gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 2 0
merge default
0 files changed with 1 insertions and 24 deletions:
↑ Collapse diff ↑
Show white space 768 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DIJKSTRA_H
20 20
#define LEMON_DIJKSTRA_H
21 21

	
22 22
///\ingroup shortest_path
23 23
///\file
24 24
///\brief Dijkstra algorithm.
25 25

	
26 26
#include <limits>
27 27
#include <lemon/list_graph.h>
28 28
#include <lemon/bin_heap.h>
29 29
#include <lemon/bits/path_dump.h>
30 30
#include <lemon/core.h>
31 31
#include <lemon/error.h>
32 32
#include <lemon/maps.h>
33 33
#include <lemon/path.h>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \brief Default operation traits for the Dijkstra algorithm class.
38 38
  ///
39 39
  /// This operation traits class defines all computational operations and
40 40
  /// constants which are used in the Dijkstra algorithm.
41 41
  template <typename Value>
42 42
  struct DijkstraDefaultOperationTraits {
43 43
    /// \brief Gives back the zero value of the type.
44 44
    static Value zero() {
45 45
      return static_cast<Value>(0);
46 46
    }
47 47
    /// \brief Gives back the sum of the given two elements.
48 48
    static Value plus(const Value& left, const Value& right) {
49 49
      return left + right;
50 50
    }
51 51
    /// \brief Gives back true only if the first value is less than the second.
52 52
    static bool less(const Value& left, const Value& right) {
53 53
      return left < right;
54 54
    }
55 55
  };
56 56

	
57
  /// \brief Widest path operation traits for the Dijkstra algorithm class.
58
  ///
59
  /// This operation traits class defines all computational operations and
60
  /// constants which are used in the Dijkstra algorithm for widest path
61
  /// computation.
62
  ///
63
  /// \see DijkstraDefaultOperationTraits
64
  template <typename Value>
65
  struct DijkstraWidestPathOperationTraits {
66
    /// \brief Gives back the maximum value of the type.
67
    static Value zero() {
68
      return std::numeric_limits<Value>::max();
69
    }
70
    /// \brief Gives back the minimum of the given two elements.
71
    static Value plus(const Value& left, const Value& right) {
72
      return std::min(left, right);
73
    }
74
    /// \brief Gives back true only if the first value is less than the second.
75
    static bool less(const Value& left, const Value& right) {
76
      return left < right;
77
    }
78
  };
79

	
80 57
  ///Default traits class of Dijkstra class.
81 58

	
82 59
  ///Default traits class of Dijkstra class.
83 60
  ///\tparam GR The type of the digraph.
84 61
  ///\tparam LM The type of the length map.
85 62
  template<class GR, class LM>
86 63
  struct DijkstraDefaultTraits
87 64
  {
88 65
    ///The type of the digraph the algorithm runs on.
89 66
    typedef GR Digraph;
90 67

	
91 68
    ///The type of the map that stores the arc lengths.
92 69

	
93 70
    ///The type of the map that stores the arc lengths.
94 71
    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
95 72
    typedef LM LengthMap;
96 73
    ///The type of the length of the arcs.
97 74
    typedef typename LM::Value Value;
98 75

	
99 76
    /// Operation traits for Dijkstra algorithm.
100 77

	
101 78
    /// This class defines the operations that are used in the algorithm.
102 79
    /// \see DijkstraDefaultOperationTraits
103 80
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
104 81

	
105 82
    /// The cross reference type used by the heap.
106 83

	
107 84
    /// The cross reference type used by the heap.
108 85
    /// Usually it is \c Digraph::NodeMap<int>.
109 86
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
110 87
    ///Instantiates a \ref HeapCrossRef.
111 88

	
112 89
    ///This function instantiates a \ref HeapCrossRef.
113 90
    /// \param g is the digraph, to which we would like to define the
114 91
    /// \ref HeapCrossRef.
115 92
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
116 93
    {
117 94
      return new HeapCrossRef(g);
118 95
    }
119 96

	
120 97
    ///The heap type used by the Dijkstra algorithm.
121 98

	
122 99
    ///The heap type used by the Dijkstra algorithm.
123 100
    ///
124 101
    ///\sa BinHeap
125 102
    ///\sa Dijkstra
126 103
    typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
127 104
    ///Instantiates a \ref Heap.
128 105

