| ... | ... |
@@ -29,81 +29,198 @@ |
| 29 | 29 |
#include <lemon/path.h> |
| 30 | 30 |
#include <lemon/tolerance.h> |
| 31 | 31 |
#include <lemon/connectivity.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 |
/// \brief Default traits class of MinMeanCycle class. |
|
| 36 |
/// |
|
| 37 |
/// Default traits class of MinMeanCycle class. |
|
| 38 |
/// \tparam GR The type of the digraph. |
|
| 39 |
/// \tparam LEN The type of the length map. |
|
| 40 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 41 |
#ifdef DOXYGEN |
|
| 42 |
template <typename GR, typename LEN> |
|
| 43 |
#else |
|
| 44 |
template <typename GR, typename LEN, |
|
| 45 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
| 46 |
#endif |
|
| 47 |
struct MinMeanCycleDefaultTraits |
|
| 48 |
{
|
|
| 49 |
/// The type of the digraph |
|
| 50 |
typedef GR Digraph; |
|
| 51 |
/// The type of the length map |
|
| 52 |
typedef LEN LengthMap; |
|
| 53 |
/// The type of the arc lengths |
|
| 54 |
typedef typename LengthMap::Value Value; |
|
| 55 |
|
|
| 56 |
/// \brief The large value type used for internal computations |
|
| 57 |
/// |
|
| 58 |
/// The large value type used for internal computations. |
|
| 59 |
/// It is \c long \c long if the \c Value type is integer, |
|
| 60 |
/// otherwise it is \c double. |
|
| 61 |
/// \c Value must be convertible to \c LargeValue. |
|
| 62 |
typedef double LargeValue; |
|
| 63 |
|
|
| 64 |
/// The tolerance type used for internal computations |
|
| 65 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 66 |
|
|
| 67 |
/// \brief The path type of the found cycles |
|
| 68 |
/// |
|
| 69 |
/// The path type of the found cycles. |
|
| 70 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 71 |
/// and it must have an \c addBack() function. |
|
| 72 |
typedef lemon::Path<Digraph> Path; |
|
| 73 |
}; |
|
| 74 |
|
|
| 75 |
// Default traits class for integer value types |
|
| 76 |
template <typename GR, typename LEN> |
|
| 77 |
struct MinMeanCycleDefaultTraits<GR, LEN, true> |
|
| 78 |
{
|
|
| 79 |
typedef GR Digraph; |
|
| 80 |
typedef LEN LengthMap; |
|
| 81 |
typedef typename LengthMap::Value Value; |
|
| 82 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 83 |
typedef long long LargeValue; |
|
| 84 |
#else |
|
| 85 |
typedef long LargeValue; |
|
| 86 |
#endif |
|
| 87 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 88 |
typedef lemon::Path<Digraph> Path; |
|
| 89 |
}; |
|
| 90 |
|
|
| 91 |
|
|
| 35 | 92 |
/// \addtogroup shortest_path |
| 36 | 93 |
/// @{
|
| 37 | 94 |
|
| 38 | 95 |
/// \brief Implementation of Howard's algorithm for finding a minimum |
| 39 | 96 |
/// mean cycle. |
| 40 | 97 |
/// |
| 41 | 98 |
/// \ref MinMeanCycle implements Howard's algorithm for finding a |
| 42 | 99 |
/// directed cycle of minimum mean length (cost) in a digraph. |
| 43 | 100 |
/// |
| 44 | 101 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 45 | 102 |
/// \tparam LEN The type of the length map. The default |
| 46 | 103 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 47 |
/// |
|
| 48 |
/// \warning \c LEN::Value must be convertible to \c double. |
|
| 49 | 104 |
#ifdef DOXYGEN |
| 50 |
template <typename GR, typename LEN> |
|
| 105 |
template <typename GR, typename LEN, typename TR> |
