|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
|
2 |
*
|
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
|
4 |
*
|
|
5 |
* Copyright (C) 2003-2008
|
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
|
8 |
*
|
|
9 |
* Permission to use, modify and distribute this software is granted
|
|
10 |
* provided that this copyright notice appears in all copies. For
|
|
11 |
* precise terms see the accompanying LICENSE file.
|
|
12 |
*
|
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
|
14 |
* express or implied, and with no claim as to its suitability for any
|
|
15 |
* purpose.
|
|
16 |
*
|
|
17 |
*/
|
|
18 |
|
|
19 |
#ifndef LEMON_CIRCULATION_H
|
|
20 |
#define LEMON_CIRCULATION_H
|
|
21 |
|
|
22 |
#include <iostream>
|
|
23 |
#include <queue>
|
|
24 |
#include <lemon/tolerance.h>
|
|
25 |
#include <lemon/elevator.h>
|
|
26 |
|
|
27 |
///\ingroup max_flow
|
|
28 |
///\file
|
|
29 |
///\brief Push-prelabel algorithm for finding a feasible circulation.
|
|
30 |
///
|
|
31 |
namespace lemon {
|
|
32 |
|
|
33 |
/// \brief Default traits class of Circulation class.
|
|
34 |
///
|
|
35 |
/// Default traits class of Circulation class.
|
|
36 |
/// \param _Graph Digraph type.
|
|
37 |
/// \param _CapacityMap Type of capacity map.
|
|
38 |
template <typename _Graph, typename _LCapMap,
|
|
39 |
typename _UCapMap, typename _DeltaMap>
|
|
40 |
struct CirculationDefaultTraits {
|
|
41 |
|
|
42 |
/// \brief The digraph type the algorithm runs on.
|
|
43 |
typedef _Graph Digraph;
|
|
44 |
|
|
45 |
/// \brief The type of the map that stores the circulation lower
|
|
46 |
/// bound.
|
|
47 |
///
|
|
48 |
/// The type of the map that stores the circulation lower bound.
|
|
49 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
|
50 |
typedef _LCapMap LCapMap;
|
|
51 |
|
|
52 |
/// \brief The type of the map that stores the circulation upper
|
|
53 |
/// bound.
|
|
54 |
///
|
|
55 |
/// The type of the map that stores the circulation upper bound.
|
|
56 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
|
57 |
typedef _UCapMap UCapMap;
|
|
58 |
|
|
59 |
/// \brief The type of the map that stores the upper bound of
|
|
60 |
/// node excess.
|
|
61 |
///
|
|
62 |
/// The type of the map that stores the lower bound of node
|
|
63 |
/// excess. It must meet the \ref concepts::ReadMap "ReadMap"
|
|
64 |
/// concept.
|
|
65 |
typedef _DeltaMap DeltaMap;
|
|
66 |
|
|
67 |
/// \brief The type of the length of the arcs.
|
|
68 |
typedef typename DeltaMap::Value Value;
|
|
69 |
|
|
70 |
/// \brief The map type that stores the flow values.
|
|
71 |
///
|
|
72 |
/// The map type that stores the flow values.
|
|
73 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
|
74 |
typedef typename Digraph::template ArcMap<Value> FlowMap;
|
|
75 |
|
|
76 |
/// \brief Instantiates a FlowMap.
|
|
77 |
///
|
|
78 |
/// This function instantiates a \ref FlowMap.
|
|
79 |
/// \param digraph The digraph, to which we would like to define
|
|
80 |
/// the flow map.
|
|
81 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
|
82 |
return new FlowMap(digraph);
|
|
83 |
}
|
|
84 |
|
|
85 |
/// \brief The eleavator type used by Circulation algorithm.
|
|
86 |
///
|
|
87 |
/// The elevator type used by Circulation algorithm.
|
|
88 |
///
|
|
89 |
/// \sa Elevator
|
|
90 |
/// \sa LinkedElevator
|
|
91 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
|
|
92 |
|
|
93 |
/// \brief Instantiates an Elevator.
