1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAX_MATCHING_H |
20 | 20 |
#define LEMON_MAX_MATCHING_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <queue> |
24 | 24 |
#include <set> |
25 | 25 |
#include <limits> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/unionfind.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
|
32 | 32 |
///\ingroup matching |
33 | 33 |
///\file |
34 | 34 |
///\brief Maximum matching algorithms in general graphs. |
35 | 35 |
|
36 | 36 |
namespace lemon { |
37 | 37 |
|
38 | 38 |
/// \ingroup matching |
39 | 39 |
/// |
40 | 40 |
/// \brief Edmonds' alternating forest maximum matching algorithm. |
41 | 41 |
/// |
42 |
/// This class provides Edmonds' alternating forest matching |
|
43 |
/// algorithm. The starting matching (if any) can be passed to the |
|
44 |
/// |
|
42 |
/// This class implements Edmonds' alternating forest matching |
|
43 |
/// algorithm. The algorithm can be started from an arbitrary initial |
|
44 |
/// matching (the default is the empty one) |
|
45 | 45 |
/// |
46 |
/// The dual |
|
46 |
/// The dual solution of the problem is a map of the nodes to |
|
47 | 47 |
/// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c |
48 | 48 |
/// MATCHED/C showing the Gallai-Edmonds decomposition of the |
49 | 49 |
/// graph. The nodes in \c EVEN/D induce a graph with |
50 | 50 |
/// factor-critical components, the nodes in \c ODD/A form the |
51 | 51 |
/// barrier, and the nodes in \c MATCHED/C induce a graph having a |
52 |
/// perfect matching. The number of the |
|
52 |
/// perfect matching. The number of the factor-critical components |
|
53 | 53 |
/// minus the number of barrier nodes is a lower bound on the |
54 |
/// unmatched nodes, and |
|
54 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
|
55 | 55 |
/// tight. This decomposition can be attained by calling \c |
56 | 56 |
/// decomposition() after running the algorithm. |
57 | 57 |
/// |
58 | 58 |
/// \param _Graph The graph type the algorithm runs on. |
59 | 59 |
template <typename _Graph> |
60 | 60 |
class MaxMatching { |
61 | 61 |
public: |
62 | 62 |
|
63 | 63 |
typedef _Graph Graph; |
64 | 64 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
65 | 65 |
MatchingMap; |
66 | 66 |
|
67 | 67 |
///\brief Indicates the Gallai-Edmonds decomposition of the graph. |
68 | 68 |
/// |
69 |
///Indicates the Gallai-Edmonds decomposition of the graph, which |
|
70 |
///shows an upper bound on the size of a maximum matching. The |
|
69 |
///Indicates the Gallai-Edmonds decomposition of the graph. The |
|
71 | 70 |
///nodes with Status \c EVEN/D induce a graph with factor-critical |
72 | 71 |
///components, the nodes in \c ODD/A form the canonical barrier, |
73 | 72 |
///and the nodes in \c MATCHED/C induce a graph having a perfect |
74 | 73 |
///matching. |
75 | 74 |
enum Status { |
76 | 75 |
EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2 |
77 | 76 |
}; |
78 | 77 |
|
79 | 78 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
80 | 79 |
|
81 | 80 |
private: |
82 | 81 |
|
83 | 82 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
84 | 83 |
|
85 | 84 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
86 | 85 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
87 | 86 |
typedef RangeMap<Node> NodeIntMap; |
88 | 87 |
typedef MatchingMap EarMap; |
89 | 88 |
typedef std::vector<Node> NodeQueue; |
90 | 89 |
|
91 | 90 |
const Graph& _graph; |
92 | 91 |
MatchingMap* _matching; |
93 | 92 |
StatusMap* _status; |
94 | 93 |
|
95 | 94 |
EarMap* _ear; |
96 | 95 |
|
97 | 96 |
IntNodeMap* _blossom_set_index; |
98 | 97 |
BlossomSet* _blossom_set; |
99 | 98 |
NodeIntMap* _blossom_rep; |
100 | 99 |
|
101 | 100 |
IntNodeMap* _tree_set_index; |
102 | 101 |
TreeSet* _tree_set; |
103 | 102 |
|
104 | 103 |
NodeQueue _node_queue; |
105 | 104 |
int _process, _postpone, _last; |
106 | 105 |
|
107 | 106 |
int _node_num; |
108 | 107 |
|
109 | 108 |
private: |
110 | 109 |
|
111 | 110 |
void createStructures() { |
112 | 111 |
_node_num = countNodes(_graph); |
113 | 112 |
if (!_matching) { |
114 | 113 |
_matching = new MatchingMap(_graph); |
115 | 114 |
} |
116 | 115 |
if (!_status) { |
117 | 116 |
_status = new StatusMap(_graph); |
118 | 117 |
} |
119 | 118 |
if (!_ear) { |
120 | 119 |
_ear = new EarMap(_graph); |
121 | 120 |
} |
122 | 121 |
if (!_blossom_set) { |
123 | 122 |
_blossom_set_index = new IntNodeMap(_graph); |
124 | 123 |
_blossom_set = new BlossomSet(*_blossom_set_index); |
125 | 124 |
} |
126 | 125 |
if (!_blossom_rep) { |
127 | 126 |
_blossom_rep = new NodeIntMap(_node_num); |
128 | 127 |
} |
129 | 128 |
if (!_tree_set) { |
130 | 129 |
_tree_set_index = new IntNodeMap(_graph); |
131 | 130 |
_tree_set = new TreeSet(*_tree_set_index); |
132 | 131 |
} |
133 | 132 |
_node_queue.resize(_node_num); |
134 | 133 |
} |
135 | 134 |
|
136 | 135 |
void destroyStructures() { |
137 | 136 |
if (_matching) { |
138 | 137 |
delete _matching; |
139 | 138 |
} |
140 | 139 |
if (_status) { |
141 | 140 |
delete _status; |
142 | 141 |
} |
143 | 142 |
if (_ear) { |
144 | 143 |
delete _ear; |
145 | 144 |
} |
146 | 145 |
if (_blossom_set) { |
147 | 146 |
delete _blossom_set; |
148 | 147 |
delete _blossom_set_index; |
149 | 148 |
} |
150 | 149 |
if (_blossom_rep) { |
151 | 150 |
delete _blossom_rep; |
152 | 151 |
} |
153 | 152 |
if (_tree_set) { |
154 | 153 |
delete _tree_set_index; |
155 | 154 |
delete _tree_set; |
156 | 155 |
} |
157 | 156 |
} |
158 | 157 |
|
159 | 158 |
void processDense(const Node& n) { |
160 | 159 |
_process = _postpone = _last = 0; |
161 | 160 |
_node_queue[_last++] = n; |
162 | 161 |
|
163 | 162 |
while (_process != _last) { |
164 | 163 |
Node u = _node_queue[_process++]; |
165 | 164 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
166 | 165 |
Node v = _graph.target(a); |
167 | 166 |
if ((*_status)[v] == MATCHED) { |
168 | 167 |
extendOnArc(a); |
169 | 168 |
} else if ((*_status)[v] == UNMATCHED) { |
170 | 169 |
augmentOnArc(a); |
171 | 170 |
return; |
172 | 171 |
} |
173 | 172 |
} |
174 | 173 |
} |
175 | 174 |
|
176 | 175 |
while (_postpone != _last) { |
177 | 176 |
Node u = _node_queue[_postpone++]; |
178 | 177 |
|
179 | 178 |
for (OutArcIt a(_graph, u); a != INVALID ; ++a) { |
180 | 179 |
Node v = _graph.target(a); |
181 | 180 |
|
182 | 181 |
if ((*_status)[v] == EVEN) { |
183 | 182 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
184 | 183 |
shrinkOnEdge(a); |
185 | 184 |
} |
186 | 185 |
} |
187 | 186 |
|
188 | 187 |
while (_process != _last) { |
189 | 188 |
Node w = _node_queue[_process++]; |
190 | 189 |
for (OutArcIt b(_graph, w); b != INVALID; ++b) { |
191 | 190 |
Node x = _graph.target(b); |
192 | 191 |
if ((*_status)[x] == MATCHED) { |
193 | 192 |
extendOnArc(b); |
194 | 193 |
} else if ((*_status)[x] == UNMATCHED) { |
195 | 194 |
augmentOnArc(b); |
196 | 195 |
return; |
197 | 196 |
} |
198 | 197 |
} |
199 | 198 |
} |
200 | 199 |
} |
201 | 200 |
} |
202 | 201 |
} |
203 | 202 |
|
204 | 203 |
void processSparse(const Node& n) { |
205 | 204 |
_process = _last = 0; |
206 | 205 |
_node_queue[_last++] = n; |
207 | 206 |
while (_process != _last) { |
208 | 207 |
Node u = _node_queue[_process++]; |
209 | 208 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
210 | 209 |
Node v = _graph.target(a); |
211 | 210 |
|
212 | 211 |
if ((*_status)[v] == EVEN) { |
213 | 212 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
214 | 213 |
shrinkOnEdge(a); |
215 | 214 |
} |
216 | 215 |
} else if ((*_status)[v] == MATCHED) { |
217 | 216 |
extendOnArc(a); |
218 | 217 |
} else if ((*_status)[v] == UNMATCHED) { |
219 | 218 |
augmentOnArc(a); |
220 | 219 |
return; |
221 | 220 |
} |
222 | 221 |
} |
223 | 222 |
} |
224 | 223 |
} |
225 | 224 |
|
226 | 225 |
void shrinkOnEdge(const Edge& e) { |
227 | 226 |
Node nca = INVALID; |
228 | 227 |
|
229 | 228 |
{ |
230 | 229 |
std::set<Node> left_set, right_set; |
231 | 230 |
|
232 | 231 |
Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))]; |
233 | 232 |
left_set.insert(left); |
234 | 233 |
|
235 | 234 |
Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))]; |
236 | 235 |
right_set.insert(right); |
237 | 236 |
|
238 | 237 |
while (true) { |
239 | 238 |
if ((*_matching)[left] == INVALID) break; |
240 | 239 |
left = _graph.target((*_matching)[left]); |
241 | 240 |
left = (*_blossom_rep)[_blossom_set-> |
242 | 241 |
find(_graph.target((*_ear)[left]))]; |
243 | 242 |
if (right_set.find(left) != right_set.end()) { |
244 | 243 |
nca = left; |
245 | 244 |
break; |
246 | 245 |
} |
247 | 246 |
left_set.insert(left); |
248 | 247 |
|
249 | 248 |
if ((*_matching)[right] == INVALID) break; |
250 | 249 |
right = _graph.target((*_matching)[right]); |
251 | 250 |
right = (*_blossom_rep)[_blossom_set-> |
252 | 251 |
find(_graph.target((*_ear)[right]))]; |
253 | 252 |
if (left_set.find(right) != left_set.end()) { |
254 | 253 |
nca = right; |
255 | 254 |
break; |
256 | 255 |
} |
257 | 256 |
right_set.insert(right); |
258 | 257 |
} |
259 | 258 |
|
260 | 259 |
if (nca == INVALID) { |
261 | 260 |
if ((*_matching)[left] == INVALID) { |
262 | 261 |
nca = right; |
263 | 262 |
while (left_set.find(nca) == left_set.end()) { |
264 | 263 |
nca = _graph.target((*_matching)[nca]); |
265 | 264 |
nca =(*_blossom_rep)[_blossom_set-> |
266 | 265 |
find(_graph.target((*_ear)[nca]))]; |
267 | 266 |
} |
268 | 267 |
} else { |
269 | 268 |
nca = left; |
270 | 269 |
while (right_set.find(nca) == right_set.end()) { |
271 | 270 |
nca = _graph.target((*_matching)[nca]); |
272 | 271 |
nca = (*_blossom_rep)[_blossom_set-> |
273 | 272 |
find(_graph.target((*_ear)[nca]))]; |
274 | 273 |
} |
275 | 274 |
} |
276 | 275 |
} |
277 | 276 |
} |
278 | 277 |
|
279 | 278 |
{ |
280 | 279 |
|
281 | 280 |
Node node = _graph.u(e); |
282 | 281 |
Arc arc = _graph.direct(e, true); |
283 | 282 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
284 | 283 |
|
285 | 284 |
while (base != nca) { |
286 | 285 |
_ear->set(node, arc); |
287 | 286 |
|
288 | 287 |
Node n = node; |
289 | 288 |
while (n != base) { |
290 | 289 |
n = _graph.target((*_matching)[n]); |
291 | 290 |
Arc a = (*_ear)[n]; |
292 | 291 |
n = _graph.target(a); |
293 | 292 |
_ear->set(n, _graph.oppositeArc(a)); |
294 | 293 |
} |
295 | 294 |
node = _graph.target((*_matching)[base]); |
296 | 295 |
_tree_set->erase(base); |
297 | 296 |
_tree_set->erase(node); |
298 | 297 |
_blossom_set->insert(node, _blossom_set->find(base)); |
299 | 298 |
_status->set(node, EVEN); |
300 | 299 |
_node_queue[_last++] = node; |
301 | 300 |
arc = _graph.oppositeArc((*_ear)[node]); |
302 | 301 |
node = _graph.target((*_ear)[node]); |
303 | 302 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
304 | 303 |
_blossom_set->join(_graph.target(arc), base); |
305 | 304 |
} |
306 | 305 |
} |
307 | 306 |
|
308 | 307 |
_blossom_rep->set(_blossom_set->find(nca), nca); |
309 | 308 |
|
310 | 309 |
{ |
311 | 310 |
|
312 | 311 |
Node node = _graph.v(e); |
313 | 312 |
Arc arc = _graph.direct(e, false); |
314 | 313 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
315 | 314 |
|
316 | 315 |
while (base != nca) { |
317 | 316 |
_ear->set(node, arc); |
318 | 317 |
|
319 | 318 |
Node n = node; |
320 | 319 |
while (n != base) { |
321 | 320 |
n = _graph.target((*_matching)[n]); |
322 | 321 |
Arc a = (*_ear)[n]; |
323 | 322 |
n = _graph.target(a); |
324 | 323 |
_ear->set(n, _graph.oppositeArc(a)); |
325 | 324 |
} |
326 | 325 |
node = _graph.target((*_matching)[base]); |
327 | 326 |
_tree_set->erase(base); |
328 | 327 |
_tree_set->erase(node); |
329 | 328 |
_blossom_set->insert(node, _blossom_set->find(base)); |
330 | 329 |
_status->set(node, EVEN); |
331 | 330 |
_node_queue[_last++] = node; |
332 | 331 |
arc = _graph.oppositeArc((*_ear)[node]); |
333 | 332 |
node = _graph.target((*_ear)[node]); |
334 | 333 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
335 | 334 |
_blossom_set->join(_graph.target(arc), base); |
336 | 335 |
} |
337 | 336 |
} |
338 | 337 |
|
339 | 338 |
_blossom_rep->set(_blossom_set->find(nca), nca); |
340 | 339 |
} |
341 | 340 |
|
342 | 341 |
|
343 | 342 |
|
344 | 343 |
void extendOnArc(const Arc& a) { |
345 | 344 |
Node base = _graph.source(a); |
346 | 345 |
Node odd = _graph.target(a); |
347 | 346 |
|
348 | 347 |
_ear->set(odd, _graph.oppositeArc(a)); |
349 | 348 |
Node even = _graph.target((*_matching)[odd]); |
350 | 349 |
_blossom_rep->set(_blossom_set->insert(even), even); |
351 | 350 |
_status->set(odd, ODD); |
352 | 351 |
_status->set(even, EVEN); |
353 | 352 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]); |
354 | 353 |
_tree_set->insert(odd, tree); |
355 | 354 |
_tree_set->insert(even, tree); |
356 | 355 |
_node_queue[_last++] = even; |
357 | 356 |
|
358 | 357 |
} |
359 | 358 |
|
360 | 359 |
void augmentOnArc(const Arc& a) { |
361 | 360 |
Node even = _graph.source(a); |
362 | 361 |
Node odd = _graph.target(a); |
363 | 362 |
|
364 | 363 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]); |
365 | 364 |
|
366 | 365 |
_matching->set(odd, _graph.oppositeArc(a)); |
367 | 366 |
_status->set(odd, MATCHED); |
368 | 367 |
|
369 | 368 |
Arc arc = (*_matching)[even]; |
370 | 369 |
_matching->set(even, a); |
371 | 370 |
|
372 | 371 |
while (arc != INVALID) { |
373 | 372 |
odd = _graph.target(arc); |
374 | 373 |
arc = (*_ear)[odd]; |
375 | 374 |
even = _graph.target(arc); |
376 | 375 |
_matching->set(odd, arc); |
377 | 376 |
arc = (*_matching)[even]; |
378 | 377 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
379 | 378 |
} |
380 | 379 |
|
381 | 380 |
for (typename TreeSet::ItemIt it(*_tree_set, tree); |
382 | 381 |
it != INVALID; ++it) { |
