|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2010
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#ifndef LEMON_NAGAMOCHI_IBARAKI_H
|
|
20 |
#define LEMON_NAGAMOCHI_IBARAKI_H
|
|
21 |
|
|
22 |
|
|
23 |
/// \ingroup min_cut
|
|
24 |
/// \file
|
|
25 |
/// \brief Implementation of the Nagamochi-Ibaraki algorithm.
|
|
26 |
|
|
27 |
#include <lemon/core.h>
|
|
28 |
#include <lemon/bin_heap.h>
|
|
29 |
#include <lemon/bucket_heap.h>
|
|
30 |
#include <lemon/maps.h>
|
|
31 |
#include <lemon/radix_sort.h>
|
|
32 |
#include <lemon/unionfind.h>
|
|
33 |
|
|
34 |
#include <cassert>
|
|
35 |
|
|
36 |
namespace lemon {
|
|
37 |
|
|
38 |
/// \brief Default traits class for NagamochiIbaraki class.
|
|
39 |
///
|
|
40 |
/// Default traits class for NagamochiIbaraki class.
|
|
41 |
/// \param GR The undirected graph type.
|
|
42 |
/// \param CM Type of capacity map.
|
|
43 |
template <typename GR, typename CM>
|
|
44 |
struct NagamochiIbarakiDefaultTraits {
|
|
45 |
/// The type of the capacity map.
|
|
46 |
typedef typename CM::Value Value;
|
|
47 |
|
|
48 |
/// The undirected graph type the algorithm runs on.
|
|
49 |
typedef GR Graph;
|
|
50 |
|
|
51 |
/// \brief The type of the map that stores the edge capacities.
|
|
52 |
///
|
|
53 |
/// The type of the map that stores the edge capacities.
|
|
54 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
|
55 |
typedef CM CapacityMap;
|
|
56 |
|
|
57 |
/// \brief Instantiates a CapacityMap.
|
|
58 |
///
|
|
59 |
/// This function instantiates a \ref CapacityMap.
|
|
60 |
#ifdef DOXYGEN
|
|
61 |
static CapacityMap *createCapacityMap(const Graph& graph)
|
|
62 |
#else
|
|
63 |
static CapacityMap *createCapacityMap(const Graph&)
|
|
64 |
#endif
|
|
65 |
{
|
|
66 |
LEMON_ASSERT(false, "CapacityMap is not initialized");
|
|
67 |
return 0; // ignore warnings
|
|
68 |
}
|
|
69 |
|
|
70 |
/// \brief The cross reference type used by heap.
|
|
71 |
///
|
|
72 |
/// The cross reference type used by heap.
|
|
73 |
/// Usually \c Graph::NodeMap<int>.
|
|
74 |
typedef typename Graph::template NodeMap<int> HeapCrossRef;
|
|
75 |
|
|
76 |
/// \brief Instantiates a HeapCrossRef.
|
|
77 |
///
|
|
78 |
/// This function instantiates a \ref HeapCrossRef.
|
|
79 |
/// \param g is the graph, to which we would like to define the
|
|
80 |
/// \ref HeapCrossRef.
|
|
81 |
static HeapCrossRef *createHeapCrossRef(const Graph& g) {
|
|
82 |
return new HeapCrossRef(g);
|
|
83 |
}
|
|
84 |
|
|
85 |
/// \brief The heap type used by NagamochiIbaraki algorithm.
|
|
86 |
///
|
|
87 |
/// The heap type used by NagamochiIbaraki algorithm. It has to
|
|
88 |
/// maximize the priorities.
|
|
89 |
///
|
|
90 |
/// \sa BinHeap
|
|
91 |
/// \sa NagamochiIbaraki
|
|
92 |
typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap;
|
|
93 |
|
|
94 |
/// \brief Instantiates a Heap.
|
|
95 |
///
|
|
96 |
/// This function instantiates a \ref Heap.
|
|
97 |
/// \param r is the cross reference of the heap.
