0
3
0
... | ... |
@@ -19,13 +19,13 @@ |
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 |
/// \brief Network |
|
25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
|
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
... | ... |
@@ -33,128 +33,137 @@ |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow |
37 | 37 |
/// @{ |
38 | 38 |
|
39 |
/// \brief Implementation of the primal |
|
39 |
/// \brief Implementation of the primal Network Simplex algorithm |
|
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 |
/// \ref NetworkSimplex implements the primal |
|
42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
|
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 44 |
/// |
45 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
46 |
/// \tparam LowerMap The type of the lower bound map. |
|
47 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
48 |
/// \tparam CostMap The type of the cost (length) map. |
|
49 |
/// \tparam |
|
45 |
/// \tparam GR The digraph type the algorithm runs on. |
|
46 |
/// \tparam V The value type used in the algorithm. |
|
47 |
/// By default it is \c int. |
|
50 | 48 |
/// |
51 |
/// \warning |
|
52 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
53 |
/// - Supply values should be \e signed \e integers. |
|
54 |
/// - The value types of the maps should be convertible to each other. |
|
55 |
/// |
|
49 |
/// \warning \c V must be a signed integer type. |
|
56 | 50 |
/// |
57 |
/// \note \ref NetworkSimplex provides five different pivot rule |
|
58 |
/// implementations that significantly affect the efficiency of the |
|
59 |
/// algorithm. |
|
60 |
/// By default "Block Search" pivot rule is used, which proved to be |
|
61 |
/// by far the most efficient according to our benchmark tests. |
|
62 |
/// However another pivot rule can be selected using \ref run() |
|
63 |
/// function with the proper parameter. |
|
64 |
#ifdef DOXYGEN |
|
65 |
template < typename Digraph, |
|
66 |
typename LowerMap, |
|
67 |
typename CapacityMap, |
|
68 |
typename CostMap, |
|
69 |
typename SupplyMap > |
|
70 |
|
|
71 |
#else |
|
72 |
template < typename Digraph, |
|
73 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
74 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
75 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
76 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
77 |
|
|
51 |
/// \note %NetworkSimplex provides five different pivot rule |
|
52 |
/// implementations. For more information see \ref PivotRule. |
|
53 |
template <typename GR, typename V = int> |
|
78 | 54 |
class NetworkSimplex |
79 | 55 |
{ |
80 |
|
|
56 |
public: |
|
81 | 57 |
|
82 |
typedef typename CapacityMap::Value Capacity; |
|
83 |
typedef typename CostMap::Value Cost; |
|
84 |
|
|
58 |
/// The value type of the algorithm |
|
59 |
typedef V Value; |
|
60 |
/// The type of the flow map |
|
61 |
typedef typename GR::template ArcMap<Value> FlowMap; |
|
62 |
/// The type of the potential map |
|
63 |
typedef typename GR::template NodeMap<Value> PotentialMap; |
|
64 |
|
|
65 |
public: |
|
66 |
|
|
67 |
/// \brief Enum type for selecting the pivot rule. |
|
68 |
/// |
|
69 |
/// Enum type for selecting the pivot rule for the \ref run() |
|
70 |
/// function. |
|
71 |
/// |
|
72 |
/// \ref NetworkSimplex provides five different pivot rule |
|
73 |
/// implementations that significantly affect the running time |
|
74 |
/// of the algorithm. |
|
75 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
76 |
/// proved to be the most efficient and the most robust on various |
|
77 |
/// test inputs according to our benchmark tests. |
|
78 |
/// However another pivot rule can be selected using the \ref run() |
|
79 |
/// function with the proper parameter. |
|
80 |
enum PivotRule { |
|
81 |
|
|
82 |
/// The First Eligible pivot rule. |
|
83 |
/// The next eligible arc is selected in a wraparound fashion |
|
84 |
/// in every iteration. |
|
85 |
FIRST_ELIGIBLE, |
|
86 |
|
|
87 |
/// The Best Eligible pivot rule. |
|
88 |
/// The best eligible arc is selected in every iteration. |
|
89 |
BEST_ELIGIBLE, |
|
90 |
|
|
91 |
/// The Block Search pivot rule. |
|
92 |
/// A specified number of arcs are examined in every iteration |
|
93 |
/// in a wraparound fashion and the best eligible arc is selected |
|
94 |
/// from this block. |
|
95 |
BLOCK_SEARCH, |
|
96 |
|
|
97 |
/// The Candidate List pivot rule. |
|
98 |
/// In a major iteration a candidate list is built from eligible arcs |
|
99 |
/// in a wraparound fashion and in the following minor iterations |
|
100 |
/// the best eligible arc is selected from this list. |
|
101 |
CANDIDATE_LIST, |
|
102 |
|
|
103 |
/// The Altering Candidate List pivot rule. |
|
104 |
/// It is a modified version of the Candidate List method. |
|
105 |
/// It keeps only the several best eligible arcs from the former |
|
106 |
/// candidate list and extends this list in every iteration. |
|
107 |
ALTERING_LIST |
|
108 |
}; |
|
109 |
|
|
110 |
private: |
|
111 |
|
|
112 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
113 |
|
|
114 |
typedef typename GR::template ArcMap<Value> ValueArcMap; |
|
115 |
typedef typename GR::template NodeMap<Value> ValueNodeMap; |
|
85 | 116 |
|
86 | 117 |
typedef std::vector<Arc> ArcVector; |
87 | 118 |
typedef std::vector<Node> NodeVector; |
88 | 119 |
typedef std::vector<int> IntVector; |
89 | 120 |
typedef std::vector<bool> BoolVector; |
90 |
typedef std::vector<Capacity> CapacityVector; |
|
91 |
typedef std::vector<Cost> CostVector; |
|
92 |
typedef std::vector<Supply> SupplyVector; |
|
93 |
|
|
94 |
public: |
|
95 |
|
|
96 |
/// The type of the flow map |
|
97 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
98 |
/// The type of the potential map |
|
99 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
100 |
|
|
101 |
public: |
|
102 |
|
|
103 |
/// Enum type for selecting the pivot rule used by \ref run() |
|
104 |
enum PivotRuleEnum { |
|
105 |
FIRST_ELIGIBLE_PIVOT, |
|
106 |
BEST_ELIGIBLE_PIVOT, |
|
107 |
BLOCK_SEARCH_PIVOT, |
|
108 |
CANDIDATE_LIST_PIVOT, |
|
109 |
ALTERING_LIST_PIVOT |
|
110 |
}; |
|
111 |
|
|
112 |
|
|
121 |
typedef std::vector<Value> ValueVector; |
|
113 | 122 |
|
114 | 123 |
// State constants for arcs |
115 | 124 |
enum ArcStateEnum { |
116 | 125 |
STATE_UPPER = -1, |
117 | 126 |
STATE_TREE = 0, |
118 | 127 |
STATE_LOWER = 1 |
119 | 128 |
}; |
120 | 129 |
|
121 | 130 |
private: |
122 | 131 |
|
123 |
// References for the original data |
|
124 |
const Digraph &_graph; |
|
125 |
const LowerMap *_orig_lower; |
|
126 |
const CapacityMap &_orig_cap; |
|
127 |
const CostMap &_orig_cost; |
|
128 |
const SupplyMap *_orig_supply; |
|
129 |
Node _orig_source; |
|
130 |
Node _orig_target; |
|
131 |
|
|
132 |
// Data related to the underlying digraph |
|
133 |
const GR &_graph; |
|
134 |
int _node_num; |
|
135 |
int _arc_num; |
|
136 |
|
|
137 |
// Parameters of the problem |
|
138 |
ValueArcMap *_plower; |
|
139 |
ValueArcMap *_pupper; |
|
140 |
ValueArcMap *_pcost; |
|
141 |
ValueNodeMap *_psupply; |
|
142 |
bool _pstsup; |
|
143 |
Node _psource, _ptarget; |
|
144 |
Value _pstflow; |
|
132 | 145 |
|
133 | 146 |
// Result maps |
134 | 147 |
FlowMap *_flow_map; |
135 | 148 |
PotentialMap *_potential_map; |
136 | 149 |
bool _local_flow; |
137 | 150 |
bool _local_potential; |
138 | 151 |
|
139 |
// The number of nodes and arcs in the original graph |
|
140 |
int _node_num; |
|
141 |
int _arc_num; |
|
142 |
|
|
143 |
// Data structures for storing the |
|
152 |
// Data structures for storing the digraph |
|
144 | 153 |
IntNodeMap _node_id; |
145 | 154 |
ArcVector _arc_ref; |
146 | 155 |
IntVector _source; |
147 | 156 |
IntVector _target; |
148 | 157 |
|
149 |
// Node and arc maps |
|
150 |
CapacityVector _cap; |
|
151 |
CostVector _cost; |
|
152 |
CostVector _supply; |
|
153 |
CapacityVector _flow; |
|
154 |
CostVector _pi; |
|
158 |
// Node and arc data |
|
159 |
ValueVector _cap; |
|
160 |
ValueVector _cost; |
|
161 |
ValueVector _supply; |
|
162 |
ValueVector _flow; |
|
163 |
ValueVector _pi; |
|
