0
8
0
4
4
4
4
12
5
... | ... |
@@ -354,73 +354,73 @@ |
354 | 354 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
355 | 355 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
356 | 356 |
|
357 | 357 |
In general NetworkSimplex is the most efficient implementation, |
358 | 358 |
but in special cases other algorithms could be faster. |
359 | 359 |
For example, if the total supply and/or capacities are rather small, |
360 | 360 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
361 | 361 |
*/ |
362 | 362 |
|
363 | 363 |
/** |
364 | 364 |
@defgroup min_cut Minimum Cut Algorithms |
365 | 365 |
@ingroup algs |
366 | 366 |
|
367 | 367 |
\brief Algorithms for finding minimum cut in graphs. |
368 | 368 |
|
369 | 369 |
This group contains the algorithms for finding minimum cut in graphs. |
370 | 370 |
|
371 | 371 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
372 | 372 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
373 | 373 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
374 | 374 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
375 | 375 |
cut is the \f$X\f$ solution of the next optimization problem: |
376 | 376 |
|
377 | 377 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
378 |
\sum_{uv\in A |
|
378 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
379 | 379 |
|
380 | 380 |
LEMON contains several algorithms related to minimum cut problems: |
381 | 381 |
|
382 | 382 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
383 | 383 |
in directed graphs. |
384 | 384 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
385 | 385 |
calculating minimum cut in undirected graphs. |
386 | 386 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
387 | 387 |
all-pairs minimum cut in undirected graphs. |
388 | 388 |
|
389 | 389 |
If you want to find minimum cut just between two distinict nodes, |
390 | 390 |
see the \ref max_flow "maximum flow problem". |
391 | 391 |
*/ |
392 | 392 |
|
393 | 393 |
/** |
394 | 394 |
@defgroup graph_properties Connectivity and Other Graph Properties |
395 | 395 |
@ingroup algs |
396 | 396 |
\brief Algorithms for discovering the graph properties |
397 | 397 |
|
398 | 398 |
This group contains the algorithms for discovering the graph properties |
399 | 399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
400 | 400 |
|
401 |
\image html edge_biconnected_components.png |
|
402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
401 |
\image html connected_components.png |
|
402 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
403 | 403 |
*/ |
404 | 404 |
|
405 | 405 |
/** |
406 | 406 |
@defgroup planar Planarity Embedding and Drawing |
407 | 407 |
@ingroup algs |
408 | 408 |
\brief Algorithms for planarity checking, embedding and drawing |
409 | 409 |
|
410 | 410 |
This group contains the algorithms for planarity checking, |
411 | 411 |
embedding and drawing. |
412 | 412 |
|
413 | 413 |
\image html planar.png |
414 | 414 |
\image latex planar.eps "Plane graph" width=\textwidth |
415 | 415 |
*/ |
416 | 416 |
|
417 | 417 |
/** |
418 | 418 |
@defgroup matching Matching Algorithms |
419 | 419 |
@ingroup algs |
420 | 420 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
421 | 421 |
|
422 | 422 |
This group contains the algorithms for calculating |
423 | 423 |
matchings in graphs and bipartite graphs. The general matching problem is |
424 | 424 |
finding a subset of the edges for which each node has at most one incident |
425 | 425 |
edge. |
426 | 426 |
... | ... |
@@ -392,50 +392,50 @@ |
392 | 392 |
///Sets the map that stores the distances of the nodes. |
393 | 393 |
|
394 | 394 |
///Sets the map that stores the distances of the nodes calculated by |
395 | 395 |
///the algorithm. |
396 | 396 |
///If you don't use this function before calling \ref run(Node) "run()" |
397 | 397 |
///or \ref init(), an instance will be allocated automatically. |
398 | 398 |
///The destructor deallocates this automatically allocated map, |
399 | 399 |
///of course. |
400 | 400 |
///\return <tt> (*this) </tt> |