|
| 51 | 106 |
#else |
| 52 | 107 |
template < typename GR, |
| 53 |
typename LEN = typename GR::template ArcMap<int> |
|
| 108 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 109 |
typename TR = MinMeanCycleDefaultTraits<GR, LEN> > |
|
| 54 | 110 |
#endif |
| 55 | 111 |
class MinMeanCycle |
| 56 | 112 |
{
|
| 57 | 113 |
public: |
| 58 | 114 |
|
| 59 |
/// The type of the digraph the algorithm runs on |
|
| 60 |
typedef GR Digraph; |
|
| 115 |
/// The type of the digraph |
|
| 116 |
typedef typename TR::Digraph Digraph; |
|
| 61 | 117 |
/// The type of the length map |
| 62 |
typedef |
|
| 118 |
typedef typename TR::LengthMap LengthMap; |
|
| 63 | 119 |
/// The type of the arc lengths |
| 64 |
typedef typename LengthMap::Value Value; |
|
| 65 |
/// The type of the paths |
|
| 66 |
typedef |
|
| 120 |
typedef typename TR::Value Value; |
|
| 121 |
|
|
| 122 |
/// \brief The large value type |
|
| 123 |
/// |
|
| 124 |
/// The large value type used for internal computations. |
|
| 125 |
/// Using the \ref MinMeanCycleDefaultTraits "default traits class", |
|
| 126 |
/// it is \c long \c long if the \c Value type is integer, |
|
| 127 |
/// otherwise it is \c double. |
|
| 128 |
typedef typename TR::LargeValue LargeValue; |
|
| 129 |
|
|
| 130 |
/// The tolerance type |
|
| 131 |
typedef typename TR::Tolerance Tolerance; |
|
| 132 |
|
|
| 133 |
/// \brief The path type of the found cycles |
|
| 134 |
/// |
|
| 135 |
/// The path type of the found cycles. |
|
| 136 |
/// Using the \ref MinMeanCycleDefaultTraits "default traits class", |
|
| 137 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 138 |
typedef typename TR::Path Path; |
|
| 139 |
|
|
| 140 |
/// The \ref MinMeanCycleDefaultTraits "traits class" of the algorithm |
|
| 141 |
typedef TR Traits; |
|
| 67 | 142 |
|
| 68 | 143 |
private: |
| 69 | 144 |
|
| 70 | 145 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 71 | 146 |
|
| 72 | 147 |
// The digraph the algorithm runs on |
| 73 | 148 |
const Digraph &_gr; |
| 74 | 149 |
// The length of the arcs |
| 75 | 150 |
const LengthMap &_length; |
| 76 | 151 |
|
| 77 | 152 |
// Data for the found cycles |
| 78 | 153 |
bool _curr_found, _best_found; |
| 79 |
|
|
| 154 |
LargeValue _curr_length, _best_length; |
|
| 80 | 155 |
int _curr_size, _best_size; |
| 81 | 156 |
Node _curr_node, _best_node; |
| 82 | 157 |
|
| 83 | 158 |
Path *_cycle_path; |
| 84 | 159 |
bool _local_path; |
| 85 | 160 |
|
| 86 | 161 |
// Internal data used by the algorithm |
| 87 | 162 |
typename Digraph::template NodeMap<Arc> _policy; |
| 88 | 163 |
typename Digraph::template NodeMap<bool> _reached; |
| 89 | 164 |
typename Digraph::template NodeMap<int> _level; |
| 90 |
typename Digraph::template NodeMap< |
|
| 165 |
typename Digraph::template NodeMap<LargeValue> _dist; |
|
| 91 | 166 |
|
| 92 | 167 |
// Data for storing the strongly connected components |
| 93 | 168 |
int _comp_num; |
| 94 | 169 |
typename Digraph::template NodeMap<int> _comp; |
| 95 | 170 |
std::vector<std::vector<Node> > _comp_nodes; |
| 96 | 171 |
std::vector<Node>* _nodes; |
| 97 | 172 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
| 98 | 173 |
|
| 99 | 174 |
// Queue used for BFS search |
| 100 | 175 |
std::vector<Node> _queue; |
| 101 | 176 |
