0
2
0
... | ... |
@@ -92,199 +92,182 @@ |
92 | 92 |
} |
93 | 93 |
} |
94 | 94 |
} |
95 | 95 |
|
96 | 96 |
void backtrack(const Arc& arc) { |
97 | 97 |
Node source = _graph.source(arc); |
98 | 98 |
Node target = _graph.target(arc); |
99 | 99 |
|
100 | 100 |
if (_low_map[source] > _low_map[target]) { |
101 | 101 |
_low_map[source] = _low_map[target]; |
102 | 102 |
} |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
const Graph& _graph; |
106 | 106 |
PredMap& _pred_map; |
107 | 107 |
TreeMap& _tree_map; |
108 | 108 |
OrderMap& _order_map; |
109 | 109 |
OrderList& _order_list; |
110 | 110 |
AncestorMap& _ancestor_map; |
111 | 111 |
LowMap& _low_map; |
112 | 112 |
}; |
113 | 113 |
|
114 | 114 |
template <typename Graph, bool embedding = true> |
115 | 115 |
struct NodeDataNode { |
116 | 116 |
int prev, next; |
117 | 117 |
int visited; |
118 | 118 |
typename Graph::Arc first; |
119 | 119 |
bool inverted; |
120 | 120 |
}; |
121 | 121 |
|
122 | 122 |
template <typename Graph> |
123 | 123 |
struct NodeDataNode<Graph, false> { |
124 | 124 |
int prev, next; |
125 | 125 |
int visited; |
126 | 126 |
}; |
127 | 127 |
|
128 | 128 |
template <typename Graph> |
129 | 129 |
struct ChildListNode { |
130 | 130 |
typedef typename Graph::Node Node; |
131 | 131 |
Node first; |
132 | 132 |
Node prev, next; |
133 | 133 |
}; |
134 | 134 |
|
135 | 135 |
template <typename Graph> |
136 | 136 |
struct ArcListNode { |
137 | 137 |
typename Graph::Arc prev, next; |
138 | 138 |
}; |
139 | 139 |
|
140 |
} |
|
141 |
|
|
142 |
/// \ingroup planar |
|
143 |
/// |
|
144 |
/// \brief Planarity checking of an undirected simple graph |
|
145 |
/// |
|
146 |
/// This class implements the Boyer-Myrvold algorithm for planarity |
|
147 |
/// checking of an undirected graph. This class is a simplified |
|
148 |
/// version of the PlanarEmbedding algorithm class because neither |
|
149 |
/// the embedding nor the kuratowski subdivisons are not computed. |
|
150 | 140 |
template <typename Graph> |
151 | 141 |
class PlanarityChecking { |
152 | 142 |
private: |
153 | 143 |
|
154 | 144 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
155 | 145 |
|
156 | 146 |
const Graph& _graph; |
157 | 147 |
|
158 | 148 |
private: |
159 | 149 |
|
160 | 150 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
161 | 151 |
|
162 | 152 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
163 | 153 |
|
164 | 154 |
typedef typename Graph::template NodeMap<int> OrderMap; |
165 | 155 |
typedef std::vector<Node> OrderList; |
166 | 156 |
|
167 | 157 |
typedef typename Graph::template NodeMap<int> LowMap; |
168 | 158 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
169 | 159 |
|
170 | 160 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
171 | 161 |
typedef std::vector<NodeDataNode> NodeData; |
172 | 162 |
|
173 | 163 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
174 | 164 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
175 | 165 |
|
176 | 166 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
177 | 167 |
|
178 | 168 |
typedef typename Graph::template NodeMap<bool> EmbedArc; |
179 | 169 |
|
180 | 170 |
public: |
181 | 171 |
|
182 |
/// \brief Constructor |
|
183 |
/// |
|
184 |
/// \note The graph should be simple, i.e. parallel and loop arc |
|
185 |
/// free. |
|
186 | 172 |
PlanarityChecking(const Graph& graph) : _graph(graph) {} |
187 | 173 |
|
188 |
/// \brief Runs the algorithm. |
|
189 |
/// |
|
190 |
/// Runs the algorithm. |
|
191 |
/// \return %True when the graph is planar. |
|
