0
2
0
313
16
... | ... |
@@ -7,48 +7,49 @@ |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MATCHING_H |
20 | 20 |
#define LEMON_MATCHING_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <queue> |
24 | 24 |
#include <set> |
25 | 25 |
#include <limits> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/unionfind.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/maps.h> |
31 |
#include <lemon/fractional_matching.h> |
|
31 | 32 |
|
32 | 33 |
///\ingroup matching |
33 | 34 |
///\file |
34 | 35 |
///\brief Maximum matching algorithms in general graphs. |
35 | 36 |
|
36 | 37 |
namespace lemon { |
37 | 38 |
|
38 | 39 |
/// \ingroup matching |
39 | 40 |
/// |
40 | 41 |
/// \brief Maximum cardinality matching in general graphs |
41 | 42 |
/// |
42 | 43 |
/// This class implements Edmonds' alternating forest matching algorithm |
43 | 44 |
/// for finding a maximum cardinality matching in a general undirected graph. |
44 | 45 |
/// It can be started from an arbitrary initial matching |
45 | 46 |
/// (the default is the empty one). |
46 | 47 |
/// |
47 | 48 |
/// The dual solution of the problem is a map of the nodes to |
48 | 49 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
49 | 50 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
50 | 51 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
51 | 52 |
/// with factor-critical components, the nodes in \c ODD/A form the |
52 | 53 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
53 | 54 |
/// a perfect matching. The number of the factor-critical components |
54 | 55 |
/// minus the number of barrier nodes is a lower bound on the |
... | ... |
@@ -776,48 +777,52 @@ |
776 | 777 |
|
777 | 778 |
int tree; |
778 | 779 |
}; |
779 | 780 |
|
780 | 781 |
RangeMap<NodeData>* _node_data; |
781 | 782 |
|
782 | 783 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
783 | 784 |
|
784 | 785 |
IntIntMap *_tree_set_index; |
785 | 786 |
TreeSet *_tree_set; |
786 | 787 |
|
787 | 788 |
IntNodeMap *_delta1_index; |
788 | 789 |
BinHeap<Value, IntNodeMap> *_delta1; |
789 | 790 |
|
790 | 791 |
IntIntMap *_delta2_index; |
791 | 792 |
BinHeap<Value, IntIntMap> *_delta2; |
792 | 793 |
|
793 | 794 |
IntEdgeMap *_delta3_index; |
794 | 795 |
BinHeap<Value, IntEdgeMap> *_delta3; |
795 | 796 |
|
796 | 797 |
IntIntMap *_delta4_index; |
797 | 798 |
BinHeap<Value, IntIntMap> *_delta4; |
798 | 799 |
|
799 | 800 |
Value _delta_sum; |
801 |
int _unmatched; |
|
802 |
|
|
803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching; |
|
804 |
FractionalMatching *_fractional; |
|
800 | 805 |
|
801 | 806 |
void createStructures() { |
802 | 807 |
_node_num = countNodes(_graph); |
803 | 808 |
_blossom_num = _node_num * 3 / 2; |
804 | 809 |
|
805 | 810 |
if (!_matching) { |
806 | 811 |
_matching = new MatchingMap(_graph); |
807 | 812 |
} |
808 | 813 |
if (!_node_potential) { |
809 | 814 |
_node_potential = new NodePotential(_graph); |
810 | 815 |
} |
811 | 816 |
if (!_blossom_set) { |
812 | 817 |
_blossom_index = new IntNodeMap(_graph); |
813 | 818 |
_blossom_set = new BlossomSet(*_blossom_index); |
814 | 819 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
815 | 820 |
} |
816 | 821 |
|
817 | 822 |
if (!_node_index) { |
818 | 823 |
_node_index = new IntNodeMap(_graph); |
819 | 824 |
_node_heap_index = new IntArcMap(_graph); |
820 | 825 |
_node_data = new RangeMap<NodeData>(_node_num, |
821 | 826 |
NodeData(*_node_heap_index)); |
822 | 827 |
} |
823 | 828 |
|
... | ... |
@@ -1538,204 +1543,349 @@ |
1538 | 1543 |
extractBlossom(blossoms[i], base, INVALID); |
1539 | 1544 |
} |
1540 | 1545 |
} |
1541 | 1546 |
} |
1542 | 1547 |
|
1543 | 1548 |
public: |
1544 | 1549 |
|
1545 | 1550 |
/// \brief Constructor |
1546 | 1551 |
/// |
1547 | 1552 |
/// Constructor. |
1548 | 1553 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
1549 | 1554 |
: _graph(graph), _weight(weight), _matching(0), |
1550 | 1555 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
1551 | 1556 |
_node_num(0), _blossom_num(0), |
1552 | 1557 |
|
1553 | 1558 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
1554 | 1559 |
_node_index(0), _node_heap_index(0), _node_data(0), |
1555 | 1560 |
_tree_set_index(0), _tree_set(0), |
1556 | 1561 |
|
1557 | 1562 |
_delta1_index(0), _delta1(0), |
