gravatar
deba@inf.elte.hu
deba@inf.elte.hu
MSVC 2005 compatible path structure (ticket #87)
0 1 0
default
1 file changed with 25 insertions and 18 deletions:
↑ Collapse diff ↑
Ignore white space 768 line context
... ...
@@ -522,558 +522,565 @@
522 522
      for (int i = 0; i < n; ++i) {
523 523
        node = node->next;
524 524
      }
525 525
      return ArcIt(*this, node);
526 526
    }
527 527

	
528 528
    /// \brief Length of the path.
529 529
    int length() const {
530 530
      int len = 0;
531 531
      Node *node = first;
532 532
      while (node != 0) {
533 533
        node = node->next;
534 534
        ++len;
535 535
      }
536 536
      return len;
537 537
    }
538 538

	
539 539
    /// \brief Return true if the path is empty.
540 540
    bool empty() const { return first == 0; }
541 541

	
542 542
    /// \brief Reset the path to an empty one.
543 543
    void clear() {
544 544
      while (first != 0) {
545 545
        last = first->next;
546 546
        alloc.destroy(first);
547 547
        alloc.deallocate(first, 1);
548 548
        first = last;
549 549
      }
550 550
    }
551 551

	
552 552
    /// \brief The first arc of the path
553 553
    const Arc& front() const {
554 554
      return first->arc;
555 555
    }
556 556

	
557 557
    /// \brief Add a new arc before the current path
558 558
    void addFront(const Arc& arc) {
559 559
      Node *node = alloc.allocate(1);
560 560
      alloc.construct(node, Node());
561 561
      node->prev = 0;
562 562
      node->next = first;
563 563
      node->arc = arc;
564 564
      if (first) {
565 565
        first->prev = node;
566 566
        first = node;
567 567
      } else {
568 568
        first = last = node;
569 569
      }
570 570
    }
571 571

	
572 572
    /// \brief Erase the first arc of the path
573 573
    void eraseFront() {
574 574
      Node *node = first;
575 575
      first = first->next;
576 576
      if (first) {
577 577
        first->prev = 0;
578 578
      } else {
579 579
        last = 0;
580 580
      }
581 581
      alloc.destroy(node);
582 582
      alloc.deallocate(node, 1);
583 583
    }
584 584

	
585 585
    /// \brief The last arc of the path.
586 586
    const Arc& back() const {
587 587
      return last->arc;
588 588
    }
589 589

	
590 590
    /// \brief Add a new arc behind the current path.
591 591
    void addBack(const Arc& arc) {
592 592
      Node *node = alloc.allocate(1);
593 593
      alloc.construct(node, Node());
594 594
      node->next = 0;
595 595
      node->prev = last;
596 596
      node->arc = arc;
597 597
      if (last) {
598 598
        last->next = node;
599 599
        last = node;
600 600
      } else {
601 601
        last = first = node;
602 602
      }
603 603
    }
604 604

	
605 605
    /// \brief Erase the last arc of the path
606 606
    void eraseBack() {
607 607
      Node *node = last;
608 608
      last = last->prev;
609 609
      if (last) {
610 610
        last->next = 0;
611 611
      } else {
612 612
        first = 0;
613 613
      }
614 614
      alloc.destroy(node);
615 615
      alloc.deallocate(node, 1);
616 616
    }
617 617

	
618 618
    /// \brief Splice a path to the back of the current path.
619 619
    ///
620 620
    /// It splices \c tpath to the back of the current path and \c
621 621
    /// tpath becomes empty. The time complexity of this function is
622 622
    /// O(1).
623 623
    void spliceBack(ListPath& tpath) {
624 624
      if (first) {
625 625
        if (tpath.first) {
626 626
          last->next = tpath.first;
627 627
          tpath.first->prev = last;
628 628
          last = tpath.last;
629 629
        }
630 630
      } else {
631 631
        first = tpath.first;
632 632
        last = tpath.last;
633 633
      }
634 634
      tpath.first = tpath.last = 0;
635 635
    }
636 636

