0
2
0
313
16
| ... | ... |
@@ -28,6 +28,7 @@ |
| 28 | 28 |
#include <lemon/unionfind.h> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 |
#include <lemon/fractional_matching.h> |
|
| 31 | 32 |
|
| 32 | 33 |
///\ingroup matching |
| 33 | 34 |
///\file |
| ... | ... |
@@ -797,6 +798,10 @@ |
| 797 | 798 |
BinHeap<Value, IntIntMap> *_delta4; |
| 798 | 799 |
|
| 799 | 800 |
Value _delta_sum; |
| 801 |
int _unmatched; |
|
| 802 |
|
|
| 803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching; |
|
| 804 |
FractionalMatching *_fractional; |
|
| 800 | 805 |
|
| 801 | 806 |
void createStructures() {
|
| 802 | 807 |
_node_num = countNodes(_graph); |
| ... | ... |
@@ -1559,10 +1564,16 @@ |
| 1559 | 1564 |
_delta3_index(0), _delta3(0), |
| 1560 | 1565 |
_delta4_index(0), _delta4(0), |
| 1561 | 1566 |
|
| 1562 |
_delta_sum() |
|
| 1567 |
_delta_sum(), _unmatched(0), |
|
| 1568 |
|
|
| 1569 |
_fractional(0) |
|
| 1570 |
{}
|
|
| 1563 | 1571 |
|
| 1564 | 1572 |
~MaxWeightedMatching() {
|
| 1565 | 1573 |
destroyStructures(); |
| 1574 |
if (_fractional) {
|
|
| 1575 |
delete _fractional; |
|
| 1576 |
} |
|
| 1566 | 1577 |
} |
| 1567 | 1578 |
|
| 1568 | 1579 |
/// \name Execution Control |
| ... | ... |
@@ -1591,6 +1602,8 @@ |
| 1591 | 1602 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 1592 | 1603 |
} |
| 1593 | 1604 |
|
| 1605 |
_unmatched = _node_num; |
|
| 1606 |
|
|
| 1594 | 1607 |
int index = 0; |
| 1595 | 1608 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1596 | 1609 |
Value max = 0; |
| ... | ... |
@@ -1625,18 +1638,155 @@ |
| 1625 | 1638 |
} |
| 1626 | 1639 |
} |
| 1627 | 1640 |
|
| 1641 |
/// \brief Initialize the algorithm with fractional matching |
|
| 1642 |
/// |
|
| 1643 |
/// This function initializes the algorithm with a fractional |
|
| 1644 |
/// matching. This initialization is also called jumpstart heuristic. |
|
| 1645 |
void fractionalInit() {
|
|
| 1646 |
createStructures(); |
|
| 1647 |
|
|
| 1648 |
if (_fractional == 0) {
|
|
| 1649 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
| 1650 |
} |
|
| 1651 |
_fractional->run(); |
|
| 1652 |
|
|
| 1653 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 1654 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
| 1655 |
} |
|
| 1656 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1657 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
| 1658 |
} |
|
| 1659 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1660 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 1661 |
} |
|
| 1662 |
for (int i = 0; i < _blossom_num; ++i) {
|
|
| 1663 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
| 1664 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
| 1665 |
} |
|
| 1666 |
|
|
| 1667 |
_unmatched = 0; |
|
| 1668 |
|
|
| 1669 |
int index = 0; |
|
| 1670 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1671 |
Value pot = _fractional->nodeValue(n); |
|
| 1672 |
(*_node_index)[n] = index; |
|
| 1673 |
(*_node_data)[index].pot = pot; |
|
| 1674 |
int blossom = |
|
| 1675 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
| 1676 |
|
|
| 1677 |
(*_blossom_data)[blossom].status = MATCHED; |
|
| 1678 |
