| ... | ... |
@@ -917,257 +917,257 @@ |
| 917 | 917 |
|
| 918 | 918 |
/// @} |
| 919 | 919 |
|
| 920 | 920 |
/// \name Query Functions |
| 921 | 921 |
/// The results of the algorithm can be obtained using these |
| 922 | 922 |
/// functions.\n |
| 923 | 923 |
/// The \ref run() function must be called before using them. |
| 924 | 924 |
|
| 925 | 925 |
/// @{
|
| 926 | 926 |
|
| 927 | 927 |
/// \brief Return the total cost of the found flow. |
| 928 | 928 |
/// |
| 929 | 929 |
/// This function returns the total cost of the found flow. |
| 930 | 930 |
/// Its complexity is O(e). |
| 931 | 931 |
/// |
| 932 | 932 |
/// \note The return type of the function can be specified as a |
| 933 | 933 |
/// template parameter. For example, |
| 934 | 934 |
/// \code |
| 935 | 935 |
/// ns.totalCost<double>(); |
| 936 | 936 |
/// \endcode |
| 937 | 937 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 938 | 938 |
/// type of the algorithm, which is the default return type of the |
| 939 | 939 |
/// function. |
| 940 | 940 |
/// |
| 941 | 941 |
/// \pre \ref run() must be called before using this function. |
| 942 | 942 |
template <typename Number> |
| 943 | 943 |
Number totalCost() const {
|
| 944 | 944 |
Number c = 0; |
| 945 | 945 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 946 | 946 |
int i = _arc_id[a]; |
| 947 | 947 |
c += Number(_flow[i]) * Number(_cost[i]); |
| 948 | 948 |
} |
| 949 | 949 |
return c; |
| 950 | 950 |
} |
| 951 | 951 |
|
| 952 | 952 |
#ifndef DOXYGEN |
| 953 | 953 |
Cost totalCost() const {
|
| 954 | 954 |
return totalCost<Cost>(); |
| 955 | 955 |
} |
| 956 | 956 |
#endif |
| 957 | 957 |
|
| 958 | 958 |
/// \brief Return the flow on the given arc. |
| 959 | 959 |
/// |
| 960 | 960 |
/// This function returns the flow on the given arc. |
| 961 | 961 |
/// |
| 962 | 962 |
/// \pre \ref run() must be called before using this function. |
| 963 | 963 |
Value flow(const Arc& a) const {
|
| 964 | 964 |
return _flow[_arc_id[a]]; |
| 965 | 965 |
} |
| 966 | 966 |
|
| 967 | 967 |
/// \brief Return the flow map (the primal solution). |
| 968 | 968 |
/// |
| 969 | 969 |
/// This function copies the flow value on each arc into the given |
| 970 | 970 |
/// map. The \c Value type of the algorithm must be convertible to |
| 971 | 971 |
/// the \c Value type of the map. |
| 972 | 972 |
/// |
| 973 | 973 |
/// \pre \ref run() must be called before using this function. |
| 974 | 974 |
template <typename FlowMap> |
| 975 | 975 |
void flowMap(FlowMap &map) const {
|
| 976 | 976 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 977 | 977 |
map.set(a, _flow[_arc_id[a]]); |
| 978 | 978 |
} |
| 979 | 979 |
} |
| 980 | 980 |
|
| 981 | 981 |
/// \brief Return the potential (dual value) of the given node. |
| 982 | 982 |
/// |
| 983 | 983 |
/// This function returns the potential (dual value) of the |
| 984 | 984 |
/// given node. |
| 985 | 985 |
/// |
| 986 | 986 |
/// \pre \ref run() must be called before using this function. |
| 987 | 987 |
Cost potential(const Node& n) const {
|
| 988 | 988 |
return _pi[_node_id[n]]; |
| 989 | 989 |
} |
| 990 | 990 |
|
| 991 | 991 |
/// \brief Return the potential map (the dual solution). |
| 992 | 992 |
/// |
| 993 | 993 |
/// This function copies the potential (dual value) of each node |
| 994 | 994 |
/// into the given map. |
| 995 | 995 |