155 | 164 |
|
156 | 165 |
// Data for storing the spanning tree structure |
157 | 166 |
IntVector _parent; |
158 | 167 |
IntVector _pred; |
159 | 168 |
IntVector _thread; |
160 | 169 |
IntVector _rev_thread; |
... | ... |
@@ -166,51 +175,45 @@ |
166 | 175 |
int _root; |
167 | 176 |
|
168 | 177 |
// Temporary data used in the current pivot iteration |
169 | 178 |
int in_arc, join, u_in, v_in, u_out, v_out; |
170 | 179 |
int first, second, right, last; |
171 | 180 |
int stem, par_stem, new_stem; |
172 |
|
|
181 |
Value delta; |
|
173 | 182 |
|
174 | 183 |
private: |
175 | 184 |
|
176 |
/// \brief Implementation of the "First Eligible" pivot rule for the |
|
177 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
178 |
/// |
|
179 |
/// This class implements the "First Eligible" pivot rule |
|
180 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
181 |
/// |
|
182 |
// |
|
185 |
// Implementation of the First Eligible pivot rule |
|
183 | 186 |
class FirstEligiblePivotRule |
184 | 187 |
{ |
185 | 188 |
private: |
186 | 189 |
|
187 | 190 |
// References to the NetworkSimplex class |
188 | 191 |
const IntVector &_source; |
189 | 192 |
const IntVector &_target; |
190 |
const |
|
193 |
const ValueVector &_cost; |
|
191 | 194 |
const IntVector &_state; |
192 |
const |
|
195 |
const ValueVector &_pi; |
|
193 | 196 |
int &_in_arc; |
194 | 197 |
int _arc_num; |
195 | 198 |
|
196 | 199 |
// Pivot rule data |
197 | 200 |
int _next_arc; |
198 | 201 |
|
199 | 202 |
public: |
200 | 203 |
|
201 |
// |
|
204 |
// Constructor |
|
202 | 205 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
203 | 206 |
_source(ns._source), _target(ns._target), |
204 | 207 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
205 | 208 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
206 | 209 |
{} |
207 | 210 |
|
208 |
// |
|
211 |
// Find next entering arc |
|
209 | 212 |
bool findEnteringArc() { |
210 |
|
|
213 |
Value c; |
|
211 | 214 |
for (int e = _next_arc; e < _arc_num; ++e) { |
212 | 215 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
213 | 216 |
if (c < 0) { |
214 | 217 |
_in_arc = e; |
215 | 218 |
_next_arc = e + 1; |
216 | 219 |
return true; |
... | ... |
@@ -227,44 +230,38 @@ |
227 | 230 |
return false; |
228 | 231 |
} |
229 | 232 |
|
230 | 233 |
}; //class FirstEligiblePivotRule |
231 | 234 |
|
232 | 235 |
|
233 |
/// \brief Implementation of the "Best Eligible" pivot rule for the |
|
234 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
235 |
/// |
|
236 |
/// This class implements the "Best Eligible" pivot rule |
|
237 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
238 |
/// |
|
239 |
// |
|
236 |
// Implementation of the Best Eligible pivot rule |
|
240 | 237 |
class BestEligiblePivotRule |
241 | 238 |
{ |
242 | 239 |
private: |
243 | 240 |
|
244 | 241 |
// References to the NetworkSimplex class |
245 | 242 |
const IntVector &_source; |
246 | 243 |
const IntVector &_target; |
247 |
const |
|
244 |
const ValueVector &_cost; |
|
248 | 245 |
const IntVector &_state; |
249 |
const |
|
246 |
const ValueVector &_pi; |
|
250 | 247 |
int &_in_arc; |
251 | 248 |
int _arc_num; |
252 | 249 |
|
253 | 250 |
public: |
254 | 251 |
|
255 |
// |
|
252 |
// Constructor |
|
256 | 253 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
257 | 254 |
_source(ns._source), _target(ns._target), |
258 | 255 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
259 | 256 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
260 | 257 |
{} |
261 | 258 |
|
262 |
// |
|
259 |
// Find next entering arc |
|
263 | 260 |
bool findEnteringArc() { |
264 |
|
|
261 |
Value c, min = 0; |
|
265 | 262 |
for (int e = 0; e < _arc_num; ++e) { |
266 | 263 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
267 | 264 |
if (c < min) { |
268 | 265 |
min = c; |
269 | 266 |
_in_arc = e; |
270 | 267 |
} |
... | ... |
@@ -272,39 +269,33 @@ |
272 | 269 |
return min < 0; |
273 | 270 |
} |
274 | 271 |
|
275 | 272 |
}; //class BestEligiblePivotRule |
276 | 273 |
|
277 | 274 |
|
278 |
/// \brief Implementation of the "Block Search" pivot rule for the |
|
279 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
280 |
/// |
|
281 |
/// This class implements the "Block Search" pivot rule |
|
282 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
283 |
/// |
|
284 |
// |
|
275 |
// Implementation of the Block Search pivot rule |
|
285 | 276 |
class BlockSearchPivotRule |
286 | 277 |
{ |
287 | 278 |
private: |
288 | 279 |
|
289 | 280 |
// References to the NetworkSimplex class |
290 | 281 |
const IntVector &_source; |
291 | 282 |
const IntVector &_target; |
292 |
const |
|
283 |
const ValueVector &_cost; |
|
293 | 284 |
const IntVector &_state; |
294 |
const |
|
285 |
const ValueVector &_pi; |
|
295 | 286 |
int &_in_arc; |
296 | 287 |
int _arc_num; |
297 | 288 |
|
298 | 289 |
// Pivot rule data |
299 | 290 |
int _block_size; |
300 | 291 |
int _next_arc; |
301 | 292 |
|
302 | 293 |
public: |
303 | 294 |
|
304 |
// |
|
295 |
// Constructor |
|
305 | 296 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
306 | 297 |
_source(ns._source), _target(ns._target), |
307 | 298 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
308 | 299 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
309 | 300 |
{ |
310 | 301 |
// The main parameters of the pivot rule |
... | ... |
@@ -312,15 +303,15 @@ |
312 | 303 |
const int MIN_BLOCK_SIZE = 10; |
313 | 304 |
|
314 | 305 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
315 | 306 |
MIN_BLOCK_SIZE ); |
316 | 307 |
} |
317 | 308 |
|
318 |
// |
|
309 |
// Find next entering arc |
|
319 | 310 |
bool findEnteringArc() { |
320 |
|
|
311 |
Value c, min = 0; |
|
321 | 312 |
int cnt = _block_size; |
322 | 313 |
int e, min_arc = _next_arc; |
323 | 314 |
for (e = _next_arc; e < _arc_num; ++e) { |
324 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
325 | 316 |
if (c < min) { |
326 | 317 |
min = c; |
... | ... |
@@ -350,29 +341,23 @@ |
350 | 341 |
return true; |
351 | 342 |
} |
352 | 343 |
|
353 | 344 |
}; //class BlockSearchPivotRule |
354 | 345 |
|
355 | 346 |
|
356 |
/// \brief Implementation of the "Candidate List" pivot rule for the |
|
357 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
358 |
/// |
|
359 |
/// This class implements the "Candidate List" pivot rule |
|
360 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
361 |
/// |
|
362 |
// |
|
347 |
// Implementation of the Candidate List pivot rule |
|
363 | 348 |
class CandidateListPivotRule |
364 | 349 |
{ |
365 | 350 |
private: |
366 | 351 |
|
367 | 352 |
// References to the NetworkSimplex class |
368 | 353 |
const IntVector &_source; |
369 | 354 |
const IntVector &_target; |
370 |
const |
|
355 |
const ValueVector &_cost; |
|
371 | 356 |
const IntVector &_state; |
372 |
const |
|
357 |
const ValueVector &_pi; |
|
373 | 358 |
int &_in_arc; |
374 | 359 |
int _arc_num; |
375 | 360 |
|
376 | 361 |
// Pivot rule data |
377 | 362 |
IntVector _candidates; |
378 | 363 |
int _list_length, _minor_limit; |
... | ... |
@@ -400,13 +385,13 @@ |
400 | 385 |
_curr_length = _minor_count = 0; |
401 | 386 |
_candidates.resize(_list_length); |
402 | 387 |
} |
403 | 388 |
|
404 | 389 |
/// Find next entering arc |
405 | 390 |
bool findEnteringArc() { |
406 |
|
|
391 |
Value min, c; |
|
407 | 392 |
int e, min_arc = _next_arc; |
408 | 393 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
409 | 394 |
// Minor iteration: select the best eligible arc from the |
410 | 395 |
// current candidate list |
411 | 396 |
++_minor_count; |
412 | 397 |
min = 0; |
... | ... |
@@ -461,55 +446,49 @@ |
461 | 446 |
return true; |
462 | 447 |
} |
463 | 448 |
|
464 | 449 |
}; //class CandidateListPivotRule |
465 | 450 |
|
466 | 451 |
|
467 |
/// \brief Implementation of the "Altering Candidate List" pivot rule |
|
468 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
469 |
/// |
|
470 |
/// This class implements the "Altering Candidate List" pivot rule |
|
471 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
472 |
/// |
|
473 |
// |
|
452 |
// Implementation of the Altering Candidate List pivot rule |
