0
9
2
1 |
SET(COIN_ROOT_DIR "" CACHE PATH "COIN root directory") |
|
2 |
|
|
3 |
FIND_PATH(COIN_INCLUDE_DIR coin/CoinUtilsConfig.h |
|
4 |
PATHS ${COIN_ROOT_DIR}/include) |
|
5 |
|
|
6 |
FIND_LIBRARY(COIN_CBC_LIBRARY libCbc |
|
7 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
8 |
FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY libCbcSolver |
|
9 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
10 |
FIND_LIBRARY(COIN_CGL_LIBRARY libCgl |
|
11 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
12 |
FIND_LIBRARY(COIN_CLP_LIBRARY libClp |
|
13 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
14 |
FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY libCoinUtils |
|
15 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
16 |
FIND_LIBRARY(COIN_OSI_LIBRARY libOsi |
|
17 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
18 |
FIND_LIBRARY(COIN_OSI_CBC_LIBRARY libOsiCbc |
|
19 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
20 |
FIND_LIBRARY(COIN_OSI_CLP_LIBRARY libOsiClp |
|
21 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
22 |
FIND_LIBRARY(COIN_OSI_VOL_LIBRARY libOsiVol |
|
23 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
24 |
FIND_LIBRARY(COIN_VOL_LIBRARY libVol |
|
25 |
PATHS ${COIN_ROOT_DIR}/lib) |
|
26 |
|
|
27 |
INCLUDE(FindPackageHandleStandardArgs) |
|
28 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(COIN DEFAULT_MSG |
|
29 |
COIN_INCLUDE_DIR |
|
30 |
COIN_CBC_LIBRARY |
|
31 |
COIN_CBC_SOLVER_LIBRARY |
|
32 |
COIN_CGL_LIBRARY |
|
33 |
COIN_CLP_LIBRARY |
|
34 |
COIN_COIN_UTILS_LIBRARY |
|
35 |
COIN_OSI_LIBRARY |
|
36 |
COIN_OSI_CBC_LIBRARY |
|
37 |
COIN_OSI_CLP_LIBRARY |
|
38 |
COIN_OSI_VOL_LIBRARY |
|
39 |
COIN_VOL_LIBRARY |
|
40 |
) |
|
41 |
|
|
42 |
IF(COIN_FOUND) |
|
43 |
SET(COIN_INCLUDE_DIRS ${COIN_INCLUDE_DIR}) |
|
44 |
SET(COIN_LIBRARIES "${COIN_CBC_LIBRARY};${COIN_CBC_SOLVER_LIBRARY};${COIN_CGL_LIBRARY};${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY};${COIN_OSI_LIBRARY};${COIN_OSI_CBC_LIBRARY};${COIN_OSI_CLP_LIBRARY};${COIN_OSI_VOL_LIBRARY};${COIN_VOL_LIBRARY}") |
|
45 |
SET(COIN_CLP_LIBRARIES "${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY}") |
|
46 |
SET(COIN_CBC_LIBRARIES ${COIN_LIBRARIES}) |
|
47 |
ENDIF(COIN_FOUND) |
|
48 |
|
|
49 |
MARK_AS_ADVANCED( |
|
50 |
COIN_INCLUDE_DIR |
|
51 |
COIN_CBC_LIBRARY |
|
52 |
COIN_CBC_SOLVER_LIBRARY |
|
53 |
COIN_CGL_LIBRARY |
|
54 |
COIN_CLP_LIBRARY |
|
55 |
COIN_COIN_UTILS_LIBRARY |
|
56 |
COIN_OSI_LIBRARY |
|
57 |
COIN_OSI_CBC_LIBRARY |
|
58 |
COIN_OSI_CLP_LIBRARY |
|
59 |
COIN_OSI_VOL_LIBRARY |
|
60 |
COIN_VOL_LIBRARY |
|
61 |
) |
|
62 |
|
|
63 |
IF(COIN_FOUND) |
|
64 |
SET(HAVE_LP TRUE) |
|
65 |
SET(HAVE_MIP TRUE) |
|
66 |
SET(HAVE_CLP TRUE) |
|
67 |
SET(HAVE_CBC TRUE) |
|
68 |
ENDIF(COIN_FOUND) |
1 |
FIND_PATH(CPLEX_INCLUDE_DIR |
|
2 |
ilcplex/cplex.h |
|
3 |
PATHS "C:/ILOG/CPLEX91/include") |
|
4 |
|
|
5 |
FIND_LIBRARY(CPLEX_LIBRARY |
|
6 |
NAMES cplex91 |
|
7 |
PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda") |
|
8 |
|
|
9 |
INCLUDE(FindPackageHandleStandardArgs) |
|
10 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(CPLEX DEFAULT_MSG CPLEX_LIBRARY CPLEX_INCLUDE_DIR) |
|
11 |
|
|
12 |
FIND_PATH(CPLEX_BIN_DIR |
|
13 |
cplex91.dll |
|
14 |
PATHS "C:/ILOG/CPLEX91/bin/x86_win32") |
|
15 |
|
|
16 |
IF(CPLEX_FOUND) |
|
17 |
SET(CPLEX_INCLUDE_DIRS ${CPLEX_INCLUDE_DIR}) |
|
18 |
SET(CPLEX_LIBRARIES ${CPLEX_LIBRARY}) |
|
19 |
ENDIF(CPLEX_FOUND) |
|
20 |
|
|
21 |
MARK_AS_ADVANCED(CPLEX_LIBRARY CPLEX_INCLUDE_DIR CPLEX_BIN_DIR) |
|
22 |
|
|
23 |
IF(CPLEX_FOUND) |
|
24 |
SET(HAVE_LP TRUE) |
|
25 |
SET(HAVE_MIP TRUE) |
|
26 |
SET(HAVE_CPLEX TRUE) |
|
27 |
ENDIF(CPLEX_FOUND) |
1 | 1 |
CMAKE_MINIMUM_REQUIRED(VERSION 2.6) |
2 | 2 |
|
3 | 3 |
IF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
4 | 4 |
INCLUDE(${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
5 | 5 |
ELSE(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
6 | 6 |
SET(PROJECT_NAME "LEMON") |
7 | 7 |
SET(PROJECT_VERSION "hg-tip" CACHE STRING "LEMON version string.") |
8 | 8 |
ENDIF(EXISTS ${CMAKE_SOURCE_DIR}/cmake/version.cmake) |
9 | 9 |
|
10 | 10 |
PROJECT(${PROJECT_NAME}) |
11 | 11 |
|
12 | 12 |
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) |
13 | 13 |
|
14 | 14 |
INCLUDE(FindDoxygen) |
15 | 15 |
INCLUDE(FindGhostscript) |
16 | 16 |
FIND_PACKAGE(GLPK 4.33) |
17 |
FIND_PACKAGE(CPLEX) |
|
18 |
FIND_PACKAGE(COIN) |
|
17 | 19 |
|
18 | 20 |
ADD_DEFINITIONS(-DHAVE_CONFIG_H) |
19 | 21 |
|
20 | 22 |
IF(MSVC) |
21 | 23 |
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996") |
22 | 24 |
# Suppressed warnings: |
23 | 25 |
# C4250: 'class1' : inherits 'class2::member' via dominance |
24 | 26 |
# C4355: 'this' : used in base member initializer list |
25 | 27 |
# C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
26 | 28 |
# C4996: 'function': was declared deprecated |
27 | 29 |
ENDIF(MSVC) |
28 | 30 |
|
29 |
IF(GLPK_FOUND) |
|
30 |
SET(HAVE_LP TRUE) |
|
31 |
SET(HAVE_MIP TRUE) |
|
32 |
SET(HAVE_GLPK TRUE) |
|
33 |
ENDIF(GLPK_FOUND) |
|
34 |
|
|
35 | 31 |
INCLUDE(CheckTypeSize) |
36 | 32 |
CHECK_TYPE_SIZE("long long" LONG_LONG) |
37 | 33 |
|
38 | 34 |
ENABLE_TESTING() |
39 | 35 |
|
40 | 36 |
ADD_SUBDIRECTORY(lemon) |
41 | 37 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
42 | 38 |
ADD_SUBDIRECTORY(demo) |
43 | 39 |
ADD_SUBDIRECTORY(tools) |
44 | 40 |
ADD_SUBDIRECTORY(doc) |
45 | 41 |
ADD_SUBDIRECTORY(test) |
46 | 42 |
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
47 | 43 |
|
48 | 44 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
49 | 45 |
IF(WIN32) |
50 | 46 |
SET(CPACK_PACKAGE_NAME ${PROJECT_NAME}) |
51 | 47 |
SET(CPACK_PACKAGE_VENDOR "EGRES") |
52 | 48 |
SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY |
53 | 49 |
"LEMON - Library of Efficient Models and Optimization in Networks") |
54 | 50 |
SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE") |
55 | 51 |
|
56 | 52 |
SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION}) |
57 | 53 |
|
58 | 54 |
SET(CPACK_PACKAGE_INSTALL_DIRECTORY |
59 | 55 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
60 | 56 |
SET(CPACK_PACKAGE_INSTALL_REGISTRY_KEY |
61 | 57 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
62 | 58 |
|
63 | 59 |
SET(CPACK_COMPONENTS_ALL headers library html_documentation bin) |
64 | 60 |
|
65 | 61 |
SET(CPACK_COMPONENT_HEADERS_DISPLAY_NAME "C++ headers") |
66 | 62 |
SET(CPACK_COMPONENT_LIBRARY_DISPLAY_NAME "Dynamic-link library") |
67 | 63 |
SET(CPACK_COMPONENT_BIN_DISPLAY_NAME "Command line utilities") |
68 | 64 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DISPLAY_NAME "HTML documentation") |
69 | 65 |
|
70 | 66 |
SET(CPACK_COMPONENT_HEADERS_DESCRIPTION |
71 | 67 |
"C++ header files") |
72 | 68 |
SET(CPACK_COMPONENT_LIBRARY_DESCRIPTION |
73 | 69 |
"DLL and import library") |
74 | 70 |
SET(CPACK_COMPONENT_BIN_DESCRIPTION |
75 | 71 |
"Command line utilities") |
76 | 72 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DESCRIPTION |
77 | 73 |
"Doxygen generated documentation") |
78 | 74 |
|
79 | 75 |
SET(CPACK_COMPONENT_HEADERS_DEPENDS library) |
80 | 76 |
|
81 | 77 |
SET(CPACK_COMPONENT_HEADERS_GROUP "Development") |
82 | 78 |
SET(CPACK_COMPONENT_LIBRARY_GROUP "Development") |
83 | 79 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_GROUP "Documentation") |
84 | 80 |
|
85 | 81 |
SET(CPACK_COMPONENT_GROUP_DEVELOPMENT_DESCRIPTION |
86 | 82 |
"Components needed to develop software using LEMON") |
87 | 83 |
SET(CPACK_COMPONENT_GROUP_DOCUMENTATION_DESCRIPTION |
88 | 84 |
"Documentation of LEMON") |
89 | 85 |
|
90 | 86 |
SET(CPACK_ALL_INSTALL_TYPES Full Developer) |
91 | 87 |
|
92 | 88 |
SET(CPACK_COMPONENT_HEADERS_INSTALL_TYPES Developer Full) |
93 | 89 |
SET(CPACK_COMPONENT_LIBRARY_INSTALL_TYPES Developer Full) |
94 | 90 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_INSTALL_TYPES Full) |
95 | 91 |
|
96 | 92 |
SET(CPACK_GENERATOR "NSIS") |
97 | 93 |
SET(CPACK_NSIS_MUI_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis/lemon.ico") |
98 | 94 |
SET(CPACK_NSIS_MUI_UNIICON "${PROJECT_SOURCE_DIR}/cmake/nsis/uninstall.ico") |
99 | 95 |
#SET(CPACK_PACKAGE_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis\\\\installer.bmp") |
100 | 96 |
SET(CPACK_NSIS_INSTALLED_ICON_NAME "bin\\\\lemon.ico") |
101 | 97 |
SET(CPACK_NSIS_DISPLAY_NAME "${CPACK_PACKAGE_INSTALL_DIRECTORY} ${PROJECT_NAME}") |
102 | 98 |
SET(CPACK_NSIS_HELP_LINK "http:\\\\\\\\lemon.cs.elte.hu") |
103 | 99 |
SET(CPACK_NSIS_URL_INFO_ABOUT "http:\\\\\\\\lemon.cs.elte.hu") |
104 | 100 |
SET(CPACK_NSIS_CONTACT "lemon-user@lemon.cs.elte.hu") |
105 | 101 |
SET(CPACK_NSIS_CREATE_ICONS_EXTRA " |
106 | 102 |
CreateShortCut \\\"$SMPROGRAMS\\\\$STARTMENU_FOLDER\\\\Documentation.lnk\\\" \\\"$INSTDIR\\\\share\\\\doc\\\\index.html\\\" |
107 | 103 |
") |
108 | 104 |
SET(CPACK_NSIS_DELETE_ICONS_EXTRA " |
109 | 105 |
!insertmacro MUI_STARTMENU_GETFOLDER Application $MUI_TEMP |
110 | 106 |
Delete \\\"$SMPROGRAMS\\\\$MUI_TEMP\\\\Documentation.lnk\\\" |
111 | 107 |
") |
112 | 108 |
|
113 | 109 |
INCLUDE(CPack) |
114 | 110 |
ENDIF(WIN32) |
115 | 111 |
ENDIF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
1 | 1 |
SET(GLPK_REGKEY "[HKEY_LOCAL_MACHINE\\SOFTWARE\\GnuWin32\\Glpk;InstallPath]") |
2 | 2 |
GET_FILENAME_COMPONENT(GLPK_ROOT_PATH ${GLPK_REGKEY} ABSOLUTE) |
3 | 3 |
|
4 | 4 |
FIND_PATH(GLPK_INCLUDE_DIR |
5 | 5 |
glpk.h |
6 | 6 |
PATHS ${GLPK_REGKEY}/include) |
7 | 7 |
|
8 | 8 |
FIND_LIBRARY(GLPK_LIBRARY |
9 | 9 |
NAMES glpk |
10 | 10 |
PATHS ${GLPK_REGKEY}/lib) |
11 | 11 |
|
12 | 12 |
INCLUDE(FindPackageHandleStandardArgs) |
13 | 13 |
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR) |
14 | 14 |
|
15 | 15 |
IF(GLPK_FOUND) |
16 |
SET(GLPK_INCLUDE_DIRS ${GLPK_INCLUDE_DIR}) |
|
16 | 17 |
SET(GLPK_LIBRARIES ${GLPK_LIBRARY}) |
17 | 18 |
SET(GLPK_BIN_DIR ${GLPK_ROOT_PATH}/bin) |
18 | 19 |
ENDIF(GLPK_FOUND) |
19 | 20 |
|
20 | 21 |
MARK_AS_ADVANCED(GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_BIN_DIR) |
22 |
|
|
23 |
IF(GLPK_FOUND) |
|
24 |
SET(HAVE_LP TRUE) |
|
25 |
SET(HAVE_MIP TRUE) |
|
26 |
SET(HAVE_GLPK TRUE) |
|
27 |
ENDIF(GLPK_FOUND) |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
CONFIGURE_FILE( |
7 | 7 |
${CMAKE_CURRENT_SOURCE_DIR}/config.h.cmake |
8 | 8 |
${CMAKE_CURRENT_BINARY_DIR}/config.h |
9 | 9 |
) |
10 | 10 |
|
11 | 11 |
SET(LEMON_SOURCES |
12 | 12 |
arg_parser.cc |
13 | 13 |
base.cc |
14 | 14 |
color.cc |
15 | 15 |
lp_base.cc |
16 | 16 |
lp_skeleton.cc |
17 | 17 |
random.cc |
18 | 18 |
bits/windows.cc |
19 | 19 |
) |
20 | 20 |
|
21 | 21 |
IF(HAVE_GLPK) |
22 | 22 |
SET(LEMON_SOURCES ${LEMON_SOURCES} glpk.cc) |
23 |
INCLUDE_DIRECTORIES(${ |
|
23 |
INCLUDE_DIRECTORIES(${GLPK_INCLUDE_DIRS}) |
|
24 | 24 |
IF(WIN32) |
25 | 25 |
INSTALL(FILES ${GLPK_BIN_DIR}/glpk.dll DESTINATION bin) |
26 | 26 |
INSTALL(FILES ${GLPK_BIN_DIR}/libltdl3.dll DESTINATION bin) |
27 | 27 |
INSTALL(FILES ${GLPK_BIN_DIR}/zlib1.dll DESTINATION bin) |
28 | 28 |
ENDIF(WIN32) |
29 | 29 |
ENDIF(HAVE_GLPK) |
30 | 30 |
|
31 |
IF(HAVE_CPLEX) |
|
32 |
SET(LEMON_SOURCES ${LEMON_SOURCES} cplex.cc) |
|
33 |
INCLUDE_DIRECTORIES(${CPLEX_INCLUDE_DIRS}) |
|
34 |
ENDIF(HAVE_CPLEX) |
|
35 |
|
|
36 |
IF(HAVE_CLP) |
|
37 |
SET(LEMON_SOURCES ${LEMON_SOURCES} clp.cc) |
|
38 |
INCLUDE_DIRECTORIES(${COIN_INCLUDE_DIRS}) |
|
39 |
ENDIF(HAVE_CLP) |
|
40 |
|
|
41 |
IF(HAVE_CBC) |
|
42 |
SET(LEMON_SOURCES ${LEMON_SOURCES} cbc.cc) |
|
43 |
INCLUDE_DIRECTORIES(${COIN_INCLUDE_DIRS}) |
|
44 |
ENDIF(HAVE_CBC) |
|
45 |
|
|
31 | 46 |
ADD_LIBRARY(lemon ${LEMON_SOURCES}) |
32 | 47 |
|
33 | 48 |
INSTALL( |
34 | 49 |
TARGETS lemon |
35 | 50 |
ARCHIVE DESTINATION lib |
36 | 51 |
COMPONENT library) |
37 | 52 |
|
38 | 53 |
INSTALL( |
39 | 54 |
DIRECTORY . bits concepts |
40 | 55 |
DESTINATION include/lemon |
41 | 56 |
COMPONENT headers |
42 | 57 |
FILES_MATCHING PATTERN "*.h") |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 |
#include <limits> |
|
24 | 25 |
|
25 | 26 |
///\ingroup max_flow |
26 | 27 |
///\file |
27 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
28 | 29 |
/// |
29 | 30 |
namespace lemon { |
30 | 31 |
|
31 | 32 |
/// \brief Default traits class of Circulation class. |
32 | 33 |
/// |
33 | 34 |
/// Default traits class of Circulation class. |
34 | 35 |
/// |
35 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
36 | 37 |
/// \tparam LM The type of the lower bound map. |
37 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
38 | 39 |
/// \tparam SM The type of the supply map. |
39 | 40 |
template <typename GR, typename LM, |
40 | 41 |
typename UM, typename SM> |
41 | 42 |
struct CirculationDefaultTraits { |
42 | 43 |
|
43 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
44 | 45 |
typedef GR Digraph; |
45 | 46 |
|
46 | 47 |
/// \brief The type of the lower bound map. |
47 | 48 |
/// |
48 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
49 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
50 | 51 |
typedef LM LowerMap; |
51 | 52 |
|
52 | 53 |
/// \brief The type of the upper bound (capacity) map. |
53 | 54 |
/// |
54 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
55 | 56 |
/// on the arcs. |
56 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
57 | 58 |
typedef UM UpperMap; |
58 | 59 |
|
59 | 60 |
/// \brief The type of supply map. |
60 | 61 |
/// |
61 | 62 |
/// The type of the map that stores the signed supply values of the |
62 | 63 |
/// nodes. |
63 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
64 | 65 |
typedef SM SupplyMap; |
65 | 66 |
|
66 | 67 |
/// \brief The type of the flow values. |
67 | 68 |
typedef typename SupplyMap::Value Flow; |
68 | 69 |
|
69 | 70 |
