0
2
0
313
16
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MATCHING_H |
20 | 20 |
#define LEMON_MATCHING_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <queue> |
24 | 24 |
#include <set> |
25 | 25 |
#include <limits> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/unionfind.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/maps.h> |
31 |
#include <lemon/fractional_matching.h> |
|
31 | 32 |
|
32 | 33 |
///\ingroup matching |
33 | 34 |
///\file |
34 | 35 |
///\brief Maximum matching algorithms in general graphs. |
35 | 36 |
|
36 | 37 |
namespace lemon { |
37 | 38 |
|
38 | 39 |
/// \ingroup matching |
39 | 40 |
/// |
40 | 41 |
/// \brief Maximum cardinality matching in general graphs |
41 | 42 |
/// |
42 | 43 |
/// This class implements Edmonds' alternating forest matching algorithm |
43 | 44 |
/// for finding a maximum cardinality matching in a general undirected graph. |
44 | 45 |
/// It can be started from an arbitrary initial matching |
45 | 46 |
/// (the default is the empty one). |
46 | 47 |
/// |
47 | 48 |
/// The dual solution of the problem is a map of the nodes to |
48 | 49 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
49 | 50 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
50 | 51 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
51 | 52 |
/// with factor-critical components, the nodes in \c ODD/A form the |
52 | 53 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
53 | 54 |
/// a perfect matching. The number of the factor-critical components |
54 | 55 |
/// minus the number of barrier nodes is a lower bound on the |
55 | 56 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
56 | 57 |
/// tight. This decomposition can be obtained using \ref status() or |
57 | 58 |
/// \ref statusMap() after running the algorithm. |
58 | 59 |
/// |
59 | 60 |
/// \tparam GR The undirected graph type the algorithm runs on. |
60 | 61 |
template <typename GR> |
61 | 62 |
class MaxMatching { |
62 | 63 |
public: |
63 | 64 |
|
64 | 65 |
/// The graph type of the algorithm |
65 | 66 |
typedef GR Graph; |
66 | 67 |
/// The type of the matching map |
67 | 68 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
68 | 69 |
MatchingMap; |
69 | 70 |
|
70 | 71 |
///\brief Status constants for Gallai-Edmonds decomposition. |
71 | 72 |
/// |
72 | 73 |
///These constants are used for indicating the Gallai-Edmonds |
73 | 74 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
74 | 75 |
///induce a subgraph with factor-critical components, the nodes with |
75 | 76 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
76 | 77 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
77 | 78 |
///perfect matching. |
78 | 79 |
enum Status { |
79 | 80 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
80 | 81 |
D = 1, |
81 | 82 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
82 | 83 |
C = 0, |
83 | 84 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
84 | 85 |
A = -1, |
85 | 86 |
UNMATCHED = -2 ///< = -2. |
86 | 87 |
}; |
87 | 88 |
|
88 | 89 |
/// The type of the status map |
89 | 90 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
90 | 91 |
|
91 | 92 |
private: |
92 | 93 |
|
93 | 94 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
94 | 95 |
|
95 | 96 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
96 | 97 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
97 | 98 |
typedef RangeMap<Node> NodeIntMap; |
98 | 99 |
typedef MatchingMap EarMap; |
99 | 100 |
typedef std::vector<Node> NodeQueue; |
100 | 101 |
|
101 | 102 |
const Graph& _graph; |
102 | 103 |
MatchingMap* _matching; |
103 | 104 |
StatusMap* _status; |
104 | 105 |
|
105 | 106 |
EarMap* _ear; |
106 | 107 |
|
107 | 108 |
IntNodeMap* _blossom_set_index; |
108 | 109 |
BlossomSet* _blossom_set; |
109 | 110 |
NodeIntMap* _blossom_rep; |
110 | 111 |
|
111 | 112 |
IntNodeMap* _tree_set_index; |
112 | 113 |
TreeSet* _tree_set; |
113 | 114 |
|
114 | 115 |
NodeQueue _node_queue; |
115 | 116 |
int _process, _postpone, _last; |
116 | 117 |
|
117 | 118 |
int _node_num; |
118 | 119 |
|
119 | 120 |
private: |
120 | 121 |
|
121 | 122 |
void createStructures() { |
122 | 123 |
_node_num = countNodes(_graph); |
123 | 124 |
if (!_matching) { |
124 | 125 |
_matching = new MatchingMap(_graph); |
125 | 126 |
} |
126 | 127 |
if (!_status) { |
127 | 128 |
_status = new StatusMap(_graph); |
128 | 129 |
} |
129 | 130 |
if (!_ear) { |
130 | 131 |
_ear = new EarMap(_graph); |
131 | 132 |
} |
132 | 133 |
if (!_blossom_set) { |
133 | 134 |
_blossom_set_index = new IntNodeMap(_graph); |
134 | 135 |
_blossom_set = new BlossomSet(*_blossom_set_index); |
135 | 136 |
} |
136 | 137 |
if (!_blossom_rep) { |
137 | 138 |
_blossom_rep = new NodeIntMap(_node_num); |
138 | 139 |
} |
139 | 140 |
if (!_tree_set) { |
140 | 141 |
_tree_set_index = new IntNodeMap(_graph); |
141 | 142 |
_tree_set = new TreeSet(*_tree_set_index); |
142 | 143 |
} |
143 | 144 |
_node_queue.resize(_node_num); |
144 | 145 |
} |
145 | 146 |
|
146 | 147 |
void destroyStructures() { |
147 | 148 |
if (_matching) { |
148 | 149 |
delete _matching; |
149 | 150 |
} |
150 | 151 |
if (_status) { |
151 | 152 |
delete _status; |
152 | 153 |
} |
153 | 154 |
if (_ear) { |
154 | 155 |
delete _ear; |
155 | 156 |
} |
156 | 157 |
if (_blossom_set) { |
157 | 158 |
delete _blossom_set; |
158 | 159 |
delete _blossom_set_index; |
159 | 160 |
} |
160 | 161 |
if (_blossom_rep) { |
161 | 162 |
delete _blossom_rep; |
162 | 163 |
} |
163 | 164 |
if (_tree_set) { |
164 | 165 |
delete _tree_set_index; |
165 | 166 |
delete _tree_set; |
166 | 167 |
} |
167 | 168 |
} |
168 | 169 |
|
169 | 170 |
void processDense(const Node& n) { |
170 | 171 |
_process = _postpone = _last = 0; |
171 | 172 |
_node_queue[_last++] = n; |
172 | 173 |
|
173 | 174 |
while (_process != _last) { |
174 | 175 |
Node u = _node_queue[_process++]; |
175 | 176 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
176 | 177 |
Node v = _graph.target(a); |
177 | 178 |
if ((*_status)[v] == MATCHED) { |
178 | 179 |
extendOnArc(a); |
179 | 180 |
} else if ((*_status)[v] == UNMATCHED) { |
180 | 181 |
augmentOnArc(a); |
181 | 182 |
return; |
182 | 183 |
} |
183 | 184 |
} |
184 | 185 |
} |
185 | 186 |
|
186 | 187 |
while (_postpone != _last) { |
187 | 188 |
Node u = _node_queue[_postpone++]; |
188 | 189 |
|
189 | 190 |
for (OutArcIt a(_graph, u); a != INVALID ; ++a) { |
190 | 191 |
Node v = _graph.target(a); |
191 | 192 |
|
192 | 193 |
if ((*_status)[v] == EVEN) { |
193 | 194 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
194 | 195 |
shrinkOnEdge(a); |
195 | 196 |
} |
196 | 197 |
} |
197 | 198 |
|
198 | 199 |
while (_process != _last) { |
199 | 200 |
Node w = _node_queue[_process++]; |
200 | 201 |
for (OutArcIt b(_graph, w); b != INVALID; ++b) { |
201 | 202 |
Node x = _graph.target(b); |
202 | 203 |
if ((*_status)[x] == MATCHED) { |
203 | 204 |
extendOnArc(b); |
204 | 205 |
} else if ((*_status)[x] == UNMATCHED) { |
205 | 206 |
augmentOnArc(b); |
206 | 207 |
return; |
207 | 208 |
} |
208 | 209 |
} |
209 | 210 |
} |
210 | 211 |
} |
211 | 212 |
} |
212 | 213 |
} |
213 | 214 |
|
214 | 215 |
void processSparse(const Node& n) { |
215 | 216 |
_process = _last = 0; |
216 | 217 |
_node_queue[_last++] = n; |
217 | 218 |
while (_process != _last) { |
218 | 219 |
Node u = _node_queue[_process++]; |
219 | 220 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
220 | 221 |
Node v = _graph.target(a); |
221 | 222 |
|
222 | 223 |
if ((*_status)[v] == EVEN) { |
... | ... |
@@ -608,384 +609,388 @@ |
608 | 609 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
609 | 610 |
/// decomposition. |
610 | 611 |
|
611 | 612 |
/// @{ |
612 | 613 |
|
613 | 614 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
614 | 615 |
/// decomposition. |
615 | 616 |
/// |
616 | 617 |
/// This function returns the \ref Status "status" of the given node |
617 | 618 |
/// in the Edmonds-Gallai decomposition. |
618 | 619 |
Status status(const Node& n) const { |
619 | 620 |
return (*_status)[n]; |
620 | 621 |
} |
621 | 622 |
|
622 | 623 |
/// \brief Return a const reference to the status map, which stores |
623 | 624 |
/// the Edmonds-Gallai decomposition. |
624 | 625 |
/// |
625 | 626 |
/// This function returns a const reference to a node map that stores the |
626 | 627 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
627 | 628 |
const StatusMap& statusMap() const { |
628 | 629 |
return *_status; |
629 | 630 |
} |
630 | 631 |
|
631 | 632 |
/// \brief Return \c true if the given node is in the barrier. |
632 | 633 |
/// |
633 | 634 |
/// This function returns \c true if the given node is in the barrier. |
634 | 635 |
bool barrier(const Node& n) const { |
635 | 636 |
return (*_status)[n] == ODD; |
636 | 637 |
} |
637 | 638 |
|
638 | 639 |
/// @} |
639 | 640 |
|
640 | 641 |
}; |
641 | 642 |
|
642 | 643 |
/// \ingroup matching |
643 | 644 |
/// |
644 | 645 |
/// \brief Weighted matching in general graphs |
645 | 646 |
/// |
646 | 647 |
/// This class provides an efficient implementation of Edmond's |
647 | 648 |
/// maximum weighted matching algorithm. The implementation is based |
648 | 649 |
/// on extensive use of priority queues and provides |
649 | 650 |
/// \f$O(nm\log n)\f$ time complexity. |
650 | 651 |
/// |
651 | 652 |
/// The maximum weighted matching problem is to find a subset of the |
652 | 653 |
/// edges in an undirected graph with maximum overall weight for which |
653 | 654 |
/// each node has at most one incident edge. |
654 | 655 |
/// It can be formulated with the following linear program. |
655 | 656 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
656 | 657 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
657 | 658 |
\quad \forall B\in\mathcal{O}\f] */ |
658 | 659 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
659 | 660 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
660 | 661 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
661 | 662 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
662 | 663 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
663 | 664 |
/// subsets of the nodes. |
664 | 665 |
/// |
665 | 666 |
/// The algorithm calculates an optimal matching and a proof of the |
666 | 667 |
/// optimality. The solution of the dual problem can be used to check |
667 | 668 |
/// the result of the algorithm. The dual linear problem is the |
668 | 669 |
/// following. |
669 | 670 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
670 | 671 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
671 | 672 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
672 | 673 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
673 | 674 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
674 | 675 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
675 | 676 |
/// |
676 | 677 |
/// The algorithm can be executed with the run() function. |
677 | 678 |
/// After it the matching (the primal solution) and the dual solution |
678 | 679 |
/// can be obtained using the query functions and the |
679 | 680 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
680 | 681 |
/// which is able to iterate on the nodes of a blossom. |
681 | 682 |
/// If the value type is integer, then the dual solution is multiplied |
682 | 683 |
/// by \ref MaxWeightedMatching::dualScale "4". |
683 | 684 |
/// |
684 | 685 |
/// \tparam GR The undirected graph type the algorithm runs on. |
685 | 686 |
/// \tparam WM The type edge weight map. The default type is |
686 | 687 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
687 | 688 |
#ifdef DOXYGEN |
688 | 689 |
template <typename GR, typename WM> |
689 | 690 |
#else |
690 | 691 |
template <typename GR, |
691 | 692 |
typename WM = typename GR::template EdgeMap<int> > |
692 | 693 |
#endif |
693 | 694 |
class MaxWeightedMatching { |
694 | 695 |
public: |
695 | 696 |
|
696 | 697 |
/// The graph type of the algorithm |
697 | 698 |
typedef GR Graph; |
698 | 699 |
/// The type of the edge weight map |
699 | 700 |
typedef WM WeightMap; |
700 | 701 |
/// The value type of the edge weights |
701 | 702 |
typedef typename WeightMap::Value Value; |
702 | 703 |
|
703 | 704 |
/// The type of the matching map |
704 | 705 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
705 | 706 |
MatchingMap; |
706 | 707 |
|
707 | 708 |
/// \brief Scaling factor for dual solution |
708 | 709 |
/// |
709 | 710 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
710 | 711 |
/// according to the value type. |
711 | 712 |
static const int dualScale = |
712 | 713 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
713 | 714 |
|
714 | 715 |
private: |
715 | 716 |
|
716 | 717 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
717 | 718 |
|
718 | 719 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
719 | 720 |
typedef std::vector<Node> BlossomNodeList; |
