0
8
0
4
4
4
4
12
5
... | ... |
@@ -330,121 +330,121 @@ |
330 | 330 |
|
331 | 331 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
332 | 332 |
for finding feasible circulations, which is a somewhat different problem, |
333 | 333 |
but it is strongly related to maximum flow. |
334 | 334 |
For more information, see \ref Circulation. |
335 | 335 |
*/ |
336 | 336 |
|
337 | 337 |
/** |
338 | 338 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
339 | 339 |
@ingroup algs |
340 | 340 |
|
341 | 341 |
\brief Algorithms for finding minimum cost flows and circulations. |
342 | 342 |
|
343 | 343 |
This group contains the algorithms for finding minimum cost flows and |
344 | 344 |
circulations. For more information about this problem and its dual |
345 | 345 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
346 | 346 |
|
347 | 347 |
LEMON contains several algorithms for this problem. |
348 | 348 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
349 | 349 |
pivot strategies. |
350 | 350 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
351 | 351 |
cost scaling. |
352 | 352 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
353 | 353 |
capacity scaling. |
354 | 354 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
355 | 355 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
356 | 356 |
|
357 | 357 |
In general NetworkSimplex is the most efficient implementation, |
358 | 358 |
but in special cases other algorithms could be faster. |
359 | 359 |
For example, if the total supply and/or capacities are rather small, |
360 | 360 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
361 | 361 |
*/ |
362 | 362 |
|
363 | 363 |
/** |
364 | 364 |
@defgroup min_cut Minimum Cut Algorithms |
365 | 365 |
@ingroup algs |
366 | 366 |
|
367 | 367 |
\brief Algorithms for finding minimum cut in graphs. |
368 | 368 |
|
369 | 369 |
This group contains the algorithms for finding minimum cut in graphs. |
370 | 370 |
|
371 | 371 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
372 | 372 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
373 | 373 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
374 | 374 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
375 | 375 |
cut is the \f$X\f$ solution of the next optimization problem: |
376 | 376 |
|
377 | 377 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
378 |
\sum_{uv\in A |
|
378 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
379 | 379 |
|
380 | 380 |
LEMON contains several algorithms related to minimum cut problems: |
381 | 381 |
|
382 | 382 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
383 | 383 |
in directed graphs. |
384 | 384 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
385 | 385 |
calculating minimum cut in undirected graphs. |
386 | 386 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
387 | 387 |
all-pairs minimum cut in undirected graphs. |
388 | 388 |
|
389 | 389 |
If you want to find minimum cut just between two distinict nodes, |
390 | 390 |
see the \ref max_flow "maximum flow problem". |
391 | 391 |
*/ |
392 | 392 |
|
393 | 393 |
/** |
394 | 394 |
@defgroup graph_properties Connectivity and Other Graph Properties |
395 | 395 |
@ingroup algs |
396 | 396 |
\brief Algorithms for discovering the graph properties |
397 | 397 |
|
398 | 398 |
This group contains the algorithms for discovering the graph properties |
399 | 399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
400 | 400 |
|
401 |
\image html edge_biconnected_components.png |
|
402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
401 |
\image html connected_components.png |
|
402 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
403 | 403 |
*/ |
404 | 404 |
|
405 | 405 |
/** |
406 | 406 |
@defgroup planar Planarity Embedding and Drawing |
407 | 407 |
@ingroup algs |
408 | 408 |
\brief Algorithms for planarity checking, embedding and drawing |
409 | 409 |
|
410 | 410 |
This group contains the algorithms for planarity checking, |
411 | 411 |
embedding and drawing. |
412 | 412 |
|
413 | 413 |
\image html planar.png |
414 | 414 |
\image latex planar.eps "Plane graph" width=\textwidth |
415 | 415 |
*/ |
416 | 416 |
|
417 | 417 |
/** |
418 | 418 |
@defgroup matching Matching Algorithms |
419 | 419 |
@ingroup algs |
420 | 420 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
421 | 421 |
|
422 | 422 |
This group contains the algorithms for calculating |
423 | 423 |
matchings in graphs and bipartite graphs. The general matching problem is |
424 | 424 |
finding a subset of the edges for which each node has at most one incident |
425 | 425 |
edge. |
426 | 426 |
|
427 | 427 |
There are several different algorithms for calculate matchings in |
428 | 428 |
graphs. The matching problems in bipartite graphs are generally |
429 | 429 |
easier than in general graphs. The goal of the matching optimization |
430 | 430 |
can be finding maximum cardinality, maximum weight or minimum cost |
431 | 431 |
matching. The search can be constrained to find perfect or |
432 | 432 |
maximum cardinality matching. |
433 | 433 |
|
434 | 434 |
The matching algorithms implemented in LEMON: |
435 | 435 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
436 | 436 |
for calculating maximum cardinality matching in bipartite graphs. |
437 | 437 |
- \ref PrBipartiteMatching Push-relabel algorithm |
438 | 438 |
for calculating maximum cardinality matching in bipartite graphs. |
439 | 439 |
- \ref MaxWeightedBipartiteMatching |
440 | 440 |
Successive shortest path algorithm for calculating maximum weighted |
441 | 441 |
matching and maximum weighted bipartite matching in bipartite graphs. |
442 | 442 |
- \ref MinCostMaxBipartiteMatching |
443 | 443 |
Successive shortest path algorithm for calculating minimum cost maximum |
444 | 444 |
matching in bipartite graphs. |