/// \brief The type of the map that stores the flow values. |
70 | 71 |
/// |
71 | 72 |
/// The type of the map that stores the flow values. |
72 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
73 | 74 |
/// concept. |
74 | 75 |
typedef typename Digraph::template ArcMap<Flow> FlowMap; |
75 | 76 |
|
76 | 77 |
/// \brief Instantiates a FlowMap. |
77 | 78 |
/// |
78 | 79 |
/// This function instantiates a \ref FlowMap. |
79 | 80 |
/// \param digraph The digraph for which we would like to define |
80 | 81 |
/// the flow map. |
81 | 82 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
82 | 83 |
return new FlowMap(digraph); |
83 | 84 |
} |
84 | 85 |
|
85 | 86 |
/// \brief The elevator type used by the algorithm. |
86 | 87 |
/// |
87 | 88 |
/// The elevator type used by the algorithm. |
88 | 89 |
/// |
89 | 90 |
/// \sa Elevator |
90 | 91 |
/// \sa LinkedElevator |
91 | 92 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
92 | 93 |
|
93 | 94 |
/// \brief Instantiates an Elevator. |
94 | 95 |
/// |
95 | 96 |
/// This function instantiates an \ref Elevator. |
96 | 97 |
/// \param digraph The digraph for which we would like to define |
97 | 98 |
/// the elevator. |
98 | 99 |
/// \param max_level The maximum level of the elevator. |
99 | 100 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
100 | 101 |
return new Elevator(digraph, max_level); |
101 | 102 |
} |
102 | 103 |
|
103 | 104 |
/// \brief The tolerance used by the algorithm |
104 | 105 |
/// |
105 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
106 | 107 |
typedef lemon::Tolerance<Flow> Tolerance; |
107 | 108 |
|
108 | 109 |
}; |
109 | 110 |
|
110 | 111 |
/** |
111 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
112 | 113 |
|
113 | 114 |
\ingroup max_flow |
114 | 115 |
This class implements a push-relabel algorithm for the \e network |
115 | 116 |
\e circulation problem. |
116 | 117 |
It is to find a feasible circulation when lower and upper bounds |
117 | 118 |
are given for the flow values on the arcs and lower bounds are |
118 | 119 |
given for the difference between the outgoing and incoming flow |
119 | 120 |
at the nodes. |
120 | 121 |
|
121 | 122 |
The exact formulation of this problem is the following. |
122 |
Let \f$G=(V,A)\f$ be a digraph, |
|
123 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$ denote the lower and |
|
124 |
|
|
123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
|
124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
|
125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
|
125 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
126 | 127 |
denotes the signed supply values of the nodes. |
127 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
128 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
129 | 130 |
\f$-sup(u)\f$ demand. |
130 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R} |
|
131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
|
131 | 132 |
solution of the following problem. |
132 | 133 |
|
133 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
134 | 135 |
\geq sup(u) \quad \forall u\in V, \f] |
135 | 136 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
136 | 137 |
|
137 | 138 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
138 | 139 |
zero or negative in order to have a feasible solution (since the sum |
139 | 140 |
of the expressions on the left-hand side of the inequalities is zero). |
140 | 141 |
It means that the total demand must be greater or equal to the total |
141 | 142 |
supply and all the supplies have to be carried out from the supply nodes, |
142 | 143 |
but there could be demands that are not satisfied. |
143 | 144 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
144 | 145 |
constraints have to be satisfied with equality, i.e. all demands |
145 | 146 |
have to be satisfied and all supplies have to be used. |
146 | 147 |
|
147 | 148 |
If you need the opposite inequalities in the supply/demand constraints |
148 | 149 |
(i.e. the total demand is less than the total supply and all the demands |
149 | 150 |
have to be satisfied while there could be supplies that are not used), |
150 | 151 |
then you could easily transform the problem to the above form by reversing |
151 | 152 |
the direction of the arcs and taking the negative of the supply values |
152 | 153 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
153 | 154 |
|
155 |
This algorithm either calculates a feasible circulation, or provides |
|
156 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
|
157 |
cannot exist. |
|
158 |
|
|
154 | 159 |
Note that this algorithm also provides a feasible solution for the |
155 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
156 | 161 |
|
157 | 162 |
\tparam GR The type of the digraph the algorithm runs on. |
158 | 163 |
\tparam LM The type of the lower bound map. The default |
159 | 164 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
160 | 165 |
\tparam UM The type of the upper bound (capacity) map. |
161 | 166 |
The default map type is \c LM. |
162 | 167 |
\tparam SM The type of the supply map. The default map type is |
163 | 168 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
164 | 169 |
*/ |
165 | 170 |
#ifdef DOXYGEN |
166 | 171 |
template< typename GR, |
167 | 172 |
typename LM, |
168 | 173 |
typename UM, |
169 | 174 |
typename SM, |
170 | 175 |
typename TR > |
171 | 176 |
#else |
172 | 177 |
template< typename GR, |
173 | 178 |
typename LM = typename GR::template ArcMap<int>, |
174 | 179 |
typename UM = LM, |
175 | 180 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
176 | 181 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
177 | 182 |
#endif |
178 | 183 |
class Circulation { |
179 | 184 |
public: |
180 | 185 |
|
181 | 186 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
182 | 187 |
typedef TR Traits; |
183 | 188 |
///The type of the digraph the algorithm runs on. |
184 | 189 |
typedef typename Traits::Digraph Digraph; |
185 | 190 |
///The type of the flow values. |
186 | 191 |
typedef typename Traits::Flow Flow; |
187 | 192 |
|
188 | 193 |
///The type of the lower bound map. |
189 | 194 |
typedef typename Traits::LowerMap LowerMap; |
190 | 195 |
///The type of the upper bound (capacity) map. |
191 | 196 |
typedef typename Traits::UpperMap UpperMap; |
192 | 197 |
///The type of the supply map. |
193 | 198 |
typedef typename Traits::SupplyMap SupplyMap; |
194 | 199 |
///The type of the flow map. |
195 | 200 |
typedef typename Traits::FlowMap FlowMap; |
196 | 201 |
|
197 | 202 |
///The type of the elevator. |
198 | 203 |
typedef typename Traits::Elevator Elevator; |
199 | 204 |
///The type of the tolerance. |
200 | 205 |
typedef typename Traits::Tolerance Tolerance; |
201 | 206 |
|
202 | 207 |
private: |
203 | 208 |
|
204 | 209 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
205 | 210 |
|
206 | 211 |
const Digraph &_g; |
207 | 212 |
int _node_num; |
208 | 213 |
|
209 | 214 |
const LowerMap *_lo; |
210 | 215 |
const UpperMap *_up; |
211 | 216 |
const SupplyMap *_supply; |
212 | 217 |
|
213 | 218 |
FlowMap *_flow; |
214 | 219 |
bool _local_flow; |
215 | 220 |
|
216 | 221 |
Elevator* _level; |
217 | 222 |
bool _local_level; |
218 | 223 |
|
219 | 224 |
typedef typename Digraph::template NodeMap<Flow> ExcessMap; |
220 | 225 |
ExcessMap* _excess; |
221 | 226 |
|
222 | 227 |
Tolerance _tol; |
223 | 228 |
int _el; |
224 | 229 |
|
225 | 230 |
public: |
226 | 231 |
|
227 | 232 |
typedef Circulation Create; |
228 | 233 |
|
229 | 234 |
///\name Named Template Parameters |
230 | 235 |
|
231 | 236 |
///@{ |
232 | 237 |
|
233 | 238 |
template <typename T> |
234 | 239 |
struct SetFlowMapTraits : public Traits { |
235 | 240 |
typedef T FlowMap; |
236 | 241 |
static FlowMap *createFlowMap(const Digraph&) { |
237 | 242 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
238 | 243 |
return 0; // ignore warnings |
239 | 244 |
} |
240 | 245 |
}; |
241 | 246 |
|
242 | 247 |
/// \brief \ref named-templ-param "Named parameter" for setting |
243 | 248 |
/// FlowMap type |
244 | 249 |
/// |
245 | 250 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
246 | 251 |
/// type. |
247 | 252 |
template <typename T> |
248 | 253 |
struct SetFlowMap |
249 | 254 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
250 | 255 |
SetFlowMapTraits<T> > { |
251 | 256 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
252 | 257 |
SetFlowMapTraits<T> > Create; |
253 | 258 |
}; |
254 | 259 |
|
255 | 260 |
template <typename T> |
256 | 261 |
struct SetElevatorTraits : public Traits { |
257 | 262 |
typedef T Elevator; |
258 | 263 |
static Elevator *createElevator(const Digraph&, int) { |
259 | 264 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
260 | 265 |
return 0; // ignore warnings |
261 | 266 |
} |
262 | 267 |
}; |
263 | 268 |
|
264 | 269 |
/// \brief \ref named-templ-param "Named parameter" for setting |
265 | 270 |
/// Elevator type |
266 | 271 |
/// |
267 | 272 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
268 | 273 |
/// type. If this named parameter is used, then an external |
269 | 274 |
/// elevator object must be passed to the algorithm using the |
270 | 275 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
271 | 276 |
/// \ref run() or \ref init(). |
272 | 277 |
/// \sa SetStandardElevator |
273 | 278 |
template <typename T> |
274 | 279 |
struct SetElevator |
275 | 280 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
276 | 281 |
SetElevatorTraits<T> > { |
277 | 282 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
278 | 283 |
SetElevatorTraits<T> > Create; |
279 | 284 |
}; |
280 | 285 |
|
281 | 286 |
template <typename T> |
282 | 287 |
struct SetStandardElevatorTraits : public Traits { |
283 | 288 |
typedef T Elevator; |
284 | 289 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
285 | 290 |
return new Elevator(digraph, max_level); |
286 | 291 |
} |
287 | 292 |
}; |
288 | 293 |
|
289 | 294 |
/// \brief \ref named-templ-param "Named parameter" for setting |
290 | 295 |
/// Elevator type with automatic allocation |
291 | 296 |
/// |
292 | 297 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
293 | 298 |
/// type with automatic allocation. |
294 | 299 |
/// The Elevator should have standard constructor interface to be |
295 | 300 |
/// able to automatically created by the algorithm (i.e. the |
296 | 301 |
/// digraph and the maximum level should be passed to it). |
297 | 302 |
/// However an external elevator object could also be passed to the |
298 | 303 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
299 | 304 |
/// before calling \ref run() or \ref init(). |
300 | 305 |
/// \sa SetElevator |
301 | 306 |
template <typename T> |
302 | 307 |
struct SetStandardElevator |
303 | 308 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
304 | 309 |
SetStandardElevatorTraits<T> > { |
305 | 310 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
306 | 311 |
SetStandardElevatorTraits<T> > Create; |
307 | 312 |
}; |
308 | 313 |
|
309 | 314 |
/// @} |
310 | 315 |
|
311 | 316 |
protected: |
312 | 317 |
|
313 | 318 |
Circulation() {} |
314 | 319 |
|
315 | 320 |
public: |
316 | 321 |
|
317 | 322 |
/// Constructor. |
318 | 323 |
|
319 | 324 |
/// The constructor of the class. |
320 | 325 |
/// |
321 | 326 |
/// \param graph The digraph the algorithm runs on. |
322 | 327 |
/// \param lower The lower bounds for the flow values on the arcs. |
323 | 328 |
/// \param upper The upper bounds (capacities) for the flow values |
324 | 329 |
/// on the arcs. |
325 | 330 |
/// \param supply The signed supply values of the nodes. |
326 | 331 |
Circulation(const Digraph &graph, const LowerMap &lower, |
327 | 332 |
const UpperMap &upper, const SupplyMap &supply) |
328 | 333 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
329 | 334 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
330 | 335 |
_excess(NULL) {} |
331 | 336 |
|
332 | 337 |
/// Destructor. |
333 | 338 |
~Circulation() { |
334 | 339 |
destroyStructures(); |
335 | 340 |
} |
336 | 341 |
|
337 | 342 |
|
338 | 343 |
private: |
339 | 344 |
|
345 |
bool checkBoundMaps() { |
|
346 |
for (ArcIt e(_g);e!=INVALID;++e) { |
|
347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
|
348 |
} |
|
349 |
return true; |
|
350 |
} |
|
351 |
|
|
340 | 352 |
void createStructures() { |
341 | 353 |
_node_num = _el = countNodes(_g); |
342 | 354 |
|
343 | 355 |
if (!_flow) { |
344 | 356 |
_flow = Traits::createFlowMap(_g); |
345 | 357 |
_local_flow = true; |
346 | 358 |
} |
347 | 359 |
if (!_level) { |
348 | 360 |
_level = Traits::createElevator(_g, _node_num); |
349 | 361 |
_local_level = true; |
350 | 362 |
} |
351 | 363 |
if (!_excess) { |
352 | 364 |
_excess = new ExcessMap(_g); |
353 | 365 |
} |
354 | 366 |
} |
355 | 367 |
|
356 | 368 |
void destroyStructures() { |
357 | 369 |
if (_local_flow) { |
358 | 370 |
delete _flow; |
359 | 371 |
} |
360 | 372 |
if (_local_level) { |
361 | 373 |
delete _level; |
362 | 374 |
} |
363 | 375 |
if (_excess) { |
364 | 376 |
delete _excess; |
365 | 377 |
} |
366 | 378 |
} |
367 | 379 |
|
368 | 380 |
public: |
369 | 381 |
|
370 | 382 |
/// Sets the lower bound map. |
371 | 383 |
|
372 | 384 |
/// Sets the lower bound map. |
373 | 385 |
/// \return <tt>(*this)</tt> |
374 | 386 |
Circulation& lowerMap(const LowerMap& map) { |
375 | 387 |
_lo = ↦ |
376 | 388 |
return *this; |
377 | 389 |
} |
378 | 390 |
|
379 | 391 |
/// Sets the upper bound (capacity) map. |
380 | 392 |
|
381 | 393 |
/// Sets the upper bound (capacity) map. |
382 | 394 |
/// \return <tt>(*this)</tt> |
383 |
Circulation& upperMap(const |
|
395 |
Circulation& upperMap(const UpperMap& map) { |
|
384 | 396 |
_up = ↦ |
385 | 397 |
return *this; |
386 | 398 |
} |
