0
2
0
50
48
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2007 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 |
// Modified for use in LEMON. |
|
| 20 |
// We should really consider using Boost... |
|
| 19 |
// This file contains a modified version of the concept checking |
|
| 20 |
// utility from BOOST. |
|
| 21 |
// See the appropriate copyright notice below. |
|
| 21 | 22 |
|
| 22 |
// |
|
| 23 | 23 |
// (C) Copyright Jeremy Siek 2000. |
| 24 | 24 |
// Distributed under the Boost Software License, Version 1.0. (See |
| 25 | 25 |
// accompanying file LICENSE_1_0.txt or copy at |
| 26 | 26 |
// http://www.boost.org/LICENSE_1_0.txt) |
| 27 | 27 |
// |
| 28 | 28 |
// Revision History: |
| 29 | 29 |
// 05 May 2001: Workarounds for HP aCC from Thomas Matelich. (Jeremy Siek) |
| 30 | 30 |
// 02 April 2001: Removed limits header altogether. (Jeremy Siek) |
| 31 | 31 |
// 01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock) |
| 32 | 32 |
// |
| 33 | 33 |
|
| 34 | 34 |
// See http://www.boost.org/libs/concept_check for documentation. |
| 35 | 35 |
|
| 36 | 36 |
#ifndef LEMON_BOOST_CONCEPT_CHECKS_HPP |
| 37 | 37 |
#define LEMON_BOOST_CONCEPT_CHECKS_HPP |
| 38 | 38 |
|
| 39 | 39 |
namespace lemon {
|
| 40 | 40 |
|
| 41 | 41 |
/* |
| 42 | 42 |
"inline" is used for ignore_unused_variable_warning() |
| 43 | 43 |
and function_requires() to make sure there is no |
| 44 | 44 |
overtarget with g++. |
| 45 | 45 |
*/ |
| 46 | 46 |
|
| 47 | 47 |
template <class T> inline void ignore_unused_variable_warning(const T&) { }
|
| 48 | 48 |
|
| 49 | 49 |
template <class Concept> |
| 50 | 50 |
inline void function_requires() |
| 51 | 51 |
{
|
| 52 | 52 |
#if !defined(NDEBUG) |
| 53 | 53 |
void (Concept::*x)() = & Concept::constraints; |
| 54 | 54 |
ignore_unused_variable_warning(x); |
| 55 | 55 |
#endif |
| 56 | 56 |
} |
| 57 | 57 |
|
| 58 | 58 |
template <typename Concept, typename Type> |
| 59 | 59 |
inline void checkConcept() {
|
| 60 | 60 |
#if !defined(NDEBUG) |
| 61 | 61 |
typedef typename Concept::template Constraints<Type> ConceptCheck; |
| 62 | 62 |
void (ConceptCheck::*x)() = & ConceptCheck::constraints; |
| 63 | 63 |
ignore_unused_variable_warning(x); |
| 64 | 64 |
#endif |
| 65 | 65 |
} |
| 66 | 66 |
|
| 67 | 67 |
#define BOOST_CLASS_REQUIRE(type_var, ns, concept) \ |
| 68 | 68 |
typedef void (ns::concept <type_var>::* func##type_var##concept)(); \ |
| 69 | 69 |
template <func##type_var##concept Tp1_> \ |
| 70 | 70 |
struct concept_checking_##type_var##concept { }; \
|
| ... | ... |
@@ -202,97 +202,99 @@ |
| 202 | 202 |
StdMap& operator=(const StdMap&); |
| 203 | 203 |
|
| 204 | 204 |
public: |
| 205 | 205 |
|
| 206 | 206 |
///\e |
| 207 | 207 |
Reference operator[](const Key &k) {
|
| 208 | 208 |
typename Map::iterator it = _map.lower_bound(k); |
| 209 | 209 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 210 | 210 |
return it->second; |
| 211 | 211 |
else |
| 212 | 212 |
return _map.insert(it, std::make_pair(k, _value))->second; |
| 213 | 213 |
} |
| 214 | 214 |
|
| 215 | 215 |
/// \e |
| 216 | 216 |
ConstReference operator[](const Key &k) const {
|
| 217 | 217 |
typename Map::const_iterator it = _map.find(k); |
| 218 | 218 |
if (it != _map.end()) |
| 219 | 219 |
return it->second; |
| 220 | 220 |
else |
| 221 | 221 |
return _value; |
| 222 | 222 |
} |
| 223 | 223 |
|
| 224 | 224 |
/// \e |
| 225 | 225 |
void set(const Key &k, const T &t) {
|
| 226 | 226 |
typename Map::iterator it = _map.lower_bound(k); |
| 227 | 227 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 228 | 228 |
it->second = t; |
| 229 | 229 |
else |
| 230 | 230 |
_map.insert(it, std::make_pair(k, t)); |
| 231 | 231 |
} |
| 232 | 232 |
|
| 233 | 233 |
/// \e |
| 234 | 234 |
void setAll(const T &t) {
|
| 235 | 235 |
_value = t; |
| 236 | 236 |
_map.clear(); |
| 237 | 237 |
} |
| 238 | 238 |
|
| 239 | 239 |
template <typename T1, typename C1 = std::less<T1> > |
| 240 | 240 |
struct rebind {
|
| 241 | 241 |
typedef StdMap<Key, T1, C1> other; |
| 242 | 242 |
}; |
| 243 | 243 |
}; |
| 244 | 244 |
|
| 245 | 245 |
/// \brief Map for storing values for the range \c [0..size-1] range keys |
| 246 | 246 |
/// |
| 247 | 247 |
/// The current map has the \c [0..size-1] keyset and the values |
| 248 | 248 |
/// are stored in a \c std::vector<T> container. It can be used with |
| 249 | 249 |
/// some data structures, for example \c UnionFind, \c BinHeap, when |
| 250 |
/// the used items are small integer numbers. |
|
| 250 |
/// the used items are small integer numbers. |
|
| 251 |
/// |
|
| 252 |
/// \todo Revise its name |
|
| 251 | 253 |
template <typename T> |
| 252 | 254 |
class IntegerMap {
|
| 253 | 255 |
|
| 254 | 256 |
template <typename T1> |
| 255 | 257 |
friend class IntegerMap; |
| 256 | 258 |
|
| 257 | 259 |
public: |
| 258 | 260 |
|
| 259 | 261 |
typedef True ReferenceMapTag; |
| 260 | 262 |
///\e |
| 261 | 263 |
typedef int Key; |
| 262 | 264 |
///\e |
| 263 | 265 |
typedef T Value; |
| 264 | 266 |
///\e |
| 265 | 267 |
typedef T& Reference; |
| 266 | 268 |
///\e |
| 267 | 269 |
typedef const T& ConstReference; |
| 268 | 270 |
|
| 269 | 271 |
private: |
| 270 | 272 |
|
| 271 | 273 |
typedef std::vector<T> Vector; |
| 272 | 274 |
Vector _vector; |
| 273 | 275 |
|
| 274 | 276 |
public: |
| 275 | 277 |
|
| 276 | 278 |
/// Constructor with specified default value |
| 277 | 279 |
IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
|
| 278 | 280 |
|
| 279 | 281 |
/// \brief Constructs the map from an appropriate std::vector. |
| 280 | 282 |
template <typename T1> |
| 281 | 283 |
IntegerMap(const std::vector<T1>& vector) |
| 282 | 284 |
: _vector(vector.begin(), vector.end()) {}
|
| 283 | 285 |
|
| 284 | 286 |
/// \brief Constructs a map from an other IntegerMap. |
| 285 | 287 |
template <typename T1> |
| 286 | 288 |
IntegerMap(const IntegerMap<T1> &c) |
| 287 | 289 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
| 288 | 290 |
|
| 289 | 291 |
/// \brief Resize the container |
| 290 | 292 |
void resize(int size, const T& value = T()) {
|
| 291 | 293 |
_vector.resize(size, value); |
| 292 | 294 |
} |
| 293 | 295 |
|
| 294 | 296 |
private: |
| 295 | 297 |
|
| 296 | 298 |
IntegerMap& operator=(const IntegerMap&); |
| 297 | 299 |
|
| 298 | 300 |
public: |
| ... | ... |
@@ -301,392 +303,396 @@ |
| 301 | 303 |
Reference operator[](Key k) {
|
| 302 | 304 |
return _vector[k]; |
| 303 | 305 |
} |
| 304 | 306 |
|
| 305 | 307 |
/// \e |
| 306 | 308 |
ConstReference operator[](Key k) const {
|
| 307 | 309 |
return _vector[k]; |
| 308 | 310 |
} |
| 309 | 311 |
|
| 310 | 312 |
/// \e |
| 311 | 313 |
void set(const Key &k, const T& t) {
|
| 312 | 314 |
_vector[k] = t; |
| 313 | 315 |