1558 | 1563 |
_delta2_index(0), _delta2(0), |
1559 | 1564 |
_delta3_index(0), _delta3(0), |
1560 | 1565 |
_delta4_index(0), _delta4(0), |
1561 | 1566 |
|
1562 |
_delta_sum() |
|
1567 |
_delta_sum(), _unmatched(0), |
|
1568 |
|
|
1569 |
_fractional(0) |
|
1570 |
{} |
|
1563 | 1571 |
|
1564 | 1572 |
~MaxWeightedMatching() { |
1565 | 1573 |
destroyStructures(); |
1574 |
if (_fractional) { |
|
1575 |
delete _fractional; |
|
1576 |
} |
|
1566 | 1577 |
} |
1567 | 1578 |
|
1568 | 1579 |
/// \name Execution Control |
1569 | 1580 |
/// The simplest way to execute the algorithm is to use the |
1570 | 1581 |
/// \ref run() member function. |
1571 | 1582 |
|
1572 | 1583 |
///@{ |
1573 | 1584 |
|
1574 | 1585 |
/// \brief Initialize the algorithm |
1575 | 1586 |
/// |
1576 | 1587 |
/// This function initializes the algorithm. |
1577 | 1588 |
void init() { |
1578 | 1589 |
createStructures(); |
1579 | 1590 |
|
1580 | 1591 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1581 | 1592 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
1582 | 1593 |
} |
1583 | 1594 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1584 | 1595 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
1585 | 1596 |
} |
1586 | 1597 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1587 | 1598 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
1588 | 1599 |
} |
1589 | 1600 |
for (int i = 0; i < _blossom_num; ++i) { |
1590 | 1601 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
1591 | 1602 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
1592 | 1603 |
} |
1593 | 1604 |
|
1605 |
_unmatched = _node_num; |
|
1606 |
|
|
1594 | 1607 |
int index = 0; |
1595 | 1608 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1596 | 1609 |
Value max = 0; |
1597 | 1610 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
1598 | 1611 |
if (_graph.target(e) == n) continue; |
1599 | 1612 |
if ((dualScale * _weight[e]) / 2 > max) { |
1600 | 1613 |
max = (dualScale * _weight[e]) / 2; |
1601 | 1614 |
} |
1602 | 1615 |
} |
1603 | 1616 |
(*_node_index)[n] = index; |
1604 | 1617 |
(*_node_data)[index].pot = max; |
1605 | 1618 |
_delta1->push(n, max); |
1606 | 1619 |
int blossom = |
1607 | 1620 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
1608 | 1621 |
|
1609 | 1622 |
_tree_set->insert(blossom); |
1610 | 1623 |
|
1611 | 1624 |
(*_blossom_data)[blossom].status = EVEN; |
1612 | 1625 |
(*_blossom_data)[blossom].pred = INVALID; |
1613 | 1626 |
(*_blossom_data)[blossom].next = INVALID; |
1614 | 1627 |
(*_blossom_data)[blossom].pot = 0; |
1615 | 1628 |
(*_blossom_data)[blossom].offset = 0; |
1616 | 1629 |
++index; |
1617 | 1630 |
} |
1618 | 1631 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1619 | 1632 |
int si = (*_node_index)[_graph.u(e)]; |
1620 | 1633 |
int ti = (*_node_index)[_graph.v(e)]; |
1621 | 1634 |
if (_graph.u(e) != _graph.v(e)) { |
1622 | 1635 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
1623 | 1636 |
dualScale * _weight[e]) / 2); |
1624 | 1637 |
} |
1625 | 1638 |
} |
1626 | 1639 |
} |
1627 | 1640 |
|
1641 |
/// \brief Initialize the algorithm with fractional matching |
|
1642 |
/// |
|
1643 |
/// This function initializes the algorithm with a fractional |
|
1644 |
/// matching. This initialization is also called jumpstart heuristic. |
|
1645 |
void fractionalInit() { |
|
1646 |
createStructures(); |
|
1647 |
|
|
1648 |
if (_fractional == 0) { |
|
1649 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
1650 |
} |
|
1651 |
_fractional->run(); |
|
1652 |
|
|
1653 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1654 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
1655 |
} |
|
1656 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1657 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1658 |
} |
|
1659 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1660 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1661 |
} |
|
1662 |
for (int i = 0; i < _blossom_num; ++i) { |
|
1663 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
1664 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
1665 |
} |
|
1666 |
|
|
1667 |
_unmatched = 0; |
|
1668 |
|
|
1669 |
int index = 0; |
|
1670 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1671 |
Value pot = _fractional->nodeValue(n); |
