0
2
0
303
223
| ... | ... |
@@ -42,12 +42,16 @@ |
| 42 | 42 |
|
| 43 | 43 |
/// \ingroup graph_properties |
| 44 | 44 |
/// |
| 45 |
/// \brief Check whether |
|
| 45 |
/// \brief Check whether an undirected graph is connected. |
|
| 46 | 46 |
/// |
| 47 |
/// Check whether the given undirected graph is connected. |
|
| 48 |
/// \param graph The undirected graph. |
|
| 49 |
/// |
|
| 47 |
/// This function checks whether the given undirected graph is connected, |
|
| 48 |
/// i.e. there is a path between any two nodes in the graph. |
|
| 49 |
/// |
|
| 50 |
/// \return \c true if the graph is connected. |
|
| 50 | 51 |
/// \note By definition, the empty graph is connected. |
| 52 |
/// |
|
| 53 |
/// \see countConnectedComponents(), connectedComponents() |
|
| 54 |
/// \see stronglyConnected() |
|
| 51 | 55 |
template <typename Graph> |
| 52 | 56 |
bool connected(const Graph& graph) {
|
| 53 | 57 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -67,12 +71,18 @@ |
| 67 | 71 |
/// |
| 68 | 72 |
/// \brief Count the number of connected components of an undirected graph |
| 69 | 73 |
/// |
| 70 |
/// |
|
| 74 |
/// This function counts the number of connected components of the given |
|
| 75 |
/// undirected graph. |
|
| 71 | 76 |
/// |
| 72 |
/// \param graph The graph. It must be undirected. |
|
| 73 |
/// \return The number of components |
|
| 77 |
/// The connected components are the classes of an equivalence relation |
|
| 78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
| 79 |
/// if they are connected with a path. |
|
| 80 |
/// |
|
| 81 |
/// \return The number of connected components. |
|
| 74 | 82 |
/// \note By definition, the empty graph consists |
| 75 | 83 |
/// of zero connected components. |
| 84 |
/// |
|
| 85 |
/// \see connected(), connectedComponents() |
|
| 76 | 86 |
template <typename Graph> |
| 77 | 87 |
int countConnectedComponents(const Graph &graph) {
|
| 78 | 88 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -109,17 +119,26 @@ |
| 109 | 119 |
/// |
| 110 | 120 |
/// \brief Find the connected components of an undirected graph |
| 111 | 121 |
/// |
| 112 |
/// |
|
| 122 |
/// This function finds the connected components of the given undirected |
|
| 123 |
/// graph. |
|
| 124 |
/// |
|
| 125 |
/// The connected components are the classes of an equivalence relation |
|
| 126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
|
| 127 |
/// if they are connected with a path. |
|
| 113 | 128 |
/// |
| 114 | 129 |
/// \image html connected_components.png |
| 115 | 130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
| 116 | 131 |
/// |
| 117 |
/// \param graph The |
|
| 132 |
/// \param graph The undirected graph. |
|
| 118 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 119 |
/// the number of the connected components minus one. Each values of the map |
|
| 120 |
/// will be set exactly once, the values of a certain component will be |
|
| 134 |
/// the number of the connected components minus one. Each value of the map |
|
| 135 |
/// will be set exactly once, and the values of a certain component will be |
|
| 121 | 136 |
/// set continuously. |
| 122 |
/// \return The number of components |
|
| 137 |
/// \return The number of connected components. |
|
| 138 |
/// \note By definition, the empty graph consists |
|
| 139 |
/// of zero connected components. |
|
| 140 |
/// |
|
| 141 |
/// \see connected(), countConnectedComponents() |
|
| 123 | 142 |
template <class Graph, class NodeMap> |
| 124 | 143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
| 125 | 144 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -231,15 +250,17 @@ |
| 231 | 250 |
|
| 232 | 251 |
/// \ingroup graph_properties |
| 233 | 252 |
/// |
| 234 |
/// \brief Check whether |
|
| 253 |
/// \brief Check whether a directed graph is strongly connected. |
|
| 235 | 254 |
/// |
| 236 |
/// Check whether the given directed graph is strongly connected. The |
|
| 237 |
/// graph is strongly connected when any two nodes of the graph are |
|
| 255 |
/// This function checks whether the given directed graph is strongly |
|
| 256 |
/// connected, i.e. any two nodes of the digraph are |
|
| 238 | 257 |
/// connected with directed paths in both direction. |
| 239 |
/// \return \c false when the graph is not strongly connected. |
|
| 240 |
/// \see connected |
|
| 241 | 258 |
/// |
| 242 |
/// \ |
|
| 259 |
/// \return \c true if the digraph is strongly connected. |
|
| 260 |
/// \note By definition, the empty digraph is strongly connected. |
|
| 261 |
/// |
|
| 262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
|
| 263 |
/// \see connected() |
|
| 243 | 264 |
template <typename Digraph> |
| 244 | 265 |
bool stronglyConnected(const Digraph& digraph) {
|
| 245 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
| ... | ... |
@@ -270,7 +291,7 @@ |
| 270 | 291 |
typedef typename RDigraph::NodeIt RNodeIt; |
| 271 | 292 |
RDigraph rdigraph(digraph); |