(*_blossom_data)[blossom].pred = INVALID; |
|
| 1679 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
| 1680 |
if (_fractional->matching(n) == INVALID) {
|
|
| 1681 |
(*_blossom_data)[blossom].base = n; |
|
| 1682 |
} |
|
| 1683 |
(*_blossom_data)[blossom].pot = 0; |
|
| 1684 |
(*_blossom_data)[blossom].offset = 0; |
|
| 1685 |
++index; |
|
| 1686 |
} |
|
| 1687 |
|
|
| 1688 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
| 1689 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1690 |
if (processed[n]) continue; |
|
| 1691 |
processed[n] = true; |
|
| 1692 |
if (_fractional->matching(n) == INVALID) continue; |
|
| 1693 |
int num = 1; |
|
| 1694 |
Node v = _graph.target(_fractional->matching(n)); |
|
| 1695 |
while (n != v) {
|
|
| 1696 |
processed[v] = true; |
|
| 1697 |
v = _graph.target(_fractional->matching(v)); |
|
| 1698 |
++num; |
|
| 1699 |
} |
|
| 1700 |
|
|
| 1701 |
if (num % 2 == 1) {
|
|
| 1702 |
std::vector<int> subblossoms(num); |
|
| 1703 |
|
|
| 1704 |
subblossoms[--num] = _blossom_set->find(n); |
|
| 1705 |
_delta1->push(n, _fractional->nodeValue(n)); |
|
| 1706 |
v = _graph.target(_fractional->matching(n)); |
|
| 1707 |
while (n != v) {
|
|
| 1708 |
subblossoms[--num] = _blossom_set->find(v); |
|
| 1709 |
_delta1->push(v, _fractional->nodeValue(v)); |
|
| 1710 |
v = _graph.target(_fractional->matching(v)); |
|
| 1711 |
} |
|
| 1712 |
|
|
| 1713 |
int surface = |
|
| 1714 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
| 1715 |
(*_blossom_data)[surface].status = EVEN; |
|
| 1716 |
(*_blossom_data)[surface].pred = INVALID; |
|
| 1717 |
(*_blossom_data)[surface].next = INVALID; |
|
| 1718 |
(*_blossom_data)[surface].pot = 0; |
|
| 1719 |
(*_blossom_data)[surface].offset = 0; |
|
| 1720 |
|
|
| 1721 |
_tree_set->insert(surface); |
|
| 1722 |
++_unmatched; |
|
| 1723 |
} |
|
| 1724 |
} |
|
| 1725 |
|
|
| 1726 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1727 |
int si = (*_node_index)[_graph.u(e)]; |
|
| 1728 |
int sb = _blossom_set->find(_graph.u(e)); |
|
| 1729 |
int ti = (*_node_index)[_graph.v(e)]; |
|
| 1730 |
int tb = _blossom_set->find(_graph.v(e)); |
|
| 1731 |
if ((*_blossom_data)[sb].status == EVEN && |
|
| 1732 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
|
| 1733 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
| 1734 |
dualScale * _weight[e]) / 2); |
|
| 1735 |
} |
|
| 1736 |
} |
|
| 1737 |
|
|
| 1738 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1739 |
int nb = _blossom_set->find(n); |
|
| 1740 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
| 1741 |
int ni = (*_node_index)[n]; |
|
| 1742 |
|
|
| 1743 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1744 |
Node v = _graph.target(e); |
|
| 1745 |
int vb = _blossom_set->find(v); |
|
| 1746 |
int vi = (*_node_index)[v]; |
|
| 1747 |
|
|
| 1748 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1749 |
dualScale * _weight[e]; |
|
| 1750 |
|
|
| 1751 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1752 |
|
|
| 1753 |
int vt = _tree_set->find(vb); |
|
| 1754 |
|
|
| 1755 |
typename std::map<int, Arc>::iterator it = |
|
| 1756 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1757 |
