| ... | ... |
@@ -21,1469 +21,1469 @@ |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup min_cost_flow_algs |
| 23 | 23 |
/// |
| 24 | 24 |
/// \file |
| 25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <limits> |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup min_cost_flow_algs |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 44 | 44 |
/// This algorithm is a specialized version of the linear programming |
| 45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
| 46 | 46 |
/// It is one of the most efficient solution methods. |
| 47 | 47 |
/// |
| 48 | 48 |
/// In general this class is the fastest implementation available |
| 49 | 49 |
/// in LEMON for the minimum cost flow problem. |
| 50 | 50 |
/// Moreover it supports both directions of the supply/demand inequality |
| 51 | 51 |
/// constraints. For more information see \ref SupplyType. |
| 52 | 52 |
/// |
| 53 | 53 |
/// Most of the parameters of the problem (except for the digraph) |
| 54 | 54 |
/// can be given using separate functions, and the algorithm can be |
| 55 | 55 |
/// executed using the \ref run() function. If some parameters are not |
| 56 | 56 |
/// specified, then default values will be used. |
| 57 | 57 |
/// |
| 58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
| 59 | 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
| 60 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
| 61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
| 62 | 62 |
/// algorithm. By default it is the same as \c V. |
| 63 | 63 |
/// |
| 64 | 64 |
/// \warning Both value types must be signed and all input data must |
| 65 | 65 |
/// be integer. |
| 66 | 66 |
/// |
| 67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
| 68 | 68 |
/// implementations, from which the most efficient one is used |
| 69 | 69 |
/// by default. For more information see \ref PivotRule. |
| 70 | 70 |
template <typename GR, typename V = int, typename C = V> |
| 71 | 71 |
class NetworkSimplex |
| 72 | 72 |
{
|
| 73 | 73 |
public: |
| 74 | 74 |
|
| 75 | 75 |
/// The type of the flow amounts, capacity bounds and supply values |
| 76 | 76 |
typedef V Value; |
| 77 | 77 |
/// The type of the arc costs |
| 78 | 78 |
typedef C Cost; |
| 79 | 79 |
|
| 80 | 80 |
public: |
| 81 | 81 |
|
| 82 | 82 |
/// \brief Problem type constants for the \c run() function. |
| 83 | 83 |
/// |
| 84 | 84 |
/// Enum type containing the problem type constants that can be |
| 85 | 85 |
/// returned by the \ref run() function of the algorithm. |
| 86 | 86 |
enum ProblemType {
|
| 87 | 87 |
/// The problem has no feasible solution (flow). |
| 88 | 88 |
INFEASIBLE, |
| 89 | 89 |
/// The problem has optimal solution (i.e. it is feasible and |
| 90 | 90 |
/// bounded), and the algorithm has found optimal flow and node |
| 91 | 91 |
/// potentials (primal and dual solutions). |
| 92 | 92 |
OPTIMAL, |
| 93 | 93 |
/// The objective function of the problem is unbounded, i.e. |
| 94 | 94 |
/// there is a directed cycle having negative total cost and |
| 95 | 95 |
/// infinite upper bound. |
| 96 | 96 |
UNBOUNDED |
| 97 | 97 |
}; |
| 98 | 98 |
|
| 99 | 99 |
/// \brief Constants for selecting the type of the supply constraints. |
| 100 | 100 |
/// |
| 101 | 101 |
/// Enum type containing constants for selecting the supply type, |
| 102 | 102 |
/// i.e. the direction of the inequalities in the supply/demand |
| 103 | 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 104 | 104 |
/// |
| 105 | 105 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
| 106 | 106 |
/// selected using \ref supplyType(). |
| 107 | 107 |
/// The equality form is a special case of both supply types. |
| 108 | 108 |
enum SupplyType {
|
| 109 | 109 |
/// This option means that there are <em>"greater or equal"</em> |
| 110 | 110 |
/// supply/demand constraints in the definition of the problem. |
| 111 | 111 |
GEQ, |
| 112 | 112 |
/// This option means that there are <em>"less or equal"</em> |
| 113 | 113 |
/// supply/demand constraints in the definition of the problem. |
| 114 | 114 |
LEQ |
| 115 | 115 |
}; |
| 116 | 116 |
|
| 117 | 117 |
/// \brief Constants for selecting the pivot rule. |
| 118 | 118 |
/// |
| 119 | 119 |
/// Enum type containing constants for selecting the pivot rule for |
| 120 | 120 |
/// the \ref run() function. |
| 121 | 121 |
/// |
| 122 | 122 |
/// \ref NetworkSimplex provides five different pivot rule |
| 123 | 123 |
/// implementations that significantly affect the running time |
| 124 | 124 |
/// of the algorithm. |
| 125 | 125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
| 126 | 126 |
/// proved to be the most efficient and the most robust on various |
| 127 | 127 |
/// test inputs according to our benchmark tests. |
| 128 | 128 |
/// However another pivot rule can be selected using the \ref run() |
| 129 | 129 |
/// function with the proper parameter. |
| 130 | 130 |
enum PivotRule {
|
| 131 | 131 |
|
| 132 | 132 |
/// The First Eligible pivot rule. |
| 133 | 133 |
/// The next eligible arc is selected in a wraparound fashion |
| 134 | 134 |
/// in every iteration. |
| 135 | 135 |
FIRST_ELIGIBLE, |
| 136 | 136 |
|
| 137 | 137 |
/// The Best Eligible pivot rule. |
| 138 | 138 |
/// The best eligible arc is selected in every iteration. |
| 139 | 139 |
BEST_ELIGIBLE, |
| 140 | 140 |
|
| 141 | 141 |
/// The Block Search pivot rule. |
| 142 | 142 |
/// A specified number of arcs are examined in every iteration |
| 143 | 143 |
/// in a wraparound fashion and the best eligible arc is selected |
| 144 | 144 |
/// from this block. |
| 145 | 145 |
BLOCK_SEARCH, |
| 146 | 146 |
|
| 147 | 147 |
/// The Candidate List pivot rule. |
| 148 | 148 |
/// In a major iteration a candidate list is built from eligible arcs |
| 149 | 149 |
/// in a wraparound fashion and in the following minor iterations |
| 150 | 150 |
/// the best eligible arc is selected from this list. |
| 151 | 151 |
CANDIDATE_LIST, |
| 152 | 152 |
|
| 153 | 153 |
/// The Altering Candidate List pivot rule. |
| 154 | 154 |
/// It is a modified version of the Candidate List method. |
| 155 | 155 |
/// It keeps only the several best eligible arcs from the former |
| 156 | 156 |
/// candidate list and extends this list in every iteration. |
| 157 | 157 |
ALTERING_LIST |
| 158 | 158 |
}; |
| 159 | 159 |
|
| 160 | 160 |
private: |
| 161 | 161 |
|
| 162 | 162 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 163 | 163 |
|
| 164 | 164 |
typedef std::vector<Arc> ArcVector; |
| 165 | 165 |
typedef std::vector<Node> NodeVector; |
| 166 | 166 |
typedef std::vector<int> IntVector; |
| 167 | 167 |
typedef std::vector<bool> BoolVector; |
| 168 | 168 |
typedef std::vector<Value> ValueVector; |
| 169 | 169 |
typedef std::vector<Cost> CostVector; |
| 170 | 170 |
|
| 171 | 171 |
// State constants for arcs |
| 172 | 172 |
enum ArcStateEnum {
|
| 173 | 173 |
STATE_UPPER = -1, |
| 174 | 174 |
STATE_TREE = 0, |
| 175 | 175 |
STATE_LOWER = 1 |
| 176 | 176 |
}; |
| 177 | 177 |
|
| 178 | 178 |
private: |
| 179 | 179 |
|
| 180 | 180 |
// Data related to the underlying digraph |
| 181 | 181 |
const GR &_graph; |
| 182 | 182 |
int _node_num; |
| 183 | 183 |
int _arc_num; |
| 184 | 184 |
int _all_arc_num; |
| 185 | 185 |
int _search_arc_num; |
| 186 | 186 |
|
| 187 | 187 |
// Parameters of the problem |
| 188 | 188 |
bool _have_lower; |
| 189 | 189 |
SupplyType _stype; |
| 190 | 190 |
Value _sum_supply; |
| 191 | 191 |
|
| 192 | 192 |