	
637 637
    /// \brief Splice a path to the front of the current path.
638 638
    ///
639 639
    /// It splices \c tpath before the current path and \c tpath
640 640
    /// becomes empty. The time complexity of this function
641 641
    /// is O(1).
642 642
    void spliceFront(ListPath& tpath) {
643 643
      if (first) {
644 644
        if (tpath.first) {
645 645
          first->prev = tpath.last;
646 646
          tpath.last->next = first;
647 647
          first = tpath.first;
648 648
        }
649 649
      } else {
650 650
        first = tpath.first;
651 651
        last = tpath.last;
652 652
      }
653 653
      tpath.first = tpath.last = 0;
654 654
    }
655 655

	
656 656
    /// \brief Splice a path into the current path.
657 657
    ///
658 658
    /// It splices the \c tpath into the current path before the
659 659
    /// position of \c it iterator and \c tpath becomes empty. The
660 660
    /// time complexity of this function is O(1). If the \c it is
661 661
    /// \c INVALID then it will splice behind the current path.
662 662
    void splice(ArcIt it, ListPath& tpath) {
663 663
      if (it.node) {
664 664
        if (tpath.first) {
665 665
          tpath.first->prev = it.node->prev;
666 666
          if (it.node->prev) {
667 667
            it.node->prev->next = tpath.first;
668 668
          } else {
669 669
            first = tpath.first;
670 670
          }
671 671
          it.node->prev = tpath.last;
672 672
          tpath.last->next = it.node;
673 673
        }
674 674
      } else {
675 675
        if (first) {
676 676
          if (tpath.first) {
677 677
            last->next = tpath.first;
678 678
            tpath.first->prev = last;
679 679
            last = tpath.last;
680 680
          }
681 681
        } else {
682 682
          first = tpath.first;
683 683
          last = tpath.last;
684 684
        }
685 685
      }
686 686
      tpath.first = tpath.last = 0;
687 687
    }
688 688

	
689 689
    /// \brief Split the current path.
690 690
    ///
691 691
    /// It splits the current path into two parts. The part before
692 692
    /// the iterator \c it will remain in the current path and the part
693 693
    /// starting with
694 694
    /// \c it will put into \c tpath. If \c tpath have arcs
695 695
    /// before the operation they are removed first.  The time
696 696
    /// complexity of this function is O(1) plus the the time of emtying
697 697
    /// \c tpath. If \c it is \c INVALID then it just clears \c tpath
698 698
    void split(ArcIt it, ListPath& tpath) {
699 699
      tpath.clear();
700 700
      if (it.node) {
701 701
        tpath.first = it.node;
702 702
        tpath.last = last;
703 703
        if (it.node->prev) {
704 704
          last = it.node->prev;
705 705
          last->next = 0;
706 706
        } else {
707 707
          first = last = 0;
708 708
        }
709 709
        it.node->prev = 0;
710 710
      }
711 711
    }
712 712

	
713 713

	
714 714
    typedef True BuildTag;
715 715

	
716 716
    template <typename CPath>
717 717
    void build(const CPath& path) {
718 718
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
719 719
        addBack(it);
720 720
      }
721 721
    }
722 722

	
723 723
    template <typename CPath>
724 724
    void buildRev(const CPath& path) {
725 725
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
726 726
        addFront(it);
727 727
      }
728 728
    }
729 729

	
730 730
  };
731 731

	
732 732
  /// \brief A structure for representing directed paths in a digraph.
733 733
  ///
734 734
  /// A structure for representing directed path in a digraph.
735 735
  /// \param Digraph The digraph type in which the path is.
736 736
  ///
737 737
  /// In a sense, the path can be treated as a list of arcs. The
738 738
  /// lemon path type stores just this list. As a consequence it
739 739
  /// cannot enumerate the nodes in the path and the source node of
740 740
  /// a zero length path is undefined.
741 741
  ///
742 742
  /// This implementation is completly static, i.e. it can be copy constucted
743 743
  /// or copy assigned from another path, but otherwise it cannot be
744 744
  /// modified.
745 745
  ///
746 746
  /// Being the the most memory efficient path type in LEMON,
747 747
  /// it is intented to be
748 748
  /// used when you want to store a large number of paths.
749 749
  template <typename _Digraph>
750 750
  class StaticPath {
751 751
  public:
752 752

	
753 753
    typedef _Digraph Digraph;
754 754
    typedef typename Digraph::Arc Arc;
755 755

	
756 756
    /// \brief Default constructor
757 757
    ///
758 758
    /// Default constructor
759 759
    StaticPath() : len(0), arcs(0) {}
760 760
    
