gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Def -> Set renaming in Preflow
0 2 0
default
2 files changed with 13 insertions and 13 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -4,445 +4,445 @@
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_PREFLOW_H
20 20
#define LEMON_PREFLOW_H
21 21

	
22 22
#include <lemon/tolerance.h>
23 23
#include <lemon/elevator.h>
24 24

	
25 25
/// \file
26 26
/// \ingroup max_flow
27 27
/// \brief Implementation of the preflow algorithm.
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  /// \brief Default traits class of Preflow class.
32 32
  ///
33 33
  /// Default traits class of Preflow class.
34 34
  /// \param _Graph Digraph type.
35 35
  /// \param _CapacityMap Type of capacity map.
36 36
  template <typename _Graph, typename _CapacityMap>
37 37
  struct PreflowDefaultTraits {
38 38

	
39 39
    /// \brief The digraph type the algorithm runs on.
40 40
    typedef _Graph Digraph;
41 41

	
42 42
    /// \brief The type of the map that stores the arc capacities.
43 43
    ///
44 44
    /// The type of the map that stores the arc capacities.
45 45
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
46 46
    typedef _CapacityMap CapacityMap;
47 47

	
48 48
    /// \brief The type of the length of the arcs.
49 49
    typedef typename CapacityMap::Value Value;
50 50

	
51 51
    /// \brief The map type that stores the flow values.
52 52
    ///
53 53
    /// The map type that stores the flow values.
54 54
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
55 55
    typedef typename Digraph::template ArcMap<Value> FlowMap;
56 56

	
57 57
    /// \brief Instantiates a FlowMap.
58 58
    ///
59 59
    /// This function instantiates a \ref FlowMap.
60 60
    /// \param digraph The digraph, to which we would like to define
61 61
    /// the flow map.
62 62
    static FlowMap* createFlowMap(const Digraph& digraph) {
63 63
      return new FlowMap(digraph);
64 64
    }
65 65

	
66 66
    /// \brief The eleavator type used by Preflow algorithm.
67 67
    ///
68 68
    /// The elevator type used by Preflow algorithm.
69 69
    ///
70 70
    /// \sa Elevator
71 71
    /// \sa LinkedElevator
72 72
    typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
73 73

	
74 74
    /// \brief Instantiates an Elevator.
75 75
    ///
76 76
    /// This function instantiates a \ref Elevator.
77 77
    /// \param digraph The digraph, to which we would like to define
78 78
    /// the elevator.
79 79
    /// \param max_level The maximum level of the elevator.
80 80
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
81 81
      return new Elevator(digraph, max_level);
82 82
    }
83 83

	
84 84
    /// \brief The tolerance used by the algorithm
85 85
    ///
86 86
    /// The tolerance used by the algorithm to handle inexact computation.
87 87
    typedef lemon::Tolerance<Value> Tolerance;
88 88

	
89 89
  };
90 90

	
91 91

	
92 92
  /// \ingroup max_flow
93 93
  ///
94 94
  /// \brief %Preflow algorithms class.
95 95
  ///
96 96
  /// This class provides an implementation of the Goldberg's \e
97 97
  /// preflow \e algorithm producing a flow of maximum value in a
98 98
  /// digraph. The preflow algorithms are the fastest known max
99 99
  /// flow algorithms. The current implementation use a mixture of the
100 100
  /// \e "highest label" and the \e "bound decrease" heuristics.
101 101
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
102 102
  ///
103 103
  /// The algorithm consists from two phases. After the first phase
104 104
  /// the maximal flow value and the minimum cut can be obtained. The
105 105
  /// second phase constructs the feasible maximum flow on each arc.
106 106
  ///
107 107
  /// \param _Graph The digraph type the algorithm runs on.
108 108
  /// \param _CapacityMap The flow map type.
109 109
  /// \param _Traits Traits class to set various data types used by
110 110
  /// the algorithm.  The default traits class is \ref
111 111
  /// PreflowDefaultTraits.  See \ref PreflowDefaultTraits for the
112 112
  /// documentation of a %Preflow traits class.
113 113
  ///
114 114
  ///\author Jacint Szabo and Balazs Dezso
115 115
#ifdef DOXYGEN
116 116
  template <typename _Graph, typename _CapacityMap, typename _Traits>
117 117
#else
118 118
  template <typename _Graph,
119 119
            typename _CapacityMap = typename _Graph::template ArcMap<int>,
120 120
            typename _Traits = PreflowDefaultTraits<_Graph, _CapacityMap> >
121 121
#endif
122 122
  class Preflow {
123 123
  public:
124 124

