| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_PLANARITY_H |
| 20 | 20 |
#define LEMON_PLANARITY_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup planar |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Planarity checking, embedding, drawing and coloring |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <list> |
| 28 | 28 |
|
| 29 | 29 |
#include <lemon/dfs.h> |
| 30 | 30 |
#include <lemon/bfs.h> |
| 31 | 31 |
#include <lemon/radix_sort.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
#include <lemon/path.h> |
| 34 | 34 |
#include <lemon/bucket_heap.h> |
| 35 | 35 |
#include <lemon/adaptors.h> |
| 36 | 36 |
#include <lemon/edge_set.h> |
| 37 | 37 |
#include <lemon/color.h> |
| 38 | 38 |
#include <lemon/dim2.h> |
| 39 | 39 |
|
| 40 | 40 |
namespace lemon {
|
| 41 | 41 |
|
| 42 | 42 |
namespace _planarity_bits {
|
| 43 | 43 |
|
| 44 | 44 |
template <typename Graph> |
| 45 | 45 |
struct PlanarityVisitor : DfsVisitor<Graph> {
|
| 46 | 46 |
|
| 47 | 47 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 48 | 48 |
|
| 49 | 49 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
| 50 | 50 |
|
| 51 | 51 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
| 52 | 52 |
|
| 53 | 53 |
typedef typename Graph::template NodeMap<int> OrderMap; |
| 54 | 54 |
typedef std::vector<Node> OrderList; |
| 55 | 55 |
|
| 56 | 56 |
typedef typename Graph::template NodeMap<int> LowMap; |
| 57 | 57 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
| 58 | 58 |
|
| 59 | 59 |
PlanarityVisitor(const Graph& graph, |
| 60 | 60 |
PredMap& pred_map, TreeMap& tree_map, |
| 61 | 61 |
OrderMap& order_map, OrderList& order_list, |
| 62 | 62 |
AncestorMap& ancestor_map, LowMap& low_map) |
| 63 | 63 |
: _graph(graph), _pred_map(pred_map), _tree_map(tree_map), |
| 64 | 64 |
_order_map(order_map), _order_list(order_list), |
| 65 | 65 |
_ancestor_map(ancestor_map), _low_map(low_map) {}
|
| 66 | 66 |
|
| 67 | 67 |
void reach(const Node& node) {
|
| 68 | 68 |
_order_map[node] = _order_list.size(); |
| 69 | 69 |
_low_map[node] = _order_list.size(); |
| 70 | 70 |
_ancestor_map[node] = _order_list.size(); |
| 71 | 71 |
_order_list.push_back(node); |
| 72 | 72 |
} |
| 73 | 73 |
|
| 74 | 74 |
void discover(const Arc& arc) {
|
| 75 | 75 |
Node source = _graph.source(arc); |
| 76 | 76 |
Node target = _graph.target(arc); |
| 77 | 77 |
|
| 78 | 78 |
_tree_map[arc] = true; |
| 79 | 79 |
_pred_map[target] = arc; |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
void examine(const Arc& arc) {
|
| 83 | 83 |
Node source = _graph.source(arc); |
| 84 | 84 |
Node target = _graph.target(arc); |
| 85 | 85 |
|
| 86 | 86 |
if (_order_map[target] < _order_map[source] && !_tree_map[arc]) {
|
| 87 | 87 |
if (_low_map[source] > _order_map[target]) {
|
| 88 | 88 |
_low_map[source] = _order_map[target]; |
| 89 | 89 |
} |
| 90 | 90 |
if (_ancestor_map[source] > _order_map[target]) {
|
| 91 | 91 |
_ancestor_map[source] = _order_map[target]; |
| 92 | 92 |
} |
| 93 | 93 |
} |
| 94 | 94 |
} |
| 95 | 95 |
|
| 96 | 96 |
void backtrack(const Arc& arc) {
|
| 97 | 97 |
Node source = _graph.source(arc); |
| 98 | 98 |
Node target = _graph.target(arc); |
| 99 | 99 |
|
| 100 | 100 |
if (_low_map[source] > _low_map[target]) {
|
| 101 | 101 |
_low_map[source] = _low_map[target]; |
| 102 | 102 |
} |
| 103 | 103 |
} |
| 104 | 104 |
|
| 105 | 105 |
const Graph& _graph; |
| 106 | 106 |
PredMap& _pred_map; |
| 107 | 107 |
TreeMap& _tree_map; |
| 108 | 108 |
OrderMap& _order_map; |
| 109 | 109 |
OrderList& _order_list; |
| 110 | 110 |
AncestorMap& _ancestor_map; |
| 111 | 111 |
LowMap& _low_map; |
| 112 | 112 |
}; |
| 113 | 113 |
|
| 114 | 114 |
template <typename Graph, bool embedding = true> |
| 115 | 115 |
struct NodeDataNode {
|
| 116 | 116 |
int prev, next; |
| 117 | 117 |
int visited; |
| 118 | 118 |
typename Graph::Arc first; |
| 119 | 119 |
bool inverted; |
| 120 | 120 |
}; |
| 121 | 121 |
|
| 122 | 122 |
template <typename Graph> |
| 123 | 123 |
struct NodeDataNode<Graph, false> {
|
| 124 | 124 |
int prev, next; |
| 125 | 125 |
int visited; |
| 126 | 126 |
}; |
| 127 | 127 |
|
| 128 | 128 |
template <typename Graph> |
| 129 | 129 |
struct ChildListNode {
|
| 130 | 130 |
typedef typename Graph::Node Node; |
| 131 | 131 |
Node first; |
| 132 | 132 |
Node prev, next; |
| 133 | 133 |
}; |
| 134 | 134 |
|
| 135 | 135 |
template <typename Graph> |
| 136 | 136 |
struct ArcListNode {
|
| 137 | 137 |
typename Graph::Arc prev, next; |
| 138 | 138 |
}; |
| 139 | 139 |
|
| 140 | 140 |
template <typename Graph> |
| 141 | 141 |
class PlanarityChecking {
|
| 142 | 142 |
private: |
| 143 | 143 |
|
| 144 | 144 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 145 | 145 |
|
| 146 | 146 |
const Graph& _graph; |
| 147 | 147 |
|
| 148 | 148 |
private: |
| 149 | 149 |
|
| 150 | 150 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
| 151 | 151 |
|
| 152 | 152 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
| 153 | 153 |
|
| 154 | 154 |
typedef typename Graph::template NodeMap<int> OrderMap; |
| 155 | 155 |
typedef std::vector<Node> OrderList; |
| 156 | 156 |
|
| 157 | 157 |
typedef typename Graph::template NodeMap<int> LowMap; |
| 158 | 158 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
| 159 | 159 |
|
| 160 | 160 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
| 161 | 161 |
typedef std::vector<NodeDataNode> NodeData; |
| 162 | 162 |
|
| 163 | 163 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
| 164 | 164 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
| 165 | 165 |
|
| 166 | 166 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
| 167 | 167 |
|
| 168 | 168 |
typedef typename Graph::template NodeMap<bool> EmbedArc; |
| 169 | 169 |
|
| 170 | 170 |
public: |
| 171 | 171 |
|
| 172 | 172 |
PlanarityChecking(const Graph& graph) : _graph(graph) {}
|
| 173 | 173 |
|
| 174 | 174 |
bool run() {
|
| 175 | 175 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
| 176 | 176 |
|
| 177 | 177 |
PredMap pred_map(_graph, INVALID); |
| 178 | 178 |
TreeMap tree_map(_graph, false); |
| 179 | 179 |
|
| 180 | 180 |
OrderMap order_map(_graph, -1); |
| 181 | 181 |
OrderList order_list; |
| 182 | 182 |
|
| 183 | 183 |
AncestorMap ancestor_map(_graph, -1); |
| 184 | 184 |
LowMap low_map(_graph, -1); |
| 185 | 185 |
|
| 186 | 186 |
Visitor visitor(_graph, pred_map, tree_map, |
| 187 | 187 |
order_map, order_list, ancestor_map, low_map); |
| 188 | 188 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
| 189 | 189 |
visit.run(); |
| 190 | 190 |
|
| 191 | 191 |
ChildLists child_lists(_graph); |
| 192 | 192 |
createChildLists(tree_map, order_map, low_map, child_lists); |
| 193 | 193 |
|
| 194 | 194 |
NodeData node_data(2 * order_list.size()); |
| 195 | 195 |
|
| 196 | 196 |
EmbedArc embed_arc(_graph, false); |
| 197 | 197 |
|
| 198 | 198 |
MergeRoots merge_roots(_graph); |
| 199 | 199 |
|
| 200 | 200 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
| 201 | 201 |
|
| 202 | 202 |
Node node = order_list[i]; |
| 203 | 203 |
|
| 204 | 204 |
Node source = node; |
| 205 | 205 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 206 | 206 |
Node target = _graph.target(e); |
| 207 | 207 |
|
| 208 | 208 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
| 209 | 209 |
initFace(target, node_data, order_map, order_list); |
| 210 | 210 |
} |
| 211 | 211 |
} |
| 212 | 212 |
|
| 213 | 213 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 214 | 214 |
Node target = _graph.target(e); |
| 215 | 215 |
|
| 216 | 216 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
| 217 | 217 |
embed_arc[target] = true; |
| 218 | 218 |
walkUp(target, source, i, pred_map, low_map, |
| 219 | 219 |
order_map, order_list, node_data, merge_roots); |
| 220 | 220 |
} |
| 221 | 221 |
} |
| 222 | 222 |
|
| 223 | 223 |
for (typename MergeRoots::Value::iterator it = |
| 224 | 224 |
merge_roots[node].begin(); |
| 225 | 225 |
it != merge_roots[node].end(); ++it) {
|
| 226 | 226 |
int rn = *it; |
| 227 | 227 |
walkDown(rn, i, node_data, order_list, child_lists, |
| 228 | 228 |
ancestor_map, low_map, embed_arc, merge_roots); |
| 229 | 229 |
} |
| 230 | 230 |
merge_roots[node].clear(); |
| 231 | 231 |
|
| 232 | 232 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 233 | 233 |
Node target = _graph.target(e); |
| 234 | 234 |
|
| 235 | 235 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
| 236 | 236 |
if (embed_arc[target]) {
|
| 237 | 237 |
return false; |
| 238 | 238 |
} |
| 239 | 239 |
} |
| 240 | 240 |
} |
| 241 | 241 |
} |
| 242 | 242 |
|
| 243 | 243 |
return true; |
| 244 | 244 |
} |
| 245 | 245 |
|
| 246 | 246 |
private: |
| 247 | 247 |
|
| 248 | 248 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
| 249 | 249 |
const LowMap& low_map, ChildLists& child_lists) {
|
| 250 | 250 |
|
| 251 | 251 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 252 | 252 |
Node source = n; |
| 253 | 253 |
|
| 254 | 254 |
std::vector<Node> targets; |
| 255 | 255 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 256 | 256 |
Node target = _graph.target(e); |
| 257 | 257 |
|
| 258 | 258 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
| 259 | 259 |
targets.push_back(target); |
| 260 | 260 |
} |
| 261 | 261 |
} |
| 262 | 262 |
|
| 263 | 263 |
if (targets.size() == 0) {
|
| 264 | 264 |
child_lists[source].first = INVALID; |
| 265 | 265 |
} else if (targets.size() == 1) {
|
| 266 | 266 |
child_lists[source].first = targets[0]; |
| 267 | 267 |
child_lists[targets[0]].prev = INVALID; |
| 268 | 268 |
child_lists[targets[0]].next = INVALID; |
| 269 | 269 |
} else {
|
| 270 | 270 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
| 271 | 271 |
for (int i = 1; i < int(targets.size()); ++i) {
|
| 272 | 272 |
child_lists[targets[i]].prev = targets[i - 1]; |
| 273 | 273 |
child_lists[targets[i - 1]].next = targets[i]; |
| 274 | 274 |
} |
| 275 | 275 |
child_lists[targets.back()].next = INVALID; |
| 276 | 276 |
child_lists[targets.front()].prev = INVALID; |
| 277 | 277 |
child_lists[source].first = targets.front(); |
| 278 | 278 |
} |
| 279 | 279 |
} |
| 280 | 280 |
} |
| 281 | 281 |
|
| 282 | 282 |
void walkUp(const Node& node, Node root, int rorder, |
| 283 | 283 |
const PredMap& pred_map, const LowMap& low_map, |
| 284 | 284 |
const OrderMap& order_map, const OrderList& order_list, |
| 285 | 285 |
NodeData& node_data, MergeRoots& merge_roots) {
|
| 286 | 286 |
|
| 287 | 287 |
int na, nb; |
| 288 | 288 |
bool da, db; |
| 289 | 289 |
|
| 290 | 290 |
na = nb = order_map[node]; |
| 291 | 291 |
da = true; db = false; |
| 292 | 292 |
|
| 293 | 293 |
while (true) {
|
| 294 | 294 |
|
| 295 | 295 |
if (node_data[na].visited == rorder) break; |
| 296 | 296 |
if (node_data[nb].visited == rorder) break; |
| 297 | 297 |
|
| 298 | 298 |
node_data[na].visited = rorder; |
| 299 | 299 |
node_data[nb].visited = rorder; |
| 300 | 300 |
|
| 301 | 301 |
int rn = -1; |
| 302 | 302 |
|
| 303 | 303 |
if (na >= int(order_list.size())) {
|
| 304 | 304 |
rn = na; |
| 305 | 305 |
} else if (nb >= int(order_list.size())) {
|
| 306 | 306 |
rn = nb; |
| 307 | 307 |
} |
| 308 | 308 |
|
| 309 | 309 |
if (rn == -1) {
|
| 310 | 310 |
int nn; |
| 311 | 311 |
|
| 312 | 312 |
nn = da ? node_data[na].prev : node_data[na].next; |
| 313 | 313 |
da = node_data[nn].prev != na; |
| 314 | 314 |
na = nn; |
| 315 | 315 |
|
| 316 | 316 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
| 317 | 317 |
db = node_data[nn].prev != nb; |
| 318 | 318 |
nb = nn; |
| 319 | 319 |
|
| 320 | 320 |
} else {
|
| 321 | 321 |
|
| 322 | 322 |
Node rep = order_list[rn - order_list.size()]; |
| 323 | 323 |
Node parent = _graph.source(pred_map[rep]); |
| 324 | 324 |
|
| 325 | 325 |
if (low_map[rep] < rorder) {
|
| 326 | 326 |
merge_roots[parent].push_back(rn); |
| 327 | 327 |
} else {
|
| 328 | 328 |
merge_roots[parent].push_front(rn); |
| 329 | 329 |
} |
| 330 | 330 |
|
| 331 | 331 |
if (parent != root) {
|
| 332 | 332 |
na = nb = order_map[parent]; |
| 333 | 333 |
da = true; db = false; |
| 334 | 334 |
} else {
|
| 335 | 335 |
break; |
| 336 | 336 |
} |
| 337 | 337 |
} |
| 338 | 338 |
} |
| 339 | 339 |
} |
| 340 | 340 |
|
| 341 | 341 |
void walkDown(int rn, int rorder, NodeData& node_data, |
| 342 | 342 |
OrderList& order_list, ChildLists& child_lists, |
| 343 | 343 |
AncestorMap& ancestor_map, LowMap& low_map, |
| 344 | 344 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
| 345 | 345 |
|
| 346 | 346 |
std::vector<std::pair<int, bool> > merge_stack; |
| 347 | 347 |
|
| 348 | 348 |
for (int di = 0; di < 2; ++di) {
|
| 349 | 349 |
bool rd = di == 0; |
| 350 | 350 |
int pn = rn; |
| 351 | 351 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
| 352 | 352 |
|
| 353 | 353 |
while (n != rn) {
|
| 354 | 354 |
|
| 355 | 355 |
Node node = order_list[n]; |
| 356 | 356 |
|
| 357 | 357 |
if (embed_arc[node]) {
|
| 358 | 358 |
|
| 359 | 359 |
// Merging components on the critical path |
| 360 | 360 |
while (!merge_stack.empty()) {
|
| 361 | 361 |
|
| 362 | 362 |
// Component root |
| 363 | 363 |
int cn = merge_stack.back().first; |
| 364 | 364 |
bool cd = merge_stack.back().second; |
| 365 | 365 |
merge_stack.pop_back(); |
| 366 | 366 |
|
| 367 | 367 |
// Parent of component |
| 368 | 368 |
int dn = merge_stack.back().first; |
| 369 | 369 |
bool dd = merge_stack.back().second; |
| 370 | 370 |
merge_stack.pop_back(); |
| 371 | 371 |
|
| 372 | 372 |
Node parent = order_list[dn]; |
| 373 | 373 |
|
| 374 | 374 |
// Erasing from merge_roots |
| 375 | 375 |
merge_roots[parent].pop_front(); |
| 376 | 376 |
|
| 377 | 377 |
Node child = order_list[cn - order_list.size()]; |
| 378 | 378 |
|
| 379 | 379 |
// Erasing from child_lists |
| 380 | 380 |
if (child_lists[child].prev != INVALID) {
|
| 381 | 381 |
child_lists[child_lists[child].prev].next = |
| 382 | 382 |
child_lists[child].next; |
| 383 | 383 |
} else {
|
| 384 | 384 |
child_lists[parent].first = child_lists[child].next; |
| 385 | 385 |
} |
| 386 | 386 |
|
| 387 | 387 |
if (child_lists[child].next != INVALID) {
|
| 388 | 388 |
child_lists[child_lists[child].next].prev = |
| 389 | 389 |
child_lists[child].prev; |
| 390 | 390 |
} |
| 391 | 391 |
|
| 392 | 392 |
// Merging external faces |
| 393 | 393 |
{
|
| 394 | 394 |
int en = cn; |
| 395 | 395 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
| 396 | 396 |