|
1672 |
(*_node_index)[n] = index; |
|
1673 |
(*_node_data)[index].pot = pot; |
|
1674 |
int blossom = |
|
1675 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
1676 |
|
|
1677 |
(*_blossom_data)[blossom].status = MATCHED; |
|
1678 |
(*_blossom_data)[blossom].pred = INVALID; |
|
1679 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
1680 |
if (_fractional->matching(n) == INVALID) { |
|
1681 |
(*_blossom_data)[blossom].base = n; |
|
1682 |
} |
|
1683 |
(*_blossom_data)[blossom].pot = 0; |
|
1684 |
(*_blossom_data)[blossom].offset = 0; |
|
1685 |
++index; |
|
1686 |
} |
|
1687 |
|
|
1688 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
1689 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1690 |
if (processed[n]) continue; |
|
1691 |
processed[n] = true; |
|
1692 |
if (_fractional->matching(n) == INVALID) continue; |
|
1693 |
int num = 1; |
|
1694 |
Node v = _graph.target(_fractional->matching(n)); |
|
1695 |
while (n != v) { |
|
1696 |
processed[v] = true; |
|
1697 |
v = _graph.target(_fractional->matching(v)); |
|
1698 |
++num; |
|
1699 |
} |
|
1700 |
|
|
1701 |
if (num % 2 == 1) { |
|
1702 |
std::vector<int> subblossoms(num); |
|
1703 |
|
|
1704 |
subblossoms[--num] = _blossom_set->find(n); |
|
1705 |
_delta1->push(n, _fractional->nodeValue(n)); |
|
1706 |
v = _graph.target(_fractional->matching(n)); |
|
1707 |
while (n != v) { |
|
1708 |
subblossoms[--num] = _blossom_set->find(v); |
|
1709 |
_delta1->push(v, _fractional->nodeValue(v)); |
|
1710 |
v = _graph.target(_fractional->matching(v)); |
|
1711 |
} |
|
1712 |
|
|
1713 |
int surface = |
|
1714 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
1715 |
(*_blossom_data)[surface].status = EVEN; |
|
1716 |
(*_blossom_data)[surface].pred = INVALID; |
|
1717 |
(*_blossom_data)[surface].next = INVALID; |
|
1718 |
(*_blossom_data)[surface].pot = 0; |
|
1719 |
(*_blossom_data)[surface].offset = 0; |
|
1720 |
|
|
1721 |
_tree_set->insert(surface); |
|
1722 |
++_unmatched; |
|
1723 |
} |
|
1724 |
} |
|
1725 |
|
|
1726 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1727 |
int si = (*_node_index)[_graph.u(e)]; |
|
1728 |
int sb = _blossom_set->find(_graph.u(e)); |
|
1729 |
int ti = (*_node_index)[_graph.v(e)]; |
|
1730 |
int tb = _blossom_set->find(_graph.v(e)); |
|
1731 |
if ((*_blossom_data)[sb].status == EVEN && |
|
1732 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
1733 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
1734 |
dualScale * _weight[e]) / 2); |
|
1735 |
} |
|
1736 |
} |
|
1737 |
|
|
1738 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1739 |
int nb = _blossom_set->find(n); |
|
1740 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
1741 |
int ni = (*_node_index)[n]; |
|
1742 |
|
|
1743 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1744 |
Node v = _graph.target(e); |
|
1745 |
int vb = _blossom_set->find(v); |
|
1746 |
int vi = (*_node_index)[v]; |
|
1747 |
|
|
1748 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1749 |
dualScale * _weight[e]; |
|
1750 |
|
|
1751 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1752 |
|
|
1753 |
int vt = _tree_set->find(vb); |
|
1754 |
|
|
1755 |
typename std::map<int, Arc>::iterator it = |
|
1756 |
(*_node_data)[ni].heap_index.find(vt); |
|
1757 |
|
|
1758 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1759 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1760 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
1761 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
1762 |
it->second = e; |
|
1763 |
} |
|
1764 |
} else { |
|
1765 |
(*_node_data)[ni].heap.push(e, rw); |
|
1766 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
1767 |
} |
|
1768 |
} |
|
1769 |
} |
|
1770 |
|
|
1771 |
if (!(*_node_data)[ni].heap.empty()) { |
|
1772 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1773 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
1774 |
} |
|
1775 |
} |
|
1776 |
} |
|
1777 |
|
|
1628 | 1778 |
/// \brief Start the algorithm |
1629 | 1779 |
/// |
1630 | 1780 |
/// This function starts the algorithm. |
1631 | 1781 |
/// |
1632 |
/// \pre \ref init() must be called |
|
1782 |
/// \pre \ref init() or \ref fractionalInit() must be called |
|
1783 |
/// before using this function. |
|
1633 | 1784 |