	
125 125
    typedef _Traits Traits;
126 126
    typedef typename Traits::Digraph Digraph;
127 127
    typedef typename Traits::CapacityMap CapacityMap;
128 128
    typedef typename Traits::Value Value;
129 129

	
130 130
    typedef typename Traits::FlowMap FlowMap;
131 131
    typedef typename Traits::Elevator Elevator;
132 132
    typedef typename Traits::Tolerance Tolerance;
133 133

	
134 134
  private:
135 135

	
136 136
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
137 137

	
138 138
    const Digraph& _graph;
139 139
    const CapacityMap* _capacity;
140 140

	
141 141
    int _node_num;
142 142

	
143 143
    Node _source, _target;
144 144

	
145 145
    FlowMap* _flow;
146 146
    bool _local_flow;
147 147

	
148 148
    Elevator* _level;
149 149
    bool _local_level;
150 150

	
151 151
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
152 152
    ExcessMap* _excess;
153 153

	
154 154
    Tolerance _tolerance;
155 155

	
156 156
    bool _phase;
157 157

	
158 158

	
159 159
    void createStructures() {
160 160
      _node_num = countNodes(_graph);
161 161

	
162 162
      if (!_flow) {
163 163
        _flow = Traits::createFlowMap(_graph);
164 164
        _local_flow = true;
165 165
      }
166 166
      if (!_level) {
167 167
        _level = Traits::createElevator(_graph, _node_num);
168 168
        _local_level = true;
169 169
      }
170 170
      if (!_excess) {
171 171
        _excess = new ExcessMap(_graph);
172 172
      }
173 173
    }
174 174

	
175 175
    void destroyStructures() {
176 176
      if (_local_flow) {
177 177
        delete _flow;
178 178
      }
179 179
      if (_local_level) {
180 180
        delete _level;
181 181
      }
182 182
      if (_excess) {
183 183
        delete _excess;
184 184
      }
185 185
    }
186 186

	
187 187
  public:
188 188

	
189 189
    typedef Preflow Create;
190 190

	
191 191
    ///\name Named template parameters
192 192

	
193 193
    ///@{
194 194

	
195 195
    template <typename _FlowMap>
196
    struct DefFlowMapTraits : public Traits {
196
    struct SetFlowMapTraits : public Traits {
197 197
      typedef _FlowMap FlowMap;
198 198
      static FlowMap *createFlowMap(const Digraph&) {
199 199
        LEMON_ASSERT(false, "FlowMap is not initialized");
200 200
        return 0; // ignore warnings
201 201
      }
202 202
    };
203 203

	
204 204
    /// \brief \ref named-templ-param "Named parameter" for setting
205 205
    /// FlowMap type
206 206
    ///
207 207
    /// \ref named-templ-param "Named parameter" for setting FlowMap
208 208
    /// type
209 209
    template <typename _FlowMap>
210
    struct DefFlowMap
211
      : public Preflow<Digraph, CapacityMap, DefFlowMapTraits<_FlowMap> > {
210
    struct SetFlowMap
211
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<_FlowMap> > {
212 212
      typedef Preflow<Digraph, CapacityMap,
213
                      DefFlowMapTraits<_FlowMap> > Create;
213
                      SetFlowMapTraits<_FlowMap> > Create;
214 214
    };
215 215