cd = node_data[cn].next == en; |
| 397 | 397 |
|
| 398 | 398 |
} |
| 399 | 399 |
|
| 400 | 400 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
| 401 | 401 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
| 402 | 402 |
|
| 403 | 403 |
} |
| 404 | 404 |
|
| 405 | 405 |
bool d = pn == node_data[n].prev; |
| 406 | 406 |
|
| 407 | 407 |
if (node_data[n].prev == node_data[n].next && |
| 408 | 408 |
node_data[n].inverted) {
|
| 409 | 409 |
d = !d; |
| 410 | 410 |
} |
| 411 | 411 |
|
| 412 | 412 |
// Embedding arc into external face |
| 413 | 413 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
| 414 | 414 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
| 415 | 415 |
pn = rn; |
| 416 | 416 |
|
| 417 | 417 |
embed_arc[order_list[n]] = false; |
| 418 | 418 |
} |
| 419 | 419 |
|
| 420 | 420 |
if (!merge_roots[node].empty()) {
|
| 421 | 421 |
|
| 422 | 422 |
bool d = pn == node_data[n].prev; |
| 423 | 423 |
|
| 424 | 424 |
merge_stack.push_back(std::make_pair(n, d)); |
| 425 | 425 |
|
| 426 | 426 |
int rn = merge_roots[node].front(); |
| 427 | 427 |
|
| 428 | 428 |
int xn = node_data[rn].next; |
| 429 | 429 |
Node xnode = order_list[xn]; |
| 430 | 430 |
|
| 431 | 431 |
int yn = node_data[rn].prev; |
| 432 | 432 |
Node ynode = order_list[yn]; |
| 433 | 433 |
|
| 434 | 434 |
bool rd; |
| 435 | 435 |
if (!external(xnode, rorder, child_lists, |
| 436 | 436 |
ancestor_map, low_map)) {
|
| 437 | 437 |
rd = true; |
| 438 | 438 |
} else if (!external(ynode, rorder, child_lists, |
| 439 | 439 |
ancestor_map, low_map)) {
|
| 440 | 440 |
rd = false; |
| 441 | 441 |
} else if (pertinent(xnode, embed_arc, merge_roots)) {
|
| 442 | 442 |
rd = true; |
| 443 | 443 |
} else {
|
| 444 | 444 |
rd = false; |
| 445 | 445 |
} |
| 446 | 446 |
|
| 447 | 447 |
merge_stack.push_back(std::make_pair(rn, rd)); |
| 448 | 448 |
|
| 449 | 449 |
pn = rn; |
| 450 | 450 |
n = rd ? xn : yn; |
| 451 | 451 |
|
| 452 | 452 |
} else if (!external(node, rorder, child_lists, |
| 453 | 453 |
ancestor_map, low_map)) {
|
| 454 | 454 |
int nn = (node_data[n].next != pn ? |
| 455 | 455 |
node_data[n].next : node_data[n].prev); |
| 456 | 456 |
|
| 457 | 457 |
bool nd = n == node_data[nn].prev; |
| 458 | 458 |
|
| 459 | 459 |
if (nd) node_data[nn].prev = pn; |
| 460 | 460 |
else node_data[nn].next = pn; |
| 461 | 461 |
|
| 462 | 462 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
| 463 | 463 |
else node_data[pn].next = nn; |
| 464 | 464 |
|
| 465 | 465 |
node_data[nn].inverted = |
| 466 | 466 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
| 467 | 467 |
|
| 468 | 468 |
n = nn; |
| 469 | 469 |
} |
| 470 | 470 |
else break; |
| 471 | 471 |
|
| 472 | 472 |
} |
| 473 | 473 |
|
| 474 | 474 |
if (!merge_stack.empty() || n == rn) {
|
| 475 | 475 |
break; |
| 476 | 476 |
} |
| 477 | 477 |
} |
| 478 | 478 |
} |
| 479 | 479 |
|
| 480 | 480 |
void initFace(const Node& node, NodeData& node_data, |
| 481 | 481 |
const OrderMap& order_map, const OrderList& order_list) {
|
| 482 | 482 |
int n = order_map[node]; |
| 483 | 483 |
int rn = n + order_list.size(); |
| 484 | 484 |
|
| 485 | 485 |
node_data[n].next = node_data[n].prev = rn; |
| 486 | 486 |
node_data[rn].next = node_data[rn].prev = n; |
| 487 | 487 |
|
| 488 | 488 |
node_data[n].visited = order_list.size(); |
| 489 | 489 |
node_data[rn].visited = order_list.size(); |
| 490 | 490 |
|
| 491 | 491 |
} |
| 492 | 492 |
|
| 493 | 493 |
bool external(const Node& node, int rorder, |
| 494 | 494 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
| 495 | 495 |
LowMap& low_map) {
|
| 496 | 496 |
Node child = child_lists[node].first; |
| 497 | 497 |
|
| 498 | 498 |
if (child != INVALID) {
|
| 499 | 499 |
if (low_map[child] < rorder) return true; |
| 500 | 500 |
} |
| 501 | 501 |
|
| 502 | 502 |
if (ancestor_map[node] < rorder) return true; |
| 503 | 503 |
|
| 504 | 504 |
return false; |
| 505 | 505 |
} |
| 506 | 506 |
|
| 507 | 507 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
| 508 | 508 |
const MergeRoots& merge_roots) {
|
| 509 | 509 |
return !merge_roots[node].empty() || embed_arc[node]; |
| 510 | 510 |
} |
| 511 | 511 |
|
| 512 | 512 |
}; |
| 513 | 513 |
|
| 514 | 514 |
} |
| 515 | 515 |
|
| 516 | 516 |
/// \ingroup planar |
| 517 | 517 |
/// |
| 518 | 518 |
/// \brief Planarity checking of an undirected simple graph |
| 519 | 519 |
/// |
| 520 | 520 |
/// This function implements the Boyer-Myrvold algorithm for |
| 521 |
/// planarity checking of an undirected graph. It is a simplified |
|
| 521 |
/// planarity checking of an undirected simple graph. It is a simplified |
|
| 522 | 522 |
/// version of the PlanarEmbedding algorithm class because neither |
| 523 |
/// the embedding nor the |
|
| 523 |
/// the embedding nor the Kuratowski subdivisons are computed. |
|
| 524 | 524 |
template <typename GR> |
| 525 | 525 |
bool checkPlanarity(const GR& graph) {
|
| 526 | 526 |
_planarity_bits::PlanarityChecking<GR> pc(graph); |
| 527 | 527 |
return pc.run(); |
| 528 | 528 |
} |
| 529 | 529 |
|
| 530 | 530 |
/// \ingroup planar |
| 531 | 531 |
/// |
| 532 | 532 |
/// \brief Planar embedding of an undirected simple graph |
| 533 | 533 |
/// |
| 534 | 534 |
/// This class implements the Boyer-Myrvold algorithm for planar |
| 535 |
/// embedding of an undirected graph. The planar embedding is an |
|
| 535 |
/// embedding of an undirected simple graph. The planar embedding is an |
|
| 536 | 536 |
/// ordering of the outgoing edges of the nodes, which is a possible |
| 537 | 537 |
/// configuration to draw the graph in the plane. If there is not |
| 538 |
/// such ordering then the graph contains a \f$ K_5 \f$ (full graph |
|
| 539 |
/// with 5 nodes) or a \f$ K_{3,3} \f$ (complete bipartite graph on
|
|
| 540 |
/// |
|
| 538 |
/// such ordering then the graph contains a K<sub>5</sub> (full graph |
|
| 539 |
/// with 5 nodes) or a K<sub>3,3</sub> (complete bipartite graph on |
|
| 540 |
/// 3 Red and 3 Blue nodes) subdivision. |
|
| 541 | 541 |
/// |
| 542 | 542 |
/// The current implementation calculates either an embedding or a |
| 543 |
/// Kuratowski subdivision. The running time of the algorithm is |
|
| 544 |
/// \f$ O(n) \f$. |
|
| 543 |
/// Kuratowski subdivision. The running time of the algorithm is O(n). |
|
| 544 |
/// |
|
| 545 |
/// \see PlanarDrawing, checkPlanarity() |
|
| 545 | 546 |
template <typename Graph> |
| 546 | 547 |
class PlanarEmbedding {
|
| 547 | 548 |
private: |
| 548 | 549 |
|
| 549 | 550 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 550 | 551 |
|
| 551 | 552 |
const Graph& _graph; |
| 552 | 553 |
typename Graph::template ArcMap<Arc> _embedding; |
| 553 | 554 |
|
| 554 | 555 |
typename Graph::template EdgeMap<bool> _kuratowski; |
| 555 | 556 |
|
| 556 | 557 |
private: |
| 557 | 558 |
|
| 558 | 559 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
| 559 | 560 |
|
| 560 | 561 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
| 561 | 562 |
|
| 562 | 563 |
typedef typename Graph::template NodeMap<int> OrderMap; |
| 563 | 564 |
typedef std::vector<Node> OrderList; |
| 564 | 565 |
|
| 565 | 566 |
typedef typename Graph::template NodeMap<int> LowMap; |
| 566 | 567 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
| 567 | 568 |
|
| 568 | 569 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
| 569 | 570 |
typedef std::vector<NodeDataNode> NodeData; |
| 570 | 571 |
|
| 571 | 572 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
| 572 | 573 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
| 573 | 574 |
|
| 574 | 575 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
| 575 | 576 |
|
| 576 | 577 |
typedef typename Graph::template NodeMap<Arc> EmbedArc; |
| 577 | 578 |
|
| 578 | 579 |
typedef _planarity_bits::ArcListNode<Graph> ArcListNode; |
| 579 | 580 |
typedef typename Graph::template ArcMap<ArcListNode> ArcLists; |
| 580 | 581 |
|
| 581 | 582 |
typedef typename Graph::template NodeMap<bool> FlipMap; |
| 582 | 583 |
|
| 583 | 584 |
typedef typename Graph::template NodeMap<int> TypeMap; |
| 584 | 585 |
|
| 585 | 586 |
enum IsolatorNodeType {
|
| 586 | 587 |
HIGHX = 6, LOWX = 7, |
| 587 | 588 |
HIGHY = 8, LOWY = 9, |
| 588 | 589 |
ROOT = 10, PERTINENT = 11, |
| 589 | 590 |
INTERNAL = 12 |
| 590 | 591 |
}; |
| 591 | 592 |
|
| 592 | 593 |
public: |
| 593 | 594 |
|
| 594 |
/// \brief The map for |
|
| 595 |
/// \brief The map type for storing the embedding |
|
| 596 |
/// |
|
| 597 |
/// The map type for storing the embedding. |
|
| 598 |
/// \see embeddingMap() |
|
| 595 | 599 |
typedef typename Graph::template ArcMap<Arc> EmbeddingMap; |
| 596 | 600 |
|
| 597 | 601 |
/// \brief Constructor |
| 598 | 602 |
/// |
| 599 |
/// \note The graph should be simple, i.e. parallel and loop arc |
|
| 600 |
/// free. |
|
| 603 |
/// Constructor. |
|
| 604 |
/// \pre The graph must be simple, i.e. it should not |
|
| 605 |
/// contain parallel or loop arcs. |
|
| 601 | 606 |
PlanarEmbedding(const Graph& graph) |
| 602 | 607 |
: _graph(graph), _embedding(_graph), _kuratowski(graph, false) {}
|
| 603 | 608 |
|
| 604 |
/// \brief |
|
| 609 |
/// \brief Run the algorithm. |
|
| 605 | 610 |
/// |
| 606 |
/// Runs the algorithm. |
|
| 607 |
/// \param kuratowski If the parameter is false, then the |
|
| 611 |
/// This function runs the algorithm. |
|
| 612 |
/// \param kuratowski If this parameter is set to \c false, then the |
|
| 608 | 613 |
/// algorithm does not compute a Kuratowski subdivision. |
| 609 |
///\return |
|
| 614 |
/// \return \c true if the graph is planar. |
|
| 610 | 615 |
bool run(bool kuratowski = true) {
|
| 611 | 616 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
| 612 | 617 |
|
| 613 | 618 |
PredMap pred_map(_graph, INVALID); |
| 614 | 619 |
TreeMap tree_map(_graph, false); |
| 615 | 620 |
|
| 616 | 621 |
OrderMap order_map(_graph, -1); |
| 617 | 622 |
OrderList order_list; |
| 618 | 623 |
|
| 619 | 624 |
AncestorMap ancestor_map(_graph, -1); |
| 620 | 625 |
LowMap low_map(_graph, -1); |
| 621 | 626 |
|
| 622 | 627 |
Visitor visitor(_graph, pred_map, tree_map, |
| 623 | 628 |
order_map, order_list, ancestor_map, low_map); |
| 624 | 629 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
| 625 | 630 |
visit.run(); |
| 626 | 631 |
|
| 627 | 632 |
ChildLists child_lists(_graph); |
| 628 | 633 |
createChildLists(tree_map, order_map, low_map, child_lists); |
| 629 | 634 |
|
| 630 | 635 |
NodeData node_data(2 * order_list.size()); |
| 631 | 636 |
|
| 632 | 637 |
EmbedArc embed_arc(_graph, INVALID); |
| 633 | 638 |
|
| 634 | 639 |
MergeRoots merge_roots(_graph); |
| 635 | 640 |
|
| 636 | 641 |
ArcLists arc_lists(_graph); |
| 637 | 642 |
|
| 638 | 643 |
FlipMap flip_map(_graph, false); |
| 639 | 644 |
|
| 640 | 645 |
for (int i = order_list.size() - 1; i >= 0; --i) {
|
| 641 | 646 |
|
| 642 | 647 |
Node node = order_list[i]; |
| 643 | 648 |
|
| 644 | 649 |
node_data[i].first = INVALID; |
| 645 | 650 |
|
| 646 | 651 |
Node source = node; |
| 647 | 652 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 648 | 653 |
Node target = _graph.target(e); |
| 649 | 654 |
|
| 650 | 655 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
| 651 | 656 |
initFace(target, arc_lists, node_data, |
| 652 | 657 |
pred_map, order_map, order_list); |
| 653 | 658 |
} |
| 654 | 659 |
} |
| 655 | 660 |
|
| 656 | 661 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 657 | 662 |
Node target = _graph.target(e); |
| 658 | 663 |
|
| 659 | 664 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
| 660 | 665 |
embed_arc[target] = e; |
| 661 | 666 |
walkUp(target, source, i, pred_map, low_map, |
| 662 | 667 |
order_map, order_list, node_data, merge_roots); |
| 663 | 668 |
} |
| 664 | 669 |
} |
| 665 | 670 |
|
| 666 | 671 |
for (typename MergeRoots::Value::iterator it = |
| 667 | 672 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) {
|
| 668 | 673 |
int rn = *it; |
| 669 | 674 |
walkDown(rn, i, node_data, arc_lists, flip_map, order_list, |
| 670 | 675 |
child_lists, ancestor_map, low_map, embed_arc, merge_roots); |
| 671 | 676 |
} |
| 672 | 677 |
merge_roots[node].clear(); |
| 673 | 678 |
|
| 674 | 679 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 675 | 680 |
Node target = _graph.target(e); |
| 676 | 681 |
|
| 677 | 682 |
if (order_map[source] < order_map[target] && !tree_map[e]) {
|
| 678 | 683 |
if (embed_arc[target] != INVALID) {
|
| 679 | 684 |
if (kuratowski) {
|
| 680 | 685 |
isolateKuratowski(e, node_data, arc_lists, flip_map, |
| 681 | 686 |
order_map, order_list, pred_map, child_lists, |
| 682 | 687 |
ancestor_map, low_map, |
| 683 | 688 |
embed_arc, merge_roots); |
| 684 | 689 |
} |
| 685 | 690 |
return false; |
| 686 | 691 |
} |
| 687 | 692 |
} |
| 688 | 693 |
} |
| 689 | 694 |
} |
| 690 | 695 |
|
| 691 | 696 |
for (int i = 0; i < int(order_list.size()); ++i) {
|
| 692 | 697 |
|
| 693 | 698 |
mergeRemainingFaces(order_list[i], node_data, order_list, order_map, |
| 694 | 699 |
child_lists, arc_lists); |
| 695 | 700 |
storeEmbedding(order_list[i], node_data, order_map, pred_map, |
| 696 | 701 |
arc_lists, flip_map); |
| 697 | 702 |
} |
| 698 | 703 |
|
| 699 | 704 |
return true; |
| 700 | 705 |
} |
| 701 | 706 |
|
| 702 |
/// \brief |
|
| 707 |
/// \brief Give back the successor of an arc |
|
| 703 | 708 |
/// |
| 704 |
/// |
|
| 709 |
/// This function gives back the successor of an arc. It makes |
|
| 705 | 710 |
/// possible to query the cyclic order of the outgoing arcs from |
| 706 | 711 |
/// a node. |
| 707 | 712 |
Arc next(const Arc& arc) const {
|
| 708 | 713 |
return _embedding[arc]; |
| 709 | 714 |
} |
| 710 | 715 |
|
| 711 |
/// \brief |
|
| 716 |
/// \brief Give back the calculated embedding map |
|
| 712 | 717 |
/// |
| 713 |
/// The returned map contains the successor of each arc in the |
|
| 714 |
/// graph. |
|
| 718 |
/// This function gives back the calculated embedding map, which |
|
| 719 |
/// contains the successor of each arc in the cyclic order of the |
|
| 720 |
/// outgoing arcs of its source node. |
|
| 715 | 721 |
const EmbeddingMap& embeddingMap() const {
|
| 716 | 722 |
return _embedding; |
| 717 | 723 |
} |
| 718 | 724 |
|
| 719 |
/// \brief Gives back true if the undirected arc is in the |
|
| 720 |
/// kuratowski subdivision |
|
| 725 |
/// \brief Give back \c true if the given edge is in the Kuratowski |
|
| 726 |
/// subdivision |
|