void start() { |
1634 | 1785 |
enum OpType { |
1635 | 1786 |
D1, D2, D3, D4 |
1636 | 1787 |
}; |
1637 | 1788 |
|
1638 |
int unmatched = _node_num; |
|
1639 |
while (unmatched > 0) { |
|
1789 |
while (_unmatched > 0) { |
|
1640 | 1790 |
Value d1 = !_delta1->empty() ? |
1641 | 1791 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
1642 | 1792 |
|
1643 | 1793 |
Value d2 = !_delta2->empty() ? |
1644 | 1794 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
1645 | 1795 |
|
1646 | 1796 |
Value d3 = !_delta3->empty() ? |
1647 | 1797 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
1648 | 1798 |
|
1649 | 1799 |
Value d4 = !_delta4->empty() ? |
1650 | 1800 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
1651 | 1801 |
|
1652 | 1802 |
_delta_sum = d3; OpType ot = D3; |
1653 | 1803 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; } |
1654 | 1804 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
1655 | 1805 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
1656 | 1806 |
|
1657 | 1807 |
switch (ot) { |
1658 | 1808 |
case D1: |
1659 | 1809 |
{ |
1660 | 1810 |
Node n = _delta1->top(); |
1661 | 1811 |
unmatchNode(n); |
1662 |
-- |
|
1812 |
--_unmatched; |
|
1663 | 1813 |
} |
1664 | 1814 |
break; |
1665 | 1815 |
case D2: |
1666 | 1816 |
{ |
1667 | 1817 |
int blossom = _delta2->top(); |
1668 | 1818 |
Node n = _blossom_set->classTop(blossom); |
1669 | 1819 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
1670 | 1820 |
if ((*_blossom_data)[blossom].next == INVALID) { |
1671 | 1821 |
augmentOnArc(a); |
1672 |
-- |
|
1822 |
--_unmatched; |
|
1673 | 1823 |
} else { |
1674 | 1824 |
extendOnArc(a); |
1675 | 1825 |
} |
1676 | 1826 |
} |
1677 | 1827 |
break; |
1678 | 1828 |
case D3: |
1679 | 1829 |
{ |
1680 | 1830 |
Edge e = _delta3->top(); |
1681 | 1831 |
|
1682 | 1832 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
1683 | 1833 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
1684 | 1834 |
|
1685 | 1835 |
if (left_blossom == right_blossom) { |
1686 | 1836 |
_delta3->pop(); |
1687 | 1837 |
} else { |
1688 | 1838 |
int left_tree = _tree_set->find(left_blossom); |
1689 | 1839 |
int right_tree = _tree_set->find(right_blossom); |
1690 | 1840 |
|
1691 | 1841 |
if (left_tree == right_tree) { |
1692 | 1842 |
shrinkOnEdge(e, left_tree); |
1693 | 1843 |
} else { |
1694 | 1844 |
augmentOnEdge(e); |
1695 |
|
|
1845 |
_unmatched -= 2; |
|
1696 | 1846 |
} |
1697 | 1847 |
} |
1698 | 1848 |
} break; |
1699 | 1849 |
case D4: |
1700 | 1850 |
splitBlossom(_delta4->top()); |
1701 | 1851 |
break; |
1702 | 1852 |
} |
1703 | 1853 |
} |
1704 | 1854 |
extractMatching(); |
1705 | 1855 |
} |
1706 | 1856 |
|
1707 | 1857 |
/// \brief Run the algorithm. |
1708 | 1858 |
/// |
1709 | 1859 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
1710 | 1860 |
/// |
1711 | 1861 |
/// \note mwm.run() is just a shortcut of the following code. |
1712 | 1862 |
/// \code |
1713 |
/// mwm. |
|
1863 |
/// mwm.fractionalInit(); |
|
1714 | 1864 |
/// mwm.start(); |
1715 | 1865 |
/// \endcode |
1716 | 1866 |
void run() { |
1717 |
|
|
1867 |
fractionalInit(); |
|
1718 | 1868 |
start(); |
1719 | 1869 |
} |
1720 | 1870 |
|
1721 | 1871 |
/// @} |
1722 | 1872 |
|
1723 | 1873 |
/// \name Primal Solution |
1724 | 1874 |
/// Functions to get the primal solution, i.e. the maximum weighted |
1725 | 1875 |
/// matching.\n |
1726 | 1876 |
/// Either \ref run() or \ref start() function should be called before |
1727 | 1877 |
/// using them. |
1728 | 1878 |
|
1729 | 1879 |
/// @{ |
1730 | 1880 |
|
1731 | 1881 |
/// \brief Return the weight of the matching. |
1732 | 1882 |
/// |
1733 | 1883 |
/// This function returns the weight of the found matching. |
1734 | 1884 |
/// |
1735 | 1885 |
/// \pre Either run() or start() must be called before using this function. |
1736 | 1886 |
Value matchingWeight() const { |
1737 | 1887 |
Value sum = 0; |
1738 | 1888 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1739 | 1889 |
if ((*_matching)[n] != INVALID) { |
1740 | 1890 |
sum += _weight[(*_matching)[n]]; |
1741 | 1891 |
} |
... | ... |
@@ -2053,48 +2203,53 @@ |
2053 | 2203 |
Value pot; |
2054 | 2204 |
BinHeap<Value, IntArcMap> heap; |
2055 | 2205 |
std::map<int, Arc> heap_index; |
2056 | 2206 |
|
2057 | 2207 |
int tree; |