// Data structures for storing the digraph |
| 193 | 193 |
IntNodeMap _node_id; |
| 194 | 194 |
IntArcMap _arc_id; |
| 195 | 195 |
IntVector _source; |
| 196 | 196 |
IntVector _target; |
| 197 | 197 |
|
| 198 | 198 |
// Node and arc data |
| 199 | 199 |
ValueVector _lower; |
| 200 | 200 |
ValueVector _upper; |
| 201 | 201 |
ValueVector _cap; |
| 202 | 202 |
CostVector _cost; |
| 203 | 203 |
ValueVector _supply; |
| 204 | 204 |
ValueVector _flow; |
| 205 | 205 |
CostVector _pi; |
| 206 | 206 |
|
| 207 | 207 |
// Data for storing the spanning tree structure |
| 208 | 208 |
IntVector _parent; |
| 209 | 209 |
IntVector _pred; |
| 210 | 210 |
IntVector _thread; |
| 211 | 211 |
IntVector _rev_thread; |
| 212 | 212 |
IntVector _succ_num; |
| 213 | 213 |
IntVector _last_succ; |
| 214 | 214 |
IntVector _dirty_revs; |
| 215 | 215 |
BoolVector _forward; |
| 216 | 216 |
IntVector _state; |
| 217 | 217 |
int _root; |
| 218 | 218 |
|
| 219 | 219 |
// Temporary data used in the current pivot iteration |
| 220 | 220 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 221 | 221 |
int first, second, right, last; |
| 222 | 222 |
int stem, par_stem, new_stem; |
| 223 | 223 |
Value delta; |
| 224 | 224 |
|
| 225 | 225 |
public: |
| 226 | 226 |
|
| 227 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
| 228 | 228 |
/// |
| 229 | 229 |
/// Constant for infinite upper bounds (capacities). |
| 230 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 231 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 232 | 232 |
const Value INF; |
| 233 | 233 |
|
| 234 | 234 |
private: |
| 235 | 235 |
|
| 236 | 236 |
// Implementation of the First Eligible pivot rule |
| 237 | 237 |
class FirstEligiblePivotRule |
| 238 | 238 |
{
|
| 239 | 239 |
private: |
| 240 | 240 |
|
| 241 | 241 |
// References to the NetworkSimplex class |
| 242 | 242 |
const IntVector &_source; |
| 243 | 243 |
const IntVector &_target; |
| 244 | 244 |
const CostVector &_cost; |
| 245 | 245 |
const IntVector &_state; |
| 246 | 246 |
const CostVector &_pi; |
| 247 | 247 |
int &_in_arc; |
| 248 | 248 |
int _search_arc_num; |
| 249 | 249 |
|
| 250 | 250 |
// Pivot rule data |
| 251 | 251 |
int _next_arc; |
| 252 | 252 |
|
| 253 | 253 |
public: |
| 254 | 254 |
|
| 255 | 255 |
// Constructor |
| 256 | 256 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 257 | 257 |
_source(ns._source), _target(ns._target), |
| 258 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 259 | 259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 260 | 260 |
_next_arc(0) |
| 261 | 261 |
{}
|
| 262 | 262 |
|
| 263 | 263 |
// Find next entering arc |
| 264 | 264 |
bool findEnteringArc() {
|
| 265 | 265 |
Cost c; |
| 266 | 266 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
| 267 | 267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 268 | 268 |
if (c < 0) {
|
| 269 | 269 |
_in_arc = e; |
| 270 | 270 |
_next_arc = e + 1; |
| 271 | 271 |
return true; |
| 272 | 272 |
} |
| 273 | 273 |
} |
| 274 | 274 |
for (int e = 0; e < _next_arc; ++e) {
|
| 275 | 275 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 276 | 276 |
if (c < 0) {
|
| 277 | 277 |
_in_arc = e; |
| 278 | 278 |
_next_arc = e + 1; |
| 279 | 279 |
return true; |
| 280 | 280 |
} |
| 281 | 281 |
} |
| 282 | 282 |
return false; |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
}; //class FirstEligiblePivotRule |
| 286 | 286 |
|
| 287 | 287 |
|
| 288 | 288 |
// Implementation of the Best Eligible pivot rule |
| 289 | 289 |
class BestEligiblePivotRule |
| 290 | 290 |
{
|
| 291 | 291 |
private: |
| 292 | 292 |
|
| 293 | 293 |
// References to the NetworkSimplex class |
| 294 | 294 |
const IntVector &_source; |
| 295 | 295 |
const IntVector &_target; |
| 296 | 296 |
const CostVector &_cost; |
| 297 | 297 |
const IntVector &_state; |
| 298 | 298 |
const CostVector &_pi; |
| 299 | 299 |
int &_in_arc; |
| 300 | 300 |
int _search_arc_num; |
| 301 | 301 |
|
| 302 | 302 |
public: |
| 303 | 303 |
|
| 304 | 304 |
// Constructor |
| 305 | 305 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 306 | 306 |
_source(ns._source), _target(ns._target), |
| 307 | 307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 308 | 308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
| 309 | 309 |
{}
|
| 310 | 310 |
|
| 311 | 311 |
// Find next entering arc |
| 312 | 312 |
bool findEnteringArc() {
|
| 313 | 313 |
Cost c, min = 0; |
| 314 | 314 |
for (int e = 0; e < _search_arc_num; ++e) {
|
| 315 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 316 | 316 |
if (c < min) {
|
| 317 | 317 |
min = c; |
| 318 | 318 |
_in_arc = e; |
| 319 | 319 |
} |
| 320 | 320 |
} |
| 321 | 321 |
return min < 0; |
| 322 | 322 |
} |
| 323 | 323 |
|
| 324 | 324 |
}; //class BestEligiblePivotRule |
| 325 | 325 |
|
| 326 | 326 |
|
| 327 | 327 |
// Implementation of the Block Search pivot rule |
| 328 | 328 |
class BlockSearchPivotRule |
| 329 | 329 |
{
|
| 330 | 330 |
private: |
| 331 | 331 |
|
| 332 | 332 |
// References to the NetworkSimplex class |
| 333 | 333 |
const IntVector &_source; |
| 334 | 334 |
const IntVector &_target; |
| 335 | 335 |
const CostVector &_cost; |
| 336 | 336 |
const IntVector &_state; |
| 337 | 337 |
const CostVector &_pi; |
| 338 | 338 |
int &_in_arc; |
| 339 | 339 |
int _search_arc_num; |
| 340 | 340 |
|
| 341 | 341 |
// Pivot rule data |
| 342 | 342 |
int _block_size; |
| 343 | 343 |
int _next_arc; |
| 344 | 344 |
|
| 345 | 345 |
public: |
| 346 | 346 |
|
| 347 | 347 |
// Constructor |
| 348 | 348 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 349 | 349 |
_source(ns._source), _target(ns._target), |
| 350 | 350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 351 | 351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 352 | 352 |
_next_arc(0) |
| 353 | 353 |
{
|
| 354 | 354 |
// The main parameters of the pivot rule |
| 355 | 355 |
const double BLOCK_SIZE_FACTOR = 0.5; |
| 356 | 356 |
const int MIN_BLOCK_SIZE = 10; |
| 357 | 357 |
|
| 358 | 358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 359 | 359 |
std::sqrt(double(_search_arc_num))), |
| 360 | 360 |
MIN_BLOCK_SIZE ); |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
// Find next entering arc |
| 364 | 364 |
bool findEnteringArc() {
|
| 365 | 365 |
Cost c, min = 0; |
| 366 | 366 |
int cnt = _block_size; |
| 367 | 367 |
int e, min_arc = _next_arc; |
| 368 | 368 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
| 369 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 370 | 370 |
if (c < min) {
|
| 371 | 371 |
min = c; |
| 372 | 372 |
min_arc = e; |
| 373 | 373 |
} |
| 374 | 374 |
if (--cnt == 0) {
|
| 375 | 375 |
if (min < 0) break; |
| 376 | 376 |
cnt = _block_size; |
| 377 | 377 |
} |
| 378 | 378 |
} |
| 379 | 379 |
if (min == 0 || cnt > 0) {
|
| 380 | 380 |
for (e = 0; e < _next_arc; ++e) {
|
| 381 | 381 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 382 | 382 |
if (c < min) {
|
| 383 | 383 |
min = c; |
| 384 | 384 |
min_arc = e; |
| 385 | 385 |
} |
| 386 | 386 |
if (--cnt == 0) {
|
| 387 | 387 |
if (min < 0) break; |
| 388 | 388 |
cnt = _block_size; |
| 389 | 389 |
} |
| 390 | 390 |
} |
| 391 | 391 |
} |
| 392 | 392 |
if (min >= 0) return false; |
| 393 | 393 |
_in_arc = min_arc; |
| 394 | 394 |
_next_arc = e; |
| 395 | 395 |
return true; |
| 396 | 396 |
} |
| 397 | 397 |
|
| 398 | 398 |
}; //class BlockSearchPivotRule |
| 399 | 399 |
|
| 400 | 400 |
|
| 401 | 401 |
// Implementation of the Candidate List pivot rule |
| 402 | 402 |