	
216 216
    template <typename _Elevator>
217
    struct DefElevatorTraits : public Traits {
217
    struct SetElevatorTraits : public Traits {
218 218
      typedef _Elevator Elevator;
219 219
      static Elevator *createElevator(const Digraph&, int) {
220 220
        LEMON_ASSERT(false, "Elevator is not initialized");
221 221
        return 0; // ignore warnings
222 222
      }
223 223
    };
224 224

	
225 225
    /// \brief \ref named-templ-param "Named parameter" for setting
226 226
    /// Elevator type
227 227
    ///
228 228
    /// \ref named-templ-param "Named parameter" for setting Elevator
229 229
    /// type
230 230
    template <typename _Elevator>
231
    struct DefElevator
232
      : public Preflow<Digraph, CapacityMap, DefElevatorTraits<_Elevator> > {
231
    struct SetElevator
232
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<_Elevator> > {
233 233
      typedef Preflow<Digraph, CapacityMap,
234
                      DefElevatorTraits<_Elevator> > Create;
234
                      SetElevatorTraits<_Elevator> > Create;
235 235
    };
236 236

	
237 237
    template <typename _Elevator>
238
    struct DefStandardElevatorTraits : public Traits {
238
    struct SetStandardElevatorTraits : public Traits {
239 239
      typedef _Elevator Elevator;
240 240
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
241 241
        return new Elevator(digraph, max_level);
242 242
      }
243 243
    };
244 244

	
245 245
    /// \brief \ref named-templ-param "Named parameter" for setting
246 246
    /// Elevator type
247 247
    ///
248 248
    /// \ref named-templ-param "Named parameter" for setting Elevator
249 249
    /// type. The Elevator should be standard constructor interface, ie.
250 250
    /// the digraph and the maximum level should be passed to it.
251 251
    template <typename _Elevator>
252
    struct DefStandardElevator
252
    struct SetStandardElevator
253 253
      : public Preflow<Digraph, CapacityMap,
254
                       DefStandardElevatorTraits<_Elevator> > {
254
                       SetStandardElevatorTraits<_Elevator> > {
255 255
      typedef Preflow<Digraph, CapacityMap,
256
                      DefStandardElevatorTraits<_Elevator> > Create;
256
                      SetStandardElevatorTraits<_Elevator> > Create;
257 257
    };
258 258

	
259 259
    /// @}
260 260

	
261 261
  protected:
262 262

	
263 263
    Preflow() {}
264 264

	
265 265
  public:
266 266

	
267 267

	
268 268
    /// \brief The constructor of the class.
269 269
    ///
270 270
    /// The constructor of the class.
271 271
    /// \param digraph The digraph the algorithm runs on.
272 272
    /// \param capacity The capacity of the arcs.
273 273
    /// \param source The source node.
274 274
    /// \param target The target node.
275 275
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
276 276
               Node source, Node target)
277 277
      : _graph(digraph), _capacity(&capacity),
278 278
        _node_num(0), _source(source), _target(target),
279 279
        _flow(0), _local_flow(false),
280 280
        _level(0), _local_level(false),
281 281
        _excess(0), _tolerance(), _phase() {}
282 282

	
283 283
    /// \brief Destrcutor.
284 284
    ///
285 285
    /// Destructor.
286 286
    ~Preflow() {
287 287
      destroyStructures();
288 288
    }
289 289

	
290 290
    /// \brief Sets the capacity map.
291 291
    ///
292 292
    /// Sets the capacity map.
293 293
    /// \return \c (*this)
294 294
    Preflow& capacityMap(const CapacityMap& map) {
295 295
      _capacity = &map;
296 296
      return *this;
297 297
    }
298 298

	
299 299
    /// \brief Sets the flow map.
300 300
    ///
301 301
    /// Sets the flow map.
302 302
    /// \return \c (*this)
303 303
    Preflow& flowMap(FlowMap& map) {
304 304
      if (_local_flow) {
305 305
        delete _flow;
306 306
        _local_flow = false;
307 307
      }
308 308
      _flow = &map;
309 309
      return *this;
310 310
    }
311 311

	
312 312
    /// \brief Returns the flow map.
313 313
    ///
314 314
    /// \return The flow map.
315 315
    const FlowMap& flowMap() {
316 316
      return *_flow;
317 317
    }
318 318