2058 | 2208 |
}; |
2059 | 2209 |
|
2060 | 2210 |
RangeMap<NodeData>* _node_data; |
2061 | 2211 |
|
2062 | 2212 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
2063 | 2213 |
|
2064 | 2214 |
IntIntMap *_tree_set_index; |
2065 | 2215 |
TreeSet *_tree_set; |
2066 | 2216 |
|
2067 | 2217 |
IntIntMap *_delta2_index; |
2068 | 2218 |
BinHeap<Value, IntIntMap> *_delta2; |
2069 | 2219 |
|
2070 | 2220 |
IntEdgeMap *_delta3_index; |
2071 | 2221 |
BinHeap<Value, IntEdgeMap> *_delta3; |
2072 | 2222 |
|
2073 | 2223 |
IntIntMap *_delta4_index; |
2074 | 2224 |
BinHeap<Value, IntIntMap> *_delta4; |
2075 | 2225 |
|
2076 | 2226 |
Value _delta_sum; |
2227 |
int _unmatched; |
|
2228 |
|
|
2229 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
2230 |
FractionalMatching; |
|
2231 |
FractionalMatching *_fractional; |
|
2077 | 2232 |
|
2078 | 2233 |
void createStructures() { |
2079 | 2234 |
_node_num = countNodes(_graph); |
2080 | 2235 |
_blossom_num = _node_num * 3 / 2; |
2081 | 2236 |
|
2082 | 2237 |
if (!_matching) { |
2083 | 2238 |
_matching = new MatchingMap(_graph); |
2084 | 2239 |
} |
2085 | 2240 |
if (!_node_potential) { |
2086 | 2241 |
_node_potential = new NodePotential(_graph); |
2087 | 2242 |
} |
2088 | 2243 |
if (!_blossom_set) { |
2089 | 2244 |
_blossom_index = new IntNodeMap(_graph); |
2090 | 2245 |
_blossom_set = new BlossomSet(*_blossom_index); |
2091 | 2246 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
2092 | 2247 |
} |
2093 | 2248 |
|
2094 | 2249 |
if (!_node_index) { |
2095 | 2250 |
_node_index = new IntNodeMap(_graph); |
2096 | 2251 |
_node_heap_index = new IntArcMap(_graph); |
2097 | 2252 |
_node_data = new RangeMap<NodeData>(_node_num, |
2098 | 2253 |
NodeData(*_node_heap_index)); |
2099 | 2254 |
} |
2100 | 2255 |
|
... | ... |
@@ -2768,189 +2923,331 @@ |
2768 | 2923 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
2769 | 2924 |
Node base = _graph.source(matching); |
2770 | 2925 |
extractBlossom(blossoms[i], base, matching); |
2771 | 2926 |
} |
2772 | 2927 |
} |
2773 | 2928 |
|
2774 | 2929 |
public: |
2775 | 2930 |
|
2776 | 2931 |
/// \brief Constructor |
2777 | 2932 |
/// |
2778 | 2933 |
/// Constructor. |
2779 | 2934 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
2780 | 2935 |
: _graph(graph), _weight(weight), _matching(0), |
2781 | 2936 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
2782 | 2937 |
_node_num(0), _blossom_num(0), |
2783 | 2938 |
|
2784 | 2939 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
2785 | 2940 |
_node_index(0), _node_heap_index(0), _node_data(0), |
2786 | 2941 |
_tree_set_index(0), _tree_set(0), |
2787 | 2942 |
|
2788 | 2943 |
_delta2_index(0), _delta2(0), |
2789 | 2944 |
_delta3_index(0), _delta3(0), |
2790 | 2945 |
_delta4_index(0), _delta4(0), |
2791 | 2946 |
|
2792 |
_delta_sum() |
|
2947 |
_delta_sum(), _unmatched(0), |
|
2948 |
|
|
2949 |
_fractional(0) |
|
2950 |
{} |
|
2793 | 2951 |
|
2794 | 2952 |
~MaxWeightedPerfectMatching() { |
2795 | 2953 |
destroyStructures(); |
2954 |
if (_fractional) { |
|
2955 |
delete _fractional; |
|
2956 |
} |
|
2796 | 2957 |
} |
2797 | 2958 |
|
2798 | 2959 |
/// \name Execution Control |
2799 | 2960 |
/// The simplest way to execute the algorithm is to use the |
2800 | 2961 |
/// \ref run() member function. |
2801 | 2962 |
|
2802 | 2963 |
///@{ |
2803 | 2964 |
|
2804 | 2965 |
/// \brief Initialize the algorithm |
2805 | 2966 |
/// |
2806 | 2967 |
/// This function initializes the algorithm. |
2807 | 2968 |
void init() { |
2808 | 2969 |
createStructures(); |
2809 | 2970 |
|
2810 | 2971 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
2811 | 2972 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
2812 | 2973 |
} |
2813 | 2974 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2814 | 2975 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
2815 | 2976 |
} |
2816 | 2977 |
for (int i = 0; i < _blossom_num; ++i) { |
2817 | 2978 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
2818 | 2979 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
2819 | 2980 |
} |
2820 | 2981 |
|
2982 |
_unmatched = _node_num; |
|
2983 |
|
|
2821 | 2984 |
int index = 0; |
2822 | 2985 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2823 | 2986 |
Value max = - std::numeric_limits<Value>::max(); |