} |
| 314 | 316 |
|
| 315 | 317 |
}; |
| 316 | 318 |
|
| 317 | 319 |
/// @} |
| 318 | 320 |
|
| 319 | 321 |
/// \addtogroup map_adaptors |
| 320 | 322 |
/// @{
|
| 321 | 323 |
|
| 322 | 324 |
/// \brief Identity mapping. |
| 323 | 325 |
/// |
| 324 | 326 |
/// This mapping gives back the given key as value without any |
| 325 | 327 |
/// modification. |
| 326 | 328 |
template <typename T> |
| 327 | 329 |
class IdentityMap : public MapBase<T, T> {
|
| 328 | 330 |
public: |
| 329 | 331 |
typedef MapBase<T, T> Parent; |
| 330 | 332 |
typedef typename Parent::Key Key; |
| 331 | 333 |
typedef typename Parent::Value Value; |
| 332 | 334 |
|
| 333 | 335 |
/// \e |
| 334 | 336 |
const T& operator[](const T& t) const {
|
| 335 | 337 |
return t; |
| 336 | 338 |
} |
| 337 | 339 |
}; |
| 338 | 340 |
|
| 339 | 341 |
///Returns an \c IdentityMap class |
| 340 | 342 |
|
| 341 | 343 |
///This function just returns an \c IdentityMap class. |
| 342 | 344 |
///\relates IdentityMap |
| 343 | 345 |
template<typename T> |
| 344 | 346 |
inline IdentityMap<T> identityMap() {
|
| 345 | 347 |
return IdentityMap<T>(); |
| 346 | 348 |
} |
| 347 | 349 |
|
| 348 | 350 |
|
| 349 |
///Convert the \c Value of a map to another type. |
|
| 350 |
|
|
| 351 |
///\brief Convert the \c Value of a map to another type using |
|
| 352 |
///the default conversion. |
|
| 353 |
/// |
|
| 351 | 354 |
///This \c concepts::ReadMap "read only map" |
| 352 | 355 |
///converts the \c Value of a maps to type \c T. |
| 353 | 356 |
///Its \c Key is inherited from \c M. |
| 354 | 357 |
template <typename M, typename T> |
| 355 | 358 |
class ConvertMap : public MapBase<typename M::Key, T> {
|
| 356 | 359 |
const M& m; |
| 357 | 360 |
public: |
| 358 | 361 |
typedef MapBase<typename M::Key, T> Parent; |
| 359 | 362 |
typedef typename Parent::Key Key; |
| 360 | 363 |
typedef typename Parent::Value Value; |
| 361 | 364 |
|
| 362 | 365 |
///Constructor |
| 363 | 366 |
|
| 364 | 367 |
///Constructor |
| 365 | 368 |
///\param _m is the underlying map |
| 366 | 369 |
ConvertMap(const M &_m) : m(_m) {};
|
| 367 | 370 |
|
| 368 | 371 |
/// \brief The subscript operator. |
| 369 | 372 |
/// |
| 370 | 373 |
/// The subscript operator. |
| 371 |
/// \param k The key |
|
| 372 |
/// \return The target of the arc |
|
| 373 | 374 |
Value operator[](const Key& k) const {return m[k];}
|
| 374 | 375 |
}; |
| 375 | 376 |
|
| 376 | 377 |
///Returns an \c ConvertMap class |
| 377 | 378 |
|
| 378 | 379 |
///This function just returns an \c ConvertMap class. |
| 379 | 380 |
///\relates ConvertMap |
| 380 | 381 |
template<typename T, typename M> |
| 381 | 382 |
inline ConvertMap<M, T> convertMap(const M &m) {
|
| 382 | 383 |
return ConvertMap<M, T>(m); |
| 383 | 384 |
} |
| 384 | 385 |
|
| 385 | 386 |
///Simple wrapping of the map |
| 386 | 387 |
|
| 387 | 388 |
///This \c concepts::ReadMap "read only map" returns the simple |
| 388 | 389 |
///wrapping of the given map. Sometimes the reference maps cannot be |
| 389 | 390 |
///combined with simple read maps. This map adaptor wraps the given |
| 390 | 391 |
///map to simple read map. |
| 392 |
/// |
|
| 393 |
/// \todo Revise the misleading name |
|
| 391 | 394 |
template<typename M> |
| 392 | 395 |
class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
|
| 393 | 396 |
const M& m; |
| 394 | 397 |
|
| 395 | 398 |
public: |
| 396 | 399 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 397 | 400 |
typedef typename Parent::Key Key; |
| 398 | 401 |
typedef typename Parent::Value Value; |
| 399 | 402 |
|
| 400 | 403 |
///Constructor |
| 401 | 404 |
SimpleMap(const M &_m) : m(_m) {};
|
| 402 | 405 |
///\e |
| 403 | 406 |
Value operator[](Key k) const {return m[k];}
|
| 404 | 407 |
}; |
| 405 | 408 |
|
| 406 | 409 |
///Simple writeable wrapping of the map |
| 407 | 410 |
|
| 408 |
///This \c concepts:: |
|
| 411 |
///This \c concepts::WriteMap "write map" returns the simple |
|
| 409 | 412 |
///wrapping of the given map. Sometimes the reference maps cannot be |
| 410 | 413 |
///combined with simple read-write maps. This map adaptor wraps the |
| 411 | 414 |
///given map to simple read-write map. |
| 415 |
/// |
|
| 416 |
/// \todo Revise the misleading name |
|
| 412 | 417 |
template<typename M> |
| 413 | 418 |
class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 414 | 419 |
M& m; |
| 415 | 420 |
|
| 416 | 421 |
public: |
| 417 | 422 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 418 | 423 |
typedef typename Parent::Key Key; |
| 419 | 424 |
typedef typename Parent::Value Value; |
| 420 | 425 |
|
| 421 | 426 |
///Constructor |
| 422 | 427 |
SimpleWriteMap(M &_m) : m(_m) {};
|
| 423 | 428 |
///\e |
| 424 | 429 |
Value operator[](Key k) const {return m[k];}
|
| 425 | 430 |
///\e |
| 426 | 431 |
void set(Key k, const Value& c) { m.set(k, c); }
|
| 427 | 432 |
}; |
| 428 | 433 |
|
| 429 | 434 |
///Sum of two maps |
| 430 | 435 |
|
| 431 | 436 |
///This \c concepts::ReadMap "read only map" returns the sum of the two |
| 432 | 437 |
///given maps. Its \c Key and \c Value will be inherited from \c M1. |
| 433 | 438 |
///The \c Key and \c Value of M2 must be convertible to those of \c M1. |
| 434 | 439 |
|
| 435 | 440 |
template<typename M1, typename M2> |
| 436 | 441 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 437 | 442 |
const M1& m1; |
| 438 | 443 |
const M2& m2; |
| 439 | 444 |
|
| 440 | 445 |
public: |
| 441 | 446 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
| 442 | 447 |
typedef typename Parent::Key Key; |
| 443 | 448 |
typedef typename Parent::Value Value; |
| 444 | 449 |
|
| 445 | 450 |
///Constructor |
| 446 | 451 |
AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
| 447 | 452 |
///\e |
| 448 | 453 |
Value operator[](Key k) const {return m1[k]+m2[k];}
|
| 449 | 454 |
}; |
| 450 | 455 |
|
| 451 | 456 |
///Returns an \c AddMap class |
| 452 | 457 |
|
| 453 | 458 |
///This function just returns an \c AddMap class. |
| 454 | 459 |
///\todo How to call these type of functions? |
| 455 | 460 |
/// |
| 456 | 461 |
///\relates AddMap |
| 457 | 462 |
template<typename M1, typename M2> |
| 458 | 463 |
inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
|
| 459 | 464 |
return AddMap<M1, M2>(m1,m2); |
| 460 | 465 |
} |
| 461 | 466 |
|
| 462 | 467 |
///Shift a map with a constant. |
| 463 | 468 |
|
| 464 | 469 |
///This \c concepts::ReadMap "read only map" returns the sum of the |
| 465 | 470 |
///given map and a constant value. |
| 466 | 471 |
///Its \c Key and \c Value is inherited from \c M. |
| 467 | 472 |
/// |
| 468 | 473 |
///Actually, |
| 469 | 474 |
///\code |
| 470 | 475 |
/// ShiftMap<X> sh(x,v); |
| 471 | 476 |
///\endcode |
| 472 | 477 |
