0
2
0
313
16
... | ... |
@@ -25,12 +25,13 @@ |
25 | 25 |
#include <limits> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/unionfind.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/maps.h> |
31 |
#include <lemon/fractional_matching.h> |
|
31 | 32 |
|
32 | 33 |
///\ingroup matching |
33 | 34 |
///\file |
34 | 35 |
///\brief Maximum matching algorithms in general graphs. |
35 | 36 |
|
36 | 37 |
namespace lemon { |
... | ... |
@@ -794,12 +795,16 @@ |
794 | 795 |
BinHeap<Value, IntEdgeMap> *_delta3; |
795 | 796 |
|
796 | 797 |
IntIntMap *_delta4_index; |
797 | 798 |
BinHeap<Value, IntIntMap> *_delta4; |
798 | 799 |
|
799 | 800 |
Value _delta_sum; |
801 |
int _unmatched; |
|
802 |
|
|
803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching; |
|
804 |
FractionalMatching *_fractional; |
|
800 | 805 |
|
801 | 806 |
void createStructures() { |
802 | 807 |
_node_num = countNodes(_graph); |
803 | 808 |
_blossom_num = _node_num * 3 / 2; |
804 | 809 |
|
805 | 810 |
if (!_matching) { |
... | ... |
@@ -1556,16 +1561,22 @@ |
1556 | 1561 |
|
1557 | 1562 |
_delta1_index(0), _delta1(0), |
1558 | 1563 |
_delta2_index(0), _delta2(0), |
1559 | 1564 |
_delta3_index(0), _delta3(0), |
1560 | 1565 |
_delta4_index(0), _delta4(0), |
1561 | 1566 |
|
1562 |
_delta_sum() |
|
1567 |
_delta_sum(), _unmatched(0), |
|
1568 |
|
|
1569 |
_fractional(0) |
|
1570 |
{} |
|
1563 | 1571 |
|
1564 | 1572 |
~MaxWeightedMatching() { |
1565 | 1573 |
destroyStructures(); |
1574 |
if (_fractional) { |
|
1575 |
delete _fractional; |
|
1576 |
} |
|
1566 | 1577 |
} |
1567 | 1578 |
|
1568 | 1579 |
/// \name Execution Control |
1569 | 1580 |
/// The simplest way to execute the algorithm is to use the |
1570 | 1581 |
/// \ref run() member function. |
1571 | 1582 |
|
... | ... |
@@ -1588,12 +1599,14 @@ |
1588 | 1599 |
} |
1589 | 1600 |
for (int i = 0; i < _blossom_num; ++i) { |
1590 | 1601 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
1591 | 1602 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
1592 | 1603 |
} |
1593 | 1604 |
|
1605 |
_unmatched = _node_num; |
|
1606 |
|
|
1594 | 1607 |
int index = 0; |
1595 | 1608 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1596 | 1609 |
Value max = 0; |
1597 | 1610 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
1598 | 1611 |
if (_graph.target(e) == n) continue; |
1599 | 1612 |
if ((dualScale * _weight[e]) / 2 > max) { |
... | ... |
@@ -1622,24 +1635,161 @@ |
1622 | 1635 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
1623 | 1636 |
dualScale * _weight[e]) / 2); |
1624 | 1637 |
} |
1625 | 1638 |
} |
1626 | 1639 |
} |
1627 | 1640 |
|
1641 |
/// \brief Initialize the algorithm with fractional matching |
|
1642 |
/// |
|
1643 |
/// This function initializes the algorithm with a fractional |
|
1644 |
/// matching. This initialization is also called jumpstart heuristic. |
|
1645 |
void fractionalInit() { |
|
1646 |
createStructures(); |
|
1647 |
|
|
1648 |
if (_fractional == 0) { |
|
1649 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
1650 |
} |
|
1651 |
_fractional->run(); |
|
1652 |
|
|
1653 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1654 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
1655 |
} |
|
1656 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1657 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1658 |
} |
|
1659 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1660 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1661 |
} |
|
1662 |
for (int i = 0; i < _blossom_num; ++i) { |
|
