113 | 114 |
lemon/pairing_heap.h \ |
114 | 115 |
lemon/path.h \ |
... | ... |
@@ -52,10 +52,10 @@ |
52 | 52 |
/// capacity). Obviously, the smaller of these two cuts will be a |
53 | 53 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
54 | 54 |
/// preflow push-relabel algorithm. Our implementation calculates |
55 | 55 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the |
56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
|
57 |
/// purpose of such algorithm is e.g. testing network reliability. |
|
56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. A notable |
|
57 |
/// use of this algorithm is testing network reliability. |
|
58 | 58 |
/// |
59 | 59 |
/// For an undirected graph you can run just the first phase of the |
60 | 60 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
61 | 61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
... | ... |
@@ -911,8 +911,10 @@ |
911 | 911 |
/// |
912 | 912 |
/// This function calculates a minimum cut with \f$ source \f$ on the |
913 | 913 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with |
914 | 914 |
/// \f$ source \in X \f$ and minimal outgoing capacity). |
915 |
/// It updates the stored cut if (and only if) the newly found one |
|
916 |
/// is better. |
|
915 | 917 |
/// |
916 | 918 |
/// \pre \ref init() must be called before using this function. |
917 | 919 |
void calculateOut() { |
918 | 920 |
findMinCutOut(); |
... | ... |
@@ -923,8 +925,10 @@ |
923 | 925 |
/// |
924 | 926 |
/// This function calculates a minimum cut with \f$ source \f$ on the |
925 | 927 |
/// sink-side (i.e. a set \f$ X\subsetneq V \f$ with |
926 | 928 |
/// \f$ source \notin X \f$ and minimal outgoing capacity). |
929 |
/// It updates the stored cut if (and only if) the newly found one |
|
930 |
/// is better. |
|
927 | 931 |
/// |
928 | 932 |
/// \pre \ref init() must be called before using this function. |
929 | 933 |
void calculateIn() { |
930 | 934 |
findMinCutIn(); |
... | ... |
@@ -932,10 +936,10 @@ |
932 | 936 |
|
933 | 937 |
|
934 | 938 |
/// \brief Run the algorithm. |
935 | 939 |
/// |
936 |
/// This function runs the algorithm. It finds nodes \c source and |
|
937 |
/// \c target arbitrarily and then calls \ref init(), \ref calculateOut() |
|
940 |
/// This function runs the algorithm. It chooses source node, |
|
941 |
/// then calls \ref init(), \ref calculateOut() |
|
938 | 942 |
/// and \ref calculateIn(). |
939 | 943 |
void run() { |
940 | 944 |
init(); |
941 | 945 |
calculateOut(); |
... | ... |
@@ -943,11 +947,11 @@ |
943 | 947 |
} |
944 | 948 |
|
945 | 949 |
/// \brief Run the algorithm. |
946 | 950 |
/// |
947 |
/// This function runs the algorithm. It uses the given \c source node, |
|
948 |
/// finds a proper \c target node and then calls the \ref init(), |
|
949 |
/// |
|
951 |
/// This function runs the algorithm. It calls \ref init(), |
|
952 |
/// \ref calculateOut() and \ref calculateIn() with the given |
|
953 |
/// source node. |
|
950 | 954 |
void run(const Node& s) { |
951 | 955 |
init(s); |
952 | 956 |
calculateOut(); |
953 | 957 |
calculateIn(); |
... | ... |
@@ -964,9 +968,11 @@ |
964 | 968 |
/// @{ |
965 | 969 |
|
966 | 970 |
/// \brief Return the value of the minimum cut. |
967 | 971 |
/// |
968 |
/// This function returns the value of the |
|
972 |
/// This function returns the value of the best cut found by the |
|
973 |
