0
2
0
313
16
| ... | ... |
@@ -7,48 +7,49 @@ |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MATCHING_H |
| 20 | 20 |
#define LEMON_MATCHING_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <queue> |
| 24 | 24 |
#include <set> |
| 25 | 25 |
#include <limits> |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/unionfind.h> |
| 29 | 29 |
#include <lemon/bin_heap.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 |
#include <lemon/fractional_matching.h> |
|
| 31 | 32 |
|
| 32 | 33 |
///\ingroup matching |
| 33 | 34 |
///\file |
| 34 | 35 |
///\brief Maximum matching algorithms in general graphs. |
| 35 | 36 |
|
| 36 | 37 |
namespace lemon {
|
| 37 | 38 |
|
| 38 | 39 |
/// \ingroup matching |
| 39 | 40 |
/// |
| 40 | 41 |
/// \brief Maximum cardinality matching in general graphs |
| 41 | 42 |
/// |
| 42 | 43 |
/// This class implements Edmonds' alternating forest matching algorithm |
| 43 | 44 |
/// for finding a maximum cardinality matching in a general undirected graph. |
| 44 | 45 |
/// It can be started from an arbitrary initial matching |
| 45 | 46 |
/// (the default is the empty one). |
| 46 | 47 |
/// |
| 47 | 48 |
/// The dual solution of the problem is a map of the nodes to |
| 48 | 49 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
| 49 | 50 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
| 50 | 51 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
| 51 | 52 |
/// with factor-critical components, the nodes in \c ODD/A form the |
| 52 | 53 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
| 53 | 54 |
/// a perfect matching. The number of the factor-critical components |
| 54 | 55 |
/// minus the number of barrier nodes is a lower bound on the |
| ... | ... |
@@ -776,48 +777,52 @@ |
| 776 | 777 |
|
| 777 | 778 |
int tree; |
| 778 | 779 |
}; |
| 779 | 780 |
|
| 780 | 781 |
RangeMap<NodeData>* _node_data; |
| 781 | 782 |
|
| 782 | 783 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 783 | 784 |
|
| 784 | 785 |
IntIntMap *_tree_set_index; |
| 785 | 786 |
TreeSet *_tree_set; |
| 786 | 787 |
|
| 787 | 788 |
IntNodeMap *_delta1_index; |
| 788 | 789 |
BinHeap<Value, IntNodeMap> *_delta1; |
| 789 | 790 |
|
| 790 | 791 |
IntIntMap *_delta2_index; |
| 791 | 792 |
BinHeap<Value, IntIntMap> *_delta2; |
| 792 | 793 |
|
| 793 | 794 |
IntEdgeMap *_delta3_index; |
| 794 | 795 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 795 | 796 |
|
| 796 | 797 |
IntIntMap *_delta4_index; |
| 797 | 798 |
BinHeap<Value, IntIntMap> *_delta4; |
| 798 | 799 |
|
| 799 | 800 |
Value _delta_sum; |
| 801 |
int _unmatched; |
|
| 802 |
|
|
| 803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching; |
|
| 804 |
FractionalMatching *_fractional; |
|
| 800 | 805 |
|
| 801 | 806 |
void createStructures() {
|
| 802 | 807 |
_node_num = countNodes(_graph); |
| 803 | 808 |
_blossom_num = _node_num * 3 / 2; |
| 804 | 809 |
|
| 805 | 810 |
if (!_matching) {
|
| 806 | 811 |
_matching = new MatchingMap(_graph); |
| 807 | 812 |
} |
| 808 | 813 |
if (!_node_potential) {
|
| 809 | 814 |
_node_potential = new NodePotential(_graph); |
| 810 | 815 |
} |
| 811 | 816 |
if (!_blossom_set) {
|
| 812 | 817 |
_blossom_index = new IntNodeMap(_graph); |
| 813 | 818 |
_blossom_set = new BlossomSet(*_blossom_index); |
| 814 | 819 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 815 | 820 |
} |
| 816 | 821 |
|
| 817 | 822 |
if (!_node_index) {
|
| 818 | 823 |
_node_index = new IntNodeMap(_graph); |
| 819 | 824 |
_node_heap_index = new IntArcMap(_graph); |
| 820 | 825 |
_node_data = new RangeMap<NodeData>(_node_num, |
| 821 | 826 |
NodeData(*_node_heap_index)); |
| 822 | 827 |
} |
| 823 | 828 |
|
| ... | ... |
@@ -1538,204 +1543,349 @@ |
| 1538 | 1543 |
extractBlossom(blossoms[i], base, INVALID); |
| 1539 | 1544 |
} |
| 1540 | 1545 |
} |
| 1541 | 1546 |
} |
| 1542 | 1547 |
|
| 1543 | 1548 |
public: |
| 1544 | 1549 |
|
| 1545 | 1550 |
/// \brief Constructor |
| 1546 | 1551 |
/// |
| 1547 | 1552 |
/// Constructor. |
| 1548 | 1553 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
| 1549 | 1554 |
: _graph(graph), _weight(weight), _matching(0), |
| 1550 | 1555 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 1551 | 1556 |
_node_num(0), _blossom_num(0), |
| 1552 | 1557 |
|
| 1553 | 1558 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 1554 | 1559 |
_node_index(0), _node_heap_index(0), _node_data(0), |
| 1555 | 1560 |
_tree_set_index(0), _tree_set(0), |
| 1556 | 1561 |
|
| 1557 | 1562 |