int _qfront, _qback; |
| 177 |
|
|
| 178 |
Tolerance _tolerance; |
|
| 179 |
|
|
| 180 |
public: |
|
| 181 |
|
|
| 182 |
/// \name Named Template Parameters |
|
| 183 |
/// @{
|
|
| 184 |
|
|
| 185 |
template <typename T> |
|
| 186 |
struct SetLargeValueTraits : public Traits {
|
|
| 187 |
typedef T LargeValue; |
|
| 188 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 189 |
}; |
|
| 190 |
|
|
| 191 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 192 |
/// \c LargeValue type. |
|
| 193 |
/// |
|
| 194 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
| 195 |
/// type. It is used for internal computations in the algorithm. |
|
| 196 |
template <typename T> |
|
| 197 |
struct SetLargeValue |
|
| 198 |
: public MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > {
|
|
| 199 |
typedef MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > Create; |
|
| 200 |
}; |
|
| 201 |
|
|
| 202 |
template <typename T> |
|
| 203 |
struct SetPathTraits : public Traits {
|
|
| 204 |
typedef T Path; |
|
| 205 |
}; |
|
| 206 |
|
|
| 207 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 208 |
/// \c %Path type. |
|
| 209 |
/// |
|
| 210 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 211 |
/// type of the found cycles. |
|
| 212 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 213 |
/// and it must have an \c addBack() function. |
|
| 214 |
template <typename T> |
|
| 215 |
struct SetPath |
|
| 216 |
: public MinMeanCycle<GR, LEN, SetPathTraits<T> > {
|
|
| 217 |
typedef MinMeanCycle<GR, LEN, SetPathTraits<T> > Create; |
|
| 218 |
}; |
|
| 102 | 219 |
|
| 103 |
|
|
| 220 |
/// @} |
|
| 104 | 221 |
|
| 105 | 222 |
public: |
| 106 | 223 |
|
| 107 | 224 |
/// \brief Constructor. |
| 108 | 225 |
/// |
| 109 | 226 |
/// The constructor of the class. |
| ... | ... |
@@ -232,13 +349,13 @@ |
| 232 | 349 |
/// \brief Return the total length of the found cycle. |
| 233 | 350 |
/// |
| 234 | 351 |
/// This function returns the total length of the found cycle. |
| 235 | 352 |
/// |
| 236 | 353 |
/// \pre \ref run() or \ref findMinMean() must be called before |
| 237 | 354 |
/// using this function. |
| 238 |
|
|
| 355 |
LargeValue cycleLength() const {
|
|
| 239 | 356 |
return _best_length; |
| 240 | 357 |
} |
| 241 | 358 |
|
| 242 | 359 |
/// \brief Return the number of arcs on the found cycle. |
| 243 | 360 |
/// |
| 244 | 361 |
/// This function returns the number of arcs on the found cycle. |
| ... | ... |
@@ -281,13 +398,12 @@ |
| 281 | 398 |
///@} |
| 282 | 399 |
|
| 283 | 400 |
private: |
| 284 | 401 |
|
| 285 | 402 |
// Initialize |
| 286 | 403 |
void init() {
|
| 287 |
_tol.epsilon(1e-6); |
|
| 288 | 404 |
if (!_cycle_path) {
|
| 289 | 405 |
_local_path = true; |
| 290 | 406 |
_cycle_path = new Path; |
| 291 | 407 |
} |
| 292 | 408 |
_queue.resize(countNodes(_gr)); |
| 293 | 409 |
_best_found = false; |
| ... | ... |
@@ -330,13 +446,13 @@ |
| 330 | 446 |
_nodes = &(_comp_nodes[comp]); |
| 331 | 447 |
if (_nodes->size() < 1 || |
| 332 | 448 |
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
|
| 333 | 449 |
return false; |
| 334 | 450 |
} |
| 335 | 451 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
| 336 |
_dist[(*_nodes)[i]] = std::numeric_limits< |
|
| 452 |