720 | 721 |
|
721 | 722 |
struct BlossomVariable { |
722 | 723 |
int begin, end; |
723 | 724 |
Value value; |
724 | 725 |
|
725 | 726 |
BlossomVariable(int _begin, int _end, Value _value) |
726 | 727 |
: begin(_begin), end(_end), value(_value) {} |
727 | 728 |
|
728 | 729 |
}; |
729 | 730 |
|
730 | 731 |
typedef std::vector<BlossomVariable> BlossomPotential; |
731 | 732 |
|
732 | 733 |
const Graph& _graph; |
733 | 734 |
const WeightMap& _weight; |
734 | 735 |
|
735 | 736 |
MatchingMap* _matching; |
736 | 737 |
|
737 | 738 |
NodePotential* _node_potential; |
738 | 739 |
|
739 | 740 |
BlossomPotential _blossom_potential; |
740 | 741 |
BlossomNodeList _blossom_node_list; |
741 | 742 |
|
742 | 743 |
int _node_num; |
743 | 744 |
int _blossom_num; |
744 | 745 |
|
745 | 746 |
typedef RangeMap<int> IntIntMap; |
746 | 747 |
|
747 | 748 |
enum Status { |
748 | 749 |
EVEN = -1, MATCHED = 0, ODD = 1 |
749 | 750 |
}; |
750 | 751 |
|
751 | 752 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
752 | 753 |
struct BlossomData { |
753 | 754 |
int tree; |
754 | 755 |
Status status; |
755 | 756 |
Arc pred, next; |
756 | 757 |
Value pot, offset; |
757 | 758 |
Node base; |
758 | 759 |
}; |
759 | 760 |
|
760 | 761 |
IntNodeMap *_blossom_index; |
761 | 762 |
BlossomSet *_blossom_set; |
762 | 763 |
RangeMap<BlossomData>* _blossom_data; |
763 | 764 |
|
764 | 765 |
IntNodeMap *_node_index; |
765 | 766 |
IntArcMap *_node_heap_index; |
766 | 767 |
|
767 | 768 |
struct NodeData { |
768 | 769 |
|
769 | 770 |
NodeData(IntArcMap& node_heap_index) |
770 | 771 |
: heap(node_heap_index) {} |
771 | 772 |
|
772 | 773 |
int blossom; |
773 | 774 |
Value pot; |
774 | 775 |
BinHeap<Value, IntArcMap> heap; |
775 | 776 |
std::map<int, Arc> heap_index; |
776 | 777 |
|
777 | 778 |
int tree; |
778 | 779 |
}; |
779 | 780 |
|
780 | 781 |
RangeMap<NodeData>* _node_data; |
781 | 782 |
|
782 | 783 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
783 | 784 |
|
784 | 785 |
IntIntMap *_tree_set_index; |
785 | 786 |
TreeSet *_tree_set; |
786 | 787 |
|
787 | 788 |
IntNodeMap *_delta1_index; |
788 | 789 |
BinHeap<Value, IntNodeMap> *_delta1; |
789 | 790 |
|
790 | 791 |
IntIntMap *_delta2_index; |
791 | 792 |
BinHeap<Value, IntIntMap> *_delta2; |
792 | 793 |
|
793 | 794 |
IntEdgeMap *_delta3_index; |
794 | 795 |
BinHeap<Value, IntEdgeMap> *_delta3; |
795 | 796 |
|
796 | 797 |
IntIntMap *_delta4_index; |
797 | 798 |
BinHeap<Value, IntIntMap> *_delta4; |
798 | 799 |
|
799 | 800 |
Value _delta_sum; |
801 |
int _unmatched; |
|
802 |
|
|
803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching; |
|
804 |
FractionalMatching *_fractional; |
|
800 | 805 |
|
801 | 806 |
void createStructures() { |
802 | 807 |
_node_num = countNodes(_graph); |
803 | 808 |
_blossom_num = _node_num * 3 / 2; |
804 | 809 |
|
805 | 810 |
if (!_matching) { |
806 | 811 |
_matching = new MatchingMap(_graph); |
807 | 812 |
} |
808 | 813 |
if (!_node_potential) { |
809 | 814 |
_node_potential = new NodePotential(_graph); |
810 | 815 |
} |
811 | 816 |
if (!_blossom_set) { |
812 | 817 |
_blossom_index = new IntNodeMap(_graph); |
813 | 818 |
_blossom_set = new BlossomSet(*_blossom_index); |
814 | 819 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
815 | 820 |
} |
816 | 821 |
|
817 | 822 |
if (!_node_index) { |
818 | 823 |
_node_index = new IntNodeMap(_graph); |
819 | 824 |
_node_heap_index = new IntArcMap(_graph); |
820 | 825 |
_node_data = new RangeMap<NodeData>(_node_num, |
821 | 826 |
NodeData(*_node_heap_index)); |
822 | 827 |
} |
823 | 828 |
|
824 | 829 |
if (!_tree_set) { |
825 | 830 |
_tree_set_index = new IntIntMap(_blossom_num); |
826 | 831 |
_tree_set = new TreeSet(*_tree_set_index); |
827 | 832 |
} |
828 | 833 |
if (!_delta1) { |
829 | 834 |
_delta1_index = new IntNodeMap(_graph); |
830 | 835 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
831 | 836 |
} |
832 | 837 |
if (!_delta2) { |
833 | 838 |
_delta2_index = new IntIntMap(_blossom_num); |
834 | 839 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
835 | 840 |
} |
836 | 841 |
if (!_delta3) { |
837 | 842 |
_delta3_index = new IntEdgeMap(_graph); |
838 | 843 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
839 | 844 |
} |
840 | 845 |
if (!_delta4) { |
841 | 846 |
_delta4_index = new IntIntMap(_blossom_num); |
842 | 847 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
843 | 848 |
} |
844 | 849 |
} |
845 | 850 |
|
846 | 851 |
void destroyStructures() { |
847 | 852 |
if (_matching) { |
848 | 853 |
delete _matching; |
849 | 854 |
} |
850 | 855 |
if (_node_potential) { |
851 | 856 |
delete _node_potential; |
852 | 857 |
} |
853 | 858 |
if (_blossom_set) { |
854 | 859 |
delete _blossom_index; |
855 | 860 |
delete _blossom_set; |
856 | 861 |
delete _blossom_data; |
857 | 862 |
} |
858 | 863 |
|
859 | 864 |
if (_node_index) { |
860 | 865 |
delete _node_index; |
861 | 866 |
delete _node_heap_index; |
862 | 867 |
delete _node_data; |
863 | 868 |
} |
864 | 869 |
|
865 | 870 |
if (_tree_set) { |
866 | 871 |
delete _tree_set_index; |
867 | 872 |
delete _tree_set; |
868 | 873 |
} |
869 | 874 |
if (_delta1) { |
870 | 875 |
delete _delta1_index; |
871 | 876 |
delete _delta1; |
872 | 877 |
} |
873 | 878 |
if (_delta2) { |
874 | 879 |
delete _delta2_index; |
875 | 880 |
delete _delta2; |
876 | 881 |
} |
877 | 882 |
if (_delta3) { |
878 | 883 |
delete _delta3_index; |
879 | 884 |
delete _delta3; |
880 | 885 |
} |
881 | 886 |
if (_delta4) { |
882 | 887 |
delete _delta4_index; |
883 | 888 |
delete _delta4; |
884 | 889 |
} |
885 | 890 |
} |
886 | 891 |
|
887 | 892 |
void matchedToEven(int blossom, int tree) { |
888 | 893 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
889 | 894 |
_delta2->erase(blossom); |
890 | 895 |
} |
891 | 896 |
|
892 | 897 |
if (!_blossom_set->trivial(blossom)) { |
893 | 898 |
(*_blossom_data)[blossom].pot -= |
894 | 899 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
895 | 900 |
} |
896 | 901 |
|
897 | 902 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
898 | 903 |
n != INVALID; ++n) { |
899 | 904 |
|
900 | 905 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
901 | 906 |
int ni = (*_node_index)[n]; |
902 | 907 |
|
903 | 908 |
(*_node_data)[ni].heap.clear(); |
904 | 909 |
(*_node_data)[ni].heap_index.clear(); |
905 | 910 |
|
906 | 911 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
907 | 912 |
|
908 | 913 |
_delta1->push(n, (*_node_data)[ni].pot); |
909 | 914 |
|
910 | 915 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
911 | 916 |
Node v = _graph.source(e); |
912 | 917 |
int vb = _blossom_set->find(v); |
913 | 918 |
int vi = (*_node_index)[v]; |
914 | 919 |
|
915 | 920 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
916 | 921 |
dualScale * _weight[e]; |
917 | 922 |
|
918 | 923 |
if ((*_blossom_data)[vb].status == EVEN) { |
919 | 924 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
920 | 925 |
_delta3->push(e, rw / 2); |
921 | 926 |
} |
922 | 927 |
} else { |
923 | 928 |
typename std::map<int, Arc>::iterator it = |
924 | 929 |
(*_node_data)[vi].heap_index.find(tree); |
925 | 930 |
|
926 | 931 |
if (it != (*_node_data)[vi].heap_index.end()) { |
927 | 932 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
928 | 933 |
(*_node_data)[vi].heap.replace(it->second, e); |
929 | 934 |
(*_node_data)[vi].heap.decrease(e, rw); |
930 | 935 |
it->second = e; |
931 | 936 |
} |
932 | 937 |
} else { |
933 | 938 |
(*_node_data)[vi].heap.push(e, rw); |
934 | 939 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
935 | 940 |
} |
936 | 941 |
|
937 | 942 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
938 | 943 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
939 | 944 |
|
940 | 945 |
if ((*_blossom_data)[vb].status == MATCHED) { |
941 | 946 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
942 | 947 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
943 | 948 |
(*_blossom_data)[vb].offset); |
944 | 949 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
945 | 950 |
(*_blossom_data)[vb].offset) { |
946 | 951 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
947 | 952 |
(*_blossom_data)[vb].offset); |
948 | 953 |
} |
949 | 954 |
} |
950 | 955 |
} |
951 | 956 |
} |
952 | 957 |
} |
953 | 958 |
} |
954 | 959 |
(*_blossom_data)[blossom].offset = 0; |
955 | 960 |
} |
956 | 961 |
|
957 | 962 |
void matchedToOdd(int blossom) { |
958 | 963 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
959 | 964 |
_delta2->erase(blossom); |
960 | 965 |
} |
961 | 966 |
(*_blossom_data)[blossom].offset += _delta_sum; |
962 | 967 |
if (!_blossom_set->trivial(blossom)) { |
963 | 968 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
964 | 969 |
(*_blossom_data)[blossom].offset); |
965 | 970 |
} |
966 | 971 |
} |
967 | 972 |
|
968 | 973 |
void evenToMatched(int blossom, int tree) { |
969 | 974 |
if (!_blossom_set->trivial(blossom)) { |
970 | 975 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
971 | 976 |
} |
972 | 977 |
|
973 | 978 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
974 | 979 |
n != INVALID; ++n) { |
975 | 980 |
int ni = (*_node_index)[n]; |
976 | 981 |
(*_node_data)[ni].pot -= _delta_sum; |
977 | 982 |
|
978 | 983 |
_delta1->erase(n); |
979 | 984 |
|
980 | 985 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
981 | 986 |
Node v = _graph.source(e); |
982 | 987 |
int vb = _blossom_set->find(v); |
983 | 988 |
int vi = (*_node_index)[v]; |
984 | 989 |
|
985 | 990 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
986 | 991 |
dualScale * _weight[e]; |
987 | 992 |
|
988 | 993 |
if (vb == blossom) { |
989 | 994 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
990 | 995 |
_delta3->erase(e); |
991 | 996 |
} |
... | ... |
@@ -1370,899 +1375,1049 @@ |
1370 | 1375 |
Arc next = (*_blossom_data)[blossom].next; |
1371 | 1376 |
Arc pred = (*_blossom_data)[blossom].pred; |
1372 | 1377 |
|
1373 | 1378 |
int tree = _tree_set->find(blossom); |
1374 | 1379 |
|
1375 | 1380 |
(*_blossom_data)[blossom].status = MATCHED; |
1376 | 1381 |
oddToMatched(blossom); |
1377 | 1382 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
1378 | 1383 |
_delta2->erase(blossom); |
1379 | 1384 |
} |
1380 | 1385 |
|
1381 | 1386 |
std::vector<int> subblossoms; |
1382 | 1387 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
1383 | 1388 |
|
1384 | 1389 |
Value offset = (*_blossom_data)[blossom].offset; |
1385 | 1390 |
int b = _blossom_set->find(_graph.source(pred)); |
1386 | 1391 |
int d = _blossom_set->find(_graph.source(next)); |
1387 | 1392 |
|
1388 | 1393 |
int ib = -1, id = -1; |
1389 | 1394 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1390 | 1395 |
if (subblossoms[i] == b) ib = i; |
1391 | 1396 |
if (subblossoms[i] == d) id = i; |
1392 | 1397 |
|
1393 | 1398 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
1394 | 1399 |
if (!_blossom_set->trivial(subblossoms[i])) { |
1395 | 1400 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
1396 | 1401 |
} |
1397 | 1402 |
if (_blossom_set->classPrio(subblossoms[i]) != |
1398 | 1403 |
std::numeric_limits<Value>::max()) { |
1399 | 1404 |
_delta2->push(subblossoms[i], |
1400 | 1405 |
_blossom_set->classPrio(subblossoms[i]) - |
1401 | 1406 |
(*_blossom_data)[subblossoms[i]].offset); |
1402 | 1407 |
} |
1403 | 1408 |
} |
1404 | 1409 |
|
1405 | 1410 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
1406 | 1411 |
for (int i = (id + 1) % subblossoms.size(); |
1407 | 1412 |
i != ib; i = (i + 2) % subblossoms.size()) { |
1408 | 1413 |
int sb = subblossoms[i]; |
1409 | 1414 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1410 | 1415 |
(*_blossom_data)[sb].next = |
1411 | 1416 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1412 | 1417 |
} |
1413 | 1418 |
|
1414 | 1419 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
1415 | 1420 |
int sb = subblossoms[i]; |
1416 | 1421 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1417 | 1422 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
1418 | 1423 |
|
1419 | 1424 |
(*_blossom_data)[sb].status = ODD; |
1420 | 1425 |
matchedToOdd(sb); |
1421 | 1426 |
_tree_set->insert(sb, tree); |
1422 | 1427 |
(*_blossom_data)[sb].pred = pred; |
1423 | 1428 |
(*_blossom_data)[sb].next = |
1424 | 1429 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1425 | 1430 |
|
1426 | 1431 |
pred = (*_blossom_data)[ub].next; |
1427 | 1432 |
|
1428 | 1433 |
(*_blossom_data)[tb].status = EVEN; |
1429 | 1434 |
matchedToEven(tb, tree); |
1430 | 1435 |
_tree_set->insert(tb, tree); |
1431 | 1436 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
1432 | 1437 |
} |
1433 | 1438 |
|
1434 | 1439 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
1435 | 1440 |
matchedToOdd(subblossoms[id]); |
1436 | 1441 |
_tree_set->insert(subblossoms[id], tree); |
1437 | 1442 |
(*_blossom_data)[subblossoms[id]].next = next; |