	
319 319
    /// \brief Sets the elevator.
320 320
    ///
321 321
    /// Sets the elevator.
322 322
    /// \return \c (*this)
323 323
    Preflow& elevator(Elevator& elevator) {
324 324
      if (_local_level) {
325 325
        delete _level;
326 326
        _local_level = false;
327 327
      }
328 328
      _level = &elevator;
329 329
      return *this;
330 330
    }
331 331

	
332 332
    /// \brief Returns the elevator.
333 333
    ///
334 334
    /// \return The elevator.
335 335
    const Elevator& elevator() {
336 336
      return *_level;
337 337
    }
338 338

	
339 339
    /// \brief Sets the source node.
340 340
    ///
341 341
    /// Sets the source node.
342 342
    /// \return \c (*this)
343 343
    Preflow& source(const Node& node) {
344 344
      _source = node;
345 345
      return *this;
346 346
    }
347 347

	
348 348
    /// \brief Sets the target node.
349 349
    ///
350 350
    /// Sets the target node.
351 351
    /// \return \c (*this)
352 352
    Preflow& target(const Node& node) {
353 353
      _target = node;
354 354
      return *this;
355 355
    }
356 356

	
357 357
    /// \brief Sets the tolerance used by algorithm.
358 358
    ///
359 359
    /// Sets the tolerance used by algorithm.
360 360
    Preflow& tolerance(const Tolerance& tolerance) const {
361 361
      _tolerance = tolerance;
362 362
      return *this;
363 363
    }
364 364

	
365 365
    /// \brief Returns the tolerance used by algorithm.
366 366
    ///
367 367
    /// Returns the tolerance used by algorithm.
368 368
    const Tolerance& tolerance() const {
369 369
      return tolerance;
370 370
    }
371 371

	
372 372
    /// \name Execution control The simplest way to execute the
373 373
    /// algorithm is to use one of the member functions called \c
374 374
    /// run().
375 375
    /// \n
376 376
    /// If you need more control on initial solution or
377 377
    /// execution then you have to call one \ref init() function and then
378 378
    /// the startFirstPhase() and if you need the startSecondPhase().
379 379

	
380 380
    ///@{
381 381

	
382 382
    /// \brief Initializes the internal data structures.
383 383
    ///
384 384
    /// Initializes the internal data structures.
385 385
    ///
386 386
    void init() {
387 387
      createStructures();
388 388

	
389 389
      _phase = true;
390 390
      for (NodeIt n(_graph); n != INVALID; ++n) {
391 391
        _excess->set(n, 0);
392 392
      }
393 393

	
394 394
      for (ArcIt e(_graph); e != INVALID; ++e) {
395 395
        _flow->set(e, 0);
396 396
      }
397 397

	
398 398
      typename Digraph::template NodeMap<bool> reached(_graph, false);
399 399

	
400 400
      _level->initStart();
401 401
      _level->initAddItem(_target);
402 402

	
403 403
      std::vector<Node> queue;
404 404
      reached.set(_source, true);
405 405

	
406 406
      queue.push_back(_target);
407 407
      reached.set(_target, true);
408 408
      while (!queue.empty()) {
409 409
        _level->initNewLevel();
410 410
        std::vector<Node> nqueue;
411 411
        for (int i = 0; i < int(queue.size()); ++i) {
412 412
          Node n = queue[i];
413 413
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
414 414
            Node u = _graph.source(e);
415 415
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
416 416
              reached.set(u, true);
417 417
              _level->initAddItem(u);
418 418
              nqueue.push_back(u);
419 419
            }
420 420
          }
421 421
        }
422 422
        queue.swap(nqueue);
423 423
      }
424 424
      _level->initFinish();
425 425

	
426 426
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
427 427
        if (_tolerance.positive((*_capacity)[e])) {
428 428
          Node u = _graph.target(e);
429 429
          if ((*_level)[u] == _level->maxLevel()) continue;
430 430
          _flow->set(e, (*_capacity)[e]);
431 431
          _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
432 432
          if (u != _target && !_level->active(u)) {
433 433
            _level->activate(u);
434 434
          }
435 435
        }
436 436
      }
437 437
    }
438 438