| 272 | 293 |
|
| 273 |
typedef DfsVisitor< |
|
| 294 |
typedef DfsVisitor<RDigraph> RVisitor; |
|
| 274 | 295 |
RVisitor rvisitor; |
| 275 | 296 |
|
| 276 | 297 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| ... | ... |
@@ -289,18 +310,22 @@ |
| 289 | 310 |
|
| 290 | 311 |
/// \ingroup graph_properties |
| 291 | 312 |
/// |
| 292 |
/// \brief Count the strongly connected components of a |
|
| 313 |
/// \brief Count the number of strongly connected components of a |
|
| 314 |
/// directed graph |
|
| 293 | 315 |
/// |
| 294 |
/// |
|
| 316 |
/// This function counts the number of strongly connected components of |
|
| 317 |
/// the given directed graph. |
|
| 318 |
/// |
|
| 295 | 319 |
/// The strongly connected components are the classes of an |
| 296 |
/// equivalence relation on the nodes of |
|
| 320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 297 | 321 |
/// the same class if they are connected with directed paths in both |
| 298 | 322 |
/// direction. |
| 299 | 323 |
/// |
| 300 |
/// \param digraph The graph. |
|
| 301 |
/// \return The number of components |
|
| 302 |
/// \ |
|
| 324 |
/// \return The number of strongly connected components. |
|
| 325 |
/// \note By definition, the empty digraph has zero |
|
| 303 | 326 |
/// strongly connected components. |
| 327 |
/// |
|
| 328 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
| 304 | 329 |
template <typename Digraph> |
| 305 | 330 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 306 | 331 |
checkConcept<concepts::Digraph, Digraph>(); |
| ... | ... |
@@ -355,13 +380,15 @@ |
| 355 | 380 |
/// |
| 356 | 381 |
/// \brief Find the strongly connected components of a directed graph |
| 357 | 382 |
/// |
| 358 |
/// Find the strongly connected components of a directed graph. The |
|
| 359 |
/// strongly connected components are the classes of an equivalence |
|
| 360 |
/// relation on the nodes of the graph. Two nodes are in |
|
| 361 |
/// relationship when there are directed paths between them in both |
|
| 362 |
/// direction. In addition, the numbering of components will satisfy |
|
| 363 |
/// that there is no arc going from a higher numbered component to |
|
| 364 |
/// |
|
| 383 |
/// This function finds the strongly connected components of the given |
|
| 384 |
/// directed graph. In addition, the numbering of the components will |
|
| 385 |
/// satisfy that there is no arc going from a higher numbered component |
|
| 386 |
/// to a lower one (i.e. it provides a topological order of the components). |
|
| 387 |
/// |
|
| 388 |
/// The strongly connected components are the classes of an |
|
| 389 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 390 |
/// the same class if they are connected with directed paths in both |
|
| 391 |
/// direction. |
|
| 365 | 392 |
/// |
| 366 | 393 |
/// \image html strongly_connected_components.png |
| 367 | 394 |
/// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth |
| ... | ... |
@@ -369,9 +396,13 @@ |
| 369 | 396 |
/// \param digraph The digraph. |
| 370 | 397 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 371 | 398 |
/// the number of the strongly connected components minus one. Each value |
| 372 |
/// of the map will be set exactly once, the values of a certain component |
|
| 373 |
/// will be set continuously. |
|
| 374 |
/// |
|
| 399 |
/// of the map will be set exactly once, and the values of a certain |
|
| 400 |
/// component will be set continuously. |
|
| 401 |
/// \return The number of strongly connected components. |
|
| 402 |
/// \note By definition, the empty digraph has zero |
|
| 403 |
/// strongly connected components. |
|
| 404 |
/// |
|
| 405 |
/// \see stronglyConnected(), countStronglyConnectedComponents() |
|
| 375 | 406 |
template <typename Digraph, typename NodeMap> |
| 376 | 407 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
| 377 | 408 |
checkConcept<concepts::Digraph, Digraph>(); |
| ... | ... |
@@ -424,19 +455,24 @@ |
| 424 | 455 |
/// |
| 425 | 456 |
/// \brief Find the cut arcs of the strongly connected components. |
| 426 | 457 |
/// |
| 427 |
/// Find the cut arcs of the strongly connected components. |
|
| 428 |
/// The strongly connected components are the classes of an equivalence |
|
| 429 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
| 430 |
/// when there are directed paths between them in both direction. |
|
| 458 |
/// This function finds the cut arcs of the strongly connected components |
|
| 459 |
/// of the given digraph. |
|
| 460 |
/// |
|
| 461 |
/// The strongly connected components are the classes of an |
|
| 462 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
|
| 463 |
/// the same class if they are connected with directed paths in both |
|
| 464 |
/// direction. |
|
| 431 | 465 |
/// The strongly connected components are separated by the cut arcs. |
| 432 | 466 |
/// |
| 433 |
/// \param graph The graph. |
|
| 434 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 435 |