192 | 174 |
bool run() { |
193 | 175 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
194 | 176 |
|
195 | 177 |
PredMap pred_map(_graph, INVALID); |
196 | 178 |
TreeMap tree_map(_graph, false); |
197 | 179 |
|
198 | 180 |
OrderMap order_map(_graph, -1); |
199 | 181 |
OrderList order_list; |
200 | 182 |
|
201 | 183 |
AncestorMap ancestor_map(_graph, -1); |
202 | 184 |
LowMap low_map(_graph, -1); |
203 | 185 |
|
204 | 186 |
Visitor visitor(_graph, pred_map, tree_map, |
205 | 187 |
order_map, order_list, ancestor_map, low_map); |
206 | 188 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
207 | 189 |
visit.run(); |
208 | 190 |
|
209 | 191 |
ChildLists child_lists(_graph); |
210 | 192 |
createChildLists(tree_map, order_map, low_map, child_lists); |
211 | 193 |
|
212 | 194 |
NodeData node_data(2 * order_list.size()); |
213 | 195 |
|
214 | 196 |
EmbedArc embed_arc(_graph, false); |
215 | 197 |
|
216 | 198 |
MergeRoots merge_roots(_graph); |
217 | 199 |
|
218 | 200 |
for (int i = order_list.size() - 1; i >= 0; --i) { |
219 | 201 |
|
220 | 202 |
Node node = order_list[i]; |
221 | 203 |
|
222 | 204 |
Node source = node; |
223 | 205 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
224 | 206 |
Node target = _graph.target(e); |
225 | 207 |
|
226 | 208 |
if (order_map[source] < order_map[target] && tree_map[e]) { |
227 | 209 |
initFace(target, node_data, order_map, order_list); |
228 | 210 |
} |
229 | 211 |
} |
230 | 212 |
|
231 | 213 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
232 | 214 |
Node target = _graph.target(e); |
233 | 215 |
|
234 | 216 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
235 | 217 |
embed_arc[target] = true; |
236 | 218 |
walkUp(target, source, i, pred_map, low_map, |
237 | 219 |
order_map, order_list, node_data, merge_roots); |
238 | 220 |
} |
239 | 221 |
} |
240 | 222 |
|
241 | 223 |
for (typename MergeRoots::Value::iterator it = |
242 |
merge_roots[node].begin(); |
|
224 |
merge_roots[node].begin(); |
|
225 |
it != merge_roots[node].end(); ++it) { |
|
243 | 226 |
int rn = *it; |
244 | 227 |
walkDown(rn, i, node_data, order_list, child_lists, |
245 | 228 |
ancestor_map, low_map, embed_arc, merge_roots); |
246 | 229 |
} |
247 | 230 |
merge_roots[node].clear(); |
248 | 231 |
|
249 | 232 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
250 | 233 |
Node target = _graph.target(e); |
251 | 234 |
|
252 | 235 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
253 | 236 |
if (embed_arc[target]) { |
254 | 237 |
return false; |
255 | 238 |
} |
256 | 239 |
} |
257 | 240 |
} |
258 | 241 |
} |
259 | 242 |
|
260 | 243 |
return true; |
261 | 244 |
} |
262 | 245 |
|
263 | 246 |
private: |
264 | 247 |
|
265 | 248 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
266 | 249 |
const LowMap& low_map, ChildLists& child_lists) { |
267 | 250 |
|
268 | 251 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
269 | 252 |
Node source = n; |
270 | 253 |
|
271 | 254 |
std::vector<Node> targets; |
272 | 255 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
273 | 256 |
Node target = _graph.target(e); |
274 | 257 |
|
275 | 258 |
if (order_map[source] < order_map[target] && tree_map[e]) { |
276 | 259 |
targets.push_back(target); |
277 | 260 |
} |
278 | 261 |
} |
279 | 262 |
|
280 | 263 |
if (targets.size() == 0) { |
281 | 264 |
child_lists[source].first = INVALID; |
282 | 265 |
} else if (targets.size() == 1) { |
283 | 266 |
child_lists[source].first = targets[0]; |
284 | 267 |
child_lists[targets[0]].prev = INVALID; |
285 | 268 |