|
|
| 1758 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1759 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1760 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
| 1761 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
| 1762 |
it->second = e; |
|
| 1763 |
} |
|
| 1764 |
} else {
|
|
| 1765 |
(*_node_data)[ni].heap.push(e, rw); |
|
| 1766 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
| 1767 |
} |
|
| 1768 |
} |
|
| 1769 |
} |
|
| 1770 |
|
|
| 1771 |
if (!(*_node_data)[ni].heap.empty()) {
|
|
| 1772 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1773 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
| 1774 |
} |
|
| 1775 |
} |
|
| 1776 |
} |
|
| 1777 |
|
|
| 1628 | 1778 |
/// \brief Start the algorithm |
| 1629 | 1779 |
/// |
| 1630 | 1780 |
/// This function starts the algorithm. |
| 1631 | 1781 |
/// |
| 1632 |
/// \pre \ref init() must be called |
|
| 1782 |
/// \pre \ref init() or \ref fractionalInit() must be called |
|
| 1783 |
/// before using this function. |
|
| 1633 | 1784 |
void start() {
|
| 1634 | 1785 |
enum OpType {
|
| 1635 | 1786 |
D1, D2, D3, D4 |
| 1636 | 1787 |
}; |
| 1637 | 1788 |
|
| 1638 |
int unmatched = _node_num; |
|
| 1639 |
while (unmatched > 0) {
|
|
| 1789 |
while (_unmatched > 0) {
|
|
| 1640 | 1790 |
Value d1 = !_delta1->empty() ? |
| 1641 | 1791 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
| 1642 | 1792 |
|
| ... | ... |
@@ -1659,7 +1809,7 @@ |
| 1659 | 1809 |
{
|
| 1660 | 1810 |
Node n = _delta1->top(); |
| 1661 | 1811 |
unmatchNode(n); |
| 1662 |
-- |
|
| 1812 |
--_unmatched; |
|
| 1663 | 1813 |
} |
| 1664 | 1814 |
break; |
| 1665 | 1815 |
case D2: |
| ... | ... |
@@ -1669,7 +1819,7 @@ |
| 1669 | 1819 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 1670 | 1820 |
if ((*_blossom_data)[blossom].next == INVALID) {
|
| 1671 | 1821 |
augmentOnArc(a); |
| 1672 |
-- |
|
| 1822 |
--_unmatched; |
|
| 1673 | 1823 |
} else {
|
| 1674 | 1824 |
extendOnArc(a); |
| 1675 | 1825 |
} |
| ... | ... |
@@ -1692,7 +1842,7 @@ |
| 1692 | 1842 |
shrinkOnEdge(e, left_tree); |
| 1693 | 1843 |
} else {
|
| 1694 | 1844 |
augmentOnEdge(e); |
| 1695 |
|
|
| 1845 |
_unmatched -= 2; |
|
| 1696 | 1846 |
} |
| 1697 | 1847 |
} |
| 1698 | 1848 |
} break; |
| ... | ... |
@@ -1710,11 +1860,11 @@ |
| 1710 | 1860 |
/// |
| 1711 | 1861 |
/// \note mwm.run() is just a shortcut of the following code. |
| 1712 | 1862 |
/// \code |
| 1713 |
/// mwm. |
|
| 1863 |
/// mwm.fractionalInit(); |
|
| 1714 | 1864 |
/// mwm.start(); |
| 1715 | 1865 |
/// \endcode |
| 1716 | 1866 |
void run() {
|
| 1717 |
|
|
| 1867 |
fractionalInit(); |
|
| 1718 | 1868 |
start(); |
| 1719 | 1869 |
} |
| 1720 | 1870 |
|
| ... | ... |
@@ -2074,6 +2224,11 @@ |
| 2074 | 2224 |
BinHeap<Value, IntIntMap> *_delta4; |
| 2075 | 2225 |
|
| 2076 | 2226 |
Value _delta_sum; |
| 2227 |
int _unmatched; |
|
| 2228 |
|
|
| 2229 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
| 2230 |
FractionalMatching; |
|
| 2231 |
FractionalMatching *_fractional; |
|
| 2077 | 2232 |
|
| 2078 | 2233 |
void createStructures() {
|
| 2079 | 2234 |
_node_num = countNodes(_graph); |
| ... | ... |
@@ -2789,10 +2944,16 @@ |