/// |
|
| 467 |
/// \param digraph The digraph. |
|
| 468 |
/// \retval cutMap A writable arc map. The values will be set to \c true |
|
| 469 |
/// for the cut arcs (exactly once for each cut arc), and will not be |
|
| 470 |
/// changed for other arcs. |
|
| 471 |
/// \return The number of cut arcs. |
|
| 436 | 472 |
/// |
| 437 |
/// \ |
|
| 473 |
/// \see stronglyConnected(), stronglyConnectedComponents() |
|
| 438 | 474 |
template <typename Digraph, typename ArcMap> |
| 439 |
int stronglyConnectedCutArcs(const Digraph& |
|
| 475 |
int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) {
|
|
| 440 | 476 |
checkConcept<concepts::Digraph, Digraph>(); |
| 441 | 477 |
typedef typename Digraph::Node Node; |
| 442 | 478 |
typedef typename Digraph::Arc Arc; |
| ... | ... |
@@ -448,13 +484,13 @@ |
| 448 | 484 |
typedef std::vector<Node> Container; |
| 449 | 485 |
typedef typename Container::iterator Iterator; |
| 450 | 486 |
|
| 451 |
Container nodes(countNodes( |
|
| 487 |
Container nodes(countNodes(digraph)); |
|
| 452 | 488 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 453 | 489 |
Visitor visitor(nodes.begin()); |
| 454 | 490 |
|
| 455 |
DfsVisit<Digraph, Visitor> dfs( |
|
| 491 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
| 456 | 492 |
dfs.init(); |
| 457 |
for (NodeIt it( |
|
| 493 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 458 | 494 |
if (!dfs.reached(it)) {
|
| 459 | 495 |
dfs.addSource(it); |
| 460 | 496 |
dfs.start(); |
| ... | ... |
@@ -464,14 +500,14 @@ |
| 464 | 500 |
typedef typename Container::reverse_iterator RIterator; |
| 465 | 501 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 466 | 502 |
|
| 467 |
RDigraph |
|
| 503 |
RDigraph rdigraph(digraph); |
|
| 468 | 504 |
|
| 469 | 505 |
int cutNum = 0; |
| 470 | 506 |
|
| 471 | 507 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
| 472 |
RVisitor rvisitor( |
|
| 508 |
RVisitor rvisitor(rdigraph, cutMap, cutNum); |
|
| 473 | 509 |
|
| 474 |
DfsVisit<RDigraph, RVisitor> rdfs( |
|
| 510 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
| 475 | 511 |
|
| 476 | 512 |
rdfs.init(); |
| 477 | 513 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| ... | ... |
@@ -706,14 +742,15 @@ |
| 706 | 742 |
|
| 707 | 743 |
/// \ingroup graph_properties |
| 708 | 744 |
/// |
| 709 |
/// \brief |
|
| 745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
|
| 710 | 746 |
/// |
| 711 |
/// This function checks that the undirected graph is bi-node-connected |
|
| 712 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
| 713 |
/// |
|
| 747 |
/// This function checks whether the given undirected graph is |
|
| 748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
|
| 714 | 749 |
/// |
| 715 |
/// \param graph The graph. |
|
| 716 |
/// \return \c true when the graph bi-node-connected. |
|
| 750 |
/// \return \c true if the graph bi-node-connected. |
|
| 751 |
/// \note By definition, the empty graph is bi-node-connected. |
|
| 752 |
/// |
|
| 753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
|
| 717 | 754 |
template <typename Graph> |
| 718 | 755 |
bool biNodeConnected(const Graph& graph) {
|
| 719 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
| ... | ... |
@@ -721,15 +758,19 @@ |
| 721 | 758 |
|
| 722 | 759 |
/// \ingroup graph_properties |
| 723 | 760 |
/// |
| 724 |
/// \brief Count the |
|
| 761 |
/// \brief Count the number of bi-node-connected components of an |
|
| 762 |
/// undirected graph. |
|
| 725 | 763 |
/// |
| 726 |
/// This function finds the bi-node-connected components in an undirected |
|
| 727 |
/// graph. The biconnected components are the classes of an equivalence |
|
| 728 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
| 729 |
/// when they are on same circle. |
|
| 764 |
/// This function counts the number of bi-node-connected components of |
|
| 765 |
/// the given undirected graph. |
|
| 730 | 766 |
/// |
| 731 |
/// \param graph The graph. |
|
| 732 |
/// \return The number of components. |
|
| 767 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 768 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 769 |
/// same class if they are on same circle. |
|
| 770 |
/// |
|
| 771 |
/// \return The number of bi-node-connected components. |
|
| 772 |
/// |
|
| 773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
| 733 | 774 |
template <typename Graph> |
| 734 | 775 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
| 735 | 776 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -756,22 +797,26 @@ |
| 756 | 797 |
|
| 757 | 798 |
/// \ingroup graph_properties |
| 758 | 799 |
/// |
| 759 |
/// \brief Find the bi-node-connected components. |
|
| 800 |
/// \brief Find the bi-node-connected components of an undirected graph. |
|
| 760 | 801 |
/// |
| 761 |
/// This function finds the bi-node-connected components in an undirected |
|
| 762 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 763 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