_delta1_index(0), _delta1(0), |
| 1558 | 1563 |
_delta2_index(0), _delta2(0), |
| 1559 | 1564 |
_delta3_index(0), _delta3(0), |
| 1560 | 1565 |
_delta4_index(0), _delta4(0), |
| 1561 | 1566 |
|
| 1562 |
_delta_sum() |
|
| 1567 |
_delta_sum(), _unmatched(0), |
|
| 1568 |
|
|
| 1569 |
_fractional(0) |
|
| 1570 |
{}
|
|
| 1563 | 1571 |
|
| 1564 | 1572 |
~MaxWeightedMatching() {
|
| 1565 | 1573 |
destroyStructures(); |
| 1574 |
if (_fractional) {
|
|
| 1575 |
delete _fractional; |
|
| 1576 |
} |
|
| 1566 | 1577 |
} |
| 1567 | 1578 |
|
| 1568 | 1579 |
/// \name Execution Control |
| 1569 | 1580 |
/// The simplest way to execute the algorithm is to use the |
| 1570 | 1581 |
/// \ref run() member function. |
| 1571 | 1582 |
|
| 1572 | 1583 |
///@{
|
| 1573 | 1584 |
|
| 1574 | 1585 |
/// \brief Initialize the algorithm |
| 1575 | 1586 |
/// |
| 1576 | 1587 |
/// This function initializes the algorithm. |
| 1577 | 1588 |
void init() {
|
| 1578 | 1589 |
createStructures(); |
| 1579 | 1590 |
|
| 1580 | 1591 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 1581 | 1592 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
| 1582 | 1593 |
} |
| 1583 | 1594 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1584 | 1595 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
| 1585 | 1596 |
} |
| 1586 | 1597 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 1587 | 1598 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 1588 | 1599 |
} |
| 1589 | 1600 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 1590 | 1601 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 1591 | 1602 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 1592 | 1603 |
} |
| 1593 | 1604 |
|
| 1605 |
_unmatched = _node_num; |
|
| 1606 |
|
|
| 1594 | 1607 |
int index = 0; |
| 1595 | 1608 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1596 | 1609 |
Value max = 0; |
| 1597 | 1610 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 1598 | 1611 |
if (_graph.target(e) == n) continue; |
| 1599 | 1612 |
if ((dualScale * _weight[e]) / 2 > max) {
|
| 1600 | 1613 |
max = (dualScale * _weight[e]) / 2; |
| 1601 | 1614 |
} |
| 1602 | 1615 |
} |
| 1603 | 1616 |
(*_node_index)[n] = index; |
| 1604 | 1617 |
(*_node_data)[index].pot = max; |
| 1605 | 1618 |
_delta1->push(n, max); |
| 1606 | 1619 |
int blossom = |
| 1607 | 1620 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 1608 | 1621 |
|
| 1609 | 1622 |
_tree_set->insert(blossom); |
| 1610 | 1623 |
|
| 1611 | 1624 |
(*_blossom_data)[blossom].status = EVEN; |
| 1612 | 1625 |
(*_blossom_data)[blossom].pred = INVALID; |
| 1613 | 1626 |
(*_blossom_data)[blossom].next = INVALID; |
| 1614 | 1627 |
(*_blossom_data)[blossom].pot = 0; |
| 1615 | 1628 |
(*_blossom_data)[blossom].offset = 0; |
| 1616 | 1629 |
++index; |
| 1617 | 1630 |
} |
| 1618 | 1631 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 1619 | 1632 |
int si = (*_node_index)[_graph.u(e)]; |
| 1620 | 1633 |
int ti = (*_node_index)[_graph.v(e)]; |
| 1621 | 1634 |
if (_graph.u(e) != _graph.v(e)) {
|
| 1622 | 1635 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 1623 | 1636 |
dualScale * _weight[e]) / 2); |
| 1624 | 1637 |
} |
| 1625 | 1638 |
} |
| 1626 | 1639 |
} |
| 1627 | 1640 |
|
| 1641 |
/// \brief Initialize the algorithm with fractional matching |
|
| 1642 |
/// |
|
| 1643 |
/// This function initializes the algorithm with a fractional |
|
| 1644 |
/// matching. This initialization is also called jumpstart heuristic. |
|
| 1645 |
void fractionalInit() {
|
|
| 1646 |
createStructures(); |
|
| 1647 |
|
|
| 1648 |
if (_fractional == 0) {
|
|
| 1649 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
| 1650 |
} |
|
| 1651 |
_fractional->run(); |
|
| 1652 |
|
|
| 1653 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 1654 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
| 1655 |
} |
|
| 1656 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1657 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
| 1658 |
} |
|
| 1659 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1660 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 1661 |
} |
|
| 1662 |
for (int i = 0; i < _blossom_num; ++i) {
|
|
| 1663 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
| 1664 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
| 1665 |
} |
|
| 1666 |
|
|
| 1667 |
_unmatched = 0; |
|
| 1668 |
|
|
| 1669 |
int index = 0; |
|
| 1670 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1671 |
Value pot = _fractional->nodeValue(n); |