| 2789 | 2944 |
_delta3_index(0), _delta3(0), |
| 2790 | 2945 |
_delta4_index(0), _delta4(0), |
| 2791 | 2946 |
|
| 2792 |
_delta_sum() |
|
| 2947 |
_delta_sum(), _unmatched(0), |
|
| 2948 |
|
|
| 2949 |
_fractional(0) |
|
| 2950 |
{}
|
|
| 2793 | 2951 |
|
| 2794 | 2952 |
~MaxWeightedPerfectMatching() {
|
| 2795 | 2953 |
destroyStructures(); |
| 2954 |
if (_fractional) {
|
|
| 2955 |
delete _fractional; |
|
| 2956 |
} |
|
| 2796 | 2957 |
} |
| 2797 | 2958 |
|
| 2798 | 2959 |
/// \name Execution Control |
| ... | ... |
@@ -2818,6 +2979,8 @@ |
| 2818 | 2979 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 2819 | 2980 |
} |
| 2820 | 2981 |
|
| 2982 |
_unmatched = _node_num; |
|
| 2983 |
|
|
| 2821 | 2984 |
int index = 0; |
| 2822 | 2985 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2823 | 2986 |
Value max = - std::numeric_limits<Value>::max(); |
| ... | ... |
@@ -2851,18 +3014,152 @@ |
| 2851 | 3014 |
} |
| 2852 | 3015 |
} |
| 2853 | 3016 |
|
| 3017 |
/// \brief Initialize the algorithm with fractional matching |
|
| 3018 |
/// |
|
| 3019 |
/// This function initializes the algorithm with a fractional |
|
| 3020 |
/// matching. This initialization is also called jumpstart heuristic. |
|
| 3021 |
void fractionalInit() {
|
|
| 3022 |
createStructures(); |
|
| 3023 |
|
|
| 3024 |
if (_fractional == 0) {
|
|
| 3025 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
| 3026 |
} |
|
| 3027 |
if (!_fractional->run()) {
|
|
| 3028 |
_unmatched = -1; |
|
| 3029 |
return; |
|
| 3030 |
} |
|
| 3031 |
|
|
| 3032 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 3033 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
| 3034 |
} |
|
| 3035 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 3036 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 3037 |
} |
|
| 3038 |
for (int i = 0; i < _blossom_num; ++i) {
|
|
| 3039 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
| 3040 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
| 3041 |
} |
|
| 3042 |
|
|
| 3043 |
_unmatched = 0; |
|
| 3044 |
|
|
| 3045 |
int index = 0; |
|
| 3046 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3047 |
Value pot = _fractional->nodeValue(n); |
|
| 3048 |
(*_node_index)[n] = index; |
|
| 3049 |
(*_node_data)[index].pot = pot; |
|
| 3050 |
int blossom = |
|
| 3051 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
| 3052 |
|
|
| 3053 |
(*_blossom_data)[blossom].status = MATCHED; |
|
| 3054 |
(*_blossom_data)[blossom].pred = INVALID; |
|
| 3055 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
| 3056 |
(*_blossom_data)[blossom].pot = 0; |
|
| 3057 |
(*_blossom_data)[blossom].offset = 0; |
|
| 3058 |
++index; |
|
| 3059 |
} |
|
| 3060 |
|
|
| 3061 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
| 3062 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3063 |
if (processed[n]) continue; |
|
| 3064 |
processed[n] = true; |
|
| 3065 |
if (_fractional->matching(n) == INVALID) continue; |
|
| 3066 |
int num = 1; |
|
| 3067 |
Node v = _graph.target(_fractional->matching(n)); |
|
| 3068 |
while (n != v) {
|
|
| 3069 |
processed[v] = true; |
|
| 3070 |
v = _graph.target(_fractional->matching(v)); |