|
|
94 |
///
|
|
95 |
/// This function instantiates a \ref Elevator.
|
|
96 |
/// \param digraph The digraph, to which we would like to define
|
|
97 |
/// the elevator.
|
|
98 |
/// \param max_level The maximum level of the elevator.
|
|
99 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
|
100 |
return new Elevator(digraph, max_level);
|
|
101 |
}
|
|
102 |
|
|
103 |
/// \brief The tolerance used by the algorithm
|
|
104 |
///
|
|
105 |
/// The tolerance used by the algorithm to handle inexact computation.
|
|
106 |
typedef lemon::Tolerance<Value> Tolerance;
|
|
107 |
|
|
108 |
};
|
|
109 |
|
|
110 |
///Push-relabel algorithm for the Network Circulation Problem.
|
|
111 |
|
|
112 |
/**
|
|
113 |
\ingroup max_flow
|
|
114 |
This class implements a push-relabel algorithm
|
|
115 |
or the Network Circulation Problem.
|
|
116 |
The exact formulation of this problem is the following.
|
|
117 |
\f[\sum_{e\in\rho(v)}x(e)-\sum_{e\in\delta(v)}x(e)\leq
|
|
118 |
-delta(v)\quad \forall v\in V \f]
|
|
119 |
\f[ lo(e)\leq x(e) \leq up(e) \quad \forall e\in E \f]
|
|
120 |
*/
|
|
121 |
template<class _Graph,
|
|
122 |
class _LCapMap=typename _Graph::template ArcMap<int>,
|
|
123 |
class _UCapMap=_LCapMap,
|
|
124 |
class _DeltaMap=typename _Graph::template NodeMap<
|
|
125 |
typename _UCapMap::Value>,
|
|
126 |
class _Traits=CirculationDefaultTraits<_Graph, _LCapMap,
|
|
127 |
_UCapMap, _DeltaMap> >
|
|
128 |
class Circulation {
|
|
129 |
|
|
130 |
typedef _Traits Traits;
|
|
131 |
typedef typename Traits::Digraph Digraph;
|
|
132 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
|
133 |
|
|
134 |
typedef typename Traits::Value Value;
|
|
135 |
|
|
136 |
typedef typename Traits::LCapMap LCapMap;
|
|
137 |
typedef typename Traits::UCapMap UCapMap;
|
|
138 |
typedef typename Traits::DeltaMap DeltaMap;
|
|
139 |
typedef typename Traits::FlowMap FlowMap;
|
|
140 |
typedef typename Traits::Elevator Elevator;
|
|
141 |
typedef typename Traits::Tolerance Tolerance;
|
|
142 |
|
|
143 |
typedef typename Digraph::template NodeMap<Value> ExcessMap;
|
|
144 |
|
|
145 |
const Digraph &_g;
|
|
146 |
int _node_num;
|
|
147 |
|
|
148 |
const LCapMap *_lo;
|
|
149 |
const UCapMap *_up;
|
|
150 |
const DeltaMap *_delta;
|
|
151 |
|
|
152 |
FlowMap *_flow;
|
|
153 |
bool _local_flow;
|
|
154 |
|
|
155 |
Elevator* _level;
|
|
156 |
bool _local_level;
|
|
157 |
|
|
158 |
ExcessMap* _excess;
|
|
159 |
|
|
160 |
Tolerance _tol;
|
|
161 |
int _el;
|
|
162 |
|
|
163 |
public:
|
|
164 |
|
|
165 |
typedef Circulation Create;
|
|
166 |
|
|
167 |
///\name Named template parameters
|
|
168 |
|
|
169 |
///@{
|
|
170 |
|
|
171 |
template <typename _FlowMap>
|
|
172 |
struct DefFlowMapTraits : public Traits {
|
|
173 |
typedef _FlowMap FlowMap;
|
|
174 |
static FlowMap *createFlowMap(const Digraph&) {
|
|
175 |
LEMON_ASSERT(false, "FlowMap is not initialized");
|
|
176 |
return 0; // ignore warnings
|
|
177 |
}
|
|
178 |
};
|
|
179 |
|
|
180 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