1438 | 1443 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
1439 | 1444 |
|
1440 | 1445 |
} else { |
1441 | 1446 |
|
1442 | 1447 |
for (int i = (ib + 1) % subblossoms.size(); |
1443 | 1448 |
i != id; i = (i + 2) % subblossoms.size()) { |
1444 | 1449 |
int sb = subblossoms[i]; |
1445 | 1450 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1446 | 1451 |
(*_blossom_data)[sb].next = |
1447 | 1452 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1448 | 1453 |
} |
1449 | 1454 |
|
1450 | 1455 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
1451 | 1456 |
int sb = subblossoms[i]; |
1452 | 1457 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1453 | 1458 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
1454 | 1459 |
|
1455 | 1460 |
(*_blossom_data)[sb].status = ODD; |
1456 | 1461 |
matchedToOdd(sb); |
1457 | 1462 |
_tree_set->insert(sb, tree); |
1458 | 1463 |
(*_blossom_data)[sb].next = next; |
1459 | 1464 |
(*_blossom_data)[sb].pred = |
1460 | 1465 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1461 | 1466 |
|
1462 | 1467 |
(*_blossom_data)[tb].status = EVEN; |
1463 | 1468 |
matchedToEven(tb, tree); |
1464 | 1469 |
_tree_set->insert(tb, tree); |
1465 | 1470 |
(*_blossom_data)[tb].pred = |
1466 | 1471 |
(*_blossom_data)[tb].next = |
1467 | 1472 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
1468 | 1473 |
next = (*_blossom_data)[ub].next; |
1469 | 1474 |
} |
1470 | 1475 |
|
1471 | 1476 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
1472 | 1477 |
matchedToOdd(subblossoms[ib]); |
1473 | 1478 |
_tree_set->insert(subblossoms[ib], tree); |
1474 | 1479 |
(*_blossom_data)[subblossoms[ib]].next = next; |
1475 | 1480 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
1476 | 1481 |
} |
1477 | 1482 |
_tree_set->erase(blossom); |
1478 | 1483 |
} |
1479 | 1484 |
|
1480 | 1485 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
1481 | 1486 |
if (_blossom_set->trivial(blossom)) { |
1482 | 1487 |
int bi = (*_node_index)[base]; |
1483 | 1488 |
Value pot = (*_node_data)[bi].pot; |
1484 | 1489 |
|
1485 | 1490 |
(*_matching)[base] = matching; |
1486 | 1491 |
_blossom_node_list.push_back(base); |
1487 | 1492 |
(*_node_potential)[base] = pot; |
1488 | 1493 |
} else { |
1489 | 1494 |
|
1490 | 1495 |
Value pot = (*_blossom_data)[blossom].pot; |
1491 | 1496 |
int bn = _blossom_node_list.size(); |
1492 | 1497 |
|
1493 | 1498 |
std::vector<int> subblossoms; |
1494 | 1499 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
1495 | 1500 |
int b = _blossom_set->find(base); |
1496 | 1501 |
int ib = -1; |
1497 | 1502 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1498 | 1503 |
if (subblossoms[i] == b) { ib = i; break; } |
1499 | 1504 |
} |
1500 | 1505 |
|
1501 | 1506 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
1502 | 1507 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
1503 | 1508 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
1504 | 1509 |
|
1505 | 1510 |
Arc m = (*_blossom_data)[tb].next; |
1506 | 1511 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
1507 | 1512 |
extractBlossom(tb, _graph.source(m), m); |
1508 | 1513 |
} |
1509 | 1514 |
extractBlossom(subblossoms[ib], base, matching); |
1510 | 1515 |
|
1511 | 1516 |
int en = _blossom_node_list.size(); |
1512 | 1517 |
|
1513 | 1518 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
1514 | 1519 |
} |
1515 | 1520 |
} |
1516 | 1521 |
|
1517 | 1522 |
void extractMatching() { |
1518 | 1523 |
std::vector<int> blossoms; |
1519 | 1524 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
1520 | 1525 |
blossoms.push_back(c); |
1521 | 1526 |
} |
1522 | 1527 |
|
1523 | 1528 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
1524 | 1529 |
if ((*_blossom_data)[blossoms[i]].next != INVALID) { |
1525 | 1530 |
|
1526 | 1531 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
1527 | 1532 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
1528 | 1533 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
1529 | 1534 |
n != INVALID; ++n) { |
1530 | 1535 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
1531 | 1536 |
} |
1532 | 1537 |
|
1533 | 1538 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
1534 | 1539 |
Node base = _graph.source(matching); |
1535 | 1540 |
extractBlossom(blossoms[i], base, matching); |
1536 | 1541 |
} else { |
1537 | 1542 |
Node base = (*_blossom_data)[blossoms[i]].base; |
1538 | 1543 |
extractBlossom(blossoms[i], base, INVALID); |
1539 | 1544 |
} |
1540 | 1545 |
} |
1541 | 1546 |
} |
1542 | 1547 |
|
1543 | 1548 |
public: |
1544 | 1549 |
|
1545 | 1550 |
/// \brief Constructor |
1546 | 1551 |
/// |
1547 | 1552 |
/// Constructor. |
1548 | 1553 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
1549 | 1554 |
: _graph(graph), _weight(weight), _matching(0), |
1550 | 1555 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
1551 | 1556 |
_node_num(0), _blossom_num(0), |
1552 | 1557 |
|
1553 | 1558 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
1554 | 1559 |
_node_index(0), _node_heap_index(0), _node_data(0), |
1555 | 1560 |
_tree_set_index(0), _tree_set(0), |
1556 | 1561 |
|
1557 | 1562 |
_delta1_index(0), _delta1(0), |
1558 | 1563 |
_delta2_index(0), _delta2(0), |
1559 | 1564 |
_delta3_index(0), _delta3(0), |
1560 | 1565 |
_delta4_index(0), _delta4(0), |
1561 | 1566 |
|
1562 |
_delta_sum() |
|
1567 |
_delta_sum(), _unmatched(0), |
|
1568 |
|
|
1569 |
_fractional(0) |
|
1570 |
{} |
|
1563 | 1571 |
|
1564 | 1572 |
~MaxWeightedMatching() { |
1565 | 1573 |
destroyStructures(); |
1574 |
if (_fractional) { |
|
1575 |
delete _fractional; |
|
1576 |
} |
|
1566 | 1577 |
} |
1567 | 1578 |
|
1568 | 1579 |
/// \name Execution Control |
1569 | 1580 |
/// The simplest way to execute the algorithm is to use the |
1570 | 1581 |
/// \ref run() member function. |
1571 | 1582 |
|
1572 | 1583 |
///@{ |
1573 | 1584 |
|
1574 | 1585 |
/// \brief Initialize the algorithm |
1575 | 1586 |
/// |
1576 | 1587 |
/// This function initializes the algorithm. |
1577 | 1588 |
void init() { |
1578 | 1589 |
createStructures(); |
1579 | 1590 |
|
1580 | 1591 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1581 | 1592 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
1582 | 1593 |
} |
1583 | 1594 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1584 | 1595 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
1585 | 1596 |
} |
1586 | 1597 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1587 | 1598 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
1588 | 1599 |
} |
1589 | 1600 |
for (int i = 0; i < _blossom_num; ++i) { |
1590 | 1601 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
1591 | 1602 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
1592 | 1603 |
} |
1593 | 1604 |
|
1605 |
_unmatched = _node_num; |
|
1606 |
|
|
1594 | 1607 |
int index = 0; |
1595 | 1608 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1596 | 1609 |
Value max = 0; |
1597 | 1610 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
1598 | 1611 |
if (_graph.target(e) == n) continue; |
1599 | 1612 |
if ((dualScale * _weight[e]) / 2 > max) { |
1600 | 1613 |
max = (dualScale * _weight[e]) / 2; |
1601 | 1614 |
} |
1602 | 1615 |
} |
1603 | 1616 |
(*_node_index)[n] = index; |
1604 | 1617 |
(*_node_data)[index].pot = max; |
1605 | 1618 |
_delta1->push(n, max); |
1606 | 1619 |
int blossom = |
1607 | 1620 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
1608 | 1621 |
|
1609 | 1622 |
_tree_set->insert(blossom); |
1610 | 1623 |
|
1611 | 1624 |
(*_blossom_data)[blossom].status = EVEN; |
1612 | 1625 |
(*_blossom_data)[blossom].pred = INVALID; |
1613 | 1626 |
(*_blossom_data)[blossom].next = INVALID; |
1614 | 1627 |
(*_blossom_data)[blossom].pot = 0; |
1615 | 1628 |
(*_blossom_data)[blossom].offset = 0; |
1616 | 1629 |
++index; |
1617 | 1630 |
} |
1618 | 1631 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1619 | 1632 |
int si = (*_node_index)[_graph.u(e)]; |
1620 | 1633 |
int ti = (*_node_index)[_graph.v(e)]; |
1621 | 1634 |
if (_graph.u(e) != _graph.v(e)) { |
1622 | 1635 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
1623 | 1636 |
dualScale * _weight[e]) / 2); |
1624 | 1637 |
} |
1625 | 1638 |
} |
1626 | 1639 |
} |
1627 | 1640 |
|
1641 |
/// \brief Initialize the algorithm with fractional matching |
|
1642 |
/// |
|
1643 |
/// This function initializes the algorithm with a fractional |
|
1644 |
/// matching. This initialization is also called jumpstart heuristic. |
|
1645 |
void fractionalInit() { |
|
1646 |
createStructures(); |
|
1647 |
|
|
1648 |
if (_fractional == 0) { |
|
1649 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
1650 |
} |
|
1651 |
_fractional->run(); |
|
1652 |
|
|
1653 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1654 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
1655 |
} |
|
1656 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1657 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1658 |
} |
|
1659 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1660 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1661 |
} |
|
1662 |
for (int i = 0; i < _blossom_num; ++i) { |
|
1663 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
1664 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
1665 |
} |
|
1666 |
|
|
1667 |
_unmatched = 0; |
|
1668 |
|
|
1669 |
int index = 0; |
|
1670 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1671 |
Value pot = _fractional->nodeValue(n); |
|
1672 |
(*_node_index)[n] = index; |
|
1673 |
(*_node_data)[index].pot = pot; |
|
1674 |
int blossom = |
|
1675 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
1676 |
|
|
1677 |
(*_blossom_data)[blossom].status = MATCHED; |
|
1678 |
(*_blossom_data)[blossom].pred = INVALID; |
|
1679 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
1680 |
if (_fractional->matching(n) == INVALID) { |
|
1681 |
(*_blossom_data)[blossom].base = n; |
|
1682 |
} |
|
1683 |
(*_blossom_data)[blossom].pot = 0; |
|
1684 |
(*_blossom_data)[blossom].offset = 0; |
|
1685 |
++index; |
|
1686 |
} |
|
1687 |
|
|
1688 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
1689 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1690 |
if (processed[n]) continue; |
|
1691 |
processed[n] = true; |
|
1692 |
if (_fractional->matching(n) == INVALID) continue; |
|
1693 |
int num = 1; |
|
1694 |
Node v = _graph.target(_fractional->matching(n)); |
|
1695 |
while (n != v) { |
|
1696 |
processed[v] = true; |
|
1697 |
v = _graph.target(_fractional->matching(v)); |
|
1698 |
++num; |
|
1699 |
} |
|
1700 |
|
|
1701 |
if (num % 2 == 1) { |
|
1702 |
std::vector<int> subblossoms(num); |
|
1703 |
|
|
1704 |
subblossoms[--num] = _blossom_set->find(n); |
|
1705 |
_delta1->push(n, _fractional->nodeValue(n)); |
|
1706 |
v = _graph.target(_fractional->matching(n)); |
|
1707 |
while (n != v) { |
|
1708 |
subblossoms[--num] = _blossom_set->find(v); |
|
1709 |
_delta1->push(v, _fractional->nodeValue(v)); |
|
1710 |
v = _graph.target(_fractional->matching(v)); |
|
1711 |
} |
|
1712 |
|
|
1713 |
int surface = |
|
1714 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
1715 |
(*_blossom_data)[surface].status = EVEN; |
|
1716 |
(*_blossom_data)[surface].pred = INVALID; |
|
1717 |
(*_blossom_data)[surface].next = INVALID; |
|
1718 |
(*_blossom_data)[surface].pot = 0; |
|
1719 |
(*_blossom_data)[surface].offset = 0; |
|
1720 |
|
|
1721 |
_tree_set->insert(surface); |
|
1722 |
++_unmatched; |
|
1723 |
} |
|
1724 |
} |
|
1725 |
|
|
1726 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1727 |
int si = (*_node_index)[_graph.u(e)]; |
|
1728 |
int sb = _blossom_set->find(_graph.u(e)); |
|
1729 |
int ti = (*_node_index)[_graph.v(e)]; |
|
1730 |
int tb = _blossom_set->find(_graph.v(e)); |
|
1731 |
if ((*_blossom_data)[sb].status == EVEN && |
|
1732 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
1733 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
1734 |
dualScale * _weight[e]) / 2); |
|
1735 |
} |
|
1736 |
} |
|
1737 |
|
|
1738 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1739 |
int nb = _blossom_set->find(n); |
|
1740 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
1741 |
int ni = (*_node_index)[n]; |
|
1742 |
|
|
1743 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1744 |
Node v = _graph.target(e); |
|
1745 |
int vb = _blossom_set->find(v); |
|
1746 |
int vi = (*_node_index)[v]; |
|
1747 |
|
|
1748 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1749 |
dualScale * _weight[e]; |
|
1750 |
|
|
1751 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1752 |
|
|
1753 |
int vt = _tree_set->find(vb); |
|
1754 |
|
|
1755 |
typename std::map<int, Arc>::iterator it = |
|
1756 |
(*_node_data)[ni].heap_index.find(vt); |
|
1757 |
|
|
