0
2
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename Value> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \brief Gives back the zero value of the type. |
44 | 44 |
static Value zero() { |
45 | 45 |
return static_cast<Value>(0); |
46 | 46 |
} |
47 | 47 |
/// \brief Gives back the sum of the given two elements. |
48 | 48 |
static Value plus(const Value& left, const Value& right) { |
49 | 49 |
return left + right; |
50 | 50 |
} |
51 | 51 |
/// \brief Gives back true only if the first value is less than the second. |
52 | 52 |
static bool less(const Value& left, const Value& right) { |
53 | 53 |
return left < right; |
54 | 54 |
} |
55 | 55 |
}; |
56 | 56 |
|
57 |
/// \brief Widest path operation traits for the Dijkstra algorithm class. |
|
58 |
/// |
|
59 |
/// This operation traits class defines all computational operations and |
|
60 |
/// constants which are used in the Dijkstra algorithm for widest path |
|
61 |
/// computation. |
|
62 |
/// |
|
63 |
/// \see DijkstraDefaultOperationTraits |
|
64 |
template <typename Value> |
|
65 |
struct DijkstraWidestPathOperationTraits { |
|
66 |
/// \brief Gives back the maximum value of the type. |
|
67 |
static Value zero() { |
|
68 |
return std::numeric_limits<Value>::max(); |
|
69 |
} |
|
70 |
/// \brief Gives back the minimum of the given two elements. |
|
71 |
static Value plus(const Value& left, const Value& right) { |
|
72 |
return std::min(left, right); |
|
73 |
} |
|
74 |
/// \brief Gives back true only if the first value is less than the second. |
|
75 |
static bool less(const Value& left, const Value& right) { |
|
76 |
return left < right; |
|
77 |
} |
|
78 |
}; |
|
79 |
|
|
80 | 57 |
///Default traits class of Dijkstra class. |
81 | 58 |
|
82 | 59 |
///Default traits class of Dijkstra class. |
83 | 60 |
///\tparam GR The type of the digraph. |
84 | 61 |
///\tparam LM The type of the length map. |
85 | 62 |
template<class GR, class LM> |
86 | 63 |
struct DijkstraDefaultTraits |
87 | 64 |
{ |
88 | 65 |
///The type of the digraph the algorithm runs on. |
89 | 66 |
typedef GR Digraph; |
90 | 67 |
|
91 | 68 |
///The type of the map that stores the arc lengths. |
92 | 69 |
|
93 | 70 |
///The type of the map that stores the arc lengths. |
94 | 71 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
95 | 72 |
typedef LM LengthMap; |
96 | 73 |
///The type of the length of the arcs. |
97 | 74 |
typedef typename LM::Value Value; |
98 | 75 |
|
99 | 76 |
/// Operation traits for Dijkstra algorithm. |
100 | 77 |
|
101 | 78 |
/// This class defines the operations that are used in the algorithm. |
102 | 79 |
/// \see DijkstraDefaultOperationTraits |
103 | 80 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
104 | 81 |
|
105 | 82 |
/// The cross reference type used by the heap. |
106 | 83 |
|
107 | 84 |
/// The cross reference type used by the heap. |
108 | 85 |
/// Usually it is \c Digraph::NodeMap<int>. |
109 | 86 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
110 | 87 |
///Instantiates a \ref HeapCrossRef. |
111 | 88 |
|
112 | 89 |
///This function instantiates a \ref HeapCrossRef. |
113 | 90 |
/// \param g is the digraph, to which we would like to define the |
114 | 91 |
/// \ref HeapCrossRef. |
115 | 92 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
116 | 93 |
{ |
117 | 94 |
return new HeapCrossRef(g); |
118 | 95 |
} |
119 | 96 |
|