181 |
/// FlowMap type
|
|
182 |
///
|
|
183 |
/// \ref named-templ-param "Named parameter" for setting FlowMap
|
|
184 |
/// type
|
|
185 |
template <typename _FlowMap>
|
|
186 |
struct DefFlowMap
|
|
187 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
|
|
188 |
DefFlowMapTraits<_FlowMap> > {
|
|
189 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
|
|
190 |
DefFlowMapTraits<_FlowMap> > Create;
|
|
191 |
};
|
|
192 |
|
|
193 |
template <typename _Elevator>
|
|
194 |
struct DefElevatorTraits : public Traits {
|
|
195 |
typedef _Elevator Elevator;
|
|
196 |
static Elevator *createElevator(const Digraph&, int) {
|
|
197 |
LEMON_ASSERT(false, "Elevator is not initialized");
|
|
198 |
return 0; // ignore warnings
|
|
199 |
}
|
|
200 |
};
|
|
201 |
|
|
202 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
203 |
/// Elevator type
|
|
204 |
///
|
|
205 |
/// \ref named-templ-param "Named parameter" for setting Elevator
|
|
206 |
/// type
|
|
207 |
template <typename _Elevator>
|
|
208 |
struct DefElevator
|
|
209 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
|
|
210 |
DefElevatorTraits<_Elevator> > {
|
|
211 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
|
|
212 |
DefElevatorTraits<_Elevator> > Create;
|
|
213 |
};
|
|
214 |
|
|
215 |
template <typename _Elevator>
|
|
216 |
struct DefStandardElevatorTraits : public Traits {
|
|
217 |
typedef _Elevator Elevator;
|
|
218 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
|
219 |
return new Elevator(digraph, max_level);
|
|
220 |
}
|
|
221 |
};
|
|
222 |
|
|
223 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
|
224 |
/// Elevator type
|
|
225 |
///
|
|
226 |
/// \ref named-templ-param "Named parameter" for setting Elevator
|
|
227 |
/// type. The Elevator should be standard constructor interface, ie.
|
|
228 |
/// the digraph and the maximum level should be passed to it.
|
|
229 |
template <typename _Elevator>
|
|
230 |
struct DefStandardElevator
|
|
231 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
|
|
232 |
DefStandardElevatorTraits<_Elevator> > {
|
|
233 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
|
|
234 |
DefStandardElevatorTraits<_Elevator> > Create;
|
|
235 |
};
|
|
236 |
|
|
237 |
/// @}
|
|
238 |
|
|
239 |
protected:
|
|
240 |
|
|
241 |
Circulation() {}
|
|
242 |
|
|
243 |
public:
|
|
244 |
|
|
245 |
/// The constructor of the class.
|
|
246 |
|
|
247 |
/// The constructor of the class.
|
|
248 |
/// \param g The digraph the algorithm runs on.
|
|
249 |
/// \param lo The lower bound capacity of the arcs.
|
|
250 |
/// \param up The upper bound capacity of the arcs.
|
|
251 |
/// \param delta The lower bound on node excess.
|
|
252 |
Circulation(const Digraph &g,const LCapMap &lo,
|
|
253 |
const UCapMap &up,const DeltaMap &delta)
|
|
254 |
: _g(g), _node_num(),
|
|
255 |
_lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false),
|
|
256 |
_level(0), _local_level(false), _excess(0), _el() {}
|
|
257 |
|
|
258 |
/// Destrcutor.