_dist[(*_nodes)[i]] = std::numeric_limits<LargeValue>::max(); |
|
| 337 | 453 |
} |
| 338 | 454 |
Node u, v; |
| 339 | 455 |
Arc e; |
| 340 | 456 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
| 341 | 457 |
v = (*_nodes)[i]; |
| 342 | 458 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
| ... | ... |
@@ -353,13 +469,13 @@ |
| 353 | 469 |
|
| 354 | 470 |
// Find the minimum mean cycle in the policy graph |
| 355 | 471 |
void findPolicyCycle() {
|
| 356 | 472 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
| 357 | 473 |
_level[(*_nodes)[i]] = -1; |
| 358 | 474 |
} |
| 359 |
|
|
| 475 |
LargeValue clength; |
|
| 360 | 476 |
int csize; |
| 361 | 477 |
Node u, v; |
| 362 | 478 |
_curr_found = false; |
| 363 | 479 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
| 364 | 480 |
u = (*_nodes)[i]; |
| 365 | 481 |
if (_level[u] >= 0) continue; |
| ... | ... |
@@ -389,13 +505,12 @@ |
| 389 | 505 |
bool computeNodeDistances() {
|
| 390 | 506 |
// Find the component of the main cycle and compute node distances |
| 391 | 507 |
// using reverse BFS |
| 392 | 508 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
| 393 | 509 |
_reached[(*_nodes)[i]] = false; |
| 394 | 510 |
} |
| 395 |
double curr_mean = double(_curr_length) / _curr_size; |
|
| 396 | 511 |
_qfront = _qback = 0; |
| 397 | 512 |
_queue[0] = _curr_node; |
| 398 | 513 |
_reached[_curr_node] = true; |
| 399 | 514 |
_dist[_curr_node] = 0; |
| 400 | 515 |
Node u, v; |
| 401 | 516 |
Arc e; |
| ... | ... |
@@ -403,13 +518,13 @@ |
| 403 | 518 |
v = _queue[_qfront++]; |
| 404 | 519 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
| 405 | 520 |
e = _in_arcs[v][j]; |
| 406 | 521 |
u = _gr.source(e); |
| 407 | 522 |
if (_policy[u] == e && !_reached[u]) {
|
| 408 | 523 |
_reached[u] = true; |
| 409 |
_dist[u] = _dist[v] + _length[e] - |
|
| 524 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
| 410 | 525 |
_queue[++_qback] = u; |
| 411 | 526 |
} |
| 412 | 527 |
} |
| 413 | 528 |
} |
| 414 | 529 |
|
| 415 | 530 |
// Connect all other nodes to this component and compute node |
| ... | ... |
@@ -420,27 +535,27 @@ |
| 420 | 535 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
| 421 | 536 |
e = _in_arcs[v][j]; |
| 422 | 537 |
u = _gr.source(e); |
| 423 | 538 |
if (!_reached[u]) {
|
| 424 | 539 |
_reached[u] = true; |
| 425 | 540 |
_policy[u] = e; |
| 426 |
_dist[u] = _dist[v] + _length[e] - |
|
| 541 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
| 427 | 542 |
_queue[++_qback] = u; |
| 428 | 543 |
} |
| 429 | 544 |
} |
| 430 | 545 |
} |
| 431 | 546 |
|
| 432 | 547 |
// Improve node distances |
| 433 | 548 |
bool improved = false; |
| 434 | 549 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
| 435 | 550 |
v = (*_nodes)[i]; |
| 436 | 551 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
| 437 | 552 |
e = _in_arcs[v][j]; |
| 438 | 553 |
u = _gr.source(e); |
| 439 |
double delta = _dist[v] + _length[e] - curr_mean; |
|
| 440 |
if (_tol.less(delta, _dist[u])) {
|
|
| 554 |
LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
| 555 |
if (_tolerance.less(delta, _dist[u])) {
|
|
| 441 | 556 |
_dist[u] = delta; |
| 442 | 557 |
_policy[u] = e; |
| 443 | 558 |
improved = true; |
| 444 | 559 |
} |
| 445 | 560 |
} |
| 446 | 561 |
} |
0 comments (0 inline)