383 | 382 |
if ((*_status)[it] == ODD) { |
384 | 383 |
_status->set(it, MATCHED); |
385 | 384 |
} else { |
386 | 385 |
int blossom = _blossom_set->find(it); |
387 | 386 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
388 | 387 |
jt != INVALID; ++jt) { |
389 | 388 |
_status->set(jt, MATCHED); |
390 | 389 |
} |
391 | 390 |
_blossom_set->eraseClass(blossom); |
392 | 391 |
} |
393 | 392 |
} |
394 | 393 |
_tree_set->eraseClass(tree); |
395 | 394 |
|
396 | 395 |
} |
397 | 396 |
|
398 | 397 |
public: |
399 | 398 |
|
400 | 399 |
/// \brief Constructor |
401 | 400 |
/// |
402 | 401 |
/// Constructor. |
403 | 402 |
MaxMatching(const Graph& graph) |
404 | 403 |
: _graph(graph), _matching(0), _status(0), _ear(0), |
405 | 404 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
406 | 405 |
_tree_set_index(0), _tree_set(0) {} |
407 | 406 |
|
408 | 407 |
~MaxMatching() { |
409 | 408 |
destroyStructures(); |
410 | 409 |
} |
411 | 410 |
|
412 | 411 |
/// \name Execution control |
413 |
/// The simplest way to execute the algorithm is to use the |
|
412 |
/// The simplest way to execute the algorithm is to use the |
|
414 | 413 |
/// \c run() member function. |
415 | 414 |
/// \n |
416 | 415 |
|
417 |
/// If you need |
|
416 |
/// If you need better control on the execution, you must call |
|
418 | 417 |
/// \ref init(), \ref greedyInit() or \ref matchingInit() |
419 |
/// functions, then you can start the algorithm with the \ref |
|
418 |
/// functions first, then you can start the algorithm with the \ref |
|
420 | 419 |
/// startParse() or startDense() functions. |
421 | 420 |
|
422 | 421 |
///@{ |
423 | 422 |
|
424 | 423 |
/// \brief Sets the actual matching to the empty matching. |
425 | 424 |
/// |
426 | 425 |
/// Sets the actual matching to the empty matching. |
427 | 426 |
/// |
428 | 427 |
void init() { |
429 | 428 |
createStructures(); |
430 | 429 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
431 | 430 |
_matching->set(n, INVALID); |
432 | 431 |
_status->set(n, UNMATCHED); |
433 | 432 |
} |
434 | 433 |
} |
435 | 434 |
|
436 |
///\brief Finds |
|
435 |
///\brief Finds an initial matching in a greedy way |
|
437 | 436 |
/// |
438 |
/// |
|
437 |
///It finds an initial matching in a greedy way. |
|
439 | 438 |
void greedyInit() { |
440 | 439 |
createStructures(); |
441 | 440 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
442 | 441 |
_matching->set(n, INVALID); |
443 | 442 |
_status->set(n, UNMATCHED); |
444 | 443 |
} |
445 | 444 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
446 | 445 |
if ((*_matching)[n] == INVALID) { |
447 | 446 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) { |
448 | 447 |
Node v = _graph.target(a); |
449 | 448 |
if ((*_matching)[v] == INVALID && v != n) { |
450 | 449 |
_matching->set(n, a); |
451 | 450 |
_status->set(n, MATCHED); |
452 | 451 |
_matching->set(v, _graph.oppositeArc(a)); |
453 | 452 |
_status->set(v, MATCHED); |
454 | 453 |
break; |
455 | 454 |
} |
456 | 455 |
} |
457 | 456 |
} |
458 | 457 |
} |
459 | 458 |
} |
460 | 459 |
|
461 | 460 |
|
462 |
/// \brief Initialize the matching from |
|
461 |
/// \brief Initialize the matching from a map containing. |
|
463 | 462 |
/// |
464 | 463 |
/// Initialize the matching from a \c bool valued \c Edge map. This |
465 | 464 |
/// map must have the property that there are no two incident edges |
466 | 465 |
/// with true value, ie. it contains a matching. |
467 | 466 |
/// \return %True if the map contains a matching. |
468 | 467 |
template <typename MatchingMap> |
469 | 468 |
bool matchingInit(const MatchingMap& matching) { |
470 | 469 |
createStructures(); |
471 | 470 |
|
472 | 471 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 | 472 |
_matching->set(n, INVALID); |
474 | 473 |
_status->set(n, UNMATCHED); |
475 | 474 |
} |
476 | 475 |
for(EdgeIt e(_graph); e!=INVALID; ++e) { |
477 | 476 |
if (matching[e]) { |
478 | 477 |
|
479 | 478 |
Node u = _graph.u(e); |
480 | 479 |
if ((*_matching)[u] != INVALID) return false; |
481 | 480 |
_matching->set(u, _graph.direct(e, true)); |
482 | 481 |
_status->set(u, MATCHED); |
483 | 482 |
|
484 | 483 |
Node v = _graph.v(e); |
485 | 484 |
if ((*_matching)[v] != INVALID) return false; |
486 | 485 |
_matching->set(v, _graph.direct(e, false)); |
487 | 486 |
_status->set(v, MATCHED); |
488 | 487 |
} |
489 | 488 |
} |
490 | 489 |
return true; |
491 | 490 |
} |
492 | 491 |
|
493 | 492 |
/// \brief Starts Edmonds' algorithm |
494 | 493 |
/// |
495 | 494 |
/// If runs the original Edmonds' algorithm. |
496 | 495 |
void startSparse() { |
497 | 496 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
498 | 497 |
if ((*_status)[n] == UNMATCHED) { |
499 | 498 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
500 | 499 |
_tree_set->insert(n); |
501 | 500 |
_status->set(n, EVEN); |
502 | 501 |
processSparse(n); |
503 | 502 |
} |
504 | 503 |
} |
505 | 504 |
} |
506 | 505 |
|
507 | 506 |
/// \brief Starts Edmonds' algorithm. |
508 | 507 |
/// |
509 | 508 |
/// It runs Edmonds' algorithm with a heuristic of postponing |
510 |
/// shrinks, |
|
509 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
|
511 | 510 |
void startDense() { |
512 | 511 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
513 | 512 |
if ((*_status)[n] == UNMATCHED) { |
514 | 513 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
515 | 514 |
_tree_set->insert(n); |
516 | 515 |
_status->set(n, EVEN); |
517 | 516 |
processDense(n); |
518 | 517 |
} |
519 | 518 |
} |
520 | 519 |
} |
521 | 520 |
|
522 | 521 |
|
523 | 522 |
/// \brief Runs Edmonds' algorithm |
524 | 523 |
/// |
525 | 524 |
/// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>) |
526 | 525 |
/// or Edmonds' algorithm with a heuristic of |
527 | 526 |
/// postponing shrinks for dense graphs. |
528 | 527 |
void run() { |
529 | 528 |
if (countEdges(_graph) < 2 * countNodes(_graph)) { |
530 | 529 |
greedyInit(); |
531 | 530 |
startSparse(); |
532 | 531 |
} else { |
533 | 532 |
init(); |
534 | 533 |
startDense(); |
535 | 534 |
} |
536 | 535 |
} |
537 | 536 |
|
538 | 537 |
/// @} |
539 | 538 |
|
540 | 539 |
/// \name Primal solution |
541 |
/// Functions |
|
540 |
/// Functions to get the primal solution, ie. the matching. |
|
542 | 541 |
|
543 | 542 |
/// @{ |
544 | 543 |
|
545 |
///\brief Returns the size of the |
|
544 |
///\brief Returns the size of the current matching. |
|
546 | 545 |
/// |
547 |
///Returns the size of the |
|
546 |
///Returns the size of the current matching. After \ref |
|
548 | 547 |
///run() it returns the size of the maximum matching in the graph. |
549 | 548 |
int matchingSize() const { |
550 | 549 |
int size = 0; |
551 | 550 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
552 | 551 |
if ((*_matching)[n] != INVALID) { |
553 | 552 |
++size; |
554 | 553 |
} |
555 | 554 |
} |
556 | 555 |
return size / 2; |
557 | 556 |
} |
558 | 557 |
|
559 | 558 |
/// \brief Returns true when the edge is in the matching. |
560 | 559 |
/// |
561 | 560 |
/// Returns true when the edge is in the matching. |
562 | 561 |
bool matching(const Edge& edge) const { |
563 | 562 |
return edge == (*_matching)[_graph.u(edge)]; |
564 | 563 |
} |
565 | 564 |
|
566 | 565 |
/// \brief Returns the matching edge incident to the given node. |
567 | 566 |
/// |
568 | 567 |
/// Returns the matching edge of a \c node in the actual matching or |
569 | 568 |
/// INVALID if the \c node is not covered by the actual matching. |
570 | 569 |
Arc matching(const Node& n) const { |
571 | 570 |
return (*_matching)[n]; |
572 | 571 |
} |
573 | 572 |
|
574 | 573 |
///\brief Returns the mate of a node in the actual matching. |
575 | 574 |
/// |
576 | 575 |
///Returns the mate of a \c node in the actual matching or |
577 | 576 |
///INVALID if the \c node is not covered by the actual matching. |
578 | 577 |
Node mate(const Node& n) const { |
579 | 578 |
return (*_matching)[n] != INVALID ? |
580 | 579 |
_graph.target((*_matching)[n]) : INVALID; |
581 | 580 |
} |
582 | 581 |
|
583 | 582 |
/// @} |
584 | 583 |
|
585 | 584 |
/// \name Dual solution |
586 |
/// Functions |
|
585 |
/// Functions to get the dual solution, ie. the decomposition. |
|
587 | 586 |
|
588 | 587 |
/// @{ |
589 | 588 |
|
590 | 589 |
/// \brief Returns the class of the node in the Edmonds-Gallai |
591 | 590 |
/// decomposition. |
592 | 591 |
/// |
593 | 592 |
/// Returns the class of the node in the Edmonds-Gallai |
594 | 593 |
/// decomposition. |
595 | 594 |
Status decomposition(const Node& n) const { |
596 | 595 |
return (*_status)[n]; |
597 | 596 |
} |
598 | 597 |
|
599 | 598 |
/// \brief Returns true when the node is in the barrier. |
600 | 599 |
/// |
601 | 600 |
/// Returns true when the node is in the barrier. |
602 | 601 |
bool barrier(const Node& n) const { |
603 | 602 |
return (*_status)[n] == ODD; |
604 | 603 |
} |
605 | 604 |
|
606 | 605 |
/// @} |
607 | 606 |
|
608 | 607 |
}; |
609 | 608 |
|
610 | 609 |
/// \ingroup matching |
611 | 610 |
/// |
612 | 611 |
/// \brief Weighted matching in general graphs |
613 | 612 |
/// |
614 | 613 |
/// This class provides an efficient implementation of Edmond's |
615 | 614 |
/// maximum weighted matching algorithm. The implementation is based |
616 | 615 |
/// on extensive use of priority queues and provides |
617 | 616 |
/// \f$O(nm\log(n))\f$ time complexity. |
618 | 617 |
/// |
619 | 618 |
/// The maximum weighted matching problem is to find undirected |
620 | 619 |
/// edges in the graph with maximum overall weight and no two of |
621 | 620 |
/// them shares their ends. The problem can be formulated with the |
622 | 621 |
/// following linear program. |
623 | 622 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
624 | 623 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
625 | 624 |
\quad \forall B\in\mathcal{O}\f] */ |
626 | 625 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
627 | 626 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
628 | 627 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
629 | 628 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
630 | 629 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
631 | 630 |
/// subsets of the nodes. |
632 | 631 |
/// |
633 | 632 |
/// The algorithm calculates an optimal matching and a proof of the |
634 | 633 |
/// optimality. The solution of the dual problem can be used to check |
635 | 634 |
/// the result of the algorithm. The dual linear problem is the |
636 | 635 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
637 | 636 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
638 | 637 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
639 | 638 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
640 | 639 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
641 | 640 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
642 | 641 |
/// |
643 | 642 |
/// The algorithm can be executed with \c run() or the \c init() and |
644 | 643 |
/// then the \c start() member functions. After it the matching can |
645 | 644 |
/// be asked with \c matching() or mate() functions. The dual |
646 | 645 |
/// solution can be get with \c nodeValue(), \c blossomNum() and \c |
647 | 646 |
/// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
648 |
/// "BlossomIt" nested class which is able to iterate on the nodes |
|
647 |
/// "BlossomIt" nested class, which is able to iterate on the nodes |
|
649 | 648 |
/// of a blossom. If the value type is integral then the dual |
650 | 649 |
/// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
651 | 650 |
template <typename _Graph, |
652 | 651 |
typename _WeightMap = typename _Graph::template EdgeMap<int> > |
653 | 652 |
class MaxWeightedMatching { |
654 | 653 |
public: |
655 | 654 |
|
656 | 655 |
typedef _Graph Graph; |
657 | 656 |
typedef _WeightMap WeightMap; |
658 | 657 |
typedef typename WeightMap::Value Value; |
659 | 658 |
|
660 | 659 |
/// \brief Scaling factor for dual solution |
661 | 660 |
/// |
662 | 661 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
663 | 662 |
/// according to the value type. |
664 | 663 |
static const int dualScale = |
665 | 664 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
666 | 665 |
|
667 | 666 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
668 | 667 |
MatchingMap; |
669 | 668 |
|
670 | 669 |
private: |
671 | 670 |
|
672 | 671 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
673 | 672 |
|
674 | 673 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
675 | 674 |
typedef std::vector<Node> BlossomNodeList; |
676 | 675 |
|
677 | 676 |
struct BlossomVariable { |
678 | 677 |
int begin, end; |
679 | 678 |
Value value; |
680 | 679 |
|
681 | 680 |
BlossomVariable(int _begin, int _end, Value _value) |
682 | 681 |
: begin(_begin), end(_end), value(_value) {} |
683 | 682 |
|
684 | 683 |
}; |
685 | 684 |
|
686 | 685 |
typedef std::vector<BlossomVariable> BlossomPotential; |
687 | 686 |
|
688 | 687 |
const Graph& _graph; |
689 | 688 |
const WeightMap& _weight; |
690 | 689 |
|
691 | 690 |
MatchingMap* _matching; |
692 | 691 |
|
693 | 692 |
NodePotential* _node_potential; |
694 | 693 |
|
695 | 694 |
BlossomPotential _blossom_potential; |
696 | 695 |
BlossomNodeList _blossom_node_list; |
697 | 696 |
|
698 | 697 |
int _node_num; |
699 | 698 |
int _blossom_num; |
700 | 699 |
|
701 | 700 |
typedef RangeMap<int> IntIntMap; |
702 | 701 |
|
703 | 702 |
enum Status { |
704 | 703 |
EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
705 | 704 |
}; |
706 | 705 |
|
707 | 706 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
708 | 707 |
struct BlossomData { |
709 | 708 |
int tree; |