class CandidateListPivotRule |
| 403 | 403 |
{
|
| 404 | 404 |
private: |
| 405 | 405 |
|
| 406 | 406 |
// References to the NetworkSimplex class |
| 407 | 407 |
const IntVector &_source; |
| 408 | 408 |
const IntVector &_target; |
| 409 | 409 |
const CostVector &_cost; |
| 410 | 410 |
const IntVector &_state; |
| 411 | 411 |
const CostVector &_pi; |
| 412 | 412 |
int &_in_arc; |
| 413 | 413 |
int _search_arc_num; |
| 414 | 414 |
|
| 415 | 415 |
// Pivot rule data |
| 416 | 416 |
IntVector _candidates; |
| 417 | 417 |
int _list_length, _minor_limit; |
| 418 | 418 |
int _curr_length, _minor_count; |
| 419 | 419 |
int _next_arc; |
| 420 | 420 |
|
| 421 | 421 |
public: |
| 422 | 422 |
|
| 423 | 423 |
/// Constructor |
| 424 | 424 |
CandidateListPivotRule(NetworkSimplex &ns) : |
| 425 | 425 |
_source(ns._source), _target(ns._target), |
| 426 | 426 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 427 | 427 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 428 | 428 |
_next_arc(0) |
| 429 | 429 |
{
|
| 430 | 430 |
// The main parameters of the pivot rule |
| 431 | 431 |
const double LIST_LENGTH_FACTOR = 1.0; |
| 432 | 432 |
const int MIN_LIST_LENGTH = 10; |
| 433 | 433 |
const double MINOR_LIMIT_FACTOR = 0.1; |
| 434 | 434 |
const int MIN_MINOR_LIMIT = 3; |
| 435 | 435 |
|
| 436 | 436 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
| 437 | 437 |
std::sqrt(double(_search_arc_num))), |
| 438 | 438 |
MIN_LIST_LENGTH ); |
| 439 | 439 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
| 440 | 440 |
MIN_MINOR_LIMIT ); |
| 441 | 441 |
_curr_length = _minor_count = 0; |
| 442 | 442 |
_candidates.resize(_list_length); |
| 443 | 443 |
} |
| 444 | 444 |
|
| 445 | 445 |
/// Find next entering arc |
| 446 | 446 |
bool findEnteringArc() {
|
| 447 | 447 |
Cost min, c; |
| 448 | 448 |
int e, min_arc = _next_arc; |
| 449 | 449 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 450 | 450 |
// Minor iteration: select the best eligible arc from the |
| 451 | 451 |
// current candidate list |
| 452 | 452 |
++_minor_count; |
| 453 | 453 |
min = 0; |
| 454 | 454 |
for (int i = 0; i < _curr_length; ++i) {
|
| 455 | 455 |
e = _candidates[i]; |
| 456 | 456 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 457 | 457 |
if (c < min) {
|
| 458 | 458 |
min = c; |
| 459 | 459 |
min_arc = e; |
| 460 | 460 |
} |
| 461 | 461 |
if (c >= 0) {
|
| 462 | 462 |
_candidates[i--] = _candidates[--_curr_length]; |
| 463 | 463 |
} |
| 464 | 464 |
} |
| 465 | 465 |
if (min < 0) {
|
| 466 | 466 |
_in_arc = min_arc; |
| 467 | 467 |
return true; |
| 468 | 468 |
} |
| 469 | 469 |
} |
| 470 | 470 |
|
| 471 | 471 |
// Major iteration: build a new candidate list |
| 472 | 472 |
min = 0; |
| 473 | 473 |
_curr_length = 0; |
| 474 | 474 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
| 475 | 475 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 476 | 476 |
if (c < 0) {
|
| 477 | 477 |
_candidates[_curr_length++] = e; |
| 478 | 478 |
if (c < min) {
|
| 479 | 479 |
min = c; |
| 480 | 480 |
min_arc = e; |
| 481 | 481 |
} |
| 482 | 482 |
if (_curr_length == _list_length) break; |
| 483 | 483 |
} |
| 484 | 484 |
} |
| 485 | 485 |
if (_curr_length < _list_length) {
|
| 486 | 486 |
for (e = 0; e < _next_arc; ++e) {
|
| 487 | 487 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 488 | 488 |
if (c < 0) {
|
| 489 | 489 |
_candidates[_curr_length++] = e; |
| 490 | 490 |
if (c < min) {
|
| 491 | 491 |
min = c; |
| 492 | 492 |
min_arc = e; |
| 493 | 493 |
} |
| 494 | 494 |
if (_curr_length == _list_length) break; |
| 495 | 495 |
} |
| 496 | 496 |
} |
| 497 | 497 |
} |
| 498 | 498 |
if (_curr_length == 0) return false; |
| 499 | 499 |
_minor_count = 1; |
| 500 | 500 |
_in_arc = min_arc; |
| 501 | 501 |
_next_arc = e; |
| 502 | 502 |
return true; |
| 503 | 503 |
} |
| 504 | 504 |
|
| 505 | 505 |
}; //class CandidateListPivotRule |
| 506 | 506 |
|
| 507 | 507 |
|
| 508 | 508 |
// Implementation of the Altering Candidate List pivot rule |
| 509 | 509 |
class AlteringListPivotRule |
| 510 | 510 |
{
|
| 511 | 511 |
private: |
| 512 | 512 |
|
| 513 | 513 |
// References to the NetworkSimplex class |
| 514 | 514 |
const IntVector &_source; |
| 515 | 515 |
const IntVector &_target; |
| 516 | 516 |
const CostVector &_cost; |
| 517 | 517 |
const IntVector &_state; |
| 518 | 518 |
const CostVector &_pi; |
| 519 | 519 |
int &_in_arc; |
| 520 | 520 |
int _search_arc_num; |
| 521 | 521 |
|
| 522 | 522 |
// Pivot rule data |
| 523 | 523 |
int _block_size, _head_length, _curr_length; |
| 524 | 524 |
int _next_arc; |
| 525 | 525 |
IntVector _candidates; |
| 526 | 526 |
CostVector _cand_cost; |
| 527 | 527 |
|
| 528 | 528 |
// Functor class to compare arcs during sort of the candidate list |
| 529 | 529 |
class SortFunc |
| 530 | 530 |
{
|
| 531 | 531 |
private: |
| 532 | 532 |
const CostVector &_map; |
| 533 | 533 |
public: |
| 534 | 534 |
SortFunc(const CostVector &map) : _map(map) {}
|
| 535 | 535 |
bool operator()(int left, int right) {
|
| 536 | 536 |
return _map[left] > _map[right]; |
| 537 | 537 |
} |
| 538 | 538 |
}; |
| 539 | 539 |
|
| 540 | 540 |
SortFunc _sort_func; |
| 541 | 541 |
|
| 542 | 542 |
public: |
| 543 | 543 |
|
| 544 | 544 |
// Constructor |
| 545 | 545 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 546 | 546 |
_source(ns._source), _target(ns._target), |
| 547 | 547 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 548 | 548 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 549 | 549 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
| 550 | 550 |
{
|
| 551 | 551 |
// The main parameters of the pivot rule |
| 552 | 552 |
const double BLOCK_SIZE_FACTOR = 1.5; |
| 553 | 553 |
const int MIN_BLOCK_SIZE = 10; |
| 554 | 554 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 555 | 555 |
const int MIN_HEAD_LENGTH = 3; |
| 556 | 556 |
|
| 557 | 557 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 558 | 558 |
std::sqrt(double(_search_arc_num))), |
| 559 | 559 |
MIN_BLOCK_SIZE ); |
| 560 | 560 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 561 | 561 |
MIN_HEAD_LENGTH ); |
| 562 | 562 |
_candidates.resize(_head_length + _block_size); |
| 563 | 563 |
_curr_length = 0; |
| 564 | 564 |
} |
| 565 | 565 |
|
| 566 | 566 |
// Find next entering arc |
| 567 | 567 |
bool findEnteringArc() {
|
| 568 | 568 |
// Check the current candidate list |
| 569 | 569 |
int e; |
| 570 | 570 |
for (int i = 0; i < _curr_length; ++i) {
|
| 571 | 571 |
e = _candidates[i]; |
| 572 | 572 |
_cand_cost[e] = _state[e] * |
| 573 | 573 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 574 | 574 |
if (_cand_cost[e] >= 0) {
|
| 575 | 575 |
_candidates[i--] = _candidates[--_curr_length]; |
| 576 | 576 |
} |
| 577 | 577 |
} |
| 578 | 578 |
|
| 579 | 579 |
// Extend the list |
| 580 | 580 |
int cnt = _block_size; |
| 581 | 581 |
int last_arc = 0; |
| 582 | 582 |
int limit = _head_length; |
| 583 | 583 |
|
| 584 | 584 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
| 585 | 585 |
_cand_cost[e] = _state[e] * |
| 586 | 586 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 587 | 587 |
if (_cand_cost[e] < 0) {
|
| 588 | 588 |
_candidates[_curr_length++] = e; |
| 589 | 589 |
last_arc = e; |
| 590 | 590 |
} |
| 591 | 591 |
if (--cnt == 0) {
|
| 592 | 592 |
if (_curr_length > limit) break; |
| 593 | 593 |
limit = 0; |
| 594 | 594 |
cnt = _block_size; |
| 595 | 595 |
} |
| 596 | 596 |
} |
| 597 | 597 |
if (_curr_length <= limit) {
|