401 | 401 |
Bfs &distMap(DistMap &m) |
402 | 402 |
{ |
403 | 403 |
if(local_dist) { |
404 | 404 |
delete _dist; |
405 | 405 |
local_dist=false; |
406 | 406 |
} |
407 | 407 |
_dist = &m; |
408 | 408 |
return *this; |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
public: |
412 | 412 |
|
413 | 413 |
///\name Execution Control |
414 | 414 |
///The simplest way to execute the BFS algorithm is to use one of the |
415 | 415 |
///member functions called \ref run(Node) "run()".\n |
416 |
///If you need more control on the execution, first you have to call |
|
417 |
///\ref init(), then you can add several source nodes with |
|
416 |
///If you need better control on the execution, you have to call |
|
417 |
///\ref init() first, then you can add several source nodes with |
|
418 | 418 |
///\ref addSource(). Finally the actual path computation can be |
419 | 419 |
///performed with one of the \ref start() functions. |
420 | 420 |
|
421 | 421 |
///@{ |
422 | 422 |
|
423 | 423 |
///\brief Initializes the internal data structures. |
424 | 424 |
/// |
425 | 425 |
///Initializes the internal data structures. |
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_queue.resize(countNodes(*G)); |
430 | 430 |
_queue_head=_queue_tail=0; |
431 | 431 |
_curr_dist=1; |
432 | 432 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
433 | 433 |
_pred->set(u,INVALID); |
434 | 434 |
_reached->set(u,false); |
435 | 435 |
_processed->set(u,false); |
436 | 436 |
} |
437 | 437 |
} |
438 | 438 |
|
439 | 439 |
///Adds a new source node. |
440 | 440 |
|
441 | 441 |
///Adds a new source node to the set of nodes to be processed. |
... | ... |
@@ -1404,50 +1404,50 @@ |
1404 | 1404 |
} |
1405 | 1405 |
|
1406 | 1406 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1407 |
/// |
1408 | 1408 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1409 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1410 | 1410 |
/// or \ref init(), an instance will be allocated automatically. |
1411 | 1411 |
/// The destructor deallocates this automatically allocated map, |
1412 | 1412 |
/// of course. |
1413 | 1413 |
/// \return <tt> (*this) </tt> |
1414 | 1414 |
BfsVisit &reachedMap(ReachedMap &m) { |
1415 | 1415 |
if(local_reached) { |
1416 | 1416 |
delete _reached; |
1417 | 1417 |
local_reached = false; |
1418 | 1418 |
} |
1419 | 1419 |
_reached = &m; |
1420 | 1420 |
return *this; |
1421 | 1421 |
} |
1422 | 1422 |
|
1423 | 1423 |
public: |
1424 | 1424 |
|
1425 | 1425 |
/// \name Execution Control |
1426 | 1426 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1427 |
/// member functions called \ref run(Node) "run()".\n |
1428 |
/// If you need more control on the execution, first you have to call |
|
1429 |
/// \ref init(), then you can add several source nodes with |
|
1428 |
/// If you need better control on the execution, you have to call |
|
1429 |
/// \ref init() first, then you can add several source nodes with |
|
1430 | 1430 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1431 |
/// performed with one of the \ref start() functions. |
1432 | 1432 |
|
1433 | 1433 |
/// @{ |
1434 | 1434 |
|
1435 | 1435 |
/// \brief Initializes the internal data structures. |
1436 | 1436 |
/// |
1437 | 1437 |
/// Initializes the internal data structures. |
1438 | 1438 |
void init() { |
1439 | 1439 |
create_maps(); |
1440 | 1440 |
_list.resize(countNodes(*_digraph)); |
1441 | 1441 |
_list_front = _list_back = -1; |
1442 | 1442 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1443 | 1443 |
_reached->set(u, false); |
1444 | 1444 |
} |
1445 | 1445 |
} |
1446 | 1446 |
|
1447 | 1447 |
/// \brief Adds a new source node. |
1448 | 1448 |
/// |
1449 | 1449 |
/// Adds a new source node to the set of nodes to be processed. |
1450 | 1450 |
void addSource(Node s) { |
1451 | 1451 |
if(!(*_reached)[s]) { |
1452 | 1452 |
_reached->set(s,true); |
1453 | 1453 |
_visitor->start(s); |
... | ... |
@@ -51,66 +51,73 @@ |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 87 |