710 | 709 |
Status status; |
711 | 710 |
Arc pred, next; |
712 | 711 |
Value pot, offset; |
713 | 712 |
Node base; |
714 | 713 |
}; |
715 | 714 |
|
716 | 715 |
IntNodeMap *_blossom_index; |
717 | 716 |
BlossomSet *_blossom_set; |
718 | 717 |
RangeMap<BlossomData>* _blossom_data; |
719 | 718 |
|
720 | 719 |
IntNodeMap *_node_index; |
721 | 720 |
IntArcMap *_node_heap_index; |
722 | 721 |
|
723 | 722 |
struct NodeData { |
724 | 723 |
|
725 | 724 |
NodeData(IntArcMap& node_heap_index) |
726 | 725 |
: heap(node_heap_index) {} |
727 | 726 |
|
728 | 727 |
int blossom; |
729 | 728 |
Value pot; |
730 | 729 |
BinHeap<Value, IntArcMap> heap; |
731 | 730 |
std::map<int, Arc> heap_index; |
732 | 731 |
|
733 | 732 |
int tree; |
734 | 733 |
}; |
735 | 734 |
|
736 | 735 |
RangeMap<NodeData>* _node_data; |
737 | 736 |
|
738 | 737 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
739 | 738 |
|
740 | 739 |
IntIntMap *_tree_set_index; |
741 | 740 |
TreeSet *_tree_set; |
742 | 741 |
|
743 | 742 |
IntNodeMap *_delta1_index; |
744 | 743 |
BinHeap<Value, IntNodeMap> *_delta1; |
745 | 744 |
|
746 | 745 |
IntIntMap *_delta2_index; |
747 | 746 |
BinHeap<Value, IntIntMap> *_delta2; |
748 | 747 |
|
749 | 748 |
IntEdgeMap *_delta3_index; |
750 | 749 |
BinHeap<Value, IntEdgeMap> *_delta3; |
751 | 750 |
|
752 | 751 |
IntIntMap *_delta4_index; |
753 | 752 |
BinHeap<Value, IntIntMap> *_delta4; |
754 | 753 |
|
755 | 754 |
Value _delta_sum; |
756 | 755 |
|
757 | 756 |
void createStructures() { |
758 | 757 |
_node_num = countNodes(_graph); |
759 | 758 |
_blossom_num = _node_num * 3 / 2; |
760 | 759 |
|
761 | 760 |
if (!_matching) { |
762 | 761 |
_matching = new MatchingMap(_graph); |
763 | 762 |
} |
764 | 763 |
if (!_node_potential) { |
765 | 764 |
_node_potential = new NodePotential(_graph); |
766 | 765 |
} |
767 | 766 |
if (!_blossom_set) { |
768 | 767 |
_blossom_index = new IntNodeMap(_graph); |
769 | 768 |
_blossom_set = new BlossomSet(*_blossom_index); |
770 | 769 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
771 | 770 |
} |
772 | 771 |
|
773 | 772 |
if (!_node_index) { |
774 | 773 |
_node_index = new IntNodeMap(_graph); |
775 | 774 |
_node_heap_index = new IntArcMap(_graph); |
776 | 775 |
_node_data = new RangeMap<NodeData>(_node_num, |
777 | 776 |
NodeData(*_node_heap_index)); |
778 | 777 |
} |
779 | 778 |
|
780 | 779 |
if (!_tree_set) { |
781 | 780 |
_tree_set_index = new IntIntMap(_blossom_num); |
782 | 781 |
_tree_set = new TreeSet(*_tree_set_index); |
783 | 782 |
} |
784 | 783 |
if (!_delta1) { |
785 | 784 |
_delta1_index = new IntNodeMap(_graph); |
786 | 785 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
787 | 786 |
} |
788 | 787 |
if (!_delta2) { |
789 | 788 |
_delta2_index = new IntIntMap(_blossom_num); |
790 | 789 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
791 | 790 |
} |
792 | 791 |
if (!_delta3) { |
793 | 792 |
_delta3_index = new IntEdgeMap(_graph); |
794 | 793 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
795 | 794 |
} |
796 | 795 |
if (!_delta4) { |
797 | 796 |
_delta4_index = new IntIntMap(_blossom_num); |
798 | 797 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
799 | 798 |
} |
800 | 799 |
} |
801 | 800 |
|
802 | 801 |
void destroyStructures() { |
803 | 802 |
_node_num = countNodes(_graph); |
804 | 803 |
_blossom_num = _node_num * 3 / 2; |
805 | 804 |
|
806 | 805 |
if (_matching) { |
807 | 806 |
delete _matching; |
808 | 807 |
} |
809 | 808 |
if (_node_potential) { |
810 | 809 |
delete _node_potential; |
811 | 810 |
} |
812 | 811 |
if (_blossom_set) { |
813 | 812 |
delete _blossom_index; |
814 | 813 |
delete _blossom_set; |
815 | 814 |
delete _blossom_data; |
816 | 815 |
} |
817 | 816 |
|
818 | 817 |
if (_node_index) { |
819 | 818 |
delete _node_index; |
820 | 819 |
delete _node_heap_index; |
821 | 820 |
delete _node_data; |
822 | 821 |
} |
823 | 822 |
|
824 | 823 |
if (_tree_set) { |
825 | 824 |
delete _tree_set_index; |
826 | 825 |
delete _tree_set; |
827 | 826 |
} |
828 | 827 |
if (_delta1) { |
829 | 828 |
delete _delta1_index; |
830 | 829 |
delete _delta1; |
831 | 830 |
} |
832 | 831 |
if (_delta2) { |
833 | 832 |
delete _delta2_index; |
834 | 833 |
delete _delta2; |
835 | 834 |
} |
836 | 835 |
if (_delta3) { |
837 | 836 |
delete _delta3_index; |
838 | 837 |
delete _delta3; |
839 | 838 |
} |
840 | 839 |
if (_delta4) { |
841 | 840 |
delete _delta4_index; |
842 | 841 |
delete _delta4; |
843 | 842 |
} |
844 | 843 |
} |
845 | 844 |
|
846 | 845 |
void matchedToEven(int blossom, int tree) { |
847 | 846 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
848 | 847 |
_delta2->erase(blossom); |
849 | 848 |
} |
850 | 849 |
|
851 | 850 |
if (!_blossom_set->trivial(blossom)) { |
852 | 851 |
(*_blossom_data)[blossom].pot -= |
853 | 852 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
854 | 853 |
} |
855 | 854 |
|
856 | 855 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
857 | 856 |
n != INVALID; ++n) { |
858 | 857 |
|
859 | 858 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
860 | 859 |
int ni = (*_node_index)[n]; |
861 | 860 |
|
862 | 861 |
(*_node_data)[ni].heap.clear(); |
863 | 862 |
(*_node_data)[ni].heap_index.clear(); |
864 | 863 |
|
865 | 864 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
866 | 865 |
|
867 | 866 |
_delta1->push(n, (*_node_data)[ni].pot); |
868 | 867 |
|
869 | 868 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
870 | 869 |
Node v = _graph.source(e); |
871 | 870 |
int vb = _blossom_set->find(v); |
872 | 871 |
int vi = (*_node_index)[v]; |
873 | 872 |
|
874 | 873 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
875 | 874 |
dualScale * _weight[e]; |
876 | 875 |
|
877 | 876 |
if ((*_blossom_data)[vb].status == EVEN) { |
878 | 877 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
879 | 878 |
_delta3->push(e, rw / 2); |
880 | 879 |
} |
881 | 880 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
882 | 881 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
883 | 882 |
_delta3->push(e, rw); |
884 | 883 |
} |
885 | 884 |
} else { |
886 | 885 |
typename std::map<int, Arc>::iterator it = |
887 | 886 |
(*_node_data)[vi].heap_index.find(tree); |
888 | 887 |
|
889 | 888 |
if (it != (*_node_data)[vi].heap_index.end()) { |
890 | 889 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
891 | 890 |
(*_node_data)[vi].heap.replace(it->second, e); |
892 | 891 |
(*_node_data)[vi].heap.decrease(e, rw); |
893 | 892 |
it->second = e; |
894 | 893 |
} |
895 | 894 |
} else { |
896 | 895 |
(*_node_data)[vi].heap.push(e, rw); |
897 | 896 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
898 | 897 |
} |
899 | 898 |
|
900 | 899 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
901 | 900 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
902 | 901 |
|
903 | 902 |
if ((*_blossom_data)[vb].status == MATCHED) { |
904 | 903 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
905 | 904 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
906 | 905 |
(*_blossom_data)[vb].offset); |
907 | 906 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
908 | 907 |
(*_blossom_data)[vb].offset){ |
909 | 908 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
910 | 909 |
(*_blossom_data)[vb].offset); |
911 | 910 |
} |
912 | 911 |
} |
913 | 912 |
} |
914 | 913 |
} |
915 | 914 |
} |
916 | 915 |
} |
917 | 916 |
(*_blossom_data)[blossom].offset = 0; |
918 | 917 |
} |
919 | 918 |
|
920 | 919 |
void matchedToOdd(int blossom) { |
921 | 920 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
922 | 921 |
_delta2->erase(blossom); |
923 | 922 |
} |
924 | 923 |
(*_blossom_data)[blossom].offset += _delta_sum; |
925 | 924 |
if (!_blossom_set->trivial(blossom)) { |
926 | 925 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
927 | 926 |
(*_blossom_data)[blossom].offset); |
928 | 927 |
} |
929 | 928 |
} |
930 | 929 |
|
931 | 930 |
void evenToMatched(int blossom, int tree) { |
932 | 931 |
if (!_blossom_set->trivial(blossom)) { |
933 | 932 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
934 | 933 |
} |
935 | 934 |
|
936 | 935 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
937 | 936 |
n != INVALID; ++n) { |
938 | 937 |
int ni = (*_node_index)[n]; |
939 | 938 |
(*_node_data)[ni].pot -= _delta_sum; |
940 | 939 |
|
941 | 940 |
_delta1->erase(n); |
942 | 941 |
|
943 | 942 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
944 | 943 |
Node v = _graph.source(e); |
945 | 944 |
int vb = _blossom_set->find(v); |
946 | 945 |
int vi = (*_node_index)[v]; |
947 | 946 |
|
948 | 947 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
949 | 948 |
dualScale * _weight[e]; |
950 | 949 |
|
951 | 950 |
if (vb == blossom) { |
952 | 951 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
953 | 952 |
_delta3->erase(e); |
954 | 953 |
} |
955 | 954 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
956 | 955 |
|
957 | 956 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
958 | 957 |
_delta3->erase(e); |
959 | 958 |
} |
960 | 959 |
|
961 | 960 |
int vt = _tree_set->find(vb); |
962 | 961 |
|
963 | 962 |
if (vt != tree) { |
964 | 963 |
|
965 | 964 |
Arc r = _graph.oppositeArc(e); |
966 | 965 |
|
967 | 966 |
typename std::map<int, Arc>::iterator it = |
968 | 967 |
(*_node_data)[ni].heap_index.find(vt); |
969 | 968 |
|
970 | 969 |
if (it != (*_node_data)[ni].heap_index.end()) { |
971 | 970 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
972 | 971 |
(*_node_data)[ni].heap.replace(it->second, r); |
973 | 972 |
(*_node_data)[ni].heap.decrease(r, rw); |
974 | 973 |
it->second = r; |
975 | 974 |
} |
976 | 975 |
} else { |
977 | 976 |
(*_node_data)[ni].heap.push(r, rw); |
978 | 977 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
979 | 978 |
} |
980 | 979 |
|
981 | 980 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
982 | 981 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
983 | 982 |
|
984 | 983 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
985 | 984 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
986 | 985 |
(*_blossom_data)[blossom].offset); |
987 | 986 |
} else if ((*_delta2)[blossom] > |
988 | 987 |
_blossom_set->classPrio(blossom) - |
989 | 988 |
(*_blossom_data)[blossom].offset){ |
990 | 989 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
991 | 990 |
(*_blossom_data)[blossom].offset); |
992 | 991 |
} |
993 | 992 |
} |
994 | 993 |
} |
995 | 994 |
|
996 | 995 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
997 | 996 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
998 | 997 |
_delta3->erase(e); |
999 | 998 |
} |
1000 | 999 |
} else { |
1001 | 1000 |
|
1002 | 1001 |
typename std::map<int, Arc>::iterator it = |
1003 | 1002 |
(*_node_data)[vi].heap_index.find(tree); |
1004 | 1003 |
|
1005 | 1004 |
if (it != (*_node_data)[vi].heap_index.end()) { |
1006 | 1005 |
(*_node_data)[vi].heap.erase(it->second); |
1007 | 1006 |
(*_node_data)[vi].heap_index.erase(it); |
1008 | 1007 |
if ((*_node_data)[vi].heap.empty()) { |
1009 | 1008 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
1010 | 1009 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
1011 | 1010 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
1012 | 1011 |
} |
1013 | 1012 |
|
1014 | 1013 |
if ((*_blossom_data)[vb].status == MATCHED) { |
1015 | 1014 |
if (_blossom_set->classPrio(vb) == |
1016 | 1015 |
std::numeric_limits<Value>::max()) { |
1017 | 1016 |
_delta2->erase(vb); |
1018 | 1017 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
1019 | 1018 |
(*_blossom_data)[vb].offset) { |
1020 | 1019 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
1021 | 1020 |
(*_blossom_data)[vb].offset); |
1022 | 1021 |
} |
1023 | 1022 |
} |
1024 | 1023 |
} |
1025 | 1024 |
} |
1026 | 1025 |
} |
1027 | 1026 |
} |
1028 | 1027 |
} |
1029 | 1028 |
|
1030 | 1029 |
void oddToMatched(int blossom) { |
1031 | 1030 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
1032 | 1031 |
|
... | ... |
@@ -1249,1047 +1248,1047 @@ |
1249 | 1248 |
|
1250 | 1249 |
alternatePath(blossom, tree); |
1251 | 1250 |
destroyTree(tree); |
1252 | 1251 |
|
1253 | 1252 |
(*_blossom_data)[blossom].status = UNMATCHED; |
1254 | 1253 |
(*_blossom_data)[blossom].base = node; |
1255 | 1254 |
matchedToUnmatched(blossom); |
1256 | 1255 |
} |
1257 | 1256 |
|
1258 | 1257 |
|
1259 | 1258 |
void augmentOnEdge(const Edge& edge) { |
1260 | 1259 |
|
1261 | 1260 |
int left = _blossom_set->find(_graph.u(edge)); |
1262 | 1261 |
int right = _blossom_set->find(_graph.v(edge)); |
1263 | 1262 |
|
1264 | 1263 |
if ((*_blossom_data)[left].status == EVEN) { |
1265 | 1264 |
int left_tree = _tree_set->find(left); |
1266 | 1265 |
alternatePath(left, left_tree); |
1267 | 1266 |
destroyTree(left_tree); |
1268 | 1267 |
} else { |
1269 | 1268 |
(*_blossom_data)[left].status = MATCHED; |
1270 | 1269 |
unmatchedToMatched(left); |
1271 | 1270 |
} |
1272 | 1271 |
|
1273 | 1272 |
if ((*_blossom_data)[right].status == EVEN) { |
1274 | 1273 |
int right_tree = _tree_set->find(right); |
1275 | 1274 |
alternatePath(right, right_tree); |
1276 | 1275 |
destroyTree(right_tree); |
1277 | 1276 |
} else { |
1278 | 1277 |
(*_blossom_data)[right].status = MATCHED; |
1279 | 1278 |
unmatchedToMatched(right); |
1280 | 1279 |
} |
1281 | 1280 |
|
1282 | 1281 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
1283 | 1282 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
1284 | 1283 |
} |
1285 | 1284 |
|
1286 | 1285 |
void extendOnArc(const Arc& arc) { |
1287 | 1286 |
int base = _blossom_set->find(_graph.target(arc)); |
1288 | 1287 |
int tree = _tree_set->find(base); |
1289 | 1288 |
|
1290 | 1289 |
int odd = _blossom_set->find(_graph.source(arc)); |