|
|
98 |
static Heap *createHeap(HeapCrossRef& r) {
|
|
99 |
return new Heap(r);
|
|
100 |
}
|
|
101 |
};
|
|
102 |
|
|
103 |
/// \ingroup min_cut
|
|
104 |
///
|
|
105 |
/// \brief Calculates the minimum cut in an undirected graph.
|
|
106 |
///
|
|
107 |
/// Calculates the minimum cut in an undirected graph with the
|
|
108 |
/// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's
|
|
109 |
/// nodes into two partitions with the minimum sum of edge capacities
|
|
110 |
/// between the two partitions. The algorithm can be used to test
|
|
111 |
/// the network reliability, especially to test how many links have
|
|
112 |
/// to be destroyed in the network to split it to at least two
|
|
113 |
/// distinict subnetworks.
|
|
114 |
///
|
|
115 |
/// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with
|
|
116 |
/// \ref FibHeap "Fibonacci heap" it can be decreased to
|
|
117 |
/// \f$ O(nm+n^2\log(n)) \f$. When the edges have unit capacities,
|
|
118 |
/// \c BucketHeap can be used which yields \f$ O(nm) \f$ time
|
|
119 |
/// complexity.
|
|
120 |
///
|
|
121 |
/// \warning The value type of the capacity map should be able to
|
|
122 |
/// hold any cut value of the graph, otherwise the result can
|
|
123 |
/// overflow.
|
|
124 |
/// \note This capacity is supposed to be integer type.
|
|
125 |
#ifdef DOXYGEN
|
|
126 |
template <typename GR, typename CM, typename TR>
|
|
127 |
#else
|
|
128 |
template <typename GR,
|
|
129 |
typename CM = typename GR::template EdgeMap<int>,
|
|
130 |
typename TR = NagamochiIbarakiDefaultTraits<GR, CM> >
|
|
131 |
#endif
|
|
132 |
class NagamochiIbaraki {
|
|
133 |
public:
|
|
134 |
|
|
135 |
typedef TR Traits;
|
|
136 |
/// The type of the underlying graph.
|
|
137 |
typedef typename Traits::Graph Graph;
|
|
138 |
|
|
139 |
/// The type of the capacity map.
|
|
140 |
typedef typename Traits::CapacityMap CapacityMap;
|
|
141 |
/// The value type of the capacity map.
|
|
142 |
typedef typename Traits::CapacityMap::Value Value;
|
|
143 |
|
|
144 |
/// The heap type used by the algorithm.
|
|
145 |
typedef typename Traits::Heap Heap;
|
|
146 |
/// The cross reference type used for the heap.
|
|
147 |
typedef typename Traits::HeapCrossRef HeapCrossRef;
|
|
148 |
|
|
149 |
///\name Named template parameters
|
|
150 |
|
|
151 |
///@{
|
|
152 |
|
|
153 |
struct SetUnitCapacityTraits : public Traits {
|
|
154 |
typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap;
|
|
155 |
static CapacityMap *createCapacityMap(const Graph&) {
|
|
156 |
return new CapacityMap();
|
|
157 |
}
|
|
158 |
};
|
|
159 |
|
|
160 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
161 |
/// the capacity map to a constMap<Edge, int, 1>() instance
|
|
162 |
///
|
|
163 |
/// \ref named-templ-param "Named parameter" for setting
|
|
164 |
/// the capacity map to a constMap<Edge, int, 1>() instance
|
|
165 |
struct SetUnitCapacity
|
|
166 |
: public NagamochiIbaraki<Graph, CapacityMap,
|
|
167 |
SetUnitCapacityTraits> {
|
|
168 |
typedef NagamochiIbaraki<Graph, CapacityMap,
|
|
169 |
SetUnitCapacityTraits> Create;
|
|
170 |
};
|
|
171 |
|
|
172 |
|
|
173 |
template <class H, class CR>
|
|
174 |
struct SetHeapTraits : public Traits {
|
|
175 |
typedef CR HeapCrossRef;
|
|
176 |
typedef H Heap;
|
|
177 |
static HeapCrossRef *createHeapCrossRef(int num) {
|
|
178 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized");
|
|
179 |
return 0; // ignore warnings
|
|
180 |
}
|
|
181 |
static Heap *createHeap(HeapCrossRef &) {
|
|
182 |
LEMON_ASSERT(false, "Heap is not initialized");
|
|
183 |
return 0; // ignore warnings
|
|
184 |
}
|
|
185 |
};
|
|
186 |
|
|
187 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
188 |
/// heap and cross reference type
|
|
189 |
///
|
|
190 |
/// \ref named-templ-param "Named parameter" for setting heap and
|
|
191 |
/// cross reference type. The heap has to maximize the priorities.