	
439 439
    /// \brief Initializes the internal data structures.
440 440
    ///
441 441
    /// Initializes the internal data structures and sets the initial
442 442
    /// flow to the given \c flowMap. The \c flowMap should contain a
443 443
    /// flow or at least a preflow, ie. in each node excluding the
444 444
    /// target the incoming flow should greater or equal to the
445 445
    /// outgoing flow.
446 446
    /// \return %False when the given \c flowMap is not a preflow.
447 447
    template <typename FlowMap>
448 448
    bool flowInit(const FlowMap& flowMap) {
Ignore white space 384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <fstream>
20 20
#include <string>
21 21

	
22 22
#include "test_tools.h"
23 23
#include <lemon/smart_graph.h>
24 24
#include <lemon/preflow.h>
25 25
#include <lemon/concepts/digraph.h>
26 26
#include <lemon/concepts/maps.h>
27 27
#include <lemon/lgf_reader.h>
28 28

	
29 29
using namespace lemon;
30 30

	
31 31
void checkPreflow()
32 32
{
33 33
  typedef int VType;
34 34
  typedef concepts::Digraph Digraph;
35 35

	
36 36
  typedef Digraph::Node Node;
37 37
  typedef Digraph::Arc Arc;
38 38
  typedef concepts::ReadMap<Arc,VType> CapMap;
39 39
  typedef concepts::ReadWriteMap<Arc,VType> FlowMap;
40 40
  typedef concepts::WriteMap<Node,bool> CutMap;
41 41

	
42 42
  Digraph g;
43 43
  Node n;
44 44
  Arc e;
45 45
  CapMap cap;
46 46
  FlowMap flow;
47 47
  CutMap cut;
48 48

	
49
  Preflow<Digraph, CapMap>::DefFlowMap<FlowMap>::Create preflow_test(g,cap,n,n);
49
  Preflow<Digraph, CapMap>::SetFlowMap<FlowMap>::Create preflow_test(g,cap,n,n);
50 50

	
51 51
  preflow_test.capacityMap(cap);
52 52
  flow = preflow_test.flowMap();
53 53
  preflow_test.flowMap(flow);
54 54
  preflow_test.source(n);
55 55
  preflow_test.target(n);
56 56

	
57 57
  preflow_test.init();
58 58
  preflow_test.flowInit(cap);
59 59
  preflow_test.startFirstPhase();
60 60
  preflow_test.startSecondPhase();
61 61
  preflow_test.run();
62 62
  preflow_test.runMinCut();
63 63

	
64 64
  preflow_test.flowValue();
65 65
  preflow_test.minCut(n);
66 66
  preflow_test.minCutMap(cut);
67 67
  preflow_test.flow(e);
68 68

	
69 69
}
70 70

	
71 71
int cutValue (const SmartDigraph& g,
72 72
              const SmartDigraph::NodeMap<bool>& cut,
73 73
              const SmartDigraph::ArcMap<int>& cap) {
74 74

	
75 75
  int c=0;
76 76
  for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
77 77
    if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e];
78 78
  }
79 79
  return c;
80 80
}
81 81

	
82 82
bool checkFlow(const SmartDigraph& g,
83 83
               const SmartDigraph::ArcMap<int>& flow,
84 84
               const SmartDigraph::ArcMap<int>& cap,
85 85
               SmartDigraph::Node s, SmartDigraph::Node t) {
86 86

	
87 87
  for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
88 88
    if (flow[e] < 0 || flow[e] > cap[e]) return false;
89 89
  }
90 90

	
91 91
  for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
92 92
    if (n == s || n == t) continue;
93 93
    int sum = 0;
94 94
    for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
95 95
      sum += flow[e];
96 96
    }
97 97
    for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
98 98
      sum -= flow[e];
99 99
    }
100 100
    if (sum != 0) return false;
101 101
  }
102 102
  return true;
103 103
}
104 104