/// previously called \ref run(), \ref calculateOut() or \ref |
|
974 |
/// calculateIn(). |
|
969 | 975 |
/// |
970 | 976 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
971 | 977 |
/// must be called before using this function. |
972 | 978 |
Value minCutValue() const { |
... | ... |
@@ -975,11 +981,15 @@ |
975 | 981 |
|
976 | 982 |
|
977 | 983 |
/// \brief Return a minimum cut. |
978 | 984 |
/// |
979 |
/// This function sets \c cutMap to the characteristic vector of a |
|
980 |
/// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$ |
|
981 |
/// |
|
985 |
/// This function gives the best cut found by the |
|
986 |
/// previously called \ref run(), \ref calculateOut() or \ref |
|
987 |
/// calculateIn(). |
|
988 |
/// |
|
989 |
/// It sets \c cutMap to the characteristic vector of the found |
|
990 |
/// minimum value cut - a non-empty set \f$ X\subsetneq V \f$ |
|
991 |
/// of minimum outgoing capacity (i.e. \c cutMap will be \c true exactly |
|
982 | 992 |
/// for the nodes of \f$ X \f$). |
983 | 993 |
/// |
984 | 994 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with |
985 | 995 |
/// \c bool (or convertible) value type. |
... | ... |
@@ -35,8 +35,9 @@ |
35 | 35 |
max_clique_test |
36 | 36 |
min_cost_arborescence_test |
37 | 37 |
min_cost_flow_test |
38 | 38 |
min_mean_cycle_test |
39 |
nagamochi_ibaraki_test |
|
39 | 40 |
path_test |
40 | 41 |
planarity_test |
41 | 42 |
preflow_test |
42 | 43 |
radix_sort_test |
... | ... |
@@ -46,9 +47,14 @@ |
46 | 47 |
unionfind_test |
47 | 48 |
) |
48 | 49 |
|
49 | 50 |
IF(LEMON_HAVE_LP) |
50 |
|
|
51 |
IF(${CMAKE_BUILD_TYPE} STREQUAL "Maintainer") |
|
52 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
|
53 |
ELSE() |
|
54 |
ADD_EXECUTABLE(lp_test EXCLUDE_FROM_ALL lp_test.cc) |
|
55 |
ENDIF() |
|
56 |
|
|
51 | 57 |
SET(LP_TEST_LIBS lemon) |
52 | 58 |
|
53 | 59 |
IF(LEMON_HAVE_GLPK) |
54 | 60 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
... | ... |
@@ -82,9 +88,14 @@ |
82 | 88 |
ENDIF() |
83 | 89 |
ENDIF() |
84 | 90 |
|
85 | 91 |
IF(LEMON_HAVE_MIP) |
86 |
|
|
92 |
IF(${CMAKE_BUILD_TYPE} STREQUAL "Maintainer") |
|
93 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
|
94 |
ELSE() |
|
95 |
ADD_EXECUTABLE(mip_test EXCLUDE_FROM_ALL mip_test.cc) |
|
96 |
ENDIF() |
|
97 |
|
|
87 | 98 |
SET(MIP_TEST_LIBS lemon) |
88 | 99 |
|
89 | 100 |
IF(LEMON_HAVE_GLPK) |
90 | 101 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES}) |
... | ... |
@@ -37,8 +37,9 @@ |
37 | 37 |
test/max_clique_test \ |
38 | 38 |
test/min_cost_arborescence_test \ |
39 | 39 |
test/min_cost_flow_test \ |
40 | 40 |
test/min_mean_cycle_test \ |
41 |
test/nagamochi_ibaraki_test \ |
|
41 | 42 |
test/path_test \ |
42 | 43 |
test/planarity_test \ |
43 | 44 |
test/preflow_test \ |
44 | 45 |
test/radix_sort_test \ |
... | ... |
@@ -90,8 +91,9 @@ |
90 | 91 |
test_max_clique_test_SOURCES = test/max_clique_test.cc |
91 | 92 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
92 | 93 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
93 | 94 |
test_min_mean_cycle_test_SOURCES = test/min_mean_cycle_test.cc |
95 |
test_nagamochi_ibaraki_test_SOURCES = test/nagamochi_ibaraki_test.cc |
|
94 | 96 |
test_path_test_SOURCES = test/path_test.cc |
95 | 97 |
test_planarity_test_SOURCES = test/planarity_test.cc |
96 | 98 |
test_preflow_test_SOURCES = test/preflow_test.cc |
97 | 99 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
0 comments (0 inline)