|
474 | 453 |
class AlteringListPivotRule |
475 | 454 |
{ |
476 | 455 |
private: |
477 | 456 |
|
478 | 457 |
// References to the NetworkSimplex class |
479 | 458 |
const IntVector &_source; |
480 | 459 |
const IntVector &_target; |
481 |
const |
|
460 |
const ValueVector &_cost; |
|
482 | 461 |
const IntVector &_state; |
483 |
const |
|
462 |
const ValueVector &_pi; |
|
484 | 463 |
int &_in_arc; |
485 | 464 |
int _arc_num; |
486 | 465 |
|
487 | 466 |
// Pivot rule data |
488 | 467 |
int _block_size, _head_length, _curr_length; |
489 | 468 |
int _next_arc; |
490 | 469 |
IntVector _candidates; |
491 |
|
|
470 |
ValueVector _cand_cost; |
|
492 | 471 |
|
493 | 472 |
// Functor class to compare arcs during sort of the candidate list |
494 | 473 |
class SortFunc |
495 | 474 |
{ |
496 | 475 |
private: |
497 |
const |
|
476 |
const ValueVector &_map; |
|
498 | 477 |
public: |
499 |
SortFunc(const |
|
478 |
SortFunc(const ValueVector &map) : _map(map) {} |
|
500 | 479 |
bool operator()(int left, int right) { |
501 | 480 |
return _map[left] > _map[right]; |
502 | 481 |
} |
503 | 482 |
}; |
504 | 483 |
|
505 | 484 |
SortFunc _sort_func; |
506 | 485 |
|
507 | 486 |
public: |
508 | 487 |
|
509 |
// |
|
488 |
// Constructor |
|
510 | 489 |
AlteringListPivotRule(NetworkSimplex &ns) : |
511 | 490 |
_source(ns._source), _target(ns._target), |
512 | 491 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
513 | 492 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
514 | 493 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
515 | 494 |
{ |
... | ... |
@@ -524,13 +503,13 @@ |
524 | 503 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
525 | 504 |
MIN_HEAD_LENGTH ); |
526 | 505 |
_candidates.resize(_head_length + _block_size); |
527 | 506 |
_curr_length = 0; |
528 | 507 |
} |
529 | 508 |
|
530 |
// |
|
509 |
// Find next entering arc |
|
531 | 510 |
bool findEnteringArc() { |
532 | 511 |
// Check the current candidate list |
533 | 512 |
int e; |
534 | 513 |
for (int i = 0; i < _curr_length; ++i) { |
535 | 514 |
e = _candidates[i]; |
536 | 515 |
_cand_cost[e] = _state[e] * |
... | ... |
@@ -589,241 +568,331 @@ |
589 | 568 |
} |
590 | 569 |
|
591 | 570 |
}; //class AlteringListPivotRule |
592 | 571 |
|
593 | 572 |
public: |
594 | 573 |
|
595 |
/// \brief |
|
574 |
/// \brief Constructor. |
|
596 | 575 |
/// |
597 |
/// |
|
576 |
/// Constructor. |
|
598 | 577 |
/// |
599 | 578 |
/// \param graph The digraph the algorithm runs on. |
600 |
/// \param lower The lower bounds of the arcs. |
|
601 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
602 |
/// \param cost The cost (length) values of the arcs. |
|
603 |
/// \param supply The supply values of the nodes (signed). |
|
604 |
NetworkSimplex( const Digraph &graph, |
|
605 |
const LowerMap &lower, |
|
606 |
const CapacityMap &capacity, |
|
607 |
const CostMap &cost, |
|
608 |
const SupplyMap &supply ) : |
|
609 |
_graph(graph), _orig_lower(&lower), _orig_cap(capacity), |
|
610 |
|
|
579 |
NetworkSimplex(const GR& graph) : |
|
580 |
_graph(graph), |
|
581 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
582 |
_psupply(NULL), _pstsup(false), |
|
611 | 583 |
_flow_map(NULL), _potential_map(NULL), |
612 | 584 |
_local_flow(false), _local_potential(false), |
613 | 585 |
_node_id(graph) |
614 |
{} |
|
615 |
|
|
616 |
/// \brief General constructor (without lower bounds). |
|
617 |
/// |
|
618 |
/// General constructor (without lower bounds). |
|
619 |
/// |
|
620 |
/// \param graph The digraph the algorithm runs on. |
|
621 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
622 |
/// \param cost The cost (length) values of the arcs. |
|
623 |
/// \param supply The supply values of the nodes (signed). |
|
624 |
NetworkSimplex( const Digraph &graph, |
|
625 |
const CapacityMap &capacity, |
|
626 |
const CostMap &cost, |
|
627 |
const SupplyMap &supply ) : |
|
628 |
_graph(graph), _orig_lower(NULL), _orig_cap(capacity), |
|
629 |
_orig_cost(cost), _orig_supply(&supply), |
|
630 |
_flow_map(NULL), _potential_map(NULL), |
|
631 |
_local_flow(false), _local_potential(false), |
|
632 |
_node_id(graph) |
|
633 |
{} |
|
634 |
|
|
635 |
/// \brief Simple constructor (with lower bounds). |
|
636 |
/// |
|
637 |
/// Simple constructor (with lower bounds). |
|
638 |
/// |
|
639 |
/// \param graph The digraph the algorithm runs on. |
|
640 |
/// \param lower The lower bounds of the arcs. |
|
641 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
642 |
/// \param cost The cost (length) values of the arcs. |
|
643 |
/// \param s The source node. |
|
644 |
/// \param t The target node. |
|
645 |
/// \param flow_value The required amount of flow from node \c s |
|
646 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
647 |
NetworkSimplex( const Digraph &graph, |
|
648 |
const LowerMap &lower, |
|
649 |
const CapacityMap &capacity, |
|
650 |
const CostMap &cost, |
|
651 |
Node s, Node t, |
|
652 |
Capacity flow_value ) : |
|
653 |
_graph(graph), _orig_lower(&lower), _orig_cap(capacity), |
|
654 |
_orig_cost(cost), _orig_supply(NULL), |
|
655 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
656 |
_flow_map(NULL), _potential_map(NULL), |
|
657 |
_local_flow(false), _local_potential(false), |
|
658 |
_node_id(graph) |
|
659 |
{} |
|
660 |
|
|
661 |
/// \brief Simple constructor (without lower bounds). |
|
662 |
/// |
|
663 |
/// Simple constructor (without lower bounds). |
|
664 |
/// |
|
665 |
/// \param graph The digraph the algorithm runs on. |
|
666 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
667 |
/// \param cost The cost (length) values of the arcs. |
|
668 |
/// \param s The source node. |
|
669 |
/// \param t The target node. |
|
670 |
/// \param flow_value The required amount of flow from node \c s |
|
671 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
672 |
NetworkSimplex( const Digraph &graph, |
|
673 |
const CapacityMap &capacity, |
|
674 |
const CostMap &cost, |
|
675 |
Node s, Node t, |
|
676 |
Capacity flow_value ) : |
|
677 |
_graph(graph), _orig_lower(NULL), _orig_cap(capacity), |
|
678 |
_orig_cost(cost), _orig_supply(NULL), |
|
679 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
680 |
_flow_map(NULL), _potential_map(NULL), |
|
681 |
_local_flow(false), _local_potential(false), |
|
682 |
_node_id(graph) |
|
683 |
{} |
|
586 |
{ |
|
587 |
LEMON_ASSERT(std::numeric_limits<Value>::is_integer && |
|
588 |
std::numeric_limits<Value>::is_signed, |
|
589 |
"The value type of NetworkSimplex must be a signed integer"); |
|
590 |
} |
|
684 | 591 |
|
685 | 592 |
/// Destructor. |
686 | 593 |
~NetworkSimplex() { |
687 | 594 |
if (_local_flow) delete _flow_map; |
688 | 595 |
if (_local_potential) delete _potential_map; |
689 | 596 |
} |
690 | 597 |
|
598 |
/// \brief Set the lower bounds on the arcs. |
|
599 |
/// |
|
600 |
/// This function sets the lower bounds on the arcs. |
|
601 |
/// If neither this function nor \ref boundMaps() is used before |
|
602 |
/// calling \ref run(), the lower bounds will be set to zero |
|
603 |
/// on all arcs. |
|
604 |
/// |
|
605 |
/// \param map An arc map storing the lower bounds. |
|
606 |
/// Its \c Value type must be convertible to the \c Value type |
|
607 |
/// of the algorithm. |
|
608 |
/// |
|
609 |
/// \return <tt>(*this)</tt> |
|
610 |
template <typename LOWER> |
|
611 |
NetworkSimplex& lowerMap(const LOWER& map) { |
|
612 |
delete _plower; |
|
613 |
_plower = new ValueArcMap(_graph); |
|
614 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
615 |
(*_plower)[a] = map[a]; |
|
616 |
} |
|
617 |
return *this; |
|
618 |
} |
|
619 |
|
|
620 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
621 |
/// |
|
622 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
623 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
624 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
625 |
/// the upper bounds (capacities) will be set to |
|
626 |
/// \c std::numeric_limits<Value>::max() on all arcs. |
|
627 |
/// |
|
628 |
/// \param map An arc map storing the upper bounds. |
|