445 | 445 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
446 | 446 |
maximum cardinality matching in general graphs. |
447 | 447 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
448 | 448 |
maximum weighted matching in general graphs. |
449 | 449 |
- \ref MaxWeightedPerfectMatching |
450 | 450 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
... | ... |
@@ -368,98 +368,98 @@ |
368 | 368 |
local_reached=false; |
369 | 369 |
} |
370 | 370 |
_reached = &m; |
371 | 371 |
return *this; |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Sets the map that indicates which nodes are processed. |
375 | 375 |
|
376 | 376 |
///Sets the map that indicates which nodes are processed. |
377 | 377 |
///If you don't use this function before calling \ref run(Node) "run()" |
378 | 378 |
///or \ref init(), an instance will be allocated automatically. |
379 | 379 |
///The destructor deallocates this automatically allocated map, |
380 | 380 |
///of course. |
381 | 381 |
///\return <tt> (*this) </tt> |
382 | 382 |
Bfs &processedMap(ProcessedMap &m) |
383 | 383 |
{ |
384 | 384 |
if(local_processed) { |
385 | 385 |
delete _processed; |
386 | 386 |
local_processed=false; |
387 | 387 |
} |
388 | 388 |
_processed = &m; |
389 | 389 |
return *this; |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
///Sets the map that stores the distances of the nodes. |
393 | 393 |
|
394 | 394 |
///Sets the map that stores the distances of the nodes calculated by |
395 | 395 |
///the algorithm. |
396 | 396 |
///If you don't use this function before calling \ref run(Node) "run()" |
397 | 397 |
///or \ref init(), an instance will be allocated automatically. |
398 | 398 |
///The destructor deallocates this automatically allocated map, |
399 | 399 |
///of course. |
400 | 400 |
///\return <tt> (*this) </tt> |
401 | 401 |
Bfs &distMap(DistMap &m) |
402 | 402 |
{ |
403 | 403 |
if(local_dist) { |
404 | 404 |
delete _dist; |
405 | 405 |
local_dist=false; |
406 | 406 |
} |
407 | 407 |
_dist = &m; |
408 | 408 |
return *this; |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
public: |
412 | 412 |
|
413 | 413 |
///\name Execution Control |
414 | 414 |
///The simplest way to execute the BFS algorithm is to use one of the |
415 | 415 |
///member functions called \ref run(Node) "run()".\n |
416 |
///If you need more control on the execution, first you have to call |
|
417 |
///\ref init(), then you can add several source nodes with |
|
416 |
///If you need better control on the execution, you have to call |
|
417 |
///\ref init() first, then you can add several source nodes with |
|
418 | 418 |
///\ref addSource(). Finally the actual path computation can be |
419 | 419 |
///performed with one of the \ref start() functions. |
420 | 420 |
|
421 | 421 |
///@{ |
422 | 422 |
|
423 | 423 |
///\brief Initializes the internal data structures. |
424 | 424 |
/// |
425 | 425 |
///Initializes the internal data structures. |
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_queue.resize(countNodes(*G)); |
430 | 430 |
_queue_head=_queue_tail=0; |
431 | 431 |
_curr_dist=1; |
432 | 432 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
433 | 433 |
_pred->set(u,INVALID); |
434 | 434 |
_reached->set(u,false); |
435 | 435 |
_processed->set(u,false); |
436 | 436 |
} |
437 | 437 |
} |
438 | 438 |
|
439 | 439 |
///Adds a new source node. |
440 | 440 |
|
441 | 441 |
///Adds a new source node to the set of nodes to be processed. |
442 | 442 |
/// |
443 | 443 |
void addSource(Node s) |
444 | 444 |
{ |
445 | 445 |
if(!(*_reached)[s]) |
446 | 446 |
{ |
447 | 447 |
_reached->set(s,true); |
448 | 448 |
_pred->set(s,INVALID); |
449 | 449 |
_dist->set(s,0); |
450 | 450 |
_queue[_queue_head++]=s; |
451 | 451 |
_queue_next_dist=_queue_head; |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
|
455 | 455 |
///Processes the next node. |
456 | 456 |
|
457 | 457 |
///Processes the next node. |
458 | 458 |
/// |
459 | 459 |
///\return The processed node. |
460 | 460 |
/// |
461 | 461 |
///\pre The queue must not be empty. |
462 | 462 |
Node processNextNode() |
463 | 463 |
{ |
464 | 464 |
if(_queue_tail==_queue_next_dist) { |
465 | 465 |
_curr_dist++; |
... | ... |
@@ -1380,98 +1380,98 @@ |
1380 | 1380 |
/// |
1381 | 1381 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1382 | 1382 |
template <class T> |
1383 | 1383 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1384 | 1384 |
SetReachedMapTraits<T> > { |
1385 | 1385 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1386 | 1386 |
}; |
1387 | 1387 |
///@} |
1388 | 1388 |
|
1389 | 1389 |
public: |
1390 | 1390 |
|
1391 | 1391 |
/// \brief Constructor. |
1392 | 1392 |
/// |
1393 | 1393 |
/// Constructor. |
1394 | 1394 |
/// |
1395 | 1395 |
/// \param digraph The digraph the algorithm runs on. |
1396 | 1396 |
/// \param visitor The visitor object of the algorithm. |
1397 | 1397 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1398 | 1398 |
: _digraph(&digraph), _visitor(&visitor), |
1399 | 1399 |
_reached(0), local_reached(false) {} |
1400 | 1400 |
|
1401 | 1401 |
/// \brief Destructor. |
1402 | 1402 |
~BfsVisit() { |
1403 | 1403 |
if(local_reached) delete _reached; |
1404 | 1404 |
} |
1405 | 1405 |
|
1406 | 1406 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1407 |
/// |
1408 | 1408 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1409 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1410 | 1410 |
/// or \ref init(), an instance will be allocated automatically. |
1411 | 1411 |
/// The destructor deallocates this automatically allocated map, |
1412 | 1412 |
/// of course. |
1413 | 1413 |
/// \return <tt> (*this) </tt> |
1414 | 1414 |
BfsVisit &reachedMap(ReachedMap &m) { |
1415 | 1415 |
if(local_reached) { |
1416 | 1416 |
delete _reached; |
1417 | 1417 |
local_reached = false; |
1418 | 1418 |