1291 | 1290 |
_tree_set->insert(odd, tree); |
1292 | 1291 |
(*_blossom_data)[odd].status = ODD; |
1293 | 1292 |
matchedToOdd(odd); |
1294 | 1293 |
(*_blossom_data)[odd].pred = arc; |
1295 | 1294 |
|
1296 | 1295 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
1297 | 1296 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
1298 | 1297 |
_tree_set->insert(even, tree); |
1299 | 1298 |
(*_blossom_data)[even].status = EVEN; |
1300 | 1299 |
matchedToEven(even, tree); |
1301 | 1300 |
} |
1302 | 1301 |
|
1303 | 1302 |
void shrinkOnEdge(const Edge& edge, int tree) { |
1304 | 1303 |
int nca = -1; |
1305 | 1304 |
std::vector<int> left_path, right_path; |
1306 | 1305 |
|
1307 | 1306 |
{ |
1308 | 1307 |
std::set<int> left_set, right_set; |
1309 | 1308 |
int left = _blossom_set->find(_graph.u(edge)); |
1310 | 1309 |
left_path.push_back(left); |
1311 | 1310 |
left_set.insert(left); |
1312 | 1311 |
|
1313 | 1312 |
int right = _blossom_set->find(_graph.v(edge)); |
1314 | 1313 |
right_path.push_back(right); |
1315 | 1314 |
right_set.insert(right); |
1316 | 1315 |
|
1317 | 1316 |
while (true) { |
1318 | 1317 |
|
1319 | 1318 |
if ((*_blossom_data)[left].pred == INVALID) break; |
1320 | 1319 |
|
1321 | 1320 |
left = |
1322 | 1321 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
1323 | 1322 |
left_path.push_back(left); |
1324 | 1323 |
left = |
1325 | 1324 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
1326 | 1325 |
left_path.push_back(left); |
1327 | 1326 |
|
1328 | 1327 |
left_set.insert(left); |
1329 | 1328 |
|
1330 | 1329 |
if (right_set.find(left) != right_set.end()) { |
1331 | 1330 |
nca = left; |
1332 | 1331 |
break; |
1333 | 1332 |
} |
1334 | 1333 |
|
1335 | 1334 |
if ((*_blossom_data)[right].pred == INVALID) break; |
1336 | 1335 |
|
1337 | 1336 |
right = |
1338 | 1337 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
1339 | 1338 |
right_path.push_back(right); |
1340 | 1339 |
right = |
1341 | 1340 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
1342 | 1341 |
right_path.push_back(right); |
1343 | 1342 |
|
1344 | 1343 |
right_set.insert(right); |
1345 | 1344 |
|
1346 | 1345 |
if (left_set.find(right) != left_set.end()) { |
1347 | 1346 |
nca = right; |
1348 | 1347 |
break; |
1349 | 1348 |
} |
1350 | 1349 |
|
1351 | 1350 |
} |
1352 | 1351 |
|
1353 | 1352 |
if (nca == -1) { |
1354 | 1353 |
if ((*_blossom_data)[left].pred == INVALID) { |
1355 | 1354 |
nca = right; |
1356 | 1355 |
while (left_set.find(nca) == left_set.end()) { |
1357 | 1356 |
nca = |
1358 | 1357 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1359 | 1358 |
right_path.push_back(nca); |
1360 | 1359 |
nca = |
1361 | 1360 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1362 | 1361 |
right_path.push_back(nca); |
1363 | 1362 |
} |
1364 | 1363 |
} else { |
1365 | 1364 |
nca = left; |
1366 | 1365 |
while (right_set.find(nca) == right_set.end()) { |
1367 | 1366 |
nca = |
1368 | 1367 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1369 | 1368 |
left_path.push_back(nca); |
1370 | 1369 |
nca = |
1371 | 1370 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1372 | 1371 |
left_path.push_back(nca); |
1373 | 1372 |
} |
1374 | 1373 |
} |
1375 | 1374 |
} |
1376 | 1375 |
} |
1377 | 1376 |
|
1378 | 1377 |
std::vector<int> subblossoms; |
1379 | 1378 |
Arc prev; |
1380 | 1379 |
|
1381 | 1380 |
prev = _graph.direct(edge, true); |
1382 | 1381 |
for (int i = 0; left_path[i] != nca; i += 2) { |
1383 | 1382 |
subblossoms.push_back(left_path[i]); |
1384 | 1383 |
(*_blossom_data)[left_path[i]].next = prev; |
1385 | 1384 |
_tree_set->erase(left_path[i]); |
1386 | 1385 |
|
1387 | 1386 |
subblossoms.push_back(left_path[i + 1]); |
1388 | 1387 |
(*_blossom_data)[left_path[i + 1]].status = EVEN; |
1389 | 1388 |
oddToEven(left_path[i + 1], tree); |
1390 | 1389 |
_tree_set->erase(left_path[i + 1]); |
1391 | 1390 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
1392 | 1391 |
} |
1393 | 1392 |
|
1394 | 1393 |
int k = 0; |
1395 | 1394 |
while (right_path[k] != nca) ++k; |
1396 | 1395 |
|
1397 | 1396 |
subblossoms.push_back(nca); |
1398 | 1397 |
(*_blossom_data)[nca].next = prev; |
1399 | 1398 |
|
1400 | 1399 |
for (int i = k - 2; i >= 0; i -= 2) { |
1401 | 1400 |
subblossoms.push_back(right_path[i + 1]); |
1402 | 1401 |
(*_blossom_data)[right_path[i + 1]].status = EVEN; |
1403 | 1402 |
oddToEven(right_path[i + 1], tree); |
1404 | 1403 |
_tree_set->erase(right_path[i + 1]); |
1405 | 1404 |
|
1406 | 1405 |
(*_blossom_data)[right_path[i + 1]].next = |
1407 | 1406 |
(*_blossom_data)[right_path[i + 1]].pred; |
1408 | 1407 |
|
1409 | 1408 |
subblossoms.push_back(right_path[i]); |
1410 | 1409 |
_tree_set->erase(right_path[i]); |
1411 | 1410 |
} |
1412 | 1411 |
|
1413 | 1412 |
int surface = |
1414 | 1413 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
1415 | 1414 |
|
1416 | 1415 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1417 | 1416 |
if (!_blossom_set->trivial(subblossoms[i])) { |
1418 | 1417 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
1419 | 1418 |
} |
1420 | 1419 |
(*_blossom_data)[subblossoms[i]].status = MATCHED; |
1421 | 1420 |
} |
1422 | 1421 |
|
1423 | 1422 |
(*_blossom_data)[surface].pot = -2 * _delta_sum; |
1424 | 1423 |
(*_blossom_data)[surface].offset = 0; |
1425 | 1424 |
(*_blossom_data)[surface].status = EVEN; |
1426 | 1425 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
1427 | 1426 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
1428 | 1427 |
|
1429 | 1428 |
_tree_set->insert(surface, tree); |
1430 | 1429 |
_tree_set->erase(nca); |
1431 | 1430 |
} |
1432 | 1431 |
|
1433 | 1432 |
void splitBlossom(int blossom) { |
1434 | 1433 |
Arc next = (*_blossom_data)[blossom].next; |
1435 | 1434 |
Arc pred = (*_blossom_data)[blossom].pred; |
1436 | 1435 |
|
1437 | 1436 |
int tree = _tree_set->find(blossom); |
1438 | 1437 |
|
1439 | 1438 |
(*_blossom_data)[blossom].status = MATCHED; |
1440 | 1439 |
oddToMatched(blossom); |
1441 | 1440 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
1442 | 1441 |
_delta2->erase(blossom); |
1443 | 1442 |
} |
1444 | 1443 |
|
1445 | 1444 |
std::vector<int> subblossoms; |
1446 | 1445 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
1447 | 1446 |
|
1448 | 1447 |
Value offset = (*_blossom_data)[blossom].offset; |
1449 | 1448 |
int b = _blossom_set->find(_graph.source(pred)); |
1450 | 1449 |
int d = _blossom_set->find(_graph.source(next)); |
1451 | 1450 |
|
1452 | 1451 |
int ib = -1, id = -1; |
1453 | 1452 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1454 | 1453 |
if (subblossoms[i] == b) ib = i; |
1455 | 1454 |
if (subblossoms[i] == d) id = i; |
1456 | 1455 |
|
1457 | 1456 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
1458 | 1457 |
if (!_blossom_set->trivial(subblossoms[i])) { |
1459 | 1458 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
1460 | 1459 |
} |
1461 | 1460 |
if (_blossom_set->classPrio(subblossoms[i]) != |
1462 | 1461 |
std::numeric_limits<Value>::max()) { |
1463 | 1462 |
_delta2->push(subblossoms[i], |
1464 | 1463 |
_blossom_set->classPrio(subblossoms[i]) - |
1465 | 1464 |
(*_blossom_data)[subblossoms[i]].offset); |
1466 | 1465 |
} |
1467 | 1466 |
} |
1468 | 1467 |
|
1469 | 1468 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
1470 | 1469 |
for (int i = (id + 1) % subblossoms.size(); |
1471 | 1470 |
i != ib; i = (i + 2) % subblossoms.size()) { |
1472 | 1471 |
int sb = subblossoms[i]; |
1473 | 1472 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1474 | 1473 |
(*_blossom_data)[sb].next = |
1475 | 1474 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1476 | 1475 |
} |
1477 | 1476 |
|
1478 | 1477 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
1479 | 1478 |
int sb = subblossoms[i]; |
1480 | 1479 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1481 | 1480 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
1482 | 1481 |
|
1483 | 1482 |
(*_blossom_data)[sb].status = ODD; |
1484 | 1483 |
matchedToOdd(sb); |
1485 | 1484 |
_tree_set->insert(sb, tree); |
1486 | 1485 |
(*_blossom_data)[sb].pred = pred; |
1487 | 1486 |
(*_blossom_data)[sb].next = |
1488 | 1487 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1489 | 1488 |
|
1490 | 1489 |
pred = (*_blossom_data)[ub].next; |
1491 | 1490 |
|
1492 | 1491 |
(*_blossom_data)[tb].status = EVEN; |
1493 | 1492 |
matchedToEven(tb, tree); |
1494 | 1493 |
_tree_set->insert(tb, tree); |
1495 | 1494 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
1496 | 1495 |
} |
1497 | 1496 |
|
1498 | 1497 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
1499 | 1498 |
matchedToOdd(subblossoms[id]); |
1500 | 1499 |
_tree_set->insert(subblossoms[id], tree); |
1501 | 1500 |
(*_blossom_data)[subblossoms[id]].next = next; |
1502 | 1501 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
1503 | 1502 |
|
1504 | 1503 |
} else { |
1505 | 1504 |
|
1506 | 1505 |
for (int i = (ib + 1) % subblossoms.size(); |
1507 | 1506 |
i != id; i = (i + 2) % subblossoms.size()) { |
1508 | 1507 |
int sb = subblossoms[i]; |
1509 | 1508 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1510 | 1509 |
(*_blossom_data)[sb].next = |
1511 | 1510 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1512 | 1511 |
} |
1513 | 1512 |
|
1514 | 1513 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
1515 | 1514 |
int sb = subblossoms[i]; |
1516 | 1515 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1517 | 1516 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
1518 | 1517 |
|
1519 | 1518 |
(*_blossom_data)[sb].status = ODD; |
1520 | 1519 |
matchedToOdd(sb); |
1521 | 1520 |
_tree_set->insert(sb, tree); |
1522 | 1521 |
(*_blossom_data)[sb].next = next; |
1523 | 1522 |
(*_blossom_data)[sb].pred = |
1524 | 1523 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1525 | 1524 |
|
1526 | 1525 |
(*_blossom_data)[tb].status = EVEN; |
1527 | 1526 |
matchedToEven(tb, tree); |
1528 | 1527 |
_tree_set->insert(tb, tree); |
1529 | 1528 |
(*_blossom_data)[tb].pred = |
1530 | 1529 |
(*_blossom_data)[tb].next = |
1531 | 1530 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
1532 | 1531 |
next = (*_blossom_data)[ub].next; |
1533 | 1532 |
} |
1534 | 1533 |
|
1535 | 1534 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
1536 | 1535 |
matchedToOdd(subblossoms[ib]); |
1537 | 1536 |
_tree_set->insert(subblossoms[ib], tree); |
1538 | 1537 |
(*_blossom_data)[subblossoms[ib]].next = next; |
1539 | 1538 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
1540 | 1539 |
} |
1541 | 1540 |
_tree_set->erase(blossom); |
1542 | 1541 |
} |
1543 | 1542 |
|
1544 | 1543 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
1545 | 1544 |
if (_blossom_set->trivial(blossom)) { |
1546 | 1545 |
int bi = (*_node_index)[base]; |
1547 | 1546 |
Value pot = (*_node_data)[bi].pot; |
1548 | 1547 |
|
1549 | 1548 |
_matching->set(base, matching); |
1550 | 1549 |
_blossom_node_list.push_back(base); |
1551 | 1550 |
_node_potential->set(base, pot); |
1552 | 1551 |
} else { |
1553 | 1552 |
|
1554 | 1553 |
Value pot = (*_blossom_data)[blossom].pot; |
1555 | 1554 |
int bn = _blossom_node_list.size(); |
1556 | 1555 |
|
1557 | 1556 |
std::vector<int> subblossoms; |
1558 | 1557 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
1559 | 1558 |
int b = _blossom_set->find(base); |
1560 | 1559 |
int ib = -1; |
1561 | 1560 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1562 | 1561 |
if (subblossoms[i] == b) { ib = i; break; } |
1563 | 1562 |
} |
1564 | 1563 |
|
1565 | 1564 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
1566 | 1565 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
1567 | 1566 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
1568 | 1567 |
|
1569 | 1568 |
Arc m = (*_blossom_data)[tb].next; |
1570 | 1569 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
1571 | 1570 |
extractBlossom(tb, _graph.source(m), m); |
1572 | 1571 |
} |
1573 | 1572 |
extractBlossom(subblossoms[ib], base, matching); |
1574 | 1573 |
|
1575 | 1574 |
int en = _blossom_node_list.size(); |
1576 | 1575 |
|
1577 | 1576 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
1578 | 1577 |
} |
1579 | 1578 |
} |
1580 | 1579 |
|
1581 | 1580 |
void extractMatching() { |
1582 | 1581 |
std::vector<int> blossoms; |
1583 | 1582 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
1584 | 1583 |
blossoms.push_back(c); |
1585 | 1584 |
} |
1586 | 1585 |
|
1587 | 1586 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
1588 | 1587 |
if ((*_blossom_data)[blossoms[i]].status == MATCHED) { |
1589 | 1588 |
|
1590 | 1589 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
1591 | 1590 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
1592 | 1591 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
1593 | 1592 |
n != INVALID; ++n) { |
1594 | 1593 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
1595 | 1594 |
} |
1596 | 1595 |
|
1597 | 1596 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
1598 | 1597 |
Node base = _graph.source(matching); |
1599 | 1598 |
extractBlossom(blossoms[i], base, matching); |
1600 | 1599 |
} else { |
1601 | 1600 |
Node base = (*_blossom_data)[blossoms[i]].base; |
1602 | 1601 |
extractBlossom(blossoms[i], base, INVALID); |
1603 | 1602 |
} |
1604 | 1603 |
} |
1605 | 1604 |
} |
1606 | 1605 |
|
1607 | 1606 |
public: |
1608 | 1607 |
|
1609 | 1608 |
/// \brief Constructor |
1610 | 1609 |
/// |
1611 | 1610 |
/// Constructor. |
1612 | 1611 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
1613 | 1612 |
: _graph(graph), _weight(weight), _matching(0), |
1614 | 1613 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