2824 | 2987 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
2825 | 2988 |
if (_graph.target(e) == n) continue; |
2826 | 2989 |
if ((dualScale * _weight[e]) / 2 > max) { |
2827 | 2990 |
max = (dualScale * _weight[e]) / 2; |
2828 | 2991 |
} |
2829 | 2992 |
} |
2830 | 2993 |
(*_node_index)[n] = index; |
2831 | 2994 |
(*_node_data)[index].pot = max; |
2832 | 2995 |
int blossom = |
2833 | 2996 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
2834 | 2997 |
|
2835 | 2998 |
_tree_set->insert(blossom); |
2836 | 2999 |
|
2837 | 3000 |
(*_blossom_data)[blossom].status = EVEN; |
2838 | 3001 |
(*_blossom_data)[blossom].pred = INVALID; |
2839 | 3002 |
(*_blossom_data)[blossom].next = INVALID; |
2840 | 3003 |
(*_blossom_data)[blossom].pot = 0; |
2841 | 3004 |
(*_blossom_data)[blossom].offset = 0; |
2842 | 3005 |
++index; |
2843 | 3006 |
} |
2844 | 3007 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2845 | 3008 |
int si = (*_node_index)[_graph.u(e)]; |
2846 | 3009 |
int ti = (*_node_index)[_graph.v(e)]; |
2847 | 3010 |
if (_graph.u(e) != _graph.v(e)) { |
2848 | 3011 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
2849 | 3012 |
dualScale * _weight[e]) / 2); |
2850 | 3013 |
} |
2851 | 3014 |
} |
2852 | 3015 |
} |
2853 | 3016 |
|
3017 |
/// \brief Initialize the algorithm with fractional matching |
|
3018 |
/// |
|
3019 |
/// This function initializes the algorithm with a fractional |
|
3020 |
/// matching. This initialization is also called jumpstart heuristic. |
|
3021 |
void fractionalInit() { |
|
3022 |
createStructures(); |
|
3023 |
|
|
3024 |
if (_fractional == 0) { |
|
3025 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
3026 |
} |
|
3027 |
if (!_fractional->run()) { |
|
3028 |
_unmatched = -1; |
|
3029 |
return; |
|
3030 |
} |
|
3031 |
|
|
3032 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
3033 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
3034 |
} |
|
3035 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3036 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
3037 |
} |
|
3038 |
for (int i = 0; i < _blossom_num; ++i) { |
|
3039 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
3040 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
3041 |
} |
|
3042 |
|
|
3043 |
_unmatched = 0; |
|
3044 |
|
|
3045 |
int index = 0; |
|
3046 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3047 |
Value pot = _fractional->nodeValue(n); |
|
3048 |
(*_node_index)[n] = index; |
|
3049 |
(*_node_data)[index].pot = pot; |
|
3050 |
int blossom = |
|
3051 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
3052 |
|
|
3053 |
(*_blossom_data)[blossom].status = MATCHED; |
|
3054 |
(*_blossom_data)[blossom].pred = INVALID; |
|
3055 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
3056 |
(*_blossom_data)[blossom].pot = 0; |
|
3057 |
(*_blossom_data)[blossom].offset = 0; |
|
3058 |
++index; |
|
3059 |
} |
|
3060 |
|
|
3061 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
3062 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3063 |
if (processed[n]) continue; |
|
3064 |
processed[n] = true; |
|
3065 |
if (_fractional->matching(n) == INVALID) continue; |
|
3066 |
int num = 1; |
|
3067 |
Node v = _graph.target(_fractional->matching(n)); |
|
3068 |
while (n != v) { |
|
3069 |
processed[v] = true; |
|
3070 |
v = _graph.target(_fractional->matching(v)); |
|
3071 |
++num; |
|
3072 |
} |
|
3073 |
|
|
3074 |
if (num % 2 == 1) { |
|
3075 |
std::vector<int> subblossoms(num); |
|
3076 |
|
|
3077 |
subblossoms[--num] = _blossom_set->find(n); |
|
3078 |
v = _graph.target(_fractional->matching(n)); |
|
3079 |
while (n != v) { |
|
3080 |
subblossoms[--num] = _blossom_set->find(v); |
|
3081 |
v = _graph.target(_fractional->matching(v)); |
|
3082 |
} |
|
3083 |
|
|
3084 |
int surface = |
|
3085 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
3086 |
(*_blossom_data)[surface].status = EVEN; |
|
3087 |
(*_blossom_data)[surface].pred = INVALID; |
|
3088 |
(*_blossom_data)[surface].next = INVALID; |
|
3089 |
(*_blossom_data)[surface].pot = 0; |
|
3090 |
(*_blossom_data)[surface].offset = 0; |
|
3091 |
|
|
3092 |
_tree_set->insert(surface); |
|
3093 |
++_unmatched; |
|
3094 |
} |
|
3095 |
} |
|
3096 |
|
|
3097 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3098 |