1663 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
1664 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
1665 |
} |
|
1666 |
|
|
1667 |
_unmatched = 0; |
|
1668 |
|
|
1669 |
int index = 0; |
|
1670 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1671 |
Value pot = _fractional->nodeValue(n); |
|
1672 |
(*_node_index)[n] = index; |
|
1673 |
(*_node_data)[index].pot = pot; |
|
1674 |
int blossom = |
|
1675 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
1676 |
|
|
1677 |
(*_blossom_data)[blossom].status = MATCHED; |
|
1678 |
(*_blossom_data)[blossom].pred = INVALID; |
|
1679 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
1680 |
if (_fractional->matching(n) == INVALID) { |
|
1681 |
(*_blossom_data)[blossom].base = n; |
|
1682 |
} |
|
1683 |
(*_blossom_data)[blossom].pot = 0; |
|
1684 |
(*_blossom_data)[blossom].offset = 0; |
|
1685 |
++index; |
|
1686 |
} |
|
1687 |
|
|
1688 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
1689 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1690 |
if (processed[n]) continue; |
|
1691 |
processed[n] = true; |
|
1692 |
if (_fractional->matching(n) == INVALID) continue; |
|
1693 |
int num = 1; |
|
1694 |
Node v = _graph.target(_fractional->matching(n)); |
|
1695 |
while (n != v) { |
|
1696 |
processed[v] = true; |
|
1697 |
v = _graph.target(_fractional->matching(v)); |
|
1698 |
++num; |
|
1699 |
} |
|
1700 |
|
|
1701 |
if (num % 2 == 1) { |
|
1702 |
std::vector<int> subblossoms(num); |
|
1703 |
|
|
1704 |
subblossoms[--num] = _blossom_set->find(n); |
|
1705 |
_delta1->push(n, _fractional->nodeValue(n)); |
|
1706 |
v = _graph.target(_fractional->matching(n)); |
|
1707 |
while (n != v) { |
|
1708 |
subblossoms[--num] = _blossom_set->find(v); |
|
1709 |
_delta1->push(v, _fractional->nodeValue(v)); |
|
1710 |
v = _graph.target(_fractional->matching(v)); |
|
1711 |
} |
|
1712 |
|
|
1713 |
int surface = |
|
1714 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
1715 |
(*_blossom_data)[surface].status = EVEN; |
|
1716 |
(*_blossom_data)[surface].pred = INVALID; |
|
1717 |
(*_blossom_data)[surface].next = INVALID; |
|
1718 |
(*_blossom_data)[surface].pot = 0; |
|
1719 |
(*_blossom_data)[surface].offset = 0; |
|
1720 |
|
|
1721 |
_tree_set->insert(surface); |
|
1722 |
++_unmatched; |
|
1723 |
} |
|
1724 |
} |
|
1725 |
|
|
1726 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1727 |
int si = (*_node_index)[_graph.u(e)]; |
|
1728 |
int sb = _blossom_set->find(_graph.u(e)); |
|
1729 |
int ti = (*_node_index)[_graph.v(e)]; |
|
1730 |
int tb = _blossom_set->find(_graph.v(e)); |
|
1731 |
if ((*_blossom_data)[sb].status == EVEN && |
|
1732 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
1733 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
1734 |
dualScale * _weight[e]) / 2); |
|
1735 |
} |
|
1736 |
} |
|
1737 |
|
|
1738 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1739 |
int nb = _blossom_set->find(n); |
|
1740 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
1741 |
int ni = (*_node_index)[n]; |
|
1742 |
|
|
1743 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1744 |
Node v = _graph.target(e); |
|
1745 |
int vb = _blossom_set->find(v); |
|
1746 |
int vi = (*_node_index)[v]; |
|
1747 |
|
|
1748 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1749 |
dualScale * _weight[e]; |
|
1750 |
|
|
1751 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1752 |
|
|
1753 |
int vt = _tree_set->find(vb); |
|
1754 |
|
|
1755 |
typename std::map<int, Arc>::iterator it = |
|
1756 |
(*_node_data)[ni].heap_index.find(vt); |