1615 | 1614 |
_node_num(0), _blossom_num(0), |
1616 | 1615 |
|
1617 | 1616 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
1618 | 1617 |
_node_index(0), _node_heap_index(0), _node_data(0), |
1619 | 1618 |
_tree_set_index(0), _tree_set(0), |
1620 | 1619 |
|
1621 | 1620 |
_delta1_index(0), _delta1(0), |
1622 | 1621 |
_delta2_index(0), _delta2(0), |
1623 | 1622 |
_delta3_index(0), _delta3(0), |
1624 | 1623 |
_delta4_index(0), _delta4(0), |
1625 | 1624 |
|
1626 | 1625 |
_delta_sum() {} |
1627 | 1626 |
|
1628 | 1627 |
~MaxWeightedMatching() { |
1629 | 1628 |
destroyStructures(); |
1630 | 1629 |
} |
1631 | 1630 |
|
1632 | 1631 |
/// \name Execution control |
1633 |
/// The simplest way to execute the algorithm is to use the |
|
1632 |
/// The simplest way to execute the algorithm is to use the |
|
1634 | 1633 |
/// \c run() member function. |
1635 | 1634 |
|
1636 | 1635 |
///@{ |
1637 | 1636 |
|
1638 | 1637 |
/// \brief Initialize the algorithm |
1639 | 1638 |
/// |
1640 | 1639 |
/// Initialize the algorithm |
1641 | 1640 |
void init() { |
1642 | 1641 |
createStructures(); |
1643 | 1642 |
|
1644 | 1643 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1645 | 1644 |
_node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP); |
1646 | 1645 |
} |
1647 | 1646 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1648 | 1647 |
_delta1_index->set(n, _delta1->PRE_HEAP); |
1649 | 1648 |
} |
1650 | 1649 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1651 | 1650 |
_delta3_index->set(e, _delta3->PRE_HEAP); |
1652 | 1651 |
} |
1653 | 1652 |
for (int i = 0; i < _blossom_num; ++i) { |
1654 | 1653 |
_delta2_index->set(i, _delta2->PRE_HEAP); |
1655 | 1654 |
_delta4_index->set(i, _delta4->PRE_HEAP); |
1656 | 1655 |
} |
1657 | 1656 |
|
1658 | 1657 |
int index = 0; |
1659 | 1658 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1660 | 1659 |
Value max = 0; |
1661 | 1660 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
1662 | 1661 |
if (_graph.target(e) == n) continue; |
1663 | 1662 |
if ((dualScale * _weight[e]) / 2 > max) { |
1664 | 1663 |
max = (dualScale * _weight[e]) / 2; |
1665 | 1664 |
} |
1666 | 1665 |
} |
1667 | 1666 |
_node_index->set(n, index); |
1668 | 1667 |
(*_node_data)[index].pot = max; |
1669 | 1668 |
_delta1->push(n, max); |
1670 | 1669 |
int blossom = |
1671 | 1670 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
1672 | 1671 |
|
1673 | 1672 |
_tree_set->insert(blossom); |
1674 | 1673 |
|
1675 | 1674 |
(*_blossom_data)[blossom].status = EVEN; |
1676 | 1675 |
(*_blossom_data)[blossom].pred = INVALID; |
1677 | 1676 |
(*_blossom_data)[blossom].next = INVALID; |
1678 | 1677 |
(*_blossom_data)[blossom].pot = 0; |
1679 | 1678 |
(*_blossom_data)[blossom].offset = 0; |
1680 | 1679 |
++index; |
1681 | 1680 |
} |
1682 | 1681 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1683 | 1682 |
int si = (*_node_index)[_graph.u(e)]; |
1684 | 1683 |
int ti = (*_node_index)[_graph.v(e)]; |
1685 | 1684 |
if (_graph.u(e) != _graph.v(e)) { |
1686 | 1685 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
1687 | 1686 |
dualScale * _weight[e]) / 2); |
1688 | 1687 |
} |
1689 | 1688 |
} |
1690 | 1689 |
} |
1691 | 1690 |
|
1692 | 1691 |
/// \brief Starts the algorithm |
1693 | 1692 |
/// |
1694 | 1693 |
/// Starts the algorithm |
1695 | 1694 |
void start() { |
1696 | 1695 |
enum OpType { |
1697 | 1696 |
D1, D2, D3, D4 |
1698 | 1697 |
}; |
1699 | 1698 |
|
1700 | 1699 |
int unmatched = _node_num; |
1701 | 1700 |
while (unmatched > 0) { |
1702 | 1701 |
Value d1 = !_delta1->empty() ? |
1703 | 1702 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
1704 | 1703 |
|
1705 | 1704 |
Value d2 = !_delta2->empty() ? |
1706 | 1705 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
1707 | 1706 |
|
1708 | 1707 |
Value d3 = !_delta3->empty() ? |
1709 | 1708 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
1710 | 1709 |
|
1711 | 1710 |
Value d4 = !_delta4->empty() ? |
1712 | 1711 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
1713 | 1712 |
|
1714 | 1713 |
_delta_sum = d1; OpType ot = D1; |
1715 | 1714 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
1716 | 1715 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
1717 | 1716 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
1718 | 1717 |
|
1719 | 1718 |
|
1720 | 1719 |
switch (ot) { |
1721 | 1720 |
case D1: |
1722 | 1721 |
{ |
1723 | 1722 |
Node n = _delta1->top(); |
1724 | 1723 |
unmatchNode(n); |
1725 | 1724 |
--unmatched; |
1726 | 1725 |
} |
1727 | 1726 |
break; |
1728 | 1727 |
case D2: |
1729 | 1728 |
{ |
1730 | 1729 |
int blossom = _delta2->top(); |
1731 | 1730 |
Node n = _blossom_set->classTop(blossom); |
1732 | 1731 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
1733 | 1732 |
extendOnArc(e); |
1734 | 1733 |
} |
1735 | 1734 |
break; |
1736 | 1735 |
case D3: |
1737 | 1736 |
{ |
1738 | 1737 |
Edge e = _delta3->top(); |
1739 | 1738 |
|
1740 | 1739 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
1741 | 1740 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
1742 | 1741 |
|
1743 | 1742 |
if (left_blossom == right_blossom) { |
1744 | 1743 |
_delta3->pop(); |
1745 | 1744 |
} else { |
1746 | 1745 |
int left_tree; |
1747 | 1746 |
if ((*_blossom_data)[left_blossom].status == EVEN) { |
1748 | 1747 |
left_tree = _tree_set->find(left_blossom); |
1749 | 1748 |
} else { |
1750 | 1749 |
left_tree = -1; |
1751 | 1750 |
++unmatched; |
1752 | 1751 |
} |
1753 | 1752 |
int right_tree; |
1754 | 1753 |
if ((*_blossom_data)[right_blossom].status == EVEN) { |
1755 | 1754 |
right_tree = _tree_set->find(right_blossom); |
1756 | 1755 |
} else { |
1757 | 1756 |
right_tree = -1; |
1758 | 1757 |
++unmatched; |
1759 | 1758 |
} |
1760 | 1759 |
|
1761 | 1760 |
if (left_tree == right_tree) { |
1762 | 1761 |
shrinkOnEdge(e, left_tree); |
1763 | 1762 |
} else { |
1764 | 1763 |
augmentOnEdge(e); |
1765 | 1764 |
unmatched -= 2; |
1766 | 1765 |
} |
1767 | 1766 |
} |
1768 | 1767 |
} break; |
1769 | 1768 |
case D4: |
1770 | 1769 |
splitBlossom(_delta4->top()); |
1771 | 1770 |
break; |
1772 | 1771 |
} |
1773 | 1772 |
} |
1774 | 1773 |
extractMatching(); |
1775 | 1774 |
} |
1776 | 1775 |
|
1777 | 1776 |
/// \brief Runs %MaxWeightedMatching algorithm. |
1778 | 1777 |
/// |
1779 | 1778 |
/// This method runs the %MaxWeightedMatching algorithm. |
1780 | 1779 |
/// |
1781 | 1780 |
/// \note mwm.run() is just a shortcut of the following code. |
1782 | 1781 |
/// \code |
1783 | 1782 |
/// mwm.init(); |
1784 | 1783 |
/// mwm.start(); |
1785 | 1784 |
/// \endcode |
1786 | 1785 |
void run() { |
1787 | 1786 |
init(); |
1788 | 1787 |
start(); |
1789 | 1788 |
} |
1790 | 1789 |
|
1791 | 1790 |
/// @} |
1792 | 1791 |
|
1793 | 1792 |
/// \name Primal solution |
1794 |
/// Functions |
|
1793 |
/// Functions to get the primal solution, ie. the matching. |
|
1795 | 1794 |
|
1796 | 1795 |
/// @{ |
1797 | 1796 |
|
1798 |
/// \brief Returns the |
|
1797 |
/// \brief Returns the weight of the matching. |
|
1799 | 1798 |
/// |
1800 |
/// Returns the |
|
1799 |
/// Returns the weight of the matching. |
|
1801 | 1800 |
Value matchingValue() const { |
1802 | 1801 |
Value sum = 0; |
1803 | 1802 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1804 | 1803 |
if ((*_matching)[n] != INVALID) { |
1805 | 1804 |
sum += _weight[(*_matching)[n]]; |
1806 | 1805 |
} |
1807 | 1806 |
} |
1808 | 1807 |
return sum /= 2; |
1809 | 1808 |
} |
1810 | 1809 |
|
1811 | 1810 |
/// \brief Returns the cardinality of the matching. |
1812 | 1811 |
/// |
1813 | 1812 |
/// Returns the cardinality of the matching. |
1814 | 1813 |
int matchingSize() const { |
1815 | 1814 |
int num = 0; |
1816 | 1815 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1817 | 1816 |
if ((*_matching)[n] != INVALID) { |
1818 | 1817 |
++num; |
1819 | 1818 |
} |
1820 | 1819 |
} |
1821 | 1820 |
return num /= 2; |
1822 | 1821 |
} |
1823 | 1822 |
|
1824 | 1823 |
/// \brief Returns true when the edge is in the matching. |
1825 | 1824 |
/// |
1826 | 1825 |
/// Returns true when the edge is in the matching. |
1827 | 1826 |
bool matching(const Edge& edge) const { |
1828 | 1827 |
return edge == (*_matching)[_graph.u(edge)]; |
1829 | 1828 |
} |
1830 | 1829 |
|
1831 | 1830 |
/// \brief Returns the incident matching arc. |
1832 | 1831 |
/// |
1833 | 1832 |
/// Returns the incident matching arc from given node. If the |
1834 | 1833 |
/// node is not matched then it gives back \c INVALID. |
1835 | 1834 |
Arc matching(const Node& node) const { |
1836 | 1835 |
return (*_matching)[node]; |
1837 | 1836 |
} |
1838 | 1837 |
|
1839 | 1838 |
/// \brief Returns the mate of the node. |
1840 | 1839 |
/// |
1841 | 1840 |
/// Returns the adjancent node in a mathcing arc. If the node is |
1842 | 1841 |
/// not matched then it gives back \c INVALID. |
1843 | 1842 |
Node mate(const Node& node) const { |
1844 | 1843 |
return (*_matching)[node] != INVALID ? |
1845 | 1844 |
_graph.target((*_matching)[node]) : INVALID; |
1846 | 1845 |
} |
1847 | 1846 |
|
1848 | 1847 |
/// @} |
1849 | 1848 |
|
1850 | 1849 |
/// \name Dual solution |
1851 |
/// Functions |
|
1850 |
/// Functions to get the dual solution. |
|
1852 | 1851 |
|
1853 | 1852 |
/// @{ |
1854 | 1853 |
|
1855 | 1854 |
/// \brief Returns the value of the dual solution. |
1856 | 1855 |
/// |
1857 | 1856 |
/// Returns the value of the dual solution. It should be equal to |
1858 | 1857 |
/// the primal value scaled by \ref dualScale "dual scale". |
1859 | 1858 |
Value dualValue() const { |
1860 | 1859 |
Value sum = 0; |
1861 | 1860 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1862 | 1861 |
sum += nodeValue(n); |
1863 | 1862 |
} |
1864 | 1863 |
for (int i = 0; i < blossomNum(); ++i) { |
1865 | 1864 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
1866 | 1865 |
} |
1867 | 1866 |
return sum; |
1868 | 1867 |
} |
1869 | 1868 |
|
1870 | 1869 |
/// \brief Returns the value of the node. |
1871 | 1870 |
/// |
1872 | 1871 |
/// Returns the the value of the node. |
1873 | 1872 |
Value nodeValue(const Node& n) const { |
1874 | 1873 |
return (*_node_potential)[n]; |
1875 | 1874 |
} |
1876 | 1875 |
|
1877 | 1876 |
/// \brief Returns the number of the blossoms in the basis. |
1878 | 1877 |
/// |
1879 | 1878 |
/// Returns the number of the blossoms in the basis. |
1880 | 1879 |
/// \see BlossomIt |
1881 | 1880 |
int blossomNum() const { |
1882 | 1881 |
return _blossom_potential.size(); |
1883 | 1882 |
} |
1884 | 1883 |
|
1885 | 1884 |
|
1886 | 1885 |
/// \brief Returns the number of the nodes in the blossom. |
1887 | 1886 |
/// |
1888 | 1887 |
/// Returns the number of the nodes in the blossom. |
1889 | 1888 |
int blossomSize(int k) const { |
1890 | 1889 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
1891 | 1890 |
} |
1892 | 1891 |
|
1893 | 1892 |
/// \brief Returns the value of the blossom. |
1894 | 1893 |
/// |
1895 | 1894 |
/// Returns the the value of the blossom. |
1896 | 1895 |
/// \see BlossomIt |
1897 | 1896 |
Value blossomValue(int k) const { |
1898 | 1897 |
return _blossom_potential[k].value; |
1899 | 1898 |
} |
1900 | 1899 |
|
1901 |
/// \brief |
|
1900 |
/// \brief Iterator for obtaining the nodes of the blossom. |
|
1902 | 1901 |
/// |
1903 |
/// Lemon iterator for get the nodes of the blossom. This class |
|
1904 |
/// provides a common style lemon iterator which gives back a |
|
1902 |
/// Iterator for obtaining the nodes of the blossom. This class |
|
1903 |
/// provides a common lemon style iterator for listing a |
|
1905 | 1904 |
/// subset of the nodes. |
1906 | 1905 |
class BlossomIt { |
1907 | 1906 |
public: |
1908 | 1907 |
|
1909 | 1908 |
/// \brief Constructor. |
1910 | 1909 |
/// |
1911 |
/// Constructor |
|
1910 |
/// Constructor to get the nodes of the variable. |
|
1912 | 1911 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
1913 | 1912 |
: _algorithm(&algorithm) |
1914 | 1913 |
{ |
1915 | 1914 |
_index = _algorithm->_blossom_potential[variable].begin; |
1916 | 1915 |
_last = _algorithm->_blossom_potential[variable].end; |
1917 | 1916 |
} |
1918 | 1917 |
|
1919 | 1918 |
/// \brief Conversion to node. |
1920 | 1919 |
/// |
1921 | 1920 |
/// Conversion to node. |
1922 | 1921 |
operator Node() const { |
1923 | 1922 |
return _algorithm->_blossom_node_list[_index]; |
1924 | 1923 |
} |
1925 | 1924 |
|
1926 | 1925 |
/// \brief Increment operator. |
1927 | 1926 |
/// |
1928 | 1927 |
/// Increment operator. |
1929 | 1928 |
BlossomIt& operator++() { |
1930 | 1929 |
++_index; |
1931 | 1930 |
return *this; |
1932 | 1931 |
} |
1933 | 1932 |
|
1934 | 1933 |
/// \brief Validity checking |
1935 | 1934 |
/// |
1936 | 1935 |
/// Checks whether the iterator is invalid. |
1937 | 1936 |
bool operator==(Invalid) const { return _index == _last; } |
1938 | 1937 |
|
1939 | 1938 |
/// \brief Validity checking |
1940 | 1939 |
/// |
1941 | 1940 |
/// Checks whether the iterator is valid. |
1942 | 1941 |
bool operator!=(Invalid) const { return _index != _last; } |
1943 | 1942 |
|
1944 | 1943 |
private: |
1945 | 1944 |
const MaxWeightedMatching* _algorithm; |
1946 | 1945 |
int _last; |
1947 | 1946 |
int _index; |
1948 | 1947 |
}; |
1949 | 1948 |
|
1950 | 1949 |
/// @} |
1951 | 1950 |
|
1952 | 1951 |
}; |
1953 | 1952 |
|
1954 | 1953 |
/// \ingroup matching |
1955 | 1954 |
/// |
1956 | 1955 |
/// \brief Weighted perfect matching in general graphs |
1957 | 1956 |
/// |
1958 | 1957 |
/// This class provides an efficient implementation of Edmond's |
1959 | 1958 |
/// maximum weighted perfect matching algorithm. The implementation |
1960 | 1959 |
/// is based on extensive use of priority queues and provides |