387 | 399 |
|
388 | 400 |
/// Sets the supply map. |
389 | 401 |
|
390 | 402 |
/// Sets the supply map. |
391 | 403 |
/// \return <tt>(*this)</tt> |
392 | 404 |
Circulation& supplyMap(const SupplyMap& map) { |
393 | 405 |
_supply = ↦ |
394 | 406 |
return *this; |
395 | 407 |
} |
396 | 408 |
|
397 | 409 |
/// \brief Sets the flow map. |
398 | 410 |
/// |
399 | 411 |
/// Sets the flow map. |
400 | 412 |
/// If you don't use this function before calling \ref run() or |
401 | 413 |
/// \ref init(), an instance will be allocated automatically. |
402 | 414 |
/// The destructor deallocates this automatically allocated map, |
403 | 415 |
/// of course. |
404 | 416 |
/// \return <tt>(*this)</tt> |
405 | 417 |
Circulation& flowMap(FlowMap& map) { |
406 | 418 |
if (_local_flow) { |
407 | 419 |
delete _flow; |
408 | 420 |
_local_flow = false; |
409 | 421 |
} |
410 | 422 |
_flow = ↦ |
411 | 423 |
return *this; |
412 | 424 |
} |
413 | 425 |
|
414 | 426 |
/// \brief Sets the elevator used by algorithm. |
415 | 427 |
/// |
416 | 428 |
/// Sets the elevator used by algorithm. |
417 | 429 |
/// If you don't use this function before calling \ref run() or |
418 | 430 |
/// \ref init(), an instance will be allocated automatically. |
419 | 431 |
/// The destructor deallocates this automatically allocated elevator, |
420 | 432 |
/// of course. |
421 | 433 |
/// \return <tt>(*this)</tt> |
422 | 434 |
Circulation& elevator(Elevator& elevator) { |
423 | 435 |
if (_local_level) { |
424 | 436 |
delete _level; |
425 | 437 |
_local_level = false; |
426 | 438 |
} |
427 | 439 |
_level = &elevator; |
428 | 440 |
return *this; |
429 | 441 |
} |
430 | 442 |
|
431 | 443 |
/// \brief Returns a const reference to the elevator. |
432 | 444 |
/// |
433 | 445 |
/// Returns a const reference to the elevator. |
434 | 446 |
/// |
435 | 447 |
/// \pre Either \ref run() or \ref init() must be called before |
436 | 448 |
/// using this function. |
437 | 449 |
const Elevator& elevator() const { |
438 | 450 |
return *_level; |
439 | 451 |
} |
440 | 452 |
|
441 | 453 |
/// \brief Sets the tolerance used by algorithm. |
442 | 454 |
/// |
443 | 455 |
/// Sets the tolerance used by algorithm. |
444 | 456 |
Circulation& tolerance(const Tolerance& tolerance) const { |
445 | 457 |
_tol = tolerance; |
446 | 458 |
return *this; |
447 | 459 |
} |
448 | 460 |
|
449 | 461 |
/// \brief Returns a const reference to the tolerance. |
450 | 462 |
/// |
451 | 463 |
/// Returns a const reference to the tolerance. |
452 | 464 |
const Tolerance& tolerance() const { |
453 | 465 |
return tolerance; |
454 | 466 |
} |
455 | 467 |
|
456 | 468 |
/// \name Execution Control |
457 | 469 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
458 | 470 |
/// If you need more control on the initial solution or the execution, |
459 | 471 |
/// first you have to call one of the \ref init() functions, then |
460 | 472 |
/// the \ref start() function. |
461 | 473 |
|
462 | 474 |
///@{ |
463 | 475 |
|
464 | 476 |
/// Initializes the internal data structures. |
465 | 477 |
|
466 | 478 |
/// Initializes the internal data structures and sets all flow values |
467 | 479 |
/// to the lower bound. |
468 | 480 |
void init() |
469 | 481 |
{ |
482 |
LEMON_DEBUG(checkBoundMaps(), |
|
483 |
"Upper bounds must be greater or equal to the lower bounds"); |
|
484 |
|
|
470 | 485 |
createStructures(); |
471 | 486 |
|
472 | 487 |
for(NodeIt n(_g);n!=INVALID;++n) { |
473 | 488 |
(*_excess)[n] = (*_supply)[n]; |
474 | 489 |
} |
475 | 490 |
|
476 | 491 |
for (ArcIt e(_g);e!=INVALID;++e) { |
477 | 492 |
_flow->set(e, (*_lo)[e]); |
478 | 493 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
479 | 494 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
480 | 495 |
} |
481 | 496 |
|
482 | 497 |
// global relabeling tested, but in general case it provides |
483 | 498 |
// worse performance for random digraphs |
484 | 499 |
_level->initStart(); |
485 | 500 |
for(NodeIt n(_g);n!=INVALID;++n) |
486 | 501 |
_level->initAddItem(n); |
487 | 502 |
_level->initFinish(); |
488 | 503 |
for(NodeIt n(_g);n!=INVALID;++n) |
489 | 504 |
if(_tol.positive((*_excess)[n])) |
490 | 505 |
_level->activate(n); |
491 | 506 |
} |
492 | 507 |
|
493 | 508 |
/// Initializes the internal data structures using a greedy approach. |
494 | 509 |
|
495 | 510 |
/// Initializes the internal data structures using a greedy approach |
496 | 511 |
/// to construct the initial solution. |
497 | 512 |
void greedyInit() |
498 | 513 |
{ |
514 |
LEMON_DEBUG(checkBoundMaps(), |
|
515 |
"Upper bounds must be greater or equal to the lower bounds"); |
|
516 |
|
|
499 | 517 |
createStructures(); |
500 | 518 |
|
501 | 519 |
for(NodeIt n(_g);n!=INVALID;++n) { |
502 | 520 |
(*_excess)[n] = (*_supply)[n]; |
503 | 521 |
} |
504 | 522 |
|
505 | 523 |
for (ArcIt e(_g);e!=INVALID;++e) { |
506 |
if (!_tol. |
|
524 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { |
|
507 | 525 |
_flow->set(e, (*_up)[e]); |
508 | 526 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
509 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
510 |
} else if (_tol. |
|
528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
|
511 | 529 |
_flow->set(e, (*_lo)[e]); |
512 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
513 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
514 | 532 |
} else { |
515 | 533 |
Flow fc = -(*_excess)[_g.target(e)]; |
516 | 534 |
_flow->set(e, fc); |
517 | 535 |
(*_excess)[_g.target(e)] = 0; |
518 | 536 |
(*_excess)[_g.source(e)] -= fc; |
519 | 537 |
} |
520 | 538 |
} |
521 | 539 |
|
522 | 540 |
_level->initStart(); |
523 | 541 |
for(NodeIt n(_g);n!=INVALID;++n) |
524 | 542 |
_level->initAddItem(n); |
525 | 543 |
_level->initFinish(); |
526 | 544 |
for(NodeIt n(_g);n!=INVALID;++n) |
527 | 545 |
if(_tol.positive((*_excess)[n])) |
528 | 546 |
_level->activate(n); |
529 | 547 |
} |
530 | 548 |
|
531 | 549 |
///Executes the algorithm |
532 | 550 |
|
533 | 551 |
///This function executes the algorithm. |
534 | 552 |
/// |
535 | 553 |
///\return \c true if a feasible circulation is found. |
536 | 554 |
/// |
537 | 555 |
///\sa barrier() |
538 | 556 |
///\sa barrierMap() |
539 | 557 |
bool start() |
540 | 558 |
{ |
541 | 559 |
|
542 | 560 |
Node act; |
543 | 561 |
Node bact=INVALID; |
544 | 562 |
Node last_activated=INVALID; |
545 | 563 |
while((act=_level->highestActive())!=INVALID) { |
546 | 564 |
int actlevel=(*_level)[act]; |
547 | 565 |
int mlevel=_node_num; |
548 | 566 |
Flow exc=(*_excess)[act]; |
549 | 567 |
|
550 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
551 | 569 |
Node v = _g.target(e); |
552 | 570 |
Flow fc=(*_up)[e]-(*_flow)[e]; |
553 | 571 |
if(!_tol.positive(fc)) continue; |
554 | 572 |
if((*_level)[v]<actlevel) { |
555 | 573 |
if(!_tol.less(fc, exc)) { |
556 | 574 |
_flow->set(e, (*_flow)[e] + exc); |
557 | 575 |
(*_excess)[v] += exc; |
558 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
559 | 577 |
_level->activate(v); |
560 | 578 |
(*_excess)[act] = 0; |
561 | 579 |
_level->deactivate(act); |
562 | 580 |
goto next_l; |
563 | 581 |
} |
564 | 582 |
else { |
565 | 583 |
_flow->set(e, (*_up)[e]); |
566 | 584 |
(*_excess)[v] += fc; |
567 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
568 | 586 |
_level->activate(v); |
569 | 587 |
exc-=fc; |
570 | 588 |
} |
571 | 589 |
} |
572 | 590 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
573 | 591 |
} |
574 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
575 | 593 |
Node v = _g.source(e); |
576 | 594 |
Flow fc=(*_flow)[e]-(*_lo)[e]; |
577 | 595 |
if(!_tol.positive(fc)) continue; |
578 | 596 |
if((*_level)[v]<actlevel) { |
579 | 597 |
if(!_tol.less(fc, exc)) { |
580 | 598 |
_flow->set(e, (*_flow)[e] - exc); |
581 | 599 |
(*_excess)[v] += exc; |
582 | 600 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
583 | 601 |
_level->activate(v); |
584 | 602 |
(*_excess)[act] = 0; |
585 | 603 |
_level->deactivate(act); |
586 | 604 |
goto next_l; |
587 | 605 |
} |
588 | 606 |
else { |
589 | 607 |
_flow->set(e, (*_lo)[e]); |
590 | 608 |
(*_excess)[v] += fc; |
591 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
592 | 610 |
_level->activate(v); |
593 | 611 |
exc-=fc; |
594 | 612 |
} |
595 | 613 |
} |
596 | 614 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
597 | 615 |
} |
598 | 616 |
|
599 | 617 |
(*_excess)[act] = exc; |
600 | 618 |
if(!_tol.positive(exc)) _level->deactivate(act); |
601 | 619 |
else if(mlevel==_node_num) { |
602 | 620 |
_level->liftHighestActiveToTop(); |
603 | 621 |
_el = _node_num; |
604 | 622 |
return false; |
605 | 623 |
} |
606 | 624 |
else { |
607 | 625 |
_level->liftHighestActive(mlevel+1); |
608 | 626 |
if(_level->onLevel(actlevel)==0) { |
609 | 627 |
_el = actlevel; |
610 | 628 |
return false; |
611 | 629 |
} |
612 | 630 |
} |
613 | 631 |
next_l: |
614 | 632 |
; |
615 | 633 |
} |
616 | 634 |
return true; |
617 | 635 |
} |
618 | 636 |
|
619 | 637 |
/// Runs the algorithm. |
620 | 638 |
|
621 | 639 |
/// This function runs the algorithm. |
622 | 640 |
/// |
623 | 641 |
/// \return \c true if a feasible circulation is found. |
624 | 642 |
/// |
625 | 643 |
/// \note Apart from the return value, c.run() is just a shortcut of |
626 | 644 |
/// the following code. |
627 | 645 |
/// \code |
628 | 646 |
/// c.greedyInit(); |
629 | 647 |
/// c.start(); |
630 | 648 |
/// \endcode |
631 | 649 |
bool run() { |
632 | 650 |
greedyInit(); |
633 | 651 |
return start(); |
634 | 652 |
} |
635 | 653 |
|
636 | 654 |
/// @} |
637 | 655 |
|
638 | 656 |
/// \name Query Functions |
639 | 657 |
/// The results of the circulation algorithm can be obtained using |
640 | 658 |
/// these functions.\n |
641 | 659 |
/// Either \ref run() or \ref start() should be called before |
642 | 660 |
/// using them. |
643 | 661 |
|
644 | 662 |
///@{ |
645 | 663 |
|
646 | 664 |
/// \brief Returns the flow on the given arc. |
647 | 665 |
/// |
648 | 666 |
/// Returns the flow on the given arc. |
649 | 667 |
/// |
650 | 668 |
/// \pre Either \ref run() or \ref init() must be called before |
651 | 669 |
/// using this function. |
652 | 670 |
Flow flow(const Arc& arc) const { |
653 | 671 |
return (*_flow)[arc]; |
654 | 672 |
} |
655 | 673 |
|
656 | 674 |
/// \brief Returns a const reference to the flow map. |
657 | 675 |
/// |
658 | 676 |
/// Returns a const reference to the arc map storing the found flow. |
659 | 677 |
/// |
660 | 678 |
/// \pre Either \ref run() or \ref init() must be called before |
661 | 679 |
/// using this function. |
662 | 680 |
const FlowMap& flowMap() const { |
663 | 681 |
return *_flow; |
664 | 682 |
} |
665 | 683 |
|
666 | 684 |
/** |
667 | 685 |
\brief Returns \c true if the given node is in a barrier. |
668 | 686 |
|
669 | 687 |
Barrier is a set \e B of nodes for which |
670 | 688 |
|
671 | 689 |
\f[ \sum_{uv\in A: u\in B} upper(uv) - |
672 | 690 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f] |
673 | 691 |
|
674 | 692 |
holds. The existence of a set with this property prooves that a |
675 | 693 |
feasible circualtion cannot exist. |
676 | 694 |
|
677 | 695 |
This function returns \c true if the given node is in the found |
678 | 696 |
barrier. If a feasible circulation is found, the function |
679 | 697 |
gives back \c false for every node. |
680 | 698 |
|
681 | 699 |
\pre Either \ref run() or \ref init() must be called before |
682 | 700 |
using this function. |
683 | 701 |
|
684 | 702 |
\sa barrierMap() |
685 | 703 |
\sa checkBarrier() |
686 | 704 |
*/ |
687 | 705 |
bool barrier(const Node& node) const |
688 | 706 |
{ |
689 | 707 |
return (*_level)[node] >= _el; |
690 | 708 |
} |
691 | 709 |
|
692 | 710 |
/// \brief Gives back a barrier. |
693 | 711 |
/// |
694 | 712 |
/// This function sets \c bar to the characteristic vector of the |
695 | 713 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
696 | 714 |
/// node map with \c bool (or convertible) value type. |
697 | 715 |
/// |
698 | 716 |
/// If a feasible circulation is found, the function gives back an |
699 | 717 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
700 | 718 |
/// |
701 | 719 |
/// \note This function calls \ref barrier() for each node, |
702 | 720 |
/// so it runs in O(n) time. |
703 | 721 |
/// |
704 | 722 |
/// \pre Either \ref run() or \ref init() must be called before |
705 | 723 |
/// using this function. |
706 | 724 |
/// |
707 | 725 |
/// \sa barrier() |
708 | 726 |
/// \sa checkBarrier() |
709 | 727 |
template<class BarrierMap> |
710 | 728 |
void barrierMap(BarrierMap &bar) const |
711 | 729 |
{ |
712 | 730 |
for(NodeIt n(_g);n!=INVALID;++n) |
713 | 731 |
bar.set(n, (*_level)[n] >= _el); |
714 | 732 |
} |
715 | 733 |
|
716 | 734 |
/// @} |
717 | 735 |
|
718 | 736 |
/// \name Checker Functions |
719 | 737 |
/// The feasibility of the results can be checked using |
720 | 738 |
/// these functions.\n |
721 | 739 |
/// Either \ref run() or \ref start() should be called before |
722 | 740 |
/// using them. |
723 | 741 |
|
724 | 742 |
///@{ |
725 | 743 |
|
726 | 744 |
///Check if the found flow is a feasible circulation |
727 | 745 |
|
728 | 746 |
///Check if the found flow is a feasible circulation, |
729 | 747 |
/// |
730 | 748 |
bool checkFlow() const { |
731 | 749 |
for(ArcIt e(_g);e!=INVALID;++e) |
732 | 750 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
733 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
734 | 752 |
{ |
735 | 753 |
Flow dif=-(*_supply)[n]; |
736 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
737 | 755 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
738 | 756 |
if(_tol.negative(dif)) return false; |
739 | 757 |
} |
740 | 758 |
return true; |
741 | 759 |
} |
742 | 760 |
|
743 | 761 |