|
| 1672 |
(*_node_index)[n] = index; |
|
| 1673 |
(*_node_data)[index].pot = pot; |
|
| 1674 |
int blossom = |
|
| 1675 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
| 1676 |
|
|
| 1677 |
(*_blossom_data)[blossom].status = MATCHED; |
|
| 1678 |
(*_blossom_data)[blossom].pred = INVALID; |
|
| 1679 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
| 1680 |
if (_fractional->matching(n) == INVALID) {
|
|
| 1681 |
(*_blossom_data)[blossom].base = n; |
|
| 1682 |
} |
|
| 1683 |
(*_blossom_data)[blossom].pot = 0; |
|
| 1684 |
(*_blossom_data)[blossom].offset = 0; |
|
| 1685 |
++index; |
|
| 1686 |
} |
|
| 1687 |
|
|
| 1688 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
| 1689 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1690 |
if (processed[n]) continue; |
|
| 1691 |
processed[n] = true; |
|
| 1692 |
if (_fractional->matching(n) == INVALID) continue; |
|
| 1693 |
int num = 1; |
|
| 1694 |
Node v = _graph.target(_fractional->matching(n)); |
|
| 1695 |
while (n != v) {
|
|
| 1696 |
processed[v] = true; |
|
| 1697 |
v = _graph.target(_fractional->matching(v)); |
|
| 1698 |
++num; |
|
| 1699 |
} |
|
| 1700 |
|
|
| 1701 |
if (num % 2 == 1) {
|
|
| 1702 |
std::vector<int> subblossoms(num); |
|
| 1703 |
|
|
| 1704 |
subblossoms[--num] = _blossom_set->find(n); |
|
| 1705 |
_delta1->push(n, _fractional->nodeValue(n)); |
|
| 1706 |
v = _graph.target(_fractional->matching(n)); |
|
| 1707 |
while (n != v) {
|
|
| 1708 |
subblossoms[--num] = _blossom_set->find(v); |
|
| 1709 |
_delta1->push(v, _fractional->nodeValue(v)); |
|
| 1710 |
v = _graph.target(_fractional->matching(v)); |
|
| 1711 |
} |
|
| 1712 |
|
|
| 1713 |
int surface = |
|
| 1714 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
| 1715 |
(*_blossom_data)[surface].status = EVEN; |
|
| 1716 |
(*_blossom_data)[surface].pred = INVALID; |
|
| 1717 |
(*_blossom_data)[surface].next = INVALID; |
|
| 1718 |
(*_blossom_data)[surface].pot = 0; |
|
| 1719 |
(*_blossom_data)[surface].offset = 0; |
|
| 1720 |
|
|
| 1721 |
_tree_set->insert(surface); |
|
| 1722 |
++_unmatched; |
|
| 1723 |
} |
|
| 1724 |
} |
|
| 1725 |
|
|
| 1726 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 1727 |
int si = (*_node_index)[_graph.u(e)]; |
|
| 1728 |
int sb = _blossom_set->find(_graph.u(e)); |
|
| 1729 |
int ti = (*_node_index)[_graph.v(e)]; |
|
| 1730 |
int tb = _blossom_set->find(_graph.v(e)); |
|
| 1731 |
if ((*_blossom_data)[sb].status == EVEN && |
|
| 1732 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
|
| 1733 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
| 1734 |
dualScale * _weight[e]) / 2); |
|
| 1735 |
} |
|
| 1736 |
} |
|
| 1737 |
|
|
| 1738 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 1739 |
int nb = _blossom_set->find(n); |
|
| 1740 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
| 1741 |
int ni = (*_node_index)[n]; |
|
| 1742 |
|
|
| 1743 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 1744 |
Node v = _graph.target(e); |
|
| 1745 |
int vb = _blossom_set->find(v); |
|
| 1746 |
int vi = (*_node_index)[v]; |
|
| 1747 |
|
|
| 1748 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 1749 |
dualScale * _weight[e]; |
|
| 1750 |
|
|
| 1751 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 1752 |
|
|
| 1753 |
int vt = _tree_set->find(vb); |
|
| 1754 |
|
|
| 1755 |
typename std::map<int, Arc>::iterator it = |
|
| 1756 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 1757 |
|
|
| 1758 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 1759 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 1760 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
| 1761 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
| 1762 |
it->second = e; |
|
| 1763 |
} |
|
| 1764 |
} else {
|
|
| 1765 |
(*_node_data)[ni].heap.push(e, rw); |
|
| 1766 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
| 1767 |
} |
|
| 1768 |
} |
|
| 1769 |
} |
|
| 1770 |
|
|
| 1771 |
if (!(*_node_data)[ni].heap.empty()) {
|
|
| 1772 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 1773 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
| 1774 |
} |
|
| 1775 |
} |
|
| 1776 |
} |
|
| 1777 |
|
|
| 1628 | 1778 |
/// \brief Start the algorithm |
| 1629 | 1779 |
/// |
| 1630 | 1780 |
/// This function starts the algorithm. |
| 1631 | 1781 |
/// |
| 1632 |
/// \pre \ref init() must be called |
|
| 1782 |
/// \pre \ref init() or \ref fractionalInit() must be called |
|
| 1783 |
/// before using this function. |
|
| 1633 | 1784 |