///is equivalent with |
| 473 | 478 |
///\code |
| 474 | 479 |
/// ConstMap<X::Key, X::Value> c_tmp(v); |
| 475 | 480 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v); |
| 476 | 481 |
///\endcode |
| 477 | 482 |
template<typename M, typename C = typename M::Value> |
| 478 | 483 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
| 479 | 484 |
const M& m; |
| 480 | 485 |
C v; |
| 481 | 486 |
public: |
| 482 | 487 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 483 | 488 |
typedef typename Parent::Key Key; |
| 484 | 489 |
typedef typename Parent::Value Value; |
| 485 | 490 |
|
| 486 | 491 |
///Constructor |
| 487 | 492 |
|
| 488 | 493 |
///Constructor |
| 489 | 494 |
///\param _m is the undelying map |
| 490 | 495 |
///\param _v is the shift value |
| 491 | 496 |
ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
| 492 | 497 |
///\e |
| 493 | 498 |
Value operator[](Key k) const {return m[k] + v;}
|
| 494 | 499 |
}; |
| 495 | 500 |
|
| 496 |
///Shift a map with a constant. |
|
| 501 |
///Shift a map with a constant. This map is also writable. |
|
| 497 | 502 |
|
| 498 | 503 |
///This \c concepts::ReadWriteMap "read-write map" returns the sum of the |
| 499 | 504 |
///given map and a constant value. It makes also possible to write the map. |
| 500 | 505 |
///Its \c Key and \c Value is inherited from \c M. |
| 501 | 506 |
/// |
| 502 | 507 |
///Actually, |
| 503 | 508 |
///\code |
| 504 | 509 |
/// ShiftMap<X> sh(x,v); |
| 505 | 510 |
///\endcode |
| 506 | 511 |
///is equivalent with |
| 507 | 512 |
///\code |
| 508 | 513 |
/// ConstMap<X::Key, X::Value> c_tmp(v); |
| 509 | 514 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v); |
| 510 | 515 |
///\endcode |
| 511 | 516 |
template<typename M, typename C = typename M::Value> |
| 512 | 517 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 513 | 518 |
M& m; |
| 514 | 519 |
C v; |
| 515 | 520 |
public: |
| 516 | 521 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 517 | 522 |
typedef typename Parent::Key Key; |
| 518 | 523 |
typedef typename Parent::Value Value; |
| 519 | 524 |
|
| 520 | 525 |
///Constructor |
| 521 | 526 |
|
| 522 | 527 |
///Constructor |
| 523 | 528 |
///\param _m is the undelying map |
| 524 | 529 |
///\param _v is the shift value |
| 525 | 530 |
ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
| 526 | 531 |
/// \e |
| 527 | 532 |
Value operator[](Key k) const {return m[k] + v;}
|
| 528 | 533 |
/// \e |
| 529 | 534 |
void set(Key k, const Value& c) { m.set(k, c - v); }
|
| 530 | 535 |
}; |
| 531 | 536 |
|
| 532 | 537 |
///Returns an \c ShiftMap class |
| 533 | 538 |
|
| 534 | 539 |
///This function just returns an \c ShiftMap class. |
| 535 | 540 |
///\relates ShiftMap |
| 536 | 541 |
template<typename M, typename C> |
| 537 | 542 |
inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
|
| 538 | 543 |
return ShiftMap<M, C>(m,v); |
| 539 | 544 |
} |
| 540 | 545 |
|
| 541 | 546 |
template<typename M, typename C> |
| 542 | 547 |
inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
|
| 543 | 548 |
return ShiftWriteMap<M, C>(m,v); |
| 544 | 549 |
} |
| 545 | 550 |
|
| 546 | 551 |
///Difference of two maps |
| 547 | 552 |
|
| 548 | 553 |
///This \c concepts::ReadMap "read only map" returns the difference |
| 549 | 554 |
///of the values of the two |
| 550 | 555 |
///given maps. Its \c Key and \c Value will be inherited from \c M1. |
| 551 | 556 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
| 552 |
|
|
| 557 |
/// |
|
| 558 |
/// \todo Revise the misleading name |
|
| 553 | 559 |
template<typename M1, typename M2> |
| 554 | 560 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 555 | 561 |
const M1& m1; |
| 556 | 562 |
const M2& m2; |
| 557 | 563 |
public: |
| 558 | 564 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
| 559 | 565 |
typedef typename Parent::Key Key; |
| 560 | 566 |
typedef typename Parent::Value Value; |
| 561 | 567 |
|
| 562 | 568 |
///Constructor |
| 563 | 569 |
SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
| 564 | 570 |
/// \e |
| 565 | 571 |
Value operator[](Key k) const {return m1[k]-m2[k];}
|
| 566 | 572 |
}; |
| 567 | 573 |
|
| 568 | 574 |
///Returns a \c SubMap class |
| 569 | 575 |
|
| 570 | 576 |
///This function just returns a \c SubMap class. |
| 571 | 577 |
/// |
| 572 | 578 |
///\relates SubMap |
| 573 | 579 |
template<typename M1, typename M2> |
| 574 | 580 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
| 575 | 581 |
return SubMap<M1, M2>(m1, m2); |
| 576 | 582 |
} |
| 577 | 583 |
|
| 578 | 584 |
///Product of two maps |
| 579 | 585 |
|
| 580 | 586 |
///This \c concepts::ReadMap "read only map" returns the product of the |
| 581 | 587 |
///values of the two |
| 582 | 588 |
///given |
| 583 | 589 |
///maps. Its \c Key and \c Value will be inherited from \c M1. |
| 584 | 590 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
| 585 | 591 |
|
| 586 | 592 |
template<typename M1, typename M2> |
| 587 | 593 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 588 | 594 |
const M1& m1; |
| 589 | 595 |
const M2& m2; |
| 590 | 596 |
public: |
| 591 | 597 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
| 592 | 598 |
typedef typename Parent::Key Key; |
| 593 | 599 |
typedef typename Parent::Value Value; |
| 594 | 600 |
|
| 595 | 601 |
///Constructor |
| 596 | 602 |
MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
| 597 | 603 |
/// \e |
| 598 | 604 |
Value operator[](Key k) const {return m1[k]*m2[k];}
|
| 599 | 605 |
}; |
| 600 | 606 |
|
| 601 | 607 |
///Returns a \c MulMap class |
| 602 | 608 |
|
| 603 | 609 |
///This function just returns a \c MulMap class. |
| 604 | 610 |
///\relates MulMap |
| 605 | 611 |
template<typename M1, typename M2> |
| 606 | 612 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
| 607 | 613 |
return MulMap<M1, M2>(m1,m2); |
| 608 | 614 |
} |
| 609 | 615 |
|
| 610 | 616 |
///Scales a maps with a constant. |
| 611 | 617 |
|
| 612 | 618 |
///This \c concepts::ReadMap "read only map" returns the value of the |
| 613 | 619 |
///given map multiplied from the left side with a constant value. |
| 614 | 620 |
///Its \c Key and \c Value is inherited from \c M. |
| 615 | 621 |
/// |
| 616 | 622 |
///Actually, |
| 617 | 623 |
///\code |
| 618 | 624 |
/// ScaleMap<X> sc(x,v); |
| 619 | 625 |
///\endcode |
| 620 | 626 |
///is equivalent with |
| 621 | 627 |
///\code |
| 622 | 628 |
/// ConstMap<X::Key, X::Value> c_tmp(v); |
| 623 | 629 |
/// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v); |
| 624 | 630 |
///\endcode |
| 625 | 631 |
template<typename M, typename C = typename M::Value> |
| 626 | 632 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
| 627 | 633 |