120 | 97 |
///The heap type used by the Dijkstra algorithm. |
121 | 98 |
|
122 | 99 |
///The heap type used by the Dijkstra algorithm. |
123 | 100 |
/// |
124 | 101 |
///\sa BinHeap |
125 | 102 |
///\sa Dijkstra |
126 | 103 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
127 | 104 |
///Instantiates a \ref Heap. |
128 | 105 |
|
129 | 106 |
///This function instantiates a \ref Heap. |
130 | 107 |
static Heap *createHeap(HeapCrossRef& r) |
131 | 108 |
{ |
132 | 109 |
return new Heap(r); |
133 | 110 |
} |
134 | 111 |
|
135 | 112 |
///\brief The type of the map that stores the predecessor |
136 | 113 |
///arcs of the shortest paths. |
137 | 114 |
/// |
138 | 115 |
///The type of the map that stores the predecessor |
139 | 116 |
///arcs of the shortest paths. |
140 | 117 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
141 | 118 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
142 | 119 |
///Instantiates a PredMap. |
143 | 120 |
|
144 | 121 |
///This function instantiates a PredMap. |
145 | 122 |
///\param g is the digraph, to which we would like to define the |
146 | 123 |
///PredMap. |
147 | 124 |
static PredMap *createPredMap(const Digraph &g) |
148 | 125 |
{ |
149 | 126 |
return new PredMap(g); |
150 | 127 |
} |
151 | 128 |
|
152 | 129 |
///The type of the map that indicates which nodes are processed. |
153 | 130 |
|
154 | 131 |
///The type of the map that indicates which nodes are processed. |
155 | 132 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
156 | 133 |
///By default it is a NullMap. |
157 | 134 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
158 | 135 |
///Instantiates a ProcessedMap. |
159 | 136 |
|
160 | 137 |
///This function instantiates a ProcessedMap. |
161 | 138 |
///\param g is the digraph, to which |
162 | 139 |
///we would like to define the ProcessedMap |
163 | 140 |
#ifdef DOXYGEN |
164 | 141 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
165 | 142 |
#else |
166 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &) |
167 | 144 |
#endif |
168 | 145 |
{ |
169 | 146 |
return new ProcessedMap(); |
170 | 147 |
} |
171 | 148 |
|
172 | 149 |
///The type of the map that stores the distances of the nodes. |
173 | 150 |
|
174 | 151 |
///The type of the map that stores the distances of the nodes. |
175 | 152 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
176 | 153 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
177 | 154 |
///Instantiates a DistMap. |
178 | 155 |
|
179 | 156 |
///This function instantiates a DistMap. |
180 | 157 |
///\param g is the digraph, to which we would like to define |
181 | 158 |
///the DistMap |
182 | 159 |
static DistMap *createDistMap(const Digraph &g) |
183 | 160 |
{ |
184 | 161 |
return new DistMap(g); |
185 | 162 |
} |
186 | 163 |
}; |
187 | 164 |
|
188 | 165 |
///%Dijkstra algorithm class. |
189 | 166 |
|
190 | 167 |
/// \ingroup shortest_path |
191 | 168 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
192 | 169 |
/// |
193 | 170 |
///The arc lengths are passed to the algorithm using a |
194 | 171 |
///\ref concepts::ReadMap "ReadMap", |
195 | 172 |
///so it is easy to change it to any kind of length. |
196 | 173 |
///The type of the length is determined by the |
197 | 174 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
198 | 175 |
///It is also possible to change the underlying priority heap. |
199 | 176 |