761 761
    /// \brief Template copy constructor
762 762
    ///
763 763
    /// This path can be initialized from any other path type.
764 764
    template <typename CPath>
765 765
    StaticPath(const CPath& cpath) : arcs(0) {
766 766
      copyPath(*this, cpath);
767 767
    }
768 768

	
769 769
    /// \brief Destructor of the path
770 770
    ///
771 771
    /// Destructor of the path
772 772
    ~StaticPath() {
773 773
      if (arcs) delete[] arcs;
774 774
    }
775 775

	
776 776
    /// \brief Template copy assignment
777 777
    ///
778 778
    /// This path can be made equal to any other path type. It simply
779 779
    /// makes a copy of the given path.
780 780
    template <typename CPath>
781 781
    StaticPath& operator=(const CPath& cpath) {
782 782
      copyPath(*this, cpath);
783 783
      return *this;
784 784
    }
785 785

	
786 786
    /// \brief Iterator class to iterate on the arcs of the paths
787 787
    ///
788 788
    /// This class is used to iterate on the arcs of the paths
789 789
    ///
790 790
    /// Of course it converts to Digraph::Arc
791 791
    class ArcIt {
792 792
      friend class StaticPath;
793 793
    public:
794 794
      /// Default constructor
795 795
      ArcIt() {}
796 796
      /// Invalid constructor
797 797
      ArcIt(Invalid) : path(0), idx(-1) {}
798 798
      /// Initializate the constructor to the first arc of path
799 799
      ArcIt(const StaticPath &_path) 
800 800
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
801 801

	
802 802
    private:
803 803

	
804 804
      /// Constructor with starting point
805 805
      ArcIt(const StaticPath &_path, int _idx) 
806 806
        : idx(_idx), path(&_path) {}
807 807

	
808 808
    public:
809 809

	
810 810
      ///Conversion to Digraph::Arc
811 811
      operator const Arc&() const {
812 812
        return path->nth(idx);
813 813
      }
814 814

	
815 815
      /// Next arc
816 816
      ArcIt& operator++() { 
817 817
        ++idx;
818 818
        if (idx >= path->length()) idx = -1; 
819 819
        return *this; 
820 820
      }
821 821

	
822 822
      /// Comparison operator
823 823
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
824 824
      /// Comparison operator
825 825
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
826 826
      /// Comparison operator
827 827
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
828 828

	
829 829
    private:
830 830
      const StaticPath *path;
831 831
      int idx;
832 832
    };
833 833

	
834 834
    /// \brief The nth arc.
835 835
    ///
836 836
    /// \pre n is in the [0..length() - 1] range
837 837
    const Arc& nth(int n) const {
838 838
      return arcs[n];
839 839
    }
840 840

	
841 841
    /// \brief The arc iterator pointing to the nth arc.
842 842
    ArcIt nthIt(int n) const {
843 843
      return ArcIt(*this, n);
844 844
    }
845 845

	
846 846
    /// \brief The length of the path.
847 847
    int length() const { return len; }
848 848

	
849 849
    /// \brief Return true when the path is empty.
850 850
    int empty() const { return len == 0; }
851 851

	
852 852
    /// \break Erase all arcs in the digraph.
853 853
    void clear() {
854 854
      len = 0;
855 855
      if (arcs) delete[] arcs;
856 856
      arcs = 0;
857 857
    }
858 858

	
859 859
    /// \brief The first arc of the path.
860 860
    const Arc& front() const {
861 861
      return arcs[0];
862 862
    }
863 863

	
864 864
    /// \brief The last arc of the path.
865 865
    const Arc& back() const {
866 866
      return arcs[len - 1];
867 867
    }
868 868

	
869 869

	
870 870
    typedef True BuildTag;
871 871

	
872 872
    template <typename CPath>
873 873
    void build(const CPath& path) {
874 874
      len = path.length();
875 875
      arcs = new Arc[len];
876 876
      int index = 0;
877 877
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
878 878
        arcs[index] = it;
879 879
        ++index;
880 880
      }
881 881
    }
882 882

	
883 883
    template <typename CPath>
884 884
    void buildRev(const CPath& path) {
885 885
      len = path.length();
886 886
      arcs = new Arc[len];
887 887
      int index = len;
888 888
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
889 889
        --index;
890 890
        arcs[index] = it;
891 891
      }
892 892
    }
893 893