|
|
192 |
template <class H, class CR = RangeMap<int> >
|
|
193 |
struct SetHeap
|
|
194 |
: public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > {
|
|
195 |
typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> >
|
|
196 |
Create;
|
|
197 |
};
|
|
198 |
|
|
199 |
template <class H, class CR>
|
|
200 |
struct SetStandardHeapTraits : public Traits {
|
|
201 |
typedef CR HeapCrossRef;
|
|
202 |
typedef H Heap;
|
|
203 |
static HeapCrossRef *createHeapCrossRef(int size) {
|
|
204 |
return new HeapCrossRef(size);
|
|
205 |
}
|
|
206 |
static Heap *createHeap(HeapCrossRef &crossref) {
|
|
207 |
return new Heap(crossref);
|
|
208 |
}
|
|
209 |
};
|
|
210 |
|
|
211 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
212 |
/// heap and cross reference type with automatic allocation
|
|
213 |
///
|
|
214 |
/// \ref named-templ-param "Named parameter" for setting heap and
|
|
215 |
/// cross reference type with automatic allocation. They should
|
|
216 |
/// have standard constructor interfaces to be able to
|
|
217 |
/// automatically created by the algorithm (i.e. the graph should
|
|
218 |
/// be passed to the constructor of the cross reference and the
|
|
219 |
/// cross reference should be passed to the constructor of the
|
|
220 |
/// heap). However, external heap and cross reference objects
|
|
221 |
/// could also be passed to the algorithm using the \ref heap()
|
|
222 |
/// function before calling \ref run() or \ref init(). The heap
|
|
223 |
/// has to maximize the priorities.
|
|
224 |
/// \sa SetHeap
|
|
225 |
template <class H, class CR = RangeMap<int> >
|
|
226 |
struct SetStandardHeap
|
|
227 |
: public NagamochiIbaraki<Graph, CapacityMap,
|
|
228 |
SetStandardHeapTraits<H, CR> > {
|
|
229 |
typedef NagamochiIbaraki<Graph, CapacityMap,
|
|
230 |
SetStandardHeapTraits<H, CR> > Create;
|
|
231 |
};
|
|
232 |
|
|
233 |
///@}
|
|
234 |
|
|
235 |
|
|
236 |
private:
|
|
237 |
|
|
238 |
const Graph &_graph;
|
|
239 |
const CapacityMap *_capacity;
|
|
240 |
bool _local_capacity; // unit capacity
|
|
241 |
|
|
242 |
struct ArcData {
|
|
243 |
typename Graph::Node target;
|
|
244 |
int prev, next;
|
|
245 |
};
|
|
246 |
struct EdgeData {
|
|
247 |
Value capacity;
|
|
248 |
Value cut;
|
|
249 |
};
|
|
250 |
|
|
251 |
struct NodeData {
|
|
252 |
int first_arc;
|
|
253 |
typename Graph::Node prev, next;
|
|
254 |
int curr_arc;
|
|
255 |
typename Graph::Node last_rep;
|
|
256 |
Value sum;
|
|
257 |
};
|
|
258 |
|
|
259 |
typename Graph::template NodeMap<NodeData> *_nodes;
|
|
260 |
std::vector<ArcData> _arcs;
|
|
261 |
std::vector<EdgeData> _edges;
|
|
262 |
|
|
263 |
typename Graph::Node _first_node;
|
|
264 |
int _node_num;
|
|
265 |
|
|
266 |
Value _min_cut;
|
|
267 |
|
|
268 |
HeapCrossRef *_heap_cross_ref;
|
|
269 |
bool _local_heap_cross_ref;
|
|