const M& m; |
| 628 | 634 |
C v; |
| 629 | 635 |
public: |
| 630 | 636 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 631 | 637 |
typedef typename Parent::Key Key; |
| 632 | 638 |
typedef typename Parent::Value Value; |
| 633 | 639 |
|
| 634 | 640 |
///Constructor |
| 635 | 641 |
|
| 636 | 642 |
///Constructor |
| 637 | 643 |
///\param _m is the undelying map |
| 638 | 644 |
///\param _v is the scaling value |
| 639 | 645 |
ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
| 640 | 646 |
/// \e |
| 641 | 647 |
Value operator[](Key k) const {return v * m[k];}
|
| 642 | 648 |
}; |
| 643 | 649 |
|
| 644 |
///Scales a maps with a constant. |
|
| 650 |
///Scales a maps with a constant (ReadWrite version). |
|
| 645 | 651 |
|
| 646 | 652 |
///This \c concepts::ReadWriteMap "read-write map" returns the value of the |
| 647 | 653 |
///given map multiplied from the left side with a constant value. It can |
| 648 | 654 |
///be used as write map also if the given multiplier is not zero. |
| 649 | 655 |
///Its \c Key and \c Value is inherited from \c M. |
| 650 | 656 |
template<typename M, typename C = typename M::Value> |
| 651 | 657 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 652 | 658 |
M& m; |
| 653 | 659 |
C v; |
| 654 | 660 |
public: |
| 655 | 661 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 656 | 662 |
typedef typename Parent::Key Key; |
| 657 | 663 |
typedef typename Parent::Value Value; |
| 658 | 664 |
|
| 659 | 665 |
///Constructor |
| 660 | 666 |
|
| 661 | 667 |
///Constructor |
| 662 | 668 |
///\param _m is the undelying map |
| 663 | 669 |
///\param _v is the scaling value |
| 664 | 670 |
ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
| 665 | 671 |
/// \e |
| 666 | 672 |
Value operator[](Key k) const {return v * m[k];}
|
| 667 | 673 |
/// \e |
| 668 | 674 |
void set(Key k, const Value& c) { m.set(k, c / v);}
|
| 669 | 675 |
}; |
| 670 | 676 |
|
| 671 | 677 |
///Returns an \c ScaleMap class |
| 672 | 678 |
|
| 673 | 679 |
///This function just returns an \c ScaleMap class. |
| 674 | 680 |
///\relates ScaleMap |
| 675 | 681 |
template<typename M, typename C> |
| 676 | 682 |
inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
|
| 677 | 683 |
return ScaleMap<M, C>(m,v); |
| 678 | 684 |
} |
| 679 | 685 |
|
| 680 | 686 |
template<typename M, typename C> |
| 681 | 687 |
inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
|
| 682 | 688 |
return ScaleWriteMap<M, C>(m,v); |
| 683 | 689 |
} |
| 684 | 690 |
|
| 685 | 691 |
///Quotient of two maps |
| 686 | 692 |
|
| 687 | 693 |
///This \c concepts::ReadMap "read only map" returns the quotient of the |
| 688 | 694 |
///values of the two |
| 689 | 695 |
///given maps. Its \c Key and \c Value will be inherited from \c M1. |
| 690 | 696 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
| 691 | 697 |
|
| 692 | 698 |
template<typename M1, typename M2> |
| ... | ... |
@@ -813,155 +819,143 @@ |
| 813 | 819 |
///\code |
| 814 | 820 |
///addMap(m1,m2) |
| 815 | 821 |
///\endcode |
| 816 | 822 |
/// |
| 817 | 823 |
///This function is specialized for adaptable binary function |
| 818 | 824 |
///classes and c++ functions. |
| 819 | 825 |
/// |
| 820 | 826 |
///\relates CombineMap |
| 821 | 827 |
template<typename M1, typename M2, typename F, typename V> |
| 822 | 828 |
inline CombineMap<M1, M2, F, V> |
| 823 | 829 |
combineMap(const M1& m1,const M2& m2, const F& f) {
|
| 824 | 830 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
| 825 | 831 |
} |
| 826 | 832 |
|
| 827 | 833 |
template<typename M1, typename M2, typename F> |
| 828 | 834 |
inline CombineMap<M1, M2, F, typename F::result_type> |
| 829 | 835 |
combineMap(const M1& m1, const M2& m2, const F& f) {
|
| 830 | 836 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
| 831 | 837 |
} |
| 832 | 838 |
|
| 833 | 839 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
| 834 | 840 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
| 835 | 841 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
| 836 | 842 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
| 837 | 843 |
} |
| 838 | 844 |
|
| 839 | 845 |
///Negative value of a map |
| 840 | 846 |
|
| 841 | 847 |
///This \c concepts::ReadMap "read only map" returns the negative |
| 842 | 848 |
///value of the |
| 843 | 849 |
///value returned by the |
| 844 | 850 |
///given map. Its \c Key and \c Value will be inherited from \c M. |
| 845 | 851 |
///The unary \c - operator must be defined for \c Value, of course. |
| 846 | 852 |
|
| 847 | 853 |
template<typename M> |
| 848 | 854 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
| 849 | 855 |
const M& m; |
| 850 | 856 |
public: |
| 851 | 857 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 852 | 858 |
typedef typename Parent::Key Key; |
| 853 | 859 |
typedef typename Parent::Value Value; |
| 854 | 860 |
|
| 855 | 861 |
///Constructor |
| 856 | 862 |
NegMap(const M &_m) : m(_m) {};
|
| 857 | 863 |
/// \e |
| 858 | 864 |
Value operator[](Key k) const {return -m[k];}
|
| 859 | 865 |
}; |
| 860 | 866 |
|
| 861 |
///Negative value of a map |
|
| 867 |
///Negative value of a map (ReadWrite version) |
|
| 862 | 868 |
|
| 863 | 869 |
///This \c concepts::ReadWriteMap "read-write map" returns the negative |
| 864 | 870 |
///value of the value returned by the |
| 865 | 871 |
///given map. Its \c Key and \c Value will be inherited from \c M. |
| 866 | 872 |
///The unary \c - operator must be defined for \c Value, of course. |
| 867 | 873 |
|
| 868 | 874 |
template<typename M> |
| 869 | 875 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 870 | 876 |
M& m; |
| 871 | 877 |
public: |
| 872 | 878 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 873 | 879 |
typedef typename Parent::Key Key; |
| 874 | 880 |
typedef typename Parent::Value Value; |
| 875 | 881 |
|
| 876 | 882 |
///Constructor |
| 877 | 883 |
NegWriteMap(M &_m) : m(_m) {};
|
| 878 | 884 |
/// \e |
| 879 | 885 |
Value operator[](Key k) const {return -m[k];}
|
| 880 | 886 |
/// \e |
| 881 | 887 |
void set(Key k, const Value& v) { m.set(k, -v); }
|
| 882 | 888 |
}; |
| 883 | 889 |
|
| 884 | 890 |
///Returns a \c NegMap class |
| 885 | 891 |
|
| 886 | 892 |
///This function just returns a \c NegMap class. |
| 887 | 893 |
///\relates NegMap |
| 888 | 894 |
template <typename M> |
| 889 | 895 |
inline NegMap<M> negMap(const M &m) {
|
| 890 | 896 |
return NegMap<M>(m); |
| 891 | 897 |
} |
| 892 | 898 |
|
| 893 | 899 |
template <typename M> |
| 894 | 900 |
inline NegWriteMap<M> negMap(M &m) {
|
| 895 | 901 |
return NegWriteMap<M>(m); |
| 896 | 902 |
} |
| 897 | 903 |
|
| 898 | 904 |
///Absolute value of a map |
| 899 | 905 |
|
| 900 | 906 |