| 721 | 727 |
/// |
| 722 |
/// Gives back true if the undirected arc is in the kuratowski |
|
| 723 |
/// subdivision |
|
| 724 |
/// \note The \c run() had to be called with true value. |
|
| 725 |
bool kuratowski(const Edge& edge) {
|
|
| 728 |
/// This function gives back \c true if the given edge is in the found |
|
| 729 |
/// Kuratowski subdivision. |
|
| 730 |
/// \pre The \c run() function must be called with \c true parameter |
|
| 731 |
/// before using this function. |
|
| 732 |
bool kuratowski(const Edge& edge) const {
|
|
| 726 | 733 |
return _kuratowski[edge]; |
| 727 | 734 |
} |
| 728 | 735 |
|
| 729 | 736 |
private: |
| 730 | 737 |
|
| 731 | 738 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
| 732 | 739 |
const LowMap& low_map, ChildLists& child_lists) {
|
| 733 | 740 |
|
| 734 | 741 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 735 | 742 |
Node source = n; |
| 736 | 743 |
|
| 737 | 744 |
std::vector<Node> targets; |
| 738 | 745 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 739 | 746 |
Node target = _graph.target(e); |
| 740 | 747 |
|
| 741 | 748 |
if (order_map[source] < order_map[target] && tree_map[e]) {
|
| 742 | 749 |
targets.push_back(target); |
| 743 | 750 |
} |
| 744 | 751 |
} |
| 745 | 752 |
|
| 746 | 753 |
if (targets.size() == 0) {
|
| 747 | 754 |
child_lists[source].first = INVALID; |
| 748 | 755 |
} else if (targets.size() == 1) {
|
| 749 | 756 |
child_lists[source].first = targets[0]; |
| 750 | 757 |
child_lists[targets[0]].prev = INVALID; |
| 751 | 758 |
child_lists[targets[0]].next = INVALID; |
| 752 | 759 |
} else {
|
| 753 | 760 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
| 754 | 761 |
for (int i = 1; i < int(targets.size()); ++i) {
|
| 755 | 762 |
child_lists[targets[i]].prev = targets[i - 1]; |
| 756 | 763 |
child_lists[targets[i - 1]].next = targets[i]; |
| 757 | 764 |
} |
| 758 | 765 |
child_lists[targets.back()].next = INVALID; |
| 759 | 766 |
child_lists[targets.front()].prev = INVALID; |
| 760 | 767 |
child_lists[source].first = targets.front(); |
| 761 | 768 |
} |
| 762 | 769 |
} |
| 763 | 770 |
} |
| 764 | 771 |
|
| 765 | 772 |
void walkUp(const Node& node, Node root, int rorder, |
| 766 | 773 |
const PredMap& pred_map, const LowMap& low_map, |
| 767 | 774 |
const OrderMap& order_map, const OrderList& order_list, |
| 768 | 775 |
NodeData& node_data, MergeRoots& merge_roots) {
|
| 769 | 776 |
|
| 770 | 777 |
int na, nb; |
| 771 | 778 |
bool da, db; |
| 772 | 779 |
|
| 773 | 780 |
na = nb = order_map[node]; |
| 774 | 781 |
da = true; db = false; |
| 775 | 782 |
|
| 776 | 783 |
while (true) {
|
| 777 | 784 |
|
| 778 | 785 |
if (node_data[na].visited == rorder) break; |
| 779 | 786 |
if (node_data[nb].visited == rorder) break; |
| 780 | 787 |
|
| 781 | 788 |
node_data[na].visited = rorder; |
| 782 | 789 |
node_data[nb].visited = rorder; |
| 783 | 790 |
|
| 784 | 791 |
int rn = -1; |
| 785 | 792 |
|
| 786 | 793 |
if (na >= int(order_list.size())) {
|
| 787 | 794 |
rn = na; |
| 788 | 795 |
} else if (nb >= int(order_list.size())) {
|
| 789 | 796 |
rn = nb; |
| 790 | 797 |
} |
| 791 | 798 |
|
| 792 | 799 |
if (rn == -1) {
|
| 793 | 800 |
int nn; |
| 794 | 801 |
|
| 795 | 802 |
nn = da ? node_data[na].prev : node_data[na].next; |
| 796 | 803 |
da = node_data[nn].prev != na; |
| 797 | 804 |
na = nn; |
| 798 | 805 |
|
| 799 | 806 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
| 800 | 807 |
db = node_data[nn].prev != nb; |
| 801 | 808 |
nb = nn; |
| 802 | 809 |
|
| 803 | 810 |
} else {
|
| 804 | 811 |
|
| 805 | 812 |
Node rep = order_list[rn - order_list.size()]; |
| 806 | 813 |
Node parent = _graph.source(pred_map[rep]); |
| 807 | 814 |
|
| 808 | 815 |
if (low_map[rep] < rorder) {
|
| 809 | 816 |
merge_roots[parent].push_back(rn); |
| 810 | 817 |
} else {
|
| 811 | 818 |
merge_roots[parent].push_front(rn); |
| 812 | 819 |
} |
| 813 | 820 |
|
| 814 | 821 |
if (parent != root) {
|
| 815 | 822 |
na = nb = order_map[parent]; |
| 816 | 823 |
da = true; db = false; |
| 817 | 824 |
} else {
|
| 818 | 825 |
break; |
| 819 | 826 |
} |
| 820 | 827 |
} |
| 821 | 828 |
} |
| 822 | 829 |
} |
| 823 | 830 |
|
| 824 | 831 |
void walkDown(int rn, int rorder, NodeData& node_data, |
| 825 | 832 |
ArcLists& arc_lists, FlipMap& flip_map, |
| 826 | 833 |
OrderList& order_list, ChildLists& child_lists, |
| 827 | 834 |
AncestorMap& ancestor_map, LowMap& low_map, |
| 828 | 835 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
| 829 | 836 |
|
| 830 | 837 |
std::vector<std::pair<int, bool> > merge_stack; |
| 831 | 838 |
|
| 832 | 839 |
for (int di = 0; di < 2; ++di) {
|
| 833 | 840 |
bool rd = di == 0; |
| 834 | 841 |
int pn = rn; |
| 835 | 842 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
| 836 | 843 |
|
| 837 | 844 |
while (n != rn) {
|
| 838 | 845 |
|
| 839 | 846 |
Node node = order_list[n]; |
| 840 | 847 |
|
| 841 | 848 |
if (embed_arc[node] != INVALID) {
|
| 842 | 849 |
|
| 843 | 850 |
// Merging components on the critical path |
| 844 | 851 |
while (!merge_stack.empty()) {
|
| 845 | 852 |
|
| 846 | 853 |
// Component root |
| 847 | 854 |
int cn = merge_stack.back().first; |
| 848 | 855 |
bool cd = merge_stack.back().second; |
| 849 | 856 |
merge_stack.pop_back(); |
| 850 | 857 |
|
| 851 | 858 |
// Parent of component |
| 852 | 859 |
int dn = merge_stack.back().first; |
| 853 | 860 |
bool dd = merge_stack.back().second; |
| 854 | 861 |
merge_stack.pop_back(); |
| 855 | 862 |
|
| 856 | 863 |
Node parent = order_list[dn]; |
| 857 | 864 |
|
| 858 | 865 |
// Erasing from merge_roots |
| 859 | 866 |
merge_roots[parent].pop_front(); |
| 860 | 867 |
|
| 861 | 868 |
Node child = order_list[cn - order_list.size()]; |
| 862 | 869 |
|
| 863 | 870 |
// Erasing from child_lists |
| 864 | 871 |
if (child_lists[child].prev != INVALID) {
|
| 865 | 872 |
child_lists[child_lists[child].prev].next = |
| 866 | 873 |
child_lists[child].next; |
| 867 | 874 |
} else {
|
| 868 | 875 |
child_lists[parent].first = child_lists[child].next; |
| 869 | 876 |
} |
| 870 | 877 |
|
| 871 | 878 |
if (child_lists[child].next != INVALID) {
|
| 872 | 879 |
child_lists[child_lists[child].next].prev = |
| 873 | 880 |
child_lists[child].prev; |
| 874 | 881 |
} |
| 875 | 882 |
|
| 876 | 883 |
// Merging arcs + flipping |
| 877 | 884 |
Arc de = node_data[dn].first; |
| 878 | 885 |
Arc ce = node_data[cn].first; |
| 879 | 886 |
|
| 880 | 887 |
flip_map[order_list[cn - order_list.size()]] = cd != dd; |
| 881 | 888 |
if (cd != dd) {
|
| 882 | 889 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
| 883 | 890 |
ce = arc_lists[ce].prev; |
| 884 | 891 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
| 885 | 892 |
} |
| 886 | 893 |
|
| 887 | 894 |
{
|
| 888 | 895 |
Arc dne = arc_lists[de].next; |
| 889 | 896 |
Arc cne = arc_lists[ce].next; |
| 890 | 897 |
|
| 891 | 898 |
arc_lists[de].next = cne; |
| 892 | 899 |
arc_lists[ce].next = dne; |
| 893 | 900 |
|
| 894 | 901 |
arc_lists[dne].prev = ce; |
| 895 | 902 |
arc_lists[cne].prev = de; |
| 896 | 903 |
} |
| 897 | 904 |
|
| 898 | 905 |
if (dd) {
|
| 899 | 906 |
node_data[dn].first = ce; |
| 900 | 907 |
} |
| 901 | 908 |
|
| 902 | 909 |
// Merging external faces |
| 903 | 910 |
{
|
| 904 | 911 |
int en = cn; |
| 905 | 912 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
| 906 | 913 |
cd = node_data[cn].next == en; |
| 907 | 914 |
|
| 908 | 915 |
if (node_data[cn].prev == node_data[cn].next && |
| 909 | 916 |
node_data[cn].inverted) {
|
| 910 | 917 |
cd = !cd; |
| 911 | 918 |
} |
| 912 | 919 |
} |
| 913 | 920 |
|
| 914 | 921 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
| 915 | 922 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
| 916 | 923 |
|
| 917 | 924 |
} |
| 918 | 925 |
|
| 919 | 926 |
bool d = pn == node_data[n].prev; |
| 920 | 927 |
|
| 921 | 928 |
if (node_data[n].prev == node_data[n].next && |
| 922 | 929 |
node_data[n].inverted) {
|
| 923 | 930 |
d = !d; |
| 924 | 931 |
} |
| 925 | 932 |
|
| 926 | 933 |
// Add new arc |
| 927 | 934 |
{
|
| 928 | 935 |
Arc arc = embed_arc[node]; |
| 929 | 936 |
Arc re = node_data[rn].first; |
| 930 | 937 |
|
| 931 | 938 |
arc_lists[arc_lists[re].next].prev = arc; |
| 932 | 939 |
arc_lists[arc].next = arc_lists[re].next; |
| 933 | 940 |
arc_lists[arc].prev = re; |
| 934 | 941 |
arc_lists[re].next = arc; |
| 935 | 942 |
|
| 936 | 943 |
if (!rd) {
|
| 937 | 944 |
node_data[rn].first = arc; |
| 938 | 945 |
} |
| 939 | 946 |
|
| 940 | 947 |
Arc rev = _graph.oppositeArc(arc); |
| 941 | 948 |
Arc e = node_data[n].first; |
| 942 | 949 |
|
| 943 | 950 |
arc_lists[arc_lists[e].next].prev = rev; |
| 944 | 951 |
arc_lists[rev].next = arc_lists[e].next; |
| 945 | 952 |
arc_lists[rev].prev = e; |
| 946 | 953 |
arc_lists[e].next = rev; |
| 947 | 954 |
|
| 948 | 955 |
if (d) {
|
| 949 | 956 |
node_data[n].first = rev; |
| 950 | 957 |
} |
| 951 | 958 |
|
| 952 | 959 |
} |
| 953 | 960 |
|
| 954 | 961 |
// Embedding arc into external face |
| 955 | 962 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
| 956 | 963 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
| 957 | 964 |
pn = rn; |
| 958 | 965 |
|
| 959 | 966 |
embed_arc[order_list[n]] = INVALID; |
| 960 | 967 |
} |
| 961 | 968 |
|
| 962 | 969 |
if (!merge_roots[node].empty()) {
|
| 963 | 970 |
|
| 964 | 971 |
bool d = pn == node_data[n].prev; |
| 965 | 972 |
if (node_data[n].prev == node_data[n].next && |
| 966 | 973 |
node_data[n].inverted) {
|
| 967 | 974 |
d = !d; |
| 968 | 975 |
} |
| 969 | 976 |
|
| 970 | 977 |
merge_stack.push_back(std::make_pair(n, d)); |
| 971 | 978 |
|
| 972 | 979 |
int rn = merge_roots[node].front(); |
| 973 | 980 |
|
| 974 | 981 |
int xn = node_data[rn].next; |
| 975 | 982 |
Node xnode = order_list[xn]; |
| 976 | 983 |
|
| 977 | 984 |
int yn = node_data[rn].prev; |
| 978 | 985 |
Node ynode = order_list[yn]; |
| 979 | 986 |
|
| 980 | 987 |
bool rd; |
| 981 | 988 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) {
|
| 982 | 989 |
rd = true; |
| 983 | 990 |
} else if (!external(ynode, rorder, child_lists, |
| 984 | 991 |
ancestor_map, low_map)) {
|
| 985 | 992 |
rd = false; |
| 986 | 993 |
} else if (pertinent(xnode, embed_arc, merge_roots)) {
|
| 987 | 994 |
rd = true; |
| 988 | 995 |
} else {
|
| 989 | 996 |
rd = false; |
| 990 | 997 |
} |
| 991 | 998 |
|
| 992 | 999 |
merge_stack.push_back(std::make_pair(rn, rd)); |
| 993 | 1000 |
|
| 994 | 1001 |
pn = rn; |
| 995 | 1002 |
n = rd ? xn : yn; |
| 996 | 1003 |
|
| 997 | 1004 |
} else if (!external(node, rorder, child_lists, |
| 998 | 1005 |
ancestor_map, low_map)) {
|
| 999 | 1006 |
int nn = (node_data[n].next != pn ? |
| 1000 | 1007 |
node_data[n].next : node_data[n].prev); |
| 1001 | 1008 |
|
| 1002 | 1009 |
bool nd = n == node_data[nn].prev; |
| 1003 | 1010 |
|
| 1004 | 1011 |
if (nd) node_data[nn].prev = pn; |
| 1005 | 1012 |
else node_data[nn].next = pn; |
| 1006 | 1013 |
|
| 1007 | 1014 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
| 1008 | 1015 |
else node_data[pn].next = nn; |
| 1009 | 1016 |
|
| 1010 | 1017 |
node_data[nn].inverted = |
| 1011 | 1018 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
| 1012 | 1019 |
|
| 1013 | 1020 |
n = nn; |
| 1014 | 1021 |
} |
| 1015 | 1022 |
else break; |
| 1016 | 1023 |
|
| 1017 | 1024 |
} |
| 1018 | 1025 |
|
| 1019 | 1026 |
if (!merge_stack.empty() || n == rn) {
|
| 1020 | 1027 |
break; |
| 1021 | 1028 |
} |
| 1022 | 1029 |
} |
| 1023 | 1030 |
} |
| 1024 | 1031 |
|
| 1025 | 1032 |
void initFace(const Node& node, ArcLists& arc_lists, |
| 1026 | 1033 |
NodeData& node_data, const PredMap& pred_map, |
| 1027 | 1034 |
const OrderMap& order_map, const OrderList& order_list) {
|
| 1028 | 1035 |
int n = order_map[node]; |
| 1029 | 1036 |
int rn = n + order_list.size(); |
| 1030 | 1037 |
|
| 1031 | 1038 |
node_data[n].next = node_data[n].prev = rn; |
| 1032 | 1039 |
node_data[rn].next = node_data[rn].prev = n; |
| 1033 | 1040 |
|
| 1034 | 1041 |
node_data[n].visited = order_list.size(); |
| 1035 | 1042 |
node_data[rn].visited = order_list.size(); |
| 1036 | 1043 |
|
| 1037 | 1044 |
node_data[n].inverted = false; |
| 1038 | 1045 |
node_data[rn].inverted = false; |
| 1039 | 1046 |
|
| 1040 | 1047 |
Arc arc = pred_map[node]; |
| 1041 | 1048 |
Arc rev = _graph.oppositeArc(arc); |
| 1042 | 1049 |
|
| 1043 | 1050 |
node_data[rn].first = arc; |
| 1044 | 1051 |
node_data[n].first = rev; |
| 1045 | 1052 |
|
| 1046 | 1053 |
arc_lists[arc].prev = arc; |
| 1047 | 1054 |
arc_lists[arc].next = arc; |
| 1048 | 1055 |
|
| 1049 | 1056 |
arc_lists[rev].prev = rev; |
| 1050 | 1057 |
arc_lists[rev].next = rev; |
| 1051 | 1058 |
|
| 1052 | 1059 |
} |
| 1053 | 1060 |
|
| 1054 | 1061 |
void mergeRemainingFaces(const Node& node, NodeData& node_data, |
| 1055 | 1062 |
OrderList& order_list, OrderMap& order_map, |
| 1056 | 1063 |
ChildLists& child_lists, ArcLists& arc_lists) {
|
| 1057 | 1064 |
while (child_lists[node].first != INVALID) {
|
| 1058 | 1065 |
int dd = order_map[node]; |
| 1059 | 1066 |
Node child = child_lists[node].first; |
| 1060 | 1067 |
int cd = order_map[child] + order_list.size(); |
| 1061 | 1068 |
child_lists[node].first = child_lists[child].next; |
| 1062 | 1069 |
|
| 1063 | 1070 |
Arc de = node_data[dd].first; |
| 1064 | 1071 |
Arc ce = node_data[cd].first; |
| 1065 | 1072 |
|
| 1066 | 1073 |
if (de != INVALID) {
|
| 1067 | 1074 |
Arc dne = arc_lists[de].next; |
| 1068 | 1075 |
Arc cne = arc_lists[ce].next; |
| 1069 | 1076 |
|
| 1070 | 1077 |
arc_lists[de].next = cne; |
| 1071 | 1078 |
arc_lists[ce].next = dne; |
| 1072 | 1079 |
|
| 1073 | 1080 |
arc_lists[dne].prev = ce; |
| 1074 | 1081 |
arc_lists[cne].prev = de; |
| 1075 | 1082 |
} |
| 1076 | 1083 |
|
| 1077 | 1084 |
node_data[dd].first = ce; |
| 1078 | 1085 |
|
| 1079 | 1086 |
} |
| 1080 | 1087 |
} |
| 1081 | 1088 |
|
| 1082 | 1089 |
void storeEmbedding(const Node& node, NodeData& node_data, |
| 1083 | 1090 |
OrderMap& order_map, PredMap& pred_map, |
| 1084 | 1091 |
ArcLists& arc_lists, FlipMap& flip_map) {
|
| 1085 | 1092 |
|
| 1086 | 1093 |
if (node_data[order_map[node]].first == INVALID) return; |
| 1087 | 1094 |
|
| 1088 | 1095 |
if (pred_map[node] != INVALID) {
|
| 1089 | 1096 |
Node source = _graph.source(pred_map[node]); |
| 1090 | 1097 |
flip_map[node] = flip_map[node] != flip_map[source]; |
| 1091 | 1098 |
} |
| 1092 | 1099 |
|
| 1093 | 1100 |