|
1757 |
|
|
1758 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1759 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1760 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
1761 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
1762 |
it->second = e; |
|
1763 |
} |
|
1764 |
} else { |
|
1765 |
(*_node_data)[ni].heap.push(e, rw); |
|
1766 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
1767 |
} |
|
1768 |
} |
|
1769 |
} |
|
1770 |
|
|
1771 |
if (!(*_node_data)[ni].heap.empty()) { |
|
1772 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1773 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
1774 |
} |
|
1775 |
} |
|
1776 |
} |
|
1777 |
|
|
1628 | 1778 |
/// \brief Start the algorithm |
1629 | 1779 |
/// |
1630 | 1780 |
/// This function starts the algorithm. |
1631 | 1781 |
/// |
1632 |
/// \pre \ref init() must be called |
|
1782 |
/// \pre \ref init() or \ref fractionalInit() must be called |
|
1783 |
/// before using this function. |
|
1633 | 1784 |
void start() { |
1634 | 1785 |
enum OpType { |
1635 | 1786 |
D1, D2, D3, D4 |
1636 | 1787 |
}; |
1637 | 1788 |
|
1638 |
int unmatched = _node_num; |
|
1639 |
while (unmatched > 0) { |
|
1789 |
while (_unmatched > 0) { |
|
1640 | 1790 |
Value d1 = !_delta1->empty() ? |
1641 | 1791 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
1642 | 1792 |
|
1643 | 1793 |
Value d2 = !_delta2->empty() ? |
1644 | 1794 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
1645 | 1795 |
|
... | ... |
@@ -1656,23 +1806,23 @@ |
1656 | 1806 |
|
1657 | 1807 |
switch (ot) { |
1658 | 1808 |
case D1: |
1659 | 1809 |
{ |
1660 | 1810 |
Node n = _delta1->top(); |
1661 | 1811 |
unmatchNode(n); |
1662 |
-- |
|
1812 |
--_unmatched; |
|
1663 | 1813 |
} |
1664 | 1814 |
break; |
1665 | 1815 |
case D2: |
1666 | 1816 |
{ |
1667 | 1817 |
int blossom = _delta2->top(); |
1668 | 1818 |
Node n = _blossom_set->classTop(blossom); |
1669 | 1819 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
1670 | 1820 |
if ((*_blossom_data)[blossom].next == INVALID) { |
1671 | 1821 |
augmentOnArc(a); |
1672 |
-- |
|
1822 |
--_unmatched; |
|
1673 | 1823 |
} else { |
1674 | 1824 |
extendOnArc(a); |
1675 | 1825 |
} |
1676 | 1826 |
} |
1677 | 1827 |
break; |
1678 | 1828 |
case D3: |
... | ... |
@@ -1689,13 +1839,13 @@ |
1689 | 1839 |
int right_tree = _tree_set->find(right_blossom); |
1690 | 1840 |
|
1691 | 1841 |
if (left_tree == right_tree) { |
1692 | 1842 |
shrinkOnEdge(e, left_tree); |
1693 | 1843 |
} else { |
1694 | 1844 |
augmentOnEdge(e); |
1695 |
|
|
1845 |
_unmatched -= 2; |
|
1696 | 1846 |
} |
1697 | 1847 |
} |
1698 | 1848 |
} break; |
1699 | 1849 |
case D4: |
1700 | 1850 |
splitBlossom(_delta4->top()); |
1701 | 1851 |
break; |
... | ... |
@@ -1707,17 +1857,17 @@ |
1707 | 1857 |
/// \brief Run the algorithm. |
1708 | 1858 |
/// |
1709 | 1859 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
1710 | 1860 |
/// |
1711 | 1861 |
/// \note mwm.run() is just a shortcut of the following code. |
1712 | 1862 |
/// \code |
1713 |
/// mwm. |
|
1863 |
/// mwm.fractionalInit(); |
|
1714 | 1864 |
/// mwm.start(); |
1715 | 1865 |
/// \endcode |
1716 | 1866 |
void run() { |
1717 |
|
|
1867 |
fractionalInit(); |
|
1718 | 1868 |
start(); |
1719 | 1869 |
} |
1720 | 1870 |
|
1721 | 1871 |
/// @} |
1722 | 1872 |
|
1723 | 1873 |
/// \name Primal Solution |
... | ... |
@@ -2071,12 +2221,17 @@ |
2071 | 2221 |
BinHeap<Value, IntEdgeMap> *_delta3; |
2072 | 2222 |
|
2073 | 2223 |
IntIntMap *_delta4_index; |
2074 | 2224 |
BinHeap<Value, IntIntMap> *_delta4; |