| 764 |
/// when they are on same circle. |
|
| 802 |
/// This function finds the bi-node-connected components of the given |
|
| 803 |
/// undirected graph. |
|
| 804 |
/// |
|
| 805 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 806 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 807 |
/// same class if they are on same circle. |
|
| 765 | 808 |
/// |
| 766 | 809 |
/// \image html node_biconnected_components.png |
| 767 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
| 768 | 811 |
/// |
| 769 |
/// \param graph The graph. |
|
| 770 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
| 771 |
/// to the number of the biconnected components minus one. Each values |
|
| 772 |
/// of the map will be set exactly once, the values of a certain component |
|
| 773 |
/// will be set continuously. |
|
| 774 |
/// \return The number of components. |
|
| 812 |
/// \param graph The undirected graph. |
|
| 813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
|
| 814 |
/// to the number of the bi-node-connected components minus one. Each |
|
| 815 |
/// value of the map will be set exactly once, and the values of a |
|
| 816 |
/// certain component will be set continuously. |
|
| 817 |
/// \return The number of bi-node-connected components. |
|
| 818 |
/// |
|
| 819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
|
| 775 | 820 |
template <typename Graph, typename EdgeMap> |
| 776 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
| 777 | 822 |
EdgeMap& compMap) {
|
| ... | ... |
@@ -801,18 +846,25 @@ |
| 801 | 846 |
|
| 802 | 847 |
/// \ingroup graph_properties |
| 803 | 848 |
/// |
| 804 |
/// \brief Find the bi-node-connected cut nodes. |
|
| 849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
|
| 805 | 850 |
/// |
| 806 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
| 807 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 808 |
/// relation on the undirected edges. Two undirected edges are in |
|
| 809 |
/// relationship when they are on same circle. The biconnected components |
|
| 810 |
/// |
|
| 851 |
/// This function finds the bi-node-connected cut nodes in the given |
|
| 852 |
/// undirected graph. |
|
| 811 | 853 |
/// |
| 812 |
/// \param graph The graph. |
|
| 813 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
| 814 |
/// |
|
| 854 |
/// The bi-node-connected components are the classes of an equivalence |
|
| 855 |
/// relation on the edges of a undirected graph. Two edges are in the |
|
| 856 |
/// same class if they are on same circle. |
|
| 857 |
/// The bi-node-connected components are separted by the cut nodes of |
|
| 858 |
/// the components. |
|
| 859 |
/// |
|
| 860 |
/// \param graph The undirected graph. |
|
| 861 |
/// \retval cutMap A writable node map. The values will be set to |
|
| 862 |
/// \c true for the nodes that separate two or more components |
|
| 863 |
/// (exactly once for each cut node), and will not be changed for |
|
| 864 |
/// other nodes. |
|
| 815 | 865 |
/// \return The number of the cut nodes. |
| 866 |
/// |
|
| 867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
|
| 816 | 868 |
template <typename Graph, typename NodeMap> |
| 817 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
| 818 | 870 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -1031,14 +1083,16 @@ |
| 1031 | 1083 |
|
| 1032 | 1084 |
/// \ingroup graph_properties |
| 1033 | 1085 |
/// |
| 1034 |
/// \brief |
|
| 1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
|
| 1035 | 1087 |
/// |
| 1036 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
| 1037 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
| 1038 |
/// |
|
| 1088 |
/// This function checks whether the given undirected graph is |
|
| 1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
|
| 1090 |
/// two edge-disjoint paths. |
|
| 1039 | 1091 |
/// |
| 1040 |
/// \param graph The undirected graph. |
|
| 1041 |
/// \return The number of components. |
|
| 1092 |
/// \return \c true if the graph is bi-edge-connected. |
|
| 1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
|
| 1094 |
/// |
|
| 1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
|
| 1042 | 1096 |
template <typename Graph> |
| 1043 | 1097 |
bool biEdgeConnected(const Graph& graph) {
|
| 1044 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
| ... | ... |
@@ -1046,15 +1100,20 @@ |
| 1046 | 1100 |
|
| 1047 | 1101 |
/// \ingroup graph_properties |
| 1048 | 1102 |
/// |
| 1049 |
/// \brief Count the bi-edge-connected components |
|
| 1103 |
/// \brief Count the number of bi-edge-connected components of an |
|
| 1104 |
/// undirected graph. |
|
| 1050 | 1105 |
/// |
| 1051 |
/// This function count the bi-edge-connected components in an undirected |
|
| 1052 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1053 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1054 |
/// connected with at least two edge-disjoint paths. |