Arc first = node_data[order_map[node]].first; |
| 1094 | 1101 |
Arc prev = first; |
| 1095 | 1102 |
|
| 1096 | 1103 |
Arc arc = flip_map[node] ? |
| 1097 | 1104 |
arc_lists[prev].prev : arc_lists[prev].next; |
| 1098 | 1105 |
|
| 1099 | 1106 |
_embedding[prev] = arc; |
| 1100 | 1107 |
|
| 1101 | 1108 |
while (arc != first) {
|
| 1102 | 1109 |
Arc next = arc_lists[arc].prev == prev ? |
| 1103 | 1110 |
arc_lists[arc].next : arc_lists[arc].prev; |
| 1104 | 1111 |
prev = arc; arc = next; |
| 1105 | 1112 |
_embedding[prev] = arc; |
| 1106 | 1113 |
} |
| 1107 | 1114 |
} |
| 1108 | 1115 |
|
| 1109 | 1116 |
|
| 1110 | 1117 |
bool external(const Node& node, int rorder, |
| 1111 | 1118 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
| 1112 | 1119 |
LowMap& low_map) {
|
| 1113 | 1120 |
Node child = child_lists[node].first; |
| 1114 | 1121 |
|
| 1115 | 1122 |
if (child != INVALID) {
|
| 1116 | 1123 |
if (low_map[child] < rorder) return true; |
| 1117 | 1124 |
} |
| 1118 | 1125 |
|
| 1119 | 1126 |
if (ancestor_map[node] < rorder) return true; |
| 1120 | 1127 |
|
| 1121 | 1128 |
return false; |
| 1122 | 1129 |
} |
| 1123 | 1130 |
|
| 1124 | 1131 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
| 1125 | 1132 |
const MergeRoots& merge_roots) {
|
| 1126 | 1133 |
return !merge_roots[node].empty() || embed_arc[node] != INVALID; |
| 1127 | 1134 |
} |
| 1128 | 1135 |
|
| 1129 | 1136 |
int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists, |
| 1130 | 1137 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
| 1131 | 1138 |
int low_point; |
| 1132 | 1139 |
|
| 1133 | 1140 |
Node child = child_lists[node].first; |
| 1134 | 1141 |
|
| 1135 | 1142 |
if (child != INVALID) {
|
| 1136 | 1143 |
low_point = low_map[child]; |
| 1137 | 1144 |
} else {
|
| 1138 | 1145 |
low_point = order_map[node]; |
| 1139 | 1146 |
} |
| 1140 | 1147 |
|
| 1141 | 1148 |
if (low_point > ancestor_map[node]) {
|
| 1142 | 1149 |
low_point = ancestor_map[node]; |
| 1143 | 1150 |
} |
| 1144 | 1151 |
|
| 1145 | 1152 |
return low_point; |
| 1146 | 1153 |
} |
| 1147 | 1154 |
|
| 1148 | 1155 |
int findComponentRoot(Node root, Node node, ChildLists& child_lists, |
| 1149 | 1156 |
OrderMap& order_map, OrderList& order_list) {
|
| 1150 | 1157 |
|
| 1151 | 1158 |
int order = order_map[root]; |
| 1152 | 1159 |
int norder = order_map[node]; |
| 1153 | 1160 |
|
| 1154 | 1161 |
Node child = child_lists[root].first; |
| 1155 | 1162 |
while (child != INVALID) {
|
| 1156 | 1163 |
int corder = order_map[child]; |
| 1157 | 1164 |
if (corder > order && corder < norder) {
|
| 1158 | 1165 |
order = corder; |
| 1159 | 1166 |
} |
| 1160 | 1167 |
child = child_lists[child].next; |
| 1161 | 1168 |
} |
| 1162 | 1169 |
return order + order_list.size(); |
| 1163 | 1170 |
} |
| 1164 | 1171 |
|
| 1165 | 1172 |
Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data, |
| 1166 | 1173 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
| 1167 | 1174 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
| 1168 | 1175 |
while (!pertinent(wnode, embed_arc, merge_roots)) {
|
| 1169 | 1176 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
| 1170 | 1177 |
} |
| 1171 | 1178 |
return wnode; |
| 1172 | 1179 |
} |
| 1173 | 1180 |
|
| 1174 | 1181 |
|
| 1175 | 1182 |
Node findExternal(Node node, int rorder, OrderMap& order_map, |
| 1176 | 1183 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
| 1177 | 1184 |
LowMap& low_map, NodeData& node_data) {
|
| 1178 | 1185 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
| 1179 | 1186 |
while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
| 1180 | 1187 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
| 1181 | 1188 |
} |
| 1182 | 1189 |
return wnode; |
| 1183 | 1190 |
} |
| 1184 | 1191 |
|
| 1185 | 1192 |
void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, |
| 1186 | 1193 |
OrderList& order_list, OrderMap& order_map, |
| 1187 | 1194 |
NodeData& node_data, ArcLists& arc_lists, |
| 1188 | 1195 |
EmbedArc& embed_arc, MergeRoots& merge_roots, |
| 1189 | 1196 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
| 1190 | 1197 |
LowMap& low_map) {
|
| 1191 | 1198 |
|
| 1192 | 1199 |
Node cnode = node; |
| 1193 | 1200 |
Node pred = INVALID; |
| 1194 | 1201 |
|
| 1195 | 1202 |
while (true) {
|
| 1196 | 1203 |
|
| 1197 | 1204 |
bool pert = pertinent(cnode, embed_arc, merge_roots); |
| 1198 | 1205 |
bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map); |
| 1199 | 1206 |
|
| 1200 | 1207 |
if (pert && ext) {
|
| 1201 | 1208 |
if (!merge_roots[cnode].empty()) {
|
| 1202 | 1209 |
int cn = merge_roots[cnode].back(); |
| 1203 | 1210 |
|
| 1204 | 1211 |
if (low_map[order_list[cn - order_list.size()]] < rorder) {
|
| 1205 | 1212 |
Arc arc = node_data[cn].first; |
| 1206 | 1213 |
_kuratowski.set(arc, true); |
| 1207 | 1214 |
|
| 1208 | 1215 |
pred = cnode; |
| 1209 | 1216 |
cnode = _graph.target(arc); |
| 1210 | 1217 |
|
| 1211 | 1218 |
continue; |
| 1212 | 1219 |
} |
| 1213 | 1220 |
} |
| 1214 | 1221 |
wnode = znode = cnode; |
| 1215 | 1222 |
return; |
| 1216 | 1223 |
|
| 1217 | 1224 |
} else if (pert) {
|
| 1218 | 1225 |
wnode = cnode; |
| 1219 | 1226 |
|
| 1220 | 1227 |
while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) {
|
| 1221 | 1228 |
Arc arc = node_data[order_map[cnode]].first; |
| 1222 | 1229 |
|
| 1223 | 1230 |
if (_graph.target(arc) == pred) {
|
| 1224 | 1231 |
arc = arc_lists[arc].next; |
| 1225 | 1232 |
} |
| 1226 | 1233 |
_kuratowski.set(arc, true); |
| 1227 | 1234 |
|
| 1228 | 1235 |
Node next = _graph.target(arc); |
| 1229 | 1236 |
pred = cnode; cnode = next; |
| 1230 | 1237 |
} |
| 1231 | 1238 |
|
| 1232 | 1239 |
znode = cnode; |
| 1233 | 1240 |
return; |
| 1234 | 1241 |
|
| 1235 | 1242 |
} else if (ext) {
|
| 1236 | 1243 |
znode = cnode; |
| 1237 | 1244 |
|
| 1238 | 1245 |
while (!pertinent(cnode, embed_arc, merge_roots)) {
|
| 1239 | 1246 |
Arc arc = node_data[order_map[cnode]].first; |
| 1240 | 1247 |
|
| 1241 | 1248 |
if (_graph.target(arc) == pred) {
|
| 1242 | 1249 |
arc = arc_lists[arc].next; |
| 1243 | 1250 |
} |
| 1244 | 1251 |
_kuratowski.set(arc, true); |
| 1245 | 1252 |
|
| 1246 | 1253 |
Node next = _graph.target(arc); |
| 1247 | 1254 |
pred = cnode; cnode = next; |
| 1248 | 1255 |
} |
| 1249 | 1256 |
|
| 1250 | 1257 |
wnode = cnode; |
| 1251 | 1258 |
return; |
| 1252 | 1259 |
|
| 1253 | 1260 |
} else {
|
| 1254 | 1261 |
Arc arc = node_data[order_map[cnode]].first; |
| 1255 | 1262 |
|
| 1256 | 1263 |
if (_graph.target(arc) == pred) {
|
| 1257 | 1264 |
arc = arc_lists[arc].next; |
| 1258 | 1265 |
} |
| 1259 | 1266 |
_kuratowski.set(arc, true); |
| 1260 | 1267 |
|
| 1261 | 1268 |
Node next = _graph.target(arc); |
| 1262 | 1269 |
pred = cnode; cnode = next; |
| 1263 | 1270 |
} |
| 1264 | 1271 |
|
| 1265 | 1272 |
} |
| 1266 | 1273 |
|
| 1267 | 1274 |
} |
| 1268 | 1275 |
|
| 1269 | 1276 |
void orientComponent(Node root, int rn, OrderMap& order_map, |
| 1270 | 1277 |
PredMap& pred_map, NodeData& node_data, |
| 1271 | 1278 |
ArcLists& arc_lists, FlipMap& flip_map, |
| 1272 | 1279 |
TypeMap& type_map) {
|
| 1273 | 1280 |
node_data[order_map[root]].first = node_data[rn].first; |
| 1274 | 1281 |
type_map[root] = 1; |
| 1275 | 1282 |
|
| 1276 | 1283 |
std::vector<Node> st, qu; |
| 1277 | 1284 |
|
| 1278 | 1285 |
st.push_back(root); |
| 1279 | 1286 |
while (!st.empty()) {
|
| 1280 | 1287 |
Node node = st.back(); |
| 1281 | 1288 |
st.pop_back(); |
| 1282 | 1289 |
qu.push_back(node); |
| 1283 | 1290 |
|
| 1284 | 1291 |
Arc arc = node_data[order_map[node]].first; |
| 1285 | 1292 |
|
| 1286 | 1293 |
if (type_map[_graph.target(arc)] == 0) {
|
| 1287 | 1294 |
st.push_back(_graph.target(arc)); |
| 1288 | 1295 |
type_map[_graph.target(arc)] = 1; |
| 1289 | 1296 |
} |
| 1290 | 1297 |
|
| 1291 | 1298 |
Arc last = arc, pred = arc; |
| 1292 | 1299 |
arc = arc_lists[arc].next; |
| 1293 | 1300 |
while (arc != last) {
|
| 1294 | 1301 |
|
| 1295 | 1302 |
if (type_map[_graph.target(arc)] == 0) {
|
| 1296 | 1303 |
st.push_back(_graph.target(arc)); |
| 1297 | 1304 |
type_map[_graph.target(arc)] = 1; |
| 1298 | 1305 |
} |
| 1299 | 1306 |
|
| 1300 | 1307 |
Arc next = arc_lists[arc].next != pred ? |
| 1301 | 1308 |
arc_lists[arc].next : arc_lists[arc].prev; |
| 1302 | 1309 |
pred = arc; arc = next; |
| 1303 | 1310 |
} |
| 1304 | 1311 |
|
| 1305 | 1312 |
} |
| 1306 | 1313 |
|
| 1307 | 1314 |
type_map[root] = 2; |
| 1308 | 1315 |
flip_map[root] = false; |
| 1309 | 1316 |
|
| 1310 | 1317 |
for (int i = 1; i < int(qu.size()); ++i) {
|
| 1311 | 1318 |
|
| 1312 | 1319 |
Node node = qu[i]; |
| 1313 | 1320 |
|
| 1314 | 1321 |
while (type_map[node] != 2) {
|
| 1315 | 1322 |
st.push_back(node); |
| 1316 | 1323 |
type_map[node] = 2; |
| 1317 | 1324 |
node = _graph.source(pred_map[node]); |
| 1318 | 1325 |
} |
| 1319 | 1326 |
|
| 1320 | 1327 |
bool flip = flip_map[node]; |
| 1321 | 1328 |
|
| 1322 | 1329 |
while (!st.empty()) {
|
| 1323 | 1330 |
node = st.back(); |
| 1324 | 1331 |
st.pop_back(); |
| 1325 | 1332 |
|
| 1326 | 1333 |
flip_map[node] = flip != flip_map[node]; |
| 1327 | 1334 |
flip = flip_map[node]; |
| 1328 | 1335 |
|
| 1329 | 1336 |
if (flip) {
|
| 1330 | 1337 |
Arc arc = node_data[order_map[node]].first; |
| 1331 | 1338 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
| 1332 | 1339 |
arc = arc_lists[arc].prev; |
| 1333 | 1340 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
| 1334 | 1341 |
node_data[order_map[node]].first = arc; |
| 1335 | 1342 |
} |
| 1336 | 1343 |
} |
| 1337 | 1344 |
} |
| 1338 | 1345 |
|
| 1339 | 1346 |
for (int i = 0; i < int(qu.size()); ++i) {
|
| 1340 | 1347 |
|
| 1341 | 1348 |
Arc arc = node_data[order_map[qu[i]]].first; |
| 1342 | 1349 |
Arc last = arc, pred = arc; |
| 1343 | 1350 |
|
| 1344 | 1351 |
arc = arc_lists[arc].next; |
| 1345 | 1352 |
while (arc != last) {
|
| 1346 | 1353 |
|
| 1347 | 1354 |
if (arc_lists[arc].next == pred) {
|
| 1348 | 1355 |
std::swap(arc_lists[arc].next, arc_lists[arc].prev); |
| 1349 | 1356 |
} |
| 1350 | 1357 |
pred = arc; arc = arc_lists[arc].next; |
| 1351 | 1358 |
} |
| 1352 | 1359 |
|
| 1353 | 1360 |
} |
| 1354 | 1361 |
} |
| 1355 | 1362 |
|
| 1356 | 1363 |
void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode, |
| 1357 | 1364 |
OrderMap& order_map, NodeData& node_data, |
| 1358 | 1365 |
TypeMap& type_map) {
|
| 1359 | 1366 |
Node node = _graph.target(node_data[order_map[root]].first); |
| 1360 | 1367 |
|
| 1361 | 1368 |
while (node != ynode) {
|
| 1362 | 1369 |
type_map[node] = HIGHY; |
| 1363 | 1370 |
node = _graph.target(node_data[order_map[node]].first); |
| 1364 | 1371 |
} |
| 1365 | 1372 |
|
| 1366 | 1373 |
while (node != wnode) {
|
| 1367 | 1374 |
type_map[node] = LOWY; |
| 1368 | 1375 |
node = _graph.target(node_data[order_map[node]].first); |
| 1369 | 1376 |
} |
| 1370 | 1377 |
|
| 1371 | 1378 |
node = _graph.target(node_data[order_map[wnode]].first); |
| 1372 | 1379 |
|
| 1373 | 1380 |
while (node != xnode) {
|
| 1374 | 1381 |
type_map[node] = LOWX; |
| 1375 | 1382 |
node = _graph.target(node_data[order_map[node]].first); |
| 1376 | 1383 |
} |
| 1377 | 1384 |
type_map[node] = LOWX; |
| 1378 | 1385 |
|
| 1379 | 1386 |
node = _graph.target(node_data[order_map[xnode]].first); |
| 1380 | 1387 |
while (node != root) {
|
| 1381 | 1388 |
type_map[node] = HIGHX; |
| 1382 | 1389 |
node = _graph.target(node_data[order_map[node]].first); |
| 1383 | 1390 |
} |
| 1384 | 1391 |
|
| 1385 | 1392 |
type_map[wnode] = PERTINENT; |
| 1386 | 1393 |
type_map[root] = ROOT; |
| 1387 | 1394 |
} |
| 1388 | 1395 |
|
| 1389 | 1396 |
void findInternalPath(std::vector<Arc>& ipath, |
| 1390 | 1397 |
Node wnode, Node root, TypeMap& type_map, |
| 1391 | 1398 |
OrderMap& order_map, NodeData& node_data, |
| 1392 | 1399 |
ArcLists& arc_lists) {
|
| 1393 | 1400 |
std::vector<Arc> st; |
| 1394 | 1401 |
|
| 1395 | 1402 |
Node node = wnode; |
| 1396 | 1403 |
|
| 1397 | 1404 |
while (node != root) {
|
| 1398 | 1405 |
Arc arc = arc_lists[node_data[order_map[node]].first].next; |
| 1399 | 1406 |
st.push_back(arc); |
| 1400 | 1407 |
node = _graph.target(arc); |
| 1401 | 1408 |
} |
| 1402 | 1409 |
|
| 1403 | 1410 |
while (true) {
|
| 1404 | 1411 |
Arc arc = st.back(); |
| 1405 | 1412 |
if (type_map[_graph.target(arc)] == LOWX || |
| 1406 | 1413 |
type_map[_graph.target(arc)] == HIGHX) {
|
| 1407 | 1414 |
break; |
| 1408 | 1415 |
} |
| 1409 | 1416 |
if (type_map[_graph.target(arc)] == 2) {
|
| 1410 | 1417 |
type_map[_graph.target(arc)] = 3; |
| 1411 | 1418 |
|
| 1412 | 1419 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
| 1413 | 1420 |
st.push_back(arc); |
| 1414 | 1421 |
} else {
|
| 1415 | 1422 |
st.pop_back(); |
| 1416 | 1423 |
arc = arc_lists[arc].next; |
| 1417 | 1424 |
|
| 1418 | 1425 |
while (_graph.oppositeArc(arc) == st.back()) {
|
| 1419 | 1426 |
arc = st.back(); |
| 1420 | 1427 |
st.pop_back(); |
| 1421 | 1428 |
arc = arc_lists[arc].next; |
| 1422 | 1429 |
} |
| 1423 | 1430 |
st.push_back(arc); |
| 1424 | 1431 |
} |
| 1425 | 1432 |
} |
| 1426 | 1433 |
|
| 1427 | 1434 |
for (int i = 0; i < int(st.size()); ++i) {
|
| 1428 | 1435 |
if (type_map[_graph.target(st[i])] != LOWY && |
| 1429 | 1436 |
type_map[_graph.target(st[i])] != HIGHY) {
|
| 1430 | 1437 |
for (; i < int(st.size()); ++i) {
|
| 1431 | 1438 |
ipath.push_back(st[i]); |
| 1432 | 1439 |
} |
| 1433 | 1440 |
} |
| 1434 | 1441 |
} |
| 1435 | 1442 |
} |
| 1436 | 1443 |
|
| 1437 | 1444 |
void setInternalFlags(std::vector<Arc>& ipath, TypeMap& type_map) {
|
| 1438 | 1445 |
for (int i = 1; i < int(ipath.size()); ++i) {
|
| 1439 | 1446 |
type_map[_graph.source(ipath[i])] = INTERNAL; |
| 1440 | 1447 |
} |
| 1441 | 1448 |
} |
| 1442 | 1449 |
|
| 1443 | 1450 |
void findPilePath(std::vector<Arc>& ppath, |
| 1444 | 1451 |
Node root, TypeMap& type_map, OrderMap& order_map, |
| 1445 | 1452 |
NodeData& node_data, ArcLists& arc_lists) {
|
| 1446 | 1453 |
std::vector<Arc> st; |
| 1447 | 1454 |
|
| 1448 | 1455 |
st.push_back(_graph.oppositeArc(node_data[order_map[root]].first)); |
| 1449 | 1456 |
st.push_back(node_data[order_map[root]].first); |
| 1450 | 1457 |
|
| 1451 | 1458 |
while (st.size() > 1) {
|
| 1452 | 1459 |
Arc arc = st.back(); |
| 1453 | 1460 |
if (type_map[_graph.target(arc)] == INTERNAL) {
|
| 1454 | 1461 |
break; |
| 1455 | 1462 |
} |
| 1456 | 1463 |
if (type_map[_graph.target(arc)] == 3) {
|
| 1457 | 1464 |
type_map[_graph.target(arc)] = 4; |