270 |
Heap *_heap;
|
|
271 |
bool _local_heap;
|
|
272 |
|
|
273 |
typedef typename Graph::template NodeMap<typename Graph::Node> NodeList;
|
|
274 |
NodeList *_next_rep;
|
|
275 |
|
|
276 |
typedef typename Graph::template NodeMap<bool> MinCutMap;
|
|
277 |
MinCutMap *_cut_map;
|
|
278 |
|
|
279 |
void createStructures() {
|
|
280 |
if (!_nodes) {
|
|
281 |
_nodes = new (typename Graph::template NodeMap<NodeData>)(_graph);
|
|
282 |
}
|
|
283 |
if (!_capacity) {
|
|
284 |
_local_capacity = true;
|
|
285 |
_capacity = Traits::createCapacityMap(_graph);
|
|
286 |
}
|
|
287 |
if (!_heap_cross_ref) {
|
|
288 |
_local_heap_cross_ref = true;
|
|
289 |
_heap_cross_ref = Traits::createHeapCrossRef(_graph);
|
|
290 |
}
|
|
291 |
if (!_heap) {
|
|
292 |
_local_heap = true;
|
|
293 |
_heap = Traits::createHeap(*_heap_cross_ref);
|
|
294 |
}
|
|
295 |
if (!_next_rep) {
|
|
296 |
_next_rep = new NodeList(_graph);
|
|
297 |
}
|
|
298 |
if (!_cut_map) {
|
|
299 |
_cut_map = new MinCutMap(_graph);
|
|
300 |
}
|
|
301 |
}
|
|
302 |
|
|
303 |
public :
|
|
304 |
|
|
305 |
typedef NagamochiIbaraki Create;
|
|
306 |
|
|
307 |
|
|
308 |
/// \brief Constructor.
|
|
309 |
///
|
|
310 |
/// \param graph The graph the algorithm runs on.
|
|
311 |
/// \param capacity The capacity map used by the algorithm.
|
|
312 |
NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity)
|
|
313 |
: _graph(graph), _capacity(&capacity), _local_capacity(false),
|
|
314 |
_nodes(0), _arcs(), _edges(), _min_cut(),
|
|
315 |
_heap_cross_ref(0), _local_heap_cross_ref(false),
|
|
316 |
_heap(0), _local_heap(false),
|
|
317 |
_next_rep(0), _cut_map(0) {}
|
|
318 |
|
|
319 |
/// \brief Constructor.
|
|
320 |
///
|
|
321 |
/// This constructor can be used only when the Traits class
|
|
322 |
/// defines how can the local capacity map be instantiated.
|
|
323 |
/// If the SetUnitCapacity used the algorithm automatically
|
|
324 |
/// constructs the capacity map.
|
|
325 |
///
|
|
326 |
///\param graph The graph the algorithm runs on.
|
|
327 |
NagamochiIbaraki(const Graph& graph)
|
|
328 |
: _graph(graph), _capacity(0), _local_capacity(false),
|
|
329 |
_nodes(0), _arcs(), _edges(), _min_cut(),
|
|
330 |
_heap_cross_ref(0), _local_heap_cross_ref(false),
|
|
331 |
_heap(0), _local_heap(false),
|
|
332 |
_next_rep(0), _cut_map(0) {}
|
|
333 |
|
|
334 |
/// \brief Destructor.
|
|
335 |
///
|
|
336 |
/// Destructor.
|
|
337 |
~NagamochiIbaraki() {
|
|
338 |
if (_local_capacity) delete _capacity;
|
|
339 |
if (_nodes) delete _nodes;
|
|
340 |
if (_local_heap) delete _heap;
|
|
341 |
if (_local_heap_cross_ref) delete _heap_cross_ref;
|
|
342 |
if (_next_rep) delete _next_rep;
|
|
343 |
if (_cut_map) delete _cut_map;
|
|
344 |
}
|
|
345 |
|
|
346 |
/// \brief Sets the heap and the cross reference used by algorithm.