} |
1419 | 1419 |
_reached = &m; |
1420 | 1420 |
return *this; |
1421 | 1421 |
} |
1422 | 1422 |
|
1423 | 1423 |
public: |
1424 | 1424 |
|
1425 | 1425 |
/// \name Execution Control |
1426 | 1426 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1427 |
/// member functions called \ref run(Node) "run()".\n |
1428 |
/// If you need more control on the execution, first you have to call |
|
1429 |
/// \ref init(), then you can add several source nodes with |
|
1428 |
/// If you need better control on the execution, you have to call |
|
1429 |
/// \ref init() first, then you can add several source nodes with |
|
1430 | 1430 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1431 |
/// performed with one of the \ref start() functions. |
1432 | 1432 |
|
1433 | 1433 |
/// @{ |
1434 | 1434 |
|
1435 | 1435 |
/// \brief Initializes the internal data structures. |
1436 | 1436 |
/// |
1437 | 1437 |
/// Initializes the internal data structures. |
1438 | 1438 |
void init() { |
1439 | 1439 |
create_maps(); |
1440 | 1440 |
_list.resize(countNodes(*_digraph)); |
1441 | 1441 |
_list_front = _list_back = -1; |
1442 | 1442 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1443 | 1443 |
_reached->set(u, false); |
1444 | 1444 |
} |
1445 | 1445 |
} |
1446 | 1446 |
|
1447 | 1447 |
/// \brief Adds a new source node. |
1448 | 1448 |
/// |
1449 | 1449 |
/// Adds a new source node to the set of nodes to be processed. |
1450 | 1450 |
void addSource(Node s) { |
1451 | 1451 |
if(!(*_reached)[s]) { |
1452 | 1452 |
_reached->set(s,true); |
1453 | 1453 |
_visitor->start(s); |
1454 | 1454 |
_visitor->reach(s); |
1455 | 1455 |
_list[++_list_back] = s; |
1456 | 1456 |
} |
1457 | 1457 |
} |
1458 | 1458 |
|
1459 | 1459 |
/// \brief Processes the next node. |
1460 | 1460 |
/// |
1461 | 1461 |
/// Processes the next node. |
1462 | 1462 |
/// |
1463 | 1463 |
/// \return The processed node. |
1464 | 1464 |
/// |
1465 | 1465 |
/// \pre The queue must not be empty. |
1466 | 1466 |
Node processNextNode() { |
1467 | 1467 |
Node n = _list[++_list_front]; |
1468 | 1468 |
_visitor->process(n); |
1469 | 1469 |
Arc e; |
1470 | 1470 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1471 | 1471 |
Node m = _digraph->target(e); |
1472 | 1472 |
if (!(*_reached)[m]) { |
1473 | 1473 |
_visitor->discover(e); |
1474 | 1474 |
_visitor->reach(m); |
1475 | 1475 |
_reached->set(m, true); |
1476 | 1476 |
_list[++_list_back] = m; |
1477 | 1477 |
} else { |
... | ... |
@@ -27,114 +27,121 @@ |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 87 |
return new FlowMap(digraph); |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
99 | 106 |
/// \param max_level The maximum level of the elevator. |
100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 108 |
return new Elevator(digraph, max_level); |
102 | 109 |
} |
103 | 110 |
|
104 | 111 |
/// \brief The tolerance used by the algorithm |
105 | 112 |
/// |
106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 115 |
|
109 | 116 |
}; |
110 | 117 |
|
111 | 118 |
/** |
112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 120 |
|
114 | 121 |
\ingroup max_flow |
115 | 122 |
This class implements a push-relabel algorithm for the \e network |
116 | 123 |
\e circulation problem. |
117 | 124 |
It is to find a feasible circulation when lower and upper bounds |
118 | 125 |
are given for the flow values on the arcs and lower bounds are |
119 | 126 |
given for the difference between the outgoing and incoming flow |
120 | 127 |
at the nodes. |
121 | 128 |
|
122 | 129 |
The exact formulation of this problem is the following. |
123 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
124 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
125 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
126 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
127 | 134 |
denotes the signed supply values of the nodes. |
128 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
129 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
130 | 137 |
\f$-sup(u)\f$ demand. |
131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
132 | 139 |
solution of the following problem. |
133 | 140 |
|
134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
137 | 144 |
|
138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
... | ... |
@@ -422,98 +429,98 @@ |
422 | 429 |
_flow = ↦ |
423 | 430 |
return *this; |
424 | 431 |
} |
425 | 432 |
|
426 | 433 |
/// \brief Sets the elevator used by algorithm. |
427 | 434 |
/// |
428 | 435 |
/// Sets the elevator used by algorithm. |
429 | 436 |
/// If you don't use this function before calling \ref run() or |
430 | 437 |
/// \ref init(), an instance will be allocated automatically. |
431 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
432 | 439 |
/// of course. |
433 | 440 |
/// \return <tt>(*this)</tt> |
434 | 441 |
Circulation& elevator(Elevator& elevator) { |
435 | 442 |
if (_local_level) { |
436 | 443 |
delete _level; |
437 | 444 |
_local_level = false; |
438 | 445 |
} |
439 | 446 |
_level = &elevator; |
440 | 447 |
return *this; |
441 | 448 |
} |
442 | 449 |
|
443 | 450 |
/// \brief Returns a const reference to the elevator. |
444 | 451 |
/// |
445 | 452 |
/// Returns a const reference to the elevator. |
446 | 453 |
/// |
447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
448 | 455 |
/// using this function. |
449 | 456 |
const Elevator& elevator() const { |
450 | 457 |
return *_level; |
451 | 458 |
} |
452 | 459 |
|
453 | 460 |
/// \brief Sets the tolerance used by algorithm. |
454 | 461 |
/// |
455 | 462 |
/// Sets the tolerance used by algorithm. |
456 | 463 |
Circulation& tolerance(const Tolerance& tolerance) const { |
457 | 464 |
_tol = tolerance; |
458 | 465 |
return *this; |
459 | 466 |
} |
460 | 467 |
|
461 | 468 |
/// \brief Returns a const reference to the tolerance. |