///Check whether or not the last execution provides a barrier |
744 | 762 |
|
745 | 763 |
///Check whether or not the last execution provides a barrier. |
746 | 764 |
///\sa barrier() |
747 | 765 |
///\sa barrierMap() |
748 | 766 |
bool checkBarrier() const |
749 | 767 |
{ |
750 | 768 |
Flow delta=0; |
769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
770 |
std::numeric_limits<Flow>::infinity() : |
|
771 |
std::numeric_limits<Flow>::max(); |
|
751 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
752 | 773 |
if(barrier(n)) |
753 | 774 |
delta-=(*_supply)[n]; |
754 | 775 |
for(ArcIt e(_g);e!=INVALID;++e) |
755 | 776 |
{ |
756 | 777 |
Node s=_g.source(e); |
757 | 778 |
Node t=_g.target(e); |
758 |
if(barrier(s)&&!barrier(t)) |
|
779 |
if(barrier(s)&&!barrier(t)) { |
|
780 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
|
781 |
delta+=(*_up)[e]; |
|
782 |
} |
|
759 | 783 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
760 | 784 |
} |
761 | 785 |
return _tol.negative(delta); |
762 | 786 |
} |
763 | 787 |
|
764 | 788 |
/// @} |
765 | 789 |
|
766 | 790 |
}; |
767 | 791 |
|
768 | 792 |
} |
769 | 793 |
|
770 | 794 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 |
#include <limits> |
|
28 | 29 |
#include <lemon/bin_heap.h> |
29 | 30 |
#include <lemon/path.h> |
30 | 31 |
#include <lemon/list_graph.h> |
31 | 32 |
#include <lemon/maps.h> |
32 | 33 |
|
33 | 34 |
namespace lemon { |
34 | 35 |
|
35 | 36 |
/// \addtogroup shortest_path |
36 | 37 |
/// @{ |
37 | 38 |
|
38 | 39 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
39 | 40 |
/// having minimum total length. |
40 | 41 |
/// |
41 | 42 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
42 | 43 |
/// finding arc-disjoint paths having minimum total length (cost) |
43 | 44 |
/// from a given source node to a given target node in a digraph. |
44 | 45 |
/// |
45 |
/// In fact, this implementation is the specialization of the |
|
46 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
|
46 |
/// Note that this problem is a special case of the \ref min_cost_flow |
|
47 |
/// "minimum cost flow problem". This implementation is actually an |
|
48 |
/// efficient specialized version of the \ref CapacityScaling |
|
49 |
/// "Successive Shortest Path" algorithm directly for this problem. |
|
50 |
/// Therefore this class provides query functions for flow values and |
|
51 |
/// node potentials (the dual solution) just like the minimum cost flow |
|
52 |
/// algorithms. |
|
47 | 53 |
/// |
48 | 54 |
/// \tparam GR The digraph type the algorithm runs on. |
49 |
/// The default value is \c ListDigraph. |
|
50 |
/// \tparam LEN The type of the length (cost) map. |
|
51 |
/// The |
|
55 |
/// \tparam LEN The type of the length map. |
|
56 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
|
52 | 57 |
/// |
53 | 58 |
/// \warning Length values should be \e non-negative \e integers. |
54 | 59 |
/// |
55 | 60 |
/// \note For finding node-disjoint paths this algorithm can be used |
56 |
/// with \ref SplitNodes. |
|
61 |
/// along with the \ref SplitNodes adaptor. |
|
57 | 62 |
#ifdef DOXYGEN |
58 | 63 |
template <typename GR, typename LEN> |
59 | 64 |
#else |
60 |
template < typename GR |
|
65 |
template < typename GR, |
|
61 | 66 |
typename LEN = typename GR::template ArcMap<int> > |
62 | 67 |
#endif |
63 | 68 |
class Suurballe |
64 | 69 |
{ |
65 | 70 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
66 | 71 |
|
67 | 72 |
typedef ConstMap<Arc, int> ConstArcMap; |
68 | 73 |
typedef typename GR::template NodeMap<Arc> PredMap; |
69 | 74 |
|
70 | 75 |
public: |
71 | 76 |
|
72 | 77 |
/// The type of the digraph the algorithm runs on. |
73 | 78 |
typedef GR Digraph; |
74 | 79 |
/// The type of the length map. |
75 | 80 |
typedef LEN LengthMap; |
76 | 81 |
/// The type of the lengths. |
77 | 82 |
typedef typename LengthMap::Value Length; |
83 |
#ifdef DOXYGEN |
|
84 |
/// The type of the flow map. |
|
85 |
typedef GR::ArcMap<int> FlowMap; |
|
86 |
/// The type of the potential map. |
|
87 |
typedef GR::NodeMap<Length> PotentialMap; |
|
88 |
#else |
|
78 | 89 |
/// The type of the flow map. |
79 | 90 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
80 | 91 |
/// The type of the potential map. |
81 | 92 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
93 |
#endif |
|
94 |
|
|
82 | 95 |
/// The type of the path structures. |
83 |
typedef SimplePath< |
|
96 |
typedef SimplePath<GR> Path; |
|
84 | 97 |
|
85 | 98 |
private: |
86 | 99 |
|
87 |
/// \brief Special implementation of the Dijkstra algorithm |
|
88 |
/// for finding shortest paths in the residual network. |
|
89 |
/// |
|
90 |
/// \ref ResidualDijkstra is a special implementation of the |
|
91 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
|
92 |
/// residual network of the digraph with respect to the reduced arc |
|
93 |
/// lengths and modifying the node potentials according to the |
|
94 |
/// distance of the nodes. |
|
100 |
// ResidualDijkstra is a special implementation of the |
|
101 |
// Dijkstra algorithm for finding shortest paths in the |
|
102 |
// residual network with respect to the reduced arc lengths |
|
103 |
// and modifying the node potentials according to the |
|
104 |
// distance of the nodes. |
|
95 | 105 |
class ResidualDijkstra |
96 | 106 |
{ |
97 | 107 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
98 | 108 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
99 | 109 |
|
100 | 110 |
private: |
101 | 111 |
|
102 | 112 |
// The digraph the algorithm runs on |
103 | 113 |
const Digraph &_graph; |
104 | 114 |
|
105 | 115 |
// The main maps |
106 | 116 |
const FlowMap &_flow; |
107 | 117 |
const LengthMap &_length; |
108 | 118 |
PotentialMap &_potential; |
109 | 119 |
|
110 | 120 |
// The distance map |
111 | 121 |
PotentialMap _dist; |
112 | 122 |
// The pred arc map |
113 | 123 |
PredMap &_pred; |
114 | 124 |
// The processed (i.e. permanently labeled) nodes |
115 | 125 |
std::vector<Node> _proc_nodes; |
116 | 126 |
|
117 | 127 |
Node _s; |
118 | 128 |
Node _t; |
119 | 129 |
|
120 | 130 |
public: |
121 | 131 |
|
122 | 132 |
/// Constructor. |
123 |
ResidualDijkstra( const Digraph & |
|
133 |
ResidualDijkstra( const Digraph &graph, |
|
124 | 134 |
const FlowMap &flow, |
125 | 135 |
const LengthMap &length, |
126 | 136 |
PotentialMap &potential, |
127 | 137 |
PredMap &pred, |
128 | 138 |
Node s, Node t ) : |
129 |
_graph(digraph), _flow(flow), _length(length), _potential(potential), |
|
130 |
_dist(digraph), _pred(pred), _s(s), _t(t) {} |
|
139 |
_graph(graph), _flow(flow), _length(length), _potential(potential), |
|
140 |
_dist(graph), _pred(pred), _s(s), _t(t) {} |
|
131 | 141 |
|
132 | 142 |
/// \brief Run the algorithm. It returns \c true if a path is found |
133 | 143 |
/// from the source node to the target node. |
134 | 144 |
bool run() { |
135 | 145 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
136 | 146 |
Heap heap(heap_cross_ref); |
137 | 147 |
heap.push(_s, 0); |
138 | 148 |
_pred[_s] = INVALID; |
139 | 149 |
_proc_nodes.clear(); |
140 | 150 |
|
141 | 151 |
// Process nodes |
142 | 152 |
while (!heap.empty() && heap.top() != _t) { |
143 | 153 |
Node u = heap.top(), v; |
144 | 154 |
Length d = heap.prio() + _potential[u], nd; |
145 | 155 |
_dist[u] = heap.prio(); |
146 | 156 |
heap.pop(); |
147 | 157 |
_proc_nodes.push_back(u); |
148 | 158 |
|
149 | 159 |
// Traverse outgoing arcs |
150 | 160 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
151 | 161 |
if (_flow[e] == 0) { |
152 | 162 |
v = _graph.target(e); |
153 | 163 |
switch(heap.state(v)) { |
154 | 164 |
case Heap::PRE_HEAP: |
155 | 165 |
heap.push(v, d + _length[e] - _potential[v]); |
156 | 166 |
_pred[v] = e; |
157 | 167 |
break; |
158 | 168 |
case Heap::IN_HEAP: |
159 | 169 |
nd = d + _length[e] - _potential[v]; |
160 | 170 |
if (nd < heap[v]) { |
161 | 171 |
heap.decrease(v, nd); |
162 | 172 |
_pred[v] = e; |
163 | 173 |
} |
164 | 174 |
break; |
165 | 175 |
case Heap::POST_HEAP: |
166 | 176 |
break; |
167 | 177 |
} |
168 | 178 |
} |
169 | 179 |
} |
170 | 180 |
|
171 | 181 |
// Traverse incoming arcs |
172 | 182 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
173 | 183 |
if (_flow[e] == 1) { |
174 | 184 |
v = _graph.source(e); |
175 | 185 |
switch(heap.state(v)) { |
176 | 186 |
case Heap::PRE_HEAP: |
177 | 187 |
heap.push(v, d - _length[e] - _potential[v]); |
178 | 188 |
_pred[v] = e; |
179 | 189 |
break; |
180 | 190 |
case Heap::IN_HEAP: |
181 | 191 |
nd = d - _length[e] - _potential[v]; |
182 | 192 |
if (nd < heap[v]) { |
183 | 193 |
heap.decrease(v, nd); |
184 | 194 |
_pred[v] = e; |
185 | 195 |
} |
186 | 196 |
break; |
187 | 197 |
case Heap::POST_HEAP: |
188 | 198 |
break; |
189 | 199 |
} |
190 | 200 |
} |
191 | 201 |
} |
192 | 202 |
} |
193 | 203 |
if (heap.empty()) return false; |
194 | 204 |
|
195 | 205 |
// Update potentials of processed nodes |
196 | 206 |
Length t_dist = heap.prio(); |
197 | 207 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
198 | 208 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
199 | 209 |
return true; |
200 | 210 |
} |
201 | 211 |
|
202 | 212 |
}; //class ResidualDijkstra |
203 | 213 |
|
204 | 214 |
private: |
205 | 215 |
|
206 | 216 |
// The digraph the algorithm runs on |
207 | 217 |
const Digraph &_graph; |
208 | 218 |
// The length map |
209 | 219 |
const LengthMap &_length; |
210 | 220 |
|
211 | 221 |
// Arc map of the current flow |
212 | 222 |
FlowMap *_flow; |
213 | 223 |
bool _local_flow; |
214 | 224 |
// Node map of the current potentials |
215 | 225 |
PotentialMap *_potential; |
216 | 226 |
bool _local_potential; |
217 | 227 |
|
218 | 228 |
// The source node |
219 | 229 |
Node _source; |
220 | 230 |
// The target node |
221 | 231 |
Node _target; |
222 | 232 |
|
223 | 233 |
// Container to store the found paths |
224 | 234 |
std::vector< SimplePath<Digraph> > paths; |
225 | 235 |
int _path_num; |
226 | 236 |
|
227 | 237 |
// The pred arc map |
228 | 238 |
PredMap _pred; |
229 | 239 |
// Implementation of the Dijkstra algorithm for finding augmenting |
230 | 240 |
// shortest paths in the residual network |
231 | 241 |
ResidualDijkstra *_dijkstra; |
232 | 242 |
|
233 | 243 |
public: |
234 | 244 |
|
235 | 245 |
/// \brief Constructor. |
236 | 246 |
/// |
237 | 247 |
/// Constructor. |
238 | 248 |
/// |
239 |
/// \param |
|
249 |
/// \param graph The digraph the algorithm runs on. |
|
240 | 250 |
/// \param length The length (cost) values of the arcs. |
241 |
/// \param s The source node. |
|
242 |
/// \param t The target node. |
|
243 |
Suurballe( const Digraph &digraph, |
|
244 |
const LengthMap &length, |
|
245 |
Node s, Node t ) : |
|
246 |
_graph(digraph), _length(length), _flow(0), _local_flow(false), |
|
247 |
_potential(0), _local_potential(false), _source(s), _target(t), |
|
248 |
_pred(digraph) {} |
|
251 |
Suurballe( const Digraph &graph, |
|
252 |
const LengthMap &length ) : |
|
253 |
_graph(graph), _length(length), _flow(0), _local_flow(false), |
|
254 |
_potential(0), _local_potential(false), _pred(graph) |
|
255 |
{ |
|
256 |
LEMON_ASSERT(std::numeric_limits<Length>::is_integer, |
|
257 |
"The length type of Suurballe must be integer"); |
|
258 |
} |
|
249 | 259 |
|
250 | 260 |
/// Destructor. |
251 | 261 |
~Suurballe() { |
252 | 262 |
if (_local_flow) delete _flow; |
253 | 263 |
if (_local_potential) delete _potential; |
254 | 264 |
delete _dijkstra; |
255 | 265 |
} |
256 | 266 |
|
257 | 267 |
/// \brief Set the flow map. |
258 | 268 |
/// |
259 | 269 |
/// This function sets the flow map. |
270 |
/// If it is not used before calling \ref run() or \ref init(), |
|
271 |
/// an instance will be allocated automatically. The destructor |
|
272 |
/// deallocates this automatically allocated map, of course. |
|
260 | 273 |
/// |
261 |
/// The found flow contains only 0 and 1 values. It is the union of |
|
262 |
/// the found arc-disjoint paths. |
|
274 |
/// The found flow contains only 0 and 1 values, since it is the |
|
275 |
/// union of the found arc-disjoint paths. |
|
263 | 276 |
/// |
264 | 277 |
/// \return <tt>(*this)</tt> |
265 | 278 |
Suurballe& flowMap(FlowMap &map) { |
266 | 279 |
if (_local_flow) { |
267 | 280 |
delete _flow; |
268 | 281 |
_local_flow = false; |
269 | 282 |
} |
270 | 283 |
_flow = ↦ |
271 | 284 |
return *this; |
272 | 285 |
} |
273 | 286 |
|
274 | 287 |
/// \brief Set the potential map. |
275 | 288 |
/// |
276 | 289 |
/// This function sets the potential map. |
290 |
/// If it is not used before calling \ref run() or \ref init(), |
|
291 |
/// an instance will be allocated automatically. The destructor |
|
292 |
/// deallocates this automatically allocated map, of course. |
|
277 | 293 |
/// |
278 |
/// The potentials provide the dual solution of the underlying |
|
279 |
/// minimum cost flow problem. |
|
294 |
/// The node potentials provide the dual solution of the underlying |
|
295 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
280 | 296 |
/// |
281 | 297 |
/// \return <tt>(*this)</tt> |
282 | 298 |
Suurballe& potentialMap(PotentialMap &map) { |
283 | 299 |
if (_local_potential) { |
284 | 300 |
delete _potential; |
285 | 301 |
_local_potential = false; |
286 | 302 |
} |
287 | 303 |
_potential = ↦ |
288 | 304 |
return *this; |
289 | 305 |
} |
290 | 306 |
|
291 | 307 |
/// \name Execution Control |
292 | 308 |
/// The simplest way to execute the algorithm is to call the run() |
293 | 309 |
/// function. |
294 | 310 |
/// \n |
295 | 311 |
/// If you only need the flow that is the union of the found |
296 | 312 |
/// arc-disjoint paths, you may call init() and findFlow(). |
297 | 313 |
|
298 | 314 |
/// @{ |
299 | 315 |
|
300 | 316 |
/// \brief Run the algorithm. |
301 | 317 |