return new FlowMap(digraph); |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
99 | 106 |
/// \param max_level The maximum level of the elevator. |
100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 108 |
return new Elevator(digraph, max_level); |
102 | 109 |
} |
103 | 110 |
|
104 | 111 |
/// \brief The tolerance used by the algorithm |
105 | 112 |
/// |
106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 115 |
|
109 | 116 |
}; |
110 | 117 |
|
111 | 118 |
/** |
112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 120 |
|
114 | 121 |
\ingroup max_flow |
115 | 122 |
This class implements a push-relabel algorithm for the \e network |
116 | 123 |
\e circulation problem. |
... | ... |
@@ -446,50 +453,50 @@ |
446 | 453 |
/// |
447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
448 | 455 |
/// using this function. |
449 | 456 |
const Elevator& elevator() const { |
450 | 457 |
return *_level; |
451 | 458 |
} |
452 | 459 |
|
453 | 460 |
/// \brief Sets the tolerance used by algorithm. |
454 | 461 |
/// |
455 | 462 |
/// Sets the tolerance used by algorithm. |
456 | 463 |
Circulation& tolerance(const Tolerance& tolerance) const { |
457 | 464 |
_tol = tolerance; |
458 | 465 |
return *this; |
459 | 466 |
} |
460 | 467 |
|
461 | 468 |
/// \brief Returns a const reference to the tolerance. |
462 | 469 |
/// |
463 | 470 |
/// Returns a const reference to the tolerance. |
464 | 471 |
const Tolerance& tolerance() const { |
465 | 472 |
return tolerance; |
466 | 473 |
} |
467 | 474 |
|
468 | 475 |
/// \name Execution Control |
469 | 476 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
470 |
/// If you need more control on the initial solution or the execution, |
|
471 |
/// first you have to call one of the \ref init() functions, then |
|
477 |
/// If you need better control on the initial solution or the execution, |
|
478 |
/// you have to call one of the \ref init() functions first, then |
|
472 | 479 |
/// the \ref start() function. |
473 | 480 |
|
474 | 481 |
///@{ |
475 | 482 |
|
476 | 483 |
/// Initializes the internal data structures. |
477 | 484 |
|
478 | 485 |
/// Initializes the internal data structures and sets all flow values |
479 | 486 |
/// to the lower bound. |
480 | 487 |
void init() |
481 | 488 |
{ |
482 | 489 |
LEMON_DEBUG(checkBoundMaps(), |
483 | 490 |
"Upper bounds must be greater or equal to the lower bounds"); |
484 | 491 |
|
485 | 492 |
createStructures(); |
486 | 493 |
|
487 | 494 |
for(NodeIt n(_g);n!=INVALID;++n) { |
488 | 495 |
(*_excess)[n] = (*_supply)[n]; |
489 | 496 |
} |
490 | 497 |
|
491 | 498 |
for (ArcIt e(_g);e!=INVALID;++e) { |
492 | 499 |
_flow->set(e, (*_lo)[e]); |
493 | 500 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
494 | 501 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
495 | 502 |
} |
... | ... |
@@ -390,50 +390,50 @@ |
390 | 390 |
///Sets the map that stores the distances of the nodes. |
391 | 391 |
|
392 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 393 |
///the algorithm. |
394 | 394 |
///If you don't use this function before calling \ref run(Node) "run()" |
395 | 395 |
///or \ref init(), an instance will be allocated automatically. |
396 | 396 |
///The destructor deallocates this automatically allocated map, |
397 | 397 |
///of course. |
398 | 398 |
///\return <tt> (*this) </tt> |
399 | 399 |
Dfs &distMap(DistMap &m) |
400 | 400 |
{ |
401 | 401 |
if(local_dist) { |
402 | 402 |
delete _dist; |
403 | 403 |
local_dist=false; |
404 | 404 |
} |
405 | 405 |
_dist = &m; |
406 | 406 |
return *this; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
///\name Execution Control |
412 | 412 |
///The simplest way to execute the DFS algorithm is to use one of the |
413 | 413 |
///member functions called \ref run(Node) "run()".\n |
414 |
///If you need more control on the execution, first you have to call |
|
415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
414 |
///If you need better control on the execution, you have to call |
|
415 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