void start() {
|
| 1634 | 1785 |
enum OpType {
|
| 1635 | 1786 |
D1, D2, D3, D4 |
| 1636 | 1787 |
}; |
| 1637 | 1788 |
|
| 1638 |
int unmatched = _node_num; |
|
| 1639 |
while (unmatched > 0) {
|
|
| 1789 |
while (_unmatched > 0) {
|
|
| 1640 | 1790 |
Value d1 = !_delta1->empty() ? |
| 1641 | 1791 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
| 1642 | 1792 |
|
| 1643 | 1793 |
Value d2 = !_delta2->empty() ? |
| 1644 | 1794 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 1645 | 1795 |
|
| 1646 | 1796 |
Value d3 = !_delta3->empty() ? |
| 1647 | 1797 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 1648 | 1798 |
|
| 1649 | 1799 |
Value d4 = !_delta4->empty() ? |
| 1650 | 1800 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 1651 | 1801 |
|
| 1652 | 1802 |
_delta_sum = d3; OpType ot = D3; |
| 1653 | 1803 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
|
| 1654 | 1804 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 1655 | 1805 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 1656 | 1806 |
|
| 1657 | 1807 |
switch (ot) {
|
| 1658 | 1808 |
case D1: |
| 1659 | 1809 |
{
|
| 1660 | 1810 |
Node n = _delta1->top(); |
| 1661 | 1811 |
unmatchNode(n); |
| 1662 |
-- |
|
| 1812 |
--_unmatched; |
|
| 1663 | 1813 |
} |
| 1664 | 1814 |
break; |
| 1665 | 1815 |
case D2: |
| 1666 | 1816 |
{
|
| 1667 | 1817 |
int blossom = _delta2->top(); |
| 1668 | 1818 |
Node n = _blossom_set->classTop(blossom); |
| 1669 | 1819 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 1670 | 1820 |
if ((*_blossom_data)[blossom].next == INVALID) {
|
| 1671 | 1821 |
augmentOnArc(a); |
| 1672 |
-- |
|
| 1822 |
--_unmatched; |
|
| 1673 | 1823 |
} else {
|
| 1674 | 1824 |
extendOnArc(a); |
| 1675 | 1825 |
} |
| 1676 | 1826 |
} |
| 1677 | 1827 |
break; |
| 1678 | 1828 |
case D3: |
| 1679 | 1829 |
{
|
| 1680 | 1830 |
Edge e = _delta3->top(); |
| 1681 | 1831 |
|
| 1682 | 1832 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 1683 | 1833 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 1684 | 1834 |
|
| 1685 | 1835 |
if (left_blossom == right_blossom) {
|
| 1686 | 1836 |
_delta3->pop(); |
| 1687 | 1837 |
} else {
|
| 1688 | 1838 |
int left_tree = _tree_set->find(left_blossom); |
| 1689 | 1839 |
int right_tree = _tree_set->find(right_blossom); |
| 1690 | 1840 |
|
| 1691 | 1841 |
if (left_tree == right_tree) {
|
| 1692 | 1842 |
shrinkOnEdge(e, left_tree); |
| 1693 | 1843 |
} else {
|
| 1694 | 1844 |
augmentOnEdge(e); |
| 1695 |
|
|
| 1845 |
_unmatched -= 2; |
|
| 1696 | 1846 |
} |
| 1697 | 1847 |
} |
| 1698 | 1848 |
} break; |
| 1699 | 1849 |
case D4: |
| 1700 | 1850 |
splitBlossom(_delta4->top()); |
| 1701 | 1851 |
break; |
| 1702 | 1852 |
} |
| 1703 | 1853 |
} |
| 1704 | 1854 |
extractMatching(); |
| 1705 | 1855 |
} |
| 1706 | 1856 |
|
| 1707 | 1857 |
/// \brief Run the algorithm. |
| 1708 | 1858 |
/// |
| 1709 | 1859 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
| 1710 | 1860 |
/// |
| 1711 | 1861 |
/// \note mwm.run() is just a shortcut of the following code. |
| 1712 | 1862 |
/// \code |
| 1713 |
/// mwm. |
|
| 1863 |
/// mwm.fractionalInit(); |
|
| 1714 | 1864 |
/// mwm.start(); |
| 1715 | 1865 |
/// \endcode |
| 1716 | 1866 |
void run() {
|
| 1717 |
|
|
| 1867 |
fractionalInit(); |
|
| 1718 | 1868 |
start(); |
| 1719 | 1869 |
} |
| 1720 | 1870 |
|
| 1721 | 1871 |
/// @} |
| 1722 | 1872 |
|
| 1723 | 1873 |
/// \name Primal Solution |
| 1724 | 1874 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 1725 | 1875 |
/// matching.\n |
| 1726 | 1876 |
/// Either \ref run() or \ref start() function should be called before |
| 1727 | 1877 |
/// using them. |
| 1728 | 1878 |
|
| 1729 | 1879 |
/// @{
|
| 1730 | 1880 |
|
| 1731 | 1881 |
/// \brief Return the weight of the matching. |
| 1732 | 1882 |
/// |
| 1733 | 1883 |
/// This function returns the weight of the found matching. |
| 1734 | 1884 |
/// |
| 1735 | 1885 |
/// \pre Either run() or start() must be called before using this function. |
| 1736 | 1886 |
Value matchingWeight() const {
|
| 1737 | 1887 |
Value sum = 0; |
| 1738 | 1888 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1739 | 1889 |
if ((*_matching)[n] != INVALID) {
|
| 1740 | 1890 |
sum += _weight[(*_matching)[n]]; |
| 1741 | 1891 |
} |
| ... | ... |
@@ -2053,48 +2203,53 @@ |
| 2053 | 2203 |
Value pot; |
| 2054 | 2204 |
BinHeap<Value, IntArcMap> heap; |
| 2055 | 2205 |
std::map<int, Arc> heap_index; |
| 2056 | 2206 |
|
| 2057 | 2207 |
int tree; |
| 2058 | 2208 |
}; |