| 1458 | 1465 |
|
| 1459 | 1466 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
| 1460 | 1467 |
st.push_back(arc); |
| 1461 | 1468 |
} else {
|
| 1462 | 1469 |
st.pop_back(); |
| 1463 | 1470 |
arc = arc_lists[arc].next; |
| 1464 | 1471 |
|
| 1465 | 1472 |
while (!st.empty() && _graph.oppositeArc(arc) == st.back()) {
|
| 1466 | 1473 |
arc = st.back(); |
| 1467 | 1474 |
st.pop_back(); |
| 1468 | 1475 |
arc = arc_lists[arc].next; |
| 1469 | 1476 |
} |
| 1470 | 1477 |
st.push_back(arc); |
| 1471 | 1478 |
} |
| 1472 | 1479 |
} |
| 1473 | 1480 |
|
| 1474 | 1481 |
for (int i = 1; i < int(st.size()); ++i) {
|
| 1475 | 1482 |
ppath.push_back(st[i]); |
| 1476 | 1483 |
} |
| 1477 | 1484 |
} |
| 1478 | 1485 |
|
| 1479 | 1486 |
|
| 1480 | 1487 |
int markExternalPath(Node node, OrderMap& order_map, |
| 1481 | 1488 |
ChildLists& child_lists, PredMap& pred_map, |
| 1482 | 1489 |
AncestorMap& ancestor_map, LowMap& low_map) {
|
| 1483 | 1490 |
int lp = lowPoint(node, order_map, child_lists, |
| 1484 | 1491 |
ancestor_map, low_map); |
| 1485 | 1492 |
|
| 1486 | 1493 |
if (ancestor_map[node] != lp) {
|
| 1487 | 1494 |
node = child_lists[node].first; |
| 1488 | 1495 |
_kuratowski[pred_map[node]] = true; |
| 1489 | 1496 |
|
| 1490 | 1497 |
while (ancestor_map[node] != lp) {
|
| 1491 | 1498 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 1492 | 1499 |
Node tnode = _graph.target(e); |
| 1493 | 1500 |
if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) {
|
| 1494 | 1501 |
node = tnode; |
| 1495 | 1502 |
_kuratowski[e] = true; |
| 1496 | 1503 |
break; |
| 1497 | 1504 |
} |
| 1498 | 1505 |
} |
| 1499 | 1506 |
} |
| 1500 | 1507 |
} |
| 1501 | 1508 |
|
| 1502 | 1509 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) {
|
| 1503 | 1510 |
if (order_map[_graph.target(e)] == lp) {
|
| 1504 | 1511 |
_kuratowski[e] = true; |
| 1505 | 1512 |
break; |
| 1506 | 1513 |
} |
| 1507 | 1514 |
} |
| 1508 | 1515 |
|
| 1509 | 1516 |
return lp; |
| 1510 | 1517 |
} |
| 1511 | 1518 |
|
| 1512 | 1519 |
void markPertinentPath(Node node, OrderMap& order_map, |
| 1513 | 1520 |
NodeData& node_data, ArcLists& arc_lists, |
| 1514 | 1521 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
| 1515 | 1522 |
while (embed_arc[node] == INVALID) {
|
| 1516 | 1523 |
int n = merge_roots[node].front(); |
| 1517 | 1524 |
Arc arc = node_data[n].first; |
| 1518 | 1525 |
|
| 1519 | 1526 |
_kuratowski.set(arc, true); |
| 1520 | 1527 |
|
| 1521 | 1528 |
Node pred = node; |
| 1522 | 1529 |
node = _graph.target(arc); |
| 1523 | 1530 |
while (!pertinent(node, embed_arc, merge_roots)) {
|
| 1524 | 1531 |
arc = node_data[order_map[node]].first; |
| 1525 | 1532 |
if (_graph.target(arc) == pred) {
|
| 1526 | 1533 |
arc = arc_lists[arc].next; |
| 1527 | 1534 |
} |
| 1528 | 1535 |
_kuratowski.set(arc, true); |
| 1529 | 1536 |
pred = node; |
| 1530 | 1537 |
node = _graph.target(arc); |
| 1531 | 1538 |
} |
| 1532 | 1539 |
} |
| 1533 | 1540 |
_kuratowski.set(embed_arc[node], true); |
| 1534 | 1541 |
} |
| 1535 | 1542 |
|
| 1536 | 1543 |
void markPredPath(Node node, Node snode, PredMap& pred_map) {
|
| 1537 | 1544 |
while (node != snode) {
|
| 1538 | 1545 |
_kuratowski.set(pred_map[node], true); |
| 1539 | 1546 |
node = _graph.source(pred_map[node]); |
| 1540 | 1547 |
} |
| 1541 | 1548 |
} |
| 1542 | 1549 |
|
| 1543 | 1550 |
void markFacePath(Node ynode, Node xnode, |
| 1544 | 1551 |
OrderMap& order_map, NodeData& node_data) {
|
| 1545 | 1552 |
Arc arc = node_data[order_map[ynode]].first; |
| 1546 | 1553 |
Node node = _graph.target(arc); |
| 1547 | 1554 |
_kuratowski.set(arc, true); |
| 1548 | 1555 |
|
| 1549 | 1556 |
while (node != xnode) {
|
| 1550 | 1557 |
arc = node_data[order_map[node]].first; |
| 1551 | 1558 |
_kuratowski.set(arc, true); |
| 1552 | 1559 |
node = _graph.target(arc); |
| 1553 | 1560 |
} |
| 1554 | 1561 |
} |
| 1555 | 1562 |
|
| 1556 | 1563 |
void markInternalPath(std::vector<Arc>& path) {
|
| 1557 | 1564 |
for (int i = 0; i < int(path.size()); ++i) {
|
| 1558 | 1565 |
_kuratowski.set(path[i], true); |
| 1559 | 1566 |
} |
| 1560 | 1567 |
} |
| 1561 | 1568 |
|
| 1562 | 1569 |
void markPilePath(std::vector<Arc>& path) {
|
| 1563 | 1570 |
for (int i = 0; i < int(path.size()); ++i) {
|
| 1564 | 1571 |
_kuratowski.set(path[i], true); |
| 1565 | 1572 |
} |
| 1566 | 1573 |
} |
| 1567 | 1574 |
|
| 1568 | 1575 |
void isolateKuratowski(Arc arc, NodeData& node_data, |
| 1569 | 1576 |
ArcLists& arc_lists, FlipMap& flip_map, |
| 1570 | 1577 |
OrderMap& order_map, OrderList& order_list, |
| 1571 | 1578 |
PredMap& pred_map, ChildLists& child_lists, |
| 1572 | 1579 |
AncestorMap& ancestor_map, LowMap& low_map, |
| 1573 | 1580 |
EmbedArc& embed_arc, MergeRoots& merge_roots) {
|
| 1574 | 1581 |
|
| 1575 | 1582 |
Node root = _graph.source(arc); |
| 1576 | 1583 |
Node enode = _graph.target(arc); |
| 1577 | 1584 |
|
| 1578 | 1585 |
int rorder = order_map[root]; |
| 1579 | 1586 |
|
| 1580 | 1587 |
TypeMap type_map(_graph, 0); |
| 1581 | 1588 |
|
| 1582 | 1589 |
int rn = findComponentRoot(root, enode, child_lists, |
| 1583 | 1590 |
order_map, order_list); |
| 1584 | 1591 |
|
| 1585 | 1592 |
Node xnode = order_list[node_data[rn].next]; |
| 1586 | 1593 |
Node ynode = order_list[node_data[rn].prev]; |
| 1587 | 1594 |
|
| 1588 | 1595 |
// Minor-A |
| 1589 | 1596 |
{
|
| 1590 | 1597 |
while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) {
|
| 1591 | 1598 |
|
| 1592 | 1599 |
if (!merge_roots[xnode].empty()) {
|
| 1593 | 1600 |
root = xnode; |
| 1594 | 1601 |
rn = merge_roots[xnode].front(); |
| 1595 | 1602 |
} else {
|
| 1596 | 1603 |
root = ynode; |
| 1597 | 1604 |
rn = merge_roots[ynode].front(); |
| 1598 | 1605 |
} |
| 1599 | 1606 |
|
| 1600 | 1607 |
xnode = order_list[node_data[rn].next]; |
| 1601 | 1608 |
ynode = order_list[node_data[rn].prev]; |
| 1602 | 1609 |
} |
| 1603 | 1610 |
|
| 1604 | 1611 |
if (root != _graph.source(arc)) {
|
| 1605 | 1612 |
orientComponent(root, rn, order_map, pred_map, |
| 1606 | 1613 |
node_data, arc_lists, flip_map, type_map); |
| 1607 | 1614 |
markFacePath(root, root, order_map, node_data); |
| 1608 | 1615 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
| 1609 | 1616 |
pred_map, ancestor_map, low_map); |
| 1610 | 1617 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
| 1611 | 1618 |
pred_map, ancestor_map, low_map); |
| 1612 | 1619 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
| 1613 | 1620 |
Node lwnode = findPertinent(ynode, order_map, node_data, |
| 1614 | 1621 |
embed_arc, merge_roots); |
| 1615 | 1622 |
|
| 1616 | 1623 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
| 1617 | 1624 |
embed_arc, merge_roots); |
| 1618 | 1625 |
|
| 1619 | 1626 |
return; |
| 1620 | 1627 |
} |
| 1621 | 1628 |
} |
| 1622 | 1629 |
|
| 1623 | 1630 |
orientComponent(root, rn, order_map, pred_map, |
| 1624 | 1631 |
node_data, arc_lists, flip_map, type_map); |
| 1625 | 1632 |
|
| 1626 | 1633 |
Node wnode = findPertinent(ynode, order_map, node_data, |
| 1627 | 1634 |
embed_arc, merge_roots); |
| 1628 | 1635 |
setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map); |
| 1629 | 1636 |
|
| 1630 | 1637 |
|
| 1631 | 1638 |
//Minor-B |
| 1632 | 1639 |
if (!merge_roots[wnode].empty()) {
|
| 1633 | 1640 |
int cn = merge_roots[wnode].back(); |
| 1634 | 1641 |
Node rep = order_list[cn - order_list.size()]; |
| 1635 | 1642 |
if (low_map[rep] < rorder) {
|
| 1636 | 1643 |
markFacePath(root, root, order_map, node_data); |
| 1637 | 1644 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
| 1638 | 1645 |
pred_map, ancestor_map, low_map); |
| 1639 | 1646 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
| 1640 | 1647 |
pred_map, ancestor_map, low_map); |
| 1641 | 1648 |
|
| 1642 | 1649 |
Node lwnode, lznode; |
| 1643 | 1650 |
markCommonPath(wnode, rorder, lwnode, lznode, order_list, |
| 1644 | 1651 |
order_map, node_data, arc_lists, embed_arc, |
| 1645 | 1652 |
merge_roots, child_lists, ancestor_map, low_map); |
| 1646 | 1653 |
|
| 1647 | 1654 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
| 1648 | 1655 |
embed_arc, merge_roots); |
| 1649 | 1656 |
int zlp = markExternalPath(lznode, order_map, child_lists, |
| 1650 | 1657 |
pred_map, ancestor_map, low_map); |
| 1651 | 1658 |
|
| 1652 | 1659 |
int minlp = xlp < ylp ? xlp : ylp; |
| 1653 | 1660 |
if (zlp < minlp) minlp = zlp; |
| 1654 | 1661 |
|
| 1655 | 1662 |
int maxlp = xlp > ylp ? xlp : ylp; |
| 1656 | 1663 |
if (zlp > maxlp) maxlp = zlp; |
| 1657 | 1664 |
|
| 1658 | 1665 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
| 1659 | 1666 |
|
| 1660 | 1667 |
return; |
| 1661 | 1668 |
} |
| 1662 | 1669 |
} |
| 1663 | 1670 |
|
| 1664 | 1671 |
Node pxnode, pynode; |
| 1665 | 1672 |
std::vector<Arc> ipath; |
| 1666 | 1673 |
findInternalPath(ipath, wnode, root, type_map, order_map, |
| 1667 | 1674 |
node_data, arc_lists); |
| 1668 | 1675 |
setInternalFlags(ipath, type_map); |
| 1669 | 1676 |
pynode = _graph.source(ipath.front()); |
| 1670 | 1677 |
pxnode = _graph.target(ipath.back()); |
| 1671 | 1678 |
|
| 1672 | 1679 |
wnode = findPertinent(pynode, order_map, node_data, |
| 1673 | 1680 |
embed_arc, merge_roots); |
| 1674 | 1681 |
|
| 1675 | 1682 |
// Minor-C |
| 1676 | 1683 |
{
|
| 1677 | 1684 |
if (type_map[_graph.source(ipath.front())] == HIGHY) {
|
| 1678 | 1685 |
if (type_map[_graph.target(ipath.back())] == HIGHX) {
|
| 1679 | 1686 |
markFacePath(xnode, pxnode, order_map, node_data); |
| 1680 | 1687 |
} |
| 1681 | 1688 |
markFacePath(root, xnode, order_map, node_data); |
| 1682 | 1689 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
| 1683 | 1690 |
embed_arc, merge_roots); |
| 1684 | 1691 |
markInternalPath(ipath); |
| 1685 | 1692 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
| 1686 | 1693 |
pred_map, ancestor_map, low_map); |
| 1687 | 1694 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
| 1688 | 1695 |
pred_map, ancestor_map, low_map); |
| 1689 | 1696 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
| 1690 | 1697 |
return; |
| 1691 | 1698 |
} |
| 1692 | 1699 |
|
| 1693 | 1700 |
if (type_map[_graph.target(ipath.back())] == HIGHX) {
|
| 1694 | 1701 |
markFacePath(ynode, root, order_map, node_data); |
| 1695 | 1702 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
| 1696 | 1703 |
embed_arc, merge_roots); |
| 1697 | 1704 |
markInternalPath(ipath); |
| 1698 | 1705 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
| 1699 | 1706 |
pred_map, ancestor_map, low_map); |
| 1700 | 1707 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
| 1701 | 1708 |
pred_map, ancestor_map, low_map); |
| 1702 | 1709 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
| 1703 | 1710 |
return; |
| 1704 | 1711 |
} |
| 1705 | 1712 |
} |
| 1706 | 1713 |
|
| 1707 | 1714 |
std::vector<Arc> ppath; |
| 1708 | 1715 |
findPilePath(ppath, root, type_map, order_map, node_data, arc_lists); |
| 1709 | 1716 |
|
| 1710 | 1717 |
// Minor-D |
| 1711 | 1718 |
if (!ppath.empty()) {
|
| 1712 | 1719 |
markFacePath(ynode, xnode, order_map, node_data); |
| 1713 | 1720 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
| 1714 | 1721 |
embed_arc, merge_roots); |
| 1715 | 1722 |
markPilePath(ppath); |
| 1716 | 1723 |
markInternalPath(ipath); |
| 1717 | 1724 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
| 1718 | 1725 |
pred_map, ancestor_map, low_map); |
| 1719 | 1726 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
| 1720 | 1727 |
pred_map, ancestor_map, low_map); |
| 1721 | 1728 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
| 1722 | 1729 |
return; |
| 1723 | 1730 |
} |
| 1724 | 1731 |
|
| 1725 | 1732 |
// Minor-E* |
| 1726 | 1733 |
{
|
| 1727 | 1734 |
|
| 1728 | 1735 |
if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) {
|
| 1729 | 1736 |
Node znode = findExternal(pynode, rorder, order_map, |
| 1730 | 1737 |
child_lists, ancestor_map, |
| 1731 | 1738 |
low_map, node_data); |
| 1732 | 1739 |
|
| 1733 | 1740 |
if (type_map[znode] == LOWY) {
|
| 1734 | 1741 |
markFacePath(root, xnode, order_map, node_data); |
| 1735 | 1742 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
| 1736 | 1743 |
embed_arc, merge_roots); |
| 1737 | 1744 |
markInternalPath(ipath); |
| 1738 | 1745 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
| 1739 | 1746 |
pred_map, ancestor_map, low_map); |
| 1740 | 1747 |
int zlp = markExternalPath(znode, order_map, child_lists, |
| 1741 | 1748 |
pred_map, ancestor_map, low_map); |
| 1742 | 1749 |
markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map); |
| 1743 | 1750 |
} else {
|
| 1744 | 1751 |
markFacePath(ynode, root, order_map, node_data); |
| 1745 | 1752 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
| 1746 | 1753 |
embed_arc, merge_roots); |
| 1747 | 1754 |
markInternalPath(ipath); |
| 1748 | 1755 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
| 1749 | 1756 |
pred_map, ancestor_map, low_map); |
| 1750 | 1757 |
int zlp = markExternalPath(znode, order_map, child_lists, |
| 1751 | 1758 |
pred_map, ancestor_map, low_map); |
| 1752 | 1759 |
markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map); |
| 1753 | 1760 |
} |
| 1754 | 1761 |
return; |
| 1755 | 1762 |
} |
| 1756 | 1763 |
|
| 1757 | 1764 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
| 1758 | 1765 |
pred_map, ancestor_map, low_map); |
| 1759 | 1766 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
| 1760 | 1767 |
pred_map, ancestor_map, low_map); |
| 1761 | 1768 |
int wlp = markExternalPath(wnode, order_map, child_lists, |
| 1762 | 1769 |
pred_map, ancestor_map, low_map); |
| 1763 | 1770 |
|
| 1764 | 1771 |
if (wlp > xlp && wlp > ylp) {
|
| 1765 | 1772 |
markFacePath(root, root, order_map, node_data); |
| 1766 | 1773 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
| 1767 | 1774 |
return; |
| 1768 | 1775 |
} |
| 1769 | 1776 |
|
| 1770 | 1777 |
markInternalPath(ipath); |
| 1771 | 1778 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
| 1772 | 1779 |
embed_arc, merge_roots); |
| 1773 | 1780 |
|
| 1774 | 1781 |
if (xlp > ylp && xlp > wlp) {
|
| 1775 | 1782 |
markFacePath(root, pynode, order_map, node_data); |
| 1776 | 1783 |
markFacePath(wnode, xnode, order_map, node_data); |
| 1777 | 1784 |
markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map); |
| 1778 | 1785 |
return; |
| 1779 | 1786 |
} |
| 1780 | 1787 |
|
| 1781 | 1788 |
if (ylp > xlp && ylp > wlp) {