629 |
/// Its \c Value type must be convertible to the \c Value type |
|
630 |
/// of the algorithm. |
|
631 |
/// |
|
632 |
/// \return <tt>(*this)</tt> |
|
633 |
template<typename UPPER> |
|
634 |
NetworkSimplex& upperMap(const UPPER& map) { |
|
635 |
delete _pupper; |
|
636 |
_pupper = new ValueArcMap(_graph); |
|
637 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
638 |
(*_pupper)[a] = map[a]; |
|
639 |
} |
|
640 |
return *this; |
|
641 |
} |
|
642 |
|
|
643 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
644 |
/// |
|
645 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
646 |
/// It is just an alias for \ref upperMap(). |
|
647 |
/// |
|
648 |
/// \return <tt>(*this)</tt> |
|
649 |
template<typename CAP> |
|
650 |
NetworkSimplex& capacityMap(const CAP& map) { |
|
651 |
return upperMap(map); |
|
652 |
} |
|
653 |
|
|
654 |
/// \brief Set the lower and upper bounds on the arcs. |
|
655 |
/// |
|
656 |
/// This function sets the lower and upper bounds on the arcs. |
|
657 |
/// If neither this function nor \ref lowerMap() is used before |
|
658 |
/// calling \ref run(), the lower bounds will be set to zero |
|
659 |
/// on all arcs. |
|
660 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
661 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
662 |
/// the upper bounds (capacities) will be set to |
|
663 |
/// \c std::numeric_limits<Value>::max() on all arcs. |
|
664 |
/// |
|
665 |
/// \param lower An arc map storing the lower bounds. |
|
666 |
/// \param upper An arc map storing the upper bounds. |
|
667 |
/// |
|
668 |
/// The \c Value type of the maps must be convertible to the |
|
669 |
/// \c Value type of the algorithm. |
|
670 |
/// |
|
671 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
672 |
/// and \ref upperMap() separately. |
|
673 |
/// |
|
674 |
/// \return <tt>(*this)</tt> |
|
675 |
template <typename LOWER, typename UPPER> |
|
676 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
|
677 |
return lowerMap(lower).upperMap(upper); |
|
678 |
} |
|
679 |
|
|
680 |
/// \brief Set the costs of the arcs. |
|
681 |
/// |
|
682 |
/// This function sets the costs of the arcs. |
|
683 |
/// If it is not used before calling \ref run(), the costs |
|
684 |
/// will be set to \c 1 on all arcs. |
|
685 |
/// |
|
686 |
/// \param map An arc map storing the costs. |
|
687 |
/// Its \c Value type must be convertible to the \c Value type |
|
688 |
/// of the algorithm. |
|
689 |
/// |
|
690 |
/// \return <tt>(*this)</tt> |
|
691 |
template<typename COST> |
|
692 |
NetworkSimplex& costMap(const COST& map) { |
|
693 |
delete _pcost; |
|
694 |
_pcost = new ValueArcMap(_graph); |
|
695 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
696 |
(*_pcost)[a] = map[a]; |
|
697 |
} |
|
698 |
return *this; |
|
699 |
} |
|
700 |
|
|
701 |
/// \brief Set the supply values of the nodes. |
|
702 |
/// |
|
703 |
/// This function sets the supply values of the nodes. |
|
704 |
/// If neither this function nor \ref stSupply() is used before |
|
705 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
706 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
707 |
/// |
|
708 |
/// \param map A node map storing the supply values. |
|
709 |
/// Its \c Value type must be convertible to the \c Value type |
|
710 |
/// of the algorithm. |
|
711 |
/// |
|
712 |
/// \return <tt>(*this)</tt> |
|
713 |
template<typename SUP> |
|
714 |
NetworkSimplex& supplyMap(const SUP& map) { |
|
715 |
delete _psupply; |
|
716 |
_pstsup = false; |
|
717 |
_psupply = new ValueNodeMap(_graph); |
|
718 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
719 |
(*_psupply)[n] = map[n]; |
|
720 |
} |
|
721 |
return *this; |
|
722 |
} |
|
723 |
|
|
724 |
/// \brief Set single source and target nodes and a supply value. |
|
725 |
/// |
|
726 |
/// This function sets a single source node and a single target node |
|
727 |
/// and the required flow value. |
|
728 |
/// If neither this function nor \ref supplyMap() is used before |
|
729 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
730 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
731 |
/// |
|
732 |
/// \param s The source node. |
|
733 |
/// \param t The target node. |
|
734 |
/// \param k The required amount of flow from node \c s to node \c t |
|
735 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
736 |
/// |
|
737 |
/// \return <tt>(*this)</tt> |
|
738 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
|
739 |
delete _psupply; |
|
740 |
_psupply = NULL; |
|
741 |
_pstsup = true; |
|
742 |
_psource = s; |
|
743 |
_ptarget = t; |
|
744 |
_pstflow = k; |
|
745 |
return *this; |
|
746 |
} |
|
747 |
|
|
691 | 748 |
/// \brief Set the flow map. |
692 | 749 |
/// |
693 | 750 |
/// This function sets the flow map. |
751 |
/// If it is not used before calling \ref run(), an instance will |
|
752 |
/// be allocated automatically. The destructor deallocates this |
|
753 |
/// automatically allocated map, of course. |
|
694 | 754 |
/// |
695 | 755 |
/// \return <tt>(*this)</tt> |
696 |
NetworkSimplex& flowMap(FlowMap |
|
756 |
NetworkSimplex& flowMap(FlowMap& map) { |
|
697 | 757 |
if (_local_flow) { |
698 | 758 |
delete _flow_map; |
699 | 759 |
_local_flow = false; |
700 | 760 |
} |
701 | 761 |
_flow_map = ↦ |
702 | 762 |
return *this; |
703 | 763 |
} |
704 | 764 |
|
705 | 765 |
/// \brief Set the potential map. |
706 | 766 |
/// |
707 |
/// This function sets the potential map |
|
767 |
/// This function sets the potential map, which is used for storing |
|
768 |
/// the dual solution. |
|
769 |
/// If it is not used before calling \ref run(), an instance will |
|
770 |
/// be allocated automatically. The destructor deallocates this |
|
771 |
/// automatically allocated map, of course. |
|
708 | 772 |
/// |
709 | 773 |
/// \return <tt>(*this)</tt> |
710 |
NetworkSimplex& potentialMap(PotentialMap |
|
774 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
|
711 | 775 |
if (_local_potential) { |
712 | 776 |
delete _potential_map; |
713 | 777 |
_local_potential = false; |
714 | 778 |
} |
715 | 779 |
_potential_map = ↦ |
716 | 780 |
return *this; |
717 | 781 |
} |
718 | 782 |
|
719 |
/// \name Execution control |
|
720 |
/// The algorithm can be executed using the |
|
721 |
/// \ |
|
783 |
/// \name Execution Control |
|
784 |
/// The algorithm can be executed using \ref run(). |
|
785 |
|
|
722 | 786 |
/// @{ |
723 | 787 |
|
724 | 788 |
/// \brief Run the algorithm. |
725 | 789 |
/// |
726 | 790 |
/// This function runs the algorithm. |
791 |
/// The paramters can be specified using \ref lowerMap(), |
|
792 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
793 |
/// \ref costMap(), \ref supplyMap() and \ref stSupply() |
|
794 |
/// functions. For example, |
|
795 |
/// \code |
|
796 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
797 |
/// ns.boundMaps(lower, upper).costMap(cost) |
|
798 |
/// .supplyMap(sup).run(); |
|
799 |
/// \endcode |
|
727 | 800 |
/// |
728 |
/// \param pivot_rule The pivot rule that is used during the |
|
729 |
/// algorithm. |
|
730 |
/// |
|
731 |
/// The available pivot rules: |
|
732 |
/// |
|
733 |
/// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in |
|
734 |
/// a wraparound fashion in every iteration |
|
735 |
/// (\ref FirstEligiblePivotRule). |
|
736 |
/// |
|
737 |
/// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in |
|
738 |
/// every iteration (\ref BestEligiblePivotRule). |
|
739 |
/// |
|
740 |
/// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in |
|
741 |
/// every iteration in a wraparound fashion and the best eligible |
|
742 |
/// arc is selected from this block (\ref BlockSearchPivotRule). |
|
743 |
/// |
|
744 |
/// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is |
|
745 |
/// built from eligible arcs in a wraparound fashion and in the |
|
746 |
/// following minor iterations the best eligible arc is selected |
|
747 |
/// from this list (\ref CandidateListPivotRule). |
|
748 |
/// |
|
749 |
/// - ALTERING_LIST_PIVOT It is a modified version of the |
|
750 |