1758 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1759 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1760 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
1761 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
1762 |
it->second = e; |
|
1763 |
} |
|
1764 |
} else { |
|
1765 |
(*_node_data)[ni].heap.push(e, rw); |
|
1766 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
1767 |
} |
|
1768 |
} |
|
1769 |
} |
|
1770 |
|
|
1771 |
if (!(*_node_data)[ni].heap.empty()) { |
|
1772 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1773 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
1774 |
} |
|
1775 |
} |
|
1776 |
} |
|
1777 |
|
|
1628 | 1778 |
/// \brief Start the algorithm |
1629 | 1779 |
/// |
1630 | 1780 |
/// This function starts the algorithm. |
1631 | 1781 |
/// |
1632 |
/// \pre \ref init() must be called |
|
1782 |
/// \pre \ref init() or \ref fractionalInit() must be called |
|
1783 |
/// before using this function. |
|
1633 | 1784 |
void start() { |
1634 | 1785 |
enum OpType { |
1635 | 1786 |
D1, D2, D3, D4 |
1636 | 1787 |
}; |
1637 | 1788 |
|
1638 |
int unmatched = _node_num; |
|
1639 |
while (unmatched > 0) { |
|
1789 |
while (_unmatched > 0) { |
|
1640 | 1790 |
Value d1 = !_delta1->empty() ? |
1641 | 1791 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
1642 | 1792 |
|
1643 | 1793 |
Value d2 = !_delta2->empty() ? |
1644 | 1794 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
1645 | 1795 |
|
1646 | 1796 |
Value d3 = !_delta3->empty() ? |
1647 | 1797 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
1648 | 1798 |
|
1649 | 1799 |
Value d4 = !_delta4->empty() ? |
1650 | 1800 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
1651 | 1801 |
|
1652 | 1802 |
_delta_sum = d3; OpType ot = D3; |
1653 | 1803 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; } |
1654 | 1804 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
1655 | 1805 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
1656 | 1806 |
|
1657 | 1807 |
switch (ot) { |
1658 | 1808 |
case D1: |
1659 | 1809 |
{ |
1660 | 1810 |
Node n = _delta1->top(); |
1661 | 1811 |
unmatchNode(n); |
1662 |
-- |
|
1812 |
--_unmatched; |
|
1663 | 1813 |
} |
1664 | 1814 |
break; |
1665 | 1815 |
case D2: |
1666 | 1816 |
{ |
1667 | 1817 |
int blossom = _delta2->top(); |
1668 | 1818 |
Node n = _blossom_set->classTop(blossom); |
1669 | 1819 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
1670 | 1820 |
if ((*_blossom_data)[blossom].next == INVALID) { |
1671 | 1821 |
augmentOnArc(a); |
1672 |
-- |
|
1822 |
--_unmatched; |
|
1673 | 1823 |
} else { |
1674 | 1824 |
extendOnArc(a); |
1675 | 1825 |
} |
1676 | 1826 |
} |
1677 | 1827 |
break; |
1678 | 1828 |
case D3: |
1679 | 1829 |
{ |
1680 | 1830 |
Edge e = _delta3->top(); |
1681 | 1831 |
|
1682 | 1832 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
1683 | 1833 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
1684 | 1834 |
|
1685 | 1835 |
if (left_blossom == right_blossom) { |
1686 | 1836 |
_delta3->pop(); |
1687 | 1837 |
} else { |
1688 | 1838 |
int left_tree = _tree_set->find(left_blossom); |
1689 | 1839 |
int right_tree = _tree_set->find(right_blossom); |
1690 | 1840 |
|
1691 | 1841 |
if (left_tree == right_tree) { |
1692 | 1842 |
shrinkOnEdge(e, left_tree); |
1693 | 1843 |
} else { |
1694 | 1844 |
augmentOnEdge(e); |
1695 |
|
|
1845 |
_unmatched -= 2; |
|
1696 | 1846 |
} |
1697 | 1847 |
} |
1698 | 1848 |
} break; |
1699 | 1849 |
case D4: |
1700 | 1850 |
splitBlossom(_delta4->top()); |
1701 | 1851 |
break; |
1702 | 1852 |
} |
1703 | 1853 |
} |
1704 | 1854 |
extractMatching(); |
1705 | 1855 |
} |
1706 | 1856 |
|
1707 | 1857 |
/// \brief Run the algorithm. |
1708 | 1858 |
/// |
1709 | 1859 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
1710 | 1860 |
/// |
1711 | 1861 |
/// \note mwm.run() is just a shortcut of the following code. |
1712 | 1862 |
/// \code |
1713 |
/// mwm. |
|
1863 |
/// mwm.fractionalInit(); |
|
1714 | 1864 |
/// mwm.start(); |
1715 | 1865 |
/// \endcode |
1716 | 1866 |
void run() { |
1717 |
|
|
1867 |
fractionalInit(); |
|
1718 | 1868 |
start(); |
1719 | 1869 |
} |
1720 | 1870 |
|
1721 | 1871 |
/// @} |
1722 | 1872 |
|
1723 | 1873 |
/// \name Primal Solution |
1724 | 1874 |
/// Functions to get the primal solution, i.e. the maximum weighted |
1725 | 1875 |
/// matching.\n |
1726 | 1876 |
/// Either \ref run() or \ref start() function should be called before |
1727 | 1877 |
/// using them. |
1728 | 1878 |
|
1729 | 1879 |
/// @{ |
1730 | 1880 |
|
1731 | 1881 |
/// \brief Return the weight of the matching. |
1732 | 1882 |
/// |
1733 | 1883 |
/// This function returns the weight of the found matching. |
1734 | 1884 |
/// |
1735 | 1885 |
/// \pre Either run() or start() must be called before using this function. |
1736 | 1886 |
Value matchingWeight() const { |
1737 | 1887 |
Value sum = 0; |
1738 | 1888 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1739 | 1889 |
if ((*_matching)[n] != INVALID) { |
1740 | 1890 |
sum += _weight[(*_matching)[n]]; |
1741 | 1891 |
} |
1742 | 1892 |
} |
1743 | 1893 |
return sum / 2; |
1744 | 1894 |
} |
1745 | 1895 |
|
1746 | 1896 |
/// \brief Return the size (cardinality) of the matching. |
1747 | 1897 |
/// |
1748 | 1898 |
/// This function returns the size (cardinality) of the found matching. |
1749 | 1899 |
/// |
1750 | 1900 |
/// \pre Either run() or start() must be called before using this function. |
1751 | 1901 |
int matchingSize() const { |
1752 | 1902 |
int num = 0; |
1753 | 1903 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1754 | 1904 |
if ((*_matching)[n] != INVALID) { |
1755 | 1905 |
++num; |
1756 | 1906 |
} |
1757 | 1907 |
} |
1758 | 1908 |
return num /= 2; |
1759 | 1909 |
} |
1760 | 1910 |
|
1761 | 1911 |
/// \brief Return \c true if the given edge is in the matching. |
1762 | 1912 |
/// |
1763 | 1913 |
/// This function returns \c true if the given edge is in the found |
1764 | 1914 |
/// matching. |
1765 | 1915 |
/// |
1766 | 1916 |
/// \pre Either run() or start() must be called before using this function. |
1767 | 1917 |
bool matching(const Edge& edge) const { |
1768 | 1918 |
return edge == (*_matching)[_graph.u(edge)]; |
1769 | 1919 |
} |
1770 | 1920 |
|
1771 | 1921 |
/// \brief Return the matching arc (or edge) incident to the given node. |
1772 | 1922 |
/// |
1773 | 1923 |
/// This function returns the matching arc (or edge) incident to the |
1774 | 1924 |
/// given node in the found matching or \c INVALID if the node is |
1775 | 1925 |
/// not covered by the matching. |
1776 | 1926 |
/// |
1777 | 1927 |
/// \pre Either run() or start() must be called before using this function. |
1778 | 1928 |
Arc matching(const Node& node) const { |
1779 | 1929 |
return (*_matching)[node]; |
1780 | 1930 |
} |
1781 | 1931 |
|
1782 | 1932 |
/// \brief Return a const reference to the matching map. |
1783 | 1933 |
/// |
1784 | 1934 |
/// This function returns a const reference to a node map that stores |
1785 | 1935 |
/// the matching arc (or edge) incident to each node. |
1786 | 1936 |
const MatchingMap& matchingMap() const { |
1787 | 1937 |
return *_matching; |
1788 | 1938 |
} |
1789 | 1939 |
|
1790 | 1940 |
/// \brief Return the mate of the given node. |
1791 | 1941 |
/// |
1792 | 1942 |
/// This function returns the mate of the given node in the found |
1793 | 1943 |
/// matching or \c INVALID if the node is not covered by the matching. |
1794 | 1944 |
/// |
1795 | 1945 |
/// \pre Either run() or start() must be called before using this function. |
1796 | 1946 |
Node mate(const Node& node) const { |
1797 | 1947 |
return (*_matching)[node] != INVALID ? |
1798 | 1948 |
_graph.target((*_matching)[node]) : INVALID; |
1799 | 1949 |
} |
1800 | 1950 |
|
1801 | 1951 |
/// @} |
1802 | 1952 |
|
1803 | 1953 |
/// \name Dual Solution |
1804 | 1954 |
/// Functions to get the dual solution.\n |
1805 | 1955 |
/// Either \ref run() or \ref start() function should be called before |
1806 | 1956 |
/// using them. |
1807 | 1957 |
|
1808 | 1958 |
/// @{ |
1809 | 1959 |
|
1810 | 1960 |
/// \brief Return the value of the dual solution. |
1811 | 1961 |
/// |
1812 | 1962 |
/// This function returns the value of the dual solution. |
1813 | 1963 |
/// It should be equal to the primal value scaled by \ref dualScale |
1814 | 1964 |
/// "dual scale". |
1815 | 1965 |
/// |
1816 | 1966 |
/// \pre Either run() or start() must be called before using this function. |
1817 | 1967 |
Value dualValue() const { |
1818 | 1968 |
Value sum = 0; |
1819 | 1969 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1820 | 1970 |
sum += nodeValue(n); |
1821 | 1971 |
} |
1822 | 1972 |
for (int i = 0; i < blossomNum(); ++i) { |
1823 | 1973 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
1824 | 1974 |
} |
1825 | 1975 |
return sum; |
1826 | 1976 |
} |
1827 | 1977 |
|
1828 | 1978 |
/// \brief Return the dual value (potential) of the given node. |
1829 | 1979 |
/// |
1830 | 1980 |
/// This function returns the dual value (potential) of the given node. |
1831 | 1981 |
/// |
1832 | 1982 |
/// \pre Either run() or start() must be called before using this function. |
1833 | 1983 |
Value nodeValue(const Node& n) const { |
1834 | 1984 |
return (*_node_potential)[n]; |
1835 | 1985 |
} |
1836 | 1986 |
|
1837 | 1987 |
/// \brief Return the number of the blossoms in the basis. |
1838 | 1988 |
/// |
1839 | 1989 |
/// This function returns the number of the blossoms in the basis. |
1840 | 1990 |
/// |
1841 | 1991 |
/// \pre Either run() or start() must be called before using this function. |
1842 | 1992 |
/// \see BlossomIt |
1843 | 1993 |
int blossomNum() const { |
1844 | 1994 |
return _blossom_potential.size(); |
1845 | 1995 |
} |
1846 | 1996 |
|
1847 | 1997 |
/// \brief Return the number of the nodes in the given blossom. |
1848 | 1998 |
/// |
1849 | 1999 |
/// This function returns the number of the nodes in the given blossom. |
1850 | 2000 |
/// |
1851 | 2001 |
/// \pre Either run() or start() must be called before using this function. |
1852 | 2002 |
/// \see BlossomIt |
1853 | 2003 |
int blossomSize(int k) const { |
1854 | 2004 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
1855 | 2005 |
} |
1856 | 2006 |
|
1857 | 2007 |
/// \brief Return the dual value (ptential) of the given blossom. |
1858 | 2008 |
/// |
1859 | 2009 |
/// This function returns the dual value (ptential) of the given blossom. |
1860 | 2010 |
/// |
1861 | 2011 |
/// \pre Either run() or start() must be called before using this function. |
1862 | 2012 |
Value blossomValue(int k) const { |
1863 | 2013 |
return _blossom_potential[k].value; |
1864 | 2014 |
} |
1865 | 2015 |
|
1866 | 2016 |
/// \brief Iterator for obtaining the nodes of a blossom. |
1867 | 2017 |
/// |
1868 | 2018 |
/// This class provides an iterator for obtaining the nodes of the |
1869 | 2019 |
/// given blossom. It lists a subset of the nodes. |
1870 | 2020 |
/// Before using this iterator, you must allocate a |
1871 | 2021 |
/// MaxWeightedMatching class and execute it. |
1872 | 2022 |
class BlossomIt { |
1873 | 2023 |
public: |
1874 | 2024 |
|
1875 | 2025 |
/// \brief Constructor. |
1876 | 2026 |
/// |
1877 | 2027 |
/// Constructor to get the nodes of the given variable. |
1878 | 2028 |
/// |
1879 | 2029 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
1880 | 2030 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
1881 | 2031 |
/// called before initializing this iterator. |
1882 | 2032 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
1883 | 2033 |
: _algorithm(&algorithm) |
1884 | 2034 |
{ |
1885 | 2035 |
_index = _algorithm->_blossom_potential[variable].begin; |
1886 | 2036 |
_last = _algorithm->_blossom_potential[variable].end; |
1887 | 2037 |
} |
1888 | 2038 |
|
1889 | 2039 |
/// \brief Conversion to \c Node. |
1890 | 2040 |
/// |
1891 | 2041 |
/// Conversion to \c Node. |
1892 | 2042 |
operator Node() const { |
1893 | 2043 |
return _algorithm->_blossom_node_list[_index]; |
1894 | 2044 |
} |
1895 | 2045 |
|
1896 | 2046 |
/// \brief Increment operator. |
1897 | 2047 |
/// |
1898 | 2048 |
/// Increment operator. |
1899 | 2049 |
BlossomIt& operator++() { |
1900 | 2050 |
++_index; |
1901 | 2051 |
return *this; |
1902 | 2052 |
} |
1903 | 2053 |
|
1904 | 2054 |
/// \brief Validity checking |
1905 | 2055 |
/// |
1906 | 2056 |
/// Checks whether the iterator is invalid. |
1907 | 2057 |
bool operator==(Invalid) const { return _index == _last; } |
1908 | 2058 |
|
1909 | 2059 |
/// \brief Validity checking |
1910 | 2060 |
/// |
1911 | 2061 |
/// Checks whether the iterator is valid. |
1912 | 2062 |
bool operator!=(Invalid) const { return _index != _last; } |
1913 | 2063 |
|
1914 | 2064 |
private: |
1915 | 2065 |
const MaxWeightedMatching* _algorithm; |
1916 | 2066 |
int _last; |
1917 | 2067 |
int _index; |
1918 | 2068 |
}; |
1919 | 2069 |
|
1920 | 2070 |
/// @} |
1921 | 2071 |