462 | 469 |
/// |
463 | 470 |
/// Returns a const reference to the tolerance. |
464 | 471 |
const Tolerance& tolerance() const { |
465 | 472 |
return tolerance; |
466 | 473 |
} |
467 | 474 |
|
468 | 475 |
/// \name Execution Control |
469 | 476 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
470 |
/// If you need more control on the initial solution or the execution, |
|
471 |
/// first you have to call one of the \ref init() functions, then |
|
477 |
/// If you need better control on the initial solution or the execution, |
|
478 |
/// you have to call one of the \ref init() functions first, then |
|
472 | 479 |
/// the \ref start() function. |
473 | 480 |
|
474 | 481 |
///@{ |
475 | 482 |
|
476 | 483 |
/// Initializes the internal data structures. |
477 | 484 |
|
478 | 485 |
/// Initializes the internal data structures and sets all flow values |
479 | 486 |
/// to the lower bound. |
480 | 487 |
void init() |
481 | 488 |
{ |
482 | 489 |
LEMON_DEBUG(checkBoundMaps(), |
483 | 490 |
"Upper bounds must be greater or equal to the lower bounds"); |
484 | 491 |
|
485 | 492 |
createStructures(); |
486 | 493 |
|
487 | 494 |
for(NodeIt n(_g);n!=INVALID;++n) { |
488 | 495 |
(*_excess)[n] = (*_supply)[n]; |
489 | 496 |
} |
490 | 497 |
|
491 | 498 |
for (ArcIt e(_g);e!=INVALID;++e) { |
492 | 499 |
_flow->set(e, (*_lo)[e]); |
493 | 500 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
494 | 501 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
495 | 502 |
} |
496 | 503 |
|
497 | 504 |
// global relabeling tested, but in general case it provides |
498 | 505 |
// worse performance for random digraphs |
499 | 506 |
_level->initStart(); |
500 | 507 |
for(NodeIt n(_g);n!=INVALID;++n) |
501 | 508 |
_level->initAddItem(n); |
502 | 509 |
_level->initFinish(); |
503 | 510 |
for(NodeIt n(_g);n!=INVALID;++n) |
504 | 511 |
if(_tol.positive((*_excess)[n])) |
505 | 512 |
_level->activate(n); |
506 | 513 |
} |
507 | 514 |
|
508 | 515 |
/// Initializes the internal data structures using a greedy approach. |
509 | 516 |
|
510 | 517 |
/// Initializes the internal data structures using a greedy approach |
511 | 518 |
/// to construct the initial solution. |
512 | 519 |
void greedyInit() |
513 | 520 |
{ |
514 | 521 |
LEMON_DEBUG(checkBoundMaps(), |
515 | 522 |
"Upper bounds must be greater or equal to the lower bounds"); |
516 | 523 |
|
517 | 524 |
createStructures(); |
518 | 525 |
|
519 | 526 |
for(NodeIt n(_g);n!=INVALID;++n) { |
... | ... |
@@ -366,98 +366,98 @@ |
366 | 366 |
local_reached=false; |
367 | 367 |
} |
368 | 368 |
_reached = &m; |
369 | 369 |
return *this; |
370 | 370 |
} |
371 | 371 |
|
372 | 372 |
///Sets the map that indicates which nodes are processed. |
373 | 373 |
|
374 | 374 |
///Sets the map that indicates which nodes are processed. |
375 | 375 |
///If you don't use this function before calling \ref run(Node) "run()" |
376 | 376 |
///or \ref init(), an instance will be allocated automatically. |
377 | 377 |
///The destructor deallocates this automatically allocated map, |
378 | 378 |
///of course. |
379 | 379 |
///\return <tt> (*this) </tt> |
380 | 380 |
Dfs &processedMap(ProcessedMap &m) |
381 | 381 |
{ |
382 | 382 |
if(local_processed) { |
383 | 383 |
delete _processed; |
384 | 384 |
local_processed=false; |
385 | 385 |
} |
386 | 386 |
_processed = &m; |
387 | 387 |
return *this; |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
///Sets the map that stores the distances of the nodes. |
391 | 391 |
|
392 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 393 |
///the algorithm. |
394 | 394 |
///If you don't use this function before calling \ref run(Node) "run()" |
395 | 395 |
///or \ref init(), an instance will be allocated automatically. |
396 | 396 |
///The destructor deallocates this automatically allocated map, |
397 | 397 |
///of course. |
398 | 398 |
///\return <tt> (*this) </tt> |
399 | 399 |
Dfs &distMap(DistMap &m) |
400 | 400 |
{ |
401 | 401 |
if(local_dist) { |
402 | 402 |
delete _dist; |
403 | 403 |
local_dist=false; |
404 | 404 |
} |
405 | 405 |
_dist = &m; |
406 | 406 |
return *this; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
///\name Execution Control |
412 | 412 |
///The simplest way to execute the DFS algorithm is to use one of the |
413 | 413 |
///member functions called \ref run(Node) "run()".\n |
414 |
///If you need more control on the execution, first you have to call |
|
415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
414 |
///If you need better control on the execution, you have to call |
|
415 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
416 | 416 |
///and perform the actual computation with \ref start(). |
417 | 417 |
///This procedure can be repeated if there are nodes that have not |
418 | 418 |
///been reached. |
419 | 419 |
|
420 | 420 |
///@{ |
421 | 421 |
|
422 | 422 |
///\brief Initializes the internal data structures. |
423 | 423 |
/// |
424 | 424 |
///Initializes the internal data structures. |
425 | 425 |
void init() |
426 | 426 |
{ |
427 | 427 |
create_maps(); |
428 | 428 |
_stack.resize(countNodes(*G)); |
429 | 429 |
_stack_head=-1; |
430 | 430 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
431 | 431 |
_pred->set(u,INVALID); |
432 | 432 |
_reached->set(u,false); |
433 | 433 |
_processed->set(u,false); |
434 | 434 |
} |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
///Adds a new source node. |
438 | 438 |
|
439 | 439 |
///Adds a new source node to the set of nodes to be processed. |
440 | 440 |
/// |
441 | 441 |
///\pre The stack must be empty. Otherwise the algorithm gives |
442 | 442 |
///wrong results. (One of the outgoing arcs of all the source nodes |
443 | 443 |
///except for the last one will not be visited and distances will |
444 | 444 |
///also be wrong.) |
445 | 445 |
void addSource(Node s) |