| 2059 | 2209 |
|
| 2060 | 2210 |
RangeMap<NodeData>* _node_data; |
| 2061 | 2211 |
|
| 2062 | 2212 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
| 2063 | 2213 |
|
| 2064 | 2214 |
IntIntMap *_tree_set_index; |
| 2065 | 2215 |
TreeSet *_tree_set; |
| 2066 | 2216 |
|
| 2067 | 2217 |
IntIntMap *_delta2_index; |
| 2068 | 2218 |
BinHeap<Value, IntIntMap> *_delta2; |
| 2069 | 2219 |
|
| 2070 | 2220 |
IntEdgeMap *_delta3_index; |
| 2071 | 2221 |
BinHeap<Value, IntEdgeMap> *_delta3; |
| 2072 | 2222 |
|
| 2073 | 2223 |
IntIntMap *_delta4_index; |
| 2074 | 2224 |
BinHeap<Value, IntIntMap> *_delta4; |
| 2075 | 2225 |
|
| 2076 | 2226 |
Value _delta_sum; |
| 2227 |
int _unmatched; |
|
| 2228 |
|
|
| 2229 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
| 2230 |
FractionalMatching; |
|
| 2231 |
FractionalMatching *_fractional; |
|
| 2077 | 2232 |
|
| 2078 | 2233 |
void createStructures() {
|
| 2079 | 2234 |
_node_num = countNodes(_graph); |
| 2080 | 2235 |
_blossom_num = _node_num * 3 / 2; |
| 2081 | 2236 |
|
| 2082 | 2237 |
if (!_matching) {
|
| 2083 | 2238 |
_matching = new MatchingMap(_graph); |
| 2084 | 2239 |
} |
| 2085 | 2240 |
if (!_node_potential) {
|
| 2086 | 2241 |
_node_potential = new NodePotential(_graph); |
| 2087 | 2242 |
} |
| 2088 | 2243 |
if (!_blossom_set) {
|
| 2089 | 2244 |
_blossom_index = new IntNodeMap(_graph); |
| 2090 | 2245 |
_blossom_set = new BlossomSet(*_blossom_index); |
| 2091 | 2246 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
| 2092 | 2247 |
} |
| 2093 | 2248 |
|
| 2094 | 2249 |
if (!_node_index) {
|
| 2095 | 2250 |
_node_index = new IntNodeMap(_graph); |
| 2096 | 2251 |
_node_heap_index = new IntArcMap(_graph); |
| 2097 | 2252 |
_node_data = new RangeMap<NodeData>(_node_num, |
| 2098 | 2253 |
NodeData(*_node_heap_index)); |
| 2099 | 2254 |
} |
| 2100 | 2255 |
|
| ... | ... |
@@ -2768,189 +2923,331 @@ |
| 2768 | 2923 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
| 2769 | 2924 |
Node base = _graph.source(matching); |
| 2770 | 2925 |
extractBlossom(blossoms[i], base, matching); |
| 2771 | 2926 |
} |
| 2772 | 2927 |
} |
| 2773 | 2928 |
|
| 2774 | 2929 |
public: |
| 2775 | 2930 |
|
| 2776 | 2931 |
/// \brief Constructor |
| 2777 | 2932 |
/// |
| 2778 | 2933 |
/// Constructor. |
| 2779 | 2934 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
| 2780 | 2935 |
: _graph(graph), _weight(weight), _matching(0), |
| 2781 | 2936 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
| 2782 | 2937 |
_node_num(0), _blossom_num(0), |
| 2783 | 2938 |
|
| 2784 | 2939 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
| 2785 | 2940 |
_node_index(0), _node_heap_index(0), _node_data(0), |
| 2786 | 2941 |
_tree_set_index(0), _tree_set(0), |
| 2787 | 2942 |
|
| 2788 | 2943 |
_delta2_index(0), _delta2(0), |
| 2789 | 2944 |
_delta3_index(0), _delta3(0), |
| 2790 | 2945 |
_delta4_index(0), _delta4(0), |
| 2791 | 2946 |
|
| 2792 |
_delta_sum() |
|
| 2947 |
_delta_sum(), _unmatched(0), |
|
| 2948 |
|
|
| 2949 |
_fractional(0) |
|
| 2950 |
{}
|
|
| 2793 | 2951 |
|
| 2794 | 2952 |
~MaxWeightedPerfectMatching() {
|
| 2795 | 2953 |
destroyStructures(); |
| 2954 |
if (_fractional) {
|
|
| 2955 |
delete _fractional; |
|
| 2956 |
} |
|
| 2796 | 2957 |
} |
| 2797 | 2958 |
|
| 2798 | 2959 |
/// \name Execution Control |
| 2799 | 2960 |
/// The simplest way to execute the algorithm is to use the |
| 2800 | 2961 |
/// \ref run() member function. |
| 2801 | 2962 |
|
| 2802 | 2963 |
///@{
|
| 2803 | 2964 |
|
| 2804 | 2965 |
/// \brief Initialize the algorithm |
| 2805 | 2966 |
/// |
| 2806 | 2967 |
/// This function initializes the algorithm. |
| 2807 | 2968 |
void init() {
|
| 2808 | 2969 |
createStructures(); |
| 2809 | 2970 |
|
| 2810 | 2971 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 2811 | 2972 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
| 2812 | 2973 |
} |
| 2813 | 2974 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2814 | 2975 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
| 2815 | 2976 |
} |
| 2816 | 2977 |
for (int i = 0; i < _blossom_num; ++i) {
|
| 2817 | 2978 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
| 2818 | 2979 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
| 2819 | 2980 |
} |
| 2820 | 2981 |
|
| 2982 |
_unmatched = _node_num; |
|
| 2983 |
|
|
| 2821 | 2984 |
int index = 0; |
| 2822 | 2985 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2823 | 2986 |
Value max = - std::numeric_limits<Value>::max(); |