/// The \c Cost type of the algorithm must be convertible to the |
| 996 | 996 |
/// \c Value type of the map. |
| 997 | 997 |
/// |
| 998 | 998 |
/// \pre \ref run() must be called before using this function. |
| 999 | 999 |
template <typename PotentialMap> |
| 1000 | 1000 |
void potentialMap(PotentialMap &map) const {
|
| 1001 | 1001 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1002 | 1002 |
map.set(n, _pi[_node_id[n]]); |
| 1003 | 1003 |
} |
| 1004 | 1004 |
} |
| 1005 | 1005 |
|
| 1006 | 1006 |
/// @} |
| 1007 | 1007 |
|
| 1008 | 1008 |
private: |
| 1009 | 1009 |
|
| 1010 | 1010 |
// Initialize internal data structures |
| 1011 | 1011 |
bool init() {
|
| 1012 | 1012 |
if (_node_num == 0) return false; |
| 1013 | 1013 |
|
| 1014 | 1014 |
// Check the sum of supply values |
| 1015 | 1015 |
_sum_supply = 0; |
| 1016 | 1016 |
for (int i = 0; i != _node_num; ++i) {
|
| 1017 | 1017 |
_sum_supply += _supply[i]; |
| 1018 | 1018 |
} |
| 1019 | 1019 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
| 1020 | 1020 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
| 1021 | 1021 |
|
| 1022 | 1022 |
// Remove non-zero lower bounds |
| 1023 | 1023 |
if (_have_lower) {
|
| 1024 | 1024 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1025 | 1025 |
Value c = _lower[i]; |
| 1026 | 1026 |
if (c >= 0) {
|
| 1027 | 1027 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
| 1028 | 1028 |
} else {
|
| 1029 | 1029 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
| 1030 | 1030 |
} |
| 1031 | 1031 |
_supply[_source[i]] -= c; |
| 1032 | 1032 |
_supply[_target[i]] += c; |
| 1033 | 1033 |
} |
| 1034 | 1034 |
} else {
|
| 1035 | 1035 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1036 | 1036 |
_cap[i] = _upper[i]; |
| 1037 | 1037 |
} |
| 1038 | 1038 |
} |
| 1039 | 1039 |
|
| 1040 | 1040 |
// Initialize artifical cost |
| 1041 | 1041 |
Cost ART_COST; |
| 1042 | 1042 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1043 | 1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
| 1044 | 1044 |
} else {
|
| 1045 |
ART_COST = |
|
| 1045 |
ART_COST = 0; |
|
| 1046 | 1046 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1047 | 1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
| 1048 | 1048 |
} |
| 1049 | 1049 |
ART_COST = (ART_COST + 1) * _node_num; |
| 1050 | 1050 |
} |
| 1051 | 1051 |
|
| 1052 | 1052 |
// Initialize arc maps |
| 1053 | 1053 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1054 | 1054 |
_flow[i] = 0; |
| 1055 | 1055 |
_state[i] = STATE_LOWER; |
| 1056 | 1056 |
} |
| 1057 | 1057 |
|
| 1058 | 1058 |
// Set data for the artificial root node |
| 1059 | 1059 |
_root = _node_num; |
| 1060 | 1060 |
_parent[_root] = -1; |
| 1061 | 1061 |
_pred[_root] = -1; |
| 1062 | 1062 |
_thread[_root] = 0; |
| 1063 | 1063 |
_rev_thread[0] = _root; |
| 1064 | 1064 |
_succ_num[_root] = _node_num + 1; |
| 1065 | 1065 |
_last_succ[_root] = _root - 1; |
| 1066 | 1066 |
_supply[_root] = -_sum_supply; |
| 1067 | 1067 |
_pi[_root] = 0; |
| 1068 | 1068 |
|
| 1069 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1070 | 1070 |
if (_sum_supply == 0) {
|
| 1071 | 1071 |
// EQ supply constraints |
| 1072 | 1072 |
_search_arc_num = _arc_num; |
| 1073 | 1073 |
_all_arc_num = _arc_num + _node_num; |
| 1074 | 1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1075 | 1075 |
_parent[u] = _root; |
| 1076 | 1076 |
_pred[u] = e; |
| 1077 | 1077 |