2075 | 2225 |
|
2076 | 2226 |
Value _delta_sum; |
2227 |
int _unmatched; |
|
2228 |
|
|
2229 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
2230 |
FractionalMatching; |
|
2231 |
FractionalMatching *_fractional; |
|
2077 | 2232 |
|
2078 | 2233 |
void createStructures() { |
2079 | 2234 |
_node_num = countNodes(_graph); |
2080 | 2235 |
_blossom_num = _node_num * 3 / 2; |
2081 | 2236 |
|
2082 | 2237 |
if (!_matching) { |
... | ... |
@@ -2786,16 +2941,22 @@ |
2786 | 2941 |
_tree_set_index(0), _tree_set(0), |
2787 | 2942 |
|
2788 | 2943 |
_delta2_index(0), _delta2(0), |
2789 | 2944 |
_delta3_index(0), _delta3(0), |
2790 | 2945 |
_delta4_index(0), _delta4(0), |
2791 | 2946 |
|
2792 |
_delta_sum() |
|
2947 |
_delta_sum(), _unmatched(0), |
|
2948 |
|
|
2949 |
_fractional(0) |
|
2950 |
{} |
|
2793 | 2951 |
|
2794 | 2952 |
~MaxWeightedPerfectMatching() { |
2795 | 2953 |
destroyStructures(); |
2954 |
if (_fractional) { |
|
2955 |
delete _fractional; |
|
2956 |
} |
|
2796 | 2957 |
} |
2797 | 2958 |
|
2798 | 2959 |
/// \name Execution Control |
2799 | 2960 |
/// The simplest way to execute the algorithm is to use the |
2800 | 2961 |
/// \ref run() member function. |
2801 | 2962 |
|
... | ... |
@@ -2815,12 +2976,14 @@ |
2815 | 2976 |
} |
2816 | 2977 |
for (int i = 0; i < _blossom_num; ++i) { |
2817 | 2978 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
2818 | 2979 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
2819 | 2980 |
} |
2820 | 2981 |
|
2982 |
_unmatched = _node_num; |
|
2983 |
|
|
2821 | 2984 |
int index = 0; |
2822 | 2985 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2823 | 2986 |
Value max = - std::numeric_limits<Value>::max(); |
2824 | 2987 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
2825 | 2988 |
if (_graph.target(e) == n) continue; |
2826 | 2989 |
if ((dualScale * _weight[e]) / 2 > max) { |
... | ... |
@@ -2848,24 +3011,158 @@ |
2848 | 3011 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
2849 | 3012 |
dualScale * _weight[e]) / 2); |
2850 | 3013 |
} |
2851 | 3014 |
} |
2852 | 3015 |
} |
2853 | 3016 |
|
3017 |
/// \brief Initialize the algorithm with fractional matching |
|
3018 |
/// |
|
3019 |
/// This function initializes the algorithm with a fractional |
|
3020 |
/// matching. This initialization is also called jumpstart heuristic. |
|
3021 |
void fractionalInit() { |
|
3022 |
createStructures(); |
|
3023 |
|
|
3024 |
if (_fractional == 0) { |
|
3025 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
3026 |
} |
|
3027 |
if (!_fractional->run()) { |
|
3028 |
_unmatched = -1; |
|
3029 |
return; |
|
3030 |
} |
|
3031 |
|
|
3032 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
3033 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
3034 |
} |
|
3035 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3036 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
3037 |
} |
|
3038 |
for (int i = 0; i < _blossom_num; ++i) { |
|
3039 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
3040 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
3041 |
} |
|
3042 |
|
|
3043 |
_unmatched = 0; |
|
3044 |
|
|
3045 |
int index = 0; |
|
3046 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3047 |
Value pot = _fractional->nodeValue(n); |
|
3048 |
(*_node_index)[n] = index; |
|
3049 |
(*_node_data)[index].pot = pot; |
|
3050 |
int blossom = |
|
3051 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
3052 |
|
|
3053 |
(*_blossom_data)[blossom].status = MATCHED; |
|
3054 |
(*_blossom_data)[blossom].pred = INVALID; |
|