/// |
302 | 318 |
/// This function runs the algorithm. |
303 | 319 |
/// |
320 |
/// \param s The source node. |
|
321 |
/// \param t The target node. |
|
304 | 322 |
/// \param k The number of paths to be found. |
305 | 323 |
/// |
306 | 324 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
307 | 325 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
308 | 326 |
/// arc-disjoint paths found. |
309 | 327 |
/// |
310 |
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a |
|
311 |
/// shortcut of the following code. |
|
328 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is |
|
329 |
/// just a shortcut of the following code. |
|
312 | 330 |
/// \code |
313 |
/// s.init(); |
|
314 |
/// s.findFlow(k); |
|
331 |
/// s.init(s); |
|
332 |
/// s.findFlow(t, k); |
|
315 | 333 |
/// s.findPaths(); |
316 | 334 |
/// \endcode |
317 |
int run(int k = 2) { |
|
318 |
init(); |
|
319 |
|
|
335 |
int run(const Node& s, const Node& t, int k = 2) { |
|
336 |
init(s); |
|
337 |
findFlow(t, k); |
|
320 | 338 |
findPaths(); |
321 | 339 |
return _path_num; |
322 | 340 |
} |
323 | 341 |
|
324 | 342 |
/// \brief Initialize the algorithm. |
325 | 343 |
/// |
326 | 344 |
/// This function initializes the algorithm. |
327 |
|
|
345 |
/// |
|
346 |
/// \param s The source node. |
|
347 |
void init(const Node& s) { |
|
348 |
_source = s; |
|
349 |
|
|
328 | 350 |
// Initialize maps |
329 | 351 |
if (!_flow) { |
330 | 352 |
_flow = new FlowMap(_graph); |
331 | 353 |
_local_flow = true; |
332 | 354 |
} |
333 | 355 |
if (!_potential) { |
334 | 356 |
_potential = new PotentialMap(_graph); |
335 | 357 |
_local_potential = true; |
336 | 358 |
} |
337 | 359 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
338 | 360 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
339 |
|
|
340 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length, |
|
341 |
*_potential, _pred, |
|
342 |
_source, _target ); |
|
343 | 361 |
} |
344 | 362 |
|
345 |
/// \brief Execute the successive shortest path algorithm to find |
|
346 |
/// an optimal flow. |
|
363 |
/// \brief Execute the algorithm to find an optimal flow. |
|
347 | 364 |
/// |
348 | 365 |
/// This function executes the successive shortest path algorithm to |
349 |
/// find a minimum cost flow, which is the union of \c k or less |
|
366 |
/// find a minimum cost flow, which is the union of \c k (or less) |
|
350 | 367 |
/// arc-disjoint paths. |
351 | 368 |
/// |
369 |
/// \param t The target node. |
|
370 |
/// \param k The number of paths to be found. |
|
371 |
/// |
|
352 | 372 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
353 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
|
354 |
/// arc-disjoint paths found. |
|
373 |
/// the source node to the given node \c t in the digraph. |
|
374 |
/// Otherwise it returns the number of arc-disjoint paths found. |
|
355 | 375 |
/// |
356 | 376 |
/// \pre \ref init() must be called before using this function. |
357 |
int findFlow(int k = 2) { |
|
377 |
int findFlow(const Node& t, int k = 2) { |
|
378 |
_target = t; |
|
379 |
_dijkstra = |
|
380 |
new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred, |
|
381 |
_source, _target ); |
|
382 |
|
|
358 | 383 |
// Find shortest paths |
359 | 384 |
_path_num = 0; |
360 | 385 |
while (_path_num < k) { |
361 | 386 |
// Run Dijkstra |
362 | 387 |
if (!_dijkstra->run()) break; |
363 | 388 |
++_path_num; |
364 | 389 |
|
365 | 390 |
// Set the flow along the found shortest path |
366 | 391 |
Node u = _target; |
367 | 392 |
Arc e; |
368 | 393 |
while ((e = _pred[u]) != INVALID) { |
369 | 394 |
if (u == _graph.target(e)) { |
370 | 395 |
(*_flow)[e] = 1; |
371 | 396 |
u = _graph.source(e); |
372 | 397 |
} else { |
373 | 398 |
(*_flow)[e] = 0; |
374 | 399 |
u = _graph.target(e); |
375 | 400 |
} |
376 | 401 |
} |
377 | 402 |
} |
378 | 403 |
return _path_num; |
379 | 404 |
} |
380 | 405 |
|
381 | 406 |
/// \brief Compute the paths from the flow. |
382 | 407 |
/// |
383 |
/// This function computes the paths from the flow |
|
408 |
/// This function computes the paths from the found minimum cost flow, |
|
409 |
/// which is the union of some arc-disjoint paths. |
|
384 | 410 |
/// |
385 | 411 |
/// \pre \ref init() and \ref findFlow() must be called before using |
386 | 412 |
/// this function. |
387 | 413 |
void findPaths() { |
388 |
// Create the residual flow map (the union of the paths not found |
|
389 |
// so far) |
|
390 | 414 |
FlowMap res_flow(_graph); |
391 | 415 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
392 | 416 |
|
393 | 417 |
paths.clear(); |
394 | 418 |
paths.resize(_path_num); |
395 | 419 |
for (int i = 0; i < _path_num; ++i) { |
396 | 420 |
Node n = _source; |
397 | 421 |
while (n != _target) { |
398 | 422 |
OutArcIt e(_graph, n); |
399 | 423 |
for ( ; res_flow[e] == 0; ++e) ; |
400 | 424 |
n = _graph.target(e); |
401 | 425 |
paths[i].addBack(e); |
402 | 426 |
res_flow[e] = 0; |
403 | 427 |
} |
404 | 428 |
} |
405 | 429 |
} |
406 | 430 |
|
407 | 431 |
/// @} |
408 | 432 |
|
409 | 433 |
/// \name Query Functions |
410 | 434 |
/// The results of the algorithm can be obtained using these |
411 | 435 |
/// functions. |
412 | 436 |
/// \n The algorithm should be executed before using them. |
413 | 437 |
|
414 | 438 |
/// @{ |
415 | 439 |
|
416 |
/// \brief Return |
|
440 |
/// \brief Return the total length of the found paths. |
|
441 |
/// |
|
442 |
/// This function returns the total length of the found paths, i.e. |
|
443 |
/// the total cost of the found flow. |
|
444 |
/// The complexity of the function is O(e). |
|
445 |
/// |
|
446 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
447 |
/// this function. |
|
448 |
Length totalLength() const { |
|
449 |
Length c = 0; |
|
450 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
451 |
c += (*_flow)[e] * _length[e]; |
|
452 |
return c; |
|
453 |
} |
|
454 |
|
|
455 |
/// \brief Return the flow value on the given arc. |
|
456 |
/// |
|
457 |
/// This function returns the flow value on the given arc. |
|
458 |
/// It is \c 1 if the arc is involved in one of the found arc-disjoint |
|
459 |
/// paths, otherwise it is \c 0. |
|
460 |
/// |
|
461 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
462 |
/// this function. |
|
463 |
int flow(const Arc& arc) const { |
|
464 |
return (*_flow)[arc]; |
|
465 |
} |
|
466 |
|
|
467 |
/// \brief Return a const reference to an arc map storing the |
|
417 | 468 |
/// found flow. |
418 | 469 |
/// |
419 |
/// This function returns a const reference to |
|
470 |
/// This function returns a const reference to an arc map storing |
|
420 | 471 |
/// the flow that is the union of the found arc-disjoint paths. |
421 | 472 |
/// |
422 | 473 |
/// \pre \ref run() or \ref findFlow() must be called before using |
423 | 474 |
/// this function. |
424 | 475 |
const FlowMap& flowMap() const { |
425 | 476 |
return *_flow; |
426 | 477 |
} |
427 | 478 |
|
428 |
/// \brief Return a const reference to the node map storing the |
|
429 |
/// found potentials (the dual solution). |
|
430 |
/// |
|
431 |
/// This function returns a const reference to the node map storing |
|
432 |
/// the found potentials that provide the dual solution of the |
|
433 |
/// underlying minimum cost flow problem. |
|
434 |
/// |
|
435 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
436 |
/// this function. |
|
437 |
const PotentialMap& potentialMap() const { |
|
438 |
return *_potential; |
|
439 |
} |
|
440 |
|
|
441 |
/// \brief Return the flow on the given arc. |
|
442 |
/// |
|
443 |
/// This function returns the flow on the given arc. |
|
444 |
/// It is \c 1 if the arc is involved in one of the found paths, |
|
445 |
/// otherwise it is \c 0. |
|
446 |
/// |
|
447 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
448 |
/// this function. |
|
449 |
int flow(const Arc& arc) const { |
|
450 |
return (*_flow)[arc]; |
|
451 |
} |
|
452 |
|
|
453 | 479 |
/// \brief Return the potential of the given node. |
454 | 480 |
/// |
455 | 481 |
/// This function returns the potential of the given node. |
482 |
/// The node potentials provide the dual solution of the |
|
483 |
/// underlying \ref min_cost_flow "minimum cost flow problem". |
|
456 | 484 |
/// |
457 | 485 |
/// \pre \ref run() or \ref findFlow() must be called before using |
458 | 486 |
/// this function. |
459 | 487 |
Length potential(const Node& node) const { |
460 | 488 |
return (*_potential)[node]; |
461 | 489 |
} |
462 | 490 |
|
463 |
/// \brief Return |
|
491 |
/// \brief Return a const reference to a node map storing the |
|
492 |
/// found potentials (the dual solution). |
|
464 | 493 |
/// |
465 |
/// This function returns the total length (cost) of the found paths |
|
466 |
/// (flow). The complexity of the function is O(e). |
|
494 |
/// This function returns a const reference to a node map storing |
|
495 |
/// the found potentials that provide the dual solution of the |
|
496 |
/// underlying \ref min_cost_flow "minimum cost flow problem". |
|
467 | 497 |
/// |
468 | 498 |
/// \pre \ref run() or \ref findFlow() must be called before using |
469 | 499 |
/// this function. |
470 |
Length totalLength() const { |
|
471 |
Length c = 0; |
|
472 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
473 |
c += (*_flow)[e] * _length[e]; |
|
474 |
|
|
500 |
const PotentialMap& potentialMap() const { |
|
501 |
return *_potential; |
|
475 | 502 |
} |
476 | 503 |
|
477 | 504 |
/// \brief Return the number of the found paths. |
478 | 505 |
/// |
479 | 506 |
/// This function returns the number of the found paths. |
480 | 507 |
/// |
481 | 508 |
/// \pre \ref run() or \ref findFlow() must be called before using |
482 | 509 |
/// this function. |
483 | 510 |
int pathNum() const { |
484 | 511 |
return _path_num; |
485 | 512 |
} |
486 | 513 |
|
487 | 514 |
/// \brief Return a const reference to the specified path. |
488 | 515 |
/// |
489 | 516 |
/// This function returns a const reference to the specified path. |
490 | 517 |
/// |
491 |
/// \param i The function returns the |
|
518 |
/// \param i The function returns the <tt>i</tt>-th path. |
|
492 | 519 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
493 | 520 |
/// |
494 | 521 |
/// \pre \ref run() or \ref findPaths() must be called before using |
495 | 522 |
/// this function. |
496 | 523 |
Path path(int i) const { |
497 | 524 |
return paths[i]; |
498 | 525 |
} |
499 | 526 |
|
500 | 527 |
/// @} |
501 | 528 |
|
502 | 529 |
}; //class Suurballe |
503 | 530 |
|
504 | 531 |
///@} |
505 | 532 |
|
506 | 533 |
} //namespace lemon |
507 | 534 |
|
508 | 535 |
#endif //LEMON_SUURBALLE_H |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 |
IF(HAVE_GLPK) |
|
7 |
INCLUDE_DIRECTORIES(${GLPK_INCLUDE_DIR}) |
|
8 |
ENDIF(HAVE_GLPK) |
|
9 |
|
|
10 | 6 |
LINK_DIRECTORIES(${PROJECT_BINARY_DIR}/lemon) |
11 | 7 |
|
12 | 8 |
SET(TESTS |
13 | 9 |
adaptors_test |
14 | 10 |
bfs_test |
15 | 11 |
circulation_test |
16 | 12 |
counter_test |
17 | 13 |
dfs_test |
18 | 14 |
digraph_test |
19 | 15 |
dijkstra_test |
20 | 16 |
dim_test |
21 | 17 |
edge_set_test |
22 | 18 |
error_test |
23 | 19 |
euler_test |
24 | 20 |
gomory_hu_test |
25 | 21 |
graph_copy_test |
26 | 22 |
graph_test |
27 | 23 |
graph_utils_test |
28 | 24 |
hao_orlin_test |
29 | 25 |
heap_test |
30 | 26 |
kruskal_test |
31 | 27 |
maps_test |
32 | 28 |
matching_test |
33 | 29 |
min_cost_arborescence_test |
34 | 30 |
min_cost_flow_test |
35 | 31 |
path_test |
36 | 32 |
preflow_test |
37 | 33 |
radix_sort_test |
38 | 34 |
random_test |
39 | 35 |
suurballe_test |
40 | 36 |
time_measure_test |
41 | 37 |
unionfind_test) |
42 | 38 |
|
43 | 39 |
IF(HAVE_LP) |
44 | 40 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
41 |
SET(LP_TEST_LIBS lemon) |
|
45 | 42 |
IF(HAVE_GLPK) |
46 |
|
|
43 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
|
47 | 44 |
ENDIF(HAVE_GLPK) |
45 |
IF(HAVE_CPLEX) |
|
46 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
|
47 |
ENDIF(HAVE_CPLEX) |
|
48 |
IF(HAVE_CLP) |
|
49 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES}) |
|
50 |
ENDIF(HAVE_CLP) |
|
51 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) |
|
48 | 52 |
ADD_TEST(lp_test lp_test) |
49 | 53 |
|
50 | 54 |
IF(WIN32 AND HAVE_GLPK) |
51 | 55 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
52 | 56 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
53 | 57 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
54 | 58 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
55 | 59 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
56 | 60 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
57 | 61 |
) |
58 | 62 |
ENDIF(WIN32 AND HAVE_GLPK) |
63 |
IF(WIN32 AND HAVE_CPLEX) |
|
64 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
|
65 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
|
66 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
|
67 |
COMMAND cmake -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
|
68 |
) |
|
69 |
ENDIF(WIN32 AND HAVE_CPLEX) |
|
59 | 70 |
ENDIF(HAVE_LP) |
60 | 71 |
|
61 | 72 |
IF(HAVE_MIP) |
62 | 73 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
74 |
SET(MIP_TEST_LIBS lemon) |
|
63 | 75 |
IF(HAVE_GLPK) |
64 |
|
|
76 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES}) |
|
65 | 77 |
ENDIF(HAVE_GLPK) |
78 |
IF(HAVE_CPLEX) |
|
79 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
|
80 |
ENDIF(HAVE_CPLEX) |
|
81 |
IF(HAVE_CBC) |
|
82 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${COIN_CBC_LIBRARIES}) |
|
83 |
ENDIF(HAVE_CBC) |
|
84 |
TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS}) |
|
66 | 85 |
ADD_TEST(mip_test mip_test) |
67 | 86 |
|
68 | 87 |
IF(WIN32 AND HAVE_GLPK) |