|
|
259 |
~Circulation() {
|
|
260 |
destroyStructures();
|
|
261 |
}
|
|
262 |
|
|
263 |
private:
|
|
264 |
|
|
265 |
void createStructures() {
|
|
266 |
_node_num = _el = countNodes(_g);
|
|
267 |
|
|
268 |
if (!_flow) {
|
|
269 |
_flow = Traits::createFlowMap(_g);
|
|
270 |
_local_flow = true;
|
|
271 |
}
|
|
272 |
if (!_level) {
|
|
273 |
_level = Traits::createElevator(_g, _node_num);
|
|
274 |
_local_level = true;
|
|
275 |
}
|
|
276 |
if (!_excess) {
|
|
277 |
_excess = new ExcessMap(_g);
|
|
278 |
}
|
|
279 |
}
|
|
280 |
|
|
281 |
void destroyStructures() {
|
|
282 |
if (_local_flow) {
|
|
283 |
delete _flow;
|
|
284 |
}
|
|
285 |
if (_local_level) {
|
|
286 |
delete _level;
|
|
287 |
}
|
|
288 |
if (_excess) {
|
|
289 |
delete _excess;
|
|
290 |
}
|
|
291 |
}
|
|
292 |
|
|
293 |
public:
|
|
294 |
|
|
295 |
/// Sets the lower bound capacity map.
|
|
296 |
|
|
297 |
/// Sets the lower bound capacity map.
|
|
298 |
/// \return \c (*this)
|
|
299 |
Circulation& lowerCapMap(const LCapMap& map) {
|
|
300 |
_lo = ↦
|
|
301 |
return *this;
|
|
302 |
}
|
|
303 |
|
|
304 |
/// Sets the upper bound capacity map.
|
|
305 |
|
|
306 |
/// Sets the upper bound capacity map.
|
|
307 |
/// \return \c (*this)
|
|
308 |
Circulation& upperCapMap(const LCapMap& map) {
|
|
309 |
_up = ↦
|
|
310 |
return *this;
|
|
311 |
}
|
|
312 |
|
|
313 |
/// Sets the lower bound map on excess.
|
|
314 |
|
|
315 |
/// Sets the lower bound map on excess.
|
|
316 |
/// \return \c (*this)
|
|
317 |
Circulation& deltaMap(const DeltaMap& map) {
|
|
318 |
_delta = ↦
|
|
319 |
return *this;
|
|
320 |
}
|
|
321 |
|
|
322 |
/// Sets the flow map.
|
|
323 |
|
|
324 |
/// Sets the flow map.
|
|
325 |
/// \return \c (*this)
|
|
326 |
Circulation& flowMap(FlowMap& map) {
|
|
327 |
if (_local_flow) {
|
|
328 |
delete _flow;
|
|
329 |
_local_flow = false;
|
|
330 |
}
|
|
331 |
_flow = ↦
|
|
332 |
return *this;
|
|
333 |
}
|
|
334 |
|
|
335 |
/// Returns the flow map.
|
|
336 |
|
|
337 |
/// \return The flow map.
|
|
338 |
///
|
|
339 |
const FlowMap& flowMap() {
|
|
340 |
return *_flow;
|
|
341 |
}
|
|
342 |
|
|
343 |
/// Sets the elevator.
|
|
344 |
|
|
345 |
/// Sets the elevator.
|
|
346 |
/// \return \c (*this)
|
|
347 |
Circulation& elevator(Elevator& elevator) {
|
|
348 |
if (_local_level) {
|
|
349 |
delete _level;
|
|
350 |
_local_level = false;
|
|
351 |
}
|
|
352 |
_level = &elevator;
|
|
353 |
return *this;
|
|
354 |
}
|
|
355 |
|
|
356 |
/// Returns the elevator.
|
|
357 |
|
|
358 |
/// \return The elevator.
|
|
359 |
///
|
|
360 |
const Elevator& elevator() {
|
|
361 |
return *_level;
|
|
362 |
}
|
|
363 |
|
|
364 |
/// Sets the tolerance used by algorithm.
|
|
365 |
|
|
366 |
/// Sets the tolerance used by algorithm.
|
|
367 |
///
|
|
368 |
Circulation& tolerance(const Tolerance& tolerance) const {
|
|
369 |
_tol = tolerance;
|
|
370 |
return *this;
|
|
371 |
}
|
|
372 |
|
|
373 |
/// Returns the tolerance used by algorithm.
|
|
374 |
|
|
375 |
/// Returns the tolerance used by algorithm.