1961 | 1960 |
/// \f$O(nm\log(n))\f$ time complexity. |
1962 | 1961 |
/// |
1963 | 1962 |
/// The maximum weighted matching problem is to find undirected |
1964 | 1963 |
/// edges in the graph with maximum overall weight and no two of |
1965 | 1964 |
/// them shares their ends and covers all nodes. The problem can be |
1966 | 1965 |
/// formulated with the following linear program. |
1967 | 1966 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
1968 | 1967 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
1969 | 1968 |
\quad \forall B\in\mathcal{O}\f] */ |
1970 | 1969 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
1971 | 1970 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
1972 | 1971 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
1973 | 1972 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
1974 | 1973 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
1975 | 1974 |
/// subsets of the nodes. |
1976 | 1975 |
/// |
1977 | 1976 |
/// The algorithm calculates an optimal matching and a proof of the |
1978 | 1977 |
/// optimality. The solution of the dual problem can be used to check |
1979 | 1978 |
/// the result of the algorithm. The dual linear problem is the |
1980 | 1979 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
1981 | 1980 |
w_{uv} \quad \forall uv\in E\f] */ |
1982 | 1981 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
1983 | 1982 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
1984 | 1983 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
1985 | 1984 |
/// |
1986 | 1985 |
/// The algorithm can be executed with \c run() or the \c init() and |
1987 | 1986 |
/// then the \c start() member functions. After it the matching can |
1988 | 1987 |
/// be asked with \c matching() or mate() functions. The dual |
1989 | 1988 |
/// solution can be get with \c nodeValue(), \c blossomNum() and \c |
1990 | 1989 |
/// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
1991 | 1990 |
/// "BlossomIt" nested class which is able to iterate on the nodes |
1992 | 1991 |
/// of a blossom. If the value type is integral then the dual |
1993 | 1992 |
/// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
1994 | 1993 |
template <typename _Graph, |
1995 | 1994 |
typename _WeightMap = typename _Graph::template EdgeMap<int> > |
1996 | 1995 |
class MaxWeightedPerfectMatching { |
1997 | 1996 |
public: |
1998 | 1997 |
|
1999 | 1998 |
typedef _Graph Graph; |
2000 | 1999 |
typedef _WeightMap WeightMap; |
2001 | 2000 |
typedef typename WeightMap::Value Value; |
2002 | 2001 |
|
2003 | 2002 |
/// \brief Scaling factor for dual solution |
2004 | 2003 |
/// |
2005 | 2004 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
2006 | 2005 |
/// according to the value type. |
2007 | 2006 |
static const int dualScale = |
2008 | 2007 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
2009 | 2008 |
|
2010 | 2009 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
2011 | 2010 |
MatchingMap; |
2012 | 2011 |
|
2013 | 2012 |
private: |
2014 | 2013 |
|
2015 | 2014 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
2016 | 2015 |
|
2017 | 2016 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
2018 | 2017 |
typedef std::vector<Node> BlossomNodeList; |
2019 | 2018 |
|
2020 | 2019 |
struct BlossomVariable { |
2021 | 2020 |
int begin, end; |
2022 | 2021 |
Value value; |
2023 | 2022 |
|
2024 | 2023 |
BlossomVariable(int _begin, int _end, Value _value) |
2025 | 2024 |
: begin(_begin), end(_end), value(_value) {} |
2026 | 2025 |
|
2027 | 2026 |
}; |
2028 | 2027 |
|
2029 | 2028 |
typedef std::vector<BlossomVariable> BlossomPotential; |
2030 | 2029 |
|
2031 | 2030 |
const Graph& _graph; |
2032 | 2031 |
const WeightMap& _weight; |
2033 | 2032 |
|
2034 | 2033 |
MatchingMap* _matching; |
2035 | 2034 |
|
2036 | 2035 |
NodePotential* _node_potential; |
2037 | 2036 |
|
2038 | 2037 |
BlossomPotential _blossom_potential; |
2039 | 2038 |
BlossomNodeList _blossom_node_list; |
2040 | 2039 |
|
2041 | 2040 |
int _node_num; |
2042 | 2041 |
int _blossom_num; |
2043 | 2042 |
|
2044 | 2043 |
typedef RangeMap<int> IntIntMap; |
2045 | 2044 |
|
2046 | 2045 |
enum Status { |
2047 | 2046 |
EVEN = -1, MATCHED = 0, ODD = 1 |
2048 | 2047 |
}; |
2049 | 2048 |
|
2050 | 2049 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
2051 | 2050 |
struct BlossomData { |
2052 | 2051 |
int tree; |
2053 | 2052 |
Status status; |
2054 | 2053 |
Arc pred, next; |
2055 | 2054 |
Value pot, offset; |
2056 | 2055 |
}; |
2057 | 2056 |
|
2058 | 2057 |
IntNodeMap *_blossom_index; |
2059 | 2058 |
BlossomSet *_blossom_set; |
2060 | 2059 |
RangeMap<BlossomData>* _blossom_data; |
2061 | 2060 |
|
2062 | 2061 |
IntNodeMap *_node_index; |
2063 | 2062 |
IntArcMap *_node_heap_index; |
2064 | 2063 |
|
2065 | 2064 |
struct NodeData { |
2066 | 2065 |
|
2067 | 2066 |
NodeData(IntArcMap& node_heap_index) |
2068 | 2067 |
: heap(node_heap_index) {} |
2069 | 2068 |
|
2070 | 2069 |
int blossom; |
2071 | 2070 |
Value pot; |
2072 | 2071 |
BinHeap<Value, IntArcMap> heap; |
2073 | 2072 |
std::map<int, Arc> heap_index; |
2074 | 2073 |
|
2075 | 2074 |
int tree; |
2076 | 2075 |
}; |
2077 | 2076 |
|
2078 | 2077 |
RangeMap<NodeData>* _node_data; |
2079 | 2078 |
|
2080 | 2079 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
2081 | 2080 |
|
2082 | 2081 |
IntIntMap *_tree_set_index; |
2083 | 2082 |
TreeSet *_tree_set; |
2084 | 2083 |
|
2085 | 2084 |
IntIntMap *_delta2_index; |
2086 | 2085 |
BinHeap<Value, IntIntMap> *_delta2; |
2087 | 2086 |
|
2088 | 2087 |
IntEdgeMap *_delta3_index; |
2089 | 2088 |
BinHeap<Value, IntEdgeMap> *_delta3; |
2090 | 2089 |
|
2091 | 2090 |
IntIntMap *_delta4_index; |
2092 | 2091 |
BinHeap<Value, IntIntMap> *_delta4; |
2093 | 2092 |
|
2094 | 2093 |
Value _delta_sum; |
2095 | 2094 |
|
2096 | 2095 |
void createStructures() { |
2097 | 2096 |
_node_num = countNodes(_graph); |
2098 | 2097 |
_blossom_num = _node_num * 3 / 2; |
2099 | 2098 |
|
2100 | 2099 |
if (!_matching) { |
2101 | 2100 |
_matching = new MatchingMap(_graph); |
2102 | 2101 |
} |
2103 | 2102 |
if (!_node_potential) { |
2104 | 2103 |
_node_potential = new NodePotential(_graph); |
2105 | 2104 |
} |
2106 | 2105 |
if (!_blossom_set) { |
2107 | 2106 |
_blossom_index = new IntNodeMap(_graph); |
2108 | 2107 |
_blossom_set = new BlossomSet(*_blossom_index); |
2109 | 2108 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
2110 | 2109 |
} |
2111 | 2110 |
|
2112 | 2111 |
if (!_node_index) { |
2113 | 2112 |
_node_index = new IntNodeMap(_graph); |
2114 | 2113 |
_node_heap_index = new IntArcMap(_graph); |
2115 | 2114 |
_node_data = new RangeMap<NodeData>(_node_num, |
2116 | 2115 |
NodeData(*_node_heap_index)); |
2117 | 2116 |
} |
2118 | 2117 |
|
2119 | 2118 |
if (!_tree_set) { |
2120 | 2119 |
_tree_set_index = new IntIntMap(_blossom_num); |
2121 | 2120 |
_tree_set = new TreeSet(*_tree_set_index); |
2122 | 2121 |
} |
2123 | 2122 |
if (!_delta2) { |
2124 | 2123 |
_delta2_index = new IntIntMap(_blossom_num); |
2125 | 2124 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
2126 | 2125 |
} |
2127 | 2126 |
if (!_delta3) { |
2128 | 2127 |
_delta3_index = new IntEdgeMap(_graph); |
2129 | 2128 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
2130 | 2129 |
} |
2131 | 2130 |
if (!_delta4) { |
2132 | 2131 |
_delta4_index = new IntIntMap(_blossom_num); |
2133 | 2132 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
2134 | 2133 |
} |
2135 | 2134 |
} |
2136 | 2135 |
|
2137 | 2136 |
void destroyStructures() { |
2138 | 2137 |
_node_num = countNodes(_graph); |
2139 | 2138 |
_blossom_num = _node_num * 3 / 2; |
2140 | 2139 |
|
2141 | 2140 |
if (_matching) { |
2142 | 2141 |
delete _matching; |
2143 | 2142 |
} |
2144 | 2143 |
if (_node_potential) { |
2145 | 2144 |
delete _node_potential; |
2146 | 2145 |
} |
2147 | 2146 |
if (_blossom_set) { |
2148 | 2147 |
delete _blossom_index; |
2149 | 2148 |
delete _blossom_set; |
2150 | 2149 |
delete _blossom_data; |
2151 | 2150 |
} |
2152 | 2151 |
|
2153 | 2152 |
if (_node_index) { |
2154 | 2153 |
delete _node_index; |
2155 | 2154 |
delete _node_heap_index; |
2156 | 2155 |
delete _node_data; |
2157 | 2156 |
} |
2158 | 2157 |
|
2159 | 2158 |
if (_tree_set) { |
2160 | 2159 |
delete _tree_set_index; |
2161 | 2160 |
delete _tree_set; |
2162 | 2161 |
} |
2163 | 2162 |
if (_delta2) { |
2164 | 2163 |
delete _delta2_index; |
2165 | 2164 |
delete _delta2; |
2166 | 2165 |
} |
2167 | 2166 |
if (_delta3) { |
2168 | 2167 |
delete _delta3_index; |
2169 | 2168 |
delete _delta3; |
2170 | 2169 |
} |
2171 | 2170 |
if (_delta4) { |
2172 | 2171 |
delete _delta4_index; |
2173 | 2172 |
delete _delta4; |
2174 | 2173 |
} |
2175 | 2174 |
} |
2176 | 2175 |
|
2177 | 2176 |
void matchedToEven(int blossom, int tree) { |
2178 | 2177 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2179 | 2178 |
_delta2->erase(blossom); |
2180 | 2179 |
} |
2181 | 2180 |
|
2182 | 2181 |
if (!_blossom_set->trivial(blossom)) { |
2183 | 2182 |
(*_blossom_data)[blossom].pot -= |
2184 | 2183 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
2185 | 2184 |
} |
2186 | 2185 |
|
2187 | 2186 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
2188 | 2187 |
n != INVALID; ++n) { |
2189 | 2188 |
|
2190 | 2189 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
2191 | 2190 |
int ni = (*_node_index)[n]; |
2192 | 2191 |
|
2193 | 2192 |
(*_node_data)[ni].heap.clear(); |
2194 | 2193 |
(*_node_data)[ni].heap_index.clear(); |
2195 | 2194 |
|
2196 | 2195 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
2197 | 2196 |
|
2198 | 2197 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
2199 | 2198 |
Node v = _graph.source(e); |
2200 | 2199 |
int vb = _blossom_set->find(v); |
2201 | 2200 |
int vi = (*_node_index)[v]; |
2202 | 2201 |
|
2203 | 2202 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
2204 | 2203 |
dualScale * _weight[e]; |
2205 | 2204 |
|
2206 | 2205 |
if ((*_blossom_data)[vb].status == EVEN) { |
2207 | 2206 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
2208 | 2207 |
_delta3->push(e, rw / 2); |
2209 | 2208 |
} |
2210 | 2209 |
} else { |
2211 | 2210 |
typename std::map<int, Arc>::iterator it = |
2212 | 2211 |
(*_node_data)[vi].heap_index.find(tree); |
2213 | 2212 |
|
2214 | 2213 |
if (it != (*_node_data)[vi].heap_index.end()) { |
2215 | 2214 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
2216 | 2215 |
(*_node_data)[vi].heap.replace(it->second, e); |
2217 | 2216 |
(*_node_data)[vi].heap.decrease(e, rw); |
2218 | 2217 |
it->second = e; |
2219 | 2218 |
} |
2220 | 2219 |
} else { |
2221 | 2220 |
(*_node_data)[vi].heap.push(e, rw); |
2222 | 2221 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
2223 | 2222 |
} |
2224 | 2223 |
|
2225 | 2224 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
2226 | 2225 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
2227 | 2226 |
|
2228 | 2227 |
if ((*_blossom_data)[vb].status == MATCHED) { |
2229 | 2228 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
2230 | 2229 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
2231 | 2230 |
(*_blossom_data)[vb].offset); |
2232 | 2231 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
2233 | 2232 |
(*_blossom_data)[vb].offset){ |
2234 | 2233 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
2235 | 2234 |
(*_blossom_data)[vb].offset); |
2236 | 2235 |
} |
2237 | 2236 |
} |
2238 | 2237 |
} |
2239 | 2238 |
} |
2240 | 2239 |
} |
2241 | 2240 |
} |
2242 | 2241 |
(*_blossom_data)[blossom].offset = 0; |
2243 | 2242 |
} |
2244 | 2243 |
|
2245 | 2244 |
void matchedToOdd(int blossom) { |
2246 | 2245 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2247 | 2246 |
_delta2->erase(blossom); |
2248 | 2247 |
} |
2249 | 2248 |
(*_blossom_data)[blossom].offset += _delta_sum; |
2250 | 2249 |
if (!_blossom_set->trivial(blossom)) { |
2251 | 2250 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
2252 | 2251 |
(*_blossom_data)[blossom].offset); |
2253 | 2252 |
} |
2254 | 2253 |
} |
2255 | 2254 |
|
2256 | 2255 |
void evenToMatched(int blossom, int tree) { |
2257 | 2256 |
if (!_blossom_set->trivial(blossom)) { |
2258 | 2257 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
2259 | 2258 |
} |
2260 | 2259 |
|
2261 | 2260 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
2262 | 2261 |
n != INVALID; ++n) { |
2263 | 2262 |
int ni = (*_node_index)[n]; |
2264 | 2263 |
(*_node_data)[ni].pot -= _delta_sum; |
2265 | 2264 |
|
2266 | 2265 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
2267 | 2266 |
Node v = _graph.source(e); |
2268 | 2267 |
int vb = _blossom_set->find(v); |
2269 | 2268 |
int vi = (*_node_index)[v]; |
2270 | 2269 |
|
2271 | 2270 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
2272 | 2271 |
dualScale * _weight[e]; |
2273 | 2272 |
|
2274 | 2273 |
if (vb == blossom) { |
2275 | 2274 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
2276 | 2275 |
_delta3->erase(e); |
2277 | 2276 |
} |
2278 | 2277 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
2279 | 2278 |
|
2280 | 2279 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
2281 | 2280 |
_delta3->erase(e); |
2282 | 2281 |
} |
2283 | 2282 |
|
2284 | 2283 |
int vt = _tree_set->find(vb); |
2285 | 2284 |
|
2286 | 2285 |
if (vt != tree) { |
2287 | 2286 |
|
2288 | 2287 |
Arc r = _graph.oppositeArc(e); |
2289 | 2288 |
|
2290 | 2289 |
typename std::map<int, Arc>::iterator it = |
2291 | 2290 |
(*_node_data)[ni].heap_index.find(vt); |
2292 | 2291 |
|
2293 | 2292 |
if (it != (*_node_data)[ni].heap_index.end()) { |
2294 | 2293 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
2295 | 2294 |
(*_node_data)[ni].heap.replace(it->second, r); |