_thread[u] = u + 1; |
| 1078 | 1078 |
_rev_thread[u + 1] = u; |
| 1079 | 1079 |
_succ_num[u] = 1; |
| 1080 | 1080 |
_last_succ[u] = u; |
| 1081 | 1081 |
_cap[e] = INF; |
| 1082 | 1082 |
_state[e] = STATE_TREE; |
| 1083 | 1083 |
if (_supply[u] >= 0) {
|
| 1084 | 1084 |
_forward[u] = true; |
| 1085 | 1085 |
_pi[u] = 0; |
| 1086 | 1086 |
_source[e] = u; |
| 1087 | 1087 |
_target[e] = _root; |
| 1088 | 1088 |
_flow[e] = _supply[u]; |
| 1089 | 1089 |
_cost[e] = 0; |
| 1090 | 1090 |
} else {
|
| 1091 | 1091 |
_forward[u] = false; |
| 1092 | 1092 |
_pi[u] = ART_COST; |
| 1093 | 1093 |
_source[e] = _root; |
| 1094 | 1094 |
_target[e] = u; |
| 1095 | 1095 |
_flow[e] = -_supply[u]; |
| 1096 | 1096 |
_cost[e] = ART_COST; |
| 1097 | 1097 |
} |
| 1098 | 1098 |
} |
| 1099 | 1099 |
} |
| 1100 | 1100 |
else if (_sum_supply > 0) {
|
| 1101 | 1101 |
// LEQ supply constraints |
| 1102 | 1102 |
_search_arc_num = _arc_num + _node_num; |
| 1103 | 1103 |
int f = _arc_num + _node_num; |
| 1104 | 1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1105 | 1105 |
_parent[u] = _root; |
| 1106 | 1106 |
_thread[u] = u + 1; |
| 1107 | 1107 |
_rev_thread[u + 1] = u; |
| 1108 | 1108 |
_succ_num[u] = 1; |
| 1109 | 1109 |
_last_succ[u] = u; |
| 1110 | 1110 |
if (_supply[u] >= 0) {
|
| 1111 | 1111 |
_forward[u] = true; |
| 1112 | 1112 |
_pi[u] = 0; |
| 1113 | 1113 |
_pred[u] = e; |
| 1114 | 1114 |
_source[e] = u; |
| 1115 | 1115 |
_target[e] = _root; |
| 1116 | 1116 |
_cap[e] = INF; |
| 1117 | 1117 |
_flow[e] = _supply[u]; |
| 1118 | 1118 |
_cost[e] = 0; |
| 1119 | 1119 |
_state[e] = STATE_TREE; |
| 1120 | 1120 |
} else {
|
| 1121 | 1121 |
_forward[u] = false; |
| 1122 | 1122 |
_pi[u] = ART_COST; |
| 1123 | 1123 |
_pred[u] = f; |
| 1124 | 1124 |
_source[f] = _root; |
| 1125 | 1125 |
_target[f] = u; |
| 1126 | 1126 |
_cap[f] = INF; |
| 1127 | 1127 |
_flow[f] = -_supply[u]; |
| 1128 | 1128 |
_cost[f] = ART_COST; |
| 1129 | 1129 |
_state[f] = STATE_TREE; |
| 1130 | 1130 |
_source[e] = u; |
| 1131 | 1131 |
_target[e] = _root; |
| 1132 | 1132 |
_cap[e] = INF; |
| 1133 | 1133 |
_flow[e] = 0; |
| 1134 | 1134 |
_cost[e] = 0; |
| 1135 | 1135 |
_state[e] = STATE_LOWER; |
| 1136 | 1136 |
++f; |
| 1137 | 1137 |
} |
| 1138 | 1138 |
} |
| 1139 | 1139 |
_all_arc_num = f; |
| 1140 | 1140 |
} |
| 1141 | 1141 |
else {
|
| 1142 | 1142 |
// GEQ supply constraints |
| 1143 | 1143 |
_search_arc_num = _arc_num + _node_num; |
| 1144 | 1144 |
int f = _arc_num + _node_num; |
| 1145 | 1145 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1146 | 1146 |
_parent[u] = _root; |
| 1147 | 1147 |
_thread[u] = u + 1; |
| 1148 | 1148 |
_rev_thread[u + 1] = u; |
| 1149 | 1149 |
_succ_num[u] = 1; |
| 1150 | 1150 |
_last_succ[u] = u; |
| 1151 | 1151 |
if (_supply[u] <= 0) {
|
| 1152 | 1152 |
_forward[u] = false; |
| 1153 | 1153 |
_pi[u] = 0; |
| 1154 | 1154 |
_pred[u] = e; |
| 1155 | 1155 |
_source[e] = _root; |
| 1156 | 1156 |
_target[e] = u; |
| 1157 | 1157 |
_cap[e] = INF; |
| 1158 | 1158 |
_flow[e] = -_supply[u]; |
| 1159 | 1159 |
_cost[e] = 0; |
| 1160 | 1160 |
_state[e] = STATE_TREE; |
| 1161 | 1161 |
} else {
|
| 1162 | 1162 |
_forward[u] = true; |
| 1163 | 1163 |
_pi[u] = -ART_COST; |
| 1164 | 1164 |
_pred[u] = f; |
| 1165 | 1165 |
_source[f] = u; |
| 1166 | 1166 |
_target[f] = _root; |
| 1167 | 1167 |
_cap[f] = INF; |
| 1168 | 1168 |
_flow[f] = _supply[u]; |