	
129 106
    ///This function instantiates a \ref Heap.
130 107
    static Heap *createHeap(HeapCrossRef& r)
131 108
    {
132 109
      return new Heap(r);
133 110
    }
134 111

	
135 112
    ///\brief The type of the map that stores the predecessor
136 113
    ///arcs of the shortest paths.
137 114
    ///
138 115
    ///The type of the map that stores the predecessor
139 116
    ///arcs of the shortest paths.
140 117
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
141 118
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
142 119
    ///Instantiates a PredMap.
143 120

	
144 121
    ///This function instantiates a PredMap.
145 122
    ///\param g is the digraph, to which we would like to define the
146 123
    ///PredMap.
147 124
    static PredMap *createPredMap(const Digraph &g)
148 125
    {
149 126
      return new PredMap(g);
150 127
    }
151 128

	
152 129
    ///The type of the map that indicates which nodes are processed.
153 130

	
154 131
    ///The type of the map that indicates which nodes are processed.
155 132
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
156 133
    ///By default it is a NullMap.
157 134
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
158 135
    ///Instantiates a ProcessedMap.
159 136

	
160 137
    ///This function instantiates a ProcessedMap.
161 138
    ///\param g is the digraph, to which
162 139
    ///we would like to define the ProcessedMap
163 140
#ifdef DOXYGEN
164 141
    static ProcessedMap *createProcessedMap(const Digraph &g)
165 142
#else
166 143
    static ProcessedMap *createProcessedMap(const Digraph &)
167 144
#endif
168 145
    {
169 146
      return new ProcessedMap();
170 147
    }
171 148

	
172 149
    ///The type of the map that stores the distances of the nodes.
173 150

	
174 151
    ///The type of the map that stores the distances of the nodes.
175 152
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
176 153
    typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
177 154
    ///Instantiates a DistMap.
178 155

	
179 156
    ///This function instantiates a DistMap.
180 157
    ///\param g is the digraph, to which we would like to define
181 158
    ///the DistMap
182 159
    static DistMap *createDistMap(const Digraph &g)
183 160
    {
184 161
      return new DistMap(g);
185 162
    }
186 163
  };
187 164

	
188 165
  ///%Dijkstra algorithm class.
189 166

	
190 167
  /// \ingroup shortest_path
191 168
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
192 169
  ///
193 170
  ///The arc lengths are passed to the algorithm using a
194 171
  ///\ref concepts::ReadMap "ReadMap",
195 172
  ///so it is easy to change it to any kind of length.
196 173
  ///The type of the length is determined by the
197 174
  ///\ref concepts::ReadMap::Value "Value" of the length map.
198 175
  ///It is also possible to change the underlying priority heap.
199 176
  ///
200 177
  ///There is also a \ref dijkstra() "function-type interface" for the
201 178
  ///%Dijkstra algorithm, which is convenient in the simplier cases and
202 179
  ///it can be used easier.
203 180
  ///
204 181
  ///\tparam GR The type of the digraph the algorithm runs on.
205 182
  ///The default value is \ref ListDigraph.
206 183
  ///The value of GR is not used directly by \ref Dijkstra, it is only
207 184
  ///passed to \ref DijkstraDefaultTraits.
208 185
  ///\tparam LM A readable arc map that determines the lengths of the
209 186
  ///arcs. It is read once for each arc, so the map may involve in
210 187
  ///relatively time consuming process to compute the arc lengths if
211 188
  ///it is necessary. The default map type is \ref
212 189
  ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
213 190
  ///The value of LM is not used directly by \ref Dijkstra, it is only
214 191
  ///passed to \ref DijkstraDefaultTraits.
215 192
  ///\tparam TR Traits class to set various data types used by the algorithm.
216 193
  ///The default traits class is \ref DijkstraDefaultTraits
217 194
  ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits
218 195
  ///for the documentation of a Dijkstra traits class.
219 196
#ifdef DOXYGEN
220 197
  template <typename GR, typename LM, typename TR>
221 198
#else
222 199
  template <typename GR=ListDigraph,
223 200
            typename LM=typename GR::template ArcMap<int>,
224 201
            typename TR=DijkstraDefaultTraits<GR,LM> >
225 202
#endif
226 203
  class Dijkstra {
227 204
  public:
228 205