///This \c concepts::ReadMap "read only map" returns the absolute value |
| 901 | 907 |
///of the |
| 902 | 908 |
///value returned by the |
| 903 | 909 |
///given map. Its \c Key and \c Value will be inherited |
| 904 | 910 |
///from <tt>M</tt>. <tt>Value</tt> |
| 905 | 911 |
///must be comparable to <tt>0</tt> and the unary <tt>-</tt> |
| 906 | 912 |
///operator must be defined for it, of course. |
| 907 | 913 |
/// |
| 908 |
///\bug We need a unified way to handle the situation below: |
|
| 909 |
///\code |
|
| 910 |
/// struct _UnConvertible {};
|
|
| 911 |
/// template<class A> inline A t_abs(A a) {return _UnConvertible();}
|
|
| 912 |
/// template<> inline int t_abs<>(int n) {return abs(n);}
|
|
| 913 |
/// template<> inline long int t_abs<>(long int n) {return labs(n);}
|
|
| 914 |
/// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
|
|
| 915 |
/// template<> inline float t_abs<>(float n) {return fabsf(n);}
|
|
| 916 |
/// template<> inline double t_abs<>(double n) {return fabs(n);}
|
|
| 917 |
/// template<> inline long double t_abs<>(long double n) {return fabsl(n);}
|
|
| 918 |
///\endcode |
|
| 919 |
|
|
| 920 | 914 |
|
| 921 | 915 |
template<typename M> |
| 922 | 916 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
| 923 | 917 |
const M& m; |
| 924 | 918 |
public: |
| 925 | 919 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 926 | 920 |
typedef typename Parent::Key Key; |
| 927 | 921 |
typedef typename Parent::Value Value; |
| 928 | 922 |
|
| 929 | 923 |
///Constructor |
| 930 | 924 |
AbsMap(const M &_m) : m(_m) {};
|
| 931 | 925 |
/// \e |
| 932 | 926 |
Value operator[](Key k) const {
|
| 933 | 927 |
Value tmp = m[k]; |
| 934 | 928 |
return tmp >= 0 ? tmp : -tmp; |
| 935 | 929 |
} |
| 936 | 930 |
|
| 937 | 931 |
}; |
| 938 | 932 |
|
| 939 | 933 |
///Returns a \c AbsMap class |
| 940 | 934 |
|
| 941 | 935 |
///This function just returns a \c AbsMap class. |
| 942 | 936 |
///\relates AbsMap |
| 943 | 937 |
template<typename M> |
| 944 | 938 |
inline AbsMap<M> absMap(const M &m) {
|
| 945 | 939 |
return AbsMap<M>(m); |
| 946 | 940 |
} |
| 947 | 941 |
|
| 948 | 942 |
///Converts an STL style functor to a map |
| 949 | 943 |
|
| 950 | 944 |
///This \c concepts::ReadMap "read only map" returns the value |
| 951 | 945 |
///of a |
| 952 | 946 |
///given map. |
| 953 | 947 |
/// |
| 954 | 948 |
///Template parameters \c K and \c V will become its |
| 955 | 949 |
///\c Key and \c Value. They must be given explicitely |
| 956 | 950 |
///because a functor does not provide such typedefs. |
| 957 | 951 |
/// |
| 958 | 952 |
///Parameter \c F is the type of the used functor. |
| 959 | 953 |
template<typename F, |
| 960 | 954 |
typename K = typename F::argument_type, |
| 961 | 955 |
typename V = typename F::result_type> |
| 962 | 956 |
class FunctorMap : public MapBase<K, V> {
|
| 963 | 957 |
F f; |
| 964 | 958 |
public: |
| 965 | 959 |
typedef MapBase<K, V> Parent; |
| 966 | 960 |
typedef typename Parent::Key Key; |
| 967 | 961 |
typedef typename Parent::Value Value; |
| ... | ... |
@@ -996,511 +990,519 @@ |
| 996 | 990 |
return FunctorMap<V (*)(K), K, V>(f); |
| 997 | 991 |
} |
| 998 | 992 |
|
| 999 | 993 |
|
| 1000 | 994 |
///Converts a map to an STL style (unary) functor |
| 1001 | 995 |
|
| 1002 | 996 |
///This class Converts a map to an STL style (unary) functor. |
| 1003 | 997 |
///that is it provides an <tt>operator()</tt> to read its values. |
| 1004 | 998 |
/// |
| 1005 | 999 |
///For the sake of convenience it also works as |
| 1006 | 1000 |
///a ususal \c concepts::ReadMap "readable map", |
| 1007 | 1001 |
///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist. |
| 1008 | 1002 |
template <typename M> |
| 1009 | 1003 |
class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
|
| 1010 | 1004 |
const M& m; |
| 1011 | 1005 |
public: |
| 1012 | 1006 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 1013 | 1007 |
typedef typename Parent::Key Key; |
| 1014 | 1008 |
typedef typename Parent::Value Value; |
| 1015 | 1009 |
|
| 1016 | 1010 |
typedef typename M::Key argument_type; |
| 1017 | 1011 |
typedef typename M::Value result_type; |
| 1018 | 1012 |
|
| 1019 | 1013 |
///Constructor |
| 1020 | 1014 |
MapFunctor(const M &_m) : m(_m) {};
|
| 1021 | 1015 |
///\e |
| 1022 | 1016 |
Value operator()(Key k) const {return m[k];}
|
| 1023 | 1017 |
///\e |
| 1024 | 1018 |
Value operator[](Key k) const {return m[k];}
|
| 1025 | 1019 |
}; |
| 1026 | 1020 |
|
| 1027 | 1021 |
///Returns a \c MapFunctor class |
| 1028 | 1022 |
|
| 1029 | 1023 |
///This function just returns a \c MapFunctor class. |
| 1030 | 1024 |
///\relates MapFunctor |
| 1031 | 1025 |
template<typename M> |
| 1032 | 1026 |
inline MapFunctor<M> mapFunctor(const M &m) {
|
| 1033 | 1027 |
return MapFunctor<M>(m); |
| 1034 | 1028 |
} |
| 1035 | 1029 |
|
| 1036 | 1030 |
///Applies all map setting operations to two maps |
| 1037 | 1031 |
|
| 1038 | 1032 |
///This map has two \c concepts::ReadMap "readable map" |
| 1039 | 1033 |
///parameters and each read request will be passed just to the |
| 1040 | 1034 |
///first map. This class is the just readable map type of the ForkWriteMap. |
| 1041 | 1035 |
/// |
| 1042 | 1036 |
///The \c Key and \c Value will be inherited from \c M1. |
| 1043 | 1037 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1. |
| 1038 |
/// |
|
| 1039 |
/// \todo Why is it needed? |
|
| 1044 | 1040 |
template<typename M1, typename M2> |
| 1045 | 1041 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 1046 | 1042 |
const M1& m1; |
| 1047 | 1043 |
const M2& m2; |
| 1048 | 1044 |
public: |
| 1049 | 1045 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
| 1050 | 1046 |
typedef typename Parent::Key Key; |
| 1051 | 1047 |
typedef typename Parent::Value Value; |
| 1052 | 1048 |
|
| 1053 | 1049 |
///Constructor |
| 1054 | 1050 |
ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
|
| 1055 | 1051 |
/// \e |
| 1056 | 1052 |
Value operator[](Key k) const {return m1[k];}
|
| 1057 | 1053 |
}; |
| 1058 | 1054 |
|
| 1059 | 1055 |
|
| 1060 | 1056 |
///Applies all map setting operations to two maps |
| 1061 | 1057 |
|
| 1062 | 1058 |
///This map has two \c concepts::WriteMap "writable map" |
| 1063 | 1059 |
///parameters and each write request will be passed to both of them. |
| 1064 | 1060 |
///If \c M1 is also \c concepts::ReadMap "readable", |
| 1065 | 1061 |
///then the read operations will return the |
| 1066 | 1062 |
///corresponding values of \c M1. |
| 1067 | 1063 |
/// |
| 1068 | 1064 |
///The \c Key and \c Value will be inherited from \c M1. |
| 1069 | 1065 |
///The \c Key and \c Value of M2 must be convertible from those of \c M1. |
| 1070 | 1066 |
template<typename M1, typename M2> |