|
|
347 |
///
|
|
348 |
/// Sets the heap and the cross reference used by algorithm.
|
|
349 |
/// If you don't use this function before calling \ref run(),
|
|
350 |
/// it will allocate one. The destuctor deallocates this
|
|
351 |
/// automatically allocated heap and cross reference, of course.
|
|
352 |
/// \return <tt> (*this) </tt>
|
|
353 |
NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr)
|
|
354 |
{
|
|
355 |
if (_local_heap_cross_ref) {
|
|
356 |
delete _heap_cross_ref;
|
|
357 |
_local_heap_cross_ref = false;
|
|
358 |
}
|
|
359 |
_heap_cross_ref = &cr;
|
|
360 |
if (_local_heap) {
|
|
361 |
delete _heap;
|
|
362 |
_local_heap = false;
|
|
363 |
}
|
|
364 |
_heap = &hp;
|
|
365 |
return *this;
|
|
366 |
}
|
|
367 |
|
|
368 |
/// \name Execution control
|
|
369 |
/// The simplest way to execute the algorithm is to use
|
|
370 |
/// one of the member functions called \c run().
|
|
371 |
/// \n
|
|
372 |
/// If you need more control on the execution,
|
|
373 |
/// first you must call \ref init() and then call the start()
|
|
374 |
/// or proper times the processNextPhase() member functions.
|
|
375 |
|
|
376 |
///@{
|
|
377 |
|
|
378 |
/// \brief Initializes the internal data structures.
|
|
379 |
///
|
|
380 |
/// Initializes the internal data structures.
|
|
381 |
void init() {
|
|
382 |
createStructures();
|
|
383 |
|
|
384 |
int edge_num = countEdges(_graph);
|
|
385 |
_edges.resize(edge_num);
|
|
386 |
_arcs.resize(2 * edge_num);
|
|
387 |
|
|
388 |
typename Graph::Node prev = INVALID;
|
|
389 |
_node_num = 0;
|
|
390 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
|
|
391 |
(*_cut_map)[n] = false;
|
|
392 |
(*_next_rep)[n] = INVALID;
|
|
393 |
(*_nodes)[n].last_rep = n;
|
|
394 |
(*_nodes)[n].first_arc = -1;
|
|
395 |
(*_nodes)[n].curr_arc = -1;
|
|
396 |
(*_nodes)[n].prev = prev;
|
|
397 |
if (prev != INVALID) {
|
|
398 |
(*_nodes)[prev].next = n;
|
|
399 |
}
|
|
400 |
(*_nodes)[n].next = INVALID;
|
|
401 |
(*_nodes)[n].sum = 0;
|
|
402 |
prev = n;
|
|
403 |
++_node_num;
|
|
404 |
}
|
|
405 |
|
|
406 |
_first_node = typename Graph::NodeIt(_graph);
|
|
407 |
|
|
408 |
int index = 0;
|
|
409 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
|
|
410 |
for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) {
|
|
411 |
typename Graph::Node m = _graph.target(a);
|
|
412 |
|
|
413 |
if (!(n < m)) continue;
|
|
414 |
|
|
415 |
(*_nodes)[n].sum += (*_capacity)[a];
|
|
416 |
(*_nodes)[m].sum += (*_capacity)[a];
|
|
417 |
|
|
418 |
int c = (*_nodes)[m].curr_arc;
|
|
419 |
if (c != -1 && _arcs[c ^ 1].target == n) {
|
|
420 |
_edges[c >> 1].capacity += (*_capacity)[a];
|
|
421 |
} else {
|
|
422 |
_edges[index].capacity = (*_capacity)[a];
|
|
423 |
|
|
424 |
_arcs[index << 1].prev = -1;
|
|
425 |
if ((*_nodes)[n].first_arc != -1) {
|
|
426 |
_arcs[(*_nodes)[n].first_arc].prev = (index << 1);