|
1922 | 2072 |
}; |
1923 | 2073 |
|
1924 | 2074 |
/// \ingroup matching |
1925 | 2075 |
/// |
1926 | 2076 |
/// \brief Weighted perfect matching in general graphs |
1927 | 2077 |
/// |
1928 | 2078 |
/// This class provides an efficient implementation of Edmond's |
1929 | 2079 |
/// maximum weighted perfect matching algorithm. The implementation |
1930 | 2080 |
/// is based on extensive use of priority queues and provides |
1931 | 2081 |
/// \f$O(nm\log n)\f$ time complexity. |
1932 | 2082 |
/// |
1933 | 2083 |
/// The maximum weighted perfect matching problem is to find a subset of |
1934 | 2084 |
/// the edges in an undirected graph with maximum overall weight for which |
1935 | 2085 |
/// each node has exactly one incident edge. |
1936 | 2086 |
/// It can be formulated with the following linear program. |
1937 | 2087 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
1938 | 2088 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
1939 | 2089 |
\quad \forall B\in\mathcal{O}\f] */ |
1940 | 2090 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
1941 | 2091 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
1942 | 2092 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
1943 | 2093 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
1944 | 2094 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
1945 | 2095 |
/// subsets of the nodes. |
1946 | 2096 |
/// |
1947 | 2097 |
/// The algorithm calculates an optimal matching and a proof of the |
1948 | 2098 |
/// optimality. The solution of the dual problem can be used to check |
1949 | 2099 |
/// the result of the algorithm. The dual linear problem is the |
1950 | 2100 |
/// following. |
1951 | 2101 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
1952 | 2102 |
w_{uv} \quad \forall uv\in E\f] */ |
1953 | 2103 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
1954 | 2104 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
1955 | 2105 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
1956 | 2106 |
/// |
1957 | 2107 |
/// The algorithm can be executed with the run() function. |
1958 | 2108 |
/// After it the matching (the primal solution) and the dual solution |
1959 | 2109 |
/// can be obtained using the query functions and the |
1960 | 2110 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
1961 | 2111 |
/// which is able to iterate on the nodes of a blossom. |
1962 | 2112 |
/// If the value type is integer, then the dual solution is multiplied |
1963 | 2113 |
/// by \ref MaxWeightedMatching::dualScale "4". |
1964 | 2114 |
/// |
1965 | 2115 |
/// \tparam GR The undirected graph type the algorithm runs on. |
1966 | 2116 |
/// \tparam WM The type edge weight map. The default type is |
1967 | 2117 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
1968 | 2118 |
#ifdef DOXYGEN |
1969 | 2119 |
template <typename GR, typename WM> |
1970 | 2120 |
#else |
1971 | 2121 |
template <typename GR, |
1972 | 2122 |
typename WM = typename GR::template EdgeMap<int> > |
1973 | 2123 |
#endif |
1974 | 2124 |
class MaxWeightedPerfectMatching { |
1975 | 2125 |
public: |
1976 | 2126 |
|
1977 | 2127 |
/// The graph type of the algorithm |
1978 | 2128 |
typedef GR Graph; |
1979 | 2129 |
/// The type of the edge weight map |
1980 | 2130 |
typedef WM WeightMap; |
1981 | 2131 |
/// The value type of the edge weights |
1982 | 2132 |
typedef typename WeightMap::Value Value; |
1983 | 2133 |
|
1984 | 2134 |
/// \brief Scaling factor for dual solution |
1985 | 2135 |
/// |
1986 | 2136 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
1987 | 2137 |
/// according to the value type. |
1988 | 2138 |
static const int dualScale = |
1989 | 2139 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
1990 | 2140 |
|
1991 | 2141 |
/// The type of the matching map |
1992 | 2142 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
1993 | 2143 |
MatchingMap; |
1994 | 2144 |
|
1995 | 2145 |
private: |
1996 | 2146 |
|
1997 | 2147 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
1998 | 2148 |
|
1999 | 2149 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
2000 | 2150 |
typedef std::vector<Node> BlossomNodeList; |
2001 | 2151 |
|
2002 | 2152 |
struct BlossomVariable { |
2003 | 2153 |
int begin, end; |
2004 | 2154 |
Value value; |
2005 | 2155 |
|
2006 | 2156 |
BlossomVariable(int _begin, int _end, Value _value) |
2007 | 2157 |
: begin(_begin), end(_end), value(_value) {} |
2008 | 2158 |
|
2009 | 2159 |
}; |
2010 | 2160 |
|
2011 | 2161 |
typedef std::vector<BlossomVariable> BlossomPotential; |
2012 | 2162 |
|
2013 | 2163 |
const Graph& _graph; |
2014 | 2164 |
const WeightMap& _weight; |
2015 | 2165 |
|
2016 | 2166 |
MatchingMap* _matching; |
2017 | 2167 |
|
2018 | 2168 |
NodePotential* _node_potential; |
2019 | 2169 |
|
2020 | 2170 |
BlossomPotential _blossom_potential; |
2021 | 2171 |
BlossomNodeList _blossom_node_list; |
2022 | 2172 |
|
2023 | 2173 |
int _node_num; |
2024 | 2174 |
int _blossom_num; |
2025 | 2175 |
|
2026 | 2176 |
typedef RangeMap<int> IntIntMap; |
2027 | 2177 |
|
2028 | 2178 |
enum Status { |
2029 | 2179 |
EVEN = -1, MATCHED = 0, ODD = 1 |
2030 | 2180 |
}; |
2031 | 2181 |
|
2032 | 2182 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
2033 | 2183 |
struct BlossomData { |
2034 | 2184 |
int tree; |
2035 | 2185 |
Status status; |
2036 | 2186 |
Arc pred, next; |
2037 | 2187 |
Value pot, offset; |
2038 | 2188 |
}; |
2039 | 2189 |
|
2040 | 2190 |
IntNodeMap *_blossom_index; |
2041 | 2191 |
BlossomSet *_blossom_set; |
2042 | 2192 |
RangeMap<BlossomData>* _blossom_data; |
2043 | 2193 |
|
2044 | 2194 |
IntNodeMap *_node_index; |
2045 | 2195 |
IntArcMap *_node_heap_index; |
2046 | 2196 |
|
2047 | 2197 |
struct NodeData { |
2048 | 2198 |
|
2049 | 2199 |
NodeData(IntArcMap& node_heap_index) |
2050 | 2200 |
: heap(node_heap_index) {} |
2051 | 2201 |
|
2052 | 2202 |
int blossom; |
2053 | 2203 |
Value pot; |
2054 | 2204 |
BinHeap<Value, IntArcMap> heap; |
2055 | 2205 |
std::map<int, Arc> heap_index; |
2056 | 2206 |
|
2057 | 2207 |
int tree; |
2058 | 2208 |
}; |
2059 | 2209 |
|
2060 | 2210 |
RangeMap<NodeData>* _node_data; |
2061 | 2211 |
|
2062 | 2212 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
2063 | 2213 |
|
2064 | 2214 |
IntIntMap *_tree_set_index; |
2065 | 2215 |
TreeSet *_tree_set; |
2066 | 2216 |
|
2067 | 2217 |
IntIntMap *_delta2_index; |
2068 | 2218 |
BinHeap<Value, IntIntMap> *_delta2; |
2069 | 2219 |
|
2070 | 2220 |
IntEdgeMap *_delta3_index; |
2071 | 2221 |
BinHeap<Value, IntEdgeMap> *_delta3; |
2072 | 2222 |
|
2073 | 2223 |
IntIntMap *_delta4_index; |
2074 | 2224 |
BinHeap<Value, IntIntMap> *_delta4; |
2075 | 2225 |
|
2076 | 2226 |
Value _delta_sum; |
2227 |
int _unmatched; |
|
2228 |
|
|
2229 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
2230 |
FractionalMatching; |
|
2231 |
FractionalMatching *_fractional; |
|
2077 | 2232 |
|
2078 | 2233 |
void createStructures() { |
2079 | 2234 |
_node_num = countNodes(_graph); |
2080 | 2235 |
_blossom_num = _node_num * 3 / 2; |
2081 | 2236 |
|
2082 | 2237 |
if (!_matching) { |
2083 | 2238 |
_matching = new MatchingMap(_graph); |
2084 | 2239 |
} |
2085 | 2240 |
if (!_node_potential) { |
2086 | 2241 |
_node_potential = new NodePotential(_graph); |
2087 | 2242 |
} |
2088 | 2243 |
if (!_blossom_set) { |
2089 | 2244 |
_blossom_index = new IntNodeMap(_graph); |
2090 | 2245 |
_blossom_set = new BlossomSet(*_blossom_index); |
2091 | 2246 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
2092 | 2247 |
} |
2093 | 2248 |
|
2094 | 2249 |
if (!_node_index) { |
2095 | 2250 |
_node_index = new IntNodeMap(_graph); |
2096 | 2251 |
_node_heap_index = new IntArcMap(_graph); |
2097 | 2252 |
_node_data = new RangeMap<NodeData>(_node_num, |
2098 | 2253 |
NodeData(*_node_heap_index)); |
2099 | 2254 |
} |
2100 | 2255 |
|
2101 | 2256 |
if (!_tree_set) { |
2102 | 2257 |
_tree_set_index = new IntIntMap(_blossom_num); |
2103 | 2258 |
_tree_set = new TreeSet(*_tree_set_index); |
2104 | 2259 |
} |
2105 | 2260 |
if (!_delta2) { |
2106 | 2261 |
_delta2_index = new IntIntMap(_blossom_num); |
2107 | 2262 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
2108 | 2263 |
} |
2109 | 2264 |
if (!_delta3) { |
2110 | 2265 |
_delta3_index = new IntEdgeMap(_graph); |
2111 | 2266 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
2112 | 2267 |
} |
2113 | 2268 |
if (!_delta4) { |
2114 | 2269 |
_delta4_index = new IntIntMap(_blossom_num); |
2115 | 2270 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
2116 | 2271 |
} |
2117 | 2272 |
} |
2118 | 2273 |
|
2119 | 2274 |
void destroyStructures() { |
2120 | 2275 |
if (_matching) { |
2121 | 2276 |
delete _matching; |
2122 | 2277 |
} |
2123 | 2278 |
if (_node_potential) { |
2124 | 2279 |
delete _node_potential; |
2125 | 2280 |
} |
2126 | 2281 |
if (_blossom_set) { |
2127 | 2282 |
delete _blossom_index; |
2128 | 2283 |
delete _blossom_set; |
2129 | 2284 |
delete _blossom_data; |
2130 | 2285 |
} |
2131 | 2286 |
|
2132 | 2287 |
if (_node_index) { |
2133 | 2288 |
delete _node_index; |
2134 | 2289 |
delete _node_heap_index; |
2135 | 2290 |
delete _node_data; |
2136 | 2291 |
} |
2137 | 2292 |
|
2138 | 2293 |
if (_tree_set) { |
2139 | 2294 |
delete _tree_set_index; |
2140 | 2295 |
delete _tree_set; |
2141 | 2296 |
} |
2142 | 2297 |
if (_delta2) { |
2143 | 2298 |
delete _delta2_index; |
2144 | 2299 |
delete _delta2; |
2145 | 2300 |
} |
2146 | 2301 |
if (_delta3) { |
2147 | 2302 |
delete _delta3_index; |
2148 | 2303 |
delete _delta3; |
2149 | 2304 |
} |
2150 | 2305 |
if (_delta4) { |
2151 | 2306 |
delete _delta4_index; |
2152 | 2307 |
delete _delta4; |
2153 | 2308 |
} |
2154 | 2309 |
} |
2155 | 2310 |
|
2156 | 2311 |
void matchedToEven(int blossom, int tree) { |
2157 | 2312 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2158 | 2313 |
_delta2->erase(blossom); |
2159 | 2314 |
} |
2160 | 2315 |
|
2161 | 2316 |
if (!_blossom_set->trivial(blossom)) { |
2162 | 2317 |
(*_blossom_data)[blossom].pot -= |
2163 | 2318 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
2164 | 2319 |
} |
2165 | 2320 |
|
2166 | 2321 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
2167 | 2322 |
n != INVALID; ++n) { |
2168 | 2323 |
|
2169 | 2324 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
2170 | 2325 |
int ni = (*_node_index)[n]; |
2171 | 2326 |
|
2172 | 2327 |
(*_node_data)[ni].heap.clear(); |
2173 | 2328 |
(*_node_data)[ni].heap_index.clear(); |
2174 | 2329 |
|
2175 | 2330 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
2176 | 2331 |
|
2177 | 2332 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
2178 | 2333 |
Node v = _graph.source(e); |
2179 | 2334 |
int vb = _blossom_set->find(v); |
2180 | 2335 |
int vi = (*_node_index)[v]; |
2181 | 2336 |
|
2182 | 2337 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
2183 | 2338 |
dualScale * _weight[e]; |
2184 | 2339 |
|
2185 | 2340 |
if ((*_blossom_data)[vb].status == EVEN) { |
2186 | 2341 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
2187 | 2342 |
_delta3->push(e, rw / 2); |
2188 | 2343 |
} |
2189 | 2344 |
} else { |
2190 | 2345 |
typename std::map<int, Arc>::iterator it = |
2191 | 2346 |
(*_node_data)[vi].heap_index.find(tree); |
2192 | 2347 |
|
2193 | 2348 |
if (it != (*_node_data)[vi].heap_index.end()) { |
2194 | 2349 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
2195 | 2350 |
(*_node_data)[vi].heap.replace(it->second, e); |
2196 | 2351 |
(*_node_data)[vi].heap.decrease(e, rw); |
2197 | 2352 |
it->second = e; |
2198 | 2353 |
} |
2199 | 2354 |
} else { |
2200 | 2355 |
(*_node_data)[vi].heap.push(e, rw); |
2201 | 2356 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
2202 | 2357 |
} |
2203 | 2358 |
|
2204 | 2359 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
2205 | 2360 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
2206 | 2361 |
|
2207 | 2362 |
if ((*_blossom_data)[vb].status == MATCHED) { |
2208 | 2363 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
2209 | 2364 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
2210 | 2365 |
(*_blossom_data)[vb].offset); |
2211 | 2366 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
2212 | 2367 |
(*_blossom_data)[vb].offset){ |
2213 | 2368 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
2214 | 2369 |
(*_blossom_data)[vb].offset); |
2215 | 2370 |
} |
2216 | 2371 |
} |
2217 | 2372 |
} |
2218 | 2373 |
} |
2219 | 2374 |
} |
2220 | 2375 |
} |
2221 | 2376 |
(*_blossom_data)[blossom].offset = 0; |
2222 | 2377 |
} |
2223 | 2378 |
|
2224 | 2379 |
void matchedToOdd(int blossom) { |
2225 | 2380 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2226 | 2381 |
_delta2->erase(blossom); |
2227 | 2382 |
} |
2228 | 2383 |
(*_blossom_data)[blossom].offset += _delta_sum; |
2229 | 2384 |
if (!_blossom_set->trivial(blossom)) { |
2230 | 2385 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