| 1169 | 1169 |
_state[f] = STATE_TREE; |
| 1170 | 1170 |
_cost[f] = ART_COST; |
| 1171 | 1171 |
_source[e] = _root; |
| 1172 | 1172 |
_target[e] = u; |
| 1173 | 1173 |
_cap[e] = INF; |
| ... | ... |
@@ -1332,158 +1332,158 @@ |
| 1332 | 1332 |
// Update _rev_thread using the new _thread values |
| 1333 | 1333 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
|
| 1334 | 1334 |
u = _dirty_revs[i]; |
| 1335 | 1335 |
_rev_thread[_thread[u]] = u; |
| 1336 | 1336 |
} |
| 1337 | 1337 |
|
| 1338 | 1338 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1339 | 1339 |
// stem nodes from u_out to u_in |
| 1340 | 1340 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1341 | 1341 |
u = u_out; |
| 1342 | 1342 |
while (u != u_in) {
|
| 1343 | 1343 |
w = _parent[u]; |
| 1344 | 1344 |
_pred[u] = _pred[w]; |
| 1345 | 1345 |
_forward[u] = !_forward[w]; |
| 1346 | 1346 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1347 | 1347 |
_succ_num[u] = tmp_sc; |
| 1348 | 1348 |
_last_succ[w] = tmp_ls; |
| 1349 | 1349 |
u = w; |
| 1350 | 1350 |
} |
| 1351 | 1351 |
_pred[u_in] = in_arc; |
| 1352 | 1352 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1353 | 1353 |
_succ_num[u_in] = old_succ_num; |
| 1354 | 1354 |
|
| 1355 | 1355 |
// Set limits for updating _last_succ form v_in and v_out |
| 1356 | 1356 |
// towards the root |
| 1357 | 1357 |
int up_limit_in = -1; |
| 1358 | 1358 |
int up_limit_out = -1; |
| 1359 | 1359 |
if (_last_succ[join] == v_in) {
|
| 1360 | 1360 |
up_limit_out = join; |
| 1361 | 1361 |
} else {
|
| 1362 | 1362 |
up_limit_in = join; |
| 1363 | 1363 |
} |
| 1364 | 1364 |
|
| 1365 | 1365 |
// Update _last_succ from v_in towards the root |
| 1366 | 1366 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1367 | 1367 |
u = _parent[u]) {
|
| 1368 | 1368 |
_last_succ[u] = _last_succ[u_out]; |
| 1369 | 1369 |
} |
| 1370 | 1370 |
// Update _last_succ from v_out towards the root |
| 1371 | 1371 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1372 | 1372 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1373 | 1373 |
u = _parent[u]) {
|
| 1374 | 1374 |
_last_succ[u] = old_rev_thread; |
| 1375 | 1375 |
} |
| 1376 | 1376 |
} else {
|
| 1377 | 1377 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1378 | 1378 |
u = _parent[u]) {
|
| 1379 | 1379 |
_last_succ[u] = _last_succ[u_out]; |
| 1380 | 1380 |
} |
| 1381 | 1381 |
} |
| 1382 | 1382 |
|
| 1383 | 1383 |
// Update _succ_num from v_in to join |
| 1384 | 1384 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1385 | 1385 |
_succ_num[u] += old_succ_num; |
| 1386 | 1386 |
} |
| 1387 | 1387 |
// Update _succ_num from v_out to join |
| 1388 | 1388 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1389 | 1389 |
_succ_num[u] -= old_succ_num; |
| 1390 | 1390 |
} |
| 1391 | 1391 |
} |
| 1392 | 1392 |
|
| 1393 | 1393 |
// Update potentials |
| 1394 | 1394 |
void updatePotential() {
|
| 1395 | 1395 |
Cost sigma = _forward[u_in] ? |
| 1396 | 1396 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1397 | 1397 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1398 | 1398 |
// Update potentials in the subtree, which has been moved |
| 1399 | 1399 |
int end = _thread[_last_succ[u_in]]; |
| 1400 | 1400 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1401 | 1401 |
_pi[u] += sigma; |
| 1402 | 1402 |
} |
| 1403 | 1403 |
} |
| 1404 | 1404 |
|
| 1405 | 1405 |