|
|
427 |
}
|
|
428 |
_arcs[index << 1].next = (*_nodes)[n].first_arc;
|
|
429 |
(*_nodes)[n].first_arc = (index << 1);
|
|
430 |
_arcs[index << 1].target = m;
|
|
431 |
|
|
432 |
(*_nodes)[m].curr_arc = (index << 1);
|
|
433 |
|
|
434 |
_arcs[(index << 1) | 1].prev = -1;
|
|
435 |
if ((*_nodes)[m].first_arc != -1) {
|
|
436 |
_arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1);
|
|
437 |
}
|
|
438 |
_arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc;
|
|
439 |
(*_nodes)[m].first_arc = ((index << 1) | 1);
|
|
440 |
_arcs[(index << 1) | 1].target = n;
|
|
441 |
|
|
442 |
++index;
|
|
443 |
}
|
|
444 |
}
|
|
445 |
}
|
|
446 |
|
|
447 |
typename Graph::Node cut_node = INVALID;
|
|
448 |
_min_cut = std::numeric_limits<Value>::max();
|
|
449 |
|
|
450 |
for (typename Graph::Node n = _first_node;
|
|
451 |
n != INVALID; n = (*_nodes)[n].next) {
|
|
452 |
if ((*_nodes)[n].sum < _min_cut) {
|
|
453 |
cut_node = n;
|
|
454 |
_min_cut = (*_nodes)[n].sum;
|
|
455 |
}
|
|
456 |
}
|
|
457 |
(*_cut_map)[cut_node] = true;
|
|
458 |
if (_min_cut == 0) {
|
|
459 |
_first_node = INVALID;
|
|
460 |
}
|
|
461 |
}
|
|
462 |
|
|
463 |
public:
|
|
464 |
|
|
465 |
/// \brief Processes the next phase
|
|
466 |
///
|
|
467 |
/// Processes the next phase in the algorithm. It must be called
|
|
468 |
/// at most one less the number of the nodes in the graph.
|
|
469 |
///
|
|
470 |
///\return %True when the algorithm finished.
|
|
471 |
bool processNextPhase() {
|
|
472 |
if (_first_node == INVALID) return true;
|
|
473 |
|
|
474 |
_heap->clear();
|
|
475 |
for (typename Graph::Node n = _first_node;
|
|
476 |
n != INVALID; n = (*_nodes)[n].next) {
|
|
477 |
(*_heap_cross_ref)[n] = Heap::PRE_HEAP;
|
|
478 |
}
|
|
479 |
|
|
480 |
std::vector<typename Graph::Node> order;
|
|
481 |
order.reserve(_node_num);
|
|
482 |
int sep = 0;
|
|
483 |
|
|
484 |
Value alpha = 0;
|
|
485 |
Value pmc = std::numeric_limits<Value>::max();
|
|
486 |
|
|
487 |
_heap->push(_first_node, static_cast<Value>(0));
|
|
488 |
while (!_heap->empty()) {
|
|
489 |
typename Graph::Node n = _heap->top();
|
|
490 |
Value v = _heap->prio();
|
|
491 |
|
|
492 |
_heap->pop();
|
|
493 |
for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
|
|
494 |
switch (_heap->state(_arcs[a].target)) {
|
|
495 |
case Heap::PRE_HEAP:
|
|
496 |
{
|
|
497 |
Value nv = _edges[a >> 1].capacity;
|
|
498 |
_heap->push(_arcs[a].target, nv);
|
|
499 |
_edges[a >> 1].cut = nv;
|
|
500 |
} break;
|
|
501 |
case Heap::IN_HEAP:
|
|
502 |
{
|
|
503 |
Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target];
|
|
504 |
_heap->decrease(_arcs[a].target, nv);
|
|
505 |
_edges[a >> 1].cut = nv;
|
|
506 |
} break;
|
|
507 |
case Heap::POST_HEAP:
|
|
508 |
break;
|
|
509 |
}
|
|
510 |
}
|
|
511 |
|
|
512 |
alpha += (*_nodes)[n].sum;
|
|
513 |
alpha -= 2 * v;
|
|
514 |
|
|
515 |
order.push_back(n);