| 2824 | 2987 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 2825 | 2988 |
if (_graph.target(e) == n) continue; |
| 2826 | 2989 |
if ((dualScale * _weight[e]) / 2 > max) {
|
| 2827 | 2990 |
max = (dualScale * _weight[e]) / 2; |
| 2828 | 2991 |
} |
| 2829 | 2992 |
} |
| 2830 | 2993 |
(*_node_index)[n] = index; |
| 2831 | 2994 |
(*_node_data)[index].pot = max; |
| 2832 | 2995 |
int blossom = |
| 2833 | 2996 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
| 2834 | 2997 |
|
| 2835 | 2998 |
_tree_set->insert(blossom); |
| 2836 | 2999 |
|
| 2837 | 3000 |
(*_blossom_data)[blossom].status = EVEN; |
| 2838 | 3001 |
(*_blossom_data)[blossom].pred = INVALID; |
| 2839 | 3002 |
(*_blossom_data)[blossom].next = INVALID; |
| 2840 | 3003 |
(*_blossom_data)[blossom].pot = 0; |
| 2841 | 3004 |
(*_blossom_data)[blossom].offset = 0; |
| 2842 | 3005 |
++index; |
| 2843 | 3006 |
} |
| 2844 | 3007 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
| 2845 | 3008 |
int si = (*_node_index)[_graph.u(e)]; |
| 2846 | 3009 |
int ti = (*_node_index)[_graph.v(e)]; |
| 2847 | 3010 |
if (_graph.u(e) != _graph.v(e)) {
|
| 2848 | 3011 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
| 2849 | 3012 |
dualScale * _weight[e]) / 2); |
| 2850 | 3013 |
} |
| 2851 | 3014 |
} |
| 2852 | 3015 |
} |
| 2853 | 3016 |
|
| 3017 |
/// \brief Initialize the algorithm with fractional matching |
|
| 3018 |
/// |
|
| 3019 |
/// This function initializes the algorithm with a fractional |
|
| 3020 |
/// matching. This initialization is also called jumpstart heuristic. |
|
| 3021 |
void fractionalInit() {
|
|
| 3022 |
createStructures(); |
|
| 3023 |
|
|
| 3024 |
if (_fractional == 0) {
|
|
| 3025 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
| 3026 |
} |
|
| 3027 |
if (!_fractional->run()) {
|
|
| 3028 |
_unmatched = -1; |
|
| 3029 |
return; |
|
| 3030 |
} |
|
| 3031 |
|
|
| 3032 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 3033 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
| 3034 |
} |
|
| 3035 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 3036 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
| 3037 |
} |
|
| 3038 |
for (int i = 0; i < _blossom_num; ++i) {
|
|
| 3039 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
| 3040 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
| 3041 |
} |
|
| 3042 |
|
|
| 3043 |
_unmatched = 0; |
|
| 3044 |
|
|
| 3045 |
int index = 0; |
|
| 3046 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3047 |
Value pot = _fractional->nodeValue(n); |
|
| 3048 |
(*_node_index)[n] = index; |
|
| 3049 |
(*_node_data)[index].pot = pot; |
|
| 3050 |
int blossom = |
|
| 3051 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
| 3052 |
|
|
| 3053 |
(*_blossom_data)[blossom].status = MATCHED; |
|
| 3054 |
(*_blossom_data)[blossom].pred = INVALID; |
|
| 3055 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
| 3056 |
(*_blossom_data)[blossom].pot = 0; |
|
| 3057 |
(*_blossom_data)[blossom].offset = 0; |
|
| 3058 |
++index; |
|
| 3059 |
} |
|
| 3060 |
|
|
| 3061 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
| 3062 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3063 |
if (processed[n]) continue; |
|
| 3064 |
processed[n] = true; |
|
| 3065 |
if (_fractional->matching(n) == INVALID) continue; |
|
| 3066 |
int num = 1; |
|
| 3067 |
Node v = _graph.target(_fractional->matching(n)); |
|
| 3068 |
while (n != v) {
|
|
| 3069 |
processed[v] = true; |
|
| 3070 |
v = _graph.target(_fractional->matching(v)); |
|
| 3071 |
++num; |
|
| 3072 |
} |
|
| 3073 |
|
|
| 3074 |
if (num % 2 == 1) {
|
|
| 3075 |
std::vector<int> subblossoms(num); |
|
| 3076 |
|
|
| 3077 |
subblossoms[--num] = _blossom_set->find(n); |
|
| 3078 |
v = _graph.target(_fractional->matching(n)); |
|
| 3079 |
while (n != v) {
|
|
| 3080 |
subblossoms[--num] = _blossom_set->find(v); |
|
| 3081 |
v = _graph.target(_fractional->matching(v)); |
|
| 3082 |
} |
|
| 3083 |
|
|
| 3084 |
int surface = |
|
| 3085 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
| 3086 |
(*_blossom_data)[surface].status = EVEN; |
|
| 3087 |
(*_blossom_data)[surface].pred = INVALID; |
|
| 3088 |
(*_blossom_data)[surface].next = INVALID; |
|
| 3089 |
(*_blossom_data)[surface].pot = 0; |
|
| 3090 |
(*_blossom_data)[surface].offset = 0; |
|
| 3091 |
|
|
| 3092 |
_tree_set->insert(surface); |
|
| 3093 |
++_unmatched; |
|
| 3094 |
} |
|
| 3095 |
} |
|
| 3096 |
|
|
| 3097 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
|
| 3098 |