	
229 206
    ///The type of the digraph the algorithm runs on.
230 207
    typedef typename TR::Digraph Digraph;
231 208

	
232 209
    ///The type of the length of the arcs.
233 210
    typedef typename TR::LengthMap::Value Value;
234 211
    ///The type of the map that stores the arc lengths.
235 212
    typedef typename TR::LengthMap LengthMap;
236 213
    ///\brief The type of the map that stores the predecessor arcs of the
237 214
    ///shortest paths.
238 215
    typedef typename TR::PredMap PredMap;
239 216
    ///The type of the map that stores the distances of the nodes.
240 217
    typedef typename TR::DistMap DistMap;
241 218
    ///The type of the map that indicates which nodes are processed.
242 219
    typedef typename TR::ProcessedMap ProcessedMap;
243 220
    ///The type of the paths.
244 221
    typedef PredMapPath<Digraph, PredMap> Path;
245 222
    ///The cross reference type used for the current heap.
246 223
    typedef typename TR::HeapCrossRef HeapCrossRef;
247 224
    ///The heap type used by the algorithm.
248 225
    typedef typename TR::Heap Heap;
249 226
    ///The operation traits class.
250 227
    typedef typename TR::OperationTraits OperationTraits;
251 228

	
252 229
    ///The traits class.
253 230
    typedef TR Traits;
254 231

	
255 232
  private:
256 233

	
257 234
    typedef typename Digraph::Node Node;
258 235
    typedef typename Digraph::NodeIt NodeIt;
259 236
    typedef typename Digraph::Arc Arc;
260 237
    typedef typename Digraph::OutArcIt OutArcIt;
261 238

	
262 239
    //Pointer to the underlying digraph.
263 240
    const Digraph *G;
264 241
    //Pointer to the length map.
265 242
    const LengthMap *length;
266 243
    //Pointer to the map of predecessors arcs.
267 244
    PredMap *_pred;
268 245
    //Indicates if _pred is locally allocated (true) or not.
269 246
    bool local_pred;
270 247
    //Pointer to the map of distances.
271 248
    DistMap *_dist;
272 249
    //Indicates if _dist is locally allocated (true) or not.
273 250
    bool local_dist;
274 251
    //Pointer to the map of processed status of the nodes.
275 252
    ProcessedMap *_processed;
276 253
    //Indicates if _processed is locally allocated (true) or not.
277 254
    bool local_processed;
278 255
    //Pointer to the heap cross references.
279 256
    HeapCrossRef *_heap_cross_ref;
280 257
    //Indicates if _heap_cross_ref is locally allocated (true) or not.
281 258
    bool local_heap_cross_ref;
282 259
    //Pointer to the heap.
283 260
    Heap *_heap;
284 261
    //Indicates if _heap is locally allocated (true) or not.
285 262
    bool local_heap;
286 263

	
287 264
    //Creates the maps if necessary.
288 265
    void create_maps()
289 266
    {
290 267
      if(!_pred) {
291 268
        local_pred = true;
292 269
        _pred = Traits::createPredMap(*G);
293 270
      }
294 271
      if(!_dist) {
295 272
        local_dist = true;
296 273
        _dist = Traits::createDistMap(*G);
297 274
      }
298 275
      if(!_processed) {
299 276
        local_processed = true;
300 277
        _processed = Traits::createProcessedMap(*G);
301 278
      }
302 279
      if (!_heap_cross_ref) {
303 280
        local_heap_cross_ref = true;
304 281
        _heap_cross_ref = Traits::createHeapCrossRef(*G);
305 282
      }
306 283
      if (!_heap) {
307 284
        local_heap = true;
308 285
        _heap = Traits::createHeap(*_heap_cross_ref);
309 286
      }
310 287
    }
311 288

	
312 289
  public:
313 290

	
314 291
    typedef Dijkstra Create;
315 292

	
316 293
    ///\name Named template parameters
317 294

	
318 295
    ///@{
319 296

	
320 297
    template <class T>
321 298
    struct SetPredMapTraits : public Traits {
322 299
      typedef T PredMap;
323 300
      static PredMap *createPredMap(const Digraph &)
324 301
      {
325 302
        LEMON_ASSERT(false, "PredMap is not initialized");
326 303
        return 0; // ignore warnings
327 304
      }
328 305
    };
329 306
    ///\brief \ref named-templ-param "Named parameter" for setting
330 307
    ///PredMap type.
331 308
    ///
332 309
    ///\ref named-templ-param "Named parameter" for setting
333 310
    ///PredMap type.
334 311
    template <class T>
335 312
    struct SetPredMap
336 313
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
337 314
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
338 315
    };
339 316