	
105 105
int main() {
106 106

	
107 107
  typedef SmartDigraph Digraph;
108 108

	
109 109
  typedef Digraph::Node Node;
110 110
  typedef Digraph::NodeIt NodeIt;
111 111
  typedef Digraph::ArcIt ArcIt;
112 112
  typedef Digraph::ArcMap<int> CapMap;
113 113
  typedef Digraph::ArcMap<int> FlowMap;
114 114
  typedef Digraph::NodeMap<bool> CutMap;
115 115

	
116 116
  typedef Preflow<Digraph, CapMap> PType;
117 117

	
118 118
  std::string f_name;
119 119
  if( getenv("srcdir") )
120 120
    f_name = std::string(getenv("srcdir"));
121 121
  else f_name = ".";
122 122
  f_name += "/test/preflow_graph.lgf";
123 123

	
124 124
  std::ifstream file(f_name.c_str());
125 125

	
126 126
  check(file, "Input file '" << f_name << "' not found.");
127 127

	
128 128
  Digraph g;
129 129
  Node s, t;
130 130
  CapMap cap(g);
131 131
  DigraphReader<Digraph>(g,file).
132 132
    arcMap("capacity", cap).
133 133
    node("source",s).
134 134
    node("target",t).
135 135
    run();
136 136

	
137 137
  PType preflow_test(g, cap, s, t);
138 138
  preflow_test.run();
139 139

	
140 140
  check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
141 141
        "The flow is not feasible.");
142 142

	
143 143
  CutMap min_cut(g);
144 144
  preflow_test.minCutMap(min_cut);
145 145
  int min_cut_value=cutValue(g,min_cut,cap);
146 146

	
147 147
  check(preflow_test.flowValue() == min_cut_value,
148 148
        "The max flow value is not equal to the three min cut values.");
149 149

	
150 150
  FlowMap flow(g);
151 151
  for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e];
152 152

	
153 153
  int flow_value=preflow_test.flowValue();
154 154

	
155 155
  for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e];
156 156
  preflow_test.flowInit(flow);
157 157
  preflow_test.startFirstPhase();
158 158

	
159 159
  CutMap min_cut1(g);
160 160
  preflow_test.minCutMap(min_cut1);
161 161
  min_cut_value=cutValue(g,min_cut1,cap);
162 162

	
163 163
  check(preflow_test.flowValue() == min_cut_value &&
164 164
        min_cut_value == 2*flow_value,
165 165
        "The max flow value or the min cut value is wrong.");
166 166

	
167 167
  preflow_test.startSecondPhase();
168 168

	
169 169
  check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
170 170
        "The flow is not feasible.");
171 171

	
172 172
  CutMap min_cut2(g);
173 173
  preflow_test.minCutMap(min_cut2);
174 174
  min_cut_value=cutValue(g,min_cut2,cap);
175 175

	
176 176
  check(preflow_test.flowValue() == min_cut_value &&
177 177
        min_cut_value == 2*flow_value,
178 178
        "The max flow value or the three min cut values were not doubled");
179 179

	
180 180

	
181 181
  preflow_test.flowMap(flow);
182 182

	
183 183
  NodeIt tmp1(g,s);
184 184
  ++tmp1;
185 185
  if ( tmp1 != INVALID ) s=tmp1;
186 186

	
187 187
  NodeIt tmp2(g,t);
188 188
  ++tmp2;
189 189
  if ( tmp2 != INVALID ) t=tmp2;
190 190

	
191 191
  preflow_test.source(s);
192 192
  preflow_test.target(t);
193 193

	
194 194
  preflow_test.run();
195 195

	
196 196
  CutMap min_cut3(g);
197 197
  preflow_test.minCutMap(min_cut3);
198 198
  min_cut_value=cutValue(g,min_cut3,cap);
199 199

	
200 200

	
201 201
  check(preflow_test.flowValue() == min_cut_value,
202 202
        "The max flow value or the three min cut values are incorrect.");
203 203

	
204 204
  return 0;
205 205
}
0 comments (0 inline)