|
| 1782 | 1789 |
markFacePath(pxnode, root, order_map, node_data); |
| 1783 | 1790 |
markFacePath(ynode, wnode, order_map, node_data); |
| 1784 | 1791 |
markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map); |
| 1785 | 1792 |
return; |
| 1786 | 1793 |
} |
| 1787 | 1794 |
|
| 1788 | 1795 |
if (pynode != ynode) {
|
| 1789 | 1796 |
markFacePath(pxnode, wnode, order_map, node_data); |
| 1790 | 1797 |
|
| 1791 | 1798 |
int minlp = xlp < ylp ? xlp : ylp; |
| 1792 | 1799 |
if (wlp < minlp) minlp = wlp; |
| 1793 | 1800 |
|
| 1794 | 1801 |
int maxlp = xlp > ylp ? xlp : ylp; |
| 1795 | 1802 |
if (wlp > maxlp) maxlp = wlp; |
| 1796 | 1803 |
|
| 1797 | 1804 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
| 1798 | 1805 |
return; |
| 1799 | 1806 |
} |
| 1800 | 1807 |
|
| 1801 | 1808 |
if (pxnode != xnode) {
|
| 1802 | 1809 |
markFacePath(wnode, pynode, order_map, node_data); |
| 1803 | 1810 |
|
| 1804 | 1811 |
int minlp = xlp < ylp ? xlp : ylp; |
| 1805 | 1812 |
if (wlp < minlp) minlp = wlp; |
| 1806 | 1813 |
|
| 1807 | 1814 |
int maxlp = xlp > ylp ? xlp : ylp; |
| 1808 | 1815 |
if (wlp > maxlp) maxlp = wlp; |
| 1809 | 1816 |
|
| 1810 | 1817 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
| 1811 | 1818 |
return; |
| 1812 | 1819 |
} |
| 1813 | 1820 |
|
| 1814 | 1821 |
markFacePath(root, root, order_map, node_data); |
| 1815 | 1822 |
int minlp = xlp < ylp ? xlp : ylp; |
| 1816 | 1823 |
if (wlp < minlp) minlp = wlp; |
| 1817 | 1824 |
markPredPath(root, order_list[minlp], pred_map); |
| 1818 | 1825 |
return; |
| 1819 | 1826 |
} |
| 1820 | 1827 |
|
| 1821 | 1828 |
} |
| 1822 | 1829 |
|
| 1823 | 1830 |
}; |
| 1824 | 1831 |
|
| 1825 | 1832 |
namespace _planarity_bits {
|
| 1826 | 1833 |
|
| 1827 | 1834 |
template <typename Graph, typename EmbeddingMap> |
| 1828 | 1835 |
void makeConnected(Graph& graph, EmbeddingMap& embedding) {
|
| 1829 | 1836 |
DfsVisitor<Graph> null_visitor; |
| 1830 | 1837 |
DfsVisit<Graph, DfsVisitor<Graph> > dfs(graph, null_visitor); |
| 1831 | 1838 |
dfs.init(); |
| 1832 | 1839 |
|
| 1833 | 1840 |
typename Graph::Node u = INVALID; |
| 1834 | 1841 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 1835 | 1842 |
if (!dfs.reached(n)) {
|
| 1836 | 1843 |
dfs.addSource(n); |
| 1837 | 1844 |
dfs.start(); |
| 1838 | 1845 |
if (u == INVALID) {
|
| 1839 | 1846 |
u = n; |
| 1840 | 1847 |
} else {
|
| 1841 | 1848 |
typename Graph::Node v = n; |
| 1842 | 1849 |
|
| 1843 | 1850 |
typename Graph::Arc ue = typename Graph::OutArcIt(graph, u); |
| 1844 | 1851 |
typename Graph::Arc ve = typename Graph::OutArcIt(graph, v); |
| 1845 | 1852 |
|
| 1846 | 1853 |
typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true); |
| 1847 | 1854 |
|
| 1848 | 1855 |
if (ue != INVALID) {
|
| 1849 | 1856 |
embedding[e] = embedding[ue]; |
| 1850 | 1857 |
embedding[ue] = e; |
| 1851 | 1858 |
} else {
|
| 1852 | 1859 |
embedding[e] = e; |
| 1853 | 1860 |
} |
| 1854 | 1861 |
|
| 1855 | 1862 |
if (ve != INVALID) {
|
| 1856 | 1863 |
embedding[graph.oppositeArc(e)] = embedding[ve]; |
| 1857 | 1864 |
embedding[ve] = graph.oppositeArc(e); |
| 1858 | 1865 |
} else {
|
| 1859 | 1866 |
embedding[graph.oppositeArc(e)] = graph.oppositeArc(e); |
| 1860 | 1867 |
} |
| 1861 | 1868 |
} |
| 1862 | 1869 |
} |
| 1863 | 1870 |
} |
| 1864 | 1871 |
} |
| 1865 | 1872 |
|
| 1866 | 1873 |
template <typename Graph, typename EmbeddingMap> |
| 1867 | 1874 |
void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) {
|
| 1868 | 1875 |
typename Graph::template ArcMap<bool> processed(graph); |
| 1869 | 1876 |
|
| 1870 | 1877 |
std::vector<typename Graph::Arc> arcs; |
| 1871 | 1878 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
|
| 1872 | 1879 |
arcs.push_back(e); |
| 1873 | 1880 |
} |
| 1874 | 1881 |
|
| 1875 | 1882 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
| 1876 | 1883 |
|
| 1877 | 1884 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 1878 | 1885 |
typename Graph::Arc pp = arcs[i]; |
| 1879 | 1886 |
if (processed[pp]) continue; |
| 1880 | 1887 |
|
| 1881 | 1888 |
typename Graph::Arc e = embedding[graph.oppositeArc(pp)]; |
| 1882 | 1889 |
processed[e] = true; |
| 1883 | 1890 |
visited.set(graph.source(e), true); |
| 1884 | 1891 |
|
| 1885 | 1892 |
typename Graph::Arc p = e, l = e; |
| 1886 | 1893 |
e = embedding[graph.oppositeArc(e)]; |
| 1887 | 1894 |
|
| 1888 | 1895 |
while (e != l) {
|
| 1889 | 1896 |
processed[e] = true; |
| 1890 | 1897 |
|
| 1891 | 1898 |
if (visited[graph.source(e)]) {
|
| 1892 | 1899 |
|
| 1893 | 1900 |
typename Graph::Arc n = |
| 1894 | 1901 |
graph.direct(graph.addEdge(graph.source(p), |
| 1895 | 1902 |
graph.target(e)), true); |
| 1896 | 1903 |
embedding[n] = p; |
| 1897 | 1904 |
embedding[graph.oppositeArc(pp)] = n; |
| 1898 | 1905 |
|
| 1899 | 1906 |
embedding[graph.oppositeArc(n)] = |
| 1900 | 1907 |
embedding[graph.oppositeArc(e)]; |
| 1901 | 1908 |
embedding[graph.oppositeArc(e)] = |
| 1902 | 1909 |
graph.oppositeArc(n); |
| 1903 | 1910 |
|
| 1904 | 1911 |
p = n; |
| 1905 | 1912 |
e = embedding[graph.oppositeArc(n)]; |
| 1906 | 1913 |
} else {
|
| 1907 | 1914 |
visited.set(graph.source(e), true); |
| 1908 | 1915 |
pp = p; |
| 1909 | 1916 |
p = e; |
| 1910 | 1917 |
e = embedding[graph.oppositeArc(e)]; |
| 1911 | 1918 |
} |
| 1912 | 1919 |
} |
| 1913 | 1920 |
visited.setAll(false); |
| 1914 | 1921 |
} |
| 1915 | 1922 |
} |
| 1916 | 1923 |
|
| 1917 | 1924 |
|
| 1918 | 1925 |
template <typename Graph, typename EmbeddingMap> |
| 1919 | 1926 |
void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) {
|
| 1920 | 1927 |
|
| 1921 | 1928 |
typename Graph::template NodeMap<int> degree(graph); |
| 1922 | 1929 |
|
| 1923 | 1930 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 1924 | 1931 |
degree[n] = countIncEdges(graph, n); |
| 1925 | 1932 |
} |
| 1926 | 1933 |
|
| 1927 | 1934 |
typename Graph::template ArcMap<bool> processed(graph); |
| 1928 | 1935 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
| 1929 | 1936 |
|
| 1930 | 1937 |
std::vector<typename Graph::Arc> arcs; |
| 1931 | 1938 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) {
|
| 1932 | 1939 |
arcs.push_back(e); |
| 1933 | 1940 |
} |
| 1934 | 1941 |
|
| 1935 | 1942 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 1936 | 1943 |
typename Graph::Arc e = arcs[i]; |
| 1937 | 1944 |
|
| 1938 | 1945 |
if (processed[e]) continue; |
| 1939 | 1946 |
processed[e] = true; |
| 1940 | 1947 |
|
| 1941 | 1948 |
typename Graph::Arc mine = e; |
| 1942 | 1949 |
int mind = degree[graph.source(e)]; |
| 1943 | 1950 |
|
| 1944 | 1951 |
int face_size = 1; |
| 1945 | 1952 |
|
| 1946 | 1953 |
typename Graph::Arc l = e; |
| 1947 | 1954 |
e = embedding[graph.oppositeArc(e)]; |
| 1948 | 1955 |
while (l != e) {
|
| 1949 | 1956 |
processed[e] = true; |
| 1950 | 1957 |
|
| 1951 | 1958 |
++face_size; |
| 1952 | 1959 |
|
| 1953 | 1960 |
if (degree[graph.source(e)] < mind) {
|
| 1954 | 1961 |
mine = e; |
| 1955 | 1962 |
mind = degree[graph.source(e)]; |
| 1956 | 1963 |
} |
| 1957 | 1964 |
|
| 1958 | 1965 |
e = embedding[graph.oppositeArc(e)]; |
| 1959 | 1966 |
} |
| 1960 | 1967 |
|
| 1961 | 1968 |
if (face_size < 4) {
|
| 1962 | 1969 |
continue; |
| 1963 | 1970 |
} |
| 1964 | 1971 |
|
| 1965 | 1972 |
typename Graph::Node s = graph.source(mine); |
| 1966 | 1973 |
for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) {
|
| 1967 | 1974 |
visited.set(graph.target(e), true); |
| 1968 | 1975 |
} |
| 1969 | 1976 |
|
| 1970 | 1977 |
typename Graph::Arc oppe = INVALID; |
| 1971 | 1978 |
|
| 1972 | 1979 |
e = embedding[graph.oppositeArc(mine)]; |
| 1973 | 1980 |
e = embedding[graph.oppositeArc(e)]; |
| 1974 | 1981 |
while (graph.target(e) != s) {
|
| 1975 | 1982 |
if (visited[graph.source(e)]) {
|
| 1976 | 1983 |
oppe = e; |
| 1977 | 1984 |
break; |
| 1978 | 1985 |
} |
| 1979 | 1986 |
e = embedding[graph.oppositeArc(e)]; |
| 1980 | 1987 |
} |
| 1981 | 1988 |
visited.setAll(false); |
| 1982 | 1989 |
|
| 1983 | 1990 |
if (oppe == INVALID) {
|
| 1984 | 1991 |
|
| 1985 | 1992 |
e = embedding[graph.oppositeArc(mine)]; |
| 1986 | 1993 |
typename Graph::Arc pn = mine, p = e; |
| 1987 | 1994 |
|
| 1988 | 1995 |
e = embedding[graph.oppositeArc(e)]; |
| 1989 | 1996 |
while (graph.target(e) != s) {
|
| 1990 | 1997 |
typename Graph::Arc n = |
| 1991 | 1998 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
| 1992 | 1999 |
|
| 1993 | 2000 |
embedding[n] = pn; |
| 1994 | 2001 |
embedding[graph.oppositeArc(n)] = e; |
| 1995 | 2002 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
| 1996 | 2003 |
|
| 1997 | 2004 |
pn = n; |
| 1998 | 2005 |
|
| 1999 | 2006 |
p = e; |
| 2000 | 2007 |
e = embedding[graph.oppositeArc(e)]; |
| 2001 | 2008 |
} |
| 2002 | 2009 |
|
| 2003 | 2010 |
embedding[graph.oppositeArc(e)] = pn; |
| 2004 | 2011 |
|
| 2005 | 2012 |
} else {
|
| 2006 | 2013 |
|
| 2007 | 2014 |
mine = embedding[graph.oppositeArc(mine)]; |
| 2008 | 2015 |
s = graph.source(mine); |
| 2009 | 2016 |
oppe = embedding[graph.oppositeArc(oppe)]; |
| 2010 | 2017 |
typename Graph::Node t = graph.source(oppe); |
| 2011 | 2018 |
|
| 2012 | 2019 |
typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true); |
| 2013 | 2020 |
embedding[ce] = mine; |
| 2014 | 2021 |
embedding[graph.oppositeArc(ce)] = oppe; |
| 2015 | 2022 |
|
| 2016 | 2023 |
typename Graph::Arc pn = ce, p = oppe; |
| 2017 | 2024 |
e = embedding[graph.oppositeArc(oppe)]; |
| 2018 | 2025 |
while (graph.target(e) != s) {
|
| 2019 | 2026 |
typename Graph::Arc n = |
| 2020 | 2027 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
| 2021 | 2028 |
|
| 2022 | 2029 |
embedding[n] = pn; |
| 2023 | 2030 |
embedding[graph.oppositeArc(n)] = e; |
| 2024 | 2031 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
| 2025 | 2032 |
|
| 2026 | 2033 |
pn = n; |
| 2027 | 2034 |
|
| 2028 | 2035 |
p = e; |
| 2029 | 2036 |
e = embedding[graph.oppositeArc(e)]; |
| 2030 | 2037 |
|
| 2031 | 2038 |
} |
| 2032 | 2039 |
embedding[graph.oppositeArc(e)] = pn; |
| 2033 | 2040 |
|
| 2034 | 2041 |
pn = graph.oppositeArc(ce), p = mine; |
| 2035 | 2042 |
e = embedding[graph.oppositeArc(mine)]; |
| 2036 | 2043 |
while (graph.target(e) != t) {
|
| 2037 | 2044 |
typename Graph::Arc n = |
| 2038 | 2045 |
graph.direct(graph.addEdge(t, graph.source(e)), true); |
| 2039 | 2046 |
|
| 2040 | 2047 |
embedding[n] = pn; |
| 2041 | 2048 |
embedding[graph.oppositeArc(n)] = e; |
| 2042 | 2049 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
| 2043 | 2050 |
|
| 2044 | 2051 |
pn = n; |
| 2045 | 2052 |
|
| 2046 | 2053 |
p = e; |
| 2047 | 2054 |
e = embedding[graph.oppositeArc(e)]; |
| 2048 | 2055 |
|
| 2049 | 2056 |
} |
| 2050 | 2057 |
embedding[graph.oppositeArc(e)] = pn; |
| 2051 | 2058 |
} |
| 2052 | 2059 |
} |
| 2053 | 2060 |
} |
| 2054 | 2061 |
|
| 2055 | 2062 |
} |
| 2056 | 2063 |
|
| 2057 | 2064 |
/// \ingroup planar |
| 2058 | 2065 |
/// |
| 2059 | 2066 |
/// \brief Schnyder's planar drawing algorithm |
| 2060 | 2067 |
/// |
| 2061 | 2068 |
/// The planar drawing algorithm calculates positions for the nodes |
| 2062 |
/// in the plane which coordinates satisfy that if the arcs are |
|
| 2063 |
/// represented with straight lines then they will not intersect |
|
| 2069 |
/// in the plane. These coordinates satisfy that if the edges are |
|
| 2070 |
/// represented with straight lines, then they will not intersect |
|
| 2064 | 2071 |
/// each other. |
| 2065 | 2072 |
/// |
| 2066 |
/// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid, |
|
| 2067 |
/// i.e. each node will be located in the \c [0,n-2]x[0,n-2] square. |
|
| 2073 |
/// Scnyder's algorithm embeds the graph on an \c (n-2)x(n-2) size grid, |
|
| 2074 |
/// i.e. each node will be located in the \c [0..n-2]x[0..n-2] square. |
|
| 2068 | 2075 |
/// The time complexity of the algorithm is O(n). |
| 2076 |
/// |
|
| 2077 |
/// \see PlanarEmbedding |
|
| 2069 | 2078 |
template <typename Graph> |
| 2070 | 2079 |
class PlanarDrawing {
|
| 2071 | 2080 |
public: |
| 2072 | 2081 |
|
| 2073 | 2082 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 2074 | 2083 |
|
| 2075 |
/// \brief The point type for |
|
| 2084 |
/// \brief The point type for storing coordinates |
|
| 2076 | 2085 |
typedef dim2::Point<int> Point; |
| 2077 |
/// \brief The map type for |
|
| 2086 |
/// \brief The map type for storing the coordinates of the nodes |
|
| 2078 | 2087 |
typedef typename Graph::template NodeMap<Point> PointMap; |
| 2079 | 2088 |
|
| 2080 | 2089 |
|
| 2081 | 2090 |
/// \brief Constructor |
| 2082 | 2091 |
/// |
| 2083 | 2092 |
/// Constructor |
| 2084 |
/// \pre The graph |
|
| 2093 |
/// \pre The graph must be simple, i.e. it should not |
|
| 2094 |
/// contain parallel or loop arcs. |
|
| 2085 | 2095 |
PlanarDrawing(const Graph& graph) |
| 2086 | 2096 |
: _graph(graph), _point_map(graph) {}
|
| 2087 | 2097 |
|
| 2088 | 2098 |
private: |
| 2089 | 2099 |
|
| 2090 | 2100 |
template <typename AuxGraph, typename AuxEmbeddingMap> |
| 2091 | 2101 |
void drawing(const AuxGraph& graph, |
| 2092 | 2102 |
const AuxEmbeddingMap& next, |
| 2093 | 2103 |
PointMap& point_map) {
|
| 2094 | 2104 |
TEMPLATE_GRAPH_TYPEDEFS(AuxGraph); |
| 2095 | 2105 |
|
| 2096 | 2106 |
typename AuxGraph::template ArcMap<Arc> prev(graph); |
| 2097 | 2107 |
|
| 2098 | 2108 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 2099 | 2109 |
Arc e = OutArcIt(graph, n); |
| 2100 | 2110 |
|
| 2101 | 2111 |
Arc p = e, l = e; |
| 2102 | 2112 |
|
| 2103 | 2113 |
e = next[e]; |
| 2104 | 2114 |
while (e != l) {
|
| 2105 | 2115 |
prev[e] = p; |
| 2106 | 2116 |
p = e; |
| 2107 | 2117 |
e = next[e]; |
| 2108 | 2118 |
} |
| 2109 | 2119 |
prev[e] = p; |
| 2110 | 2120 |
} |
| 2111 | 2121 |
|
| 2112 | 2122 |
Node anode, bnode, cnode; |
| 2113 | 2123 |
|
| 2114 | 2124 |
{
|
| 2115 | 2125 |
Arc e = ArcIt(graph); |
| 2116 | 2126 |
anode = graph.source(e); |
| 2117 | 2127 |
bnode = graph.target(e); |
| 2118 | 2128 |
cnode = graph.target(next[graph.oppositeArc(e)]); |
| 2119 | 2129 |
} |
| 2120 | 2130 |
|
| 2121 | 2131 |
IterableBoolMap<AuxGraph, Node> proper(graph, false); |
| 2122 | 2132 |
typename AuxGraph::template NodeMap<int> conn(graph, -1); |
| 2123 | 2133 |
|
| 2124 | 2134 |
conn[anode] = conn[bnode] = -2; |
| 2125 | 2135 |
{
|
| 2126 | 2136 |
for (OutArcIt e(graph, anode); e != INVALID; ++e) {
|
| 2127 | 2137 |
Node m = graph.target(e); |
| 2128 | 2138 |