|
| 1106 |
/// This function counts the number of bi-edge-connected components of |
|
| 1107 |
/// the given undirected graph. |
|
| 1055 | 1108 |
/// |
| 1056 |
/// \param graph The undirected graph. |
|
| 1057 |
/// \return The number of components. |
|
| 1109 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1110 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1111 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1112 |
/// paths. |
|
| 1113 |
/// |
|
| 1114 |
/// \return The number of bi-edge-connected components. |
|
| 1115 |
/// |
|
| 1116 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
| 1058 | 1117 |
template <typename Graph> |
| 1059 | 1118 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1060 | 1119 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -1081,22 +1140,27 @@ |
| 1081 | 1140 |
|
| 1082 | 1141 |
/// \ingroup graph_properties |
| 1083 | 1142 |
/// |
| 1084 |
/// \brief Find the bi-edge-connected components. |
|
| 1143 |
/// \brief Find the bi-edge-connected components of an undirected graph. |
|
| 1085 | 1144 |
/// |
| 1086 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1087 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1088 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1089 |
/// connected at least two edge-disjoint paths. |
|
| 1145 |
/// This function finds the bi-edge-connected components of the given |
|
| 1146 |
/// undirected graph. |
|
| 1147 |
/// |
|
| 1148 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1149 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1150 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1151 |
/// paths. |
|
| 1090 | 1152 |
/// |
| 1091 | 1153 |
/// \image html edge_biconnected_components.png |
| 1092 | 1154 |
/// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 1093 | 1155 |
/// |
| 1094 |
/// \param graph The graph. |
|
| 1156 |
/// \param graph The undirected graph. |
|
| 1095 | 1157 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 1096 |
/// the number of the biconnected components minus one. Each values |
|
| 1097 |
/// of the map will be set exactly once, the values of a certain component |
|
| 1098 |
/// will be set continuously. |
|
| 1099 |
/// \return The number of components. |
|
| 1158 |
/// the number of the bi-edge-connected components minus one. Each value |
|
| 1159 |
/// of the map will be set exactly once, and the values of a certain |
|
| 1160 |
/// component will be set continuously. |
|
| 1161 |
/// \return The number of bi-edge-connected components. |
|
| 1162 |
/// |
|
| 1163 |
/// \see biEdgeConnected(), countBiEdgeConnectedComponents() |
|
| 1100 | 1164 |
template <typename Graph, typename NodeMap> |
| 1101 | 1165 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1102 | 1166 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -1125,19 +1189,25 @@ |
| 1125 | 1189 |
|
| 1126 | 1190 |
/// \ingroup graph_properties |
| 1127 | 1191 |
/// |
| 1128 |
/// \brief Find the bi-edge-connected cut edges. |
|
| 1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
|
| 1129 | 1193 |
/// |
| 1130 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1131 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1132 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1133 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
| 1134 |
/// components are separted by edges which are the cut edges of the |
|
| 1135 |
/// components. |
|
| 1194 |
/// This function finds the bi-edge-connected cut edges in the given |
|
| 1195 |
/// undirected graph. |
|
| 1136 | 1196 |
/// |
| 1137 |
/// \param graph The graph. |
|
| 1138 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 1139 |
/// edge |
|
| 1197 |
/// The bi-edge-connected components are the classes of an equivalence |
|
| 1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
|
| 1199 |
/// same class if they are connected with at least two edge-disjoint |
|
| 1200 |
/// paths. |
|
| 1201 |
/// The bi-edge-connected components are separted by the cut edges of |
|
| 1202 |
/// the components. |
|
| 1203 |
/// |
|
| 1204 |
/// \param graph The undirected graph. |
|
| 1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
|
| 1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
|
| 1207 |
/// changed for other edges. |
|
| 1140 | 1208 |
/// \return The number of cut edges. |
| 1209 |
/// |
|
| 1210 |
/// \see biEdgeConnected(), biEdgeConnectedComponents() |
|
| 1141 | 1211 |
template <typename Graph, typename EdgeMap> |
| 1142 | 1212 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1143 | 1213 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -1189,19 +1259,62 @@ |
| 1189 | 1259 |
|
| 1190 | 1260 |
/// \ingroup graph_properties |
| 1191 | 1261 |
/// |
| 1262 |
/// \brief Check whether a digraph is DAG. |
|
| 1263 |
/// |
|
| 1264 |
/// This function checks whether the given digraph is DAG, i.e. |
|
| 1265 |
/// \e Directed \e Acyclic \e Graph. |
|
| 1266 |