2231 | 2386 |
(*_blossom_data)[blossom].offset); |
2232 | 2387 |
} |
2233 | 2388 |
} |
2234 | 2389 |
|
2235 | 2390 |
void evenToMatched(int blossom, int tree) { |
2236 | 2391 |
if (!_blossom_set->trivial(blossom)) { |
2237 | 2392 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
2238 | 2393 |
} |
2239 | 2394 |
|
2240 | 2395 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
2241 | 2396 |
n != INVALID; ++n) { |
2242 | 2397 |
int ni = (*_node_index)[n]; |
2243 | 2398 |
(*_node_data)[ni].pot -= _delta_sum; |
2244 | 2399 |
|
2245 | 2400 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
2246 | 2401 |
Node v = _graph.source(e); |
2247 | 2402 |
int vb = _blossom_set->find(v); |
2248 | 2403 |
int vi = (*_node_index)[v]; |
2249 | 2404 |
|
2250 | 2405 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
2251 | 2406 |
dualScale * _weight[e]; |
2252 | 2407 |
|
2253 | 2408 |
if (vb == blossom) { |
2254 | 2409 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
2255 | 2410 |
_delta3->erase(e); |
2256 | 2411 |
} |
2257 | 2412 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
2258 | 2413 |
|
2259 | 2414 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
2260 | 2415 |
_delta3->erase(e); |
2261 | 2416 |
} |
2262 | 2417 |
|
2263 | 2418 |
int vt = _tree_set->find(vb); |
2264 | 2419 |
|
2265 | 2420 |
if (vt != tree) { |
2266 | 2421 |
|
2267 | 2422 |
Arc r = _graph.oppositeArc(e); |
2268 | 2423 |
|
... | ... |
@@ -2600,525 +2755,667 @@ |
2600 | 2755 |
|
2601 | 2756 |
_tree_set->insert(surface, tree); |
2602 | 2757 |
_tree_set->erase(nca); |
2603 | 2758 |
} |
2604 | 2759 |
|
2605 | 2760 |
void splitBlossom(int blossom) { |
2606 | 2761 |
Arc next = (*_blossom_data)[blossom].next; |
2607 | 2762 |
Arc pred = (*_blossom_data)[blossom].pred; |
2608 | 2763 |
|
2609 | 2764 |
int tree = _tree_set->find(blossom); |
2610 | 2765 |
|
2611 | 2766 |
(*_blossom_data)[blossom].status = MATCHED; |
2612 | 2767 |
oddToMatched(blossom); |
2613 | 2768 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2614 | 2769 |
_delta2->erase(blossom); |
2615 | 2770 |
} |
2616 | 2771 |
|
2617 | 2772 |
std::vector<int> subblossoms; |
2618 | 2773 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
2619 | 2774 |
|
2620 | 2775 |
Value offset = (*_blossom_data)[blossom].offset; |
2621 | 2776 |
int b = _blossom_set->find(_graph.source(pred)); |
2622 | 2777 |
int d = _blossom_set->find(_graph.source(next)); |
2623 | 2778 |
|
2624 | 2779 |
int ib = -1, id = -1; |
2625 | 2780 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
2626 | 2781 |
if (subblossoms[i] == b) ib = i; |
2627 | 2782 |
if (subblossoms[i] == d) id = i; |
2628 | 2783 |
|
2629 | 2784 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
2630 | 2785 |
if (!_blossom_set->trivial(subblossoms[i])) { |
2631 | 2786 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
2632 | 2787 |
} |
2633 | 2788 |
if (_blossom_set->classPrio(subblossoms[i]) != |
2634 | 2789 |
std::numeric_limits<Value>::max()) { |
2635 | 2790 |
_delta2->push(subblossoms[i], |
2636 | 2791 |
_blossom_set->classPrio(subblossoms[i]) - |
2637 | 2792 |
(*_blossom_data)[subblossoms[i]].offset); |
2638 | 2793 |
} |
2639 | 2794 |
} |
2640 | 2795 |
|
2641 | 2796 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
2642 | 2797 |
for (int i = (id + 1) % subblossoms.size(); |
2643 | 2798 |
i != ib; i = (i + 2) % subblossoms.size()) { |
2644 | 2799 |
int sb = subblossoms[i]; |
2645 | 2800 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2646 | 2801 |
(*_blossom_data)[sb].next = |
2647 | 2802 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2648 | 2803 |
} |
2649 | 2804 |
|
2650 | 2805 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
2651 | 2806 |
int sb = subblossoms[i]; |
2652 | 2807 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2653 | 2808 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
2654 | 2809 |
|
2655 | 2810 |
(*_blossom_data)[sb].status = ODD; |
2656 | 2811 |
matchedToOdd(sb); |
2657 | 2812 |
_tree_set->insert(sb, tree); |
2658 | 2813 |
(*_blossom_data)[sb].pred = pred; |
2659 | 2814 |
(*_blossom_data)[sb].next = |
2660 | 2815 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2661 | 2816 |
|
2662 | 2817 |
pred = (*_blossom_data)[ub].next; |
2663 | 2818 |
|
2664 | 2819 |
(*_blossom_data)[tb].status = EVEN; |
2665 | 2820 |
matchedToEven(tb, tree); |
2666 | 2821 |
_tree_set->insert(tb, tree); |
2667 | 2822 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
2668 | 2823 |
} |
2669 | 2824 |
|
2670 | 2825 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
2671 | 2826 |
matchedToOdd(subblossoms[id]); |
2672 | 2827 |
_tree_set->insert(subblossoms[id], tree); |
2673 | 2828 |
(*_blossom_data)[subblossoms[id]].next = next; |
2674 | 2829 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
2675 | 2830 |
|
2676 | 2831 |
} else { |
2677 | 2832 |
|
2678 | 2833 |
for (int i = (ib + 1) % subblossoms.size(); |
2679 | 2834 |
i != id; i = (i + 2) % subblossoms.size()) { |
2680 | 2835 |
int sb = subblossoms[i]; |
2681 | 2836 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2682 | 2837 |
(*_blossom_data)[sb].next = |
2683 | 2838 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2684 | 2839 |
} |
2685 | 2840 |
|
2686 | 2841 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
2687 | 2842 |
int sb = subblossoms[i]; |
2688 | 2843 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2689 | 2844 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
2690 | 2845 |
|
2691 | 2846 |
(*_blossom_data)[sb].status = ODD; |
2692 | 2847 |
matchedToOdd(sb); |
2693 | 2848 |
_tree_set->insert(sb, tree); |
2694 | 2849 |
(*_blossom_data)[sb].next = next; |
2695 | 2850 |
(*_blossom_data)[sb].pred = |
2696 | 2851 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2697 | 2852 |
|
2698 | 2853 |
(*_blossom_data)[tb].status = EVEN; |
2699 | 2854 |
matchedToEven(tb, tree); |
2700 | 2855 |
_tree_set->insert(tb, tree); |
2701 | 2856 |
(*_blossom_data)[tb].pred = |
2702 | 2857 |
(*_blossom_data)[tb].next = |
2703 | 2858 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
2704 | 2859 |
next = (*_blossom_data)[ub].next; |
2705 | 2860 |
} |
2706 | 2861 |
|
2707 | 2862 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
2708 | 2863 |
matchedToOdd(subblossoms[ib]); |
2709 | 2864 |
_tree_set->insert(subblossoms[ib], tree); |
2710 | 2865 |
(*_blossom_data)[subblossoms[ib]].next = next; |
2711 | 2866 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
2712 | 2867 |
} |
2713 | 2868 |
_tree_set->erase(blossom); |
2714 | 2869 |
} |
2715 | 2870 |
|
2716 | 2871 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
2717 | 2872 |
if (_blossom_set->trivial(blossom)) { |
2718 | 2873 |
int bi = (*_node_index)[base]; |
2719 | 2874 |
Value pot = (*_node_data)[bi].pot; |
2720 | 2875 |
|
2721 | 2876 |
(*_matching)[base] = matching; |
2722 | 2877 |
_blossom_node_list.push_back(base); |
2723 | 2878 |
(*_node_potential)[base] = pot; |
2724 | 2879 |
} else { |
2725 | 2880 |
|
2726 | 2881 |
Value pot = (*_blossom_data)[blossom].pot; |
2727 | 2882 |
int bn = _blossom_node_list.size(); |
2728 | 2883 |
|
2729 | 2884 |
std::vector<int> subblossoms; |
2730 | 2885 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
2731 | 2886 |
int b = _blossom_set->find(base); |
2732 | 2887 |
int ib = -1; |
2733 | 2888 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
2734 | 2889 |
if (subblossoms[i] == b) { ib = i; break; } |
2735 | 2890 |
} |
2736 | 2891 |
|
2737 | 2892 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
2738 | 2893 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
2739 | 2894 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
2740 | 2895 |
|
2741 | 2896 |
Arc m = (*_blossom_data)[tb].next; |
2742 | 2897 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
2743 | 2898 |
extractBlossom(tb, _graph.source(m), m); |
2744 | 2899 |
} |
2745 | 2900 |
extractBlossom(subblossoms[ib], base, matching); |
2746 | 2901 |
|
2747 | 2902 |
int en = _blossom_node_list.size(); |
2748 | 2903 |
|
2749 | 2904 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
2750 | 2905 |
} |
2751 | 2906 |
} |
2752 | 2907 |
|
2753 | 2908 |
void extractMatching() { |
2754 | 2909 |
std::vector<int> blossoms; |
2755 | 2910 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
2756 | 2911 |
blossoms.push_back(c); |
2757 | 2912 |
} |
2758 | 2913 |
|
2759 | 2914 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
2760 | 2915 |
|
2761 | 2916 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
2762 | 2917 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
2763 | 2918 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
2764 | 2919 |
n != INVALID; ++n) { |
2765 | 2920 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
2766 | 2921 |
} |
2767 | 2922 |
|
2768 | 2923 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
2769 | 2924 |
Node base = _graph.source(matching); |
2770 | 2925 |
extractBlossom(blossoms[i], base, matching); |
2771 | 2926 |
} |
2772 | 2927 |
} |
2773 | 2928 |
|
2774 | 2929 |
public: |
2775 | 2930 |
|
2776 | 2931 |
/// \brief Constructor |
2777 | 2932 |
/// |
2778 | 2933 |
/// Constructor. |
2779 | 2934 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
2780 | 2935 |
: _graph(graph), _weight(weight), _matching(0), |
2781 | 2936 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
2782 | 2937 |
_node_num(0), _blossom_num(0), |
2783 | 2938 |
|
2784 | 2939 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
2785 | 2940 |
_node_index(0), _node_heap_index(0), _node_data(0), |
2786 | 2941 |
_tree_set_index(0), _tree_set(0), |
2787 | 2942 |
|
2788 | 2943 |
_delta2_index(0), _delta2(0), |
2789 | 2944 |
_delta3_index(0), _delta3(0), |
2790 | 2945 |
_delta4_index(0), _delta4(0), |
2791 | 2946 |
|
2792 |
_delta_sum() |
|
2947 |
_delta_sum(), _unmatched(0), |
|
2948 |
|
|
2949 |
_fractional(0) |
|
2950 |
{} |
|
2793 | 2951 |
|
2794 | 2952 |
~MaxWeightedPerfectMatching() { |
2795 | 2953 |
destroyStructures(); |
2954 |
if (_fractional) { |
|
2955 |
delete _fractional; |
|
2956 |
} |
|
2796 | 2957 |
} |
2797 | 2958 |
|
2798 | 2959 |
/// \name Execution Control |
2799 | 2960 |
/// The simplest way to execute the algorithm is to use the |
2800 | 2961 |
/// \ref run() member function. |
2801 | 2962 |
|
2802 | 2963 |
///@{ |
2803 | 2964 |
|
2804 | 2965 |
/// \brief Initialize the algorithm |
2805 | 2966 |
/// |
2806 | 2967 |
/// This function initializes the algorithm. |
2807 | 2968 |
void init() { |
2808 | 2969 |
createStructures(); |
2809 | 2970 |
|
2810 | 2971 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
2811 | 2972 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
2812 | 2973 |
} |
2813 | 2974 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2814 | 2975 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
2815 | 2976 |
} |
2816 | 2977 |
for (int i = 0; i < _blossom_num; ++i) { |
2817 | 2978 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
2818 | 2979 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
2819 | 2980 |
} |
2820 | 2981 |
|
2982 |
_unmatched = _node_num; |
|
2983 |
|
|
2821 | 2984 |
int index = 0; |
2822 | 2985 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2823 | 2986 |
Value max = - std::numeric_limits<Value>::max(); |
2824 | 2987 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
2825 | 2988 |
if (_graph.target(e) == n) continue; |
2826 | 2989 |
if ((dualScale * _weight[e]) / 2 > max) { |
2827 | 2990 |
max = (dualScale * _weight[e]) / 2; |
2828 | 2991 |
} |
2829 | 2992 |
} |
2830 | 2993 |
(*_node_index)[n] = index; |
2831 | 2994 |
(*_node_data)[index].pot = max; |
2832 | 2995 |
int blossom = |
2833 | 2996 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
2834 | 2997 |
|
2835 | 2998 |
_tree_set->insert(blossom); |
2836 | 2999 |
|
2837 | 3000 |
(*_blossom_data)[blossom].status = EVEN; |
2838 | 3001 |
(*_blossom_data)[blossom].pred = INVALID; |
2839 | 3002 |
(*_blossom_data)[blossom].next = INVALID; |
2840 | 3003 |
(*_blossom_data)[blossom].pot = 0; |
2841 | 3004 |
(*_blossom_data)[blossom].offset = 0; |
2842 | 3005 |
++index; |
2843 | 3006 |
} |
2844 | 3007 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2845 | 3008 |
int si = (*_node_index)[_graph.u(e)]; |
2846 | 3009 |
int ti = (*_node_index)[_graph.v(e)]; |
2847 | 3010 |
if (_graph.u(e) != _graph.v(e)) { |
2848 | 3011 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
2849 | 3012 |
dualScale * _weight[e]) / 2); |
2850 | 3013 |
} |
2851 | 3014 |
} |
2852 | 3015 |
} |
2853 | 3016 |
|
3017 |
/// \brief Initialize the algorithm with fractional matching |
|
3018 |
/// |
|
3019 |
/// This function initializes the algorithm with a fractional |
|
3020 |
/// matching. This initialization is also called jumpstart heuristic. |
|
3021 |
void fractionalInit() { |