	
894 894
  private:
895 895
    int len;
896 896
    Arc* arcs;
897 897
  };
898 898

	
899 899
  ///////////////////////////////////////////////////////////////////////
900 900
  // Additional utilities
901 901
  ///////////////////////////////////////////////////////////////////////
902 902

	
903 903
  namespace _path_bits {
904 904

	
905 905
    template <typename Path, typename Enable = void>
906
    struct RevTagIndicator {
906
    struct RevPathTagIndicator {
907 907
      static const bool value = false;
908 908
    };
909 909

	
910
    template <typename Digraph>
911
    struct RevTagIndicator<
912
      Digraph, 
913
      typename enable_if<typename Digraph::RevTag, void>::type
910
    template <typename Path>
911
    struct RevPathTagIndicator<
912
      Path, 
913
      typename enable_if<typename Path::RevPathTag, void>::type
914
      > {
915
      static const bool value = true;
916
    };
917

	
918
    template <typename Path, typename Enable = void>
919
    struct BuildTagIndicator {
920
      static const bool value = false;
921
    };
922

	
923
    template <typename Path>
924
    struct BuildTagIndicator<
925
      Path, 
926
      typename enable_if<typename Path::BuildTag, void>::type
914 927
    > {
915 928
      static const bool value = true;
916 929
    };
917 930

	
918 931
    template <typename Target, typename Source,
919
              typename BuildEnable = void, typename RevEnable = void>
932
	      bool buildEnable = BuildTagIndicator<Target>::value, 
933
	      bool revEnable = RevPathTagIndicator<Source>::value>
920 934
    struct PathCopySelector {
921 935
      static void copy(Target& target, const Source& source) {
922 936
        target.clear();
923 937
        for (typename Source::ArcIt it(source); it != INVALID; ++it) {
924 938
          target.addBack(it);
925 939
        }
926 940
      }
927 941
    };
928 942

	
929
    template <typename Target, typename Source, typename BuildEnable>
930
    struct PathCopySelector<
931
      Target, Source, BuildEnable, 
932
      typename enable_if<typename Source::RevPathTag, void>::type> {
943
    template <typename Target, typename Source>
944
    struct PathCopySelector<Target, Source, false, true> {
933 945
      static void copy(Target& target, const Source& source) {
934 946
        target.clear();
935 947
        for (typename Source::RevArcIt it(source); it != INVALID; ++it) {
936 948
          target.addFront(it);
937 949
        }
938 950
      }
939 951
    };
940 952

	
941
    template <typename Target, typename Source, typename RevEnable>
942
    struct PathCopySelector<
943
      Target, Source, 
944
      typename enable_if<typename Target::BuildTag, void>::type, RevEnable> {
953
    template <typename Target, typename Source>
954
    struct PathCopySelector<Target, Source, true, false> {
945 955
      static void copy(Target& target, const Source& source) {
946 956
        target.clear();
947 957
        target.build(source);
948 958
      }
949 959
    };
950 960

	
951 961
    template <typename Target, typename Source>
952
    struct PathCopySelector<
953
      Target, Source, 
954
      typename enable_if<typename Target::BuildTag, void>::type,
955
      typename enable_if<typename Source::RevPathTag, void>::type> {
962
    struct PathCopySelector<Target, Source, true, true> {
956 963
      static void copy(Target& target, const Source& source) {
957 964
        target.clear();
958 965
        target.buildRev(source);
959 966
      }
960 967
    };
961 968

	
962 969
  }
963 970

	
964 971

	
965 972
  /// \brief Make a copy of a path.
966 973
  ///
967 974
  ///  This function makes a copy of a path.
968 975
  template <typename Target, typename Source>
969 976
  void copyPath(Target& target, const Source& source) {
970 977
    checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>();
971 978
    _path_bits::PathCopySelector<Target, Source>::copy(target, source);
972 979
  }
973 980