/// \return \c true if there is no directed cycle in the digraph. |
|
| 1267 |
/// \see acyclic() |
|
| 1268 |
template <typename Digraph> |
|
| 1269 |
bool dag(const Digraph& digraph) {
|
|
| 1270 |
|
|
| 1271 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1272 |
|
|
| 1273 |
typedef typename Digraph::Node Node; |
|
| 1274 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1275 |
typedef typename Digraph::Arc Arc; |
|
| 1276 |
|
|
| 1277 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
| 1278 |
|
|
| 1279 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
| 1280 |
Create dfs(digraph); |
|
| 1281 |
|
|
| 1282 |
ProcessedMap processed(digraph); |
|
| 1283 |
dfs.processedMap(processed); |
|
| 1284 |
|
|
| 1285 |
dfs.init(); |
|
| 1286 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1287 |
if (!dfs.reached(it)) {
|
|
| 1288 |
dfs.addSource(it); |
|
| 1289 |
while (!dfs.emptyQueue()) {
|
|
| 1290 |
Arc arc = dfs.nextArc(); |
|
| 1291 |
Node target = digraph.target(arc); |
|
| 1292 |
if (dfs.reached(target) && !processed[target]) {
|
|
| 1293 |
return false; |
|
| 1294 |
} |
|
| 1295 |
dfs.processNextArc(); |
|
| 1296 |
} |
|
| 1297 |
} |
|
| 1298 |
} |
|
| 1299 |
return true; |
|
| 1300 |
} |
|
| 1301 |
|
|
| 1302 |
/// \ingroup graph_properties |
|
| 1303 |
/// |
|
| 1192 | 1304 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1193 | 1305 |
/// |
| 1194 |
/// |
|
| 1306 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
| 1307 |
/// into topolgical order. |
|
| 1195 | 1308 |
/// |
| 1196 |
/// \param |
|
| 1309 |
/// \param digraph The digraph, which must be DAG. |
|
| 1197 | 1310 |
/// \retval order A writable node map. The values will be set from 0 to |
| 1198 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
| 1199 |
/// will be set exactly once, the values will be set descending order. |
|
| 1311 |
/// the number of the nodes in the digraph minus one. Each value of the |
|
| 1312 |
/// map will be set exactly once, and the values will be set descending |
|
| 1313 |
/// order. |
|
| 1200 | 1314 |
/// |
| 1201 |
/// \see checkedTopologicalSort |
|
| 1202 |
/// \see dag |
|
| 1315 |
/// \see dag(), checkedTopologicalSort() |
|
| 1203 | 1316 |
template <typename Digraph, typename NodeMap> |
| 1204 |
void topologicalSort(const Digraph& |
|
| 1317 |
void topologicalSort(const Digraph& digraph, NodeMap& order) {
|
|
| 1205 | 1318 |
using namespace _connectivity_bits; |
| 1206 | 1319 |
|
| 1207 | 1320 |
checkConcept<concepts::Digraph, Digraph>(); |
| ... | ... |
@@ -1212,13 +1325,13 @@ |
| 1212 | 1325 |
typedef typename Digraph::Arc Arc; |
| 1213 | 1326 |
|
| 1214 | 1327 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1215 |
visitor(order, countNodes( |
|
| 1328 |
visitor(order, countNodes(digraph)); |
|
| 1216 | 1329 |
|
| 1217 | 1330 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1218 |
dfs( |
|
| 1331 |
dfs(digraph, visitor); |
|
| 1219 | 1332 |
|
| 1220 | 1333 |
dfs.init(); |
| 1221 |
for (NodeIt it( |
|
| 1334 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1222 | 1335 |
if (!dfs.reached(it)) {
|
| 1223 | 1336 |
dfs.addSource(it); |
| 1224 | 1337 |
dfs.start(); |
| ... | ... |
@@ -1230,18 +1343,18 @@ |
| 1230 | 1343 |
/// |
| 1231 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1232 | 1345 |
/// |
| 1233 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
| 1234 |
/// that the given graph is DAG. |
|
| 1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
|
| 1347 |
/// into topolgical order and also checks whether the given digraph |
|
| 1348 |
/// is DAG. |
|
| 1235 | 1349 |
/// |
| 1236 |
/// \param digraph The graph. It must be directed and acyclic. |
|
| 1237 |
/// \retval order A readable - writable node map. The values will be set |
|
| 1238 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
| 1239 |
/// of the map will be set exactly once, the values will be set descending |
|
| 1240 |
/// order. |
|
| 1241 |
/// \return \c false when the graph is not DAG. |
|
| 1350 |
/// \param digraph The digraph. |
|
| 1351 |
/// \retval order A readable and writable node map. The values will be |
|
| 1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
| 1353 |
/// Each value of the map will be set exactly once, and the values will |
|
| 1354 |
/// be set descending order. |
|
| 1355 |
/// \return \c false if the digraph is not DAG. |
|
| 1242 | 1356 |
/// |
| 1243 |
/// \see topologicalSort |
|
| 1244 |
/// \see dag |
|
| 1357 |
/// \see dag(), topologicalSort() |
|
| 1245 | 1358 |
template <typename Digraph, typename NodeMap> |
| 1246 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1247 | 1360 |
using namespace _connectivity_bits; |
| ... | ... |
@@ -1283,54 +1396,11 @@ |
| 1283 | 1396 |
|
| 1284 | 1397 |
/// \ingroup graph_properties |
| 1285 | 1398 |
/// |
| 1286 |
/// \brief Check |
|
| 1399 |
/// \brief Check whether an undirected graph is acyclic. |
|
| 1287 | 1400 |
/// |
| 1288 |