|
|
376 |
///
|
|
377 |
const Tolerance& tolerance() const {
|
|
378 |
return tolerance;
|
|
379 |
}
|
|
380 |
|
|
381 |
/// \name Execution control
|
|
382 |
/// The simplest way to execute the algorithm is to use one of the
|
|
383 |
/// member functions called \c run().
|
|
384 |
/// \n
|
|
385 |
/// If you need more control on initial solution or execution then
|
|
386 |
/// you have to call one \ref init() function and then the start()
|
|
387 |
/// function.
|
|
388 |
|
|
389 |
///@{
|
|
390 |
|
|
391 |
/// Initializes the internal data structures.
|
|
392 |
|
|
393 |
/// Initializes the internal data structures. This function sets
|
|
394 |
/// all flow values to the lower bound.
|
|
395 |
/// \return This function returns false if the initialization
|
|
396 |
/// process found a barrier.
|
|
397 |
void init()
|
|
398 |
{
|
|
399 |
createStructures();
|
|
400 |
|
|
401 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
|
402 |
_excess->set(n, (*_delta)[n]);
|
|
403 |
}
|
|
404 |
|
|
405 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
|
406 |
_flow->set(e, (*_lo)[e]);
|
|
407 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]);
|
|
408 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]);
|
|
409 |
}
|
|
410 |
|
|
411 |
// global relabeling tested, but in general case it provides
|
|
412 |
// worse performance for random digraphs
|
|
413 |
_level->initStart();
|
|
414 |
for(NodeIt n(_g);n!=INVALID;++n)
|
|
415 |
_level->initAddItem(n);
|
|
416 |
_level->initFinish();
|
|
417 |
for(NodeIt n(_g);n!=INVALID;++n)
|
|
418 |
if(_tol.positive((*_excess)[n]))
|
|
419 |
_level->activate(n);
|
|
420 |
}
|
|
421 |
|
|
422 |
/// Initializes the internal data structures.
|
|
423 |
|
|
424 |
/// Initializes the internal data structures. This functions uses
|
|
425 |
/// greedy approach to construct the initial solution.
|
|
426 |
void greedyInit()
|
|
427 |
{
|
|
428 |
createStructures();
|
|
429 |
|
|
430 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
|
431 |
_excess->set(n, (*_delta)[n]);
|
|
432 |
}
|
|
433 |
|
|
434 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
|
435 |
if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) {
|
|
436 |
_flow->set(e, (*_up)[e]);
|
|
437 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_up)[e]);
|
|
438 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_up)[e]);
|
|
439 |
} else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) {
|
|
440 |
_flow->set(e, (*_lo)[e]);
|
|
441 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]);
|
|
442 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]);
|
|
443 |
} else {
|
|
444 |
Value fc = -(*_excess)[_g.target(e)];
|
|
445 |
_flow->set(e, fc);
|
|
446 |
_excess->set(_g.target(e), 0);
|
|
447 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc);
|
|
448 |
}
|
|
449 |
}
|
|
450 |
|
|
451 |
_level->initStart();
|
|
452 |
for(NodeIt n(_g);n!=INVALID;++n)
|
|
453 |
_level->initAddItem(n);
|
|
454 |
_level->initFinish();
|
|
455 |
for(NodeIt n(_g);n!=INVALID;++n)
|
|
456 |
if(_tol.positive((*_excess)[n]))
|
|
457 |
_level->activate(n);
|
|
458 |
}
|
|
459 |
|
|
460 |
///Starts the algorithm
|
|
461 |
|
|
462 |
///This function starts the algorithm.
|
|
463 |
///\return This function returns true if it found a feasible circulation.