child_lists[targets[0]].next = INVALID; |
286 | 269 |
} else { |
287 | 270 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
288 | 271 |
for (int i = 1; i < int(targets.size()); ++i) { |
289 | 272 |
child_lists[targets[i]].prev = targets[i - 1]; |
290 | 273 |
child_lists[targets[i - 1]].next = targets[i]; |
... | ... |
@@ -404,174 +387,191 @@ |
404 | 387 |
if (child_lists[child].next != INVALID) { |
405 | 388 |
child_lists[child_lists[child].next].prev = |
406 | 389 |
child_lists[child].prev; |
407 | 390 |
} |
408 | 391 |
|
409 | 392 |
// Merging external faces |
410 | 393 |
{ |
411 | 394 |
int en = cn; |
412 | 395 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
413 | 396 |
cd = node_data[cn].next == en; |
414 | 397 |
|
415 | 398 |
} |
416 | 399 |
|
417 | 400 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
418 | 401 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
419 | 402 |
|
420 | 403 |
} |
421 | 404 |
|
422 | 405 |
bool d = pn == node_data[n].prev; |
423 | 406 |
|
424 | 407 |
if (node_data[n].prev == node_data[n].next && |
425 | 408 |
node_data[n].inverted) { |
426 | 409 |
d = !d; |
427 | 410 |
} |
428 | 411 |
|
429 | 412 |
// Embedding arc into external face |
430 | 413 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
431 | 414 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
432 | 415 |
pn = rn; |
433 | 416 |
|
434 | 417 |
embed_arc[order_list[n]] = false; |
435 | 418 |
} |
436 | 419 |
|
437 | 420 |
if (!merge_roots[node].empty()) { |
438 | 421 |
|
439 | 422 |
bool d = pn == node_data[n].prev; |
440 | 423 |
|
441 | 424 |
merge_stack.push_back(std::make_pair(n, d)); |
442 | 425 |
|
443 | 426 |
int rn = merge_roots[node].front(); |
444 | 427 |
|
445 | 428 |
int xn = node_data[rn].next; |
446 | 429 |
Node xnode = order_list[xn]; |
447 | 430 |
|
448 | 431 |
int yn = node_data[rn].prev; |
449 | 432 |
Node ynode = order_list[yn]; |
450 | 433 |
|
451 | 434 |
bool rd; |
452 |
if (!external(xnode, rorder, child_lists, |
|
435 |
if (!external(xnode, rorder, child_lists, |
|
436 |
ancestor_map, low_map)) { |
|
453 | 437 |
rd = true; |
454 | 438 |
} else if (!external(ynode, rorder, child_lists, |
455 | 439 |
ancestor_map, low_map)) { |
456 | 440 |
rd = false; |
457 | 441 |
} else if (pertinent(xnode, embed_arc, merge_roots)) { |
458 | 442 |
rd = true; |
459 | 443 |
} else { |
460 | 444 |
rd = false; |
461 | 445 |
} |
462 | 446 |
|
463 | 447 |
merge_stack.push_back(std::make_pair(rn, rd)); |
464 | 448 |
|
465 | 449 |
pn = rn; |
466 | 450 |
n = rd ? xn : yn; |
467 | 451 |
|
468 | 452 |
} else if (!external(node, rorder, child_lists, |
469 | 453 |
ancestor_map, low_map)) { |
470 | 454 |
int nn = (node_data[n].next != pn ? |
471 | 455 |
node_data[n].next : node_data[n].prev); |
472 | 456 |
|
473 | 457 |
bool nd = n == node_data[nn].prev; |
474 | 458 |
|
475 | 459 |
if (nd) node_data[nn].prev = pn; |
476 | 460 |
else node_data[nn].next = pn; |
477 | 461 |
|
478 | 462 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
479 | 463 |
else node_data[pn].next = nn; |
480 | 464 |
|
481 | 465 |
node_data[nn].inverted = |
482 | 466 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
483 | 467 |
|
484 | 468 |
n = nn; |
485 | 469 |
} |
486 | 470 |
else break; |
487 | 471 |
|
488 | 472 |
} |
489 | 473 |
|
490 | 474 |
if (!merge_stack.empty() || n == rn) { |
491 | 475 |
break; |
492 | 476 |
} |
493 | 477 |
} |
494 | 478 |
} |
495 | 479 |
|
496 | 480 |
void initFace(const Node& node, NodeData& node_data, |
497 | 481 |