| 1071 | 1067 |
class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 1072 | 1068 |
M1& m1; |
| 1073 | 1069 |
M2& m2; |
| 1074 | 1070 |
public: |
| 1075 | 1071 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
| 1076 | 1072 |
typedef typename Parent::Key Key; |
| 1077 | 1073 |
typedef typename Parent::Value Value; |
| 1078 | 1074 |
|
| 1079 | 1075 |
///Constructor |
| 1080 | 1076 |
ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
|
| 1081 | 1077 |
///\e |
| 1082 | 1078 |
Value operator[](Key k) const {return m1[k];}
|
| 1083 | 1079 |
///\e |
| 1084 | 1080 |
void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
|
| 1085 | 1081 |
}; |
| 1086 | 1082 |
|
| 1087 | 1083 |
///Returns an \c ForkMap class |
| 1088 | 1084 |
|
| 1089 | 1085 |
///This function just returns an \c ForkMap class. |
| 1090 | 1086 |
/// |
| 1091 | 1087 |
///\relates ForkMap |
| 1092 | 1088 |
template <typename M1, typename M2> |
| 1093 | 1089 |
inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
|
| 1094 | 1090 |
return ForkMap<M1, M2>(m1,m2); |
| 1095 | 1091 |
} |
| 1096 | 1092 |
|
| 1097 | 1093 |
template <typename M1, typename M2> |
| 1098 | 1094 |
inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
|
| 1099 | 1095 |
return ForkWriteMap<M1, M2>(m1,m2); |
| 1100 | 1096 |
} |
| 1101 | 1097 |
|
| 1102 | 1098 |
|
| 1103 | 1099 |
|
| 1104 | 1100 |
/* ************* BOOL MAPS ******************* */ |
| 1105 | 1101 |
|
| 1106 | 1102 |
///Logical 'not' of a map |
| 1107 | 1103 |
|
| 1108 | 1104 |
///This bool \c concepts::ReadMap "read only map" returns the |
| 1109 | 1105 |
///logical negation of |
| 1110 | 1106 |
///value returned by the |
| 1111 | 1107 |
///given map. Its \c Key and will be inherited from \c M, |
| 1112 | 1108 |
///its Value is <tt>bool</tt>. |
| 1113 | 1109 |
template <typename M> |
| 1114 | 1110 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1115 | 1111 |
const M& m; |
| 1116 | 1112 |
public: |
| 1117 | 1113 |
typedef MapBase<typename M::Key, bool> Parent; |
| 1118 | 1114 |
typedef typename Parent::Key Key; |
| 1119 | 1115 |
typedef typename Parent::Value Value; |
| 1120 | 1116 |
|
| 1121 | 1117 |
/// Constructor |
| 1122 | 1118 |
NotMap(const M &_m) : m(_m) {};
|
| 1123 | 1119 |
///\e |
| 1124 | 1120 |
Value operator[](Key k) const {return !m[k];}
|
| 1125 | 1121 |
}; |
| 1126 | 1122 |
|
| 1127 |
///Logical 'not' of a map |
|
| 1123 |
///Logical 'not' of a map (ReadWrie version) |
|
| 1128 | 1124 |
|
| 1129 | 1125 |
///This bool \c concepts::ReadWriteMap "read-write map" returns the |
| 1130 | 1126 |
///logical negation of value returned by the given map. When it is set, |
| 1131 | 1127 |
///the opposite value is set to the original map. |
| 1132 | 1128 |
///Its \c Key and will be inherited from \c M, |
| 1133 | 1129 |
///its Value is <tt>bool</tt>. |
| 1134 | 1130 |
template <typename M> |
| 1135 | 1131 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1136 | 1132 |
M& m; |
| 1137 | 1133 |
public: |
| 1138 | 1134 |
typedef MapBase<typename M::Key, bool> Parent; |
| 1139 | 1135 |
typedef typename Parent::Key Key; |
| 1140 | 1136 |
typedef typename Parent::Value Value; |
| 1141 | 1137 |
|
| 1142 | 1138 |
/// Constructor |
| 1143 | 1139 |
NotWriteMap(M &_m) : m(_m) {};
|
| 1144 | 1140 |
///\e |
| 1145 | 1141 |
Value operator[](Key k) const {return !m[k];}
|
| 1146 | 1142 |
///\e |
| 1147 | 1143 |
void set(Key k, bool v) { m.set(k, !v); }
|
| 1148 | 1144 |
}; |
| 1149 | 1145 |
|
| 1150 | 1146 |
///Returns a \c NotMap class |
| 1151 | 1147 |
|
| 1152 | 1148 |
///This function just returns a \c NotMap class. |
| 1153 | 1149 |
///\relates NotMap |
| 1154 | 1150 |
template <typename M> |
| 1155 | 1151 |
inline NotMap<M> notMap(const M &m) {
|
| 1156 | 1152 |
return NotMap<M>(m); |
| 1157 | 1153 |
} |
| 1158 | 1154 |
|
| 1159 | 1155 |
template <typename M> |
| 1160 | 1156 |
inline NotWriteMap<M> notMap(M &m) {
|
| 1161 | 1157 |
return NotWriteMap<M>(m); |
| 1162 | 1158 |
} |
| 1163 | 1159 |
|
| 1164 | 1160 |
namespace _maps_bits {
|
| 1165 | 1161 |
|
| 1166 | 1162 |
template <typename Value> |
| 1167 | 1163 |
struct Identity {
|
| 1168 | 1164 |
typedef Value argument_type; |
| 1169 | 1165 |
typedef Value result_type; |
| 1170 | 1166 |
Value operator()(const Value& val) const {
|
| 1171 | 1167 |
return val; |
| 1172 | 1168 |
} |
| 1173 | 1169 |
}; |
| 1174 | 1170 |
|
| 1175 | 1171 |
template <typename _Iterator, typename Enable = void> |
| 1176 | 1172 |
struct IteratorTraits {
|
| 1177 | 1173 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
| 1178 | 1174 |
}; |
| 1179 | 1175 |
|
| 1180 | 1176 |
template <typename _Iterator> |
| 1181 | 1177 |
struct IteratorTraits<_Iterator, |
| 1182 | 1178 |
typename exists<typename _Iterator::container_type>::type> |
| 1183 | 1179 |
{
|
| 1184 | 1180 |
typedef typename _Iterator::container_type::value_type Value; |
| 1185 | 1181 |
}; |
| 1186 | 1182 |
|
| 1187 | 1183 |
} |
| 1188 | 1184 |
|
| 1189 | 1185 |
|
| 1190 |
/// \brief Writable bool map for |
|
| 1186 |
/// \brief Writable bool map for logging each true assigned elements |
|
| 1191 | 1187 |
/// |
| 1192 |
/// Writable bool map |
|
| 1188 |
/// Writable bool map for logging each true assigned elements, i.e it |
|
| 1193 | 1189 |
/// copies all the keys set to true to the given iterator. |
| 1194 | 1190 |
/// |
| 1195 | 1191 |
/// \note The container of the iterator should contain space |
| 1196 | 1192 |
/// for each element. |
| 1197 | 1193 |
/// |
| 1198 |
/// The |
|
| 1194 |
/// The following example shows how you can write the edges found by the Prim |
|
| 1195 |
/// algorithm directly |
|
| 1199 | 1196 |
/// to the standard output. |
| 1200 | 1197 |
///\code |
| 1201 | 1198 |
/// typedef IdMap<Graph, Edge> EdgeIdMap; |
| 1202 | 1199 |
/// EdgeIdMap edgeId(graph); |
| 1203 | 1200 |
/// |
| 1204 | 1201 |
/// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor; |
| 1205 | 1202 |
/// EdgeIdFunctor edgeIdFunctor(edgeId); |
| 1206 | 1203 |
/// |
| 1207 | 1204 |
/// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> |
| 1208 | 1205 |
/// writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor); |
| 1209 | 1206 |
/// |
| 1210 | 1207 |
/// prim(graph, cost, writerMap); |
| 1211 | 1208 |
///\endcode |
| 1209 |
/// |
|
| 1210 |
///\todo Revise the name of this class and the relates ones. |
|
| 1212 | 1211 |
template <typename _Iterator, |
| 1213 | 1212 |
typename _Functor = |
| 1214 | 1213 |
_maps_bits::Identity<typename _maps_bits:: |
| 1215 | 1214 |
IteratorTraits<_Iterator>::Value> > |
| 1216 | 1215 |
class StoreBoolMap {
|
| 1217 | 1216 |
public: |
| 1218 | 1217 |
typedef _Iterator Iterator; |
| 1219 | 1218 |
|
| 1220 | 1219 |