416 | 416 |
///and perform the actual computation with \ref start(). |
417 | 417 |
///This procedure can be repeated if there are nodes that have not |
418 | 418 |
///been reached. |
419 | 419 |
|
420 | 420 |
///@{ |
421 | 421 |
|
422 | 422 |
///\brief Initializes the internal data structures. |
423 | 423 |
/// |
424 | 424 |
///Initializes the internal data structures. |
425 | 425 |
void init() |
426 | 426 |
{ |
427 | 427 |
create_maps(); |
428 | 428 |
_stack.resize(countNodes(*G)); |
429 | 429 |
_stack_head=-1; |
430 | 430 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
431 | 431 |
_pred->set(u,INVALID); |
432 | 432 |
_reached->set(u,false); |
433 | 433 |
_processed->set(u,false); |
434 | 434 |
} |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
///Adds a new source node. |
438 | 438 |
|
439 | 439 |
///Adds a new source node to the set of nodes to be processed. |
... | ... |
@@ -1348,50 +1348,50 @@ |
1348 | 1348 |
} |
1349 | 1349 |
|
1350 | 1350 |
/// \brief Sets the map that indicates which nodes are reached. |
1351 | 1351 |
/// |
1352 | 1352 |
/// Sets the map that indicates which nodes are reached. |
1353 | 1353 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1354 | 1354 |
/// or \ref init(), an instance will be allocated automatically. |
1355 | 1355 |
/// The destructor deallocates this automatically allocated map, |
1356 | 1356 |
/// of course. |
1357 | 1357 |
/// \return <tt> (*this) </tt> |
1358 | 1358 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1359 |
if(local_reached) { |
1360 | 1360 |
delete _reached; |
1361 | 1361 |
local_reached=false; |
1362 | 1362 |
} |
1363 | 1363 |
_reached = &m; |
1364 | 1364 |
return *this; |
1365 | 1365 |
} |
1366 | 1366 |
|
1367 | 1367 |
public: |
1368 | 1368 |
|
1369 | 1369 |
/// \name Execution Control |
1370 | 1370 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1371 | 1371 |
/// member functions called \ref run(Node) "run()".\n |
1372 |
/// If you need more control on the execution, first you have to call |
|
1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1372 |
/// If you need better control on the execution, you have to call |
|
1373 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1374 | 1374 |
/// and perform the actual computation with \ref start(). |
1375 | 1375 |
/// This procedure can be repeated if there are nodes that have not |
1376 | 1376 |
/// been reached. |
1377 | 1377 |
|
1378 | 1378 |
/// @{ |
1379 | 1379 |
|
1380 | 1380 |
/// \brief Initializes the internal data structures. |
1381 | 1381 |
/// |
1382 | 1382 |
/// Initializes the internal data structures. |
1383 | 1383 |
void init() { |
1384 | 1384 |
create_maps(); |
1385 | 1385 |
_stack.resize(countNodes(*_digraph)); |
1386 | 1386 |
_stack_head = -1; |
1387 | 1387 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1388 | 1388 |
_reached->set(u, false); |
1389 | 1389 |
} |
1390 | 1390 |
} |
1391 | 1391 |
|
1392 | 1392 |
/// \brief Adds a new source node. |
1393 | 1393 |
/// |
1394 | 1394 |
/// Adds a new source node to the set of nodes to be processed. |
1395 | 1395 |
/// |
1396 | 1396 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1397 | 1397 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
... | ... |
@@ -563,50 +563,50 @@ |
563 | 563 |
local_heap_cross_ref=false; |
564 | 564 |
} |
565 | 565 |
_heap_cross_ref = &cr; |
566 | 566 |
if(local_heap) { |
567 | 567 |
delete _heap; |
568 | 568 |
local_heap=false; |
569 | 569 |
} |
570 | 570 |
_heap = &hp; |
571 | 571 |
return *this; |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
private: |
575 | 575 |
|
576 | 576 |
void finalizeNodeData(Node v,Value dst) |
577 | 577 |
{ |
578 | 578 |
_processed->set(v,true); |
579 | 579 |
_dist->set(v, dst); |
580 | 580 |
} |
581 | 581 |
|
582 | 582 |
public: |
583 | 583 |
|
584 | 584 |
///\name Execution Control |
585 | 585 |
///The simplest way to execute the %Dijkstra algorithm is to use |
586 | 586 |
///one of the member functions called \ref run(Node) "run()".\n |
587 |