|
|
464 |
///
|
|
465 |
///\sa barrier()
|
|
466 |
bool start()
|
|
467 |
{
|
|
468 |
|
|
469 |
Node act;
|
|
470 |
Node bact=INVALID;
|
|
471 |
Node last_activated=INVALID;
|
|
472 |
while((act=_level->highestActive())!=INVALID) {
|
|
473 |
int actlevel=(*_level)[act];
|
|
474 |
int mlevel=_node_num;
|
|
475 |
Value exc=(*_excess)[act];
|
|
476 |
|
|
477 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
|
478 |
Node v = _g.target(e);
|
|
479 |
Value fc=(*_up)[e]-(*_flow)[e];
|
|
480 |
if(!_tol.positive(fc)) continue;
|
|
481 |
if((*_level)[v]<actlevel) {
|
|
482 |
if(!_tol.less(fc, exc)) {
|
|
483 |
_flow->set(e, (*_flow)[e] + exc);
|
|
484 |
_excess->set(v, (*_excess)[v] + exc);
|
|
485 |
if(!_level->active(v) && _tol.positive((*_excess)[v]))
|
|
486 |
_level->activate(v);
|
|
487 |
_excess->set(act,0);
|
|
488 |
_level->deactivate(act);
|
|
489 |
goto next_l;
|
|
490 |
}
|
|
491 |
else {
|
|
492 |
_flow->set(e, (*_up)[e]);
|
|
493 |
_excess->set(v, (*_excess)[v] + fc);
|
|
494 |
if(!_level->active(v) && _tol.positive((*_excess)[v]))
|
|
495 |
_level->activate(v);
|
|
496 |
exc-=fc;
|
|
497 |
}
|
|
498 |
}
|
|
499 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
|
|
500 |
}
|
|
501 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
|
502 |
Node v = _g.source(e);
|
|
503 |
Value fc=(*_flow)[e]-(*_lo)[e];
|
|
504 |
if(!_tol.positive(fc)) continue;
|
|
505 |
if((*_level)[v]<actlevel) {
|
|
506 |
if(!_tol.less(fc, exc)) {
|
|
507 |
_flow->set(e, (*_flow)[e] - exc);
|
|
508 |
_excess->set(v, (*_excess)[v] + exc);
|
|
509 |
if(!_level->active(v) && _tol.positive((*_excess)[v]))
|
|
510 |
_level->activate(v);
|
|
511 |
_excess->set(act,0);
|
|
512 |
_level->deactivate(act);
|
|
513 |
goto next_l;
|
|
514 |
}
|
|
515 |
else {
|
|
516 |
_flow->set(e, (*_lo)[e]);
|
|
517 |
_excess->set(v, (*_excess)[v] + fc);
|
|
518 |
if(!_level->active(v) && _tol.positive((*_excess)[v]))
|
|
519 |
_level->activate(v);
|
|
520 |
exc-=fc;
|
|
521 |
}
|
|
522 |
}
|
|
523 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
|
|
524 |
}
|
|
525 |
|
|
526 |
_excess->set(act, exc);
|
|
527 |
if(!_tol.positive(exc)) _level->deactivate(act);
|
|
528 |
else if(mlevel==_node_num) {
|
|
529 |
_level->liftHighestActiveToTop();
|
|
530 |
_el = _node_num;
|
|
531 |
return false;
|
|
532 |
}
|
|
533 |
else {
|
|
534 |
_level->liftHighestActive(mlevel+1);
|
|
535 |
if(_level->onLevel(actlevel)==0) {
|
|
536 |
_el = actlevel;
|
|
537 |
return false;
|
|
538 |
}
|
|
539 |
}
|
|
540 |
next_l:
|
|
541 |
;
|
|
542 |
}
|
|
543 |
return true;
|
|
544 |
}
|
|
545 |
|
|
546 |
/// Runs the circulation algorithm.
|
|
547 |
|
|
548 |
/// Runs the circulation algorithm.
|
|
549 |
/// \note fc.run() is just a shortcut of the following code.
|
|
550 |
/// \code
|
|
551 |
/// fc.greedyInit();
|
|
552 |
/// return fc.start();
|
|
553 |
/// \endcode
|
|
554 |
bool run() {
|
|
555 |
greedyInit();
|
|
556 |
return start();
|
|
557 |
}
|
|
558 |
|
|
559 |
/// @}
|
|
560 |
|
|
561 |
/// \name Query Functions
|
|
562 |
/// The result of the %Circulation algorithm can be obtained using
|
|
563 |
/// these functions.