| 598 | 598 |
for (int e = 0; e < _next_arc; ++e) {
|
| 599 | 599 |
_cand_cost[e] = _state[e] * |
| 600 | 600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 601 | 601 |
if (_cand_cost[e] < 0) {
|
| 602 | 602 |
_candidates[_curr_length++] = e; |
| 603 | 603 |
last_arc = e; |
| 604 | 604 |
} |
| 605 | 605 |
if (--cnt == 0) {
|
| 606 | 606 |
if (_curr_length > limit) break; |
| 607 | 607 |
limit = 0; |
| 608 | 608 |
cnt = _block_size; |
| 609 | 609 |
} |
| 610 | 610 |
} |
| 611 | 611 |
} |
| 612 | 612 |
if (_curr_length == 0) return false; |
| 613 | 613 |
_next_arc = last_arc + 1; |
| 614 | 614 |
|
| 615 | 615 |
// Make heap of the candidate list (approximating a partial sort) |
| 616 | 616 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 617 | 617 |
_sort_func ); |
| 618 | 618 |
|
| 619 | 619 |
// Pop the first element of the heap |
| 620 | 620 |
_in_arc = _candidates[0]; |
| 621 | 621 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 622 | 622 |
_sort_func ); |
| 623 | 623 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 624 | 624 |
return true; |
| 625 | 625 |
} |
| 626 | 626 |
|
| 627 | 627 |
}; //class AlteringListPivotRule |
| 628 | 628 |
|
| 629 | 629 |
public: |
| 630 | 630 |
|
| 631 | 631 |
/// \brief Constructor. |
| 632 | 632 |
/// |
| 633 | 633 |
/// The constructor of the class. |
| 634 | 634 |
/// |
| 635 | 635 |
/// \param graph The digraph the algorithm runs on. |
| 636 | 636 |
NetworkSimplex(const GR& graph) : |
| 637 | 637 |
_graph(graph), _node_id(graph), _arc_id(graph), |
| 638 | 638 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 639 | 639 |
std::numeric_limits<Value>::infinity() : |
| 640 | 640 |
std::numeric_limits<Value>::max()) |
| 641 | 641 |
{
|
| 642 | 642 |
// Check the value types |
| 643 | 643 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 644 | 644 |
"The flow type of NetworkSimplex must be signed"); |
| 645 | 645 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 646 | 646 |
"The cost type of NetworkSimplex must be signed"); |
| 647 | 647 |
|
| 648 | 648 |
// Resize vectors |
| 649 | 649 |
_node_num = countNodes(_graph); |
| 650 | 650 |
_arc_num = countArcs(_graph); |
| 651 | 651 |
int all_node_num = _node_num + 1; |
| 652 | 652 |
int max_arc_num = _arc_num + 2 * _node_num; |
| 653 | 653 |
|
| 654 | 654 |
_source.resize(max_arc_num); |
| 655 | 655 |
_target.resize(max_arc_num); |
| 656 | 656 |
|
| 657 | 657 |
_lower.resize(_arc_num); |
| 658 | 658 |
_upper.resize(_arc_num); |
| 659 | 659 |
_cap.resize(max_arc_num); |
| 660 | 660 |
_cost.resize(max_arc_num); |
| 661 | 661 |
_supply.resize(all_node_num); |
| 662 | 662 |
_flow.resize(max_arc_num); |
| 663 | 663 |
_pi.resize(all_node_num); |
| 664 | 664 |
|
| 665 | 665 |
_parent.resize(all_node_num); |
| 666 | 666 |
_pred.resize(all_node_num); |
| 667 | 667 |
_forward.resize(all_node_num); |
| 668 | 668 |
_thread.resize(all_node_num); |
| 669 | 669 |
_rev_thread.resize(all_node_num); |
| 670 | 670 |
_succ_num.resize(all_node_num); |
| 671 | 671 |
_last_succ.resize(all_node_num); |
| 672 | 672 |
_state.resize(max_arc_num); |
| 673 | 673 |
|
| 674 | 674 |
// Copy the graph (store the arcs in a mixed order) |
| 675 | 675 |
int i = 0; |
| 676 | 676 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 677 | 677 |
_node_id[n] = i; |
| 678 | 678 |
} |
| 679 | 679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
| 680 | 680 |
i = 0; |
| 681 | 681 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 682 | 682 |
_arc_id[a] = i; |
| 683 | 683 |
_source[i] = _node_id[_graph.source(a)]; |
| 684 | 684 |
_target[i] = _node_id[_graph.target(a)]; |
| 685 | 685 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
| 686 | 686 |
} |
| 687 | 687 |
|
| 688 | 688 |
// Initialize maps |
| 689 | 689 |
for (int i = 0; i != _node_num; ++i) {
|
| 690 | 690 |
_supply[i] = 0; |
| 691 | 691 |
} |
| 692 | 692 |
for (int i = 0; i != _arc_num; ++i) {
|
| 693 | 693 |
_lower[i] = 0; |
| 694 | 694 |
_upper[i] = INF; |
| 695 | 695 |
_cost[i] = 1; |
| 696 | 696 |
} |
| 697 | 697 |
_have_lower = false; |
| 698 | 698 |
_stype = GEQ; |
| 699 | 699 |
} |
| 700 | 700 |
|
| 701 | 701 |
/// \name Parameters |
| 702 | 702 |
/// The parameters of the algorithm can be specified using these |
| 703 | 703 |
/// functions. |
| 704 | 704 |
|
| 705 | 705 |
/// @{
|
| 706 | 706 |
|
| 707 | 707 |
/// \brief Set the lower bounds on the arcs. |
| 708 | 708 |
/// |
| 709 | 709 |
/// This function sets the lower bounds on the arcs. |
| 710 | 710 |
/// If it is not used before calling \ref run(), the lower bounds |
| 711 | 711 |
/// will be set to zero on all arcs. |
| 712 | 712 |
/// |
| 713 | 713 |
/// \param map An arc map storing the lower bounds. |
| 714 | 714 |
/// Its \c Value type must be convertible to the \c Value type |
| 715 | 715 |
/// of the algorithm. |
| 716 | 716 |
/// |
| 717 | 717 |
/// \return <tt>(*this)</tt> |
| 718 | 718 |
template <typename LowerMap> |
| 719 | 719 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
| 720 | 720 |
_have_lower = true; |
| 721 | 721 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 722 | 722 |
_lower[_arc_id[a]] = map[a]; |
| 723 | 723 |
} |
| 724 | 724 |
return *this; |
| 725 | 725 |
} |
| 726 | 726 |
|
| 727 | 727 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 728 | 728 |
/// |
| 729 | 729 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 730 | 730 |
/// If it is not used before calling \ref run(), the upper bounds |
| 731 | 731 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 732 | 732 |
/// unbounded from above on each arc). |
| 733 | 733 |
/// |
| 734 | 734 |
/// \param map An arc map storing the upper bounds. |
| 735 | 735 |
/// Its \c Value type must be convertible to the \c Value type |
| 736 | 736 |
/// of the algorithm. |
| 737 | 737 |
/// |
| 738 | 738 |
/// \return <tt>(*this)</tt> |
| 739 | 739 |
template<typename UpperMap> |
| 740 | 740 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
| 741 | 741 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 742 | 742 |
_upper[_arc_id[a]] = map[a]; |
| 743 | 743 |
} |
| 744 | 744 |
return *this; |
| 745 | 745 |
} |
| 746 | 746 |
|
| 747 | 747 |
/// \brief Set the costs of the arcs. |
| 748 | 748 |
/// |
| 749 | 749 |
/// This function sets the costs of the arcs. |
| 750 | 750 |
/// If it is not used before calling \ref run(), the costs |
| 751 | 751 |
/// will be set to \c 1 on all arcs. |
| 752 | 752 |
/// |
| 753 | 753 |
/// \param map An arc map storing the costs. |
| 754 | 754 |
/// Its \c Value type must be convertible to the \c Cost type |
| 755 | 755 |
/// of the algorithm. |
| 756 | 756 |
/// |
| 757 | 757 |
/// \return <tt>(*this)</tt> |
| 758 | 758 |
template<typename CostMap> |
| 759 | 759 |
NetworkSimplex& costMap(const CostMap& map) {
|
| 760 | 760 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 761 | 761 |
_cost[_arc_id[a]] = map[a]; |
| 762 | 762 |
} |
| 763 | 763 |
return *this; |
| 764 | 764 |
} |
| 765 | 765 |
|
| 766 | 766 |
/// \brief Set the supply values of the nodes. |
| 767 | 767 |
/// |
| 768 | 768 |
/// This function sets the supply values of the nodes. |
| 769 | 769 |
/// If neither this function nor \ref stSupply() is used before |
| 770 | 770 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 771 | 771 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 772 | 772 |
/// |
| 773 | 773 |
/// \param map A node map storing the supply values. |
| 774 | 774 |