int si = (*_node_index)[_graph.u(e)]; |
|
3099 |
int sb = _blossom_set->find(_graph.u(e)); |
|
3100 |
int ti = (*_node_index)[_graph.v(e)]; |
|
3101 |
int tb = _blossom_set->find(_graph.v(e)); |
|
3102 |
if ((*_blossom_data)[sb].status == EVEN && |
|
3103 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
3104 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
3105 |
dualScale * _weight[e]) / 2); |
|
3106 |
} |
|
3107 |
} |
|
3108 |
|
|
3109 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3110 |
int nb = _blossom_set->find(n); |
|
3111 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
3112 |
int ni = (*_node_index)[n]; |
|
3113 |
|
|
3114 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
3115 |
Node v = _graph.target(e); |
|
3116 |
int vb = _blossom_set->find(v); |
|
3117 |
int vi = (*_node_index)[v]; |
|
3118 |
|
|
3119 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
3120 |
dualScale * _weight[e]; |
|
3121 |
|
|
3122 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
3123 |
|
|
3124 |
int vt = _tree_set->find(vb); |
|
3125 |
|
|
3126 |
typename std::map<int, Arc>::iterator it = |
|
3127 |
(*_node_data)[ni].heap_index.find(vt); |
|
3128 |
|
|
3129 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
3130 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
3131 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
3132 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
3133 |
it->second = e; |
|
3134 |
} |
|
3135 |
} else { |
|
3136 |
(*_node_data)[ni].heap.push(e, rw); |
|
3137 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
3138 |
} |
|
3139 |
} |
|
3140 |
} |
|
3141 |
|
|
3142 |
if (!(*_node_data)[ni].heap.empty()) { |
|
3143 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
3144 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
3145 |
} |
|
3146 |
} |
|
3147 |
} |
|
3148 |
|
|
2854 | 3149 |
/// \brief Start the algorithm |
2855 | 3150 |
/// |
2856 | 3151 |
/// This function starts the algorithm. |
2857 | 3152 |
/// |
2858 |
/// \pre \ref init() must be called before |
|
3153 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
|
3154 |
/// using this function. |
|
2859 | 3155 |
bool start() { |
2860 | 3156 |
enum OpType { |
2861 | 3157 |
D2, D3, D4 |
2862 | 3158 |
}; |
2863 | 3159 |
|
2864 |
int unmatched = _node_num; |
|
2865 |
while (unmatched > 0) { |
|
3160 |
if (_unmatched == -1) return false; |
|
3161 |
|
|
3162 |
while (_unmatched > 0) { |
|
2866 | 3163 |
Value d2 = !_delta2->empty() ? |
2867 | 3164 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
2868 | 3165 |
|
2869 | 3166 |
Value d3 = !_delta3->empty() ? |
2870 | 3167 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
2871 | 3168 |
|
2872 | 3169 |
Value d4 = !_delta4->empty() ? |
2873 | 3170 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
2874 | 3171 |
|
2875 | 3172 |
_delta_sum = d3; OpType ot = D3; |
2876 | 3173 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
2877 | 3174 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
2878 | 3175 |
|
2879 | 3176 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
2880 | 3177 |
return false; |
2881 | 3178 |
} |
2882 | 3179 |
|
2883 | 3180 |
switch (ot) { |
2884 | 3181 |
case D2: |
2885 | 3182 |
{ |
2886 | 3183 |
int blossom = _delta2->top(); |
2887 | 3184 |
Node n = _blossom_set->classTop(blossom); |
2888 | 3185 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
2889 | 3186 |
extendOnArc(e); |
2890 | 3187 |
} |
2891 | 3188 |
break; |
2892 | 3189 |
case D3: |
2893 | 3190 |
{ |
2894 | 3191 |
Edge e = _delta3->top(); |
2895 | 3192 |
|
2896 | 3193 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
2897 | 3194 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
2898 | 3195 |
|
2899 | 3196 |
if (left_blossom == right_blossom) { |
2900 | 3197 |
_delta3->pop(); |
2901 | 3198 |
} else { |
2902 | 3199 |
int left_tree = _tree_set->find(left_blossom); |
2903 | 3200 |
int right_tree = _tree_set->find(right_blossom); |
2904 | 3201 |
|
2905 | 3202 |
if (left_tree == right_tree) { |
2906 | 3203 |
shrinkOnEdge(e, left_tree); |
2907 | 3204 |
} else { |
2908 | 3205 |
augmentOnEdge(e); |
2909 |
|
|
3206 |
_unmatched -= 2; |
|
2910 | 3207 |
} |
2911 | 3208 |
} |
2912 | 3209 |
} break; |
2913 | 3210 |
case D4: |