if (conn[m] == -1) {
|
| 2129 | 2139 |
conn[m] = 1; |
| 2130 | 2140 |
} |
| 2131 | 2141 |
} |
| 2132 | 2142 |
conn[cnode] = 2; |
| 2133 | 2143 |
|
| 2134 | 2144 |
for (OutArcIt e(graph, bnode); e != INVALID; ++e) {
|
| 2135 | 2145 |
Node m = graph.target(e); |
| 2136 | 2146 |
if (conn[m] == -1) {
|
| 2137 | 2147 |
conn[m] = 1; |
| 2138 | 2148 |
} else if (conn[m] != -2) {
|
| 2139 | 2149 |
conn[m] += 1; |
| 2140 | 2150 |
Arc pe = graph.oppositeArc(e); |
| 2141 | 2151 |
if (conn[graph.target(next[pe])] == -2) {
|
| 2142 | 2152 |
conn[m] -= 1; |
| 2143 | 2153 |
} |
| 2144 | 2154 |
if (conn[graph.target(prev[pe])] == -2) {
|
| 2145 | 2155 |
conn[m] -= 1; |
| 2146 | 2156 |
} |
| 2147 | 2157 |
|
| 2148 | 2158 |
proper.set(m, conn[m] == 1); |
| 2149 | 2159 |
} |
| 2150 | 2160 |
} |
| 2151 | 2161 |
} |
| 2152 | 2162 |
|
| 2153 | 2163 |
|
| 2154 | 2164 |
typename AuxGraph::template ArcMap<int> angle(graph, -1); |
| 2155 | 2165 |
|
| 2156 | 2166 |
while (proper.trueNum() != 0) {
|
| 2157 | 2167 |
Node n = typename IterableBoolMap<AuxGraph, Node>::TrueIt(proper); |
| 2158 | 2168 |
proper.set(n, false); |
| 2159 | 2169 |
conn[n] = -2; |
| 2160 | 2170 |
|
| 2161 | 2171 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
| 2162 | 2172 |
Node m = graph.target(e); |
| 2163 | 2173 |
if (conn[m] == -1) {
|
| 2164 | 2174 |
conn[m] = 1; |
| 2165 | 2175 |
} else if (conn[m] != -2) {
|
| 2166 | 2176 |
conn[m] += 1; |
| 2167 | 2177 |
Arc pe = graph.oppositeArc(e); |
| 2168 | 2178 |
if (conn[graph.target(next[pe])] == -2) {
|
| 2169 | 2179 |
conn[m] -= 1; |
| 2170 | 2180 |
} |
| 2171 | 2181 |
if (conn[graph.target(prev[pe])] == -2) {
|
| 2172 | 2182 |
conn[m] -= 1; |
| 2173 | 2183 |
} |
| 2174 | 2184 |
|
| 2175 | 2185 |
proper.set(m, conn[m] == 1); |
| 2176 | 2186 |
} |
| 2177 | 2187 |
} |
| 2178 | 2188 |
|
| 2179 | 2189 |
{
|
| 2180 | 2190 |
Arc e = OutArcIt(graph, n); |
| 2181 | 2191 |
Arc p = e, l = e; |
| 2182 | 2192 |
|
| 2183 | 2193 |
e = next[e]; |
| 2184 | 2194 |
while (e != l) {
|
| 2185 | 2195 |
|
| 2186 | 2196 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
|
| 2187 | 2197 |
Arc f = e; |
| 2188 | 2198 |
angle[f] = 0; |
| 2189 | 2199 |
f = next[graph.oppositeArc(f)]; |
| 2190 | 2200 |
angle[f] = 1; |
| 2191 | 2201 |
f = next[graph.oppositeArc(f)]; |
| 2192 | 2202 |
angle[f] = 2; |
| 2193 | 2203 |
} |
| 2194 | 2204 |
|
| 2195 | 2205 |
p = e; |
| 2196 | 2206 |
e = next[e]; |
| 2197 | 2207 |
} |
| 2198 | 2208 |
|
| 2199 | 2209 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) {
|
| 2200 | 2210 |
Arc f = e; |
| 2201 | 2211 |
angle[f] = 0; |
| 2202 | 2212 |
f = next[graph.oppositeArc(f)]; |
| 2203 | 2213 |
angle[f] = 1; |
| 2204 | 2214 |
f = next[graph.oppositeArc(f)]; |
| 2205 | 2215 |
angle[f] = 2; |
| 2206 | 2216 |
} |
| 2207 | 2217 |
} |
| 2208 | 2218 |
} |
| 2209 | 2219 |
|
| 2210 | 2220 |
typename AuxGraph::template NodeMap<Node> apred(graph, INVALID); |
| 2211 | 2221 |
typename AuxGraph::template NodeMap<Node> bpred(graph, INVALID); |
| 2212 | 2222 |
typename AuxGraph::template NodeMap<Node> cpred(graph, INVALID); |
| 2213 | 2223 |
|
| 2214 | 2224 |
typename AuxGraph::template NodeMap<int> apredid(graph, -1); |
| 2215 | 2225 |
typename AuxGraph::template NodeMap<int> bpredid(graph, -1); |
| 2216 | 2226 |
typename AuxGraph::template NodeMap<int> cpredid(graph, -1); |
| 2217 | 2227 |
|
| 2218 | 2228 |
for (ArcIt e(graph); e != INVALID; ++e) {
|
| 2219 | 2229 |
if (angle[e] == angle[next[e]]) {
|
| 2220 | 2230 |
switch (angle[e]) {
|
| 2221 | 2231 |
case 2: |
| 2222 | 2232 |
apred[graph.target(e)] = graph.source(e); |
| 2223 | 2233 |
apredid[graph.target(e)] = graph.id(graph.source(e)); |
| 2224 | 2234 |
break; |
| 2225 | 2235 |
case 1: |
| 2226 | 2236 |
bpred[graph.target(e)] = graph.source(e); |
| 2227 | 2237 |
bpredid[graph.target(e)] = graph.id(graph.source(e)); |
| 2228 | 2238 |
break; |
| 2229 | 2239 |
case 0: |
| 2230 | 2240 |
cpred[graph.target(e)] = graph.source(e); |
| 2231 | 2241 |
cpredid[graph.target(e)] = graph.id(graph.source(e)); |
| 2232 | 2242 |
break; |
| 2233 | 2243 |
} |
| 2234 | 2244 |
} |
| 2235 | 2245 |
} |
| 2236 | 2246 |
|
| 2237 | 2247 |
cpred[anode] = INVALID; |
| 2238 | 2248 |
cpred[bnode] = INVALID; |
| 2239 | 2249 |
|
| 2240 | 2250 |
std::vector<Node> aorder, border, corder; |
| 2241 | 2251 |
|
| 2242 | 2252 |
{
|
| 2243 | 2253 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
| 2244 | 2254 |
std::vector<Node> st; |
| 2245 | 2255 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 2246 | 2256 |
if (!processed[n] && n != bnode && n != cnode) {
|
| 2247 | 2257 |
st.push_back(n); |
| 2248 | 2258 |
processed[n] = true; |
| 2249 | 2259 |
Node m = apred[n]; |
| 2250 | 2260 |
while (m != INVALID && !processed[m]) {
|
| 2251 | 2261 |
st.push_back(m); |
| 2252 | 2262 |
processed[m] = true; |
| 2253 | 2263 |
m = apred[m]; |
| 2254 | 2264 |
} |
| 2255 | 2265 |
while (!st.empty()) {
|
| 2256 | 2266 |
aorder.push_back(st.back()); |
| 2257 | 2267 |
st.pop_back(); |
| 2258 | 2268 |
} |
| 2259 | 2269 |
} |
| 2260 | 2270 |
} |
| 2261 | 2271 |
} |
| 2262 | 2272 |
|
| 2263 | 2273 |
{
|
| 2264 | 2274 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
| 2265 | 2275 |
std::vector<Node> st; |
| 2266 | 2276 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 2267 | 2277 |
if (!processed[n] && n != cnode && n != anode) {
|
| 2268 | 2278 |
st.push_back(n); |
| 2269 | 2279 |
processed[n] = true; |
| 2270 | 2280 |
Node m = bpred[n]; |
| 2271 | 2281 |
while (m != INVALID && !processed[m]) {
|
| 2272 | 2282 |
st.push_back(m); |
| 2273 | 2283 |
processed[m] = true; |
| 2274 | 2284 |
m = bpred[m]; |
| 2275 | 2285 |
} |
| 2276 | 2286 |
while (!st.empty()) {
|
| 2277 | 2287 |
border.push_back(st.back()); |
| 2278 | 2288 |
st.pop_back(); |
| 2279 | 2289 |
} |
| 2280 | 2290 |
} |
| 2281 | 2291 |
} |
| 2282 | 2292 |
} |
| 2283 | 2293 |
|
| 2284 | 2294 |
{
|
| 2285 | 2295 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
| 2286 | 2296 |
std::vector<Node> st; |
| 2287 | 2297 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 2288 | 2298 |
if (!processed[n] && n != anode && n != bnode) {
|
| 2289 | 2299 |
st.push_back(n); |
| 2290 | 2300 |
processed[n] = true; |
| 2291 | 2301 |
Node m = cpred[n]; |
| 2292 | 2302 |
while (m != INVALID && !processed[m]) {
|
| 2293 | 2303 |
st.push_back(m); |
| 2294 | 2304 |
processed[m] = true; |
| 2295 | 2305 |
m = cpred[m]; |
| 2296 | 2306 |
} |
| 2297 | 2307 |
while (!st.empty()) {
|
| 2298 | 2308 |
corder.push_back(st.back()); |
| 2299 | 2309 |
st.pop_back(); |
| 2300 | 2310 |
} |
| 2301 | 2311 |
} |
| 2302 | 2312 |
} |
| 2303 | 2313 |
} |
| 2304 | 2314 |
|
| 2305 | 2315 |
typename AuxGraph::template NodeMap<int> atree(graph, 0); |
| 2306 | 2316 |
for (int i = aorder.size() - 1; i >= 0; --i) {
|
| 2307 | 2317 |
Node n = aorder[i]; |
| 2308 | 2318 |
atree[n] = 1; |
| 2309 | 2319 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
| 2310 | 2320 |
if (apred[graph.target(e)] == n) {
|
| 2311 | 2321 |
atree[n] += atree[graph.target(e)]; |
| 2312 | 2322 |
} |
| 2313 | 2323 |
} |
| 2314 | 2324 |
} |
| 2315 | 2325 |
|
| 2316 | 2326 |
typename AuxGraph::template NodeMap<int> btree(graph, 0); |
| 2317 | 2327 |
for (int i = border.size() - 1; i >= 0; --i) {
|
| 2318 | 2328 |
Node n = border[i]; |
| 2319 | 2329 |
btree[n] = 1; |
| 2320 | 2330 |
for (OutArcIt e(graph, n); e != INVALID; ++e) {
|
| 2321 | 2331 |
if (bpred[graph.target(e)] == n) {
|
| 2322 | 2332 |
btree[n] += btree[graph.target(e)]; |
| 2323 | 2333 |
} |
| 2324 | 2334 |
} |
| 2325 | 2335 |
} |
| 2326 | 2336 |
|
| 2327 | 2337 |
typename AuxGraph::template NodeMap<int> apath(graph, 0); |
| 2328 | 2338 |
apath[bnode] = apath[cnode] = 1; |
| 2329 | 2339 |
typename AuxGraph::template NodeMap<int> apath_btree(graph, 0); |
| 2330 | 2340 |
apath_btree[bnode] = btree[bnode]; |
| 2331 | 2341 |
for (int i = 1; i < int(aorder.size()); ++i) {
|
| 2332 | 2342 |
Node n = aorder[i]; |
| 2333 | 2343 |
apath[n] = apath[apred[n]] + 1; |
| 2334 | 2344 |
apath_btree[n] = btree[n] + apath_btree[apred[n]]; |
| 2335 | 2345 |
} |
| 2336 | 2346 |
|
| 2337 | 2347 |
typename AuxGraph::template NodeMap<int> bpath_atree(graph, 0); |
| 2338 | 2348 |
bpath_atree[anode] = atree[anode]; |
| 2339 | 2349 |
for (int i = 1; i < int(border.size()); ++i) {
|
| 2340 | 2350 |
Node n = border[i]; |
| 2341 | 2351 |
bpath_atree[n] = atree[n] + bpath_atree[bpred[n]]; |
| 2342 | 2352 |
} |
| 2343 | 2353 |
|
| 2344 | 2354 |
typename AuxGraph::template NodeMap<int> cpath(graph, 0); |
| 2345 | 2355 |
cpath[anode] = cpath[bnode] = 1; |
| 2346 | 2356 |
typename AuxGraph::template NodeMap<int> cpath_atree(graph, 0); |
| 2347 | 2357 |
cpath_atree[anode] = atree[anode]; |
| 2348 | 2358 |
typename AuxGraph::template NodeMap<int> cpath_btree(graph, 0); |
| 2349 | 2359 |
cpath_btree[bnode] = btree[bnode]; |
| 2350 | 2360 |
for (int i = 1; i < int(corder.size()); ++i) {
|
| 2351 | 2361 |
Node n = corder[i]; |
| 2352 | 2362 |
cpath[n] = cpath[cpred[n]] + 1; |
| 2353 | 2363 |
cpath_atree[n] = atree[n] + cpath_atree[cpred[n]]; |
| 2354 | 2364 |
cpath_btree[n] = btree[n] + cpath_btree[cpred[n]]; |
| 2355 | 2365 |
} |
| 2356 | 2366 |
|
| 2357 | 2367 |
typename AuxGraph::template NodeMap<int> third(graph); |
| 2358 | 2368 |
for (NodeIt n(graph); n != INVALID; ++n) {
|
| 2359 | 2369 |
point_map[n].x = |
| 2360 | 2370 |
bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1; |
| 2361 | 2371 |
point_map[n].y = |
| 2362 | 2372 |
cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1; |
| 2363 | 2373 |
} |
| 2364 | 2374 |
|
| 2365 | 2375 |
} |
| 2366 | 2376 |
|
| 2367 | 2377 |
public: |
| 2368 | 2378 |
|
| 2369 |
/// \brief |
|
| 2379 |
/// \brief Calculate the node positions |
|
| 2370 | 2380 |
/// |
| 2371 |
/// This function calculates the node positions. |
|
| 2372 |
/// \return %True if the graph is planar. |
|
| 2381 |
/// This function calculates the node positions on the plane. |
|
| 2382 |
/// \return \c true if the graph is planar. |
|
| 2373 | 2383 |
bool run() {
|
| 2374 | 2384 |
PlanarEmbedding<Graph> pe(_graph); |
| 2375 | 2385 |
if (!pe.run()) return false; |
| 2376 | 2386 |
|
| 2377 | 2387 |
run(pe); |
| 2378 | 2388 |
return true; |
| 2379 | 2389 |
} |
| 2380 | 2390 |
|
| 2381 |
/// \brief |
|
| 2391 |
/// \brief Calculate the node positions according to a |
|
| 2382 | 2392 |
/// combinatorical embedding |
| 2383 | 2393 |
/// |
| 2384 |
/// This function calculates the node locations. The \c embedding |
|
| 2385 |
/// parameter should contain a valid combinatorical embedding, i.e. |
|
| 2386 |
/// |
|
| 2394 |
/// This function calculates the node positions on the plane. |
|
| 2395 |
/// The given \c embedding map should contain a valid combinatorical |
|
| 2396 |
/// embedding, i.e. a valid cyclic order of the arcs. |
|
| 2397 |
/// It can be computed using PlanarEmbedding. |
|
| 2387 | 2398 |
template <typename EmbeddingMap> |
| 2388 | 2399 |
void run(const EmbeddingMap& embedding) {
|
| 2389 | 2400 |
typedef SmartEdgeSet<Graph> AuxGraph; |
| 2390 | 2401 |
|
| 2391 | 2402 |
if (3 * countNodes(_graph) - 6 == countEdges(_graph)) {
|
| 2392 | 2403 |
drawing(_graph, embedding, _point_map); |
| 2393 | 2404 |
return; |
| 2394 | 2405 |
} |
| 2395 | 2406 |
|
| 2396 | 2407 |
AuxGraph aux_graph(_graph); |
| 2397 | 2408 |
typename AuxGraph::template ArcMap<typename AuxGraph::Arc> |
| 2398 | 2409 |
aux_embedding(aux_graph); |
| 2399 | 2410 |
|
| 2400 | 2411 |
{
|
| 2401 | 2412 |
|
| 2402 | 2413 |
typename Graph::template EdgeMap<typename AuxGraph::Edge> |
| 2403 | 2414 |
ref(_graph); |
| 2404 | 2415 |
|
| 2405 | 2416 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2406 | 2417 |
ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e)); |
| 2407 | 2418 |
} |
| 2408 | 2419 |
|
| 2409 | 2420 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2410 | 2421 |
Arc ee = embedding[_graph.direct(e, true)]; |
| 2411 | 2422 |
aux_embedding[aux_graph.direct(ref[e], true)] = |
| 2412 | 2423 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
| 2413 | 2424 |
ee = embedding[_graph.direct(e, false)]; |
| 2414 | 2425 |
aux_embedding[aux_graph.direct(ref[e], false)] = |
| 2415 | 2426 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
| 2416 | 2427 |
} |
| 2417 | 2428 |
} |
| 2418 | 2429 |
_planarity_bits::makeConnected(aux_graph, aux_embedding); |
| 2419 | 2430 |
_planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding); |
| 2420 | 2431 |
_planarity_bits::makeMaxPlanar(aux_graph, aux_embedding); |
| 2421 | 2432 |
drawing(aux_graph, aux_embedding, _point_map); |
| 2422 | 2433 |
} |
| 2423 | 2434 |
|
| 2424 | 2435 |
/// \brief The coordinate of the given node |
| 2425 | 2436 |
/// |
| 2426 |
/// |
|
| 2437 |
/// This function returns the coordinate of the given node. |
|
| 2427 | 2438 |
Point operator[](const Node& node) const {
|
| 2428 | 2439 |
return _point_map[node]; |
| 2429 | 2440 |
} |
| 2430 | 2441 |
|
| 2431 |
/// \brief |
|
| 2442 |
/// \brief Return the grid embedding in a node map |
|
| 2432 | 2443 |
/// |
| 2433 |
/// |
|
| 2444 |
/// This function returns the grid embedding in a node map of |
|
| 2445 |
/// \c dim2::Point<int> coordinates. |
|
| 2434 | 2446 |
const PointMap& coords() const {
|
| 2435 | 2447 |
return _point_map; |
| 2436 | 2448 |
} |
| 2437 | 2449 |
|
| 2438 | 2450 |
private: |
| 2439 | 2451 |
|
| 2440 | 2452 |
const Graph& _graph; |
| 2441 | 2453 |
PointMap _point_map; |
| 2442 | 2454 |
|
| 2443 | 2455 |
}; |
| 2444 | 2456 |
|
| 2445 | 2457 |
namespace _planarity_bits {
|
| 2446 | 2458 |
|
| 2447 | 2459 |
template <typename ColorMap> |
| 2448 | 2460 |
class KempeFilter {
|
| 2449 | 2461 |
public: |
| 2450 | 2462 |
typedef typename ColorMap::Key Key; |
| 2451 | 2463 |
typedef bool Value; |
| 2452 | 2464 |
|
| 2453 | 2465 |
KempeFilter(const ColorMap& color_map, |
| 2454 | 2466 |
const typename ColorMap::Value& first, |
| 2455 | 2467 |
const typename ColorMap::Value& second) |
| 2456 | 2468 |
: _color_map(color_map), _first(first), _second(second) {}
|
| 2457 | 2469 |
|
| 2458 | 2470 |
Value operator[](const Key& key) const {
|
| 2459 | 2471 |
return _color_map[key] == _first || _color_map[key] == _second; |
| 2460 | 2472 |
} |
| 2461 | 2473 |
|
| 2462 | 2474 |
private: |
| 2463 | 2475 |
const ColorMap& _color_map; |
| 2464 | 2476 |
typename ColorMap::Value _first, _second; |