	
974 981
  /// \brief Check the consistency of a path.
975 982
  ///
976 983
  /// This function checks that the target of each arc is the same
977 984
  /// as the source of the next one. 
978 985
  /// 
979 986
  template <typename Digraph, typename Path>
980 987
  bool checkPath(const Digraph& digraph, const Path& path) {
981 988
    typename Path::ArcIt it(path);
982 989
    if (it == INVALID) return true;
983 990
    typename Digraph::Node node = digraph.target(it);
984 991
    ++it;
985 992
    while (it != INVALID) {
986 993
      if (digraph.source(it) != node) return false;
987 994
      node = digraph.target(it);
988 995
      ++it;
989 996
    }
990 997
    return true;
991 998
  }
992 999

	
993 1000
  /// \brief The source of a path
994 1001
  ///
995 1002
  /// This function returns the source of the given path.
996 1003
  template <typename Digraph, typename Path>
997 1004
  typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
998 1005
    return digraph.source(path.front());
999 1006
  }
1000 1007

	
1001 1008
  /// \brief The target of a path
1002 1009
  ///
1003 1010
  /// This function returns the target of the given path.
1004 1011
  template <typename Digraph, typename Path>
1005 1012
  typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
1006 1013
    return digraph.target(path.back());
1007 1014
  }
1008 1015

	
1009 1016
  /// \brief Class which helps to iterate through the nodes of a path
1010 1017
  ///
1011 1018
  /// In a sense, the path can be treated as a list of arcs. The
1012 1019
  /// lemon path type stores only this list. As a consequence, it
1013 1020
  /// cannot enumerate the nodes in the path and the zero length paths
1014 1021
  /// cannot have a source node.
1015 1022
  ///
1016 1023
  /// This class implements the node iterator of a path structure. To
1017 1024
  /// provide this feature, the underlying digraph should be passed to
1018 1025
  /// the constructor of the iterator.
1019 1026
  template <typename Path>
1020 1027
  class PathNodeIt {
1021 1028
  private:
1022 1029
    const typename Path::Digraph *_digraph;
1023 1030
    typename Path::ArcIt _it;
1024 1031
    typename Path::Digraph::Node _nd;
1025 1032

	
1026 1033
  public:
1027 1034

	
1028 1035
    typedef typename Path::Digraph Digraph;
1029 1036
    typedef typename Digraph::Node Node;
1030 1037
    
1031 1038
    /// Default constructor
1032 1039
    PathNodeIt() {}
1033 1040
    /// Invalid constructor
1034 1041
    PathNodeIt(Invalid) 
1035 1042
      : _digraph(0), _it(INVALID), _nd(INVALID) {}
1036 1043
    /// Constructor
1037 1044
    PathNodeIt(const Digraph& digraph, const Path& path) 
1038 1045
      : _digraph(&digraph), _it(path) {
1039 1046
      _nd = (_it != INVALID ? _digraph->source(_it) : INVALID);
1040 1047
    }
1041 1048
    /// Constructor
1042 1049
    PathNodeIt(const Digraph& digraph, const Path& path, const Node& src) 
1043 1050
      : _digraph(&digraph), _it(path), _nd(src) {}
1044 1051

	
1045 1052
    ///Conversion to Digraph::Node
1046 1053
    operator Node() const {
1047 1054
      return _nd;
1048 1055
    }
1049 1056

	
1050 1057
    /// Next node
1051 1058
    PathNodeIt& operator++() {
1052 1059
      if (_it == INVALID) _nd = INVALID;
1053 1060
      else {
1054 1061
	_nd = _digraph->target(_it);
1055 1062
	++_it;
1056 1063
      }
1057 1064
      return *this;
1058 1065
    }
1059 1066

	
1060 1067
    /// Comparison operator
1061 1068
    bool operator==(const PathNodeIt& n) const { 
1062 1069
      return _it == n._it && _nd == n._nd; 
1063 1070
    }
1064 1071
    /// Comparison operator
1065 1072
    bool operator!=(const PathNodeIt& n) const { 
1066 1073
      return _it != n._it || _nd != n._nd; 
1067 1074
    }
1068 1075
    /// Comparison operator
1069 1076
    bool operator<(const PathNodeIt& n) const { 
1070 1077
      return (_it < n._it && _nd != INVALID);
1071 1078
    }
1072 1079
    
1073 1080
  };
1074 1081
  
1075 1082
  ///@}
1076 1083

	
1077 1084
} // namespace lemon
1078 1085

	
1079 1086
#endif // LEMON_PATH_H
0 comments (0 inline)