... | ... |
@@ -2436,670 +2435,670 @@ |
2436 | 2435 |
(*_blossom_data)[odd].status = MATCHED; |
2437 | 2436 |
oddToMatched(odd); |
2438 | 2437 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
2439 | 2438 |
|
2440 | 2439 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
2441 | 2440 |
(*_blossom_data)[even].status = MATCHED; |
2442 | 2441 |
evenToMatched(even, tree); |
2443 | 2442 |
(*_blossom_data)[even].next = |
2444 | 2443 |
_graph.oppositeArc((*_blossom_data)[odd].pred); |
2445 | 2444 |
} |
2446 | 2445 |
|
2447 | 2446 |
} |
2448 | 2447 |
|
2449 | 2448 |
void destroyTree(int tree) { |
2450 | 2449 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
2451 | 2450 |
if ((*_blossom_data)[b].status == EVEN) { |
2452 | 2451 |
(*_blossom_data)[b].status = MATCHED; |
2453 | 2452 |
evenToMatched(b, tree); |
2454 | 2453 |
} else if ((*_blossom_data)[b].status == ODD) { |
2455 | 2454 |
(*_blossom_data)[b].status = MATCHED; |
2456 | 2455 |
oddToMatched(b); |
2457 | 2456 |
} |
2458 | 2457 |
} |
2459 | 2458 |
_tree_set->eraseClass(tree); |
2460 | 2459 |
} |
2461 | 2460 |
|
2462 | 2461 |
void augmentOnEdge(const Edge& edge) { |
2463 | 2462 |
|
2464 | 2463 |
int left = _blossom_set->find(_graph.u(edge)); |
2465 | 2464 |
int right = _blossom_set->find(_graph.v(edge)); |
2466 | 2465 |
|
2467 | 2466 |
int left_tree = _tree_set->find(left); |
2468 | 2467 |
alternatePath(left, left_tree); |
2469 | 2468 |
destroyTree(left_tree); |
2470 | 2469 |
|
2471 | 2470 |
int right_tree = _tree_set->find(right); |
2472 | 2471 |
alternatePath(right, right_tree); |
2473 | 2472 |
destroyTree(right_tree); |
2474 | 2473 |
|
2475 | 2474 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
2476 | 2475 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
2477 | 2476 |
} |
2478 | 2477 |
|
2479 | 2478 |
void extendOnArc(const Arc& arc) { |
2480 | 2479 |
int base = _blossom_set->find(_graph.target(arc)); |
2481 | 2480 |
int tree = _tree_set->find(base); |
2482 | 2481 |
|
2483 | 2482 |
int odd = _blossom_set->find(_graph.source(arc)); |
2484 | 2483 |
_tree_set->insert(odd, tree); |
2485 | 2484 |
(*_blossom_data)[odd].status = ODD; |
2486 | 2485 |
matchedToOdd(odd); |
2487 | 2486 |
(*_blossom_data)[odd].pred = arc; |
2488 | 2487 |
|
2489 | 2488 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
2490 | 2489 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
2491 | 2490 |
_tree_set->insert(even, tree); |
2492 | 2491 |
(*_blossom_data)[even].status = EVEN; |
2493 | 2492 |
matchedToEven(even, tree); |
2494 | 2493 |
} |
2495 | 2494 |
|
2496 | 2495 |
void shrinkOnEdge(const Edge& edge, int tree) { |
2497 | 2496 |
int nca = -1; |
2498 | 2497 |
std::vector<int> left_path, right_path; |
2499 | 2498 |
|
2500 | 2499 |
{ |
2501 | 2500 |
std::set<int> left_set, right_set; |
2502 | 2501 |
int left = _blossom_set->find(_graph.u(edge)); |
2503 | 2502 |
left_path.push_back(left); |
2504 | 2503 |
left_set.insert(left); |
2505 | 2504 |
|
2506 | 2505 |
int right = _blossom_set->find(_graph.v(edge)); |
2507 | 2506 |
right_path.push_back(right); |
2508 | 2507 |
right_set.insert(right); |
2509 | 2508 |
|
2510 | 2509 |
while (true) { |
2511 | 2510 |
|
2512 | 2511 |
if ((*_blossom_data)[left].pred == INVALID) break; |
2513 | 2512 |
|
2514 | 2513 |
left = |
2515 | 2514 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
2516 | 2515 |
left_path.push_back(left); |
2517 | 2516 |
left = |
2518 | 2517 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
2519 | 2518 |
left_path.push_back(left); |
2520 | 2519 |
|
2521 | 2520 |
left_set.insert(left); |
2522 | 2521 |
|
2523 | 2522 |
if (right_set.find(left) != right_set.end()) { |
2524 | 2523 |
nca = left; |
2525 | 2524 |
break; |
2526 | 2525 |
} |
2527 | 2526 |
|
2528 | 2527 |
if ((*_blossom_data)[right].pred == INVALID) break; |
2529 | 2528 |
|
2530 | 2529 |
right = |
2531 | 2530 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
2532 | 2531 |
right_path.push_back(right); |
2533 | 2532 |
right = |
2534 | 2533 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
2535 | 2534 |
right_path.push_back(right); |
2536 | 2535 |
|
2537 | 2536 |
right_set.insert(right); |
2538 | 2537 |
|
2539 | 2538 |
if (left_set.find(right) != left_set.end()) { |
2540 | 2539 |
nca = right; |
2541 | 2540 |
break; |
2542 | 2541 |
} |
2543 | 2542 |
|
2544 | 2543 |
} |
2545 | 2544 |
|
2546 | 2545 |
if (nca == -1) { |
2547 | 2546 |
if ((*_blossom_data)[left].pred == INVALID) { |
2548 | 2547 |
nca = right; |
2549 | 2548 |
while (left_set.find(nca) == left_set.end()) { |
2550 | 2549 |
nca = |
2551 | 2550 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
2552 | 2551 |
right_path.push_back(nca); |
2553 | 2552 |
nca = |
2554 | 2553 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
2555 | 2554 |
right_path.push_back(nca); |
2556 | 2555 |
} |
2557 | 2556 |
} else { |
2558 | 2557 |
nca = left; |
2559 | 2558 |
while (right_set.find(nca) == right_set.end()) { |
2560 | 2559 |
nca = |
2561 | 2560 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
2562 | 2561 |
left_path.push_back(nca); |
2563 | 2562 |
nca = |
2564 | 2563 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
2565 | 2564 |
left_path.push_back(nca); |
2566 | 2565 |
} |
2567 | 2566 |
} |
2568 | 2567 |
} |
2569 | 2568 |
} |
2570 | 2569 |
|
2571 | 2570 |
std::vector<int> subblossoms; |
2572 | 2571 |
Arc prev; |
2573 | 2572 |
|
2574 | 2573 |
prev = _graph.direct(edge, true); |
2575 | 2574 |
for (int i = 0; left_path[i] != nca; i += 2) { |
2576 | 2575 |
subblossoms.push_back(left_path[i]); |
2577 | 2576 |
(*_blossom_data)[left_path[i]].next = prev; |
2578 | 2577 |
_tree_set->erase(left_path[i]); |
2579 | 2578 |
|
2580 | 2579 |
subblossoms.push_back(left_path[i + 1]); |
2581 | 2580 |
(*_blossom_data)[left_path[i + 1]].status = EVEN; |
2582 | 2581 |
oddToEven(left_path[i + 1], tree); |
2583 | 2582 |
_tree_set->erase(left_path[i + 1]); |
2584 | 2583 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
2585 | 2584 |
} |
2586 | 2585 |
|
2587 | 2586 |
int k = 0; |
2588 | 2587 |
while (right_path[k] != nca) ++k; |
2589 | 2588 |
|
2590 | 2589 |
subblossoms.push_back(nca); |
2591 | 2590 |
(*_blossom_data)[nca].next = prev; |
2592 | 2591 |
|
2593 | 2592 |
for (int i = k - 2; i >= 0; i -= 2) { |
2594 | 2593 |
subblossoms.push_back(right_path[i + 1]); |
2595 | 2594 |
(*_blossom_data)[right_path[i + 1]].status = EVEN; |
2596 | 2595 |
oddToEven(right_path[i + 1], tree); |
2597 | 2596 |
_tree_set->erase(right_path[i + 1]); |
2598 | 2597 |
|
2599 | 2598 |
(*_blossom_data)[right_path[i + 1]].next = |
2600 | 2599 |
(*_blossom_data)[right_path[i + 1]].pred; |
2601 | 2600 |
|
2602 | 2601 |
subblossoms.push_back(right_path[i]); |
2603 | 2602 |
_tree_set->erase(right_path[i]); |
2604 | 2603 |
} |
2605 | 2604 |
|
2606 | 2605 |
int surface = |
2607 | 2606 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
2608 | 2607 |
|
2609 | 2608 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
2610 | 2609 |
if (!_blossom_set->trivial(subblossoms[i])) { |
2611 | 2610 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
2612 | 2611 |
} |
2613 | 2612 |
(*_blossom_data)[subblossoms[i]].status = MATCHED; |
2614 | 2613 |
} |
2615 | 2614 |
|
2616 | 2615 |
(*_blossom_data)[surface].pot = -2 * _delta_sum; |
2617 | 2616 |
(*_blossom_data)[surface].offset = 0; |
2618 | 2617 |
(*_blossom_data)[surface].status = EVEN; |
2619 | 2618 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
2620 | 2619 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
2621 | 2620 |
|
2622 | 2621 |
_tree_set->insert(surface, tree); |
2623 | 2622 |
_tree_set->erase(nca); |
2624 | 2623 |
} |
2625 | 2624 |
|
2626 | 2625 |
void splitBlossom(int blossom) { |
2627 | 2626 |
Arc next = (*_blossom_data)[blossom].next; |
2628 | 2627 |
Arc pred = (*_blossom_data)[blossom].pred; |
2629 | 2628 |
|
2630 | 2629 |
int tree = _tree_set->find(blossom); |
2631 | 2630 |
|
2632 | 2631 |
(*_blossom_data)[blossom].status = MATCHED; |
2633 | 2632 |
oddToMatched(blossom); |
2634 | 2633 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2635 | 2634 |
_delta2->erase(blossom); |
2636 | 2635 |
} |
2637 | 2636 |
|
2638 | 2637 |
std::vector<int> subblossoms; |
2639 | 2638 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
2640 | 2639 |
|
2641 | 2640 |
Value offset = (*_blossom_data)[blossom].offset; |
2642 | 2641 |
int b = _blossom_set->find(_graph.source(pred)); |
2643 | 2642 |
int d = _blossom_set->find(_graph.source(next)); |
2644 | 2643 |
|
2645 | 2644 |
int ib = -1, id = -1; |
2646 | 2645 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
2647 | 2646 |
if (subblossoms[i] == b) ib = i; |
2648 | 2647 |
if (subblossoms[i] == d) id = i; |
2649 | 2648 |
|
2650 | 2649 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
2651 | 2650 |
if (!_blossom_set->trivial(subblossoms[i])) { |
2652 | 2651 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
2653 | 2652 |
} |
2654 | 2653 |
if (_blossom_set->classPrio(subblossoms[i]) != |
2655 | 2654 |
std::numeric_limits<Value>::max()) { |
2656 | 2655 |
_delta2->push(subblossoms[i], |
2657 | 2656 |
_blossom_set->classPrio(subblossoms[i]) - |
2658 | 2657 |
(*_blossom_data)[subblossoms[i]].offset); |
2659 | 2658 |
} |
2660 | 2659 |
} |
2661 | 2660 |
|
2662 | 2661 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
2663 | 2662 |
for (int i = (id + 1) % subblossoms.size(); |
2664 | 2663 |
i != ib; i = (i + 2) % subblossoms.size()) { |
2665 | 2664 |
int sb = subblossoms[i]; |
2666 | 2665 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2667 | 2666 |
(*_blossom_data)[sb].next = |
2668 | 2667 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2669 | 2668 |
} |
2670 | 2669 |
|
2671 | 2670 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
2672 | 2671 |
int sb = subblossoms[i]; |
2673 | 2672 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2674 | 2673 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
2675 | 2674 |
|
2676 | 2675 |
(*_blossom_data)[sb].status = ODD; |
2677 | 2676 |
matchedToOdd(sb); |
2678 | 2677 |
_tree_set->insert(sb, tree); |
2679 | 2678 |
(*_blossom_data)[sb].pred = pred; |
2680 | 2679 |
(*_blossom_data)[sb].next = |
2681 | 2680 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2682 | 2681 |
|
2683 | 2682 |
pred = (*_blossom_data)[ub].next; |
2684 | 2683 |
|
2685 | 2684 |
(*_blossom_data)[tb].status = EVEN; |
2686 | 2685 |
matchedToEven(tb, tree); |
2687 | 2686 |
_tree_set->insert(tb, tree); |
2688 | 2687 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
2689 | 2688 |
} |
2690 | 2689 |
|
2691 | 2690 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
2692 | 2691 |
matchedToOdd(subblossoms[id]); |
2693 | 2692 |
_tree_set->insert(subblossoms[id], tree); |
2694 | 2693 |
(*_blossom_data)[subblossoms[id]].next = next; |
2695 | 2694 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
2696 | 2695 |
|
2697 | 2696 |
} else { |
2698 | 2697 |
|
2699 | 2698 |
for (int i = (ib + 1) % subblossoms.size(); |
2700 | 2699 |
i != id; i = (i + 2) % subblossoms.size()) { |
2701 | 2700 |
int sb = subblossoms[i]; |
2702 | 2701 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2703 | 2702 |
(*_blossom_data)[sb].next = |
2704 | 2703 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2705 | 2704 |
} |
2706 | 2705 |
|
2707 | 2706 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
2708 | 2707 |
int sb = subblossoms[i]; |
2709 | 2708 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2710 | 2709 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
2711 | 2710 |
|
2712 | 2711 |
(*_blossom_data)[sb].status = ODD; |
2713 | 2712 |
matchedToOdd(sb); |
2714 | 2713 |
_tree_set->insert(sb, tree); |
2715 | 2714 |
(*_blossom_data)[sb].next = next; |
2716 | 2715 |
(*_blossom_data)[sb].pred = |
2717 | 2716 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2718 | 2717 |
|
2719 | 2718 |
(*_blossom_data)[tb].status = EVEN; |
2720 | 2719 |
matchedToEven(tb, tree); |
2721 | 2720 |
_tree_set->insert(tb, tree); |
2722 | 2721 |
(*_blossom_data)[tb].pred = |
2723 | 2722 |
(*_blossom_data)[tb].next = |
2724 | 2723 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
2725 | 2724 |
next = (*_blossom_data)[ub].next; |
2726 | 2725 |
} |
2727 | 2726 |
|
2728 | 2727 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
2729 | 2728 |
matchedToOdd(subblossoms[ib]); |
2730 | 2729 |
_tree_set->insert(subblossoms[ib], tree); |
2731 | 2730 |
(*_blossom_data)[subblossoms[ib]].next = next; |
2732 | 2731 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
2733 | 2732 |
} |
2734 | 2733 |
_tree_set->erase(blossom); |
2735 | 2734 |
} |
2736 | 2735 |
|
2737 | 2736 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
2738 | 2737 |
if (_blossom_set->trivial(blossom)) { |
2739 | 2738 |
int bi = (*_node_index)[base]; |
2740 | 2739 |
Value pot = (*_node_data)[bi].pot; |
2741 | 2740 |
|
2742 | 2741 |
_matching->set(base, matching); |
2743 | 2742 |
_blossom_node_list.push_back(base); |
2744 | 2743 |
_node_potential->set(base, pot); |
2745 | 2744 |
} else { |
2746 | 2745 |
|
2747 | 2746 |
Value pot = (*_blossom_data)[blossom].pot; |
2748 | 2747 |
int bn = _blossom_node_list.size(); |
2749 | 2748 |
|
2750 | 2749 |
std::vector<int> subblossoms; |
2751 | 2750 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
2752 | 2751 |
int b = _blossom_set->find(base); |
2753 | 2752 |
int ib = -1; |
2754 | 2753 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
2755 | 2754 |
if (subblossoms[i] == b) { ib = i; break; } |
2756 | 2755 |
} |
2757 | 2756 |
|
2758 | 2757 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