///If you need more control on the execution, first you have to call |
|
588 |
///\ref init(), then you can add several source nodes with |
|
587 |
///If you need better control on the execution, you have to call |
|
588 |
///\ref init() first, then you can add several source nodes with |
|
589 | 589 |
///\ref addSource(). Finally the actual path computation can be |
590 | 590 |
///performed with one of the \ref start() functions. |
591 | 591 |
|
592 | 592 |
///@{ |
593 | 593 |
|
594 | 594 |
///\brief Initializes the internal data structures. |
595 | 595 |
/// |
596 | 596 |
///Initializes the internal data structures. |
597 | 597 |
void init() |
598 | 598 |
{ |
599 | 599 |
create_maps(); |
600 | 600 |
_heap->clear(); |
601 | 601 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
602 | 602 |
_pred->set(u,INVALID); |
603 | 603 |
_processed->set(u,false); |
604 | 604 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
605 | 605 |
} |
606 | 606 |
} |
607 | 607 |
|
608 | 608 |
///Adds a new source node. |
609 | 609 |
|
610 | 610 |
///Adds a new source node to the priority heap. |
611 | 611 |
///The optional second parameter is the initial distance of the node. |
612 | 612 |
/// |
... | ... |
@@ -338,52 +338,52 @@ |
338 | 338 |
nn = (*_pred)[nn]; |
339 | 339 |
} |
340 | 340 |
while (!st.empty()) { |
341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 342 |
st.pop_back(); |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 | 354 |
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 |
/// |
|
362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 |
/// for( |
|
365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
387 | 387 |
/// otherwise it lists the other component. |
388 | 388 |
/// \note As the minimum cut is not always unique, |
389 | 389 |
/// \code |
... | ... |
@@ -435,52 +435,52 @@ |
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
friend class MinCutEdgeIt; |
449 | 449 |
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 | 451 |
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 |
/// |
|
459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 |
/// for( |
|
462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
... | ... |
@@ -467,50 +467,50 @@ |
467 | 467 |
if (local_arborescence) { |
468 | 468 |
delete _arborescence; |
469 | 469 |
} |
470 | 470 |
local_arborescence = false; |
471 | 471 |
_arborescence = &m; |
472 | 472 |
return *this; |
473 | 473 |
} |
474 | 474 |
|
475 | 475 |
/// \brief Sets the predecessor map. |
476 | 476 |
/// |
477 | 477 |
/// Sets the predecessor map. |
478 | 478 |
/// \return <tt>(*this)</tt> |
479 | 479 |
MinCostArborescence& predMap(PredMap& m) { |
480 | 480 |
if (local_pred) { |
481 | 481 |
delete _pred; |
482 | 482 |
} |
483 | 483 |
local_pred = false; |
484 | 484 |
_pred = &m; |
485 | 485 |
return *this; |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
/// \name Execution Control |
489 | 489 |
/// The simplest way to execute the algorithm is to use |
490 | 490 |
/// one of the member functions called \c run(...). \n |
491 |
/// If you need more control on the execution, |
|
492 |
/// first you must call \ref init(), then you can add several |
|
491 |
/// If you need better control on the execution, |
|
492 |
/// you have to call \ref init() first, then you can add several |
|
493 | 493 |
/// source nodes with \ref addSource(). |
494 | 494 |
/// Finally \ref start() will perform the arborescence |
495 | 495 |
/// computation. |
496 | 496 |
|
497 | 497 |
///@{ |
498 | 498 |
|
499 | 499 |
/// \brief Initializes the internal data structures. |
500 | 500 |
/// |
501 | 501 |
/// Initializes the internal data structures. |
502 | 502 |
/// |
503 | 503 |
void init() { |
504 | 504 |
createStructures(); |
505 | 505 |
_heap->clear(); |
506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
508 | 508 |
(*_node_order)[it] = -3; |
509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
510 | 510 |
_pred->set(it, INVALID); |
511 | 511 |
} |
512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
513 | 513 |