/// Its \c Value type must be convertible to the \c Value type |
| 775 | 775 |
/// of the algorithm. |
| 776 | 776 |
/// |
| 777 | 777 |
/// \return <tt>(*this)</tt> |
| 778 | 778 |
template<typename SupplyMap> |
| 779 | 779 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
| 780 | 780 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 781 | 781 |
_supply[_node_id[n]] = map[n]; |
| 782 | 782 |
} |
| 783 | 783 |
return *this; |
| 784 | 784 |
} |
| 785 | 785 |
|
| 786 | 786 |
/// \brief Set single source and target nodes and a supply value. |
| 787 | 787 |
/// |
| 788 | 788 |
/// This function sets a single source node and a single target node |
| 789 | 789 |
/// and the required flow value. |
| 790 | 790 |
/// If neither this function nor \ref supplyMap() is used before |
| 791 | 791 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 792 | 792 |
/// (It makes sense only if non-zero lower bounds are given.) |
| 793 | 793 |
/// |
| 794 | 794 |
/// Using this function has the same effect as using \ref supplyMap() |
| 795 | 795 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 796 | 796 |
/// assigned to \c t and all other nodes have zero supply value. |
| 797 | 797 |
/// |
| 798 | 798 |
/// \param s The source node. |
| 799 | 799 |
/// \param t The target node. |
| 800 | 800 |
/// \param k The required amount of flow from node \c s to node \c t |
| 801 | 801 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 802 | 802 |
/// |
| 803 | 803 |
/// \return <tt>(*this)</tt> |
| 804 | 804 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
| 805 | 805 |
for (int i = 0; i != _node_num; ++i) {
|
| 806 | 806 |
_supply[i] = 0; |
| 807 | 807 |
} |
| 808 | 808 |
_supply[_node_id[s]] = k; |
| 809 | 809 |
_supply[_node_id[t]] = -k; |
| 810 | 810 |
return *this; |
| 811 | 811 |
} |
| 812 | 812 |
|
| 813 | 813 |
/// \brief Set the type of the supply constraints. |
| 814 | 814 |
/// |
| 815 | 815 |
/// This function sets the type of the supply/demand constraints. |
| 816 | 816 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
| 817 | 817 |
/// type will be used. |
| 818 | 818 |
/// |
| 819 | 819 |
/// For more information see \ref SupplyType. |
| 820 | 820 |
/// |
| 821 | 821 |
/// \return <tt>(*this)</tt> |
| 822 | 822 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
| 823 | 823 |
_stype = supply_type; |
| 824 | 824 |
return *this; |
| 825 | 825 |
} |
| 826 | 826 |
|
| 827 | 827 |
/// @} |
| 828 | 828 |
|
| 829 | 829 |
/// \name Execution Control |
| 830 | 830 |
/// The algorithm can be executed using \ref run(). |
| 831 | 831 |
|
| 832 | 832 |
/// @{
|
| 833 | 833 |
|
| 834 | 834 |
/// \brief Run the algorithm. |
| 835 | 835 |
/// |
| 836 | 836 |
/// This function runs the algorithm. |
| 837 | 837 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 838 | 838 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
| 839 | 839 |
/// \ref supplyType(). |
| 840 | 840 |
/// For example, |
| 841 | 841 |
/// \code |
| 842 | 842 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 843 | 843 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 844 | 844 |
/// .supplyMap(sup).run(); |
| 845 | 845 |
/// \endcode |
| 846 | 846 |
/// |
| 847 | 847 |
/// This function can be called more than once. All the parameters |
| 848 | 848 |
/// that have been given are kept for the next call, unless |
| 849 | 849 |
/// \ref reset() is called, thus only the modified parameters |
| 850 | 850 |
/// have to be set again. See \ref reset() for examples. |
| 851 | 851 |
/// However the underlying digraph must not be modified after this |
| 852 | 852 |
/// class have been constructed, since it copies and extends the graph. |
| 853 | 853 |
/// |
| 854 | 854 |
/// \param pivot_rule The pivot rule that will be used during the |
| 855 | 855 |
/// algorithm. For more information see \ref PivotRule. |
| 856 | 856 |
/// |
| 857 | 857 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 858 | 858 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 859 | 859 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 860 | 860 |
/// optimal flow and node potentials (primal and dual solutions), |
| 861 | 861 |
/// \n \c UNBOUNDED if the objective function of the problem is |
| 862 | 862 |
/// unbounded, i.e. there is a directed cycle having negative total |
| 863 | 863 |
/// cost and infinite upper bound. |
| 864 | 864 |
/// |
| 865 | 865 |
/// \see ProblemType, PivotRule |
| 866 | 866 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 867 | 867 |
if (!init()) return INFEASIBLE; |
| 868 | 868 |
return start(pivot_rule); |
| 869 | 869 |
} |
| 870 | 870 |
|
| 871 | 871 |
/// \brief Reset all the parameters that have been given before. |
| 872 | 872 |
/// |
| 873 | 873 |
/// This function resets all the paramaters that have been given |
| 874 | 874 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 875 | 875 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
| 876 | 876 |
/// |
| 877 | 877 |
/// It is useful for multiple run() calls. If this function is not |
| 878 | 878 |
/// used, all the parameters given before are kept for the next |
| 879 | 879 |
/// \ref run() call. |
| 880 | 880 |
/// However the underlying digraph must not be modified after this |
| 881 | 881 |
/// class have been constructed, since it copies and extends the graph. |
| 882 | 882 |
/// |
| 883 | 883 |
/// For example, |
| 884 | 884 |
/// \code |
| 885 | 885 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 886 | 886 |
/// |
| 887 | 887 |
/// // First run |
| 888 | 888 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 889 | 889 |
/// .supplyMap(sup).run(); |
| 890 | 890 |
/// |
| 891 | 891 |
/// // Run again with modified cost map (reset() is not called, |
| 892 | 892 |
/// // so only the cost map have to be set again) |
| 893 | 893 |
/// cost[e] += 100; |
| 894 | 894 |
/// ns.costMap(cost).run(); |
| 895 | 895 |
/// |
| 896 | 896 |
/// // Run again from scratch using reset() |
| 897 | 897 |
/// // (the lower bounds will be set to zero on all arcs) |
| 898 | 898 |
/// ns.reset(); |
| 899 | 899 |
/// ns.upperMap(capacity).costMap(cost) |
| 900 | 900 |
/// .supplyMap(sup).run(); |
| 901 | 901 |
/// \endcode |
| 902 | 902 |
/// |
| 903 | 903 |
/// \return <tt>(*this)</tt> |
| 904 | 904 |
NetworkSimplex& reset() {
|
| 905 | 905 |
for (int i = 0; i != _node_num; ++i) {
|
| 906 | 906 |
_supply[i] = 0; |
| 907 | 907 |
} |
| 908 | 908 |
for (int i = 0; i != _arc_num; ++i) {
|
| 909 | 909 |
_lower[i] = 0; |
| 910 | 910 |
_upper[i] = INF; |
| 911 | 911 |
_cost[i] = 1; |
| 912 | 912 |
} |
| 913 | 913 |
_have_lower = false; |
| 914 | 914 |
_stype = GEQ; |
| 915 | 915 |
return *this; |
| 916 | 916 |
} |
| 917 | 917 |
|
| 918 | 918 |
/// @} |
| 919 | 919 |
|
| 920 | 920 |
/// \name Query Functions |
| 921 | 921 |
/// The results of the algorithm can be obtained using these |
| 922 | 922 |
/// functions.\n |
| 923 | 923 |
/// The \ref run() function must be called before using them. |
| 924 | 924 |
|
| 925 | 925 |
/// @{
|
| 926 | 926 |
|
| 927 | 927 |
/// \brief Return the total cost of the found flow. |
| 928 | 928 |
/// |
| 929 | 929 |
/// This function returns the total cost of the found flow. |
| 930 | 930 |
/// Its complexity is O(e). |
| 931 | 931 |
/// |
| 932 | 932 |
/// \note The return type of the function can be specified as a |
| 933 | 933 |
/// template parameter. For example, |
| 934 | 934 |
/// \code |
| 935 | 935 |
/// ns.totalCost<double>(); |
| 936 | 936 |
/// \endcode |