|
3022 |
createStructures(); |
|
3023 |
|
|
3024 |
if (_fractional == 0) { |
|
3025 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
3026 |
} |
|
3027 |
if (!_fractional->run()) { |
|
3028 |
_unmatched = -1; |
|
3029 |
return; |
|
3030 |
} |
|
3031 |
|
|
3032 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
3033 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
3034 |
} |
|
3035 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3036 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
3037 |
} |
|
3038 |
for (int i = 0; i < _blossom_num; ++i) { |
|
3039 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
3040 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
3041 |
} |
|
3042 |
|
|
3043 |
_unmatched = 0; |
|
3044 |
|
|
3045 |
int index = 0; |
|
3046 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3047 |
Value pot = _fractional->nodeValue(n); |
|
3048 |
(*_node_index)[n] = index; |
|
3049 |
(*_node_data)[index].pot = pot; |
|
3050 |
int blossom = |
|
3051 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
3052 |
|
|
3053 |
(*_blossom_data)[blossom].status = MATCHED; |
|
3054 |
(*_blossom_data)[blossom].pred = INVALID; |
|
3055 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
3056 |
(*_blossom_data)[blossom].pot = 0; |
|
3057 |
(*_blossom_data)[blossom].offset = 0; |
|
3058 |
++index; |
|
3059 |
} |
|
3060 |
|
|
3061 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
3062 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3063 |
if (processed[n]) continue; |
|
3064 |
processed[n] = true; |
|
3065 |
if (_fractional->matching(n) == INVALID) continue; |
|
3066 |
int num = 1; |
|
3067 |
Node v = _graph.target(_fractional->matching(n)); |
|
3068 |
while (n != v) { |
|
3069 |
processed[v] = true; |
|
3070 |
v = _graph.target(_fractional->matching(v)); |
|
3071 |
++num; |
|
3072 |
} |
|
3073 |
|
|
3074 |
if (num % 2 == 1) { |
|
3075 |
std::vector<int> subblossoms(num); |
|
3076 |
|
|
3077 |
subblossoms[--num] = _blossom_set->find(n); |
|
3078 |
v = _graph.target(_fractional->matching(n)); |
|
3079 |
while (n != v) { |
|
3080 |
subblossoms[--num] = _blossom_set->find(v); |
|
3081 |
v = _graph.target(_fractional->matching(v)); |
|
3082 |
} |
|
3083 |
|
|
3084 |
int surface = |
|
3085 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
3086 |
(*_blossom_data)[surface].status = EVEN; |
|
3087 |
(*_blossom_data)[surface].pred = INVALID; |
|
3088 |
(*_blossom_data)[surface].next = INVALID; |
|
3089 |
(*_blossom_data)[surface].pot = 0; |
|
3090 |
(*_blossom_data)[surface].offset = 0; |
|
3091 |
|
|
3092 |
_tree_set->insert(surface); |
|
3093 |
++_unmatched; |
|
3094 |
} |
|
3095 |
} |
|
3096 |
|
|
3097 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3098 |
int si = (*_node_index)[_graph.u(e)]; |
|
3099 |
int sb = _blossom_set->find(_graph.u(e)); |
|
3100 |
int ti = (*_node_index)[_graph.v(e)]; |
|
3101 |
int tb = _blossom_set->find(_graph.v(e)); |
|
3102 |
if ((*_blossom_data)[sb].status == EVEN && |
|
3103 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
3104 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
3105 |
dualScale * _weight[e]) / 2); |
|
3106 |
} |
|
3107 |
} |
|
3108 |
|
|
3109 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3110 |
int nb = _blossom_set->find(n); |
|
3111 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
3112 |
int ni = (*_node_index)[n]; |
|
3113 |
|
|
3114 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
3115 |
Node v = _graph.target(e); |
|
3116 |
int vb = _blossom_set->find(v); |
|
3117 |
int vi = (*_node_index)[v]; |
|
3118 |
|
|
3119 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
3120 |
dualScale * _weight[e]; |
|
3121 |
|
|
3122 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
3123 |
|
|
3124 |
int vt = _tree_set->find(vb); |
|
3125 |
|
|
3126 |
typename std::map<int, Arc>::iterator it = |
|
3127 |
(*_node_data)[ni].heap_index.find(vt); |
|
3128 |
|
|
3129 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
3130 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
3131 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
3132 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
3133 |
it->second = e; |
|
3134 |
} |
|
3135 |
} else { |
|
3136 |
(*_node_data)[ni].heap.push(e, rw); |
|
3137 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
3138 |
} |
|
3139 |
} |
|
3140 |
} |
|
3141 |
|
|
3142 |
if (!(*_node_data)[ni].heap.empty()) { |
|
3143 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
3144 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
3145 |
} |
|
3146 |
} |
|
3147 |
} |
|
3148 |
|
|
2854 | 3149 |
/// \brief Start the algorithm |
2855 | 3150 |
/// |
2856 | 3151 |
/// This function starts the algorithm. |
2857 | 3152 |
/// |
2858 |
/// \pre \ref init() must be called before |
|
3153 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
|
3154 |
/// using this function. |
|
2859 | 3155 |
bool start() { |
2860 | 3156 |
enum OpType { |
2861 | 3157 |
D2, D3, D4 |
2862 | 3158 |
}; |
2863 | 3159 |
|
2864 |
int unmatched = _node_num; |
|
2865 |
while (unmatched > 0) { |
|
3160 |
if (_unmatched == -1) return false; |
|
3161 |
|
|
3162 |
while (_unmatched > 0) { |
|
2866 | 3163 |
Value d2 = !_delta2->empty() ? |
2867 | 3164 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
2868 | 3165 |
|
2869 | 3166 |
Value d3 = !_delta3->empty() ? |
2870 | 3167 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
2871 | 3168 |
|
2872 | 3169 |
Value d4 = !_delta4->empty() ? |
2873 | 3170 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
2874 | 3171 |
|
2875 | 3172 |
_delta_sum = d3; OpType ot = D3; |
2876 | 3173 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
2877 | 3174 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
2878 | 3175 |
|
2879 | 3176 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
2880 | 3177 |
return false; |
2881 | 3178 |
} |
2882 | 3179 |
|
2883 | 3180 |
switch (ot) { |
2884 | 3181 |
case D2: |
2885 | 3182 |
{ |
2886 | 3183 |
int blossom = _delta2->top(); |
2887 | 3184 |
Node n = _blossom_set->classTop(blossom); |
2888 | 3185 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
2889 | 3186 |
extendOnArc(e); |
2890 | 3187 |
} |
2891 | 3188 |
break; |
2892 | 3189 |
case D3: |
2893 | 3190 |
{ |
2894 | 3191 |
Edge e = _delta3->top(); |
2895 | 3192 |
|
2896 | 3193 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
2897 | 3194 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
2898 | 3195 |
|
2899 | 3196 |
if (left_blossom == right_blossom) { |
2900 | 3197 |
_delta3->pop(); |
2901 | 3198 |
} else { |
2902 | 3199 |
int left_tree = _tree_set->find(left_blossom); |
2903 | 3200 |
int right_tree = _tree_set->find(right_blossom); |
2904 | 3201 |
|
2905 | 3202 |
if (left_tree == right_tree) { |
2906 | 3203 |
shrinkOnEdge(e, left_tree); |
2907 | 3204 |
} else { |
2908 | 3205 |
augmentOnEdge(e); |
2909 |
|
|
3206 |
_unmatched -= 2; |
|
2910 | 3207 |
} |
2911 | 3208 |
} |
2912 | 3209 |
} break; |
2913 | 3210 |
case D4: |
2914 | 3211 |
splitBlossom(_delta4->top()); |
2915 | 3212 |
break; |
2916 | 3213 |
} |
2917 | 3214 |
} |
2918 | 3215 |
extractMatching(); |
2919 | 3216 |
return true; |
2920 | 3217 |
} |
2921 | 3218 |
|
2922 | 3219 |
/// \brief Run the algorithm. |
2923 | 3220 |
/// |
2924 | 3221 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
2925 | 3222 |
/// |
2926 | 3223 |
/// \note mwpm.run() is just a shortcut of the following code. |
2927 | 3224 |
/// \code |
2928 |
/// mwpm. |
|
3225 |
/// mwpm.fractionalInit(); |
|
2929 | 3226 |
/// mwpm.start(); |
2930 | 3227 |
/// \endcode |
2931 | 3228 |
bool run() { |
2932 |
|
|
3229 |
fractionalInit(); |
|
2933 | 3230 |
return start(); |
2934 | 3231 |
} |
2935 | 3232 |
|
2936 | 3233 |
/// @} |
2937 | 3234 |
|
2938 | 3235 |
/// \name Primal Solution |
2939 | 3236 |
/// Functions to get the primal solution, i.e. the maximum weighted |
2940 | 3237 |
/// perfect matching.\n |
2941 | 3238 |
/// Either \ref run() or \ref start() function should be called before |
2942 | 3239 |
/// using them. |
2943 | 3240 |
|
2944 | 3241 |
/// @{ |
2945 | 3242 |
|
2946 | 3243 |
/// \brief Return the weight of the matching. |
2947 | 3244 |
/// |
2948 | 3245 |
/// This function returns the weight of the found matching. |
2949 | 3246 |
/// |
2950 | 3247 |
/// \pre Either run() or start() must be called before using this function. |
2951 | 3248 |
Value matchingWeight() const { |
2952 | 3249 |
Value sum = 0; |
2953 | 3250 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2954 | 3251 |
if ((*_matching)[n] != INVALID) { |
2955 | 3252 |
sum += _weight[(*_matching)[n]]; |
2956 | 3253 |
} |
2957 | 3254 |
} |
2958 | 3255 |
return sum / 2; |
2959 | 3256 |
} |
2960 | 3257 |
|
2961 | 3258 |
/// \brief Return \c true if the given edge is in the matching. |
2962 | 3259 |
/// |
2963 | 3260 |
/// This function returns \c true if the given edge is in the found |
2964 | 3261 |
/// matching. |
2965 | 3262 |
/// |
2966 | 3263 |
/// \pre Either run() or start() must be called before using this function. |
2967 | 3264 |
bool matching(const Edge& edge) const { |
2968 | 3265 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
2969 | 3266 |
} |
2970 | 3267 |
|
2971 | 3268 |
/// \brief Return the matching arc (or edge) incident to the given node. |
2972 | 3269 |
/// |
2973 | 3270 |
/// This function returns the matching arc (or edge) incident to the |
2974 | 3271 |
/// given node in the found matching or \c INVALID if the node is |
2975 | 3272 |
/// not covered by the matching. |
2976 | 3273 |
/// |
2977 | 3274 |
/// \pre Either run() or start() must be called before using this function. |
2978 | 3275 |
Arc matching(const Node& node) const { |
2979 | 3276 |
return (*_matching)[node]; |
2980 | 3277 |
} |
2981 | 3278 |
|
2982 | 3279 |
/// \brief Return a const reference to the matching map. |
2983 | 3280 |
/// |
2984 | 3281 |
/// This function returns a const reference to a node map that stores |
2985 | 3282 |
/// the matching arc (or edge) incident to each node. |
2986 | 3283 |
const MatchingMap& matchingMap() const { |
2987 | 3284 |
return *_matching; |
2988 | 3285 |
} |
2989 | 3286 |
|
2990 | 3287 |
/// \brief Return the mate of the given node. |
2991 | 3288 |
/// |
2992 | 3289 |
/// This function returns the mate of the given node in the found |
2993 | 3290 |
/// matching or \c INVALID if the node is not covered by the matching. |
2994 | 3291 |
/// |
2995 | 3292 |
/// \pre Either run() or start() must be called before using this function. |
2996 | 3293 |
Node mate(const Node& node) const { |
2997 | 3294 |
return _graph.target((*_matching)[node]); |
2998 | 3295 |
} |
2999 | 3296 |
|
3000 | 3297 |
/// @} |
3001 | 3298 |
|
3002 | 3299 |
/// \name Dual Solution |
3003 | 3300 |
/// Functions to get the dual solution.\n |
3004 | 3301 |
/// Either \ref run() or \ref start() function should be called before |
3005 | 3302 |
/// using them. |
3006 | 3303 |
|
3007 | 3304 |
/// @{ |
3008 | 3305 |
|
3009 | 3306 |
/// \brief Return the value of the dual solution. |
3010 | 3307 |
/// |
3011 | 3308 |
/// This function returns the value of the dual solution. |
3012 | 3309 |
/// It should be equal to the primal value scaled by \ref dualScale |
3013 | 3310 |
/// "dual scale". |
3014 | 3311 |
/// |
3015 | 3312 |
/// \pre Either run() or start() must be called before using this function. |
3016 | 3313 |
Value dualValue() const { |
3017 | 3314 |
Value sum = 0; |
3018 | 3315 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
3019 | 3316 |
sum += nodeValue(n); |
3020 | 3317 |
} |
3021 | 3318 |
for (int i = 0; i < blossomNum(); ++i) { |
3022 | 3319 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
3023 | 3320 |
} |
3024 | 3321 |
return sum; |
3025 | 3322 |
} |
3026 | 3323 |
|
3027 | 3324 |
/// \brief Return the dual value (potential) of the given node. |
3028 | 3325 |
/// |
3029 | 3326 |
/// This function returns the dual value (potential) of the given node. |
3030 | 3327 |
/// |
3031 | 3328 |
/// \pre Either run() or start() must be called before using this function. |
3032 | 3329 |
Value nodeValue(const Node& n) const { |
3033 | 3330 |
return (*_node_potential)[n]; |
3034 | 3331 |
} |
3035 | 3332 |
|
3036 | 3333 |
/// \brief Return the number of the blossoms in the basis. |
3037 | 3334 |
/// |
3038 | 3335 |
/// This function returns the number of the blossoms in the basis. |
3039 | 3336 |
/// |
3040 | 3337 |
/// \pre Either run() or start() must be called before using this function. |
3041 | 3338 |
/// \see BlossomIt |
3042 | 3339 |
int blossomNum() const { |
3043 | 3340 |
return _blossom_potential.size(); |
3044 | 3341 |
} |
3045 | 3342 |
|
3046 | 3343 |
/// \brief Return the number of the nodes in the given blossom. |
3047 | 3344 |
/// |
3048 | 3345 |