/// "Candidate List" pivot rule. It keeps only the several best |
|
751 |
/// eligible arcs from the former candidate list and extends this |
|
752 |
/// list in every iteration (\ref AlteringListPivotRule). |
|
753 |
/// |
|
754 |
/// According to our comprehensive benchmark tests the "Block Search" |
|
755 |
/// pivot rule proved to be the fastest and the most robust on |
|
756 |
/// |
|
801 |
/// \param pivot_rule The pivot rule that will be used during the |
|
802 |
/// algorithm. For more information see \ref PivotRule. |
|
757 | 803 |
/// |
758 | 804 |
/// \return \c true if a feasible flow can be found. |
759 |
bool run( |
|
805 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
760 | 806 |
return init() && start(pivot_rule); |
761 | 807 |
} |
762 | 808 |
|
763 | 809 |
/// @} |
764 | 810 |
|
765 | 811 |
/// \name Query Functions |
766 | 812 |
/// The results of the algorithm can be obtained using these |
767 | 813 |
/// functions.\n |
768 |
/// \ref lemon::NetworkSimplex::run() "run()" must be called before |
|
769 |
/// using them. |
|
814 |
/// The \ref run() function must be called before using them. |
|
815 |
|
|
770 | 816 |
/// @{ |
771 | 817 |
|
818 |
/// \brief Return the total cost of the found flow. |
|
819 |
/// |
|
820 |
/// This function returns the total cost of the found flow. |
|
821 |
/// The complexity of the function is \f$ O(e) \f$. |
|
822 |
/// |
|
823 |
/// \note The return type of the function can be specified as a |
|
824 |
/// template parameter. For example, |
|
825 |
/// \code |
|
826 |
/// ns.totalCost<double>(); |
|
827 |
/// \endcode |
|
828 |
/// It is useful if the total cost cannot be stored in the \c Value |
|
829 |
/// type of the algorithm, which is the default return type of the |
|
830 |
/// function. |
|
831 |
/// |
|
832 |
/// \pre \ref run() must be called before using this function. |
|
833 |
template <typename Num> |
|
834 |
Num totalCost() const { |
|
835 |
Num c = 0; |
|
836 |
if (_pcost) { |
|
837 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
838 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
839 |
} else { |
|
840 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
841 |
c += (*_flow_map)[e]; |
|
842 |
} |
|
843 |
return c; |
|
844 |
} |
|
845 |
|
|
846 |
#ifndef DOXYGEN |
|
847 |
Value totalCost() const { |
|
848 |
return totalCost<Value>(); |
|
849 |
} |
|
850 |
#endif |
|
851 |
|
|
852 |
/// \brief Return the flow on the given arc. |
|
853 |
/// |
|
854 |
/// This function returns the flow on the given arc. |
|
855 |
/// |
|
856 |
/// \pre \ref run() must be called before using this function. |
|
857 |
Value flow(const Arc& a) const { |
|
858 |
return (*_flow_map)[a]; |
|
859 |
} |
|
860 |
|
|
772 | 861 |
/// \brief Return a const reference to the flow map. |
773 | 862 |
/// |
774 | 863 |
/// This function returns a const reference to an arc map storing |
775 | 864 |
/// the found flow. |
776 | 865 |
/// |
777 | 866 |
/// \pre \ref run() must be called before using this function. |
778 | 867 |
const FlowMap& flowMap() const { |
779 | 868 |
return *_flow_map; |
780 | 869 |
} |
781 | 870 |
|
871 |
/// \brief Return the potential (dual value) of the given node. |
|
872 |
/// |
|
873 |
/// This function returns the potential (dual value) of the |
|
874 |
/// given node. |
|
875 |
/// |
|
876 |
/// \pre \ref run() must be called before using this function. |
|
877 |
Value potential(const Node& n) const { |
|
878 |
return (*_potential_map)[n]; |
|
879 |
} |
|
880 |
|
|
782 | 881 |
/// \brief Return a const reference to the potential map |
783 | 882 |
/// (the dual solution). |
784 | 883 |
/// |
785 | 884 |
/// This function returns a const reference to a node map storing |
786 |
/// the found potentials |
|
885 |
/// the found potentials, which form the dual solution of the |
|
886 |
/// \ref min_cost_flow "minimum cost flow" problem. |
|
787 | 887 |
/// |
788 | 888 |
/// \pre \ref run() must be called before using this function. |
789 | 889 |
const PotentialMap& potentialMap() const { |
790 | 890 |
return *_potential_map; |
791 | 891 |
} |
792 | 892 |
|
793 |
/// \brief Return the flow on the given arc. |
|
794 |
/// |
|
795 |
/// This function returns the flow on the given arc. |
|
796 |
/// |
|
797 |
/// \pre \ref run() must be called before using this function. |
|
798 |
Capacity flow(const Arc& arc) const { |
|
799 |
return (*_flow_map)[arc]; |
|
800 |
} |
|
801 |
|
|
802 |
/// \brief Return the potential of the given node. |
|
803 |
/// |
|
804 |
/// This function returns the potential of the given node. |
|
805 |
/// |
|
806 |
/// \pre \ref run() must be called before using this function. |
|
807 |
Cost potential(const Node& node) const { |
|
808 |
return (*_potential_map)[node]; |
|
809 |
} |
|
810 |
|
|
811 |
/// \brief Return the total cost of the found flow. |
|
812 |
/// |
|
813 |
/// This function returns the total cost of the found flow. |
|
814 |
/// The complexity of the function is \f$ O(e) \f$. |
|
815 |
/// |
|
816 |
/// \pre \ref run() must be called before using this function. |
|
817 |
Cost totalCost() const { |
|
818 |
Cost c = 0; |
|
819 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
820 |
c += (*_flow_map)[e] * _orig_cost[e]; |
|
821 |
return c; |
|
822 |
} |
|
823 |
|
|
824 | 893 |
/// @} |
825 | 894 |
|
826 | 895 |
private: |
827 | 896 |
|
828 | 897 |
// Initialize internal data structures |
829 | 898 |
bool init() { |
... | ... |
@@ -839,12 +908,13 @@ |
839 | 908 |
|
840 | 909 |
// Initialize vectors |
841 | 910 |
_node_num = countNodes(_graph); |
842 | 911 |
_arc_num = countArcs(_graph); |
843 | 912 |
int all_node_num = _node_num + 1; |
844 | 913 |
int all_arc_num = _arc_num + _node_num; |
914 |
if (_node_num == 0) return false; |
|
845 | 915 |
|
846 | 916 |
_arc_ref.resize(_arc_num); |
847 | 917 |
_source.resize(all_arc_num); |
848 | 918 |
_target.resize(all_arc_num); |
849 | 919 |
|
850 | 920 |
_cap.resize(all_arc_num); |
... | ... |
@@ -861,29 +931,34 @@ |
861 | 931 |
_succ_num.resize(all_node_num); |
862 | 932 |
_last_succ.resize(all_node_num); |
863 | 933 |
_state.resize(all_arc_num, STATE_LOWER); |
864 | 934 |
|
865 | 935 |
// Initialize node related data |
866 | 936 |
bool valid_supply = true; |
867 |
if (_orig_supply) { |
|
868 |
Supply sum = 0; |
|
937 |
if (!_pstsup && !_psupply) { |
|
938 |
_pstsup = true; |
|
939 |
_psource = _ptarget = NodeIt(_graph); |
|
940 |
_pstflow = 0; |
|
941 |
} |
|
942 |
if (_psupply) { |
|
943 |
Value sum = 0; |
|
869 | 944 |
int i = 0; |
870 | 945 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
871 | 946 |
_node_id[n] = i; |
872 |
_supply[i] = (* |
|
947 |
_supply[i] = (*_psupply)[n]; |
|
873 | 948 |
sum += _supply[i]; |
874 | 949 |
} |
875 | 950 |
valid_supply = (sum == 0); |
876 | 951 |
} else { |
877 | 952 |
int i = 0; |
878 | 953 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
879 | 954 |
_node_id[n] = i; |
880 | 955 |
_supply[i] = 0; |
881 | 956 |
} |
882 |
_supply[_node_id[_orig_source]] = _orig_flow_value; |
|
883 |
_supply[_node_id[_orig_target]] = -_orig_flow_value; |
|
957 |
_supply[_node_id[_psource]] = _pstflow; |
|
958 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
884 | 959 |
} |
885 | 960 |
if (!valid_supply) return false; |
886 | 961 |
|
887 | 962 |
// Set data for the artificial root node |
888 | 963 |
_root = _node_num; |
889 | 964 |
_parent[_root] = -1; |
... | ... |
@@ -901,35 +976,58 @@ |
901 | 976 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
902 | 977 |
_arc_ref[i] = e; |
903 | 978 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
904 | 979 |
} |
905 | 980 |
|
906 | 981 |
// Initialize arc maps |
907 |
for (int i = 0; i != _arc_num; ++i) { |
|
908 |
Arc e = _arc_ref[i]; |
|
909 |
_source[i] = _node_id[_graph.source(e)]; |
|
910 |
_target[i] = _node_id[_graph.target(e)]; |
|
911 |
_cost[i] = _orig_cost[e]; |
|
912 |
_cap[i] = _orig_cap[e]; |
|
982 |
if (_pupper && _pcost) { |
|
983 |
for (int i = 0; i != _arc_num; ++i) { |
|
984 |
Arc e = _arc_ref[i]; |
|
985 |
_source[i] = _node_id[_graph.source(e)]; |
|
986 |