int si = (*_node_index)[_graph.u(e)]; |
|
| 3099 |
int sb = _blossom_set->find(_graph.u(e)); |
|
| 3100 |
int ti = (*_node_index)[_graph.v(e)]; |
|
| 3101 |
int tb = _blossom_set->find(_graph.v(e)); |
|
| 3102 |
if ((*_blossom_data)[sb].status == EVEN && |
|
| 3103 |
(*_blossom_data)[tb].status == EVEN && sb != tb) {
|
|
| 3104 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
| 3105 |
dualScale * _weight[e]) / 2); |
|
| 3106 |
} |
|
| 3107 |
} |
|
| 3108 |
|
|
| 3109 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 3110 |
int nb = _blossom_set->find(n); |
|
| 3111 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
| 3112 |
int ni = (*_node_index)[n]; |
|
| 3113 |
|
|
| 3114 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
|
| 3115 |
Node v = _graph.target(e); |
|
| 3116 |
int vb = _blossom_set->find(v); |
|
| 3117 |
int vi = (*_node_index)[v]; |
|
| 3118 |
|
|
| 3119 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
| 3120 |
dualScale * _weight[e]; |
|
| 3121 |
|
|
| 3122 |
if ((*_blossom_data)[vb].status == EVEN) {
|
|
| 3123 |
|
|
| 3124 |
int vt = _tree_set->find(vb); |
|
| 3125 |
|
|
| 3126 |
typename std::map<int, Arc>::iterator it = |
|
| 3127 |
(*_node_data)[ni].heap_index.find(vt); |
|
| 3128 |
|
|
| 3129 |
if (it != (*_node_data)[ni].heap_index.end()) {
|
|
| 3130 |
if ((*_node_data)[ni].heap[it->second] > rw) {
|
|
| 3131 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
| 3132 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
| 3133 |
it->second = e; |
|
| 3134 |
} |
|
| 3135 |
} else {
|
|
| 3136 |
(*_node_data)[ni].heap.push(e, rw); |
|
| 3137 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
| 3138 |
} |
|
| 3139 |
} |
|
| 3140 |
} |
|
| 3141 |
|
|
| 3142 |
if (!(*_node_data)[ni].heap.empty()) {
|
|
| 3143 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
| 3144 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
| 3145 |
} |
|
| 3146 |
} |
|
| 3147 |
} |
|
| 3148 |
|
|
| 2854 | 3149 |
/// \brief Start the algorithm |
| 2855 | 3150 |
/// |
| 2856 | 3151 |
/// This function starts the algorithm. |
| 2857 | 3152 |
/// |
| 2858 |
/// \pre \ref init() must be called before |
|
| 3153 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
|
| 3154 |
/// using this function. |
|
| 2859 | 3155 |
bool start() {
|
| 2860 | 3156 |
enum OpType {
|
| 2861 | 3157 |
D2, D3, D4 |
| 2862 | 3158 |
}; |
| 2863 | 3159 |
|
| 2864 |
int unmatched = _node_num; |
|
| 2865 |
while (unmatched > 0) {
|
|
| 3160 |
if (_unmatched == -1) return false; |
|
| 3161 |
|
|
| 3162 |
while (_unmatched > 0) {
|
|
| 2866 | 3163 |
Value d2 = !_delta2->empty() ? |
| 2867 | 3164 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
| 2868 | 3165 |
|
| 2869 | 3166 |
Value d3 = !_delta3->empty() ? |
| 2870 | 3167 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
| 2871 | 3168 |
|
| 2872 | 3169 |
Value d4 = !_delta4->empty() ? |
| 2873 | 3170 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
| 2874 | 3171 |
|
| 2875 | 3172 |
_delta_sum = d3; OpType ot = D3; |
| 2876 | 3173 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
|
| 2877 | 3174 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
|
| 2878 | 3175 |
|
| 2879 | 3176 |
if (_delta_sum == std::numeric_limits<Value>::max()) {
|
| 2880 | 3177 |
return false; |
| 2881 | 3178 |
} |
| 2882 | 3179 |
|
| 2883 | 3180 |
switch (ot) {
|
| 2884 | 3181 |
case D2: |
| 2885 | 3182 |
{
|
| 2886 | 3183 |
int blossom = _delta2->top(); |
| 2887 | 3184 |
Node n = _blossom_set->classTop(blossom); |
| 2888 | 3185 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
| 2889 | 3186 |
extendOnArc(e); |
| 2890 | 3187 |
} |
| 2891 | 3188 |
break; |
| 2892 | 3189 |
case D3: |
| 2893 | 3190 |
{
|
| 2894 | 3191 |
Edge e = _delta3->top(); |
| 2895 | 3192 |
|
| 2896 | 3193 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
| 2897 | 3194 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
| 2898 | 3195 |
|
| 2899 | 3196 |
if (left_blossom == right_blossom) {
|
| 2900 | 3197 |
_delta3->pop(); |
| 2901 | 3198 |
} else {
|
| 2902 | 3199 |
int left_tree = _tree_set->find(left_blossom); |
| 2903 | 3200 |
int right_tree = _tree_set->find(right_blossom); |
| 2904 | 3201 |
|
| 2905 | 3202 |
if (left_tree == right_tree) {
|
| 2906 | 3203 |
shrinkOnEdge(e, left_tree); |
| 2907 | 3204 |
} else {
|
| 2908 | 3205 |
augmentOnEdge(e); |
| 2909 |
|
|
| 3206 |
_unmatched -= 2; |
|
| 2910 | 3207 |
} |
| 2911 | 3208 |
} |
| 2912 | 3209 |
} break; |
| 2913 | 3210 |