69 | 88 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
70 | 89 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
71 | 90 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
72 | 91 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
73 | 92 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
74 | 93 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
75 | 94 |
) |
76 | 95 |
ENDIF(WIN32 AND HAVE_GLPK) |
96 |
IF(WIN32 AND HAVE_CPLEX) |
|
97 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
|
98 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
|
99 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
|
100 |
COMMAND cmake -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
|
101 |
) |
|
102 |
ENDIF(WIN32 AND HAVE_CPLEX) |
|
77 | 103 |
ENDIF(HAVE_MIP) |
78 | 104 |
|
79 | 105 |
FOREACH(TEST_NAME ${TESTS}) |
80 | 106 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc) |
81 | 107 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon) |
82 | 108 |
ADD_TEST(${TEST_NAME} ${TEST_NAME}) |
83 | 109 |
ENDFOREACH(TEST_NAME) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/path.h> |
24 | 24 |
#include <lemon/suurballe.h> |
25 |
#include <lemon/concepts/digraph.h> |
|
25 | 26 |
|
26 | 27 |
#include "test_tools.h" |
27 | 28 |
|
28 | 29 |
using namespace lemon; |
29 | 30 |
|
30 | 31 |
char test_lgf[] = |
31 | 32 |
"@nodes\n" |
32 |
"label supply1 supply2 supply3\n" |
|
33 |
"1 0 20 27\n" |
|
34 |
"2 0 -4 0\n" |
|
35 |
"3 0 0 0\n" |
|
36 |
"4 0 0 0\n" |
|
37 |
"5 0 9 0\n" |
|
38 |
"6 0 -6 0\n" |
|
39 |
"7 0 0 0\n" |
|
40 |
"8 0 0 0\n" |
|
41 |
"9 0 3 0\n" |
|
42 |
"10 0 -2 0\n" |
|
43 |
"11 0 0 0\n" |
|
44 |
" |
|
33 |
"label\n" |
|
34 |
"1\n" |
|
35 |
"2\n" |
|
36 |
"3\n" |
|
37 |
"4\n" |
|
38 |
"5\n" |
|
39 |
"6\n" |
|
40 |
"7\n" |
|
41 |
"8\n" |
|
42 |
"9\n" |
|
43 |
"10\n" |
|
44 |
"11\n" |
|
45 |
"12\n" |
|
45 | 46 |
"@arcs\n" |
46 |
" cost capacity lower1 lower2\n" |
|
47 |
" 1 2 70 11 0 8\n" |
|
48 |
" 1 3 150 3 0 1\n" |
|
49 |
" 1 4 80 15 0 2\n" |
|
50 |
" 2 8 80 12 0 0\n" |
|
51 |
" 3 5 140 5 0 3\n" |
|
52 |
" 4 6 60 10 0 1\n" |
|
53 |
" 4 7 80 2 0 0\n" |
|
54 |
" 4 8 110 3 0 0\n" |
|
55 |
" 5 7 60 14 0 0\n" |
|
56 |
" 5 11 120 12 0 0\n" |
|
57 |
" 6 3 0 3 0 0\n" |
|
58 |
" 6 9 140 4 0 0\n" |
|
59 |
" 6 10 90 8 0 0\n" |
|
60 |
" 7 1 30 5 0 0\n" |
|
61 |
" 8 12 60 16 0 4\n" |
|
62 |
" 9 12 50 6 0 0\n" |
|
63 |
"10 12 70 13 0 5\n" |
|
64 |
"10 2 100 7 0 0\n" |
|
65 |
"10 7 60 10 0 0\n" |
|
66 |
"11 10 20 14 0 6\n" |
|
67 |
"12 11 30 10 0 0\n" |
|
47 |
" length\n" |
|
48 |
" 1 2 70\n" |
|
49 |
" 1 3 150\n" |
|
50 |
" 1 4 80\n" |
|
51 |
" 2 8 80\n" |
|
52 |
" 3 5 140\n" |
|
53 |
" 4 6 60\n" |
|
54 |
" 4 7 80\n" |
|
55 |
" 4 8 110\n" |
|
56 |
" 5 7 60\n" |
|
57 |
" 5 11 120\n" |
|
58 |
" 6 3 0\n" |
|
59 |
" 6 9 140\n" |
|
60 |
" 6 10 90\n" |
|
61 |
" 7 1 30\n" |
|
62 |
" 8 12 60\n" |
|
63 |
" 9 12 50\n" |
|
64 |
"10 12 70\n" |
|
65 |
"10 2 100\n" |
|
66 |
"10 7 60\n" |
|
67 |
"11 10 20\n" |
|
68 |
"12 11 30\n" |
|
68 | 69 |
"@attributes\n" |
69 | 70 |
"source 1\n" |
70 | 71 |
"target 12\n" |
71 | 72 |
"@end\n"; |
72 | 73 |
|
74 |
// Check the interface of Suurballe |
|
75 |
void checkSuurballeCompile() |
|
76 |
{ |
|
77 |
typedef int VType; |
|
78 |
typedef concepts::Digraph Digraph; |
|
79 |
|
|
80 |
typedef Digraph::Node Node; |
|
81 |
typedef Digraph::Arc Arc; |
|
82 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
|
83 |
|
|
84 |
typedef Suurballe<Digraph, LengthMap> SuurballeType; |
|
85 |
|
|
86 |
Digraph g; |
|
87 |
Node n; |
|
88 |
Arc e; |
|
89 |
LengthMap len; |
|
90 |
SuurballeType::FlowMap flow(g); |
|
91 |
SuurballeType::PotentialMap pi(g); |
|
92 |
|
|
93 |
SuurballeType suurb_test(g, len); |
|
94 |
const SuurballeType& const_suurb_test = suurb_test; |
|
95 |
|
|
96 |
suurb_test |
|
97 |
.flowMap(flow) |
|
98 |
.potentialMap(pi); |
|
99 |
|
|
100 |
int k; |
|
101 |
k = suurb_test.run(n, n); |
|
102 |
k = suurb_test.run(n, n, k); |
|
103 |
suurb_test.init(n); |
|
104 |
k = suurb_test.findFlow(n); |
|
105 |
k = suurb_test.findFlow(n, k); |
|
106 |
suurb_test.findPaths(); |
|
107 |
|
|
108 |
int f; |
|
109 |
VType c; |
|
110 |
c = const_suurb_test.totalLength(); |
|
111 |
f = const_suurb_test.flow(e); |
|
112 |
const SuurballeType::FlowMap& fm = |
|
113 |
const_suurb_test.flowMap(); |
|
114 |
c = const_suurb_test.potential(n); |
|
115 |
const SuurballeType::PotentialMap& pm = |
|
116 |
const_suurb_test.potentialMap(); |
|
117 |
k = const_suurb_test.pathNum(); |
|
118 |
Path<Digraph> p = const_suurb_test.path(k); |
|
119 |
|
|
120 |
ignore_unused_variable_warning(fm); |
|
121 |
ignore_unused_variable_warning(pm); |
|
122 |
} |
|
123 |
|
|
73 | 124 |
// Check the feasibility of the flow |
74 | 125 |
template <typename Digraph, typename FlowMap> |
75 | 126 |
bool checkFlow( const Digraph& gr, const FlowMap& flow, |
76 | 127 |
typename Digraph::Node s, typename Digraph::Node t, |
77 | 128 |
int value ) |
78 | 129 |
{ |
79 | 130 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
80 | 131 |
for (ArcIt e(gr); e != INVALID; ++e) |
81 | 132 |
if (!(flow[e] == 0 || flow[e] == 1)) return false; |
82 | 133 |
|
83 | 134 |
for (NodeIt n(gr); n != INVALID; ++n) { |
84 | 135 |
int sum = 0; |
85 | 136 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
86 | 137 |
sum += flow[e]; |
87 | 138 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
88 | 139 |
sum -= flow[e]; |
89 | 140 |
if (n == s && sum != value) return false; |
90 | 141 |
if (n == t && sum != -value) return false; |
91 | 142 |
if (n != s && n != t && sum != 0) return false; |
92 | 143 |
} |
93 | 144 |
|
94 | 145 |
return true; |
95 | 146 |
} |
96 | 147 |
|
97 | 148 |
// Check the optimalitiy of the flow |
98 | 149 |
template < typename Digraph, typename CostMap, |
99 | 150 |
typename FlowMap, typename PotentialMap > |
100 | 151 |
bool checkOptimality( const Digraph& gr, const CostMap& cost, |
101 | 152 |
const FlowMap& flow, const PotentialMap& pi ) |
102 | 153 |
{ |
103 | 154 |
// Check the "Complementary Slackness" optimality condition |
104 | 155 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
105 | 156 |
bool opt = true; |
106 | 157 |
for (ArcIt e(gr); e != INVALID; ++e) { |
107 | 158 |
typename CostMap::Value red_cost = |
108 | 159 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
109 | 160 |
opt = (flow[e] == 0 && red_cost >= 0) || |
110 | 161 |
(flow[e] == 1 && red_cost <= 0); |
111 | 162 |
if (!opt) break; |
112 | 163 |
} |
113 | 164 |
return opt; |
114 | 165 |
} |
115 | 166 |
|
116 | 167 |
// Check a path |
117 | 168 |
template <typename Digraph, typename Path> |
118 | 169 |
bool checkPath( const Digraph& gr, const Path& path, |
119 | 170 |
typename Digraph::Node s, typename Digraph::Node t) |
120 | 171 |
{ |
121 |
// Check the "Complementary Slackness" optimality condition |
|
122 | 172 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
123 | 173 |
Node n = s; |
124 | 174 |
for (int i = 0; i < path.length(); ++i) { |
125 | 175 |
if (gr.source(path.nth(i)) != n) return false; |
126 | 176 |
n = gr.target(path.nth(i)); |
127 | 177 |
} |
128 | 178 |
return n == t; |
129 | 179 |
} |
130 | 180 |
|
131 | 181 |
|
132 | 182 |
int main() |
133 | 183 |
{ |
134 | 184 |
DIGRAPH_TYPEDEFS(ListDigraph); |
135 | 185 |
|
136 | 186 |
// Read the test digraph |
137 | 187 |
ListDigraph digraph; |
138 | 188 |
ListDigraph::ArcMap<int> length(digraph); |
139 |
Node |
|
189 |
Node s, t; |
|
140 | 190 |
|
141 | 191 |
std::istringstream input(test_lgf); |
142 | 192 |
DigraphReader<ListDigraph>(digraph, input). |
143 |
arcMap("cost", length). |
|
144 |
node("source", source). |
|
145 |
|
|
193 |
arcMap("length", length). |
|
194 |
node("source", s). |
|
195 |
node("target", t). |
|
146 | 196 |
run(); |
147 | 197 |
|
148 | 198 |
// Find 2 paths |
149 | 199 |
{ |
150 |
Suurballe<ListDigraph> suurballe(digraph, length, source, target); |
|
151 |
check(suurballe.run(2) == 2, "Wrong number of paths"); |
|
152 |
|
|
200 |
Suurballe<ListDigraph> suurballe(digraph, length); |
|
201 |
check(suurballe.run(s, t) == 2, "Wrong number of paths"); |
|
202 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 2), |
|
153 | 203 |
"The flow is not feasible"); |
154 | 204 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
155 | 205 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
156 | 206 |
suurballe.potentialMap()), |
157 | 207 |
"Wrong potentials"); |
158 | 208 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
159 |
check(checkPath(digraph, suurballe.path(i), source, target), |
|
160 |
"Wrong path"); |
|
209 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
|
161 | 210 |
} |
162 | 211 |
|
163 | 212 |
// Find 3 paths |
164 | 213 |
{ |
165 |
Suurballe<ListDigraph> suurballe(digraph, length, source, target); |
|
166 |
check(suurballe.run(3) == 3, "Wrong number of paths"); |
|
167 |
|
|
214 |
Suurballe<ListDigraph> suurballe(digraph, length); |
|
215 |
check(suurballe.run(s, t, 3) == 3, "Wrong number of paths"); |
|
216 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
|
168 | 217 |
"The flow is not feasible"); |
169 | 218 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
170 | 219 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
171 | 220 |
suurballe.potentialMap()), |
172 | 221 |
"Wrong potentials"); |
173 | 222 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
174 |
check(checkPath(digraph, suurballe.path(i), source, target), |
|
175 |
"Wrong path"); |
|
223 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
|
176 | 224 |
} |
177 | 225 |
|
178 | 226 |
// Find 5 paths (only 3 can be found) |
179 | 227 |
{ |
180 |
Suurballe<ListDigraph> suurballe(digraph, length, source, target); |
|
181 |
check(suurballe.run(5) == 3, "Wrong number of paths"); |
|
182 |
|
|
228 |
Suurballe<ListDigraph> suurballe(digraph, length); |
|
229 |
check(suurballe.run(s, t, 5) == 3, "Wrong number of paths"); |
|
230 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
|
183 | 231 |
"The flow is not feasible"); |
184 | 232 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
185 | 233 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
186 | 234 |
suurballe.potentialMap()), |
187 | 235 |
"Wrong potentials"); |
188 | 236 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
189 |
check(checkPath(digraph, suurballe.path(i), source, target), |
|
190 |
"Wrong path"); |
|
237 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
|
191 | 238 |
} |
192 | 239 |
|
193 | 240 |
return 0; |
194 | 241 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup tools |
20 | 20 |
/// \file |
21 | 21 |
/// \brief Special plane digraph generator. |
22 | 22 |
/// |
23 | 23 |
/// Graph generator application for various types of plane graphs. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 | 26 |
/// \code |
27 | 27 |
/// lgf-gen --help |
28 | 28 |
/// \endcode |
29 | 29 |
/// for more info on the usage. |
30 | 30 |
|
31 | 31 |
#include <algorithm> |
32 | 32 |
#include <set> |
33 | 33 |
#include <ctime> |
34 | 34 |
#include <lemon/list_graph.h> |
35 | 35 |
#include <lemon/random.h> |
36 | 36 |
#include <lemon/dim2.h> |
37 | 37 |
#include <lemon/bfs.h> |
38 | 38 |
#include <lemon/counter.h> |
39 | 39 |
#include <lemon/suurballe.h> |
40 | 40 |
#include <lemon/graph_to_eps.h> |
41 | 41 |
#include <lemon/lgf_writer.h> |
42 | 42 |
#include <lemon/arg_parser.h> |
43 | 43 |
#include <lemon/euler.h> |
44 | 44 |
#include <lemon/math.h> |
45 | 45 |
#include <lemon/kruskal.h> |
46 | 46 |
#include <lemon/time_measure.h> |
47 | 47 |
|
48 | 48 |
using namespace lemon; |
49 | 49 |
|
50 | 50 |
typedef dim2::Point<double> Point; |
51 | 51 |
|
52 | 52 |
GRAPH_TYPEDEFS(ListGraph); |
53 | 53 |
|
54 | 54 |
bool progress=true; |
55 | 55 |
|
56 | 56 |
int N; |
57 | 57 |
// int girth; |
58 | 58 |
|
59 | 59 |
ListGraph g; |
60 | 60 |
|
61 | 61 |
std::vector<Node> nodes; |
62 | 62 |
ListGraph::NodeMap<Point> coords(g); |
63 | 63 |
|
64 | 64 |
|
65 | 65 |
double totalLen(){ |
66 | 66 |
double tlen=0; |
67 | 67 |
for(EdgeIt e(g);e!=INVALID;++e) |
68 | 68 |
tlen+=std::sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare()); |
69 | 69 |
return tlen; |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
int tsp_impr_num=0; |
73 | 73 |
|
74 | 74 |
const double EPSILON=1e-8; |
75 | 75 |
bool tsp_improve(Node u, Node v) |
76 | 76 |
{ |
77 | 77 |
double luv=std::sqrt((coords[v]-coords[u]).normSquare()); |
78 | 78 |
Node u2=u; |
79 | 79 |
Node v2=v; |
80 | 80 |
do { |
81 | 81 |
Node n; |
82 | 82 |
for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e) { } |
83 | 83 |
u2=v2; |
84 | 84 |
v2=n; |
85 | 85 |
if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON> |
86 | 86 |
std::sqrt((coords[u]-coords[u2]).normSquare())+ |
87 | 87 |
std::sqrt((coords[v]-coords[v2]).normSquare())) |
88 | 88 |
{ |
89 | 89 |
g.erase(findEdge(g,u,v)); |
90 | 90 |
g.erase(findEdge(g,u2,v2)); |
91 | 91 |
g.addEdge(u2,u); |
92 | 92 |
g.addEdge(v,v2); |
93 | 93 |
tsp_impr_num++; |
94 | 94 |
return true; |
95 | 95 |
} |
96 | 96 |
} while(v2!=u); |
97 | 97 |
return false; |
98 | 98 |
} |
99 | 99 |
|
100 | 100 |
bool tsp_improve(Node u) |
101 | 101 |
{ |
102 | 102 |
for(IncEdgeIt e(g,u);e!=INVALID;++e) |
103 | 103 |
if(tsp_improve(u,g.runningNode(e))) return true; |
104 | 104 |
return false; |
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
void tsp_improve() |
108 | 108 |
{ |
109 | 109 |
bool b; |
110 | 110 |
do { |
111 | 111 |
b=false; |
112 | 112 |
for(NodeIt n(g);n!=INVALID;++n) |
113 | 113 |
if(tsp_improve(n)) b=true; |
114 | 114 |
} while(b); |
115 | 115 |
} |
116 | 116 |
|
117 | 117 |
void tsp() |
118 | 118 |
{ |
119 | 119 |
for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]); |