/// Check that the given directed graph is a DAG. The DAG is |
|
| 1289 |
/// an Directed Acyclic Digraph. |
|
| 1290 |
/// \return \c false when the graph is not DAG. |
|
| 1291 |
/// \see acyclic |
|
| 1292 |
template <typename Digraph> |
|
| 1293 |
bool dag(const Digraph& digraph) {
|
|
| 1294 |
|
|
| 1295 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1296 |
|
|
| 1297 |
typedef typename Digraph::Node Node; |
|
| 1298 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1299 |
typedef typename Digraph::Arc Arc; |
|
| 1300 |
|
|
| 1301 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
| 1302 |
|
|
| 1303 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
| 1304 |
Create dfs(digraph); |
|
| 1305 |
|
|
| 1306 |
ProcessedMap processed(digraph); |
|
| 1307 |
dfs.processedMap(processed); |
|
| 1308 |
|
|
| 1309 |
dfs.init(); |
|
| 1310 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 1311 |
if (!dfs.reached(it)) {
|
|
| 1312 |
dfs.addSource(it); |
|
| 1313 |
while (!dfs.emptyQueue()) {
|
|
| 1314 |
Arc edge = dfs.nextArc(); |
|
| 1315 |
Node target = digraph.target(edge); |
|
| 1316 |
if (dfs.reached(target) && !processed[target]) {
|
|
| 1317 |
return false; |
|
| 1318 |
} |
|
| 1319 |
dfs.processNextArc(); |
|
| 1320 |
} |
|
| 1321 |
} |
|
| 1322 |
} |
|
| 1323 |
return true; |
|
| 1324 |
} |
|
| 1325 |
|
|
| 1326 |
/// \ingroup graph_properties |
|
| 1327 |
/// |
|
| 1328 |
/// \brief Check that the given undirected graph is acyclic. |
|
| 1329 |
/// |
|
| 1330 |
/// Check that the given undirected graph acyclic. |
|
| 1331 |
/// \param graph The undirected graph. |
|
| 1332 |
/// \return \c true when there is no circle in the graph. |
|
| 1333 |
/// \see dag |
|
| 1401 |
/// This function checks whether the given undirected graph is acyclic. |
|
| 1402 |
/// \return \c true if there is no cycle in the graph. |
|
| 1403 |
/// \see dag() |
|
| 1334 | 1404 |
template <typename Graph> |
| 1335 | 1405 |
bool acyclic(const Graph& graph) {
|
| 1336 | 1406 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -1343,11 +1413,11 @@ |
| 1343 | 1413 |
if (!dfs.reached(it)) {
|
| 1344 | 1414 |
dfs.addSource(it); |
| 1345 | 1415 |
while (!dfs.emptyQueue()) {
|
| 1346 |
Arc edge = dfs.nextArc(); |
|
| 1347 |
Node source = graph.source(edge); |
|
| 1348 |
|
|
| 1416 |
Arc arc = dfs.nextArc(); |
|
| 1417 |
Node source = graph.source(arc); |
|
| 1418 |
Node target = graph.target(arc); |
|
| 1349 | 1419 |
if (dfs.reached(target) && |
| 1350 |
dfs.predArc(source) != graph.oppositeArc( |
|
| 1420 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
|
| 1351 | 1421 |
return false; |
| 1352 | 1422 |
} |
| 1353 | 1423 |
dfs.processNextArc(); |
| ... | ... |
@@ -1359,11 +1429,11 @@ |
| 1359 | 1429 |
|
| 1360 | 1430 |
/// \ingroup graph_properties |
| 1361 | 1431 |
/// |
| 1362 |
/// \brief Check |
|
| 1432 |
/// \brief Check whether an undirected graph is tree. |
|
| 1363 | 1433 |
/// |
| 1364 |
/// Check that the given undirected graph is tree. |
|
| 1365 |
/// \param graph The undirected graph. |
|
| 1366 |
/// |
|
| 1434 |
/// This function checks whether the given undirected graph is tree. |
|
| 1435 |
/// \return \c true if the graph is acyclic and connected. |
|
| 1436 |
/// \see acyclic(), connected() |
|
| 1367 | 1437 |
template <typename Graph> |
| 1368 | 1438 |
bool tree(const Graph& graph) {
|
| 1369 | 1439 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -1375,11 +1445,11 @@ |
| 1375 | 1445 |
dfs.init(); |
| 1376 | 1446 |
dfs.addSource(NodeIt(graph)); |
| 1377 | 1447 |
while (!dfs.emptyQueue()) {
|
| 1378 |
Arc edge = dfs.nextArc(); |
|
| 1379 |
Node source = graph.source(edge); |
|
| 1380 |
|
|
| 1448 |
Arc arc = dfs.nextArc(); |
|
| 1449 |
Node source = graph.source(arc); |
|
| 1450 |
Node target = graph.target(arc); |
|
| 1381 | 1451 |
if (dfs.reached(target) && |
| 1382 |
dfs.predArc(source) != graph.oppositeArc( |
|
| 1452 |
dfs.predArc(source) != graph.oppositeArc(arc)) {
|
|
| 1383 | 1453 |
return false; |
| 1384 | 1454 |
} |
| 1385 | 1455 |
dfs.processNextArc(); |
| ... | ... |
@@ -1452,15 +1522,14 @@ |
| 1452 | 1522 |
|
| 1453 | 1523 |
/// \ingroup graph_properties |
| 1454 | 1524 |
/// |
| 1455 |
/// \brief Check |
|
| 1525 |
/// \brief Check whether an undirected graph is bipartite. |
|
| 1456 | 1526 |
/// |
| 1457 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
| 1458 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1459 |
/// \param graph The undirected graph. |
|
| 1460 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
| 1461 |
/// |
|
| 1527 |
/// The function checks whether the given undirected graph is bipartite. |
|
| 1528 |
/// \return \c true if the graph is bipartite. |
|
| 1529 |
/// |
|
| 1530 |
/// \see bipartitePartitions() |
|
| 1462 | 1531 |
template<typename Graph> |
| 1463 |
|
|
| 1532 |
bool bipartite(const Graph &graph){
|
|
| 1464 | 1533 |
using namespace _connectivity_bits; |
| 1465 | 1534 |
|
| 1466 | 1535 |