const OrderMap& order_map, const OrderList& order_list) { |
498 | 482 |
int n = order_map[node]; |
499 | 483 |
int rn = n + order_list.size(); |
500 | 484 |
|
501 | 485 |
node_data[n].next = node_data[n].prev = rn; |
502 | 486 |
node_data[rn].next = node_data[rn].prev = n; |
503 | 487 |
|
504 | 488 |
node_data[n].visited = order_list.size(); |
505 | 489 |
node_data[rn].visited = order_list.size(); |
506 | 490 |
|
507 | 491 |
} |
508 | 492 |
|
509 | 493 |
bool external(const Node& node, int rorder, |
510 | 494 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
511 | 495 |
LowMap& low_map) { |
512 | 496 |
Node child = child_lists[node].first; |
513 | 497 |
|
514 | 498 |
if (child != INVALID) { |
515 | 499 |
if (low_map[child] < rorder) return true; |
516 | 500 |
} |
517 | 501 |
|
518 | 502 |
if (ancestor_map[node] < rorder) return true; |
519 | 503 |
|
520 | 504 |
return false; |
521 | 505 |
} |
522 | 506 |
|
523 | 507 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
524 | 508 |
const MergeRoots& merge_roots) { |
525 | 509 |
return !merge_roots[node].empty() || embed_arc[node]; |
526 | 510 |
} |
527 | 511 |
|
528 | 512 |
}; |
529 | 513 |
|
514 |
} |
|
515 |
|
|
516 |
/// \ingroup planar |
|
517 |
/// |
|
518 |
/// \brief Planarity checking of an undirected simple graph |
|
519 |
/// |
|
520 |
/// This function implements the Boyer-Myrvold algorithm for |
|
521 |
/// planarity checking of an undirected graph. It is a simplified |
|
522 |
/// version of the PlanarEmbedding algorithm class because neither |
|
523 |
/// the embedding nor the kuratowski subdivisons are not computed. |
|
524 |
template <typename GR> |
|
525 |
bool checkPlanarity(const GR& graph) { |
|
526 |
_planarity_bits::PlanarityChecking<GR> pc(graph); |
|
527 |
return pc.run(); |
|
528 |
} |
|
529 |
|
|
530 | 530 |
/// \ingroup planar |
531 | 531 |
/// |
532 | 532 |
/// \brief Planar embedding of an undirected simple graph |
533 | 533 |
/// |
534 | 534 |
/// This class implements the Boyer-Myrvold algorithm for planar |
535 | 535 |
/// embedding of an undirected graph. The planar embedding is an |
536 | 536 |
/// ordering of the outgoing edges of the nodes, which is a possible |
537 | 537 |
/// configuration to draw the graph in the plane. If there is not |
538 | 538 |
/// such ordering then the graph contains a \f$ K_5 \f$ (full graph |
539 | 539 |
/// with 5 nodes) or a \f$ K_{3,3} \f$ (complete bipartite graph on |
540 | 540 |
/// 3 ANode and 3 BNode) subdivision. |
541 | 541 |
/// |
542 | 542 |
/// The current implementation calculates either an embedding or a |
543 | 543 |
/// Kuratowski subdivision. The running time of the algorithm is |
544 | 544 |
/// \f$ O(n) \f$. |
545 | 545 |
template <typename Graph> |
546 | 546 |
class PlanarEmbedding { |
547 | 547 |
private: |
548 | 548 |
|
549 | 549 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
550 | 550 |
|
551 | 551 |
const Graph& _graph; |
552 | 552 |
typename Graph::template ArcMap<Arc> _embedding; |
553 | 553 |
|
554 | 554 |
typename Graph::template EdgeMap<bool> _kuratowski; |
555 | 555 |
|
556 | 556 |
private: |
557 | 557 |
|
558 | 558 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
559 | 559 |
|
560 | 560 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
561 | 561 |
|
562 | 562 |
typedef typename Graph::template NodeMap<int> OrderMap; |
563 | 563 |
typedef std::vector<Node> OrderList; |
564 | 564 |
|
565 | 565 |
typedef typename Graph::template NodeMap<int> LowMap; |
566 | 566 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