120 | 120 |
tsp_improve(); |
121 | 121 |
} |
122 | 122 |
|
123 | 123 |
class Line |
124 | 124 |
{ |
125 | 125 |
public: |
126 | 126 |
Point a; |
127 | 127 |
Point b; |
128 | 128 |
Line(Point _a,Point _b) :a(_a),b(_b) {} |
129 | 129 |
Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {} |
130 | 130 |
Line(const Arc &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {} |
131 | 131 |
Line(const Edge &e) : a(coords[g.u(e)]),b(coords[g.v(e)]) {} |
132 | 132 |
}; |
133 | 133 |
|
134 | 134 |
inline std::ostream& operator<<(std::ostream &os, const Line &l) |
135 | 135 |
{ |
136 | 136 |
os << l.a << "->" << l.b; |
137 | 137 |
return os; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
bool cross(Line a, Line b) |
141 | 141 |
{ |
142 | 142 |
Point ao=rot90(a.b-a.a); |
143 | 143 |
Point bo=rot90(b.b-b.a); |
144 | 144 |
return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 && |
145 | 145 |
(bo*(a.a-b.a))*(bo*(a.b-b.a))<0; |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
struct Parc |
149 | 149 |
{ |
150 | 150 |
Node a; |
151 | 151 |
Node b; |
152 | 152 |
double len; |
153 | 153 |
}; |
154 | 154 |
|
155 | 155 |
bool pedgeLess(Parc a,Parc b) |
156 | 156 |
{ |
157 | 157 |
return a.len<b.len; |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
std::vector<Edge> arcs; |
161 | 161 |
|
162 | 162 |
namespace _delaunay_bits { |
163 | 163 |
|
164 | 164 |
struct Part { |
165 | 165 |
int prev, curr, next; |
166 | 166 |
|
167 | 167 |
Part(int p, int c, int n) : prev(p), curr(c), next(n) {} |
168 | 168 |
}; |
169 | 169 |
|
170 | 170 |
inline std::ostream& operator<<(std::ostream& os, const Part& part) { |
171 | 171 |
os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')'; |
172 | 172 |
return os; |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
inline double circle_point(const Point& p, const Point& q, const Point& r) { |
176 | 176 |
double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y); |
177 | 177 |
if (a == 0) return std::numeric_limits<double>::quiet_NaN(); |
178 | 178 |
|
179 | 179 |
double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) + |
180 | 180 |
(q.x * q.x + q.y * q.y) * (r.y - p.y) + |
181 | 181 |
(r.x * r.x + r.y * r.y) * (p.y - q.y); |
182 | 182 |
|
183 | 183 |
double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) + |
184 | 184 |
(q.x * q.x + q.y * q.y) * (r.x - p.x) + |
185 | 185 |
(r.x * r.x + r.y * r.y) * (p.x - q.x); |
186 | 186 |
|
187 | 187 |
double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) + |
188 | 188 |
(q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) + |
189 | 189 |
(r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y); |
190 | 190 |
|
191 | 191 |
return d / (2 * a) + std::sqrt((d * d + e * e) / (4 * a * a) + f / a); |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
inline bool circle_form(const Point& p, const Point& q, const Point& r) { |
195 | 195 |
return rot90(q - p) * (r - q) < 0.0; |
196 | 196 |
} |
197 | 197 |
|
198 | 198 |
inline double intersection(const Point& p, const Point& q, double sx) { |
199 | 199 |
const double epsilon = 1e-8; |
200 | 200 |
|
201 | 201 |
if (p.x == q.x) return (p.y + q.y) / 2.0; |
202 | 202 |
|
203 | 203 |
if (sx < p.x + epsilon) return p.y; |
204 | 204 |
if (sx < q.x + epsilon) return q.y; |
205 | 205 |
|
206 | 206 |
double a = q.x - p.x; |
207 | 207 |
double b = (q.x - sx) * p.y - (p.x - sx) * q.y; |
208 | 208 |
double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare(); |
209 | 209 |
return (b - std::sqrt(d)) / a; |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
struct YLess { |
213 | 213 |
|
214 | 214 |
|
215 | 215 |
YLess(const std::vector<Point>& points, double& sweep) |
216 | 216 |
: _points(points), _sweep(sweep) {} |
217 | 217 |
|
218 | 218 |
bool operator()(const Part& l, const Part& r) const { |
219 | 219 |
const double epsilon = 1e-8; |
220 | 220 |
|
221 | 221 |
// std::cerr << l << " vs " << r << std::endl; |
222 | 222 |
double lbx = l.prev != -1 ? |
223 | 223 |
intersection(_points[l.prev], _points[l.curr], _sweep) : |
224 | 224 |
- std::numeric_limits<double>::infinity(); |
225 | 225 |
double rbx = r.prev != -1 ? |
226 | 226 |
intersection(_points[r.prev], _points[r.curr], _sweep) : |
227 | 227 |
- std::numeric_limits<double>::infinity(); |
228 | 228 |
double lex = l.next != -1 ? |
229 | 229 |
intersection(_points[l.curr], _points[l.next], _sweep) : |
230 | 230 |
std::numeric_limits<double>::infinity(); |
231 | 231 |
double rex = r.next != -1 ? |
232 | 232 |
intersection(_points[r.curr], _points[r.next], _sweep) : |
233 | 233 |
std::numeric_limits<double>::infinity(); |
234 | 234 |
|
235 | 235 |
if (lbx > lex) std::swap(lbx, lex); |
236 | 236 |
if (rbx > rex) std::swap(rbx, rex); |
237 | 237 |
|
238 | 238 |
if (lex < epsilon + rex && lbx + epsilon < rex) return true; |
239 | 239 |
if (rex < epsilon + lex && rbx + epsilon < lex) return false; |
240 | 240 |
return lex < rex; |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
const std::vector<Point>& _points; |
244 | 244 |
double& _sweep; |
245 | 245 |
}; |
246 | 246 |
|
247 | 247 |
struct BeachIt; |
248 | 248 |
|
249 | 249 |
typedef std::multimap<double, BeachIt> SpikeHeap; |
250 | 250 |
|
251 | 251 |
typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach; |
252 | 252 |
|
253 | 253 |
struct BeachIt { |
254 | 254 |
Beach::iterator it; |
255 | 255 |
|
256 | 256 |
BeachIt(Beach::iterator iter) : it(iter) {} |
257 | 257 |
}; |
258 | 258 |
|
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
inline void delaunay() { |
262 | 262 |
Counter cnt("Number of arcs added: "); |
263 | 263 |
|
264 | 264 |
using namespace _delaunay_bits; |
265 | 265 |
|
266 | 266 |
typedef _delaunay_bits::Part Part; |
267 | 267 |
typedef std::vector<std::pair<double, int> > SiteHeap; |
268 | 268 |
|
269 | 269 |
|
270 | 270 |
std::vector<Point> points; |
271 | 271 |
std::vector<Node> nodes; |
272 | 272 |
|
273 | 273 |
for (NodeIt it(g); it != INVALID; ++it) { |
274 | 274 |
nodes.push_back(it); |
275 | 275 |
points.push_back(coords[it]); |
276 | 276 |
} |
277 | 277 |
|
278 | 278 |
SiteHeap siteheap(points.size()); |
279 | 279 |
|
280 | 280 |
double sweep; |
281 | 281 |
|
282 | 282 |
|
283 | 283 |
for (int i = 0; i < int(siteheap.size()); ++i) { |
284 | 284 |
siteheap[i] = std::make_pair(points[i].x, i); |
285 | 285 |
} |
286 | 286 |
|
287 | 287 |
std::sort(siteheap.begin(), siteheap.end()); |
288 | 288 |
sweep = siteheap.front().first; |
289 | 289 |
|
290 | 290 |
YLess yless(points, sweep); |
291 | 291 |
Beach beach(yless); |
292 | 292 |
|
293 | 293 |
SpikeHeap spikeheap; |
294 | 294 |
|
295 | 295 |
std::set<std::pair<int, int> > arcs; |
296 | 296 |
|
297 | 297 |
int siteindex = 0; |
298 | 298 |
{ |
299 | 299 |
SiteHeap front; |
300 | 300 |
|
301 | 301 |
while (siteindex < int(siteheap.size()) && |
302 | 302 |
siteheap[0].first == siteheap[siteindex].first) { |
303 | 303 |
front.push_back(std::make_pair(points[siteheap[siteindex].second].y, |
304 | 304 |
siteheap[siteindex].second)); |
305 | 305 |
++siteindex; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
std::sort(front.begin(), front.end()); |
309 | 309 |
|
310 | 310 |
for (int i = 0; i < int(front.size()); ++i) { |
311 | 311 |
int prev = (i == 0 ? -1 : front[i - 1].second); |
312 | 312 |
int curr = front[i].second; |
313 | 313 |
int next = (i + 1 == int(front.size()) ? -1 : front[i + 1].second); |
314 | 314 |
|
315 | 315 |
beach.insert(std::make_pair(Part(prev, curr, next), |
316 | 316 |
spikeheap.end())); |
317 | 317 |
} |
318 | 318 |
} |
319 | 319 |
|
320 | 320 |
while (siteindex < int(points.size()) || !spikeheap.empty()) { |
321 | 321 |
|
322 | 322 |
SpikeHeap::iterator spit = spikeheap.begin(); |
323 | 323 |
|
324 | 324 |
if (siteindex < int(points.size()) && |
325 | 325 |
(spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) { |
326 | 326 |
int site = siteheap[siteindex].second; |
327 | 327 |
sweep = siteheap[siteindex].first; |
328 | 328 |
|
329 | 329 |
Beach::iterator bit = beach.upper_bound(Part(site, site, site)); |
330 | 330 |
|
331 | 331 |
if (bit->second != spikeheap.end()) { |
332 | 332 |
spikeheap.erase(bit->second); |
333 | 333 |
} |
334 | 334 |
|
335 | 335 |
int prev = bit->first.prev; |
336 | 336 |
int curr = bit->first.curr; |
337 | 337 |
int next = bit->first.next; |
338 | 338 |
|
339 | 339 |
beach.erase(bit); |
340 | 340 |
|
341 | 341 |
SpikeHeap::iterator pit = spikeheap.end(); |
342 | 342 |
if (prev != -1 && |
343 | 343 |
circle_form(points[prev], points[curr], points[site])) { |
344 | 344 |
double x = circle_point(points[prev], points[curr], points[site]); |
345 | 345 |
pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
346 | 346 |
pit->second.it = |
347 | 347 |
beach.insert(std::make_pair(Part(prev, curr, site), pit)); |
348 | 348 |
} else { |
349 | 349 |
beach.insert(std::make_pair(Part(prev, curr, site), pit)); |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end())); |
353 | 353 |
|
354 | 354 |
SpikeHeap::iterator nit = spikeheap.end(); |
355 | 355 |
if (next != -1 && |
356 | 356 |
circle_form(points[site], points[curr],points[next])) { |
357 | 357 |
double x = circle_point(points[site], points[curr], points[next]); |
358 | 358 |
nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
359 | 359 |
nit->second.it = |
360 | 360 |
beach.insert(std::make_pair(Part(site, curr, next), nit)); |
361 | 361 |
} else { |
362 | 362 |
beach.insert(std::make_pair(Part(site, curr, next), nit)); |
363 | 363 |
} |
364 | 364 |
|
365 | 365 |
++siteindex; |
366 | 366 |
} else { |
367 | 367 |
sweep = spit->first; |
368 | 368 |
|
369 | 369 |
Beach::iterator bit = spit->second.it; |
370 | 370 |
|
371 | 371 |
int prev = bit->first.prev; |
372 | 372 |
int curr = bit->first.curr; |
373 | 373 |
int next = bit->first.next; |
374 | 374 |
|
375 | 375 |
{ |
376 | 376 |
std::pair<int, int> arc; |
377 | 377 |
|
378 | 378 |
arc = prev < curr ? |
379 | 379 |
std::make_pair(prev, curr) : std::make_pair(curr, prev); |
380 | 380 |
|
381 | 381 |
if (arcs.find(arc) == arcs.end()) { |
382 | 382 |
arcs.insert(arc); |
383 | 383 |
g.addEdge(nodes[prev], nodes[curr]); |
384 | 384 |
++cnt; |
385 | 385 |
} |
386 | 386 |
|
387 | 387 |
arc = curr < next ? |
388 | 388 |
std::make_pair(curr, next) : std::make_pair(next, curr); |
389 | 389 |
|
390 | 390 |
if (arcs.find(arc) == arcs.end()) { |
391 | 391 |
arcs.insert(arc); |
392 | 392 |
g.addEdge(nodes[curr], nodes[next]); |
393 | 393 |
++cnt; |
394 | 394 |
} |
395 | 395 |
} |
396 | 396 |
|
397 | 397 |
Beach::iterator pbit = bit; --pbit; |
398 | 398 |
int ppv = pbit->first.prev; |
399 | 399 |
Beach::iterator nbit = bit; ++nbit; |
400 | 400 |
int nnt = nbit->first.next; |
401 | 401 |
|
402 | 402 |
if (bit->second != spikeheap.end()) spikeheap.erase(bit->second); |
403 | 403 |
if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second); |
404 | 404 |
if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second); |
405 | 405 |
|
406 | 406 |
beach.erase(nbit); |
407 | 407 |
beach.erase(bit); |
408 | 408 |
beach.erase(pbit); |
409 | 409 |
|
410 | 410 |
SpikeHeap::iterator pit = spikeheap.end(); |
411 | 411 |
if (ppv != -1 && ppv != next && |
412 | 412 |
circle_form(points[ppv], points[prev], points[next])) { |
413 | 413 |
double x = circle_point(points[ppv], points[prev], points[next]); |
414 | 414 |
if (x < sweep) x = sweep; |
415 | 415 |
pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
416 | 416 |
pit->second.it = |
417 | 417 |
beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
418 | 418 |
} else { |
419 | 419 |
beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
420 | 420 |
} |
421 | 421 |
|
422 | 422 |
SpikeHeap::iterator nit = spikeheap.end(); |
423 | 423 |
if (nnt != -1 && prev != nnt && |
424 | 424 |
circle_form(points[prev], points[next], points[nnt])) { |
425 | 425 |
double x = circle_point(points[prev], points[next], points[nnt]); |
426 | 426 |
if (x < sweep) x = sweep; |
427 | 427 |
nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
428 | 428 |
nit->second.it = |
429 | 429 |
beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
430 | 430 |
} else { |
431 | 431 |
beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
432 | 432 |
} |
433 | 433 |
|
434 | 434 |
} |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) { |
438 | 438 |
int curr = it->first.curr; |
439 | 439 |
int next = it->first.next; |
440 | 440 |
|
441 | 441 |
if (next == -1) continue; |
442 | 442 |
|
443 | 443 |
std::pair<int, int> arc; |
444 | 444 |
|
445 | 445 |
arc = curr < next ? |
446 | 446 |
std::make_pair(curr, next) : std::make_pair(next, curr); |
447 | 447 |
|
448 | 448 |
if (arcs.find(arc) == arcs.end()) { |
449 | 449 |
arcs.insert(arc); |
450 | 450 |
g.addEdge(nodes[curr], nodes[next]); |
451 | 451 |
++cnt; |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
} |
455 | 455 |
|
456 | 456 |
void sparse(int d) |
457 | 457 |
{ |
458 | 458 |
Counter cnt("Number of arcs removed: "); |
459 | 459 |
Bfs<ListGraph> bfs(g); |
460 | 460 |
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin(); |
461 | 461 |
ei!=arcs.rend();++ei) |
462 | 462 |
{ |
463 | 463 |
Node a=g.u(*ei); |
464 | 464 |
Node b=g.v(*ei); |
465 | 465 |
g.erase(*ei); |
466 | 466 |
bfs.run(a,b); |
467 | 467 |
if(bfs.predArc(b)==INVALID || bfs.dist(b)>d) |
468 | 468 |
g.addEdge(a,b); |
469 | 469 |
else cnt++; |
470 | 470 |
} |
471 | 471 |
} |
472 | 472 |
|
473 | 473 |
void sparse2(int d) |
474 | 474 |
{ |
475 | 475 |
Counter cnt("Number of arcs removed: "); |
476 | 476 |
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin(); |
477 | 477 |
ei!=arcs.rend();++ei) |
478 | 478 |
{ |
479 | 479 |
Node a=g.u(*ei); |
480 | 480 |
Node b=g.v(*ei); |
481 | 481 |