case D4: |
| 2914 | 3211 |
splitBlossom(_delta4->top()); |
| 2915 | 3212 |
break; |
| 2916 | 3213 |
} |
| 2917 | 3214 |
} |
| 2918 | 3215 |
extractMatching(); |
| 2919 | 3216 |
return true; |
| 2920 | 3217 |
} |
| 2921 | 3218 |
|
| 2922 | 3219 |
/// \brief Run the algorithm. |
| 2923 | 3220 |
/// |
| 2924 | 3221 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
| 2925 | 3222 |
/// |
| 2926 | 3223 |
/// \note mwpm.run() is just a shortcut of the following code. |
| 2927 | 3224 |
/// \code |
| 2928 |
/// mwpm. |
|
| 3225 |
/// mwpm.fractionalInit(); |
|
| 2929 | 3226 |
/// mwpm.start(); |
| 2930 | 3227 |
/// \endcode |
| 2931 | 3228 |
bool run() {
|
| 2932 |
|
|
| 3229 |
fractionalInit(); |
|
| 2933 | 3230 |
return start(); |
| 2934 | 3231 |
} |
| 2935 | 3232 |
|
| 2936 | 3233 |
/// @} |
| 2937 | 3234 |
|
| 2938 | 3235 |
/// \name Primal Solution |
| 2939 | 3236 |
/// Functions to get the primal solution, i.e. the maximum weighted |
| 2940 | 3237 |
/// perfect matching.\n |
| 2941 | 3238 |
/// Either \ref run() or \ref start() function should be called before |
| 2942 | 3239 |
/// using them. |
| 2943 | 3240 |
|
| 2944 | 3241 |
/// @{
|
| 2945 | 3242 |
|
| 2946 | 3243 |
/// \brief Return the weight of the matching. |
| 2947 | 3244 |
/// |
| 2948 | 3245 |
/// This function returns the weight of the found matching. |
| 2949 | 3246 |
/// |
| 2950 | 3247 |
/// \pre Either run() or start() must be called before using this function. |
| 2951 | 3248 |
Value matchingWeight() const {
|
| 2952 | 3249 |
Value sum = 0; |
| 2953 | 3250 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 2954 | 3251 |
if ((*_matching)[n] != INVALID) {
|
| 2955 | 3252 |
sum += _weight[(*_matching)[n]]; |
| 2956 | 3253 |
} |
| ... | ... |
@@ -380,45 +380,69 @@ |
| 380 | 380 |
} |
| 381 | 381 |
|
| 382 | 382 |
for (int i = 0; i < mwpm.blossomNum(); ++i) {
|
| 383 | 383 |
check(mwpm.blossomValue(i) >= 0, "Invalid blossom value"); |
| 384 | 384 |
check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size"); |
| 385 | 385 |
dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2); |
| 386 | 386 |
} |
| 387 | 387 |
|
| 388 | 388 |
check(pv * mwpm.dualScale == dv * 2, "Wrong duality"); |
| 389 | 389 |
|
| 390 | 390 |
return; |
| 391 | 391 |
} |
| 392 | 392 |
|
| 393 | 393 |
|
| 394 | 394 |
int main() {
|
| 395 | 395 |
|
| 396 | 396 |
for (int i = 0; i < lgfn; ++i) {
|
| 397 | 397 |
SmartGraph graph; |
| 398 | 398 |
SmartGraph::EdgeMap<int> weight(graph); |
| 399 | 399 |
|
| 400 | 400 |
istringstream lgfs(lgf[i]); |
| 401 | 401 |
graphReader(graph, lgfs). |
| 402 | 402 |
edgeMap("weight", weight).run();
|
| 403 | 403 |
|
| 404 |
MaxMatching<SmartGraph> mm(graph); |
|
| 405 |
mm.run(); |
|
| 406 |
|
|
| 404 |
bool perfect; |
|
| 405 |
{
|
|
| 406 |
MaxMatching<SmartGraph> mm(graph); |
|
| 407 |
mm.run(); |
|
| 408 |
checkMatching(graph, mm); |
|
| 409 |
perfect = 2 * mm.matchingSize() == countNodes(graph); |
|
| 410 |
} |
|
| 407 | 411 |
|
| 408 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 409 |
mwm.run(); |
|
| 410 |
|
|
| 412 |
{
|
|
| 413 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 414 |
mwm.run(); |
|
| 415 |
checkWeightedMatching(graph, weight, mwm); |
|
| 416 |
} |
|
| 411 | 417 |
|
| 412 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 413 |
bool perfect = mwpm.run(); |
|
| 418 |
{
|
|
| 419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
| 420 |
mwm.init(); |
|
| 421 |
mwm.start(); |
|
| 422 |
checkWeightedMatching(graph, weight, mwm); |
|
| 423 |
} |
|
| 414 | 424 |
|
| 415 |
check(perfect == (mm.matchingSize() * 2 == countNodes(graph)), |
|
| 416 |
"Perfect matching found"); |
|
| 425 |
{
|
|
| 426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 427 |
bool result = mwpm.run(); |
|
| 428 |
|
|
| 429 |
check(result == perfect, "Perfect matching found"); |
|
| 430 |
if (perfect) {
|
|
| 431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 432 |
} |
|
| 433 |
} |
|
| 417 | 434 |
|
| 418 |
if (perfect) {
|
|
| 419 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 435 |
{
|
|
| 436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
| 437 |
mwpm.init(); |
|
| 438 |
bool result = mwpm.start(); |
|
| 439 |
|
|
| 440 |
check(result == perfect, "Perfect matching found"); |
|
| 441 |
if (perfect) {
|
|
| 442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
| 443 |
} |
|
| 420 | 444 |
} |
| 421 | 445 |
} |
| 422 | 446 |
|
| 423 | 447 |
return 0; |
| 424 | 448 |
} |
0 comments (0 inline)