/// |
200 | 177 |
///There is also a \ref dijkstra() "function-type interface" for the |
201 | 178 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
202 | 179 |
///it can be used easier. |
203 | 180 |
/// |
204 | 181 |
///\tparam GR The type of the digraph the algorithm runs on. |
205 | 182 |
///The default value is \ref ListDigraph. |
206 | 183 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
207 | 184 |
///passed to \ref DijkstraDefaultTraits. |
208 | 185 |
///\tparam LM A readable arc map that determines the lengths of the |
209 | 186 |
///arcs. It is read once for each arc, so the map may involve in |
210 | 187 |
///relatively time consuming process to compute the arc lengths if |
211 | 188 |
///it is necessary. The default map type is \ref |
212 | 189 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
213 | 190 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
214 | 191 |
///passed to \ref DijkstraDefaultTraits. |
215 | 192 |
///\tparam TR Traits class to set various data types used by the algorithm. |
216 | 193 |
///The default traits class is \ref DijkstraDefaultTraits |
217 | 194 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
218 | 195 |
///for the documentation of a Dijkstra traits class. |
219 | 196 |
#ifdef DOXYGEN |
220 | 197 |
template <typename GR, typename LM, typename TR> |
221 | 198 |
#else |
222 | 199 |
template <typename GR=ListDigraph, |
223 | 200 |
typename LM=typename GR::template ArcMap<int>, |
224 | 201 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
225 | 202 |
#endif |
226 | 203 |
class Dijkstra { |
227 | 204 |
public: |
228 | 205 |
|
229 | 206 |
///The type of the digraph the algorithm runs on. |
230 | 207 |
typedef typename TR::Digraph Digraph; |
231 | 208 |
|
232 | 209 |
///The type of the length of the arcs. |
233 | 210 |
typedef typename TR::LengthMap::Value Value; |
234 | 211 |
///The type of the map that stores the arc lengths. |
235 | 212 |
typedef typename TR::LengthMap LengthMap; |
236 | 213 |
///\brief The type of the map that stores the predecessor arcs of the |
237 | 214 |
///shortest paths. |
238 | 215 |
typedef typename TR::PredMap PredMap; |
239 | 216 |
///The type of the map that stores the distances of the nodes. |
240 | 217 |
typedef typename TR::DistMap DistMap; |
241 | 218 |
///The type of the map that indicates which nodes are processed. |
242 | 219 |
typedef typename TR::ProcessedMap ProcessedMap; |
243 | 220 |
///The type of the paths. |
244 | 221 |
typedef PredMapPath<Digraph, PredMap> Path; |
245 | 222 |
///The cross reference type used for the current heap. |
246 | 223 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
247 | 224 |
///The heap type used by the algorithm. |
248 | 225 |
typedef typename TR::Heap Heap; |
249 | 226 |
///The operation traits class. |
250 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
251 | 228 |
|
252 | 229 |
///The traits class. |
253 | 230 |
typedef TR Traits; |
254 | 231 |
|
255 | 232 |
private: |
256 | 233 |
|
257 | 234 |
typedef typename Digraph::Node Node; |
258 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
259 | 236 |
typedef typename Digraph::Arc Arc; |
260 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
261 | 238 |
|
262 | 239 |
//Pointer to the underlying digraph. |
263 | 240 |
const Digraph *G; |
264 | 241 |
//Pointer to the length map. |
265 | 242 |