g.erase(*ei); |
482 | 482 |
ConstMap<Arc,int> cegy(1); |
483 |
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy,a,b); |
|
484 |
int k=sur.run(2); |
|
483 |
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy); |
|
484 |
int k=sur.run(a,b,2); |
|
485 | 485 |
if(k<2 || sur.totalLength()>d) |
486 | 486 |
g.addEdge(a,b); |
487 | 487 |
else cnt++; |
488 | 488 |
// else std::cout << "Remove arc " << g.id(a) << "-" << g.id(b) << '\n'; |
489 | 489 |
} |
490 | 490 |
} |
491 | 491 |
|
492 | 492 |
void sparseTriangle(int d) |
493 | 493 |
{ |
494 | 494 |
Counter cnt("Number of arcs added: "); |
495 | 495 |
std::vector<Parc> pedges; |
496 | 496 |
for(NodeIt n(g);n!=INVALID;++n) |
497 | 497 |
for(NodeIt m=++(NodeIt(n));m!=INVALID;++m) |
498 | 498 |
{ |
499 | 499 |
Parc p; |
500 | 500 |
p.a=n; |
501 | 501 |
p.b=m; |
502 | 502 |
p.len=(coords[m]-coords[n]).normSquare(); |
503 | 503 |
pedges.push_back(p); |
504 | 504 |
} |
505 | 505 |
std::sort(pedges.begin(),pedges.end(),pedgeLess); |
506 | 506 |
for(std::vector<Parc>::iterator pi=pedges.begin();pi!=pedges.end();++pi) |
507 | 507 |
{ |
508 | 508 |
Line li(pi->a,pi->b); |
509 | 509 |
EdgeIt e(g); |
510 | 510 |
for(;e!=INVALID && !cross(e,li);++e) ; |
511 | 511 |
Edge ne; |
512 | 512 |
if(e==INVALID) { |
513 | 513 |
ConstMap<Arc,int> cegy(1); |
514 |
Suurballe<ListGraph,ConstMap<Arc,int> > |
|
515 |
sur(g,cegy,pi->a,pi->b); |
|
516 |
int |
|
514 |
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy); |
|
515 |
int k=sur.run(pi->a,pi->b,2); |
|
517 | 516 |
if(k<2 || sur.totalLength()>d) |
518 | 517 |
{ |
519 | 518 |
ne=g.addEdge(pi->a,pi->b); |
520 | 519 |
arcs.push_back(ne); |
521 | 520 |
cnt++; |
522 | 521 |
} |
523 | 522 |
} |
524 | 523 |
} |
525 | 524 |
} |
526 | 525 |
|
527 | 526 |
template <typename Graph, typename CoordMap> |
528 | 527 |
class LengthSquareMap { |
529 | 528 |
public: |
530 | 529 |
typedef typename Graph::Edge Key; |
531 | 530 |
typedef typename CoordMap::Value::Value Value; |
532 | 531 |
|
533 | 532 |
LengthSquareMap(const Graph& graph, const CoordMap& coords) |
534 | 533 |
: _graph(graph), _coords(coords) {} |
535 | 534 |
|
536 | 535 |
Value operator[](const Key& key) const { |
537 | 536 |
return (_coords[_graph.v(key)] - |
538 | 537 |
_coords[_graph.u(key)]).normSquare(); |
539 | 538 |
} |
540 | 539 |
|
541 | 540 |
private: |
542 | 541 |
|
543 | 542 |
const Graph& _graph; |
544 | 543 |
const CoordMap& _coords; |
545 | 544 |
}; |
546 | 545 |
|
547 | 546 |
void minTree() { |
548 | 547 |
std::vector<Parc> pedges; |
549 | 548 |
Timer T; |
550 | 549 |
std::cout << T.realTime() << "s: Creating delaunay triangulation...\n"; |
551 | 550 |
delaunay(); |
552 | 551 |
std::cout << T.realTime() << "s: Calculating spanning tree...\n"; |
553 | 552 |
LengthSquareMap<ListGraph, ListGraph::NodeMap<Point> > ls(g, coords); |
554 | 553 |
ListGraph::EdgeMap<bool> tree(g); |
555 | 554 |
kruskal(g, ls, tree); |
556 | 555 |
std::cout << T.realTime() << "s: Removing non tree arcs...\n"; |
557 | 556 |
std::vector<Edge> remove; |
558 | 557 |
for (EdgeIt e(g); e != INVALID; ++e) { |
559 | 558 |
if (!tree[e]) remove.push_back(e); |
560 | 559 |
} |
561 | 560 |
for(int i = 0; i < int(remove.size()); ++i) { |
562 | 561 |
g.erase(remove[i]); |
563 | 562 |
} |
564 | 563 |
std::cout << T.realTime() << "s: Done\n"; |
565 | 564 |
} |
566 | 565 |
|
567 | 566 |
void tsp2() |
568 | 567 |
{ |
569 | 568 |
std::cout << "Find a tree..." << std::endl; |
570 | 569 |
|
571 | 570 |
minTree(); |
572 | 571 |
|
573 | 572 |
std::cout << "Total arc length (tree) : " << totalLen() << std::endl; |
574 | 573 |
|
575 | 574 |
std::cout << "Make it Euler..." << std::endl; |
576 | 575 |
|
577 | 576 |
{ |
578 | 577 |
std::vector<Node> leafs; |
579 | 578 |
for(NodeIt n(g);n!=INVALID;++n) |
580 | 579 |
if(countIncEdges(g,n)%2==1) leafs.push_back(n); |
581 | 580 |
|
582 | 581 |
// for(unsigned int i=0;i<leafs.size();i+=2) |
583 | 582 |
// g.addArc(leafs[i],leafs[i+1]); |
584 | 583 |
|
585 | 584 |
std::vector<Parc> pedges; |
586 | 585 |
for(unsigned int i=0;i<leafs.size()-1;i++) |
587 | 586 |
for(unsigned int j=i+1;j<leafs.size();j++) |
588 | 587 |
{ |
589 | 588 |
Node n=leafs[i]; |
590 | 589 |
Node m=leafs[j]; |
591 | 590 |
Parc p; |
592 | 591 |
p.a=n; |
593 | 592 |
p.b=m; |
594 | 593 |
p.len=(coords[m]-coords[n]).normSquare(); |
595 | 594 |
pedges.push_back(p); |
596 | 595 |
} |
597 | 596 |
std::sort(pedges.begin(),pedges.end(),pedgeLess); |
598 | 597 |
for(unsigned int i=0;i<pedges.size();i++) |
599 | 598 |
if(countIncEdges(g,pedges[i].a)%2 && |
600 | 599 |
countIncEdges(g,pedges[i].b)%2) |
601 | 600 |
g.addEdge(pedges[i].a,pedges[i].b); |
602 | 601 |
} |
603 | 602 |
|
604 | 603 |
for(NodeIt n(g);n!=INVALID;++n) |
605 | 604 |
if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 ) |
606 | 605 |
std::cout << "GEBASZ!!!" << std::endl; |
607 | 606 |
|
608 | 607 |
for(EdgeIt e(g);e!=INVALID;++e) |
609 | 608 |
if(g.u(e)==g.v(e)) |
610 | 609 |
std::cout << "LOOP GEBASZ!!!" << std::endl; |
611 | 610 |
|
612 | 611 |
std::cout << "Number of arcs : " << countEdges(g) << std::endl; |
613 | 612 |
|
614 | 613 |
std::cout << "Total arc length (euler) : " << totalLen() << std::endl; |
615 | 614 |
|
616 | 615 |
ListGraph::EdgeMap<Arc> enext(g); |
617 | 616 |
{ |
618 | 617 |
EulerIt<ListGraph> e(g); |
619 | 618 |
Arc eo=e; |
620 | 619 |
Arc ef=e; |
621 | 620 |
// std::cout << "Tour arc: " << g.id(Edge(e)) << std::endl; |
622 | 621 |
for(++e;e!=INVALID;++e) |
623 | 622 |
{ |
624 | 623 |
// std::cout << "Tour arc: " << g.id(Edge(e)) << std::endl; |
625 | 624 |
enext[eo]=e; |
626 | 625 |
eo=e; |
627 | 626 |
} |
628 | 627 |
enext[eo]=ef; |
629 | 628 |
} |
630 | 629 |
|
631 | 630 |
std::cout << "Creating a tour from that..." << std::endl; |
632 | 631 |
|
633 | 632 |
int nnum = countNodes(g); |
634 | 633 |
int ednum = countEdges(g); |
635 | 634 |
|
636 | 635 |
for(Arc p=enext[EdgeIt(g)];ednum>nnum;p=enext[p]) |
637 | 636 |
{ |
638 | 637 |
// std::cout << "Checking arc " << g.id(p) << std::endl; |
639 | 638 |
Arc e=enext[p]; |
640 | 639 |
Arc f=enext[e]; |
641 | 640 |
Node n2=g.source(f); |
642 | 641 |
Node n1=g.oppositeNode(n2,e); |
643 | 642 |
Node n3=g.oppositeNode(n2,f); |
644 | 643 |
if(countIncEdges(g,n2)>2) |
645 | 644 |
{ |
646 | 645 |
// std::cout << "Remove an Arc" << std::endl; |
647 | 646 |
Arc ff=enext[f]; |
648 | 647 |
g.erase(e); |
649 | 648 |
g.erase(f); |
650 | 649 |
if(n1!=n3) |
651 | 650 |
{ |
652 | 651 |
Arc ne=g.direct(g.addEdge(n1,n3),n1); |
653 | 652 |
enext[p]=ne; |
654 | 653 |
enext[ne]=ff; |
655 | 654 |
ednum--; |
656 | 655 |
} |
657 | 656 |
else { |
658 | 657 |
enext[p]=ff; |
659 | 658 |
ednum-=2; |
660 | 659 |
} |
661 | 660 |
} |
662 | 661 |
} |
663 | 662 |
|
664 | 663 |
std::cout << "Total arc length (tour) : " << totalLen() << std::endl; |
665 | 664 |
|
666 | 665 |
std::cout << "2-opt the tour..." << std::endl; |
667 | 666 |
|
668 | 667 |
tsp_improve(); |
669 | 668 |
|
670 | 669 |
std::cout << "Total arc length (2-opt tour) : " << totalLen() << std::endl; |
671 | 670 |
} |
672 | 671 |
|
673 | 672 |
|
674 | 673 |
int main(int argc,const char **argv) |
675 | 674 |
{ |
676 | 675 |
ArgParser ap(argc,argv); |
677 | 676 |
|
678 | 677 |
// bool eps; |
679 | 678 |
bool disc_d, square_d, gauss_d; |
680 | 679 |
// bool tsp_a,two_a,tree_a; |
681 | 680 |
int num_of_cities=1; |
682 | 681 |
double area=1; |
683 | 682 |
N=100; |
684 | 683 |
// girth=10; |
685 | 684 |
std::string ndist("disc"); |
686 | 685 |
ap.refOption("n", "Number of nodes (default is 100)", N) |
687 | 686 |
.intOption("g", "Girth parameter (default is 10)", 10) |
688 | 687 |
.refOption("cities", "Number of cities (default is 1)", num_of_cities) |
689 | 688 |
.refOption("area", "Full relative area of the cities (default is 1)", area) |
690 | 689 |
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)",disc_d) |
691 | 690 |
.optionGroup("dist", "disc") |
692 | 691 |
.refOption("square", "Nodes are evenly distributed on a unit square", square_d) |
693 | 692 |
.optionGroup("dist", "square") |
694 | 693 |
.refOption("gauss", |
695 | 694 |
"Nodes are located according to a two-dim gauss distribution", |
696 | 695 |
gauss_d) |
697 | 696 |
.optionGroup("dist", "gauss") |
698 | 697 |
// .mandatoryGroup("dist") |
699 | 698 |
.onlyOneGroup("dist") |
700 | 699 |
.boolOption("eps", "Also generate .eps output (prefix.eps)") |
701 | 700 |
.boolOption("nonodes", "Draw the edges only in the generated .eps") |
702 | 701 |
.boolOption("dir", "Directed digraph is generated (each arcs are replaced by two directed ones)") |
703 | 702 |
.boolOption("2con", "Create a two connected planar digraph") |
704 | 703 |
.optionGroup("alg","2con") |
705 | 704 |
.boolOption("tree", "Create a min. cost spanning tree") |
706 | 705 |
.optionGroup("alg","tree") |
707 | 706 |
.boolOption("tsp", "Create a TSP tour") |
708 | 707 |
.optionGroup("alg","tsp") |
709 | 708 |
.boolOption("tsp2", "Create a TSP tour (tree based)") |
710 | 709 |
.optionGroup("alg","tsp2") |
711 | 710 |
.boolOption("dela", "Delaunay triangulation digraph") |
712 | 711 |
.optionGroup("alg","dela") |
713 | 712 |
.onlyOneGroup("alg") |
714 | 713 |
.boolOption("rand", "Use time seed for random number generator") |
715 | 714 |
.optionGroup("rand", "rand") |
716 | 715 |
.intOption("seed", "Random seed", -1) |
717 | 716 |
.optionGroup("rand", "seed") |
718 | 717 |
.onlyOneGroup("rand") |
719 | 718 |
.other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'") |
720 | 719 |
.run(); |
721 | 720 |
|
722 | 721 |
if (ap["rand"]) { |
723 | 722 |
int seed = int(time(0)); |
724 | 723 |
std::cout << "Random number seed: " << seed << std::endl; |
725 | 724 |
rnd = Random(seed); |
726 | 725 |
} |
727 | 726 |
if (ap.given("seed")) { |
728 | 727 |
int seed = ap["seed"]; |
729 | 728 |
std::cout << "Random number seed: " << seed << std::endl; |
730 | 729 |
rnd = Random(seed); |
731 | 730 |
} |
732 | 731 |
|
733 | 732 |
std::string prefix; |
734 | 733 |
switch(ap.files().size()) |
735 | 734 |
{ |
736 | 735 |
case 0: |
737 | 736 |
prefix="lgf-gen-out"; |
738 | 737 |
break; |
739 | 738 |
case 1: |
740 | 739 |
prefix=ap.files()[0]; |
741 | 740 |
break; |
742 | 741 |
default: |
743 | 742 |
std::cerr << "\nAt most one prefix can be given\n\n"; |
744 | 743 |
exit(1); |
745 | 744 |
} |
746 | 745 |
|
747 | 746 |
double sum_sizes=0; |
748 | 747 |
std::vector<double> sizes; |
749 | 748 |
std::vector<double> cum_sizes; |
750 | 749 |
for(int s=0;s<num_of_cities;s++) |
751 | 750 |
{ |
752 | 751 |
// sum_sizes+=rnd.exponential(); |
753 | 752 |
double d=rnd(); |
754 | 753 |
sum_sizes+=d; |
755 | 754 |
sizes.push_back(d); |
756 | 755 |
cum_sizes.push_back(sum_sizes); |
757 | 756 |
} |
758 | 757 |
int i=0; |
759 | 758 |
for(int s=0;s<num_of_cities;s++) |
760 | 759 |
{ |
761 | 760 |
Point center=(num_of_cities==1?Point(0,0):rnd.disc()); |
762 | 761 |
if(gauss_d) |
763 | 762 |
for(;i<N*(cum_sizes[s]/sum_sizes);i++) { |
764 | 763 |
Node n=g.addNode(); |
765 | 764 |
nodes.push_back(n); |
766 | 765 |
coords[n]=center+rnd.gauss2()*area* |
767 | 766 |
std::sqrt(sizes[s]/sum_sizes); |
768 | 767 |
} |
769 | 768 |
else if(square_d) |
770 | 769 |
for(;i<N*(cum_sizes[s]/sum_sizes);i++) { |
771 | 770 |
Node n=g.addNode(); |
772 | 771 |
nodes.push_back(n); |
773 | 772 |
coords[n]=center+Point(rnd()*2-1,rnd()*2-1)*area* |
774 | 773 |
std::sqrt(sizes[s]/sum_sizes); |
775 | 774 |
} |
776 | 775 |
else if(disc_d || true) |
777 | 776 |
for(;i<N*(cum_sizes[s]/sum_sizes);i++) { |
778 | 777 |
Node n=g.addNode(); |
779 | 778 |
nodes.push_back(n); |
780 | 779 |
coords[n]=center+rnd.disc()*area* |
781 | 780 |
std::sqrt(sizes[s]/sum_sizes); |
782 | 781 |
} |
783 | 782 |
} |
784 | 783 |
|
785 | 784 |
// for (ListGraph::NodeIt n(g); n != INVALID; ++n) { |
786 | 785 |
// std::cerr << coords[n] << std::endl; |
787 | 786 |
// } |
788 | 787 |
|
789 | 788 |
if(ap["tsp"]) { |
790 | 789 |
tsp(); |
791 | 790 |
std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl; |
792 | 791 |
} |
793 | 792 |
if(ap["tsp2"]) { |
794 | 793 |
tsp2(); |
795 | 794 |
std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl; |
796 | 795 |
} |
797 | 796 |
else if(ap["2con"]) { |
798 | 797 |
std::cout << "Make triangles\n"; |
799 | 798 |
// triangle(); |
800 | 799 |
sparseTriangle(ap["g"]); |
801 | 800 |
std::cout << "Make it sparser\n"; |
802 | 801 |
sparse2(ap["g"]); |
803 | 802 |
} |
804 | 803 |
else if(ap["tree"]) { |
805 | 804 |
minTree(); |
806 | 805 |
} |
807 | 806 |
else if(ap["dela"]) { |
808 | 807 |
delaunay(); |
809 | 808 |
} |
810 | 809 |
|
811 | 810 |
|
812 | 811 |
std::cout << "Number of nodes : " << countNodes(g) << std::endl; |
813 | 812 |
std::cout << "Number of arcs : " << countEdges(g) << std::endl; |
814 | 813 |
double tlen=0; |
815 | 814 |
for(EdgeIt e(g);e!=INVALID;++e) |
816 | 815 |
tlen+=std::sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare()); |
817 | 816 |
std::cout << "Total arc length : " << tlen << std::endl; |
818 | 817 |
|
819 | 818 |
if(ap["eps"]) |
820 | 819 |
graphToEps(g,prefix+".eps").scaleToA4(). |
821 | 820 |
scale(600).nodeScale(.005).arcWidthScale(.001).preScale(false). |
822 | 821 |
coords(coords).hideNodes(ap.given("nonodes")).run(); |
823 | 822 |
|
824 | 823 |
if(ap["dir"]) |
825 | 824 |
DigraphWriter<ListGraph>(g,prefix+".lgf"). |
826 | 825 |
nodeMap("coordinates_x",scaleMap(xMap(coords),600)). |
827 | 826 |
nodeMap("coordinates_y",scaleMap(yMap(coords),600)). |
828 | 827 |
run(); |
829 | 828 |
else GraphWriter<ListGraph>(g,prefix+".lgf"). |
830 | 829 |
nodeMap("coordinates_x",scaleMap(xMap(coords),600)). |
831 | 830 |
nodeMap("coordinates_y",scaleMap(yMap(coords),600)). |
832 | 831 |
run(); |
833 | 832 |
} |
834 | 833 |
|
0 comments (0 inline)