| 937 | 937 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 938 | 938 |
/// type of the algorithm, which is the default return type of the |
| 939 | 939 |
/// function. |
| 940 | 940 |
/// |
| 941 | 941 |
/// \pre \ref run() must be called before using this function. |
| 942 | 942 |
template <typename Number> |
| 943 | 943 |
Number totalCost() const {
|
| 944 | 944 |
Number c = 0; |
| 945 | 945 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 946 | 946 |
int i = _arc_id[a]; |
| 947 | 947 |
c += Number(_flow[i]) * Number(_cost[i]); |
| 948 | 948 |
} |
| 949 | 949 |
return c; |
| 950 | 950 |
} |
| 951 | 951 |
|
| 952 | 952 |
#ifndef DOXYGEN |
| 953 | 953 |
Cost totalCost() const {
|
| 954 | 954 |
return totalCost<Cost>(); |
| 955 | 955 |
} |
| 956 | 956 |
#endif |
| 957 | 957 |
|
| 958 | 958 |
/// \brief Return the flow on the given arc. |
| 959 | 959 |
/// |
| 960 | 960 |
/// This function returns the flow on the given arc. |
| 961 | 961 |
/// |
| 962 | 962 |
/// \pre \ref run() must be called before using this function. |
| 963 | 963 |
Value flow(const Arc& a) const {
|
| 964 | 964 |
return _flow[_arc_id[a]]; |
| 965 | 965 |
} |
| 966 | 966 |
|
| 967 | 967 |
/// \brief Return the flow map (the primal solution). |
| 968 | 968 |
/// |
| 969 | 969 |
/// This function copies the flow value on each arc into the given |
| 970 | 970 |
/// map. The \c Value type of the algorithm must be convertible to |
| 971 | 971 |
/// the \c Value type of the map. |
| 972 | 972 |
/// |
| 973 | 973 |
/// \pre \ref run() must be called before using this function. |
| 974 | 974 |
template <typename FlowMap> |
| 975 | 975 |
void flowMap(FlowMap &map) const {
|
| 976 | 976 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 977 | 977 |
map.set(a, _flow[_arc_id[a]]); |
| 978 | 978 |
} |
| 979 | 979 |
} |
| 980 | 980 |
|
| 981 | 981 |
/// \brief Return the potential (dual value) of the given node. |
| 982 | 982 |
/// |
| 983 | 983 |
/// This function returns the potential (dual value) of the |
| 984 | 984 |
/// given node. |
| 985 | 985 |
/// |
| 986 | 986 |
/// \pre \ref run() must be called before using this function. |
| 987 | 987 |
Cost potential(const Node& n) const {
|
| 988 | 988 |
return _pi[_node_id[n]]; |
| 989 | 989 |
} |
| 990 | 990 |
|
| 991 | 991 |
/// \brief Return the potential map (the dual solution). |
| 992 | 992 |
/// |
| 993 | 993 |
/// This function copies the potential (dual value) of each node |
| 994 | 994 |
/// into the given map. |
| 995 | 995 |
/// The \c Cost type of the algorithm must be convertible to the |
| 996 | 996 |
/// \c Value type of the map. |
| 997 | 997 |
/// |
| 998 | 998 |
/// \pre \ref run() must be called before using this function. |
| 999 | 999 |
template <typename PotentialMap> |
| 1000 | 1000 |
void potentialMap(PotentialMap &map) const {
|
| 1001 | 1001 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1002 | 1002 |
map.set(n, _pi[_node_id[n]]); |
| 1003 | 1003 |
} |
| 1004 | 1004 |
} |
| 1005 | 1005 |
|
| 1006 | 1006 |
/// @} |
| 1007 | 1007 |
|
| 1008 | 1008 |
private: |
| 1009 | 1009 |
|
| 1010 | 1010 |
// Initialize internal data structures |
| 1011 | 1011 |
bool init() {
|
| 1012 | 1012 |
if (_node_num == 0) return false; |
| 1013 | 1013 |
|
| 1014 | 1014 |
// Check the sum of supply values |
| 1015 | 1015 |
_sum_supply = 0; |
| 1016 | 1016 |
for (int i = 0; i != _node_num; ++i) {
|
| 1017 | 1017 |
_sum_supply += _supply[i]; |
| 1018 | 1018 |
} |
| 1019 | 1019 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
| 1020 | 1020 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
| 1021 | 1021 |
|
| 1022 | 1022 |
// Remove non-zero lower bounds |
| 1023 | 1023 |
if (_have_lower) {
|
| 1024 | 1024 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1025 | 1025 |
Value c = _lower[i]; |
| 1026 | 1026 |
if (c >= 0) {
|
| 1027 | 1027 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
| 1028 | 1028 |
} else {
|
| 1029 | 1029 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
| 1030 | 1030 |
} |
| 1031 | 1031 |
_supply[_source[i]] -= c; |
| 1032 | 1032 |
_supply[_target[i]] += c; |
| 1033 | 1033 |
} |
| 1034 | 1034 |
} else {
|
| 1035 | 1035 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1036 | 1036 |
_cap[i] = _upper[i]; |
| 1037 | 1037 |
} |
| 1038 | 1038 |
} |
| 1039 | 1039 |
|
| 1040 | 1040 |
// Initialize artifical cost |
| 1041 | 1041 |
Cost ART_COST; |
| 1042 | 1042 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1043 | 1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
| 1044 | 1044 |
} else {
|
| 1045 |
ART_COST = |
|
| 1045 |
ART_COST = 0; |
|
| 1046 | 1046 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1047 | 1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
| 1048 | 1048 |
} |
| 1049 | 1049 |
ART_COST = (ART_COST + 1) * _node_num; |
| 1050 | 1050 |
} |
| 1051 | 1051 |
|
| 1052 | 1052 |
// Initialize arc maps |
| 1053 | 1053 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1054 | 1054 |
_flow[i] = 0; |
| 1055 | 1055 |
_state[i] = STATE_LOWER; |
| 1056 | 1056 |
} |
| 1057 | 1057 |
|
| 1058 | 1058 |
// Set data for the artificial root node |
| 1059 | 1059 |
_root = _node_num; |
| 1060 | 1060 |
_parent[_root] = -1; |
| 1061 | 1061 |
_pred[_root] = -1; |
| 1062 | 1062 |
_thread[_root] = 0; |
| 1063 | 1063 |
_rev_thread[0] = _root; |
| 1064 | 1064 |
_succ_num[_root] = _node_num + 1; |
| 1065 | 1065 |
_last_succ[_root] = _root - 1; |
| 1066 | 1066 |
_supply[_root] = -_sum_supply; |
| 1067 | 1067 |
_pi[_root] = 0; |
| 1068 | 1068 |
|
| 1069 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1070 | 1070 |
if (_sum_supply == 0) {
|
| 1071 | 1071 |
// EQ supply constraints |
| 1072 | 1072 |
_search_arc_num = _arc_num; |
| 1073 | 1073 |
_all_arc_num = _arc_num + _node_num; |
| 1074 | 1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1075 | 1075 |
_parent[u] = _root; |
| 1076 | 1076 |
_pred[u] = e; |
| 1077 | 1077 |
_thread[u] = u + 1; |
| 1078 | 1078 |
_rev_thread[u + 1] = u; |
| 1079 | 1079 |
_succ_num[u] = 1; |
| 1080 | 1080 |
_last_succ[u] = u; |
| 1081 | 1081 |
_cap[e] = INF; |
| 1082 | 1082 |
_state[e] = STATE_TREE; |
| 1083 | 1083 |
if (_supply[u] >= 0) {
|
| 1084 | 1084 |
_forward[u] = true; |
| 1085 | 1085 |
_pi[u] = 0; |
| 1086 | 1086 |
_source[e] = u; |
| 1087 | 1087 |
_target[e] = _root; |
| 1088 | 1088 |
_flow[e] = _supply[u]; |
| 1089 | 1089 |
_cost[e] = 0; |
| 1090 | 1090 |
} else {
|
| 1091 | 1091 |
_forward[u] = false; |
| 1092 | 1092 |
_pi[u] = ART_COST; |
| 1093 | 1093 |
_source[e] = _root; |
| 1094 | 1094 |
_target[e] = u; |
| 1095 | 1095 |
_flow[e] = -_supply[u]; |
| 1096 | 1096 |
_cost[e] = ART_COST; |
| 1097 | 1097 |
} |
| 1098 | 1098 |
} |
| 1099 | 1099 |
} |
| 1100 | 1100 |
else if (_sum_supply > 0) {
|
| 1101 | 1101 |
// LEQ supply constraints |
| 1102 | 1102 |
_search_arc_num = _arc_num + _node_num; |
| 1103 | 1103 |
int f = _arc_num + _node_num; |
| 1104 | 1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1105 | 1105 |
_parent[u] = _root; |
| 1106 | 1106 |
_thread[u] = u + 1; |
| 1107 | 1107 |
_rev_thread[u + 1] = u; |
| 1108 | 1108 |
_succ_num[u] = 1; |
| 1109 | 1109 |
_last_succ[u] = u; |
| 1110 | 1110 |
if (_supply[u] >= 0) {
|
| 1111 | 1111 |
_forward[u] = true; |
| 1112 | 1112 |
_pi[u] = 0; |
| 1113 | 1113 |
_pred[u] = e; |
| 1114 | 1114 |
_source[e] = u; |
| 1115 | 1115 |
_target[e] = _root; |
| 1116 | 1116 |
_cap[e] = INF; |
| 1117 | 1117 |
_flow[e] = _supply[u]; |
| 1118 | 1118 |