446 | 446 |
{ |
447 | 447 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
448 | 448 |
if(!(*_reached)[s]) |
449 | 449 |
{ |
450 | 450 |
_reached->set(s,true); |
451 | 451 |
_pred->set(s,INVALID); |
452 | 452 |
OutArcIt e(*G,s); |
453 | 453 |
if(e!=INVALID) { |
454 | 454 |
_stack[++_stack_head]=e; |
455 | 455 |
_dist->set(s,_stack_head); |
456 | 456 |
} |
457 | 457 |
else { |
458 | 458 |
_processed->set(s,true); |
459 | 459 |
_dist->set(s,0); |
460 | 460 |
} |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
|
... | ... |
@@ -1324,98 +1324,98 @@ |
1324 | 1324 |
/// |
1325 | 1325 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1326 | 1326 |
template <class T> |
1327 | 1327 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1328 | 1328 |
SetReachedMapTraits<T> > { |
1329 | 1329 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1330 | 1330 |
}; |
1331 | 1331 |
///@} |
1332 | 1332 |
|
1333 | 1333 |
public: |
1334 | 1334 |
|
1335 | 1335 |
/// \brief Constructor. |
1336 | 1336 |
/// |
1337 | 1337 |
/// Constructor. |
1338 | 1338 |
/// |
1339 | 1339 |
/// \param digraph The digraph the algorithm runs on. |
1340 | 1340 |
/// \param visitor The visitor object of the algorithm. |
1341 | 1341 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1342 | 1342 |
: _digraph(&digraph), _visitor(&visitor), |
1343 | 1343 |
_reached(0), local_reached(false) {} |
1344 | 1344 |
|
1345 | 1345 |
/// \brief Destructor. |
1346 | 1346 |
~DfsVisit() { |
1347 | 1347 |
if(local_reached) delete _reached; |
1348 | 1348 |
} |
1349 | 1349 |
|
1350 | 1350 |
/// \brief Sets the map that indicates which nodes are reached. |
1351 | 1351 |
/// |
1352 | 1352 |
/// Sets the map that indicates which nodes are reached. |
1353 | 1353 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1354 | 1354 |
/// or \ref init(), an instance will be allocated automatically. |
1355 | 1355 |
/// The destructor deallocates this automatically allocated map, |
1356 | 1356 |
/// of course. |
1357 | 1357 |
/// \return <tt> (*this) </tt> |
1358 | 1358 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1359 |
if(local_reached) { |
1360 | 1360 |
delete _reached; |
1361 | 1361 |
local_reached=false; |
1362 | 1362 |
} |
1363 | 1363 |
_reached = &m; |
1364 | 1364 |
return *this; |
1365 | 1365 |
} |
1366 | 1366 |
|
1367 | 1367 |
public: |
1368 | 1368 |
|
1369 | 1369 |
/// \name Execution Control |
1370 | 1370 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1371 | 1371 |
/// member functions called \ref run(Node) "run()".\n |
1372 |
/// If you need more control on the execution, first you have to call |
|
1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1372 |
/// If you need better control on the execution, you have to call |
|
1373 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1374 | 1374 |
/// and perform the actual computation with \ref start(). |
1375 | 1375 |
/// This procedure can be repeated if there are nodes that have not |
1376 | 1376 |
/// been reached. |
1377 | 1377 |
|
1378 | 1378 |
/// @{ |
1379 | 1379 |
|
1380 | 1380 |
/// \brief Initializes the internal data structures. |
1381 | 1381 |
/// |
1382 | 1382 |
/// Initializes the internal data structures. |
1383 | 1383 |
void init() { |
1384 | 1384 |
create_maps(); |
1385 | 1385 |
_stack.resize(countNodes(*_digraph)); |
1386 | 1386 |
_stack_head = -1; |
1387 | 1387 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1388 | 1388 |
_reached->set(u, false); |
1389 | 1389 |
} |
1390 | 1390 |
} |
1391 | 1391 |
|
1392 | 1392 |
/// \brief Adds a new source node. |
1393 | 1393 |
/// |
1394 | 1394 |
/// Adds a new source node to the set of nodes to be processed. |
1395 | 1395 |
/// |
1396 | 1396 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1397 | 1397 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
1398 | 1398 |
/// except for the last one will not be visited and distances will |
1399 | 1399 |
/// also be wrong.) |
1400 | 1400 |
void addSource(Node s) |
1401 | 1401 |
{ |
1402 | 1402 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1403 | 1403 |
if(!(*_reached)[s]) { |
1404 | 1404 |
_reached->set(s,true); |
1405 | 1405 |
_visitor->start(s); |
1406 | 1406 |
_visitor->reach(s); |
1407 | 1407 |
Arc e; |
1408 | 1408 |
_digraph->firstOut(e, s); |
1409 | 1409 |
if (e != INVALID) { |
1410 | 1410 |
_stack[++_stack_head] = e; |
1411 | 1411 |
} else { |
1412 | 1412 |
_visitor->leave(s); |
1413 | 1413 |
_visitor->stop(s); |
1414 | 1414 |
} |
1415 | 1415 |
} |
1416 | 1416 |
} |
1417 | 1417 |
|
1418 | 1418 |
/// \brief Processes the next arc. |
1419 | 1419 |
/// |
1420 | 1420 |
/// Processes the next arc. |
1421 | 1421 |
/// |
... | ... |
@@ -539,98 +539,98 @@ |
539 | 539 |
///\return <tt> (*this) </tt> |
540 | 540 |
Dijkstra &distMap(DistMap &m) |
541 | 541 |
{ |
542 | 542 |
if(local_dist) { |
543 | 543 |
delete _dist; |
544 | 544 |
local_dist=false; |
545 | 545 |
} |
546 | 546 |
_dist = &m; |
547 | 547 |
return *this; |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
///Sets the heap and the cross reference used by algorithm. |
551 | 551 |
|
552 | 552 |
///Sets the heap and the cross reference used by algorithm. |
553 | 553 |
///If you don't use this function before calling \ref run(Node) "run()" |
554 | 554 |
///or \ref init(), heap and cross reference instances will be |
555 | 555 |
///allocated automatically. |
556 | 556 |
///The destructor deallocates these automatically allocated objects, |
557 | 557 |
///of course. |
558 | 558 |
///\return <tt> (*this) </tt> |
559 | 559 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
560 | 560 |
{ |
561 | 561 |
if(local_heap_cross_ref) { |
562 | 562 |
delete _heap_cross_ref; |
563 | 563 |
local_heap_cross_ref=false; |
564 | 564 |
} |
565 | 565 |
_heap_cross_ref = &cr; |
566 | 566 |
if(local_heap) { |
567 | 567 |