typedef typename _Functor::argument_type Key; |
| 1221 | 1220 |
typedef bool Value; |
| 1222 | 1221 |
|
| 1223 | 1222 |
typedef _Functor Functor; |
| 1224 | 1223 |
|
| 1225 | 1224 |
/// Constructor |
| 1226 | 1225 |
StoreBoolMap(Iterator it, const Functor& functor = Functor()) |
| 1227 | 1226 |
: _begin(it), _end(it), _functor(functor) {}
|
| 1228 | 1227 |
|
| 1229 |
/// Gives back the given iterator set for the first |
|
| 1228 |
/// Gives back the given iterator set for the first key |
|
| 1230 | 1229 |
Iterator begin() const {
|
| 1231 | 1230 |
return _begin; |
| 1232 | 1231 |
} |
| 1233 | 1232 |
|
| 1234 |
/// Gives back the |
|
| 1233 |
/// Gives back the the 'after the last' iterator |
|
| 1235 | 1234 |
Iterator end() const {
|
| 1236 | 1235 |
return _end; |
| 1237 | 1236 |
} |
| 1238 | 1237 |
|
| 1239 | 1238 |
/// Setter function of the map |
| 1240 | 1239 |
void set(const Key& key, Value value) const {
|
| 1241 | 1240 |
if (value) {
|
| 1242 | 1241 |
*_end++ = _functor(key); |
| 1243 | 1242 |
} |
| 1244 | 1243 |
} |
| 1245 | 1244 |
|
| 1246 | 1245 |
private: |
| 1247 | 1246 |
Iterator _begin; |
| 1248 | 1247 |
mutable Iterator _end; |
| 1249 | 1248 |
Functor _functor; |
| 1250 | 1249 |
}; |
| 1251 | 1250 |
|
| 1252 |
/// \brief Writable bool map for store each true assigned elements in |
|
| 1253 |
/// a back insertable container. |
|
| 1251 |
/// \brief Writable bool map for logging each true assigned elements in |
|
| 1252 |
/// a back insertable container |
|
| 1254 | 1253 |
/// |
| 1255 |
/// Writable bool map for store each true assigned elements in a back |
|
| 1256 |
/// insertable container. It will push back all the keys set to true into |
|
| 1257 |
/// the container. It can be used to retrieve the items into a standard |
|
| 1258 |
/// container. The next example shows how can you store the undirected |
|
| 1259 |
/// |
|
| 1254 |
/// Writable bool map for logging each true assigned elements by pushing |
|
| 1255 |
/// back them into a back insertable container. |
|
| 1256 |
/// It can be used to retrieve the items into a standard |
|
| 1257 |
/// container. The next example shows how you can store the |
|
| 1258 |
/// edges found by the Prim algorithm in a vector. |
|
| 1260 | 1259 |
/// |
| 1261 | 1260 |
///\code |
| 1262 | 1261 |
/// vector<Edge> span_tree_edges; |
| 1263 | 1262 |
/// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges); |
| 1264 | 1263 |
/// prim(graph, cost, inserter_map); |
| 1265 | 1264 |
///\endcode |
| 1266 | 1265 |
template <typename Container, |
| 1267 | 1266 |
typename Functor = |
| 1268 | 1267 |
_maps_bits::Identity<typename Container::value_type> > |
| 1269 | 1268 |
class BackInserterBoolMap {
|
| 1270 | 1269 |
public: |
| 1271 | 1270 |
typedef typename Container::value_type Key; |
| 1272 | 1271 |
typedef bool Value; |
| 1273 | 1272 |
|
| 1274 | 1273 |
/// Constructor |
| 1275 | 1274 |
BackInserterBoolMap(Container& _container, |
| 1276 | 1275 |
const Functor& _functor = Functor()) |
| 1277 | 1276 |
: container(_container), functor(_functor) {}
|
| 1278 | 1277 |
|
| 1279 | 1278 |
/// Setter function of the map |
| 1280 | 1279 |
void set(const Key& key, Value value) {
|
| 1281 | 1280 |
if (value) {
|
| 1282 | 1281 |
container.push_back(functor(key)); |
| 1283 | 1282 |
} |
| 1284 | 1283 |
} |
| 1285 | 1284 |
|
| 1286 | 1285 |
private: |
| 1287 | 1286 |
Container& container; |
| 1288 | 1287 |
Functor functor; |
| 1289 | 1288 |
}; |
| 1290 | 1289 |
|
| 1291 |
/// \brief Writable bool map for |
|
| 1290 |
/// \brief Writable bool map for storing each true assignments in |
|
| 1292 | 1291 |
/// a front insertable container. |
| 1293 | 1292 |
/// |
| 1294 |
/// Writable bool map for |
|
| 1293 |
/// Writable bool map for storing each true assignment in a front |
|
| 1295 | 1294 |
/// insertable container. It will push front all the keys set to \c true into |
| 1296 | 1295 |
/// the container. For example see the BackInserterBoolMap. |
| 1297 | 1296 |
template <typename Container, |
| 1298 | 1297 |
typename Functor = |
| 1299 | 1298 |
_maps_bits::Identity<typename Container::value_type> > |
| 1300 | 1299 |
class FrontInserterBoolMap {
|
| 1301 | 1300 |
public: |
| 1302 | 1301 |
typedef typename Container::value_type Key; |
| 1303 | 1302 |
typedef bool Value; |
| 1304 | 1303 |
|
| 1305 | 1304 |
/// Constructor |
| 1306 | 1305 |
FrontInserterBoolMap(Container& _container, |
| 1307 | 1306 |
const Functor& _functor = Functor()) |
| 1308 | 1307 |
: container(_container), functor(_functor) {}
|
| 1309 | 1308 |
|
| 1310 | 1309 |
/// Setter function of the map |
| 1311 | 1310 |
void set(const Key& key, Value value) {
|
| 1312 | 1311 |
if (value) {
|
| 1313 | 1312 |
container.push_front(key); |
| 1314 | 1313 |
} |
| 1315 | 1314 |
} |
| 1316 | 1315 |
|
| 1317 | 1316 |
private: |
| 1318 | 1317 |
Container& container; |
| 1319 | 1318 |
Functor functor; |
| 1320 | 1319 |
}; |
| 1321 | 1320 |
|
| 1322 |
/// \brief Writable bool map for |
|
| 1321 |
/// \brief Writable bool map for storing each true assigned elements in |
|
| 1323 | 1322 |
/// an insertable container. |
| 1324 | 1323 |
/// |
| 1325 |
/// Writable bool map for |
|
| 1324 |
/// Writable bool map for storing each true assigned elements in an |
|
| 1326 | 1325 |
/// insertable container. It will insert all the keys set to \c true into |
| 1327 |
/// the container. |
|
| 1326 |
/// the container. |
|
| 1327 |
/// |
|
| 1328 |
/// For example, if you want to store the cut arcs of the strongly |
|
| 1328 | 1329 |
/// connected components in a set you can use the next code: |
| 1329 | 1330 |
/// |
| 1330 | 1331 |
///\code |
| 1331 | 1332 |
/// set<Arc> cut_arcs; |
| 1332 | 1333 |
/// InserterBoolMap<set<Arc> > inserter_map(cut_arcs); |
| 1333 | 1334 |
/// stronglyConnectedCutArcs(digraph, cost, inserter_map); |
| 1334 | 1335 |
///\endcode |
| 1335 | 1336 |
template <typename Container, |
| 1336 | 1337 |
typename Functor = |
| 1337 | 1338 |
_maps_bits::Identity<typename Container::value_type> > |
| 1338 | 1339 |
class InserterBoolMap {
|
| 1339 | 1340 |
public: |
| 1340 | 1341 |
typedef typename Container::value_type Key; |
| 1341 | 1342 |
typedef bool Value; |
| 1342 | 1343 |
|
| 1343 | 1344 |
/// Constructor |
| 1344 | 1345 |
InserterBoolMap(Container& _container, typename Container::iterator _it, |
| 1345 | 1346 |
const Functor& _functor = Functor()) |
| 1346 | 1347 |
: container(_container), it(_it), functor(_functor) {}
|
| 1347 | 1348 |
|
| 1348 | 1349 |
/// Constructor |
| 1349 | 1350 |
InserterBoolMap(Container& _container, const Functor& _functor = Functor()) |
| 1350 | 1351 |
: container(_container), it(_container.end()), functor(_functor) {}
|
| 1351 | 1352 |
|