_cost[e] = 0; |
| 1119 | 1119 |
_state[e] = STATE_TREE; |
| 1120 | 1120 |
} else {
|
| 1121 | 1121 |
_forward[u] = false; |
| 1122 | 1122 |
_pi[u] = ART_COST; |
| 1123 | 1123 |
_pred[u] = f; |
| 1124 | 1124 |
_source[f] = _root; |
| 1125 | 1125 |
_target[f] = u; |
| 1126 | 1126 |
_cap[f] = INF; |
| 1127 | 1127 |
_flow[f] = -_supply[u]; |
| 1128 | 1128 |
_cost[f] = ART_COST; |
| 1129 | 1129 |
_state[f] = STATE_TREE; |
| 1130 | 1130 |
_source[e] = u; |
| 1131 | 1131 |
_target[e] = _root; |
| 1132 | 1132 |
_cap[e] = INF; |
| 1133 | 1133 |
_flow[e] = 0; |
| 1134 | 1134 |
_cost[e] = 0; |
| 1135 | 1135 |
_state[e] = STATE_LOWER; |
| 1136 | 1136 |
++f; |
| 1137 | 1137 |
} |
| 1138 | 1138 |
} |
| 1139 | 1139 |
_all_arc_num = f; |
| 1140 | 1140 |
} |
| 1141 | 1141 |
else {
|
| 1142 | 1142 |
// GEQ supply constraints |
| 1143 | 1143 |
_search_arc_num = _arc_num + _node_num; |
| 1144 | 1144 |
int f = _arc_num + _node_num; |
| 1145 | 1145 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1146 | 1146 |
_parent[u] = _root; |
| 1147 | 1147 |
_thread[u] = u + 1; |
| 1148 | 1148 |
_rev_thread[u + 1] = u; |
| 1149 | 1149 |
_succ_num[u] = 1; |
| 1150 | 1150 |
_last_succ[u] = u; |
| 1151 | 1151 |
if (_supply[u] <= 0) {
|
| 1152 | 1152 |
_forward[u] = false; |
| 1153 | 1153 |
_pi[u] = 0; |
| 1154 | 1154 |
_pred[u] = e; |
| 1155 | 1155 |
_source[e] = _root; |
| 1156 | 1156 |
_target[e] = u; |
| 1157 | 1157 |
_cap[e] = INF; |
| 1158 | 1158 |
_flow[e] = -_supply[u]; |
| 1159 | 1159 |
_cost[e] = 0; |
| 1160 | 1160 |
_state[e] = STATE_TREE; |
| 1161 | 1161 |
} else {
|
| 1162 | 1162 |
_forward[u] = true; |
| 1163 | 1163 |
_pi[u] = -ART_COST; |
| 1164 | 1164 |
_pred[u] = f; |
| 1165 | 1165 |
_source[f] = u; |
| 1166 | 1166 |
_target[f] = _root; |
| 1167 | 1167 |
_cap[f] = INF; |
| 1168 | 1168 |
_flow[f] = _supply[u]; |
| 1169 | 1169 |
_state[f] = STATE_TREE; |
| 1170 | 1170 |
_cost[f] = ART_COST; |
| 1171 | 1171 |
_source[e] = _root; |
| 1172 | 1172 |
_target[e] = u; |
| 1173 | 1173 |
_cap[e] = INF; |
| 1174 | 1174 |
_flow[e] = 0; |
| 1175 | 1175 |
_cost[e] = 0; |
| 1176 | 1176 |
_state[e] = STATE_LOWER; |
| 1177 | 1177 |
++f; |
| 1178 | 1178 |
} |
| 1179 | 1179 |
} |
| 1180 | 1180 |
_all_arc_num = f; |
| 1181 | 1181 |
} |
| 1182 | 1182 |
|
| 1183 | 1183 |
return true; |
| 1184 | 1184 |
} |
| 1185 | 1185 |
|
| 1186 | 1186 |
// Find the join node |
| 1187 | 1187 |
void findJoinNode() {
|
| 1188 | 1188 |
int u = _source[in_arc]; |
| 1189 | 1189 |
int v = _target[in_arc]; |
| 1190 | 1190 |
while (u != v) {
|
| 1191 | 1191 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1192 | 1192 |
u = _parent[u]; |
| 1193 | 1193 |
} else {
|
| 1194 | 1194 |
v = _parent[v]; |
| 1195 | 1195 |
} |
| 1196 | 1196 |
} |
| 1197 | 1197 |
join = u; |
| 1198 | 1198 |
} |
| 1199 | 1199 |
|
| 1200 | 1200 |
// Find the leaving arc of the cycle and returns true if the |
| 1201 | 1201 |
// leaving arc is not the same as the entering arc |
| 1202 | 1202 |
bool findLeavingArc() {
|
| 1203 | 1203 |
// Initialize first and second nodes according to the direction |
| 1204 | 1204 |
// of the cycle |
| 1205 | 1205 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1206 | 1206 |
first = _source[in_arc]; |
| 1207 | 1207 |
second = _target[in_arc]; |
| 1208 | 1208 |
} else {
|
| 1209 | 1209 |
first = _target[in_arc]; |
| 1210 | 1210 |
second = _source[in_arc]; |
| 1211 | 1211 |
} |
| 1212 | 1212 |
delta = _cap[in_arc]; |
| 1213 | 1213 |
int result = 0; |
| 1214 | 1214 |
Value d; |
| 1215 | 1215 |
int e; |
| 1216 | 1216 |
|
| 1217 | 1217 |
// Search the cycle along the path form the first node to the root |
| 1218 | 1218 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1219 | 1219 |
e = _pred[u]; |
| 1220 | 1220 |
d = _forward[u] ? |
| 1221 | 1221 |
_flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
| 1222 | 1222 |
if (d < delta) {
|
| 1223 | 1223 |
delta = d; |
| 1224 | 1224 |
u_out = u; |
| 1225 | 1225 |
result = 1; |
| 1226 | 1226 |
} |
| 1227 | 1227 |
} |
| 1228 | 1228 |
// Search the cycle along the path form the second node to the root |
| 1229 | 1229 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1230 | 1230 |
e = _pred[u]; |
| 1231 | 1231 |
d = _forward[u] ? |
| 1232 | 1232 |
(_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
| 1233 | 1233 |
if (d <= delta) {
|
| 1234 | 1234 |
delta = d; |
| 1235 | 1235 |
u_out = u; |
| 1236 | 1236 |
result = 2; |
| 1237 | 1237 |
} |
| 1238 | 1238 |
} |
| 1239 | 1239 |
|
| 1240 | 1240 |
if (result == 1) {
|
| 1241 | 1241 |
u_in = first; |
| 1242 | 1242 |
v_in = second; |
| 1243 | 1243 |
} else {
|
| 1244 | 1244 |
u_in = second; |
| 1245 | 1245 |
v_in = first; |
| 1246 | 1246 |
} |
| 1247 | 1247 |
return result != 0; |
| 1248 | 1248 |
} |
| 1249 | 1249 |
|
| 1250 | 1250 |
// Change _flow and _state vectors |
| 1251 | 1251 |
void changeFlow(bool change) {
|
| 1252 | 1252 |
// Augment along the cycle |
| 1253 | 1253 |
if (delta > 0) {
|
| 1254 | 1254 |
Value val = _state[in_arc] * delta; |
| 1255 | 1255 |
_flow[in_arc] += val; |
| 1256 | 1256 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1257 | 1257 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1258 | 1258 |
} |
| 1259 | 1259 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1260 | 1260 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1261 | 1261 |
} |
| 1262 | 1262 |
} |
| 1263 | 1263 |
// Update the state of the entering and leaving arcs |
| 1264 | 1264 |
if (change) {
|
| 1265 | 1265 |
_state[in_arc] = STATE_TREE; |
| 1266 | 1266 |
_state[_pred[u_out]] = |
| 1267 | 1267 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1268 | 1268 |
} else {
|
| 1269 | 1269 |
_state[in_arc] = -_state[in_arc]; |
| 1270 | 1270 |
} |
| 1271 | 1271 |
} |
| 1272 | 1272 |
|
| 1273 | 1273 |
// Update the tree structure |
| 1274 | 1274 |
void updateTreeStructure() {
|
| 1275 | 1275 |
int u, w; |
| 1276 | 1276 |
int old_rev_thread = _rev_thread[u_out]; |
| 1277 | 1277 |
int old_succ_num = _succ_num[u_out]; |
| 1278 | 1278 |
int old_last_succ = _last_succ[u_out]; |
| 1279 | 1279 |
v_out = _parent[u_out]; |
| 1280 | 1280 |
|
| 1281 | 1281 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1282 | 1282 |
right = _thread[u]; // the node after it |
| 1283 | 1283 |
|
| 1284 | 1284 |
// Handle the case when old_rev_thread equals to v_in |
| 1285 | 1285 |
// (it also means that join and v_out coincide) |
| 1286 | 1286 |
if (old_rev_thread == v_in) {
|
| 1287 | 1287 |
last = _thread[_last_succ[u_out]]; |
| 1288 | 1288 |
} else {
|
| 1289 | 1289 |
last = _thread[v_in]; |
| 1290 | 1290 |
} |
| 1291 | 1291 |
|
| 1292 | 1292 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
| 1293 | 1293 |
// between u_in and u_out, whose parent have to be changed) |
| 1294 | 1294 |
_thread[v_in] = stem = u_in; |
| 1295 | 1295 |
_dirty_revs.clear(); |
| 1296 | 1296 |
_dirty_revs.push_back(v_in); |
| 1297 | 1297 |
par_stem = v_in; |
| 1298 | 1298 |
while (stem != u_out) {
|
| 1299 | 1299 |
// Insert the next stem node into the thread list |
| 1300 | 1300 |
new_stem = _parent[stem]; |
| 1301 | 1301 |
_thread[u] = new_stem; |
| 1302 | 1302 |
_dirty_revs.push_back(u); |
| 1303 | 1303 |
|
| 1304 | 1304 |
// Remove the subtree of stem from the thread list |
| 1305 | 1305 |
w = _rev_thread[stem]; |
| 1306 | 1306 |
_thread[w] = right; |
| 1307 | 1307 |
_rev_thread[right] = w; |
| 1308 | 1308 |
|
| 1309 | 1309 |
// Change the parent node and shift stem nodes |
| 1310 | 1310 |