delete _heap; |
568 | 568 |
local_heap=false; |
569 | 569 |
} |
570 | 570 |
_heap = &hp; |
571 | 571 |
return *this; |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
private: |
575 | 575 |
|
576 | 576 |
void finalizeNodeData(Node v,Value dst) |
577 | 577 |
{ |
578 | 578 |
_processed->set(v,true); |
579 | 579 |
_dist->set(v, dst); |
580 | 580 |
} |
581 | 581 |
|
582 | 582 |
public: |
583 | 583 |
|
584 | 584 |
///\name Execution Control |
585 | 585 |
///The simplest way to execute the %Dijkstra algorithm is to use |
586 | 586 |
///one of the member functions called \ref run(Node) "run()".\n |
587 |
///If you need more control on the execution, first you have to call |
|
588 |
///\ref init(), then you can add several source nodes with |
|
587 |
///If you need better control on the execution, you have to call |
|
588 |
///\ref init() first, then you can add several source nodes with |
|
589 | 589 |
///\ref addSource(). Finally the actual path computation can be |
590 | 590 |
///performed with one of the \ref start() functions. |
591 | 591 |
|
592 | 592 |
///@{ |
593 | 593 |
|
594 | 594 |
///\brief Initializes the internal data structures. |
595 | 595 |
/// |
596 | 596 |
///Initializes the internal data structures. |
597 | 597 |
void init() |
598 | 598 |
{ |
599 | 599 |
create_maps(); |
600 | 600 |
_heap->clear(); |
601 | 601 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
602 | 602 |
_pred->set(u,INVALID); |
603 | 603 |
_processed->set(u,false); |
604 | 604 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
605 | 605 |
} |
606 | 606 |
} |
607 | 607 |
|
608 | 608 |
///Adds a new source node. |
609 | 609 |
|
610 | 610 |
///Adds a new source node to the priority heap. |
611 | 611 |
///The optional second parameter is the initial distance of the node. |
612 | 612 |
/// |
613 | 613 |
///The function checks if the node has already been added to the heap and |
614 | 614 |
///it is pushed to the heap only if either it was not in the heap |
615 | 615 |
///or the shortest path found till then is shorter than \c dst. |
616 | 616 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
617 | 617 |
{ |
618 | 618 |
if(_heap->state(s) != Heap::IN_HEAP) { |
619 | 619 |
_heap->push(s,dst); |
620 | 620 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
621 | 621 |
_heap->set(s,dst); |
622 | 622 |
_pred->set(s,INVALID); |
623 | 623 |
} |
624 | 624 |
} |
625 | 625 |
|
626 | 626 |
///Processes the next node in the priority heap |
627 | 627 |
|
628 | 628 |
///Processes the next node in the priority heap. |
629 | 629 |
/// |
630 | 630 |
///\return The processed node. |
631 | 631 |
/// |
632 | 632 |
///\warning The priority heap must not be empty. |
633 | 633 |
Node processNextNode() |
634 | 634 |
{ |
635 | 635 |
Node v=_heap->top(); |
636 | 636 |
Value oldvalue=_heap->prio(); |
... | ... |
@@ -314,197 +314,197 @@ |
314 | 314 |
} |
315 | 315 |
tn = (*_pred)[tn]; |
316 | 316 |
} else { |
317 | 317 |
if ((*_weight)[sn] <= value) { |
318 | 318 |
rn = sn; |
319 | 319 |
s_root = true; |
320 | 320 |
value = (*_weight)[sn]; |
321 | 321 |
} |
322 | 322 |
sn = (*_pred)[sn]; |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
327 | 327 |
reached[_root] = true; |
328 | 328 |
cutMap.set(_root, !s_root); |
329 | 329 |
reached[rn] = true; |
330 | 330 |
cutMap.set(rn, s_root); |
331 | 331 |
|
332 | 332 |
std::vector<Node> st; |
333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
334 | 334 |
st.clear(); |
335 | 335 |
Node nn = n; |
336 | 336 |
while (!reached[nn]) { |
337 | 337 |
st.push_back(nn); |
338 | 338 |
nn = (*_pred)[nn]; |
339 | 339 |
} |
340 | 340 |
while (!st.empty()) { |
341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 342 |
st.pop_back(); |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 | 354 |
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 |
/// |
|
362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 |
/// for( |
|
365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
387 | 387 |
/// otherwise it lists the other component. |
388 | 388 |
/// \note As the minimum cut is not always unique, |
389 | 389 |
/// \code |
390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 391 |
/// \endcode |
392 | 392 |
/// and |
393 | 393 |
/// \code |
394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 395 |
/// \endcode |
396 | 396 |
/// does not necessarily give the same set of nodes. |
397 | 397 |
/// However it is ensured that |
398 | 398 |
/// \code |
399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 400 |
/// \endcode |
401 | 401 |
/// and |
402 | 402 |
/// \code |
403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 404 |
/// \endcode |
405 | 405 |
/// together list each node exactly once. |
406 | 406 |
) |
407 | 407 |
: _side(side), _cut(gomory._graph) |
408 | 408 |
{ |
409 | 409 |
gomory.minCutMap(s,t,_cut); |
410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
412 | 412 |
++_node_it) {} |
413 | 413 |
} |
414 | 414 |
/// Conversion to \c Node |
415 | 415 |
|
416 | 416 |
/// Conversion to \c Node. |
417 | 417 |
/// |
418 | 418 |
operator typename Graph::Node() const |
419 | 419 |
{ |
420 | 420 |
return _node_it; |
421 | 421 |
} |
422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; } |
423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
424 | 424 |
/// Next node |
425 | 425 |
|
426 | 426 |
/// Next node. |
427 | 427 |
/// |
428 | 428 |
MinCutNodeIt &operator++() |
429 | 429 |
{ |
430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
/// Postfix incrementation |
434 | 434 |
|
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
friend class MinCutEdgeIt; |
449 | 449 |
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 | 451 |
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 |
/// |
|
459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 |
/// for( |