	
340 317
    template <class T>
341 318
    struct SetDistMapTraits : public Traits {
342 319
      typedef T DistMap;
343 320
      static DistMap *createDistMap(const Digraph &)
344 321
      {
345 322
        LEMON_ASSERT(false, "DistMap is not initialized");
346 323
        return 0; // ignore warnings
347 324
      }
348 325
    };
349 326
    ///\brief \ref named-templ-param "Named parameter" for setting
350 327
    ///DistMap type.
351 328
    ///
352 329
    ///\ref named-templ-param "Named parameter" for setting
353 330
    ///DistMap type.
354 331
    template <class T>
355 332
    struct SetDistMap
356 333
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
357 334
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
358 335
    };
359 336

	
360 337
    template <class T>
361 338
    struct SetProcessedMapTraits : public Traits {
362 339
      typedef T ProcessedMap;
363 340
      static ProcessedMap *createProcessedMap(const Digraph &)
364 341
      {
365 342
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
366 343
        return 0; // ignore warnings
367 344
      }
368 345
    };
369 346
    ///\brief \ref named-templ-param "Named parameter" for setting
370 347
    ///ProcessedMap type.
371 348
    ///
372 349
    ///\ref named-templ-param "Named parameter" for setting
373 350
    ///ProcessedMap type.
374 351
    template <class T>
375 352
    struct SetProcessedMap
376 353
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
377 354
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
378 355
    };
379 356

	
380 357
    struct SetStandardProcessedMapTraits : public Traits {
381 358
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
382 359
      static ProcessedMap *createProcessedMap(const Digraph &g)
383 360
      {
384 361
        return new ProcessedMap(g);
385 362
      }
386 363
    };
387 364
    ///\brief \ref named-templ-param "Named parameter" for setting
388 365
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
389 366
    ///
390 367
    ///\ref named-templ-param "Named parameter" for setting
391 368
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
392 369
    ///If you don't set it explicitly, it will be automatically allocated.
393 370
    struct SetStandardProcessedMap
394 371
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
395 372
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
396 373
      Create;
397 374
    };
398 375

	
399 376
    template <class H, class CR>
400 377
    struct SetHeapTraits : public Traits {
401 378
      typedef CR HeapCrossRef;
402 379
      typedef H Heap;
403 380
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
404 381
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
405 382
        return 0; // ignore warnings
406 383
      }
407 384
      static Heap *createHeap(HeapCrossRef &)
408 385
      {
409 386
        LEMON_ASSERT(false, "Heap is not initialized");
410 387
        return 0; // ignore warnings
411 388
      }
412 389
    };
413 390
    ///\brief \ref named-templ-param "Named parameter" for setting
414 391
    ///heap and cross reference type
415 392
    ///
416 393
    ///\ref named-templ-param "Named parameter" for setting heap and cross
417 394
    ///reference type.
418 395
    template <class H, class CR = typename Digraph::template NodeMap<int> >
419 396
    struct SetHeap
420 397
      : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
421 398
      typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
422 399
    };
423 400

	
424 401
    template <class H, class CR>
425 402
    struct SetStandardHeapTraits : public Traits {
426 403
      typedef CR HeapCrossRef;
427 404
      typedef H Heap;
428 405
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
429 406
        return new HeapCrossRef(G);
430 407
      }
431 408
      static Heap *createHeap(HeapCrossRef &R)
432 409
      {
433 410
        return new Heap(R);
434 411
      }
435 412
    };
436 413
    ///\brief \ref named-templ-param "Named parameter" for setting
437 414
    ///heap and cross reference type with automatic allocation
438 415
    ///
439 416
    ///\ref named-templ-param "Named parameter" for setting heap and cross
440 417
    ///reference type. It can allocate the heap and the cross reference
441 418
    ///object if the cross reference's constructor waits for the digraph as
442 419
    ///parameter and the heap's constructor waits for the cross reference.
443 420
    template <class H, class CR = typename Digraph::template NodeMap<int> >
444 421
    struct SetStandardHeap
445 422
      : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
446 423
      typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
447 424
      Create;
448 425
    };
449 426