/// This function returns the number of the nodes in the given blossom. |
3049 | 3346 |
/// |
3050 | 3347 |
/// \pre Either run() or start() must be called before using this function. |
3051 | 3348 |
/// \see BlossomIt |
3052 | 3349 |
int blossomSize(int k) const { |
3053 | 3350 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
3054 | 3351 |
} |
3055 | 3352 |
|
3056 | 3353 |
/// \brief Return the dual value (ptential) of the given blossom. |
3057 | 3354 |
/// |
3058 | 3355 |
/// This function returns the dual value (ptential) of the given blossom. |
3059 | 3356 |
/// |
3060 | 3357 |
/// \pre Either run() or start() must be called before using this function. |
3061 | 3358 |
Value blossomValue(int k) const { |
3062 | 3359 |
return _blossom_potential[k].value; |
3063 | 3360 |
} |
3064 | 3361 |
|
3065 | 3362 |
/// \brief Iterator for obtaining the nodes of a blossom. |
3066 | 3363 |
/// |
3067 | 3364 |
/// This class provides an iterator for obtaining the nodes of the |
3068 | 3365 |
/// given blossom. It lists a subset of the nodes. |
3069 | 3366 |
/// Before using this iterator, you must allocate a |
3070 | 3367 |
/// MaxWeightedPerfectMatching class and execute it. |
3071 | 3368 |
class BlossomIt { |
3072 | 3369 |
public: |
3073 | 3370 |
|
3074 | 3371 |
/// \brief Constructor. |
3075 | 3372 |
/// |
3076 | 3373 |
/// Constructor to get the nodes of the given variable. |
3077 | 3374 |
/// |
3078 | 3375 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
3079 | 3376 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
3080 | 3377 |
/// must be called before initializing this iterator. |
3081 | 3378 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
3082 | 3379 |
: _algorithm(&algorithm) |
3083 | 3380 |
{ |
3084 | 3381 |
_index = _algorithm->_blossom_potential[variable].begin; |
3085 | 3382 |
_last = _algorithm->_blossom_potential[variable].end; |
3086 | 3383 |
} |
3087 | 3384 |
|
3088 | 3385 |
/// \brief Conversion to \c Node. |
3089 | 3386 |
/// |
3090 | 3387 |
/// Conversion to \c Node. |
3091 | 3388 |
operator Node() const { |
3092 | 3389 |
return _algorithm->_blossom_node_list[_index]; |
3093 | 3390 |
} |
3094 | 3391 |
|
3095 | 3392 |
/// \brief Increment operator. |
3096 | 3393 |
/// |
3097 | 3394 |
/// Increment operator. |
3098 | 3395 |
BlossomIt& operator++() { |
3099 | 3396 |
++_index; |
3100 | 3397 |
return *this; |
3101 | 3398 |
} |
3102 | 3399 |
|
3103 | 3400 |
/// \brief Validity checking |
3104 | 3401 |
/// |
3105 | 3402 |
/// This function checks whether the iterator is invalid. |
3106 | 3403 |
bool operator==(Invalid) const { return _index == _last; } |
3107 | 3404 |
|
3108 | 3405 |
/// \brief Validity checking |
3109 | 3406 |
/// |
3110 | 3407 |
/// This function checks whether the iterator is valid. |
3111 | 3408 |
bool operator!=(Invalid) const { return _index != _last; } |
3112 | 3409 |
|
3113 | 3410 |
private: |
3114 | 3411 |
const MaxWeightedPerfectMatching* _algorithm; |
3115 | 3412 |
int _last; |
3116 | 3413 |
int _index; |
3117 | 3414 |
}; |
3118 | 3415 |
|
3119 | 3416 |
/// @} |
3120 | 3417 |
|
3121 | 3418 |
}; |
3122 | 3419 |
|
3123 | 3420 |
} //END OF NAMESPACE LEMON |
3124 | 3421 |
... | ... |
@@ -212,213 +212,237 @@ |
212 | 212 |
const_mat_test.matching(e); |
213 | 213 |
const_mat_test.matching(n); |
214 | 214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
215 | 215 |
const_mat_test.matchingMap(); |
216 | 216 |
e = mmap[n]; |
217 | 217 |
const_mat_test.mate(n); |
218 | 218 |
|
219 | 219 |
int k = 0; |
220 | 220 |
const_mat_test.dualValue(); |
221 | 221 |
const_mat_test.nodeValue(n); |
222 | 222 |
const_mat_test.blossomNum(); |
223 | 223 |
const_mat_test.blossomSize(k); |
224 | 224 |
const_mat_test.blossomValue(k); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
void checkMatching(const SmartGraph& graph, |
228 | 228 |
const MaxMatching<SmartGraph>& mm) { |
229 | 229 |
int num = 0; |
230 | 230 |
|
231 | 231 |
IntNodeMap comp_index(graph); |
232 | 232 |
UnionFind<IntNodeMap> comp(comp_index); |
233 | 233 |
|
234 | 234 |
int barrier_num = 0; |
235 | 235 |
|
236 | 236 |
for (NodeIt n(graph); n != INVALID; ++n) { |
237 | 237 |
check(mm.status(n) == MaxMatching<SmartGraph>::EVEN || |
238 | 238 |
mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition"); |
239 | 239 |
if (mm.status(n) == MaxMatching<SmartGraph>::ODD) { |
240 | 240 |
++barrier_num; |
241 | 241 |
} else { |
242 | 242 |
comp.insert(n); |
243 | 243 |
} |
244 | 244 |
} |
245 | 245 |
|
246 | 246 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
247 | 247 |
if (mm.matching(e)) { |
248 | 248 |
check(e == mm.matching(graph.u(e)), "Wrong matching"); |
249 | 249 |
check(e == mm.matching(graph.v(e)), "Wrong matching"); |
250 | 250 |
++num; |
251 | 251 |
} |
252 | 252 |
check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
253 | 253 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
254 | 254 |
"Wrong Gallai-Edmonds decomposition"); |
255 | 255 |
|
256 | 256 |
check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
257 | 257 |
mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
258 | 258 |
"Wrong Gallai-Edmonds decomposition"); |
259 | 259 |
|
260 | 260 |
if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
261 | 261 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) { |
262 | 262 |
comp.join(graph.u(e), graph.v(e)); |
263 | 263 |
} |
264 | 264 |
} |
265 | 265 |
|
266 | 266 |
std::set<int> comp_root; |
267 | 267 |
int odd_comp_num = 0; |
268 | 268 |
for (NodeIt n(graph); n != INVALID; ++n) { |
269 | 269 |
if (mm.status(n) != MaxMatching<SmartGraph>::ODD) { |
270 | 270 |
int root = comp.find(n); |
271 | 271 |
if (comp_root.find(root) == comp_root.end()) { |
272 | 272 |
comp_root.insert(root); |
273 | 273 |
if (comp.size(n) % 2 == 1) { |
274 | 274 |
++odd_comp_num; |
275 | 275 |
} |
276 | 276 |
} |
277 | 277 |
} |
278 | 278 |
} |
279 | 279 |
|
280 | 280 |
check(mm.matchingSize() == num, "Wrong matching"); |
281 | 281 |
check(2 * num == countNodes(graph) - (odd_comp_num - barrier_num), |
282 | 282 |
"Wrong matching"); |
283 | 283 |
return; |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
void checkWeightedMatching(const SmartGraph& graph, |
287 | 287 |
const SmartGraph::EdgeMap<int>& weight, |
288 | 288 |
const MaxWeightedMatching<SmartGraph>& mwm) { |
289 | 289 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
290 | 290 |
if (graph.u(e) == graph.v(e)) continue; |
291 | 291 |
int rw = mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e)); |
292 | 292 |
|
293 | 293 |
for (int i = 0; i < mwm.blossomNum(); ++i) { |
294 | 294 |
bool s = false, t = false; |
295 | 295 |
for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i); |
296 | 296 |
n != INVALID; ++n) { |
297 | 297 |
if (graph.u(e) == n) s = true; |
298 | 298 |
if (graph.v(e) == n) t = true; |
299 | 299 |
} |
300 | 300 |
if (s == true && t == true) { |
301 | 301 |
rw += mwm.blossomValue(i); |
302 | 302 |
} |
303 | 303 |
} |
304 | 304 |
rw -= weight[e] * mwm.dualScale; |
305 | 305 |
|
306 | 306 |
check(rw >= 0, "Negative reduced weight"); |
307 | 307 |
check(rw == 0 || !mwm.matching(e), |
308 | 308 |
"Non-zero reduced weight on matching edge"); |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
int pv = 0; |
312 | 312 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
313 | 313 |
if (mwm.matching(n) != INVALID) { |
314 | 314 |
check(mwm.nodeValue(n) >= 0, "Invalid node value"); |
315 | 315 |
pv += weight[mwm.matching(n)]; |
316 | 316 |
SmartGraph::Node o = graph.target(mwm.matching(n)); |
317 | 317 |
check(mwm.mate(n) == o, "Invalid matching"); |
318 | 318 |
check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)), |
319 | 319 |
"Invalid matching"); |
320 | 320 |
} else { |
321 | 321 |
check(mwm.mate(n) == INVALID, "Invalid matching"); |
322 | 322 |
check(mwm.nodeValue(n) == 0, "Invalid matching"); |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
int dv = 0; |
327 | 327 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
328 | 328 |
dv += mwm.nodeValue(n); |
329 | 329 |
} |
330 | 330 |
|
331 | 331 |
for (int i = 0; i < mwm.blossomNum(); ++i) { |
332 | 332 |
check(mwm.blossomValue(i) >= 0, "Invalid blossom value"); |
333 | 333 |
check(mwm.blossomSize(i) % 2 == 1, "Even blossom size"); |
334 | 334 |
dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2); |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
check(pv * mwm.dualScale == dv * 2, "Wrong duality"); |
338 | 338 |
|
339 | 339 |
return; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
void checkWeightedPerfectMatching(const SmartGraph& graph, |
343 | 343 |
const SmartGraph::EdgeMap<int>& weight, |
344 | 344 |
const MaxWeightedPerfectMatching<SmartGraph>& mwpm) { |
345 | 345 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
346 | 346 |
if (graph.u(e) == graph.v(e)) continue; |
347 | 347 |
int rw = mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e)); |
348 | 348 |
|
349 | 349 |
for (int i = 0; i < mwpm.blossomNum(); ++i) { |
350 | 350 |
bool s = false, t = false; |
351 | 351 |
for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i); |
352 | 352 |
n != INVALID; ++n) { |
353 | 353 |
if (graph.u(e) == n) s = true; |
354 | 354 |
if (graph.v(e) == n) t = true; |
355 | 355 |
} |
356 | 356 |
if (s == true && t == true) { |
357 | 357 |
rw += mwpm.blossomValue(i); |
358 | 358 |
} |
359 | 359 |
} |
360 | 360 |
rw -= weight[e] * mwpm.dualScale; |
361 | 361 |
|
362 | 362 |
check(rw >= 0, "Negative reduced weight"); |
363 | 363 |
check(rw == 0 || !mwpm.matching(e), |
364 | 364 |
"Non-zero reduced weight on matching edge"); |
365 | 365 |
} |
366 | 366 |
|
367 | 367 |
int pv = 0; |
368 | 368 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
369 | 369 |
check(mwpm.matching(n) != INVALID, "Non perfect"); |
370 | 370 |
pv += weight[mwpm.matching(n)]; |
371 | 371 |
SmartGraph::Node o = graph.target(mwpm.matching(n)); |
372 | 372 |
check(mwpm.mate(n) == o, "Invalid matching"); |
373 | 373 |
check(mwpm.matching(n) == graph.oppositeArc(mwpm.matching(o)), |
374 | 374 |
"Invalid matching"); |
375 | 375 |
} |
376 | 376 |
|
377 | 377 |
int dv = 0; |
378 | 378 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
379 | 379 |
dv += mwpm.nodeValue(n); |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
for (int i = 0; i < mwpm.blossomNum(); ++i) { |
383 | 383 |
check(mwpm.blossomValue(i) >= 0, "Invalid blossom value"); |
384 | 384 |
check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size"); |
385 | 385 |
dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2); |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
check(pv * mwpm.dualScale == dv * 2, "Wrong duality"); |
389 | 389 |
|
390 | 390 |
return; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
|
394 | 394 |
int main() { |
395 | 395 |
|
396 | 396 |
for (int i = 0; i < lgfn; ++i) { |
397 | 397 |
SmartGraph graph; |
398 | 398 |
SmartGraph::EdgeMap<int> weight(graph); |
399 | 399 |
|
400 | 400 |
istringstream lgfs(lgf[i]); |
401 | 401 |
graphReader(graph, lgfs). |
402 | 402 |
edgeMap("weight", weight).run(); |
403 | 403 |
|
404 |
MaxMatching<SmartGraph> mm(graph); |
|
405 |
mm.run(); |
|
406 |
|
|
404 |
bool perfect; |
|
405 |
{ |
|
406 |
MaxMatching<SmartGraph> mm(graph); |
|
407 |
mm.run(); |
|
408 |
checkMatching(graph, mm); |
|
409 |
perfect = 2 * mm.matchingSize() == countNodes(graph); |
|
410 |
} |
|
407 | 411 |
|
408 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
409 |
mwm.run(); |
|
410 |
|
|
412 |
{ |
|
413 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
414 |
mwm.run(); |
|
415 |
checkWeightedMatching(graph, weight, mwm); |
|
416 |
} |
|
411 | 417 |
|
412 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
413 |
bool perfect = mwpm.run(); |
|
418 |
{ |
|
419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
420 |
mwm.init(); |
|
421 |
mwm.start(); |
|
422 |
checkWeightedMatching(graph, weight, mwm); |
|
423 |
} |
|
414 | 424 |
|
415 |
check(perfect == (mm.matchingSize() * 2 == countNodes(graph)), |
|
416 |
"Perfect matching found"); |
|
425 |
{ |
|
426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
427 |
bool result = mwpm.run(); |
|
428 |
|
|
429 |
check(result == perfect, "Perfect matching found"); |
|
430 |
if (perfect) { |
|
431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
432 |
} |
|
433 |
} |
|
417 | 434 |
|
418 |
if (perfect) { |
|
419 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
435 |
{ |
|
436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
437 |
mwpm.init(); |
|
438 |
bool result = mwpm.start(); |
|
439 |
|
|
440 |
check(result == perfect, "Perfect matching found"); |
|
441 |
if (perfect) { |
|
442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
443 |
} |
|
420 | 444 |
} |
421 | 445 |
} |
422 | 446 |
|
423 | 447 |
return 0; |
424 | 448 |
} |
0 comments (0 inline)