| 1352 | 1353 |
/// Setter function of the map |
| 1353 | 1354 |
void set(const Key& key, Value value) {
|
| 1354 | 1355 |
if (value) {
|
| 1355 | 1356 |
it = container.insert(it, key); |
| 1356 | 1357 |
++it; |
| 1357 | 1358 |
} |
| 1358 | 1359 |
} |
| 1359 | 1360 |
|
| 1360 | 1361 |
private: |
| 1361 | 1362 |
Container& container; |
| 1362 | 1363 |
typename Container::iterator it; |
| 1363 | 1364 |
Functor functor; |
| 1364 | 1365 |
}; |
| 1365 | 1366 |
|
| 1366 | 1367 |
/// \brief Fill the true set elements with a given value. |
| 1367 | 1368 |
/// |
| 1368 | 1369 |
/// Writable bool map to fill the elements set to \c true with a given value. |
| 1369 | 1370 |
/// The value can set |
| 1370 | 1371 |
/// the container. |
| 1371 | 1372 |
/// |
| 1372 |
/// The |
|
| 1373 |
/// The following code finds the connected components of a graph |
|
| 1373 | 1374 |
/// and stores it in the \c comp map: |
| 1374 | 1375 |
///\code |
| 1375 | 1376 |
/// typedef Graph::NodeMap<int> ComponentMap; |
| 1376 | 1377 |
/// ComponentMap comp(graph); |
| 1377 | 1378 |
/// typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap; |
| 1378 | 1379 |
/// ComponentFillerMap filler(comp, 0); |
| 1379 | 1380 |
/// |
| 1380 | 1381 |
/// Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph); |
| 1381 | 1382 |
/// dfs.processedMap(filler); |
| 1382 | 1383 |
/// dfs.init(); |
| 1383 | 1384 |
/// for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1384 | 1385 |
/// if (!dfs.reached(it)) {
|
| 1385 | 1386 |
/// dfs.addSource(it); |
| 1386 | 1387 |
/// dfs.start(); |
| 1387 | 1388 |
/// ++filler.fillValue(); |
| 1388 | 1389 |
/// } |
| 1389 | 1390 |
/// } |
| 1390 | 1391 |
///\endcode |
| 1391 | 1392 |
template <typename Map> |
| 1392 | 1393 |
class FillBoolMap {
|
| 1393 | 1394 |
public: |
| 1394 | 1395 |
typedef typename Map::Key Key; |
| 1395 | 1396 |
typedef bool Value; |
| 1396 | 1397 |
|
| 1397 | 1398 |
/// Constructor |
| 1398 | 1399 |
FillBoolMap(Map& _map, const typename Map::Value& _fill) |
| 1399 | 1400 |
: map(_map), fill(_fill) {}
|
| 1400 | 1401 |
|
| 1401 | 1402 |
/// Constructor |
| 1402 | 1403 |
FillBoolMap(Map& _map) |
| 1403 | 1404 |
: map(_map), fill() {}
|
| 1404 | 1405 |
|
| 1405 | 1406 |
/// Gives back the current fill value |
| 1406 | 1407 |
const typename Map::Value& fillValue() const {
|
| 1407 | 1408 |
return fill; |
| 1408 | 1409 |
} |
| 1409 | 1410 |
|
| 1410 | 1411 |
/// Gives back the current fill value |
| 1411 | 1412 |
typename Map::Value& fillValue() {
|
| 1412 | 1413 |
return fill; |
| 1413 | 1414 |
} |
| 1414 | 1415 |
|
| 1415 | 1416 |
/// Sets the current fill value |
| 1416 | 1417 |
void fillValue(const typename Map::Value& _fill) {
|
| 1417 | 1418 |
fill = _fill; |
| 1418 | 1419 |
} |
| 1419 | 1420 |
|
| 1420 |
/// |
|
| 1421 |
/// Set function of the map |
|
| 1421 | 1422 |
void set(const Key& key, Value value) {
|
| 1422 | 1423 |
if (value) {
|
| 1423 | 1424 |
map.set(key, fill); |
| 1424 | 1425 |
} |
| 1425 | 1426 |
} |
| 1426 | 1427 |
|
| 1427 | 1428 |
private: |
| 1428 | 1429 |
Map& map; |
| 1429 | 1430 |
typename Map::Value fill; |
| 1430 | 1431 |
}; |
| 1431 | 1432 |
|
| 1432 | 1433 |
|
| 1433 |
/// \brief Writable bool map which stores for each true assigned elements |
|
| 1434 |
/// the setting order number. |
|
| 1435 |
/// |
|
| 1434 |
/// \brief Writable bool map which stores the sequence number of |
|
| 1435 |
/// true assignments. |
|
| 1436 |
/// |
|
| 1436 | 1437 |
/// Writable bool map which stores for each true assigned elements |
| 1437 |
/// the |
|
| 1438 |
/// the sequence number of this setting. |
|
| 1439 |
/// It makes it easy to calculate the leaving |
|
| 1438 | 1440 |
/// order of the nodes in the \c Dfs algorithm. |
| 1439 | 1441 |
/// |
| 1440 | 1442 |
///\code |
| 1441 | 1443 |
/// typedef Digraph::NodeMap<int> OrderMap; |
| 1442 | 1444 |
/// OrderMap order(digraph); |
| 1443 | 1445 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
| 1444 | 1446 |
/// OrderSetterMap setter(order); |
| 1445 | 1447 |
/// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph); |
| 1446 | 1448 |
/// dfs.processedMap(setter); |
| 1447 | 1449 |
/// dfs.init(); |
| 1448 | 1450 |
/// for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1449 | 1451 |
/// if (!dfs.reached(it)) {
|
| 1450 | 1452 |
/// dfs.addSource(it); |
| 1451 | 1453 |
/// dfs.start(); |
| 1452 | 1454 |
/// } |
| 1453 | 1455 |
/// } |
| 1454 | 1456 |
///\endcode |
| 1455 | 1457 |
/// |
| 1456 |
/// The discovering order |
|
| 1458 |
/// The storing of the discovering order is more difficult because the |
|
| 1457 | 1459 |
/// ReachedMap should be readable in the dfs algorithm but the setting |
| 1458 |
/// order map is not readable. |
|
| 1460 |
/// order map is not readable. Thus we must use the fork map: |
|
| 1459 | 1461 |
/// |
| 1460 | 1462 |
///\code |
| 1461 | 1463 |
/// typedef Digraph::NodeMap<int> OrderMap; |
| 1462 | 1464 |
/// OrderMap order(digraph); |
| 1463 | 1465 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
| 1464 | 1466 |
/// OrderSetterMap setter(order); |
| 1465 | 1467 |
/// typedef Digraph::NodeMap<bool> StoreMap; |
| 1466 | 1468 |
/// StoreMap store(digraph); |
| 1467 | 1469 |
/// |
| 1468 | 1470 |
/// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap; |
| 1469 | 1471 |
/// ReachedMap reached(store, setter); |
| 1470 | 1472 |
/// |
| 1471 | 1473 |
/// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph); |
| 1472 | 1474 |
/// dfs.reachedMap(reached); |
| 1473 | 1475 |
/// dfs.init(); |
| 1474 | 1476 |
/// for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1475 | 1477 |
/// if (!dfs.reached(it)) {
|
| 1476 | 1478 |
/// dfs.addSource(it); |
| 1477 | 1479 |
/// dfs.start(); |
| 1478 | 1480 |
/// } |
| 1479 | 1481 |
/// } |
| 1480 | 1482 |
///\endcode |
| 1481 | 1483 |
template <typename Map> |
| 1482 | 1484 |
class SettingOrderBoolMap {
|
| 1483 | 1485 |
public: |
| 1484 | 1486 |
typedef typename Map::Key Key; |
| 1485 | 1487 |
typedef bool Value; |
| 1486 | 1488 |
|
| 1487 | 1489 |
/// Constructor |
| 1488 | 1490 |
SettingOrderBoolMap(Map& _map) |
| 1489 | 1491 |
: map(_map), counter(0) {}
|
| 1490 | 1492 |
|
| 1491 | 1493 |
/// Number of set operations. |
| 1492 | 1494 |
int num() const {
|
| 1493 | 1495 |
return counter; |
| 1494 | 1496 |
} |
| 1495 | 1497 |
|
| 1496 | 1498 |
/// Setter function of the map |
| 1497 | 1499 |
void set(const Key& key, Value value) {
|
| 1498 | 1500 |
if (value) {
|
| 1499 | 1501 |
map.set(key, counter++); |
| 1500 | 1502 |
} |
| 1501 | 1503 |
} |
| 1502 | 1504 |
|
| 1503 | 1505 |
private: |
| 1504 | 1506 |
Map& map; |
| 1505 | 1507 |
int counter; |
| 1506 | 1508 |
}; |
0 comments (0 inline)