0
4
2
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FRACTIONAL_MATCHING_H |
|
20 |
#define LEMON_FRACTIONAL_MATCHING_H |
|
21 |
|
|
22 |
#include <vector> |
|
23 |
#include <queue> |
|
24 |
#include <set> |
|
25 |
#include <limits> |
|
26 |
|
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/unionfind.h> |
|
29 |
#include <lemon/bin_heap.h> |
|
30 |
#include <lemon/maps.h> |
|
31 |
#include <lemon/assert.h> |
|
32 |
#include <lemon/elevator.h> |
|
33 |
|
|
34 |
///\ingroup matching |
|
35 |
///\file |
|
36 |
///\brief Fractional matching algorithms in general graphs. |
|
37 |
|
|
38 |
namespace lemon { |
|
39 |
|
|
40 |
/// \brief Default traits class of MaxFractionalMatching class. |
|
41 |
/// |
|
42 |
/// Default traits class of MaxFractionalMatching class. |
|
43 |
/// \tparam GR Graph type. |
|
44 |
template <typename GR> |
|
45 |
struct MaxFractionalMatchingDefaultTraits { |
|
46 |
|
|
47 |
/// \brief The type of the graph the algorithm runs on. |
|
48 |
typedef GR Graph; |
|
49 |
|
|
50 |
/// \brief The type of the map that stores the matching. |
|
51 |
/// |
|
52 |
/// The type of the map that stores the matching arcs. |
|
53 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
54 |
typedef typename Graph::template NodeMap<typename GR::Arc> MatchingMap; |
|
55 |
|
|
56 |
/// \brief Instantiates a MatchingMap. |
|
57 |
/// |
|
58 |
/// This function instantiates a \ref MatchingMap. |
|
59 |
/// \param graph The graph for which we would like to define |
|
60 |
/// the matching map. |
|
61 |
static MatchingMap* createMatchingMap(const Graph& graph) { |
|
62 |
return new MatchingMap(graph); |
|
63 |
} |
|
64 |
|
|
65 |
/// \brief The elevator type used by MaxFractionalMatching algorithm. |
|
66 |
/// |
|
67 |
/// The elevator type used by MaxFractionalMatching algorithm. |
|
68 |
/// |
|
69 |
/// \sa Elevator |
|
70 |
/// \sa LinkedElevator |
|
71 |
typedef LinkedElevator<Graph, typename Graph::Node> Elevator; |
|
72 |
|
|
73 |
/// \brief Instantiates an Elevator. |
|
74 |
/// |
|
75 |
/// This function instantiates an \ref Elevator. |
|
76 |
/// \param graph The graph for which we would like to define |
|
77 |
/// the elevator. |
|
78 |
/// \param max_level The maximum level of the elevator. |
|
79 |
static Elevator* createElevator(const Graph& graph, int max_level) { |
|
80 |
return new Elevator(graph, max_level); |
|
81 |
} |
|
82 |
}; |
|
83 |
|
|
84 |
/// \ingroup matching |
|
85 |
/// |
|
86 |
/// \brief Max cardinality fractional matching |
|
87 |
/// |
|
88 |
/// This class provides an implementation of fractional matching |
|
89 |
/// algorithm based on push-relabel principle. |
|
90 |
/// |
|
91 |
/// The maximum cardinality fractional matching is a relaxation of the |
|
92 |
/// maximum cardinality matching problem where the odd set constraints |
|
93 |
/// are omitted. |
|
94 |
/// It can be formulated with the following linear program. |
|
95 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
|
96 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
97 |
/// \f[\max \sum_{e\in E}x_e\f] |
|
98 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
99 |
/// \f$X\f$. The result can be represented as the union of a |
|
100 |
/// matching with one value edges and a set of odd length cycles |
|
101 |
/// with half value edges. |
|
102 |
/// |
|
103 |
/// The algorithm calculates an optimal fractional matching and a |
|
104 |
/// barrier. The number of adjacents of any node set minus the size |
|
105 |