|
462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
487 | 487 |
|
488 | 488 |
/// Constructor. |
489 | 489 |
/// |
490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
491 | 491 |
///< The GomoryHu class. You must call its |
492 | 492 |
/// run() method |
493 | 493 |
/// before initializing this iterator. |
494 | 494 |
const Node& s, ///< The base node. |
495 | 495 |
const Node& t, |
496 | 496 |
///< The node you want to separate from node \c s. |
497 | 497 |
bool side=true |
498 | 498 |
///< If it is \c true (default) then the listed arcs |
499 | 499 |
/// will be oriented from the |
500 | 500 |
/// nodes of the component containing \c s, |
501 | 501 |
/// otherwise they will be oriented in the opposite |
502 | 502 |
/// direction. |
503 | 503 |
) |
504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
505 | 505 |
{ |
506 | 506 |
gomory.minCutMap(s,t,_cut); |
507 | 507 |
if(!side) |
508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
509 | 509 |
_cut[n]=!_cut[n]; |
510 | 510 |
... | ... |
@@ -443,98 +443,98 @@ |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// @} |
446 | 446 |
|
447 | 447 |
/// \brief Constructor. |
448 | 448 |
/// |
449 | 449 |
/// \param digraph The digraph the algorithm will run on. |
450 | 450 |
/// \param cost The cost map used by the algorithm. |
451 | 451 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
452 | 452 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
453 | 453 |
_arborescence(0), local_arborescence(false), |
454 | 454 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
455 | 455 |
_heap_cross_ref(0), _heap(0) {} |
456 | 456 |
|
457 | 457 |
/// \brief Destructor. |
458 | 458 |
~MinCostArborescence() { |
459 | 459 |
destroyStructures(); |
460 | 460 |
} |
461 | 461 |
|
462 | 462 |
/// \brief Sets the arborescence map. |
463 | 463 |
/// |
464 | 464 |
/// Sets the arborescence map. |
465 | 465 |
/// \return <tt>(*this)</tt> |
466 | 466 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) { |
467 | 467 |
if (local_arborescence) { |
468 | 468 |
delete _arborescence; |
469 | 469 |
} |
470 | 470 |
local_arborescence = false; |
471 | 471 |
_arborescence = &m; |
472 | 472 |
return *this; |
473 | 473 |
} |
474 | 474 |
|
475 | 475 |
/// \brief Sets the predecessor map. |
476 | 476 |
/// |
477 | 477 |
/// Sets the predecessor map. |
478 | 478 |
/// \return <tt>(*this)</tt> |
479 | 479 |
MinCostArborescence& predMap(PredMap& m) { |
480 | 480 |
if (local_pred) { |
481 | 481 |
delete _pred; |
482 | 482 |
} |
483 | 483 |
local_pred = false; |
484 | 484 |
_pred = &m; |
485 | 485 |
return *this; |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
/// \name Execution Control |
489 | 489 |
/// The simplest way to execute the algorithm is to use |
490 | 490 |
/// one of the member functions called \c run(...). \n |
491 |
/// If you need more control on the execution, |
|
492 |
/// first you must call \ref init(), then you can add several |
|
491 |
/// If you need better control on the execution, |
|
492 |
/// you have to call \ref init() first, then you can add several |
|
493 | 493 |
/// source nodes with \ref addSource(). |
494 | 494 |
/// Finally \ref start() will perform the arborescence |
495 | 495 |
/// computation. |
496 | 496 |
|
497 | 497 |
///@{ |
498 | 498 |
|
499 | 499 |
/// \brief Initializes the internal data structures. |
500 | 500 |
/// |
501 | 501 |
/// Initializes the internal data structures. |
502 | 502 |
/// |
503 | 503 |
void init() { |
504 | 504 |
createStructures(); |
505 | 505 |
_heap->clear(); |
506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
508 | 508 |
(*_node_order)[it] = -3; |
509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
510 | 510 |
_pred->set(it, INVALID); |
511 | 511 |
} |
512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
513 | 513 |
_arborescence->set(it, false); |
514 | 514 |
(*_arc_order)[it] = -1; |
515 | 515 |
} |
516 | 516 |
_dual_node_list.clear(); |
517 | 517 |
_dual_variables.clear(); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
/// \brief Adds a new source node. |
521 | 521 |
/// |
522 | 522 |
/// Adds a new source node to the algorithm. |
523 | 523 |
void addSource(Node source) { |
524 | 524 |
std::vector<Node> nodes; |
525 | 525 |
nodes.push_back(source); |
526 | 526 |
while (!nodes.empty()) { |
527 | 527 |
Node node = nodes.back(); |
528 | 528 |
nodes.pop_back(); |
529 | 529 |
for (OutArcIt it(*_digraph, node); it != INVALID; ++it) { |
530 | 530 |
Node target = _digraph->target(it); |
531 | 531 |
if ((*_node_order)[target] == -3) { |
532 | 532 |
(*_node_order)[target] = -2; |
533 | 533 |
nodes.push_back(target); |
534 | 534 |
queue.push_back(target); |
535 | 535 |
} |
536 | 536 |
} |
537 | 537 |
} |
538 | 538 |
(*_node_order)[source] = -1; |
539 | 539 |
} |
540 | 540 |
... | ... |
@@ -7,114 +7,121 @@ |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
#ifdef DOXYGEN |
|
56 |
typedef GR::ArcMap<Value> FlowMap; |
|
57 |
#else |
|
55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 |
#endif |
|
56 | 60 |
|
57 | 61 |
/// \brief Instantiates a FlowMap. |
58 | 62 |
/// |
59 | 63 |
/// This function instantiates a \ref FlowMap. |
60 | 64 |
/// \param digraph The digraph for which we would like to define |
61 | 65 |
/// the flow map. |
62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 67 |
return new FlowMap(digraph); |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 71 |
/// |
68 | 72 |
/// The elevator type used by Preflow algorithm. |
69 | 73 |
/// |
70 |
/// \sa Elevator |
|
71 |
/// \sa LinkedElevator |
|
72 |
|
|
74 |
/// \sa Elevator, LinkedElevator |
|
75 |
#ifdef DOXYGEN |
|
76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
77 |
#else |
|
78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
79 |
#endif |
|
73 | 80 |
|
74 | 81 |