3055 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
3056 |
(*_blossom_data)[blossom].pot = 0; |
|
3057 |
(*_blossom_data)[blossom].offset = 0; |
|
3058 |
++index; |
|
3059 |
} |
|
3060 |
|
|
3061 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
3062 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3063 |
if (processed[n]) continue; |
|
3064 |
processed[n] = true; |
|
3065 |
if (_fractional->matching(n) == INVALID) continue; |
|
3066 |
int num = 1; |
|
3067 |
Node v = _graph.target(_fractional->matching(n)); |
|
3068 |
while (n != v) { |
|
3069 |
processed[v] = true; |
|
3070 |
v = _graph.target(_fractional->matching(v)); |
|
3071 |
++num; |
|
3072 |
} |
|
3073 |
|
|
3074 |
if (num % 2 == 1) { |
|
3075 |
std::vector<int> subblossoms(num); |
|
3076 |
|
|
3077 |
subblossoms[--num] = _blossom_set->find(n); |
|
3078 |
v = _graph.target(_fractional->matching(n)); |
|
3079 |
while (n != v) { |
|
3080 |
subblossoms[--num] = _blossom_set->find(v); |
|
3081 |
v = _graph.target(_fractional->matching(v)); |
|
3082 |
} |
|
3083 |
|
|
3084 |
int surface = |
|
3085 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
3086 |
(*_blossom_data)[surface].status = EVEN; |
|
3087 |
(*_blossom_data)[surface].pred = INVALID; |
|
3088 |
(*_blossom_data)[surface].next = INVALID; |
|
3089 |
(*_blossom_data)[surface].pot = 0; |
|
3090 |
(*_blossom_data)[surface].offset = 0; |
|
3091 |
|
|
3092 |
_tree_set->insert(surface); |
|
3093 |
++_unmatched; |
|
3094 |
} |
|
3095 |
} |
|
3096 |
|
|
3097 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3098 |
int si = (*_node_index)[_graph.u(e)]; |
|
3099 |
int sb = _blossom_set->find(_graph.u(e)); |
|
3100 |
int ti = (*_node_index)[_graph.v(e)]; |
|
3101 |
int tb = _blossom_set->find(_graph.v(e)); |
|
3102 |
if ((*_blossom_data)[sb].status == EVEN && |
|
3103 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
3104 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
3105 |
dualScale * _weight[e]) / 2); |
|
3106 |
} |
|
3107 |
} |
|
3108 |
|
|
3109 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3110 |
int nb = _blossom_set->find(n); |
|
3111 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
3112 |
int ni = (*_node_index)[n]; |
|
3113 |
|
|
3114 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
3115 |
Node v = _graph.target(e); |
|
3116 |
int vb = _blossom_set->find(v); |
|
3117 |
int vi = (*_node_index)[v]; |
|
3118 |
|
|
3119 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
3120 |
dualScale * _weight[e]; |
|
3121 |
|
|
3122 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
3123 |
|
|
3124 |
int vt = _tree_set->find(vb); |
|
3125 |
|
|
3126 |
typename std::map<int, Arc>::iterator it = |
|
3127 |
(*_node_data)[ni].heap_index.find(vt); |
|
3128 |
|
|
3129 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
3130 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
3131 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
3132 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
3133 |
it->second = e; |
|
3134 |
} |
|
3135 |
} else { |
|
3136 |
(*_node_data)[ni].heap.push(e, rw); |
|
3137 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
3138 |
} |
|
3139 |
} |
|
3140 |
} |
|
3141 |
|
|
3142 |
if (!(*_node_data)[ni].heap.empty()) { |
|
3143 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
3144 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
3145 |
} |
|
3146 |
} |
|
3147 |
} |
|
3148 |
|
|
2854 | 3149 |
/// \brief Start the algorithm |
2855 | 3150 |
/// |
2856 | 3151 |
/// This function starts the algorithm. |