|
| 3071 |
++num; |
|
| 3072 |
} |
|
| 3073 |
|
|
| 3074 |
if (num % 2 == 1) {
|
|
| 3075 |
std::vector<int> subblossoms(num); |
|
| 3076 |
|
|
| 3077 |
subblossoms[--num] = _blossom_set->find(n); |
|
| 3078 |
v = _graph.target(_fractional->matching(n)); |
|
| 3079 |
while (n != v) {
|
|
| 3080 |
subblossoms[--num] = _blossom_set->find(v); |
|
| 3081 |
v = _graph.target(_fractional->matching(v)); |
|
| 3082 |
} |
|
| 3083 |
|
|
| 3084 |
int surface = |
|
| 3085 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
| 3086 |
(*_blossom_data)[surface].status = EVEN; |
|
| 3087 |
(*_blossom_data)[surface].pred = INVALID; |
|
| 3088 |
(*_blossom_data)[surface].next = INVALID; |
|
| 3089 |
(*_blossom_data)[surface].pot = 0; |
|
| 3090 |
(*_blossom_data)[surface].offset = 0; |
|
| 3091 |
|
|
| 3092 |
_tree_set->insert(surface); |
|
| 3093 |
++_unmatched; |
|
| 3094 |
} |
|
| 3095 |
} |
|
| 3096 |
|
|
| 3097 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 3098 |
int si = (*_node_index)[_graph.u(e)]; |
|
| 3099 |
int sb = _blossom_set->find(_graph.u(e)); |
|
| 3100 |
int ti = (*_node_index)[_graph.v(e)]; |
|
| 3101 |
int tb = _blossom_set->find(_graph.v(e)); |
|
| 3102 |
if ((*_blossom_data)[sb].status == EVEN && |
|
| 3103 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
|
| 3104 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
| 3105 |
dualScale * _weight[e]) / 2); |
|
| 3106 |
} |
|
| 3107 |
} |
|
| 3108 |
|
|
| 3109 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3110 |
int nb = _blossom_set->find(n); |
|
| 3111 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
| 3112 |
int ni = (*_node_index)[n]; |
|
| 3113 |
|
|
| 3114 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 3115 |
Node v = _graph.target(e); |
|
| 3116 |
int vb = _blossom_set->find(v); |
|
| 3117 |
int vi = (*_node_index)[v]; |
|
| 3118 |
|
|
| 3119 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 3120 |
dualScale * _weight[e]; |
|
| 3121 |
|
|
| 3122 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 3123 |
|
|
| 3124 |
int vt = _tree_set->find(vb); |
|
| 3125 |
|
|
| 3126 |
typename std::map<int, Arc>::iterator it = |
|
| 3127 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 3128 |
|
|
| 3129 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 3130 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 3131 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
| 3132 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
| 3133 |
it->second = e; |
|
| 3134 |
} |
|
| 3135 |
} else {
|
|
| 3136 |
(*_node_data)[ni].heap.push(e, rw); |
|
| 3137 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
| 3138 |
} |
|
| 3139 |
} |
|
| 3140 |
} |
|
| 3141 |
|
|
| 3142 |
if (!(*_node_data)[ni].heap.empty()) {
|
|
| 3143 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 3144 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
| 3145 |
} |
|
| 3146 |
} |
|
| 3147 |
} |
|
| 3148 |
|
|
| 2854 | 3149 |
/// \brief Start the algorithm |
| 2855 | 3150 |
/// |
| 2856 | 3151 |
/// This function starts the algorithm. |
| 2857 | 3152 |
/// |
| 2858 |
/// \pre \ref init() must be called before |
|