|
|
516 |
if (!_heap->empty()) {
|
|
517 |
if (alpha < pmc) {
|
|
518 |
pmc = alpha;
|
|
519 |
sep = order.size();
|
|
520 |
}
|
|
521 |
}
|
|
522 |
}
|
|
523 |
|
|
524 |
if (static_cast<int>(order.size()) < _node_num) {
|
|
525 |
_first_node = INVALID;
|
|
526 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
|
|
527 |
(*_cut_map)[n] = false;
|
|
528 |
}
|
|
529 |
for (int i = 0; i < static_cast<int>(order.size()); ++i) {
|
|
530 |
typename Graph::Node n = order[i];
|
|
531 |
while (n != INVALID) {
|
|
532 |
(*_cut_map)[n] = true;
|
|
533 |
n = (*_next_rep)[n];
|
|
534 |
}
|
|
535 |
}
|
|
536 |
_min_cut = 0;
|
|
537 |
return true;
|
|
538 |
}
|
|
539 |
|
|
540 |
if (pmc < _min_cut) {
|
|
541 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
|
|
542 |
(*_cut_map)[n] = false;
|
|
543 |
}
|
|
544 |
for (int i = 0; i < sep; ++i) {
|
|
545 |
typename Graph::Node n = order[i];
|
|
546 |
while (n != INVALID) {
|
|
547 |
(*_cut_map)[n] = true;
|
|
548 |
n = (*_next_rep)[n];
|
|
549 |
}
|
|
550 |
}
|
|
551 |
_min_cut = pmc;
|
|
552 |
}
|
|
553 |
|
|
554 |
for (typename Graph::Node n = _first_node;
|
|
555 |
n != INVALID; n = (*_nodes)[n].next) {
|
|
556 |
bool merged = false;
|
|
557 |
for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
|
|
558 |
if (!(_edges[a >> 1].cut < pmc)) {
|
|
559 |
if (!merged) {
|
|
560 |
for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) {
|
|
561 |
(*_nodes)[_arcs[b].target].curr_arc = b;
|
|
562 |
}
|
|
563 |
merged = true;
|
|
564 |
}
|
|
565 |
typename Graph::Node m = _arcs[a].target;
|
|
566 |
int nb = 0;
|
|
567 |
for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) {
|
|
568 |
nb = _arcs[b].next;
|
|
569 |
if ((b ^ a) == 1) continue;
|
|
570 |
typename Graph::Node o = _arcs[b].target;
|
|
571 |
int c = (*_nodes)[o].curr_arc;
|
|
572 |
if (c != -1 && _arcs[c ^ 1].target == n) {
|
|
573 |
_edges[c >> 1].capacity += _edges[b >> 1].capacity;
|
|
574 |
(*_nodes)[n].sum += _edges[b >> 1].capacity;
|
|
575 |
if (_edges[b >> 1].cut < _edges[c >> 1].cut) {
|
|
576 |
_edges[b >> 1].cut = _edges[c >> 1].cut;
|
|
577 |
}
|
|
578 |
if (_arcs[b ^ 1].prev != -1) {
|
|
579 |
_arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next;
|
|
580 |
} else {
|
|
581 |
(*_nodes)[o].first_arc = _arcs[b ^ 1].next;
|
|
582 |
}
|
|
583 |
if (_arcs[b ^ 1].next != -1) {
|
|
584 |
_arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev;
|
|
585 |
}
|
|
586 |
} else {
|
|
587 |
if (_arcs[a].next != -1) {
|
|
588 |
_arcs[_arcs[a].next].prev = b;
|
|
589 |
}
|
|
590 |
_arcs[b].next = _arcs[a].next;
|
|
591 |
_arcs[b].prev = a;
|
|
592 |
_arcs[a].next = b;
|
|
593 |
_arcs[b ^ 1].target = n;
|
|
594 |
|
|
595 |
(*_nodes)[n].sum += _edges[b >> 1].capacity;
|
|
596 |
(*_nodes)[o].curr_arc = b;
|
|
597 |
}
|
|
598 |
}
|
|
599 |
|
|
600 |
if (_arcs[a].prev != -1) {
|
|
601 |