2857 | 3152 |
/// |
2858 |
/// \pre \ref init() must be called before |
|
3153 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
|
3154 |
/// using this function. |
|
2859 | 3155 |
bool start() { |
2860 | 3156 |
enum OpType { |
2861 | 3157 |
D2, D3, D4 |
2862 | 3158 |
}; |
2863 | 3159 |
|
2864 |
int unmatched = _node_num; |
|
2865 |
while (unmatched > 0) { |
|
3160 |
if (_unmatched == -1) return false; |
|
3161 |
|
|
3162 |
while (_unmatched > 0) { |
|
2866 | 3163 |
Value d2 = !_delta2->empty() ? |
2867 | 3164 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
2868 | 3165 |
|
2869 | 3166 |
Value d3 = !_delta3->empty() ? |
2870 | 3167 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
2871 | 3168 |
|
... | ... |
@@ -2903,13 +3200,13 @@ |
2903 | 3200 |
int right_tree = _tree_set->find(right_blossom); |
2904 | 3201 |
|
2905 | 3202 |
if (left_tree == right_tree) { |
2906 | 3203 |
shrinkOnEdge(e, left_tree); |
2907 | 3204 |
} else { |
2908 | 3205 |
augmentOnEdge(e); |
2909 |
|
|
3206 |
_unmatched -= 2; |
|
2910 | 3207 |
} |
2911 | 3208 |
} |
2912 | 3209 |
} break; |
2913 | 3210 |
case D4: |
2914 | 3211 |
splitBlossom(_delta4->top()); |
2915 | 3212 |
break; |
... | ... |
@@ -2922,17 +3219,17 @@ |
2922 | 3219 |
/// \brief Run the algorithm. |
2923 | 3220 |
/// |
2924 | 3221 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
2925 | 3222 |
/// |
2926 | 3223 |
/// \note mwpm.run() is just a shortcut of the following code. |
2927 | 3224 |
/// \code |
2928 |
/// mwpm. |
|
3225 |
/// mwpm.fractionalInit(); |
|
2929 | 3226 |
/// mwpm.start(); |
2930 | 3227 |
/// \endcode |
2931 | 3228 |
bool run() { |
2932 |
|
|
3229 |
fractionalInit(); |
|
2933 | 3230 |
return start(); |
2934 | 3231 |
} |
2935 | 3232 |
|
2936 | 3233 |
/// @} |
2937 | 3234 |
|
2938 | 3235 |
/// \name Primal Solution |
... | ... |
@@ -398,27 +398,51 @@ |
398 | 398 |
SmartGraph::EdgeMap<int> weight(graph); |
399 | 399 |
|
400 | 400 |
istringstream lgfs(lgf[i]); |
401 | 401 |
graphReader(graph, lgfs). |
402 | 402 |
edgeMap("weight", weight).run(); |
403 | 403 |
|
404 |
bool perfect; |
|
405 |
{ |
|
404 | 406 |
MaxMatching<SmartGraph> mm(graph); |
405 | 407 |
mm.run(); |
406 | 408 |
checkMatching(graph, mm); |
409 |
perfect = 2 * mm.matchingSize() == countNodes(graph); |
|
410 |
} |
|
407 | 411 |
|
412 |
{ |
|
408 | 413 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
409 | 414 |
mwm.run(); |
410 | 415 |
checkWeightedMatching(graph, weight, mwm); |
416 |
} |
|
411 | 417 |
|
418 |
{ |
|
419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
420 |
mwm.init(); |
|
421 |
mwm.start(); |
|
422 |
checkWeightedMatching(graph, weight, mwm); |
|
423 |
} |
|
424 |
|
|
425 |
{ |
|
412 | 426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
413 |
bool |
|
427 |
bool result = mwpm.run(); |
|
414 | 428 |
|
415 |
check(perfect == (mm.matchingSize() * 2 == countNodes(graph)), |
|
416 |
"Perfect matching found"); |
|
417 |
|
|
429 |
check(result == perfect, "Perfect matching found"); |
|
418 | 430 |
if (perfect) { |
419 | 431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
420 | 432 |
} |
421 | 433 |
} |
422 | 434 |
|
435 |
{ |
|
436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
437 |
mwpm.init(); |
|
438 |
bool result = mwpm.start(); |
|
439 |
|
|
440 |
check(result == perfect, "Perfect matching found"); |
|
441 |
if (perfect) { |
|
442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
443 |
} |
|
444 |
} |
|
445 |
} |
|
446 |
|
|
423 | 447 |
return 0; |
424 | 448 |
} |
0 comments (0 inline)