checkConcept<concepts::Graph, Graph>(); |
| ... | ... |
@@ -1489,25 +1558,27 @@ |
| 1489 | 1558 |
|
| 1490 | 1559 |
/// \ingroup graph_properties |
| 1491 | 1560 |
/// |
| 1492 |
/// \brief |
|
| 1561 |
/// \brief Find the bipartite partitions of an undirected graph. |
|
| 1493 | 1562 |
/// |
| 1494 |
/// The function checks if the given undirected graph is bipartite |
|
| 1495 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1496 |
/// During the execution, the \c partMap will be set as the two |
|
| 1497 |
/// partitions of the graph. |
|
| 1563 |
/// This function checks whether the given undirected graph is bipartite |
|
| 1564 |
/// and gives back the bipartite partitions. |
|
| 1498 | 1565 |
/// |
| 1499 | 1566 |
/// \image html bipartite_partitions.png |
| 1500 | 1567 |
/// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth |
| 1501 | 1568 |
/// |
| 1502 | 1569 |
/// \param graph The undirected graph. |
| 1503 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
| 1504 |
/// two partitions of the graph. |
|
| 1505 |
/// \ |
|
| 1570 |
/// \retval partMap A writable node map of \c bool (or convertible) value |
|
| 1571 |
/// type. The values will be set to \c true for one component and |
|
| 1572 |
/// \c false for the other one. |
|
| 1573 |
/// \return \c true if the graph is bipartite, \c false otherwise. |
|
| 1574 |
/// |
|
| 1575 |
/// \see bipartite() |
|
| 1506 | 1576 |
template<typename Graph, typename NodeMap> |
| 1507 |
|
|
| 1577 |
bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
|
| 1508 | 1578 |
using namespace _connectivity_bits; |
| 1509 | 1579 |
|
| 1510 | 1580 |
checkConcept<concepts::Graph, Graph>(); |
| 1581 |
checkConcept<concepts::WriteMap<typename Graph::Node, bool>, NodeMap>(); |
|
| 1511 | 1582 |
|
| 1512 | 1583 |
typedef typename Graph::Node Node; |
| 1513 | 1584 |
typedef typename Graph::NodeIt NodeIt; |
| ... | ... |
@@ -1532,20 +1603,26 @@ |
| 1532 | 1603 |
return true; |
| 1533 | 1604 |
} |
| 1534 | 1605 |
|
| 1535 |
/// \ |
|
| 1606 |
/// \ingroup graph_properties |
|
| 1536 | 1607 |
/// |
| 1537 |
/// Returns true when there are not loop edges in the graph. |
|
| 1538 |
template <typename Digraph> |
|
| 1539 |
bool loopFree(const Digraph& digraph) {
|
|
| 1540 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
|
|
| 1541 |
|
|
| 1608 |
/// \brief Check whether the given graph contains no loop arcs/edges. |
|
| 1609 |
/// |
|
| 1610 |
/// This function returns \c true if there are no loop arcs/edges in |
|
| 1611 |
/// the given graph. It works for both directed and undirected graphs. |
|
| 1612 |
template <typename Graph> |
|
| 1613 |
bool loopFree(const Graph& graph) {
|
|
| 1614 |
for (typename Graph::ArcIt it(graph); it != INVALID; ++it) {
|
|
| 1615 |
if (graph.source(it) == graph.target(it)) return false; |
|
| 1542 | 1616 |
} |
| 1543 | 1617 |
return true; |
| 1544 | 1618 |
} |
| 1545 | 1619 |
|
| 1546 |
/// \ |
|
| 1620 |
/// \ingroup graph_properties |
|
| 1547 | 1621 |
/// |
| 1548 |
/// |
|
| 1622 |
/// \brief Check whether the given graph contains no parallel arcs/edges. |
|
| 1623 |
/// |
|
| 1624 |
/// This function returns \c true if there are no parallel arcs/edges in |
|
| 1625 |
/// the given graph. It works for both directed and undirected graphs. |
|
| 1549 | 1626 |
template <typename Graph> |
| 1550 | 1627 |
bool parallelFree(const Graph& graph) {
|
| 1551 | 1628 |
typename Graph::template NodeMap<int> reached(graph, 0); |
| ... | ... |
@@ -1560,11 +1637,14 @@ |
| 1560 | 1637 |
return true; |
| 1561 | 1638 |
} |
| 1562 | 1639 |
|
| 1563 |
/// \brief Returns true when there are not loop edges and parallel |
|
| 1564 |
/// edges in the graph. |
|
| 1640 |
/// \ingroup graph_properties |
|
| 1565 | 1641 |
/// |
| 1566 |
/// Returns true when there are not loop edges and parallel edges in |
|
| 1567 |
/// the graph. |
|
| 1642 |
/// \brief Check whether the given graph is simple. |
|
| 1643 |
/// |
|
| 1644 |
/// This function returns \c true if the given graph is simple, i.e. |
|
| 1645 |
/// it contains no loop arcs/edges and no parallel arcs/edges. |
|
| 1646 |
/// The function works for both directed and undirected graphs. |
|
| 1647 |
/// \see loopFree(), parallelFree() |
|
| 1568 | 1648 |
template <typename Graph> |
| 1569 | 1649 |
bool simpleGraph(const Graph& graph) {
|
| 1570 | 1650 |
typename Graph::template NodeMap<int> reached(graph, 0); |
| ... | ... |
@@ -244,10 +244,10 @@ |
| 244 | 244 |
}; |
| 245 | 245 |
|
| 246 | 246 |
|
| 247 |
///Check if the given graph is |
|
| 247 |
///Check if the given graph is Eulerian |
|
| 248 | 248 |
|
| 249 | 249 |
/// \ingroup graph_properties |
| 250 |
///This function checks if the given graph is |
|
| 250 |
///This function checks if the given graph is Eulerian. |
|
| 251 | 251 |
///It works for both directed and undirected graphs. |
| 252 | 252 |
/// |
| 253 | 253 |
///By definition, a digraph is called \e Eulerian if |
0 comments (0 inline)