_target[i] = _node_id[_graph.target(e)]; |
|
987 |
_cap[i] = (*_pupper)[e]; |
|
988 |
_cost[i] = (*_pcost)[e]; |
|
989 |
} |
|
990 |
} else { |
|
991 |
for (int i = 0; i != _arc_num; ++i) { |
|
992 |
Arc e = _arc_ref[i]; |
|
993 |
_source[i] = _node_id[_graph.source(e)]; |
|
994 |
_target[i] = _node_id[_graph.target(e)]; |
|
995 |
} |
|
996 |
if (_pupper) { |
|
997 |
for (int i = 0; i != _arc_num; ++i) |
|
998 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
999 |
} else { |
|
1000 |
Value val = std::numeric_limits<Value>::max(); |
|
1001 |
for (int i = 0; i != _arc_num; ++i) |
|
1002 |
_cap[i] = val; |
|
1003 |
} |
|
1004 |
if (_pcost) { |
|
1005 |
for (int i = 0; i != _arc_num; ++i) |
|
1006 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
1007 |
} else { |
|
1008 |
for (int i = 0; i != _arc_num; ++i) |
|
1009 |
_cost[i] = 1; |
|
1010 |
} |
|
913 | 1011 |
} |
914 | 1012 |
|
915 | 1013 |
// Remove non-zero lower bounds |
916 |
if ( |
|
1014 |
if (_plower) { |
|
917 | 1015 |
for (int i = 0; i != _arc_num; ++i) { |
918 |
|
|
1016 |
Value c = (*_plower)[_arc_ref[i]]; |
|
919 | 1017 |
if (c != 0) { |
920 | 1018 |
_cap[i] -= c; |
921 | 1019 |
_supply[_source[i]] -= c; |
922 | 1020 |
_supply[_target[i]] += c; |
923 | 1021 |
} |
924 | 1022 |
} |
925 | 1023 |
} |
926 | 1024 |
|
927 | 1025 |
// Add artificial arcs and initialize the spanning tree data structure |
928 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
929 |
Capacity max_cap = std::numeric_limits<Capacity>::max(); |
|
1026 |
Value max_cap = std::numeric_limits<Value>::max(); |
|
1027 |
Value max_cost = std::numeric_limits<Value>::max() / 4; |
|
930 | 1028 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
931 | 1029 |
_thread[u] = u + 1; |
932 | 1030 |
_rev_thread[u + 1] = u; |
933 | 1031 |
_succ_num[u] = 1; |
934 | 1032 |
_last_succ[u] = u; |
935 | 1033 |
_parent[u] = _root; |
... | ... |
@@ -976,13 +1074,13 @@ |
976 | 1074 |
} else { |
977 | 1075 |
first = _target[in_arc]; |
978 | 1076 |
second = _source[in_arc]; |
979 | 1077 |
} |
980 | 1078 |
delta = _cap[in_arc]; |
981 | 1079 |
int result = 0; |
982 |
|
|
1080 |
Value d; |
|
983 | 1081 |
int e; |
984 | 1082 |
|
985 | 1083 |
// Search the cycle along the path form the first node to the root |
986 | 1084 |
for (int u = first; u != join; u = _parent[u]) { |
987 | 1085 |
e = _pred[u]; |
988 | 1086 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
... | ... |
@@ -1014,13 +1112,13 @@ |
1014 | 1112 |
} |
1015 | 1113 |
|
1016 | 1114 |
// Change _flow and _state vectors |
1017 | 1115 |
void changeFlow(bool change) { |
1018 | 1116 |
// Augment along the cycle |
1019 | 1117 |
if (delta > 0) { |
1020 |
|
|
1118 |
Value val = _state[in_arc] * delta; |
|
1021 | 1119 |
_flow[in_arc] += val; |
1022 | 1120 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1023 | 1121 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1024 | 1122 |
} |
1025 | 1123 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1026 | 1124 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
... | ... |
@@ -1155,13 +1253,13 @@ |
1155 | 1253 |
_succ_num[u] -= old_succ_num; |
1156 | 1254 |
} |
1157 | 1255 |
} |
1158 | 1256 |
|
1159 | 1257 |
// Update potentials |
1160 | 1258 |
void updatePotential() { |
1161 |
|
|
1259 |
Value sigma = _forward[u_in] ? |
|
1162 | 1260 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1163 | 1261 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1164 | 1262 |
if (_succ_num[u_in] > _node_num / 2) { |
1165 | 1263 |
// Update in the upper subtree (which contains the root) |
1166 | 1264 |
int before = _rev_thread[u_in]; |
1167 | 1265 |
int after = _thread[_last_succ[u_in]]; |
... | ... |
@@ -1178,34 +1276,34 @@ |
1178 | 1276 |
_pi[u] += sigma; |
1179 | 1277 |
} |
1180 | 1278 |
} |
1181 | 1279 |
} |
1182 | 1280 |
|
1183 | 1281 |
// Execute the algorithm |
1184 |
bool start( |
|
1282 |
bool start(PivotRule pivot_rule) { |
|
1185 | 1283 |
// Select the pivot rule implementation |
1186 | 1284 |
switch (pivot_rule) { |
1187 |
case |
|
1285 |
case FIRST_ELIGIBLE: |
|
1188 | 1286 |
return start<FirstEligiblePivotRule>(); |
1189 |
case |
|
1287 |
case BEST_ELIGIBLE: |
|
1190 | 1288 |
return start<BestEligiblePivotRule>(); |
1191 |
case |
|
1289 |
case BLOCK_SEARCH: |
|
1192 | 1290 |
return start<BlockSearchPivotRule>(); |
1193 |
case |
|
1291 |
case CANDIDATE_LIST: |
|
1194 | 1292 |
return start<CandidateListPivotRule>(); |
1195 |
case |
|
1293 |
case ALTERING_LIST: |
|
1196 | 1294 |
return start<AlteringListPivotRule>(); |
1197 | 1295 |
} |
1198 | 1296 |
return false; |
1199 | 1297 |
} |
1200 | 1298 |
|
1201 |
template< |
|
1299 |
template <typename PivotRuleImpl> |
|
1202 | 1300 |
bool start() { |
1203 |
|
|
1301 |
PivotRuleImpl pivot(*this); |
|
1204 | 1302 |
|
1205 |
// Execute the |
|
1303 |
// Execute the Network Simplex algorithm |
|
1206 | 1304 |
while (pivot.findEnteringArc()) { |
1207 | 1305 |
findJoinNode(); |
1208 | 1306 |
bool change = findLeavingArc(); |
1209 | 1307 |
changeFlow(change); |
1210 | 1308 |
if (change) { |
1211 | 1309 |
updateTreeStructure(); |
... | ... |
@@ -1216,16 +1314,16 @@ |
1216 | 1314 |
// Check if the flow amount equals zero on all the artificial arcs |
1217 | 1315 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
1218 | 1316 |
if (_flow[e] > 0) return false; |
1219 | 1317 |
} |
1220 | 1318 |
|
1221 | 1319 |
// Copy flow values to _flow_map |
1222 |
if ( |
|
1320 |
if (_plower) { |
|
1223 | 1321 |
for (int i = 0; i != _arc_num; ++i) { |
1224 | 1322 |
Arc e = _arc_ref[i]; |
1225 |
_flow_map->set(e, (* |
|
1323 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
1226 | 1324 |
} |
1227 | 1325 |
} else { |
1228 | 1326 |
for (int i = 0; i != _arc_num; ++i) { |
1229 | 1327 |
_flow_map->set(_arc_ref[i], _flow[i]); |
1230 | 1328 |
} |
1231 | 1329 |
} |
... | ... |
@@ -17,21 +17,15 @@ |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
|
22 | 22 |
#include <lemon/list_graph.h> |
23 |
#include <lemon/smart_graph.h> |
|
24 | 23 |
#include <lemon/lgf_reader.h> |
25 | 24 |
|
26 |
//#include <lemon/cycle_canceling.h> |
|
27 |
//#include <lemon/capacity_scaling.h> |
|
28 |
//#include <lemon/cost_scaling.h> |
|
29 | 25 |
#include <lemon/network_simplex.h> |
30 |
//#include <lemon/min_cost_flow.h> |
|
31 |
//#include <lemon/min_cost_max_flow.h> |
|
32 | 26 |
|
33 | 27 |
#include <lemon/concepts/digraph.h> |
34 | 28 |
#include <lemon/concept_check.h> |
35 | 29 |
|
36 | 30 |
#include "test_tools.h" |
37 | 31 |
|
... | ... |
@@ -90,42 +84,36 @@ |
90 | 84 |
|
91 | 85 |
template <typename MCF> |
92 | 86 |
struct Constraints { |
93 | 87 |
void constraints() { |
94 | 88 |
checkConcept<concepts::Digraph, GR>(); |
95 | 89 |
|
96 |
MCF mcf_test1(g, lower, upper, cost, sup); |
|
97 |
MCF mcf_test2(g, upper, cost, sup); |
|
98 |
MCF mcf_test3(g, lower, upper, cost, n, n, k); |
|
99 |
MCF mcf_test4(g, upper, cost, n, n, k); |
|
90 |
MCF mcf(g); |
|
100 | 91 |
|
101 |
// TODO: This part should be enabled and the next part |
|
102 |
// should be removed if map copying is supported |
|
103 |
/* |
|
104 |
flow = mcf_test1.flowMap(); |
|
105 |
|
|
92 |
b = mcf.lowerMap(lower) |
|
93 |
.upperMap(upper) |
|
94 |
.capacityMap(upper) |
|
95 |
.boundMaps(lower, upper) |
|
96 |
.costMap(cost) |
|
97 |
.supplyMap(sup) |
|
98 |
.stSupply(n, n, k) |
|
99 |
.run(); |
|
106 | 100 |
|
107 |
pot = mcf_test1.potentialMap(); |
|
108 |
mcf_test1.potentialMap(pot); |
|
109 |
*/ |
|
110 |
/**/ |
|
111 |
const typename MCF::FlowMap &fm = |
|
112 |
mcf_test1.flowMap(); |
|
113 |
mcf_test1.flowMap(flow); |
|
114 |
const typename MCF::PotentialMap &pm = |
|
115 |
mcf_test1.potentialMap(); |
|
116 |
mcf_test1.potentialMap(pot); |
|
101 |
const typename MCF::FlowMap &fm = mcf.flowMap(); |
|
102 |
const typename MCF::PotentialMap &pm = mcf.potentialMap(); |
|
103 |
|
|
104 |
v = mcf.totalCost(); |
|
105 |
double x = mcf.template totalCost<double>(); |
|
106 |
v = mcf.flow(a); |
|
107 |
v = mcf.potential(n); |
|
108 |
mcf.flowMap(flow); |
|
109 |
mcf.potentialMap(pot); |
|
110 |
|
|
117 | 111 |
ignore_unused_variable_warning(fm); |