	
450 427
    template <class T>
451 428
    struct SetOperationTraitsTraits : public Traits {
452 429
      typedef T OperationTraits;
453 430
    };
454 431

	
455 432
    /// \brief \ref named-templ-param "Named parameter" for setting
456 433
    ///\c OperationTraits type
457 434
    ///
458 435
    ///\ref named-templ-param "Named parameter" for setting
459 436
    ///\ref OperationTraits type.
460 437
    template <class T>
461 438
    struct SetOperationTraits
462 439
      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
463 440
      typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
Show white space 768 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/concepts/digraph.h>
20 20
#include <lemon/smart_graph.h>
21 21
#include <lemon/list_graph.h>
22 22
#include <lemon/lgf_reader.h>
23 23
#include <lemon/dijkstra.h>
24 24
#include <lemon/path.h>
25 25
#include <lemon/bin_heap.h>
26 26

	
27 27
#include "graph_test.h"
28 28
#include "test_tools.h"
29 29

	
30 30
using namespace lemon;
31 31

	
32 32
char test_lgf[] =
33 33
  "@nodes\n"
34 34
  "label\n"
35 35
  "0\n"
36 36
  "1\n"
37 37
  "2\n"
38 38
  "3\n"
39 39
  "4\n"
40 40
  "@arcs\n"
41 41
  "     label length\n"
42 42
  "0 1  0     1\n"
43 43
  "1 2  1     1\n"
44 44
  "2 3  2     1\n"
45 45
  "0 3  4     5\n"
46 46
  "0 3  5     10\n"
47 47
  "0 3  6     7\n"
48 48
  "4 2  7     1\n"
49 49
  "@attributes\n"
50 50
  "source 0\n"
51 51
  "target 3\n";
52 52

	
53 53
void checkDijkstraCompile()
54 54
{
55 55
  typedef int VType;
56 56
  typedef concepts::Digraph Digraph;
57 57
  typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap;
58 58
  typedef Dijkstra<Digraph, LengthMap> DType;
59 59
  typedef Digraph::Node Node;
60 60
  typedef Digraph::Arc Arc;
61 61

	
62 62
  Digraph G;
63 63
  Node s, t;
64 64
  Arc e;
65 65
  VType l;
66 66
  bool b;
67 67
  DType::DistMap d(G);
68 68
  DType::PredMap p(G);
69 69
  LengthMap length;
70 70
  Path<Digraph> pp;
71 71

	
72 72
  {
73 73
    DType dijkstra_test(G,length);
74 74

	
75 75
    dijkstra_test.run(s);
76 76
    dijkstra_test.run(s,t);
77 77

	
78 78
    l  = dijkstra_test.dist(t);
79 79
    e  = dijkstra_test.predArc(t);
80 80
    s  = dijkstra_test.predNode(t);
81 81
    b  = dijkstra_test.reached(t);
82 82
    d  = dijkstra_test.distMap();
83 83
    p  = dijkstra_test.predMap();
84 84
    pp = dijkstra_test.path(t);
85 85
  }
86 86
  {
87 87
    DType
88 88
      ::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
89 89
      ::SetDistMap<concepts::ReadWriteMap<Node,VType> >
90 90
      ::SetProcessedMap<concepts::WriteMap<Node,bool> >
91 91
      ::SetStandardProcessedMap
92
      ::SetOperationTraits<DijkstraWidestPathOperationTraits<VType> >
92
      ::SetOperationTraits<DijkstraDefaultOperationTraits<VType> >
93 93
      ::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > >
94 94
      ::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > >
95 95
      ::Create dijkstra_test(G,length);
96 96

	
97 97
    dijkstra_test.run(s);
98 98
    dijkstra_test.run(s,t);
99 99

	
100 100
    l  = dijkstra_test.dist(t);
101 101
    e  = dijkstra_test.predArc(t);
102 102
    s  = dijkstra_test.predNode(t);
103 103
    b  = dijkstra_test.reached(t);
104 104
    pp = dijkstra_test.path(t);
105 105
  }
106 106