| 3153 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
|
| 3154 |
/// using this function. |
|
| 2859 | 3155 |
bool start() {
|
| 2860 | 3156 |
enum OpType {
|
| 2861 | 3157 |
D2, D3, D4 |
| 2862 | 3158 |
}; |
| 2863 | 3159 |
|
| 2864 |
int unmatched = _node_num; |
|
| 2865 |
while (unmatched > 0) {
|
|
| 3160 |
if (_unmatched == -1) return false; |
|
| 3161 |
|
|
| 3162 |
while (_unmatched > 0) {
|
|
| 2866 | 3163 |
Value d2 = !_delta2->empty() ? |
| 2867 | 3164 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 2868 | 3165 |
|
| ... | ... |
@@ -2906,7 +3203,7 @@ |
| 2906 | 3203 |
shrinkOnEdge(e, left_tree); |
| 2907 | 3204 |
} else {
|
| 2908 | 3205 |
augmentOnEdge(e); |
| 2909 |
|
|
| 3206 |
_unmatched -= 2; |
|
| 2910 | 3207 |
} |
| 2911 | 3208 |
} |
| 2912 | 3209 |
} break; |
| ... | ... |
@@ -2925,11 +3222,11 @@ |
| 2925 | 3222 |
/// |
| 2926 | 3223 |
/// \note mwpm.run() is just a shortcut of the following code. |
| 2927 | 3224 |
/// \code |
| 2928 |
/// mwpm. |
|
| 3225 |
/// mwpm.fractionalInit(); |
|
| 2929 | 3226 |
/// mwpm.start(); |
| 2930 | 3227 |
/// \endcode |
| 2931 | 3228 |
bool run() {
|
| 2932 |
|
|
| 3229 |
fractionalInit(); |
|
| 2933 | 3230 |
return start(); |
| 2934 | 3231 |
} |
| 2935 | 3232 |
| ... | ... |
@@ -401,22 +401,46 @@ |
| 401 | 401 |
graphReader(graph, lgfs). |
| 402 | 402 |
edgeMap("weight", weight).run();
|
| 403 | 403 |
|
| 404 |
MaxMatching<SmartGraph> mm(graph); |
|
| 405 |
mm.run(); |
|
| 406 |
|
|
| 404 |
bool perfect; |
|
| 405 |
{
|
|
| 406 |
MaxMatching<SmartGraph> mm(graph); |
|
| 407 |
mm.run(); |
|
| 408 |
checkMatching(graph, mm); |
|
| 409 |
perfect = 2 * mm.matchingSize() == countNodes(graph); |
|
| 410 |
} |
|
| 407 | 411 |
|
| 408 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 409 |
mwm.run(); |
|
| 410 |
|
|
| 412 |
{
|
|
| 413 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 414 |
mwm.run(); |
|
| 415 |
checkWeightedMatching(graph, weight, mwm); |
|
| 416 |
} |
|
| 411 | 417 |
|
| 412 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 413 |
bool perfect = mwpm.run(); |
|
| 418 |
{
|
|
| 419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 420 |
mwm.init(); |
|
| 421 |
mwm.start(); |
|
| 422 |
checkWeightedMatching(graph, weight, mwm); |
|
| 423 |
} |
|
| 414 | 424 |
|
| 415 |
check(perfect == (mm.matchingSize() * 2 == countNodes(graph)), |
|
| 416 |
"Perfect matching found"); |
|
| 425 |
{
|
|
| 426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 427 |
bool result = mwpm.run(); |
|
| 428 |
|
|
| 429 |
check(result == perfect, "Perfect matching found"); |
|
| 430 |
if (perfect) {
|
|
| 431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 432 |
} |
|
| 433 |
} |
|
| 417 | 434 |
|
| 418 |
if (perfect) {
|
|
| 419 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 435 |
{
|
|
| 436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 437 |
mwpm.init(); |
|
| 438 |
bool result = mwpm.start(); |
|
| 439 |
|
|
| 440 |
check(result == perfect, "Perfect matching found"); |
|
| 441 |
if (perfect) {
|
|
| 442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 443 |
} |
|
| 420 | 444 |
} |
| 421 | 445 |
} |
| 422 | 446 |
|
0 comments (0 inline)