const LengthMap *length; |
266 | 243 |
//Pointer to the map of predecessors arcs. |
267 | 244 |
PredMap *_pred; |
268 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
269 | 246 |
bool local_pred; |
270 | 247 |
//Pointer to the map of distances. |
271 | 248 |
DistMap *_dist; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/concepts/digraph.h> |
20 | 20 |
#include <lemon/smart_graph.h> |
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/dijkstra.h> |
24 | 24 |
#include <lemon/path.h> |
25 | 25 |
#include <lemon/bin_heap.h> |
26 | 26 |
|
27 | 27 |
#include "graph_test.h" |
28 | 28 |
#include "test_tools.h" |
29 | 29 |
|
30 | 30 |
using namespace lemon; |
31 | 31 |
|
32 | 32 |
char test_lgf[] = |
33 | 33 |
"@nodes\n" |
34 | 34 |
"label\n" |
35 | 35 |
"0\n" |
36 | 36 |
"1\n" |
37 | 37 |
"2\n" |
38 | 38 |
"3\n" |
39 | 39 |
"4\n" |
40 | 40 |
"@arcs\n" |
41 | 41 |
" label length\n" |
42 | 42 |
"0 1 0 1\n" |
43 | 43 |
"1 2 1 1\n" |
44 | 44 |
"2 3 2 1\n" |
45 | 45 |
"0 3 4 5\n" |
46 | 46 |
"0 3 5 10\n" |
47 | 47 |
"0 3 6 7\n" |
48 | 48 |
"4 2 7 1\n" |
49 | 49 |
"@attributes\n" |
50 | 50 |
"source 0\n" |
51 | 51 |
"target 3\n"; |
52 | 52 |
|
53 | 53 |
void checkDijkstraCompile() |
54 | 54 |
{ |
55 | 55 |
typedef int VType; |
56 | 56 |
typedef concepts::Digraph Digraph; |
57 | 57 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
58 | 58 |
typedef Dijkstra<Digraph, LengthMap> DType; |
59 | 59 |
typedef Digraph::Node Node; |
60 | 60 |
typedef Digraph::Arc Arc; |
61 | 61 |
|
62 | 62 |
Digraph G; |
63 | 63 |
Node s, t; |
64 | 64 |
Arc e; |
65 | 65 |
VType l; |
66 | 66 |
bool b; |
67 | 67 |
DType::DistMap d(G); |
68 | 68 |
DType::PredMap p(G); |
69 | 69 |
LengthMap length; |
70 | 70 |
Path<Digraph> pp; |
71 | 71 |
|
72 | 72 |
{ |
73 | 73 |
DType dijkstra_test(G,length); |
74 | 74 |
|
75 | 75 |
dijkstra_test.run(s); |
76 | 76 |
dijkstra_test.run(s,t); |
77 | 77 |
|
78 | 78 |
l = dijkstra_test.dist(t); |
79 | 79 |
e = dijkstra_test.predArc(t); |
80 | 80 |
s = dijkstra_test.predNode(t); |
81 | 81 |
b = dijkstra_test.reached(t); |
82 | 82 |
d = dijkstra_test.distMap(); |
83 | 83 |
p = dijkstra_test.predMap(); |
84 | 84 |
pp = dijkstra_test.path(t); |
85 | 85 |
} |
86 | 86 |
{ |
87 | 87 |
DType |
88 | 88 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
89 | 89 |
::SetDistMap<concepts::ReadWriteMap<Node,VType> > |
90 | 90 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
91 | 91 |
::SetStandardProcessedMap |
92 |
::SetOperationTraits< |
|
92 |
::SetOperationTraits<DijkstraDefaultOperationTraits<VType> > |
|
93 | 93 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
94 | 94 |
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
95 | 95 |
::Create dijkstra_test(G,length); |
96 | 96 |
|
97 | 97 |
dijkstra_test.run(s); |
98 | 98 |
dijkstra_test.run(s,t); |
99 | 99 |
|
100 | 100 |
l = dijkstra_test.dist(t); |
101 | 101 |
e = dijkstra_test.predArc(t); |
102 | 102 |
s = dijkstra_test.predNode(t); |
103 | 103 |
b = dijkstra_test.reached(t); |
104 | 104 |
pp = dijkstra_test.path(t); |
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
void checkDijkstraFunctionCompile() |
110 | 110 |
{ |
111 | 111 |
typedef int VType; |
112 | 112 |
typedef concepts::Digraph Digraph; |
113 | 113 |
typedef Digraph::Arc Arc; |
114 | 114 |
typedef Digraph::Node Node; |
115 | 115 |
typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap; |
