... |
... |
@@ -794,24 +794,47 @@
|
794 |
794 |
/// Pareto distribution
|
795 |
795 |
|
796 |
796 |
/// This function generates a Pareto distribution random number.
|
797 |
797 |
///
|
798 |
798 |
///\param k shape parameter (<tt>k>0</tt>)
|
799 |
799 |
///\param x_min location parameter (<tt>x_min>0</tt>)
|
800 |
800 |
///
|
801 |
801 |
double pareto(double k,double x_min)
|
802 |
802 |
{
|
803 |
803 |
return exponential(gamma(k,1.0/x_min));
|
804 |
804 |
}
|
805 |
805 |
|
|
806 |
/// Poisson distribution
|
|
807 |
|
|
808 |
/// This function generates a Poisson distribution random number with
|
|
809 |
/// parameter \c lambda.
|
|
810 |
///
|
|
811 |
/// The probability mass function of this distribusion is
|
|
812 |
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
|
|
813 |
/// \note The algorithm is taken from the book of Donald E. Knuth titled
|
|
814 |
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
|
|
815 |
/// return value.
|
|
816 |
|
|
817 |
int poisson(double lambda)
|
|
818 |
{
|
|
819 |
const double l = std::exp(-lambda);
|
|
820 |
int k=0;
|
|
821 |
double p = 1.0;
|
|
822 |
do {
|
|
823 |
k++;
|
|
824 |
p*=real<double>();
|
|
825 |
} while (p>=l);
|
|
826 |
return k-1;
|
|
827 |
}
|
|
828 |
|
806 |
829 |
///@}
|
807 |
830 |
|
808 |
831 |
///\name Two dimensional distributions
|
809 |
832 |
///
|
810 |
833 |
|
811 |
834 |
///@{
|
812 |
835 |
|
813 |
836 |
/// Uniform distribution on the full unit circle
|
814 |
837 |
|
815 |
838 |
/// Uniform distribution on the full unit circle.
|
816 |
839 |
///
|
817 |
840 |
dim2::Point<double> disc()
|