	
107 107
}
108 108

	
109 109
void checkDijkstraFunctionCompile()
110 110
{
111 111
  typedef int VType;
112 112
  typedef concepts::Digraph Digraph;
113 113
  typedef Digraph::Arc Arc;
114 114
  typedef Digraph::Node Node;
115 115
  typedef concepts::ReadMap<Digraph::Arc,VType> LengthMap;
116 116

	
117 117
  Digraph g;
118 118
  bool b;
119 119
  dijkstra(g,LengthMap()).run(Node());
120 120
  b=dijkstra(g,LengthMap()).run(Node(),Node());
121 121
  dijkstra(g,LengthMap())
122 122
    .predMap(concepts::ReadWriteMap<Node,Arc>())
123 123
    .distMap(concepts::ReadWriteMap<Node,VType>())
124 124
    .processedMap(concepts::WriteMap<Node,bool>())
125 125
    .run(Node());
126 126
  b=dijkstra(g,LengthMap())
127 127
    .predMap(concepts::ReadWriteMap<Node,Arc>())
128 128
    .distMap(concepts::ReadWriteMap<Node,VType>())
129 129
    .processedMap(concepts::WriteMap<Node,bool>())
130 130
    .path(concepts::Path<Digraph>())
131 131
    .dist(VType())
132 132
    .run(Node(),Node());
133 133
}
134 134

	
135 135
template <class Digraph>
136 136
void checkDijkstra() {
137 137
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
138 138
  typedef typename Digraph::template ArcMap<int> LengthMap;
139 139

	
140 140
  Digraph G;
141 141
  Node s, t;
142 142
  LengthMap length(G);
143 143

	
144 144
  std::istringstream input(test_lgf);
145 145
  digraphReader(G, input).
146 146
    arcMap("length", length).
147 147
    node("source", s).
148 148
    node("target", t).
149 149
    run();
150 150

	
151 151
  Dijkstra<Digraph, LengthMap>
152 152
        dijkstra_test(G, length);
153 153
  dijkstra_test.run(s);
154 154

	
155 155
  check(dijkstra_test.dist(t)==3,"Dijkstra found a wrong path.");
156 156

	
157 157
  Path<Digraph> p = dijkstra_test.path(t);
158 158
  check(p.length()==3,"path() found a wrong path.");
159 159
  check(checkPath(G, p),"path() found a wrong path.");
160 160
  check(pathSource(G, p) == s,"path() found a wrong path.");
161 161
  check(pathTarget(G, p) == t,"path() found a wrong path.");
162 162

	
163 163
  for(ArcIt e(G); e!=INVALID; ++e) {
164 164
    Node u=G.source(e);
165 165
    Node v=G.target(e);
166 166
    check( !dijkstra_test.reached(u) ||
167 167
           (dijkstra_test.dist(v) - dijkstra_test.dist(u) <= length[e]),
168 168
           "Wrong output. dist(target)-dist(source)-arc_length=" <<
169 169
           dijkstra_test.dist(v) - dijkstra_test.dist(u) - length[e]);
170 170
  }
171 171

	
172 172
  for(NodeIt v(G); v!=INVALID; ++v) {
173 173
    if (dijkstra_test.reached(v)) {
174 174
      check(v==s || dijkstra_test.predArc(v)!=INVALID, "Wrong tree.");
175 175
      if (dijkstra_test.predArc(v)!=INVALID ) {
176 176
        Arc e=dijkstra_test.predArc(v);
177 177
        Node u=G.source(e);
178 178
        check(u==dijkstra_test.predNode(v),"Wrong tree.");
179 179
        check(dijkstra_test.dist(v) - dijkstra_test.dist(u) == length[e],
180 180
              "Wrong distance! Difference: " <<
181 181
              std::abs(dijkstra_test.dist(v)-dijkstra_test.dist(u)-length[e]));
182 182
      }
183 183
    }
184 184
  }
185 185

	
186 186
  {
187 187
    NullMap<Node,Arc> myPredMap;
188 188
    dijkstra(G,length).predMap(myPredMap).run(s);
189 189
  }
190 190
}
191 191

	
192 192
int main() {
193 193
  checkDijkstra<ListDigraph>();
194 194
  checkDijkstra<SmartDigraph>();
195 195
  return 0;
196 196
}
0 comments (0 inline)