118 | 112 |
ignore_unused_variable_warning(pm); |
119 |
/**/ |
|
120 |
|
|
121 |
mcf_test1.run(); |
|
122 |
|
|
123 |
v = mcf_test1.totalCost(); |
|
124 |
v = mcf_test1.flow(a); |
|
125 |
|
|
113 |
ignore_unused_variable_warning(x); |
|
126 | 114 |
} |
127 | 115 |
|
128 | 116 |
typedef typename GR::Node Node; |
129 | 117 |
typedef typename GR::Arc Arc; |
130 | 118 |
typedef concepts::ReadMap<Node, Value> NM; |
131 | 119 |
typedef concepts::ReadMap<Arc, Value> AM; |
... | ... |
@@ -136,12 +124,13 @@ |
136 | 124 |
const AM &cost; |
137 | 125 |
const NM ⊃ |
138 | 126 |
const Node &n; |
139 | 127 |
const Arc &a; |
140 | 128 |
const Value &k; |
141 | 129 |
Value v; |
130 |
bool b; |
|
142 | 131 |
|
143 | 132 |
typename MCF::FlowMap &flow; |
144 | 133 |
typename MCF::PotentialMap &pot; |
145 | 134 |
}; |
146 | 135 |
|
147 | 136 |
}; |
... | ... |
@@ -169,13 +158,13 @@ |
169 | 158 |
} |
170 | 159 |
|
171 | 160 |
return true; |
172 | 161 |
} |
173 | 162 |
|
174 | 163 |
// Check the feasibility of the given potentials (dual soluiton) |
175 |
// using the Complementary Slackness optimality condition |
|
164 |
// using the "Complementary Slackness" optimality condition |
|
176 | 165 |
template < typename GR, typename LM, typename UM, |
177 | 166 |
typename CM, typename FM, typename PM > |
178 | 167 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
179 | 168 |
const CM& cost, const FM& flow, const PM& pi ) |
180 | 169 |
{ |
181 | 170 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
... | ... |
@@ -214,39 +203,31 @@ |
214 | 203 |
|
215 | 204 |
int main() |
216 | 205 |
{ |
217 | 206 |
// Check the interfaces |
218 | 207 |
{ |
219 | 208 |
typedef int Value; |
220 |
// This typedef should be enabled if the standard maps are |
|
221 |
// reference maps in the graph concepts |
|
209 |
// TODO: This typedef should be enabled if the standard maps are |
|
210 |
// reference maps in the graph concepts (See #190). |
|
211 |
/**/ |
|
222 | 212 |
//typedef concepts::Digraph GR; |
223 | 213 |
typedef ListDigraph GR; |
224 |
typedef concepts::ReadMap<GR::Node, Value> NM; |
|
225 |
typedef concepts::ReadMap<GR::Arc, Value> AM; |
|
226 |
|
|
227 |
//checkConcept< McfClassConcept<GR, Value>, |
|
228 |
// CycleCanceling<GR, AM, AM, AM, NM> >(); |
|
229 |
//checkConcept< McfClassConcept<GR, Value>, |
|
230 |
// CapacityScaling<GR, AM, AM, AM, NM> >(); |
|
231 |
//checkConcept< McfClassConcept<GR, Value>, |
|
232 |
|
|
214 |
/**/ |
|
233 | 215 |
checkConcept< McfClassConcept<GR, Value>, |
234 |
NetworkSimplex<GR, AM, AM, AM, NM> >(); |
|
235 |
//checkConcept< MinCostFlow<GR, Value>, |
|
236 |
|
|
216 |
NetworkSimplex<GR, Value> >(); |
|
237 | 217 |
} |
238 | 218 |
|
239 | 219 |
// Run various MCF tests |
240 | 220 |
typedef ListDigraph Digraph; |
241 | 221 |
DIGRAPH_TYPEDEFS(ListDigraph); |
242 | 222 |
|
243 | 223 |
// Read the test digraph |
244 | 224 |
Digraph gr; |
245 | 225 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
246 | 226 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
227 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
|
247 | 228 |
Node v, w; |
248 | 229 |
|
249 | 230 |
std::istringstream input(test_lgf); |
250 | 231 |
DigraphReader<Digraph>(gr, input) |
251 | 232 |
.arcMap("cost", c) |
252 | 233 |
.arcMap("cap", u) |
... | ... |
@@ -256,200 +237,53 @@ |
256 | 237 |
.nodeMap("sup2", s2) |
257 | 238 |
.nodeMap("sup3", s3) |
258 | 239 |
.node("source", v) |
259 | 240 |
.node("target", w) |
260 | 241 |
.run(); |
261 | 242 |
|
262 |
/* |
|
263 |
// A. Test CapacityScaling with scaling |
|
243 |
// A. Test NetworkSimplex with the default pivot rule |
|
264 | 244 |
{ |
265 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
266 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
267 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
268 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
269 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
270 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
245 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), |
|
246 |
mcf5(gr), mcf6(gr), mcf7(gr), mcf8(gr); |
|
271 | 247 |
|
272 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#A1"); |
|
273 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#A2"); |
|
274 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#A3"); |
|
275 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#A4"); |
|
276 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#A5"); |
|
277 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#A6"); |
|
248 |
checkMcf(mcf1, mcf1.upperMap(u).costMap(c).supplyMap(s1).run(), |
|
249 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
250 |
checkMcf(mcf2, mcf2.upperMap(u).costMap(c).stSupply(v, w, 27).run(), |
|
251 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
252 |
checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(), |
|
253 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
254 |
checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).stSupply(v, w, 27).run(), |
|
255 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
256 |
checkMcf(mcf5, mcf5.supplyMap(s1).run(), |
|
257 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
258 |
checkMcf(mcf6, mcf6.stSupply(v, w, 27).lowerMap(l2).run(), |
|
259 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
260 |
checkMcf(mcf7, mcf7.run(), |
|
261 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
262 |
checkMcf(mcf8, mcf8.boundMaps(l2, u).run(), |
|
263 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
|
278 | 264 |
} |
279 | 265 |
|
280 |
// B. Test |
|
266 |
// B. Test NetworkSimplex with each pivot rule |
|
281 | 267 |
{ |
282 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
283 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
284 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
285 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
286 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
287 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
268 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), mcf5(gr); |
|
269 |
NetworkSimplex<Digraph>::PivotRule pr; |
|
288 | 270 |
|
289 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#B1"); |
|
290 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#B2"); |
|
291 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#B3"); |
|
292 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#B4"); |
|
293 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#B5"); |
|
294 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#B6"); |
|
271 |
pr = NetworkSimplex<Digraph>::FIRST_ELIGIBLE; |
|
272 |
checkMcf(mcf1, mcf1.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
273 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
274 |
pr = NetworkSimplex<Digraph>::BEST_ELIGIBLE; |
|
275 |
checkMcf(mcf2, mcf2.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
276 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
277 |
pr = NetworkSimplex<Digraph>::BLOCK_SEARCH; |
|
278 |
checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
279 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
280 |
pr = NetworkSimplex<Digraph>::CANDIDATE_LIST; |
|
281 |
checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
282 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
283 |
pr = NetworkSimplex<Digraph>::ALTERING_LIST; |
|
284 |
checkMcf(mcf5, mcf5.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
285 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
295 | 286 |
} |
296 | 287 |
|
297 |
// C. Test CostScaling using partial augment-relabel method |
|
298 |
{ |
|
299 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
300 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
301 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
302 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
303 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
304 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
305 |
|
|
306 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#C1"); |
|
307 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#C2"); |