567 | 567 |
|
568 | 568 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
569 | 569 |
typedef std::vector<NodeDataNode> NodeData; |
570 | 570 |
|
571 | 571 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
572 | 572 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
573 | 573 |
|
574 | 574 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
575 | 575 |
|
576 | 576 |
typedef typename Graph::template NodeMap<Arc> EmbedArc; |
577 | 577 |
|
... | ... |
@@ -667,97 +667,97 @@ |
667 | 667 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { |
668 | 668 |
int rn = *it; |
669 | 669 |
walkDown(rn, i, node_data, arc_lists, flip_map, order_list, |
670 | 670 |
child_lists, ancestor_map, low_map, embed_arc, merge_roots); |
671 | 671 |
} |
672 | 672 |
merge_roots[node].clear(); |
673 | 673 |
|
674 | 674 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
675 | 675 |
Node target = _graph.target(e); |
676 | 676 |
|
677 | 677 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
678 | 678 |
if (embed_arc[target] != INVALID) { |
679 | 679 |
if (kuratowski) { |
680 | 680 |
isolateKuratowski(e, node_data, arc_lists, flip_map, |
681 | 681 |
order_map, order_list, pred_map, child_lists, |
682 | 682 |
ancestor_map, low_map, |
683 | 683 |
embed_arc, merge_roots); |
684 | 684 |
} |
685 | 685 |
return false; |
686 | 686 |
} |
687 | 687 |
} |
688 | 688 |
} |
689 | 689 |
} |
690 | 690 |
|
691 | 691 |
for (int i = 0; i < int(order_list.size()); ++i) { |
692 | 692 |
|
693 | 693 |
mergeRemainingFaces(order_list[i], node_data, order_list, order_map, |
694 | 694 |
child_lists, arc_lists); |
695 | 695 |
storeEmbedding(order_list[i], node_data, order_map, pred_map, |
696 | 696 |
arc_lists, flip_map); |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
return true; |
700 | 700 |
} |
701 | 701 |
|
702 | 702 |
/// \brief Gives back the successor of an arc |
703 | 703 |
/// |
704 | 704 |
/// Gives back the successor of an arc. This function makes |
705 | 705 |
/// possible to query the cyclic order of the outgoing arcs from |
706 | 706 |
/// a node. |
707 | 707 |
Arc next(const Arc& arc) const { |
708 | 708 |
return _embedding[arc]; |
709 | 709 |
} |
710 | 710 |
|
711 | 711 |
/// \brief Gives back the calculated embedding map |
712 | 712 |
/// |
713 | 713 |
/// The returned map contains the successor of each arc in the |
714 | 714 |
/// graph. |
715 |
const EmbeddingMap& |
|
715 |
const EmbeddingMap& embeddingMap() const { |
|
716 | 716 |
return _embedding; |
717 | 717 |
} |
718 | 718 |
|
719 | 719 |
/// \brief Gives back true if the undirected arc is in the |
720 | 720 |
/// kuratowski subdivision |
721 | 721 |
/// |
722 | 722 |
/// Gives back true if the undirected arc is in the kuratowski |
723 | 723 |
/// subdivision |
724 | 724 |
/// \note The \c run() had to be called with true value. |
725 | 725 |
bool kuratowski(const Edge& edge) { |
726 | 726 |
return _kuratowski[edge]; |
727 | 727 |
} |
728 | 728 |
|
729 | 729 |
private: |
730 | 730 |
|
731 | 731 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
732 | 732 |
const LowMap& low_map, ChildLists& child_lists) { |
733 | 733 |
|
734 | 734 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
735 | 735 |
Node source = n; |
736 | 736 |
|
737 | 737 |
std::vector<Node> targets; |
738 | 738 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
739 | 739 |
Node target = _graph.target(e); |
740 | 740 |
|
741 | 741 |
if (order_map[source] < order_map[target] && tree_map[e]) { |
742 | 742 |
targets.push_back(target); |