2914 | 3211 |
splitBlossom(_delta4->top()); |
2915 | 3212 |
break; |
2916 | 3213 |
} |
2917 | 3214 |
} |
2918 | 3215 |
extractMatching(); |
2919 | 3216 |
return true; |
2920 | 3217 |
} |
2921 | 3218 |
|
2922 | 3219 |
/// \brief Run the algorithm. |
2923 | 3220 |
/// |
2924 | 3221 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
2925 | 3222 |
/// |
2926 | 3223 |
/// \note mwpm.run() is just a shortcut of the following code. |
2927 | 3224 |
/// \code |
2928 |
/// mwpm. |
|
3225 |
/// mwpm.fractionalInit(); |
|
2929 | 3226 |
/// mwpm.start(); |
2930 | 3227 |
/// \endcode |
2931 | 3228 |
bool run() { |
2932 |
|
|
3229 |
fractionalInit(); |
|
2933 | 3230 |
return start(); |
2934 | 3231 |
} |
2935 | 3232 |
|
2936 | 3233 |
/// @} |
2937 | 3234 |
|
2938 | 3235 |
/// \name Primal Solution |
2939 | 3236 |
/// Functions to get the primal solution, i.e. the maximum weighted |
2940 | 3237 |
/// perfect matching.\n |
2941 | 3238 |
/// Either \ref run() or \ref start() function should be called before |
2942 | 3239 |
/// using them. |
2943 | 3240 |
|
2944 | 3241 |
/// @{ |
2945 | 3242 |
|
2946 | 3243 |
/// \brief Return the weight of the matching. |
2947 | 3244 |
/// |
2948 | 3245 |
/// This function returns the weight of the found matching. |
2949 | 3246 |
/// |
2950 | 3247 |
/// \pre Either run() or start() must be called before using this function. |
2951 | 3248 |
Value matchingWeight() const { |
2952 | 3249 |
Value sum = 0; |
2953 | 3250 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2954 | 3251 |
if ((*_matching)[n] != INVALID) { |
2955 | 3252 |
sum += _weight[(*_matching)[n]]; |
2956 | 3253 |
} |
... | ... |
@@ -380,45 +380,69 @@ |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
for (int i = 0; i < mwpm.blossomNum(); ++i) { |
383 | 383 |
check(mwpm.blossomValue(i) >= 0, "Invalid blossom value"); |
384 | 384 |
check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size"); |
385 | 385 |
dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2); |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
check(pv * mwpm.dualScale == dv * 2, "Wrong duality"); |
389 | 389 |
|
390 | 390 |
return; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
|
394 | 394 |
int main() { |
395 | 395 |
|
396 | 396 |
for (int i = 0; i < lgfn; ++i) { |
397 | 397 |
SmartGraph graph; |
398 | 398 |
SmartGraph::EdgeMap<int> weight(graph); |
399 | 399 |
|
400 | 400 |
istringstream lgfs(lgf[i]); |
401 | 401 |
graphReader(graph, lgfs). |
402 | 402 |
edgeMap("weight", weight).run(); |
403 | 403 |
|
404 |
MaxMatching<SmartGraph> mm(graph); |
|
405 |
mm.run(); |
|
406 |
|
|
404 |
bool perfect; |
|
405 |
{ |
|
406 |
MaxMatching<SmartGraph> mm(graph); |
|
407 |
mm.run(); |
|
408 |
checkMatching(graph, mm); |
|
409 |
perfect = 2 * mm.matchingSize() == countNodes(graph); |
|
410 |
} |
|
407 | 411 |
|
408 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
409 |
mwm.run(); |
|
410 |
|
|
412 |
{ |
|
413 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
414 |
mwm.run(); |
|
415 |
checkWeightedMatching(graph, weight, mwm); |
|
416 |
} |
|
411 | 417 |
|
412 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
413 |
bool perfect = mwpm.run(); |
|
418 |
{ |
|
419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
420 |
mwm.init(); |
|
421 |
mwm.start(); |
|
422 |
checkWeightedMatching(graph, weight, mwm); |
|
423 |
} |
|
414 | 424 |
|
415 |
check(perfect == (mm.matchingSize() * 2 == countNodes(graph)), |
|
416 |
"Perfect matching found"); |
|
425 |
{ |
|
426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
427 |
bool result = mwpm.run(); |
|
428 |
|
|
429 |
check(result == perfect, "Perfect matching found"); |
|
430 |
if (perfect) { |
|
431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
432 |
} |
|
433 |
} |
|
417 | 434 |
|
418 |
if (perfect) { |
|
419 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
435 |
{ |
|
436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
437 |
mwpm.init(); |
|
438 |
bool result = mwpm.start(); |
|
439 |
|
|
440 |
check(result == perfect, "Perfect matching found"); |
|
441 |
if (perfect) { |
|
442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
443 |
} |
|
420 | 444 |
} |
421 | 445 |
} |
422 | 446 |
|
423 | 447 |
return 0; |
424 | 448 |
} |
0 comments (0 inline)