|
308 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#C3"); |
|
309 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#C4"); |
|
310 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#C5"); |
|
311 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#C6"); |
|
312 |
} |
|
313 |
|
|
314 |
// D. Test CostScaling using push-relabel method |
|
315 |
{ |
|
316 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
317 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
318 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
319 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
320 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
321 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
322 |
|
|
323 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#D1"); |
|
324 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#D2"); |
|
325 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#D3"); |
|
326 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#D4"); |
|
327 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#D5"); |
|
328 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#D6"); |
|
329 |
} |
|
330 |
*/ |
|
331 |
|
|
332 |
// E. Test NetworkSimplex with FIRST_ELIGIBLE_PIVOT |
|
333 |
{ |
|
334 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
335 |
NetworkSimplex<Digraph>::FIRST_ELIGIBLE_PIVOT; |
|
336 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
337 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
338 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
339 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
340 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
341 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
342 |
|
|
343 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#E1"); |
|
344 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#E2"); |
|
345 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#E3"); |
|
346 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#E4"); |
|
347 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#E5"); |
|
348 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#E6"); |
|
349 |
} |
|
350 |
|
|
351 |
// F. Test NetworkSimplex with BEST_ELIGIBLE_PIVOT |
|
352 |
{ |
|
353 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
354 |
NetworkSimplex<Digraph>::BEST_ELIGIBLE_PIVOT; |
|
355 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
356 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
357 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
358 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
359 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
360 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
361 |
|
|
362 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#F1"); |
|
363 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#F2"); |
|
364 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#F3"); |
|
365 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#F4"); |
|
366 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#F5"); |
|
367 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#F6"); |
|
368 |
} |
|
369 |
|
|
370 |
// G. Test NetworkSimplex with BLOCK_SEARCH_PIVOT |
|
371 |
{ |
|
372 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
373 |
NetworkSimplex<Digraph>::BLOCK_SEARCH_PIVOT; |
|
374 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
375 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
376 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
377 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
378 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
379 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
380 |
|
|
381 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#G1"); |
|
382 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#G2"); |
|
383 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#G3"); |
|
384 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#G4"); |
|
385 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#G5"); |
|
386 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#G6"); |
|
387 |
} |
|
388 |
|
|
389 |
// H. Test NetworkSimplex with CANDIDATE_LIST_PIVOT |
|
390 |
{ |
|
391 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
392 |
NetworkSimplex<Digraph>::CANDIDATE_LIST_PIVOT; |
|
393 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
394 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
395 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
396 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
397 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
398 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
399 |
|
|
400 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#H1"); |
|
401 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#H2"); |
|
402 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#H3"); |
|
403 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#H4"); |
|
404 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#H5"); |
|
405 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#H6"); |
|
406 |
} |
|
407 |
|
|
408 |
// I. Test NetworkSimplex with ALTERING_LIST_PIVOT |
|
409 |
{ |
|
410 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
411 |
NetworkSimplex<Digraph>::ALTERING_LIST_PIVOT; |
|
412 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
413 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
414 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
415 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
416 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
417 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
418 |
|
|
419 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#I1"); |
|
420 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#I2"); |
|
421 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#I3"); |
|
422 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#I4"); |
|
423 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#I5"); |
|
424 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#I6"); |
|
425 |
} |
|
426 |
|
|
427 |
/* |
|
428 |
// J. Test MinCostFlow |
|
429 |
{ |
|
430 |
MinCostFlow<Digraph> mcf1(gr, u, c, s1); |
|
431 |
MinCostFlow<Digraph> mcf2(gr, u, c, v, w, 27); |
|
432 |
MinCostFlow<Digraph> mcf3(gr, u, c, s3); |
|
433 |
MinCostFlow<Digraph> mcf4(gr, l2, u, c, s1); |
|
434 |
MinCostFlow<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
435 |
MinCostFlow<Digraph> mcf6(gr, l2, u, c, s3); |
|
436 |
|
|
437 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#J1"); |
|
438 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#J2"); |
|
439 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#J3"); |
|
440 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#J4"); |
|
441 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#J5"); |
|
442 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#J6"); |
|
443 |
} |
|
444 |
*/ |
|
445 |
/* |
|
446 |
// K. Test MinCostMaxFlow |
|
447 |
{ |
|
448 |
MinCostMaxFlow<Digraph> mcmf(gr, u, c, v, w); |
|
449 |
mcmf.run(); |
|
450 |
checkMcf(mcmf, true, gr, l1, u, c, s3, true, 7620, "#K1"); |
|
451 |
} |
|
452 |
*/ |
|
453 |
|
|
454 | 288 |
return 0; |
455 | 289 |
} |
... | ... |
@@ -102,15 +102,14 @@ |
102 | 102 |
Digraph::NodeMap<Value> sup(g); |
103 | 103 |
Timer ti; |
104 | 104 |
ti.restart(); |
105 | 105 |
readDimacsMin(is, g, lower, cap, cost, sup, desc); |
106 | 106 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
107 | 107 |
ti.restart(); |
108 |
NetworkSimplex< Digraph, Digraph::ArcMap<Value>, Digraph::ArcMap<Value>, |
|
109 |
Digraph::ArcMap<Value>, Digraph::NodeMap<Value> > |
|
110 |
ns(g |
|
108 |
NetworkSimplex<Digraph, Value> ns(g); |
|
109 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
111 | 110 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
112 | 111 |
ti.restart(); |
113 | 112 |
ns.run(); |
114 | 113 |
if (report) std::cerr << "Run NetworkSimplex: " << ti << '\n'; |
115 | 114 |
if (report) std::cerr << "\nMin flow cost: " << ns.totalCost() << '\n'; |
116 | 115 |
} |
0 comments (0 inline)