743 | 743 |
} |
744 | 744 |
} |
745 | 745 |
|
746 | 746 |
if (targets.size() == 0) { |
747 | 747 |
child_lists[source].first = INVALID; |
748 | 748 |
} else if (targets.size() == 1) { |
749 | 749 |
child_lists[source].first = targets[0]; |
750 | 750 |
child_lists[targets[0]].prev = INVALID; |
751 | 751 |
child_lists[targets[0]].next = INVALID; |
752 | 752 |
} else { |
753 | 753 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
754 | 754 |
for (int i = 1; i < int(targets.size()); ++i) { |
755 | 755 |
child_lists[targets[i]].prev = targets[i - 1]; |
756 | 756 |
child_lists[targets[i - 1]].next = targets[i]; |
757 | 757 |
} |
758 | 758 |
child_lists[targets.back()].next = INVALID; |
759 | 759 |
child_lists[targets.front()].prev = INVALID; |
760 | 760 |
child_lists[source].first = targets.front(); |
761 | 761 |
} |
762 | 762 |
} |
763 | 763 |
} |
... | ... |
@@ -194,66 +194,69 @@ |
194 | 194 |
check(pd[m] != pd[n], "Two nodes with identical coordinates"); |
195 | 195 |
} |
196 | 196 |
} |
197 | 197 |
|
198 | 198 |
for (Graph::EdgeIt e(graph); e != INVALID; ++e) { |
199 | 199 |
for (Graph::EdgeIt f(e); f != e; ++f) { |
200 | 200 |
Point<int> e1 = pd[graph.u(e)]; |
201 | 201 |
Point<int> e2 = pd[graph.v(e)]; |
202 | 202 |
Point<int> f1 = pd[graph.u(f)]; |
203 | 203 |
Point<int> f2 = pd[graph.v(f)]; |
204 | 204 |
|
205 | 205 |
if (graph.u(e) == graph.u(f)) { |
206 | 206 |
check(!collinear(e1, e2, f2), "Wrong drawing"); |
207 | 207 |
} else if (graph.u(e) == graph.v(f)) { |
208 | 208 |
check(!collinear(e1, e2, f1), "Wrong drawing"); |
209 | 209 |
} else if (graph.v(e) == graph.u(f)) { |
210 | 210 |
check(!collinear(e2, e1, f2), "Wrong drawing"); |
211 | 211 |
} else if (graph.v(e) == graph.v(f)) { |
212 | 212 |
check(!collinear(e2, e1, f1), "Wrong drawing"); |
213 | 213 |
} else { |
214 | 214 |
check(!intersect(e1, e2, f1, f2), "Wrong drawing"); |
215 | 215 |
} |
216 | 216 |
} |
217 | 217 |
} |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
void checkColoring(const Graph& graph, PC& pc, int num) { |
221 | 221 |
for (NodeIt n(graph); n != INVALID; ++n) { |
222 | 222 |
check(pc.colorIndex(n) >= 0 && pc.colorIndex(n) < num, |
223 | 223 |
"Wrong coloring"); |
224 | 224 |
} |
225 | 225 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
226 | 226 |
check(pc.colorIndex(graph.u(e)) != pc.colorIndex(graph.v(e)), |
227 | 227 |
"Wrong coloring"); |
228 | 228 |
} |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
int main() { |
232 | 232 |
|
233 | 233 |
for (int i = 0; i < lgfn; ++i) { |
234 | 234 |
std::istringstream lgfs(lgf[i]); |
235 | 235 |
|
236 | 236 |
SmartGraph graph; |
237 | 237 |
graphReader(graph, lgfs).run(); |
238 | 238 |
|
239 | 239 |
check(simpleGraph(graph), "Test graphs must be simple"); |
240 | 240 |
|
241 | 241 |
PE pe(graph); |
242 |
|
|
242 |
bool planar = pe.run(); |
|
243 |
check(checkPlanarity(graph) == planar, "Planarity checking failed"); |
|
244 |
|
|
245 |
if (planar) { |
|
243 | 246 |
checkEmbedding(graph, pe); |
244 | 247 |
|
245 | 248 |
PlanarDrawing<Graph> pd(graph); |
246 |
pd.run(pe. |
|
249 |
pd.run(pe.embeddingMap()); |
|
247 | 250 |
checkDrawing(graph, pd); |
248 | 251 |
|
249 | 252 |
PlanarColoring<Graph> pc(graph); |
250 |
pc.runFiveColoring(pe. |
|
253 |
pc.runFiveColoring(pe.embeddingMap()); |
|
251 | 254 |
checkColoring(graph, pc, 5); |
252 | 255 |
|
253 | 256 |
} else { |
254 | 257 |
checkKuratowski(graph, pe); |
255 | 258 |
} |
256 | 259 |
} |
257 | 260 |
|
258 | 261 |
return 0; |
259 | 262 |
} |
0 comments (0 inline)