_arcs[_arcs[a].prev].next = _arcs[a].next;
|
|
602 |
} else {
|
|
603 |
(*_nodes)[n].first_arc = _arcs[a].next;
|
|
604 |
}
|
|
605 |
if (_arcs[a].next != -1) {
|
|
606 |
_arcs[_arcs[a].next].prev = _arcs[a].prev;
|
|
607 |
}
|
|
608 |
|
|
609 |
(*_nodes)[n].sum -= _edges[a >> 1].capacity;
|
|
610 |
(*_next_rep)[(*_nodes)[n].last_rep] = m;
|
|
611 |
(*_nodes)[n].last_rep = (*_nodes)[m].last_rep;
|
|
612 |
|
|
613 |
if ((*_nodes)[m].prev != INVALID) {
|
|
614 |
(*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next;
|
|
615 |
} else{
|
|
616 |
_first_node = (*_nodes)[m].next;
|
|
617 |
}
|
|
618 |
if ((*_nodes)[m].next != INVALID) {
|
|
619 |
(*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev;
|
|
620 |
}
|
|
621 |
--_node_num;
|
|
622 |
}
|
|
623 |
}
|
|
624 |
}
|
|
625 |
|
|
626 |
if (_node_num == 1) {
|
|
627 |
_first_node = INVALID;
|
|
628 |
return true;
|
|
629 |
}
|
|
630 |
|
|
631 |
return false;
|
|
632 |
}
|
|
633 |
|
|
634 |
/// \brief Executes the algorithm.
|
|
635 |
///
|
|
636 |
/// Executes the algorithm.
|
|
637 |
///
|
|
638 |
/// \pre init() must be called
|
|
639 |
void start() {
|
|
640 |
while (!processNextPhase()) {}
|
|
641 |
}
|
|
642 |
|
|
643 |
|
|
644 |
/// \brief Runs %NagamochiIbaraki algorithm.
|
|
645 |
///
|
|
646 |
/// This method runs the %Min cut algorithm
|
|
647 |
///
|
|
648 |
/// \note mc.run(s) is just a shortcut of the following code.
|
|
649 |
///\code
|
|
650 |
/// mc.init();
|
|
651 |
/// mc.start();
|
|
652 |
///\endcode
|
|
653 |
void run() {
|
|
654 |
init();
|
|
655 |
start();
|
|
656 |
}
|
|
657 |
|
|
658 |
///@}
|
|
659 |
|
|
660 |
/// \name Query Functions
|
|
661 |
///
|
|
662 |
/// The result of the %NagamochiIbaraki
|
|
663 |
/// algorithm can be obtained using these functions.\n
|
|
664 |
/// Before the use of these functions, either run() or start()
|
|
665 |
/// must be called.
|
|
666 |
|
|
667 |
///@{
|
|
668 |
|
|
669 |
/// \brief Returns the min cut value.
|
|
670 |
///
|
|
671 |
/// Returns the min cut value if the algorithm finished.
|
|
672 |
/// After the first processNextPhase() it is a value of a
|
|
673 |
/// valid cut in the graph.
|
|
674 |
Value minCutValue() const {
|
|
675 |
return _min_cut;
|
|
676 |
}
|
|
677 |
|
|
678 |
/// \brief Returns a min cut in a NodeMap.
|
|
679 |
///
|
|
680 |
/// It sets the nodes of one of the two partitions to true and
|
|
681 |
/// the other partition to false.
|
|
682 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with
|
|
683 |
/// \c bool (or convertible) value type.
|
|
684 |
template <typename CutMap>
|
|
685 |
Value minCutMap(CutMap& cutMap) const {
|
|
686 |
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
|
|
687 |
cutMap.set(n, (*_cut_map)[n]);
|
|
688 |
}
|
|
689 |
return minCutValue();
|
|
690 |
}
|
|
691 |
|
|
692 |
///@}
|
|
693 |
|
|
694 |
};
|
|
695 |
}
|
|
696 |
|
|
697 |
#endif
|