_parent[stem] = par_stem; |
| 1311 | 1311 |
par_stem = stem; |
| 1312 | 1312 |
stem = new_stem; |
| 1313 | 1313 |
|
| 1314 | 1314 |
// Update u and right |
| 1315 | 1315 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
| 1316 | 1316 |
_rev_thread[par_stem] : _last_succ[stem]; |
| 1317 | 1317 |
right = _thread[u]; |
| 1318 | 1318 |
} |
| 1319 | 1319 |
_parent[u_out] = par_stem; |
| 1320 | 1320 |
_thread[u] = last; |
| 1321 | 1321 |
_rev_thread[last] = u; |
| 1322 | 1322 |
_last_succ[u_out] = u; |
| 1323 | 1323 |
|
| 1324 | 1324 |
// Remove the subtree of u_out from the thread list except for |
| 1325 | 1325 |
// the case when old_rev_thread equals to v_in |
| 1326 | 1326 |
// (it also means that join and v_out coincide) |
| 1327 | 1327 |
if (old_rev_thread != v_in) {
|
| 1328 | 1328 |
_thread[old_rev_thread] = right; |
| 1329 | 1329 |
_rev_thread[right] = old_rev_thread; |
| 1330 | 1330 |
} |
| 1331 | 1331 |
|
| 1332 | 1332 |
// Update _rev_thread using the new _thread values |
| 1333 | 1333 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
|
| 1334 | 1334 |
u = _dirty_revs[i]; |
| 1335 | 1335 |
_rev_thread[_thread[u]] = u; |
| 1336 | 1336 |
} |
| 1337 | 1337 |
|
| 1338 | 1338 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1339 | 1339 |
// stem nodes from u_out to u_in |
| 1340 | 1340 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1341 | 1341 |
u = u_out; |
| 1342 | 1342 |
while (u != u_in) {
|
| 1343 | 1343 |
w = _parent[u]; |
| 1344 | 1344 |
_pred[u] = _pred[w]; |
| 1345 | 1345 |
_forward[u] = !_forward[w]; |
| 1346 | 1346 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1347 | 1347 |
_succ_num[u] = tmp_sc; |
| 1348 | 1348 |
_last_succ[w] = tmp_ls; |
| 1349 | 1349 |
u = w; |
| 1350 | 1350 |
} |
| 1351 | 1351 |
_pred[u_in] = in_arc; |
| 1352 | 1352 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1353 | 1353 |
_succ_num[u_in] = old_succ_num; |
| 1354 | 1354 |
|
| 1355 | 1355 |
// Set limits for updating _last_succ form v_in and v_out |
| 1356 | 1356 |
// towards the root |
| 1357 | 1357 |
int up_limit_in = -1; |
| 1358 | 1358 |
int up_limit_out = -1; |
| 1359 | 1359 |
if (_last_succ[join] == v_in) {
|
| 1360 | 1360 |
up_limit_out = join; |
| 1361 | 1361 |
} else {
|
| 1362 | 1362 |
up_limit_in = join; |
| 1363 | 1363 |
} |
| 1364 | 1364 |
|
| 1365 | 1365 |
// Update _last_succ from v_in towards the root |
| 1366 | 1366 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1367 | 1367 |
u = _parent[u]) {
|
| 1368 | 1368 |
_last_succ[u] = _last_succ[u_out]; |
| 1369 | 1369 |
} |
| 1370 | 1370 |
// Update _last_succ from v_out towards the root |
| 1371 | 1371 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1372 | 1372 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1373 | 1373 |
u = _parent[u]) {
|
| 1374 | 1374 |
_last_succ[u] = old_rev_thread; |
| 1375 | 1375 |
} |
| 1376 | 1376 |
} else {
|
| 1377 | 1377 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1378 | 1378 |
u = _parent[u]) {
|
| 1379 | 1379 |
_last_succ[u] = _last_succ[u_out]; |
| 1380 | 1380 |
} |
| 1381 | 1381 |
} |
| 1382 | 1382 |
|
| 1383 | 1383 |
// Update _succ_num from v_in to join |
| 1384 | 1384 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1385 | 1385 |
_succ_num[u] += old_succ_num; |
| 1386 | 1386 |
} |
| 1387 | 1387 |
// Update _succ_num from v_out to join |
| 1388 | 1388 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1389 | 1389 |
_succ_num[u] -= old_succ_num; |
| 1390 | 1390 |
} |
| 1391 | 1391 |
} |
| 1392 | 1392 |
|
| 1393 | 1393 |
// Update potentials |
| 1394 | 1394 |
void updatePotential() {
|
| 1395 | 1395 |
Cost sigma = _forward[u_in] ? |
| 1396 | 1396 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1397 | 1397 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1398 | 1398 |
// Update potentials in the subtree, which has been moved |
| 1399 | 1399 |
int end = _thread[_last_succ[u_in]]; |
| 1400 | 1400 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1401 | 1401 |
_pi[u] += sigma; |
| 1402 | 1402 |
} |
| 1403 | 1403 |
} |
| 1404 | 1404 |
|
| 1405 | 1405 |
// Execute the algorithm |
| 1406 | 1406 |
ProblemType start(PivotRule pivot_rule) {
|
| 1407 | 1407 |
// Select the pivot rule implementation |
| 1408 | 1408 |
switch (pivot_rule) {
|
| 1409 | 1409 |
case FIRST_ELIGIBLE: |
| 1410 | 1410 |
return start<FirstEligiblePivotRule>(); |
| 1411 | 1411 |
case BEST_ELIGIBLE: |
| 1412 | 1412 |
return start<BestEligiblePivotRule>(); |
| 1413 | 1413 |
case BLOCK_SEARCH: |
| 1414 | 1414 |
return start<BlockSearchPivotRule>(); |
| 1415 | 1415 |
case CANDIDATE_LIST: |
| 1416 | 1416 |
return start<CandidateListPivotRule>(); |
| 1417 | 1417 |
case ALTERING_LIST: |
| 1418 | 1418 |
return start<AlteringListPivotRule>(); |
| 1419 | 1419 |
} |
| 1420 | 1420 |
return INFEASIBLE; // avoid warning |
| 1421 | 1421 |
} |
| 1422 | 1422 |
|
| 1423 | 1423 |
template <typename PivotRuleImpl> |
| 1424 | 1424 |
ProblemType start() {
|
| 1425 | 1425 |
PivotRuleImpl pivot(*this); |
| 1426 | 1426 |
|
| 1427 | 1427 |
// Execute the Network Simplex algorithm |
| 1428 | 1428 |
while (pivot.findEnteringArc()) {
|
| 1429 | 1429 |
findJoinNode(); |
| 1430 | 1430 |
bool change = findLeavingArc(); |
| 1431 | 1431 |
if (delta >= INF) return UNBOUNDED; |
| 1432 | 1432 |
changeFlow(change); |
| 1433 | 1433 |
if (change) {
|
| 1434 | 1434 |
updateTreeStructure(); |
| 1435 | 1435 |
updatePotential(); |
| 1436 | 1436 |
} |
| 1437 | 1437 |
} |
| 1438 | 1438 |
|
| 1439 | 1439 |
// Check feasibility |
| 1440 | 1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
| 1441 | 1441 |
if (_flow[e] != 0) return INFEASIBLE; |
| 1442 | 1442 |
} |
| 1443 | 1443 |
|
| 1444 | 1444 |
// Transform the solution and the supply map to the original form |
| 1445 | 1445 |
if (_have_lower) {
|
| 1446 | 1446 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1447 | 1447 |
Value c = _lower[i]; |
| 1448 | 1448 |
if (c != 0) {
|
| 1449 | 1449 |
_flow[i] += c; |
| 1450 | 1450 |
_supply[_source[i]] += c; |
| 1451 | 1451 |
_supply[_target[i]] -= c; |
| 1452 | 1452 |
} |
| 1453 | 1453 |
} |
| 1454 | 1454 |
} |
| 1455 | 1455 |
|
| 1456 | 1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
| 1457 | 1457 |
// optimality conditions |
| 1458 | 1458 |
if (_sum_supply == 0) {
|
| 1459 | 1459 |
if (_stype == GEQ) {
|
| 1460 |
Cost max_pot = std::numeric_limits<Cost>:: |
|
| 1460 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
|
| 1461 | 1461 |
for (int i = 0; i != _node_num; ++i) {
|
| 1462 | 1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
| 1463 | 1463 |
} |
| 1464 | 1464 |
if (max_pot > 0) {
|
| 1465 | 1465 |
for (int i = 0; i != _node_num; ++i) |
| 1466 | 1466 |
_pi[i] -= max_pot; |
| 1467 | 1467 |
} |
| 1468 | 1468 |
} else {
|
| 1469 | 1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
| 1470 | 1470 |
for (int i = 0; i != _node_num; ++i) {
|
| 1471 | 1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
| 1472 | 1472 |
} |
| 1473 | 1473 |
if (min_pot < 0) {
|
| 1474 | 1474 |
for (int i = 0; i != _node_num; ++i) |
| 1475 | 1475 |
_pi[i] -= min_pot; |
| 1476 | 1476 |
} |
| 1477 | 1477 |
} |
| 1478 | 1478 |
} |
| 1479 | 1479 |
|
| 1480 | 1480 |
return OPTIMAL; |
| 1481 | 1481 |
} |
| 1482 | 1482 |
|
| 1483 | 1483 |
}; //class NetworkSimplex |
| 1484 | 1484 |
|
| 1485 | 1485 |
///@} |
| 1486 | 1486 |
|
| 1487 | 1487 |
} //namespace lemon |
| 1488 | 1488 |
|
| 1489 | 1489 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)