| 2465 | 2477 |
}; |
| 2466 | 2478 |
} |
| 2467 | 2479 |
|
| 2468 | 2480 |
/// \ingroup planar |
| 2469 | 2481 |
/// |
| 2470 | 2482 |
/// \brief Coloring planar graphs |
| 2471 | 2483 |
/// |
| 2472 | 2484 |
/// The graph coloring problem is the coloring of the graph nodes |
| 2473 |
/// that there are not adjacent nodes with the same color. The |
|
| 2474 |
/// planar graphs can be always colored with four colors, it is |
|
| 2475 |
/// |
|
| 2485 |
/// so that there are no adjacent nodes with the same color. The |
|
| 2486 |
/// planar graphs can always be colored with four colors, which is |
|
| 2487 |
/// proved by Appel and Haken. Their proofs provide a quadratic |
|
| 2476 | 2488 |
/// time algorithm for four coloring, but it could not be used to |
| 2477 |
/// implement efficient algorithm. The five and six coloring can be |
|
| 2478 |
/// made in linear time, but in this class the five coloring has |
|
| 2489 |
/// implement an efficient algorithm. The five and six coloring can be |
|
| 2490 |
/// made in linear time, but in this class, the five coloring has |
|
| 2479 | 2491 |
/// quadratic worst case time complexity. The two coloring (if |
| 2480 | 2492 |
/// possible) is solvable with a graph search algorithm and it is |
| 2481 | 2493 |
/// implemented in \ref bipartitePartitions() function in LEMON. To |
| 2482 |
/// decide whether the planar graph is three colorable is |
|
| 2483 |
/// NP-complete. |
|
| 2494 |
/// decide whether a planar graph is three colorable is NP-complete. |
|
| 2484 | 2495 |
/// |
| 2485 | 2496 |
/// This class contains member functions for calculate colorings |
| 2486 | 2497 |
/// with five and six colors. The six coloring algorithm is a simple |
| 2487 | 2498 |
/// greedy coloring on the backward minimum outgoing order of nodes. |
| 2488 |
/// This order can be computed as in each phase the node with least |
|
| 2489 |
/// outgoing arcs to unprocessed nodes is chosen. This order |
|
| 2499 |
/// This order can be computed by selecting the node with least |
|
| 2500 |
/// outgoing arcs to unprocessed nodes in each phase. This order |
|
| 2490 | 2501 |
/// guarantees that when a node is chosen for coloring it has at |
| 2491 | 2502 |
/// most five already colored adjacents. The five coloring algorithm |
| 2492 | 2503 |
/// use the same method, but if the greedy approach fails to color |
| 2493 | 2504 |
/// with five colors, i.e. the node has five already different |
| 2494 | 2505 |
/// colored neighbours, it swaps the colors in one of the connected |
| 2495 | 2506 |
/// two colored sets with the Kempe recoloring method. |
| 2496 | 2507 |
template <typename Graph> |
| 2497 | 2508 |
class PlanarColoring {
|
| 2498 | 2509 |
public: |
| 2499 | 2510 |
|
| 2500 | 2511 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
| 2501 | 2512 |
|
| 2502 |
/// \brief The map type for |
|
| 2513 |
/// \brief The map type for storing color indices |
|
| 2503 | 2514 |
typedef typename Graph::template NodeMap<int> IndexMap; |
| 2504 |
/// \brief The map type for |
|
| 2515 |
/// \brief The map type for storing colors |
|
| 2516 |
/// |
|
| 2517 |
/// The map type for storing colors. |
|
| 2518 |
/// \see Palette, Color |
|
| 2505 | 2519 |
typedef ComposeMap<Palette, IndexMap> ColorMap; |
| 2506 | 2520 |
|
| 2507 | 2521 |
/// \brief Constructor |
| 2508 | 2522 |
/// |
| 2509 |
/// Constructor |
|
| 2510 |
/// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
| 2523 |
/// Constructor. |
|
| 2524 |
/// \pre The graph must be simple, i.e. it should not |
|
| 2525 |
/// contain parallel or loop arcs. |
|
| 2511 | 2526 |
PlanarColoring(const Graph& graph) |
| 2512 | 2527 |
: _graph(graph), _color_map(graph), _palette(0) {
|
| 2513 | 2528 |
_palette.add(Color(1,0,0)); |
| 2514 | 2529 |
_palette.add(Color(0,1,0)); |
| 2515 | 2530 |
_palette.add(Color(0,0,1)); |
| 2516 | 2531 |
_palette.add(Color(1,1,0)); |
| 2517 | 2532 |
_palette.add(Color(1,0,1)); |
| 2518 | 2533 |
_palette.add(Color(0,1,1)); |
| 2519 | 2534 |
} |
| 2520 | 2535 |
|
| 2521 |
/// \brief |
|
| 2536 |
/// \brief Return the node map of color indices |
|
| 2522 | 2537 |
/// |
| 2523 |
/// Returns the \e NodeMap of color indexes. The values are in the |
|
| 2524 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2538 |
/// This function returns the node map of color indices. The values are |
|
| 2539 |
/// in the range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2525 | 2540 |
IndexMap colorIndexMap() const {
|
| 2526 | 2541 |
return _color_map; |
| 2527 | 2542 |
} |
| 2528 | 2543 |
|
| 2529 |
/// \brief |
|
| 2544 |
/// \brief Return the node map of colors |
|
| 2530 | 2545 |
/// |
| 2531 |
/// Returns the \e NodeMap of colors. The values are five or six |
|
| 2532 |
/// distinct \ref lemon::Color "colors". |
|
| 2546 |
/// This function returns the node map of colors. The values are among |
|
| 2547 |
/// five or six distinct \ref lemon::Color "colors". |
|
| 2533 | 2548 |
ColorMap colorMap() const {
|
| 2534 | 2549 |
return composeMap(_palette, _color_map); |
| 2535 | 2550 |
} |
| 2536 | 2551 |
|
| 2537 |
/// \brief |
|
| 2552 |
/// \brief Return the color index of the node |
|
| 2538 | 2553 |
/// |
| 2539 |
/// Returns the color index of the node. The values are in the |
|
| 2540 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2554 |
/// This function returns the color index of the given node. The value is |
|
| 2555 |
/// in the range \c [0..4] or \c [0..5] according to the coloring method. |
|
| 2541 | 2556 |
int colorIndex(const Node& node) const {
|
| 2542 | 2557 |
return _color_map[node]; |
| 2543 | 2558 |
} |
| 2544 | 2559 |
|
| 2545 |
/// \brief |
|
| 2560 |
/// \brief Return the color of the node |
|
| 2546 | 2561 |
/// |
| 2547 |
/// Returns the color of the node. The values are five or six |
|
| 2548 |
/// distinct \ref lemon::Color "colors". |
|
| 2562 |
/// This function returns the color of the given node. The value is among |
|
| 2563 |
/// five or six distinct \ref lemon::Color "colors". |
|
| 2549 | 2564 |
Color color(const Node& node) const {
|
| 2550 | 2565 |
return _palette[_color_map[node]]; |
| 2551 | 2566 |
} |
| 2552 | 2567 |
|
| 2553 | 2568 |
|
| 2554 |
/// \brief |
|
| 2569 |
/// \brief Calculate a coloring with at most six colors |
|
| 2555 | 2570 |
/// |
| 2556 | 2571 |
/// This function calculates a coloring with at most six colors. The time |
| 2557 | 2572 |
/// complexity of this variant is linear in the size of the graph. |
| 2558 |
/// \return %True when the algorithm could color the graph with six color. |
|
| 2559 |
/// If the algorithm fails, then the graph could not be planar. |
|
| 2560 |
/// \note This function can return true if the graph is not |
|
| 2561 |
/// planar but it can be colored with 6 colors. |
|
| 2573 |
/// \return \c true if the algorithm could color the graph with six colors. |
|
| 2574 |
/// If the algorithm fails, then the graph is not planar. |
|
| 2575 |
/// \note This function can return \c true if the graph is not |
|
| 2576 |
/// planar, but it can be colored with at most six colors. |
|
| 2562 | 2577 |
bool runSixColoring() {
|
| 2563 | 2578 |
|
| 2564 | 2579 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
| 2565 | 2580 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
| 2566 | 2581 |
|
| 2567 | 2582 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2568 | 2583 |
_color_map[n] = -2; |
| 2569 | 2584 |
heap.push(n, countOutArcs(_graph, n)); |
| 2570 | 2585 |
} |
| 2571 | 2586 |
|
| 2572 | 2587 |
std::vector<Node> order; |
| 2573 | 2588 |
|
| 2574 | 2589 |
while (!heap.empty()) {
|
| 2575 | 2590 |
Node n = heap.top(); |
| 2576 | 2591 |
heap.pop(); |
| 2577 | 2592 |
_color_map[n] = -1; |
| 2578 | 2593 |
order.push_back(n); |
| 2579 | 2594 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2580 | 2595 |
Node t = _graph.runningNode(e); |
| 2581 | 2596 |
if (_color_map[t] == -2) {
|
| 2582 | 2597 |
heap.decrease(t, heap[t] - 1); |
| 2583 | 2598 |
} |
| 2584 | 2599 |
} |
| 2585 | 2600 |
} |
| 2586 | 2601 |
|
| 2587 | 2602 |
for (int i = order.size() - 1; i >= 0; --i) {
|
| 2588 | 2603 |
std::vector<bool> forbidden(6, false); |
| 2589 | 2604 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
|
| 2590 | 2605 |
Node t = _graph.runningNode(e); |
| 2591 | 2606 |
if (_color_map[t] != -1) {
|
| 2592 | 2607 |
forbidden[_color_map[t]] = true; |
| 2593 | 2608 |
} |
| 2594 | 2609 |
} |
| 2595 | 2610 |
for (int k = 0; k < 6; ++k) {
|
| 2596 | 2611 |
if (!forbidden[k]) {
|
| 2597 | 2612 |
_color_map[order[i]] = k; |
| 2598 | 2613 |
break; |
| 2599 | 2614 |
} |
| 2600 | 2615 |
} |
| 2601 | 2616 |
if (_color_map[order[i]] == -1) {
|
| 2602 | 2617 |
return false; |
| 2603 | 2618 |
} |
| 2604 | 2619 |
} |
| 2605 | 2620 |
return true; |
| 2606 | 2621 |
} |
| 2607 | 2622 |
|
| 2608 | 2623 |
private: |
| 2609 | 2624 |
|
| 2610 | 2625 |
bool recolor(const Node& u, const Node& v) {
|
| 2611 | 2626 |
int ucolor = _color_map[u]; |
| 2612 | 2627 |
int vcolor = _color_map[v]; |
| 2613 | 2628 |
typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter; |
| 2614 | 2629 |
KempeFilter filter(_color_map, ucolor, vcolor); |
| 2615 | 2630 |
|
| 2616 | 2631 |
typedef FilterNodes<const Graph, const KempeFilter> KempeGraph; |
| 2617 | 2632 |
KempeGraph kempe_graph(_graph, filter); |
| 2618 | 2633 |
|
| 2619 | 2634 |
std::vector<Node> comp; |
| 2620 | 2635 |
Bfs<KempeGraph> bfs(kempe_graph); |
| 2621 | 2636 |
bfs.init(); |
| 2622 | 2637 |
bfs.addSource(u); |
| 2623 | 2638 |
while (!bfs.emptyQueue()) {
|
| 2624 | 2639 |
Node n = bfs.nextNode(); |
| 2625 | 2640 |
if (n == v) return false; |
| 2626 | 2641 |
comp.push_back(n); |
| 2627 | 2642 |
bfs.processNextNode(); |
| 2628 | 2643 |
} |
| 2629 | 2644 |
|
| 2630 | 2645 |
int scolor = ucolor + vcolor; |
| 2631 | 2646 |
for (int i = 0; i < static_cast<int>(comp.size()); ++i) {
|
| 2632 | 2647 |
_color_map[comp[i]] = scolor - _color_map[comp[i]]; |
| 2633 | 2648 |
} |
| 2634 | 2649 |
|
| 2635 | 2650 |
return true; |
| 2636 | 2651 |
} |
| 2637 | 2652 |
|
| 2638 | 2653 |
template <typename EmbeddingMap> |
| 2639 | 2654 |
void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) {
|
| 2640 | 2655 |
std::vector<Node> nodes; |
| 2641 | 2656 |
nodes.reserve(4); |
| 2642 | 2657 |
|
| 2643 | 2658 |
for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) {
|
| 2644 | 2659 |
Node t = _graph.target(e); |
| 2645 | 2660 |
if (_color_map[t] != -1) {
|
| 2646 | 2661 |
nodes.push_back(t); |
| 2647 | 2662 |
if (nodes.size() == 4) break; |
| 2648 | 2663 |
} |
| 2649 | 2664 |
} |
| 2650 | 2665 |
|
| 2651 | 2666 |
int color = _color_map[nodes[0]]; |
| 2652 | 2667 |
if (recolor(nodes[0], nodes[2])) {
|
| 2653 | 2668 |
_color_map[node] = color; |
| 2654 | 2669 |
} else {
|
| 2655 | 2670 |
color = _color_map[nodes[1]]; |
| 2656 | 2671 |
recolor(nodes[1], nodes[3]); |
| 2657 | 2672 |
_color_map[node] = color; |
| 2658 | 2673 |
} |
| 2659 | 2674 |
} |
| 2660 | 2675 |
|
| 2661 | 2676 |
public: |
| 2662 | 2677 |
|
| 2663 |
/// \brief |
|
| 2678 |
/// \brief Calculate a coloring with at most five colors |
|
| 2664 | 2679 |
/// |
| 2665 | 2680 |
/// This function calculates a coloring with at most five |
| 2666 | 2681 |
/// colors. The worst case time complexity of this variant is |
| 2667 | 2682 |
/// quadratic in the size of the graph. |
| 2683 |
/// \param embedding This map should contain a valid combinatorical |
|
| 2684 |
/// embedding, i.e. a valid cyclic order of the arcs. |
|
| 2685 |
/// It can be computed using PlanarEmbedding. |
|
| 2668 | 2686 |
template <typename EmbeddingMap> |
| 2669 | 2687 |
void runFiveColoring(const EmbeddingMap& embedding) {
|
| 2670 | 2688 |
|
| 2671 | 2689 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
| 2672 | 2690 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
| 2673 | 2691 |
|
| 2674 | 2692 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2675 | 2693 |
_color_map[n] = -2; |
| 2676 | 2694 |
heap.push(n, countOutArcs(_graph, n)); |
| 2677 | 2695 |
} |
| 2678 | 2696 |
|
| 2679 | 2697 |
std::vector<Node> order; |
| 2680 | 2698 |
|
| 2681 | 2699 |
while (!heap.empty()) {
|
| 2682 | 2700 |
Node n = heap.top(); |
| 2683 | 2701 |
heap.pop(); |
| 2684 | 2702 |
_color_map[n] = -1; |
| 2685 | 2703 |
order.push_back(n); |
| 2686 | 2704 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2687 | 2705 |
Node t = _graph.runningNode(e); |
| 2688 | 2706 |
if (_color_map[t] == -2) {
|
| 2689 | 2707 |
heap.decrease(t, heap[t] - 1); |
| 2690 | 2708 |
} |
| 2691 | 2709 |
} |
| 2692 | 2710 |
} |
| 2693 | 2711 |
|
| 2694 | 2712 |
for (int i = order.size() - 1; i >= 0; --i) {
|
| 2695 | 2713 |
std::vector<bool> forbidden(5, false); |
| 2696 | 2714 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) {
|
| 2697 | 2715 |
Node t = _graph.runningNode(e); |
| 2698 | 2716 |
if (_color_map[t] != -1) {
|
| 2699 | 2717 |
forbidden[_color_map[t]] = true; |
| 2700 | 2718 |
} |
| 2701 | 2719 |
} |
| 2702 | 2720 |
for (int k = 0; k < 5; ++k) {
|
| 2703 | 2721 |
if (!forbidden[k]) {
|
| 2704 | 2722 |
_color_map[order[i]] = k; |
| 2705 | 2723 |
break; |
| 2706 | 2724 |
} |
| 2707 | 2725 |
} |
| 2708 | 2726 |
if (_color_map[order[i]] == -1) {
|
| 2709 | 2727 |
kempeRecoloring(order[i], embedding); |
| 2710 | 2728 |
} |
| 2711 | 2729 |
} |
| 2712 | 2730 |
} |
| 2713 | 2731 |
|
| 2714 |
/// \brief |
|
| 2732 |
/// \brief Calculate a coloring with at most five colors |
|
| 2715 | 2733 |
/// |
| 2716 | 2734 |
/// This function calculates a coloring with at most five |
| 2717 | 2735 |
/// colors. The worst case time complexity of this variant is |
| 2718 | 2736 |
/// quadratic in the size of the graph. |
| 2719 |
/// \return |
|
| 2737 |
/// \return \c true if the graph is planar. |
|
| 2720 | 2738 |
bool runFiveColoring() {
|
| 2721 | 2739 |
PlanarEmbedding<Graph> pe(_graph); |
| 2722 | 2740 |
if (!pe.run()) return false; |
| 2723 | 2741 |
|
| 2724 | 2742 |
runFiveColoring(pe.embeddingMap()); |
| 2725 | 2743 |
return true; |
| 2726 | 2744 |
} |
| 2727 | 2745 |
|
| 2728 | 2746 |
private: |
| 2729 | 2747 |
|
| 2730 | 2748 |
const Graph& _graph; |
| 2731 | 2749 |
IndexMap _color_map; |
| 2732 | 2750 |
Palette _palette; |
| 2733 | 2751 |
}; |
| 2734 | 2752 |
|
| 2735 | 2753 |
} |
| 2736 | 2754 |
|
| 2737 | 2755 |
#endif |
0 comments (0 inline)