2759 | 2758 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
2760 | 2759 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
2761 | 2760 |
|
2762 | 2761 |
Arc m = (*_blossom_data)[tb].next; |
2763 | 2762 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
2764 | 2763 |
extractBlossom(tb, _graph.source(m), m); |
2765 | 2764 |
} |
2766 | 2765 |
extractBlossom(subblossoms[ib], base, matching); |
2767 | 2766 |
|
2768 | 2767 |
int en = _blossom_node_list.size(); |
2769 | 2768 |
|
2770 | 2769 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
2771 | 2770 |
} |
2772 | 2771 |
} |
2773 | 2772 |
|
2774 | 2773 |
void extractMatching() { |
2775 | 2774 |
std::vector<int> blossoms; |
2776 | 2775 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
2777 | 2776 |
blossoms.push_back(c); |
2778 | 2777 |
} |
2779 | 2778 |
|
2780 | 2779 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
2781 | 2780 |
|
2782 | 2781 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
2783 | 2782 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
2784 | 2783 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
2785 | 2784 |
n != INVALID; ++n) { |
2786 | 2785 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
2787 | 2786 |
} |
2788 | 2787 |
|
2789 | 2788 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
2790 | 2789 |
Node base = _graph.source(matching); |
2791 | 2790 |
extractBlossom(blossoms[i], base, matching); |
2792 | 2791 |
} |
2793 | 2792 |
} |
2794 | 2793 |
|
2795 | 2794 |
public: |
2796 | 2795 |
|
2797 | 2796 |
/// \brief Constructor |
2798 | 2797 |
/// |
2799 | 2798 |
/// Constructor. |
2800 | 2799 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
2801 | 2800 |
: _graph(graph), _weight(weight), _matching(0), |
2802 | 2801 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
2803 | 2802 |
_node_num(0), _blossom_num(0), |
2804 | 2803 |
|
2805 | 2804 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
2806 | 2805 |
_node_index(0), _node_heap_index(0), _node_data(0), |
2807 | 2806 |
_tree_set_index(0), _tree_set(0), |
2808 | 2807 |
|
2809 | 2808 |
_delta2_index(0), _delta2(0), |
2810 | 2809 |
_delta3_index(0), _delta3(0), |
2811 | 2810 |
_delta4_index(0), _delta4(0), |
2812 | 2811 |
|
2813 | 2812 |
_delta_sum() {} |
2814 | 2813 |
|
2815 | 2814 |
~MaxWeightedPerfectMatching() { |
2816 | 2815 |
destroyStructures(); |
2817 | 2816 |
} |
2818 | 2817 |
|
2819 | 2818 |
/// \name Execution control |
2820 |
/// The simplest way to execute the algorithm is to use the |
|
2819 |
/// The simplest way to execute the algorithm is to use the |
|
2821 | 2820 |
/// \c run() member function. |
2822 | 2821 |
|
2823 | 2822 |
///@{ |
2824 | 2823 |
|
2825 | 2824 |
/// \brief Initialize the algorithm |
2826 | 2825 |
/// |
2827 | 2826 |
/// Initialize the algorithm |
2828 | 2827 |
void init() { |
2829 | 2828 |
createStructures(); |
2830 | 2829 |
|
2831 | 2830 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
2832 | 2831 |
_node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP); |
2833 | 2832 |
} |
2834 | 2833 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2835 | 2834 |
_delta3_index->set(e, _delta3->PRE_HEAP); |
2836 | 2835 |
} |
2837 | 2836 |
for (int i = 0; i < _blossom_num; ++i) { |
2838 | 2837 |
_delta2_index->set(i, _delta2->PRE_HEAP); |
2839 | 2838 |
_delta4_index->set(i, _delta4->PRE_HEAP); |
2840 | 2839 |
} |
2841 | 2840 |
|
2842 | 2841 |
int index = 0; |
2843 | 2842 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2844 | 2843 |
Value max = - std::numeric_limits<Value>::max(); |
2845 | 2844 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
2846 | 2845 |
if (_graph.target(e) == n) continue; |
2847 | 2846 |
if ((dualScale * _weight[e]) / 2 > max) { |
2848 | 2847 |
max = (dualScale * _weight[e]) / 2; |
2849 | 2848 |
} |
2850 | 2849 |
} |
2851 | 2850 |
_node_index->set(n, index); |
2852 | 2851 |
(*_node_data)[index].pot = max; |
2853 | 2852 |
int blossom = |
2854 | 2853 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
2855 | 2854 |
|
2856 | 2855 |
_tree_set->insert(blossom); |
2857 | 2856 |
|
2858 | 2857 |
(*_blossom_data)[blossom].status = EVEN; |
2859 | 2858 |
(*_blossom_data)[blossom].pred = INVALID; |
2860 | 2859 |
(*_blossom_data)[blossom].next = INVALID; |
2861 | 2860 |
(*_blossom_data)[blossom].pot = 0; |
2862 | 2861 |
(*_blossom_data)[blossom].offset = 0; |
2863 | 2862 |
++index; |
2864 | 2863 |
} |
2865 | 2864 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2866 | 2865 |
int si = (*_node_index)[_graph.u(e)]; |
2867 | 2866 |
int ti = (*_node_index)[_graph.v(e)]; |
2868 | 2867 |
if (_graph.u(e) != _graph.v(e)) { |
2869 | 2868 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
2870 | 2869 |
dualScale * _weight[e]) / 2); |
2871 | 2870 |
} |
2872 | 2871 |
} |
2873 | 2872 |
} |
2874 | 2873 |
|
2875 | 2874 |
/// \brief Starts the algorithm |
2876 | 2875 |
/// |
2877 | 2876 |
/// Starts the algorithm |
2878 | 2877 |
bool start() { |
2879 | 2878 |
enum OpType { |
2880 | 2879 |
D2, D3, D4 |
2881 | 2880 |
}; |
2882 | 2881 |
|
2883 | 2882 |
int unmatched = _node_num; |
2884 | 2883 |
while (unmatched > 0) { |
2885 | 2884 |
Value d2 = !_delta2->empty() ? |
2886 | 2885 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
2887 | 2886 |
|
2888 | 2887 |
Value d3 = !_delta3->empty() ? |
2889 | 2888 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
2890 | 2889 |
|
2891 | 2890 |
Value d4 = !_delta4->empty() ? |
2892 | 2891 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
2893 | 2892 |
|
2894 | 2893 |
_delta_sum = d2; OpType ot = D2; |
2895 | 2894 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
2896 | 2895 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
2897 | 2896 |
|
2898 | 2897 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
2899 | 2898 |
return false; |
2900 | 2899 |
} |
2901 | 2900 |
|
2902 | 2901 |
switch (ot) { |
2903 | 2902 |
case D2: |
2904 | 2903 |
{ |
2905 | 2904 |
int blossom = _delta2->top(); |
2906 | 2905 |
Node n = _blossom_set->classTop(blossom); |
2907 | 2906 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
2908 | 2907 |
extendOnArc(e); |
2909 | 2908 |
} |
2910 | 2909 |
break; |
2911 | 2910 |
case D3: |
2912 | 2911 |
{ |
2913 | 2912 |
Edge e = _delta3->top(); |
2914 | 2913 |
|
2915 | 2914 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
2916 | 2915 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
2917 | 2916 |
|
2918 | 2917 |
if (left_blossom == right_blossom) { |
2919 | 2918 |
_delta3->pop(); |
2920 | 2919 |
} else { |
2921 | 2920 |
int left_tree = _tree_set->find(left_blossom); |
2922 | 2921 |
int right_tree = _tree_set->find(right_blossom); |
2923 | 2922 |
|
2924 | 2923 |
if (left_tree == right_tree) { |
2925 | 2924 |
shrinkOnEdge(e, left_tree); |
2926 | 2925 |
} else { |
2927 | 2926 |
augmentOnEdge(e); |
2928 | 2927 |
unmatched -= 2; |
2929 | 2928 |
} |
2930 | 2929 |
} |
2931 | 2930 |
} break; |
2932 | 2931 |
case D4: |
2933 | 2932 |
splitBlossom(_delta4->top()); |
2934 | 2933 |
break; |
2935 | 2934 |
} |
2936 | 2935 |
} |
2937 | 2936 |
extractMatching(); |
2938 | 2937 |
return true; |
2939 | 2938 |
} |
2940 | 2939 |
|
2941 | 2940 |
/// \brief Runs %MaxWeightedPerfectMatching algorithm. |
2942 | 2941 |
/// |
2943 | 2942 |
/// This method runs the %MaxWeightedPerfectMatching algorithm. |
2944 | 2943 |
/// |
2945 | 2944 |
/// \note mwm.run() is just a shortcut of the following code. |
2946 | 2945 |
/// \code |
2947 | 2946 |
/// mwm.init(); |
2948 | 2947 |
/// mwm.start(); |
2949 | 2948 |
/// \endcode |
2950 | 2949 |
bool run() { |
2951 | 2950 |
init(); |
2952 | 2951 |
return start(); |
2953 | 2952 |
} |
2954 | 2953 |
|
2955 | 2954 |
/// @} |
2956 | 2955 |
|
2957 | 2956 |
/// \name Primal solution |
2958 |
/// Functions |
|
2957 |
/// Functions to get the primal solution, ie. the matching. |
|
2959 | 2958 |
|
2960 | 2959 |
/// @{ |
2961 | 2960 |
|
2962 | 2961 |
/// \brief Returns the matching value. |
2963 | 2962 |
/// |
2964 | 2963 |
/// Returns the matching value. |
2965 | 2964 |
Value matchingValue() const { |
2966 | 2965 |
Value sum = 0; |
2967 | 2966 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2968 | 2967 |
if ((*_matching)[n] != INVALID) { |
2969 | 2968 |
sum += _weight[(*_matching)[n]]; |
2970 | 2969 |
} |
2971 | 2970 |
} |
2972 | 2971 |
return sum /= 2; |
2973 | 2972 |
} |
2974 | 2973 |
|
2975 | 2974 |
/// \brief Returns true when the edge is in the matching. |
2976 | 2975 |
/// |
2977 | 2976 |
/// Returns true when the edge is in the matching. |
2978 | 2977 |
bool matching(const Edge& edge) const { |
2979 | 2978 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
2980 | 2979 |
} |
2981 | 2980 |
|
2982 | 2981 |
/// \brief Returns the incident matching edge. |
2983 | 2982 |
/// |
2984 | 2983 |
/// Returns the incident matching arc from given edge. |
2985 | 2984 |
Arc matching(const Node& node) const { |
2986 | 2985 |
return (*_matching)[node]; |
2987 | 2986 |
} |
2988 | 2987 |
|
2989 | 2988 |
/// \brief Returns the mate of the node. |
2990 | 2989 |
/// |
2991 | 2990 |
/// Returns the adjancent node in a mathcing arc. |
2992 | 2991 |
Node mate(const Node& node) const { |
2993 | 2992 |
return _graph.target((*_matching)[node]); |
2994 | 2993 |
} |
2995 | 2994 |
|
2996 | 2995 |
/// @} |
2997 | 2996 |
|
2998 | 2997 |
/// \name Dual solution |
2999 |
/// Functions |
|
2998 |
/// Functions to get the dual solution. |
|
3000 | 2999 |
|
3001 | 3000 |
/// @{ |
3002 | 3001 |
|
3003 | 3002 |
/// \brief Returns the value of the dual solution. |
3004 | 3003 |
/// |
3005 | 3004 |
/// Returns the value of the dual solution. It should be equal to |
3006 | 3005 |
/// the primal value scaled by \ref dualScale "dual scale". |
3007 | 3006 |
Value dualValue() const { |
3008 | 3007 |
Value sum = 0; |
3009 | 3008 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
3010 | 3009 |
sum += nodeValue(n); |
3011 | 3010 |
} |
3012 | 3011 |
for (int i = 0; i < blossomNum(); ++i) { |
3013 | 3012 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
3014 | 3013 |
} |
3015 | 3014 |
return sum; |
3016 | 3015 |
} |
3017 | 3016 |
|
3018 | 3017 |
/// \brief Returns the value of the node. |
3019 | 3018 |
/// |
3020 | 3019 |
/// Returns the the value of the node. |
3021 | 3020 |
Value nodeValue(const Node& n) const { |
3022 | 3021 |
return (*_node_potential)[n]; |
3023 | 3022 |
} |
3024 | 3023 |
|
3025 | 3024 |
/// \brief Returns the number of the blossoms in the basis. |
3026 | 3025 |
/// |
3027 | 3026 |
/// Returns the number of the blossoms in the basis. |
3028 | 3027 |
/// \see BlossomIt |
3029 | 3028 |
int blossomNum() const { |
3030 | 3029 |
return _blossom_potential.size(); |
3031 | 3030 |
} |
3032 | 3031 |
|
3033 | 3032 |
|
3034 | 3033 |
/// \brief Returns the number of the nodes in the blossom. |
3035 | 3034 |
/// |
3036 | 3035 |
/// Returns the number of the nodes in the blossom. |
3037 | 3036 |
int blossomSize(int k) const { |
3038 | 3037 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
3039 | 3038 |
} |
3040 | 3039 |
|
3041 | 3040 |
/// \brief Returns the value of the blossom. |
3042 | 3041 |
/// |
3043 | 3042 |
/// Returns the the value of the blossom. |
3044 | 3043 |
/// \see BlossomIt |
3045 | 3044 |
Value blossomValue(int k) const { |
3046 | 3045 |
return _blossom_potential[k].value; |
3047 | 3046 |
} |
3048 | 3047 |
|
3049 |
/// \brief |
|
3048 |
/// \brief Iterator for obtaining the nodes of the blossom. |
|
3050 | 3049 |
/// |
3051 |
/// Lemon iterator for get the nodes of the blossom. This class |
|
3052 |
/// provides a common style lemon iterator which gives back a |
|
3050 |
/// Iterator for obtaining the nodes of the blossom. This class |
|
3051 |
/// provides a common lemon style iterator for listing a |
|
3053 | 3052 |
/// subset of the nodes. |
3054 | 3053 |
class BlossomIt { |
3055 | 3054 |
public: |
3056 | 3055 |
|
3057 | 3056 |
/// \brief Constructor. |
3058 | 3057 |
/// |
3059 |
/// Constructor |
|
3058 |
/// Constructor to get the nodes of the variable. |
|
3060 | 3059 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
3061 | 3060 |
: _algorithm(&algorithm) |
3062 | 3061 |
{ |
3063 | 3062 |
_index = _algorithm->_blossom_potential[variable].begin; |
3064 | 3063 |
_last = _algorithm->_blossom_potential[variable].end; |
3065 | 3064 |
} |
3066 | 3065 |
|
3067 | 3066 |
/// \brief Conversion to node. |
3068 | 3067 |
/// |
3069 | 3068 |
/// Conversion to node. |
3070 | 3069 |
operator Node() const { |
3071 | 3070 |
return _algorithm->_blossom_node_list[_index]; |
3072 | 3071 |
} |
3073 | 3072 |
|
3074 | 3073 |
/// \brief Increment operator. |
3075 | 3074 |
/// |
3076 | 3075 |
/// Increment operator. |
3077 | 3076 |
BlossomIt& operator++() { |
3078 | 3077 |
++_index; |
3079 | 3078 |
return *this; |
3080 | 3079 |
} |
3081 | 3080 |
|
3082 | 3081 |
/// \brief Validity checking |
3083 | 3082 |
/// |
3084 | 3083 |
/// Checks whether the iterator is invalid. |
3085 | 3084 |
bool operator==(Invalid) const { return _index == _last; } |
3086 | 3085 |
|
3087 | 3086 |
/// \brief Validity checking |
3088 | 3087 |
/// |
3089 | 3088 |
/// Checks whether the iterator is valid. |
3090 | 3089 |
bool operator!=(Invalid) const { return _index != _last; } |
3091 | 3090 |
|
3092 | 3091 |
private: |
3093 | 3092 |
const MaxWeightedPerfectMatching* _algorithm; |
3094 | 3093 |
int _last; |
3095 | 3094 |
int _index; |
3096 | 3095 |
}; |
3097 | 3096 |
|
3098 | 3097 |
/// @} |
3099 | 3098 |
|
3100 | 3099 |
}; |
3101 | 3100 |
|
3102 | 3101 |
|
3103 | 3102 |
} //END OF NAMESPACE LEMON |
3104 | 3103 |
|
3105 | 3104 |
#endif //LEMON_MAX_MATCHING_H |
0 comments (0 inline)