_arborescence->set(it, false); |
514 | 514 |
(*_arc_order)[it] = -1; |
515 | 515 |
} |
516 | 516 |
_dual_node_list.clear(); |
... | ... |
@@ -31,66 +31,73 @@ |
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
#ifdef DOXYGEN |
|
56 |
typedef GR::ArcMap<Value> FlowMap; |
|
57 |
#else |
|
55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 |
#endif |
|
56 | 60 |
|
57 | 61 |
/// \brief Instantiates a FlowMap. |
58 | 62 |
/// |
59 | 63 |
/// This function instantiates a \ref FlowMap. |
60 | 64 |
/// \param digraph The digraph for which we would like to define |
61 | 65 |
/// the flow map. |
62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 67 |
return new FlowMap(digraph); |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 71 |
/// |
68 | 72 |
/// The elevator type used by Preflow algorithm. |
69 | 73 |
/// |
70 |
/// \sa Elevator |
|
71 |
/// \sa LinkedElevator |
|
72 |
|
|
74 |
/// \sa Elevator, LinkedElevator |
|
75 |
#ifdef DOXYGEN |
|
76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
77 |
#else |
|
78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
79 |
#endif |
|
73 | 80 |
|
74 | 81 |
/// \brief Instantiates an Elevator. |
75 | 82 |
/// |
76 | 83 |
/// This function instantiates an \ref Elevator. |
77 | 84 |
/// \param digraph The digraph for which we would like to define |
78 | 85 |
/// the elevator. |
79 | 86 |
/// \param max_level The maximum level of the elevator. |
80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 88 |
return new Elevator(digraph, max_level); |
82 | 89 |
} |
83 | 90 |
|
84 | 91 |
/// \brief The tolerance used by the algorithm |
85 | 92 |
/// |
86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
88 | 95 |
|
89 | 96 |
}; |
90 | 97 |
|
91 | 98 |
|
92 | 99 |
/// \ingroup max_flow |
93 | 100 |
/// |
94 | 101 |
/// \brief %Preflow algorithm class. |
95 | 102 |
/// |
96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
... | ... |
@@ -368,50 +375,50 @@ |
368 | 375 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 376 |
/// using this function. |
370 | 377 |
const Elevator& elevator() const { |
371 | 378 |
return *_level; |
372 | 379 |
} |
373 | 380 |
|
374 | 381 |
/// \brief Sets the tolerance used by algorithm. |
375 | 382 |
/// |
376 | 383 |
/// Sets the tolerance used by algorithm. |
377 | 384 |
Preflow& tolerance(const Tolerance& tolerance) const { |
378 | 385 |
_tolerance = tolerance; |
379 | 386 |
return *this; |
380 | 387 |
} |
381 | 388 |
|
382 | 389 |
/// \brief Returns a const reference to the tolerance. |
383 | 390 |
/// |
384 | 391 |
/// Returns a const reference to the tolerance. |
385 | 392 |
const Tolerance& tolerance() const { |
386 | 393 |
return tolerance; |
387 | 394 |
} |
388 | 395 |
|
389 | 396 |
/// \name Execution Control |
390 | 397 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 398 |
/// \ref run() or \ref runMinCut().\n |
392 |
/// If you need more control on the initial solution or the execution, |
|
393 |
/// first you have to call one of the \ref init() functions, then |
|
399 |
/// If you need better control on the initial solution or the execution, |
|
400 |
/// you have to call one of the \ref init() functions first, then |
|
394 | 401 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 402 |
|
396 | 403 |
///@{ |
397 | 404 |
|
398 | 405 |
/// \brief Initializes the internal data structures. |
399 | 406 |
/// |
400 | 407 |
/// Initializes the internal data structures and sets the initial |
401 | 408 |
/// flow to zero on each arc. |
402 | 409 |
void init() { |
403 | 410 |
createStructures(); |
404 | 411 |
|
405 | 412 |
_phase = true; |
406 | 413 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 414 |
(*_excess)[n] = 0; |
408 | 415 |
} |
409 | 416 |
|
410 | 417 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 418 |
_flow->set(e, 0); |
412 | 419 |
} |
413 | 420 |
|
414 | 421 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 422 |
|
416 | 423 |
_level->initStart(); |
417 | 424 |
_level->initAddItem(_target); |
0 comments (0 inline)