/// \brief Instantiates an Elevator. |
75 | 82 |
/// |
76 | 83 |
/// This function instantiates an \ref Elevator. |
77 | 84 |
/// \param digraph The digraph for which we would like to define |
78 | 85 |
/// the elevator. |
79 | 86 |
/// \param max_level The maximum level of the elevator. |
80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 88 |
return new Elevator(digraph, max_level); |
82 | 89 |
} |
83 | 90 |
|
84 | 91 |
/// \brief The tolerance used by the algorithm |
85 | 92 |
/// |
86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
88 | 95 |
|
89 | 96 |
}; |
90 | 97 |
|
91 | 98 |
|
92 | 99 |
/// \ingroup max_flow |
93 | 100 |
/// |
94 | 101 |
/// \brief %Preflow algorithm class. |
95 | 102 |
/// |
96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
98 | 105 |
/// "flow of maximum value" in a digraph. |
99 | 106 |
/// The preflow algorithms are the fastest known maximum |
100 | 107 |
/// flow algorithms. The current implementation use a mixture of the |
101 | 108 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
102 | 109 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
103 | 110 |
/// |
104 | 111 |
/// The algorithm consists of two phases. After the first phase |
105 | 112 |
/// the maximum flow value and the minimum cut is obtained. The |
106 | 113 |
/// second phase constructs a feasible maximum flow on each arc. |
107 | 114 |
/// |
108 | 115 |
/// \tparam GR The type of the digraph the algorithm runs on. |
109 | 116 |
/// \tparam CAP The type of the capacity map. The default map |
110 | 117 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
111 | 118 |
#ifdef DOXYGEN |
112 | 119 |
template <typename GR, typename CAP, typename TR> |
113 | 120 |
#else |
114 | 121 |
template <typename GR, |
115 | 122 |
typename CAP = typename GR::template ArcMap<int>, |
116 | 123 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
117 | 124 |
#endif |
118 | 125 |
class Preflow { |
119 | 126 |
public: |
120 | 127 |
|
... | ... |
@@ -344,98 +351,98 @@ |
344 | 351 |
return *this; |
345 | 352 |
} |
346 | 353 |
|
347 | 354 |
/// \brief Sets the elevator used by algorithm. |
348 | 355 |
/// |
349 | 356 |
/// Sets the elevator used by algorithm. |
350 | 357 |
/// If you don't use this function before calling \ref run() or |
351 | 358 |
/// \ref init(), an instance will be allocated automatically. |
352 | 359 |
/// The destructor deallocates this automatically allocated elevator, |
353 | 360 |
/// of course. |
354 | 361 |
/// \return <tt>(*this)</tt> |
355 | 362 |
Preflow& elevator(Elevator& elevator) { |
356 | 363 |
if (_local_level) { |
357 | 364 |
delete _level; |
358 | 365 |
_local_level = false; |
359 | 366 |
} |
360 | 367 |
_level = &elevator; |
361 | 368 |
return *this; |
362 | 369 |
} |
363 | 370 |
|
364 | 371 |
/// \brief Returns a const reference to the elevator. |
365 | 372 |
/// |
366 | 373 |
/// Returns a const reference to the elevator. |
367 | 374 |
/// |
368 | 375 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 376 |
/// using this function. |
370 | 377 |
const Elevator& elevator() const { |
371 | 378 |
return *_level; |
372 | 379 |
} |
373 | 380 |
|
374 | 381 |
/// \brief Sets the tolerance used by algorithm. |
375 | 382 |
/// |
376 | 383 |
/// Sets the tolerance used by algorithm. |
377 | 384 |
Preflow& tolerance(const Tolerance& tolerance) const { |
378 | 385 |
_tolerance = tolerance; |
379 | 386 |
return *this; |
380 | 387 |
} |
381 | 388 |
|
382 | 389 |
/// \brief Returns a const reference to the tolerance. |
383 | 390 |
/// |
384 | 391 |
/// Returns a const reference to the tolerance. |
385 | 392 |
const Tolerance& tolerance() const { |
386 | 393 |
return tolerance; |
387 | 394 |
} |
388 | 395 |
|
389 | 396 |
/// \name Execution Control |
390 | 397 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 398 |
/// \ref run() or \ref runMinCut().\n |
392 |
/// If you need more control on the initial solution or the execution, |
|
393 |
/// first you have to call one of the \ref init() functions, then |
|
399 |
/// If you need better control on the initial solution or the execution, |
|
400 |
/// you have to call one of the \ref init() functions first, then |
|
394 | 401 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 402 |
|
396 | 403 |
///@{ |
397 | 404 |
|
398 | 405 |
/// \brief Initializes the internal data structures. |
399 | 406 |
/// |
400 | 407 |
/// Initializes the internal data structures and sets the initial |
401 | 408 |
/// flow to zero on each arc. |
402 | 409 |
void init() { |
403 | 410 |
createStructures(); |
404 | 411 |
|
405 | 412 |
_phase = true; |
406 | 413 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 414 |
(*_excess)[n] = 0; |
408 | 415 |
} |
409 | 416 |
|
410 | 417 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 418 |
_flow->set(e, 0); |
412 | 419 |
} |
413 | 420 |
|
414 | 421 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 422 |
|
416 | 423 |
_level->initStart(); |
417 | 424 |
_level->initAddItem(_target); |
418 | 425 |
|
419 | 426 |
std::vector<Node> queue; |
420 | 427 |
reached[_source] = true; |
421 | 428 |
|
422 | 429 |
queue.push_back(_target); |
423 | 430 |
reached[_target] = true; |
424 | 431 |
while (!queue.empty()) { |
425 | 432 |
_level->initNewLevel(); |
426 | 433 |
std::vector<Node> nqueue; |
427 | 434 |
for (int i = 0; i < int(queue.size()); ++i) { |
428 | 435 |
Node n = queue[i]; |
429 | 436 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
430 | 437 |
Node u = _graph.source(e); |
431 | 438 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
432 | 439 |
reached[u] = true; |
433 | 440 |
_level->initAddItem(u); |
434 | 441 |
nqueue.push_back(u); |
435 | 442 |
} |
436 | 443 |
} |
437 | 444 |
} |
438 | 445 |
queue.swap(nqueue); |
439 | 446 |
} |
440 | 447 |
_level->initFinish(); |
441 | 448 |
|
0 comments (0 inline)