116 | 116 |
|
117 | 117 |
Digraph g; |
118 | 118 |
bool b; |
119 | 119 |
dijkstra(g,LengthMap()).run(Node()); |
120 | 120 |
b=dijkstra(g,LengthMap()).run(Node(),Node()); |
121 | 121 |
dijkstra(g,LengthMap()) |
122 | 122 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
123 | 123 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
124 | 124 |
.processedMap(concepts::WriteMap<Node,bool>()) |
125 | 125 |
.run(Node()); |
126 | 126 |
b=dijkstra(g,LengthMap()) |
127 | 127 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
128 | 128 |
.distMap(concepts::ReadWriteMap<Node,VType>()) |
129 | 129 |
.processedMap(concepts::WriteMap<Node,bool>()) |
130 | 130 |
.path(concepts::Path<Digraph>()) |
131 | 131 |
.dist(VType()) |
132 | 132 |
.run(Node(),Node()); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
template <class Digraph> |
136 | 136 |
void checkDijkstra() { |
137 | 137 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
138 | 138 |
typedef typename Digraph::template ArcMap<int> LengthMap; |
139 | 139 |
|
140 | 140 |
Digraph G; |
141 | 141 |
Node s, t; |
142 | 142 |
LengthMap length(G); |
143 | 143 |
|
144 | 144 |
std::istringstream input(test_lgf); |
145 | 145 |
digraphReader(G, input). |
146 | 146 |
arcMap("length", length). |
147 | 147 |
node("source", s). |
148 | 148 |
node("target", t). |
149 | 149 |
run(); |
150 | 150 |
|
151 | 151 |
Dijkstra<Digraph, LengthMap> |
152 | 152 |
dijkstra_test(G, length); |
153 | 153 |
dijkstra_test.run(s); |
154 | 154 |
|
155 | 155 |
check(dijkstra_test.dist(t)==3,"Dijkstra found a wrong path."); |
156 | 156 |
|
157 | 157 |
Path<Digraph> p = dijkstra_test.path(t); |
158 | 158 |
check(p.length()==3,"path() found a wrong path."); |
159 | 159 |
check(checkPath(G, p),"path() found a wrong path."); |
160 | 160 |
check(pathSource(G, p) == s,"path() found a wrong path."); |
161 | 161 |
check(pathTarget(G, p) == t,"path() found a wrong path."); |
162 | 162 |
|
163 | 163 |
for(ArcIt e(G); e!=INVALID; ++e) { |
164 | 164 |
Node u=G.source(e); |
165 | 165 |
Node v=G.target(e); |
166 | 166 |
check( !dijkstra_test.reached(u) || |
167 | 167 |
(dijkstra_test.dist(v) - dijkstra_test.dist(u) <= length[e]), |
168 | 168 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
169 | 169 |
dijkstra_test.dist(v) - dijkstra_test.dist(u) - length[e]); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
for(NodeIt v(G); v!=INVALID; ++v) { |
173 | 173 |
if (dijkstra_test.reached(v)) { |
174 | 174 |
check(v==s || dijkstra_test.predArc(v)!=INVALID, "Wrong tree."); |
175 | 175 |
if (dijkstra_test.predArc(v)!=INVALID ) { |
176 | 176 |
Arc e=dijkstra_test.predArc(v); |
177 | 177 |
Node u=G.source(e); |
178 | 178 |
check(u==dijkstra_test.predNode(v),"Wrong tree."); |
179 | 179 |
check(dijkstra_test.dist(v) - dijkstra_test.dist(u) == length[e], |
180 | 180 |
"Wrong distance! Difference: " << |
181 | 181 |
std::abs(dijkstra_test.dist(v)-dijkstra_test.dist(u)-length[e])); |
182 | 182 |
} |
183 | 183 |
} |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
{ |
187 | 187 |
NullMap<Node,Arc> myPredMap; |
188 | 188 |
dijkstra(G,length).predMap(myPredMap).run(s); |
189 | 189 |
} |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
int main() { |
193 | 193 |
checkDijkstra<ListDigraph>(); |
194 | 194 |
checkDijkstra<SmartDigraph>(); |
195 | 195 |
return 0; |
196 | 196 |
} |
0 comments (0 inline)