// Execute the algorithm |
| 1406 | 1406 |
ProblemType start(PivotRule pivot_rule) {
|
| 1407 | 1407 |
// Select the pivot rule implementation |
| 1408 | 1408 |
switch (pivot_rule) {
|
| 1409 | 1409 |
case FIRST_ELIGIBLE: |
| 1410 | 1410 |
return start<FirstEligiblePivotRule>(); |
| 1411 | 1411 |
case BEST_ELIGIBLE: |
| 1412 | 1412 |
return start<BestEligiblePivotRule>(); |
| 1413 | 1413 |
case BLOCK_SEARCH: |
| 1414 | 1414 |
return start<BlockSearchPivotRule>(); |
| 1415 | 1415 |
case CANDIDATE_LIST: |
| 1416 | 1416 |
return start<CandidateListPivotRule>(); |
| 1417 | 1417 |
case ALTERING_LIST: |
| 1418 | 1418 |
return start<AlteringListPivotRule>(); |
| 1419 | 1419 |
} |
| 1420 | 1420 |
return INFEASIBLE; // avoid warning |
| 1421 | 1421 |
} |
| 1422 | 1422 |
|
| 1423 | 1423 |
template <typename PivotRuleImpl> |
| 1424 | 1424 |
ProblemType start() {
|
| 1425 | 1425 |
PivotRuleImpl pivot(*this); |
| 1426 | 1426 |
|
| 1427 | 1427 |
// Execute the Network Simplex algorithm |
| 1428 | 1428 |
while (pivot.findEnteringArc()) {
|
| 1429 | 1429 |
findJoinNode(); |
| 1430 | 1430 |
bool change = findLeavingArc(); |
| 1431 | 1431 |
if (delta >= INF) return UNBOUNDED; |
| 1432 | 1432 |
changeFlow(change); |
| 1433 | 1433 |
if (change) {
|
| 1434 | 1434 |
updateTreeStructure(); |
| 1435 | 1435 |
updatePotential(); |
| 1436 | 1436 |
} |
| 1437 | 1437 |
} |
| 1438 | 1438 |
|
| 1439 | 1439 |
// Check feasibility |
| 1440 | 1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
| 1441 | 1441 |
if (_flow[e] != 0) return INFEASIBLE; |
| 1442 | 1442 |
} |
| 1443 | 1443 |
|
| 1444 | 1444 |
// Transform the solution and the supply map to the original form |
| 1445 | 1445 |
if (_have_lower) {
|
| 1446 | 1446 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1447 | 1447 |
Value c = _lower[i]; |
| 1448 | 1448 |
if (c != 0) {
|
| 1449 | 1449 |
_flow[i] += c; |
| 1450 | 1450 |
_supply[_source[i]] += c; |
| 1451 | 1451 |
_supply[_target[i]] -= c; |
| 1452 | 1452 |
} |
| 1453 | 1453 |
} |
| 1454 | 1454 |
} |
| 1455 | 1455 |
|
| 1456 | 1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
| 1457 | 1457 |
// optimality conditions |
| 1458 | 1458 |
if (_sum_supply == 0) {
|
| 1459 | 1459 |
if (_stype == GEQ) {
|
| 1460 |
Cost max_pot = std::numeric_limits<Cost>:: |
|
| 1460 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
|
| 1461 | 1461 |
for (int i = 0; i != _node_num; ++i) {
|
| 1462 | 1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
| 1463 | 1463 |
} |
| 1464 | 1464 |
if (max_pot > 0) {
|
| 1465 | 1465 |
for (int i = 0; i != _node_num; ++i) |
| 1466 | 1466 |
_pi[i] -= max_pot; |
| 1467 | 1467 |
} |
| 1468 | 1468 |
} else {
|
| 1469 | 1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
| 1470 | 1470 |
for (int i = 0; i != _node_num; ++i) {
|
| 1471 | 1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
| 1472 | 1472 |
} |
| 1473 | 1473 |
if (min_pot < 0) {
|
| 1474 | 1474 |
for (int i = 0; i != _node_num; ++i) |
| 1475 | 1475 |
_pi[i] -= min_pot; |
| 1476 | 1476 |
} |
| 1477 | 1477 |
} |
| 1478 | 1478 |
} |
| 1479 | 1479 |
|
| 1480 | 1480 |
return OPTIMAL; |
| 1481 | 1481 |
} |
| 1482 | 1482 |
|
| 1483 | 1483 |
}; //class NetworkSimplex |
| 1484 | 1484 |
|
| 1485 | 1485 |
///@} |
| 1486 | 1486 |
|
| 1487 | 1487 |
} //namespace lemon |
| 1488 | 1488 |
|
| 1489 | 1489 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)