|
|
564 |
/// \n
|
|
565 |
/// Before the use of these functions,
|
|
566 |
/// either run() or start() must be called.
|
|
567 |
|
|
568 |
///@{
|
|
569 |
|
|
570 |
/**
|
|
571 |
\brief Returns a barrier
|
|
572 |
|
|
573 |
Barrier is a set \e B of nodes for which
|
|
574 |
\f[ \sum_{v\in B}-delta(v)<
|
|
575 |
\sum_{e\in\rho(B)}lo(e)-\sum_{e\in\delta(B)}up(e) \f]
|
|
576 |
holds. The existence of a set with this property prooves that a feasible
|
|
577 |
flow cannot exists.
|
|
578 |
\sa checkBarrier()
|
|
579 |
\sa run()
|
|
580 |
*/
|
|
581 |
template<class GT>
|
|
582 |
void barrierMap(GT &bar)
|
|
583 |
{
|
|
584 |
for(NodeIt n(_g);n!=INVALID;++n)
|
|
585 |
bar.set(n, (*_level)[n] >= _el);
|
|
586 |
}
|
|
587 |
|
|
588 |
///Returns true if the node is in the barrier
|
|
589 |
|
|
590 |
///Returns true if the node is in the barrier
|
|
591 |
///\sa barrierMap()
|
|
592 |
bool barrier(const Node& node)
|
|
593 |
{
|
|
594 |
return (*_level)[node] >= _el;
|
|
595 |
}
|
|
596 |
|
|
597 |
/// \brief Returns the flow on the arc.
|
|
598 |
///
|
|
599 |
/// Sets the \c flowMap to the flow on the arcs. This method can
|
|
600 |
/// be called after the second phase of algorithm.
|
|
601 |
Value flow(const Arc& arc) const {
|
|
602 |
return (*_flow)[arc];
|
|
603 |
}
|
|
604 |
|
|
605 |
/// @}
|
|
606 |
|
|
607 |
/// \name Checker Functions
|
|
608 |
/// The feasibility of the results can be checked using
|
|
609 |
/// these functions.
|
|
610 |
/// \n
|
|
611 |
/// Before the use of these functions,
|
|
612 |
/// either run() or start() must be called.
|
|
613 |
|
|
614 |
///@{
|
|
615 |
|
|
616 |
///Check if the \c flow is a feasible circulation
|
|
617 |
bool checkFlow() {
|
|
618 |
for(ArcIt e(_g);e!=INVALID;++e)
|
|
619 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
|
|
620 |
for(NodeIt n(_g);n!=INVALID;++n)
|
|
621 |
{
|
|
622 |
Value dif=-(*_delta)[n];
|
|
623 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
|
|
624 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
|
|
625 |
if(_tol.negative(dif)) return false;
|
|
626 |
}
|
|
627 |
return true;
|
|
628 |
}
|
|
629 |
|
|
630 |
///Check whether or not the last execution provides a barrier
|
|
631 |
|
|
632 |
///Check whether or not the last execution provides a barrier
|
|
633 |
///\sa barrier()
|
|
634 |
bool checkBarrier()
|
|
635 |
{
|
|
636 |
Value delta=0;
|
|
637 |
for(NodeIt n(_g);n!=INVALID;++n)
|
|
638 |
if(barrier(n))
|
|
639 |
delta-=(*_delta)[n];
|
|
640 |
for(ArcIt e(_g);e!=INVALID;++e)
|
|
641 |
{
|
|
642 |
Node s=_g.source(e);
|
|
643 |
Node t=_g.target(e);
|
|
644 |
if(barrier(s)&&!barrier(t)) delta+=(*_up)[e];
|
|
645 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
|
|
646 |
}
|
|
647 |
return _tol.negative(delta);
|
|
648 |
}
|
|
649 |
|
|
650 |
/// @}
|
|
651 |
|
|
652 |
};
|
|
653 |
|
|
654 |
}
|
|
655 |
|
|
656 |
#endif
|