/// of node set is a lower bound on the uncovered nodes in the |
|
106 |
/// graph. For maximum matching a barrier is computed which |
|
107 |
/// maximizes this difference. |
|
108 |
/// |
|
109 |
/// The algorithm can be executed with the run() function. After it |
|
110 |
/// the matching (the primal solution) and the barrier (the dual |
|
111 |
/// solution) can be obtained using the query functions. |
|
112 |
/// |
|
113 |
/// The primal solution is multiplied by |
|
114 |
/// \ref MaxWeightedMatching::primalScale "2". |
|
115 |
/// |
|
116 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
117 |
#ifdef DOXYGEN |
|
118 |
template <typename GR, typename TR> |
|
119 |
#else |
|
120 |
template <typename GR, |
|
121 |
typename TR = MaxFractionalMatchingDefaultTraits<GR> > |
|
122 |
#endif |
|
123 |
class MaxFractionalMatching { |
|
124 |
public: |
|
125 |
|
|
126 |
/// \brief The \ref MaxFractionalMatchingDefaultTraits "traits |
|
127 |
/// class" of the algorithm. |
|
128 |
typedef TR Traits; |
|
129 |
/// The type of the graph the algorithm runs on. |
|
130 |
typedef typename TR::Graph Graph; |
|
131 |
/// The type of the matching map. |
|
132 |
typedef typename TR::MatchingMap MatchingMap; |
|
133 |
/// The type of the elevator. |
|
134 |
typedef typename TR::Elevator Elevator; |
|
135 |
|
|
136 |
/// \brief Scaling factor for primal solution |
|
137 |
/// |
|
138 |
/// Scaling factor for primal solution. |
|
139 |
static const int primalScale = 2; |
|
140 |
|
|
141 |
private: |
|
142 |
|
|
143 |
const Graph &_graph; |
|
144 |
int _node_num; |
|
145 |
bool _allow_loops; |
|
146 |
int _empty_level; |
|
147 |
|
|
148 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
149 |
|
|
150 |
bool _local_matching; |
|
151 |
MatchingMap *_matching; |
|
152 |
|
|
153 |
bool _local_level; |
|
154 |
Elevator *_level; |
|
155 |
|
|
156 |
typedef typename Graph::template NodeMap<int> InDegMap; |
|
157 |
InDegMap *_indeg; |
|
158 |
|
|
159 |
void createStructures() { |
|
160 |
_node_num = countNodes(_graph); |
|
161 |
|
|
162 |
if (!_matching) { |
|
163 |
_local_matching = true; |
|
164 |
_matching = Traits::createMatchingMap(_graph); |
|
165 |
} |
|
166 |
if (!_level) { |
|
167 |
_local_level = true; |
|
168 |
_level = Traits::createElevator(_graph, _node_num); |
|
169 |
} |
|
170 |
if (!_indeg) { |
|
171 |
_indeg = new InDegMap(_graph); |
|
172 |
} |
|
173 |
} |
|
174 |
|
|
175 |
void destroyStructures() { |
|
176 |
if (_local_matching) { |
|
177 |
delete _matching; |
|
178 |
} |
|
179 |
if (_local_level) { |
|
180 |
delete _level; |
|
181 |
} |
|
182 |
if (_indeg) { |
|
183 |
delete _indeg; |
|
184 |
} |
|
185 |
} |
|
186 |
|
|
187 |
void postprocessing() { |
|
188 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
189 |
if ((*_indeg)[n] != 0) continue; |
|
190 |
_indeg->set(n, -1); |
|
191 |
Node u = n; |
|
192 |
while ((*_matching)[u] != INVALID) { |
|
193 |
Node v = _graph.target((*_matching)[u]); |
|
194 |
_indeg->set(v, -1); |
|
195 |
Arc a = _graph.oppositeArc((*_matching)[u]); |
|
196 |
u = _graph.target((*_matching)[v]); |
|
197 |
_indeg->set(u, -1); |
|
198 |
_matching->set(v, a); |
|
199 |
} |
|
200 |
} |
|
201 |
|
|
202 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
203 |
if ((*_indeg)[n] != 1) continue; |
|
204 |
_indeg->set(n, -1); |
|
205 |
|
|
206 |
int num = 1; |
|
207 |
Node u = _graph.target((*_matching)[n]); |
|
208 |
while (u != n) { |
|
209 |
_indeg->set(u, -1); |
|
210 |
u = _graph.target((*_matching)[u]); |
|
211 |
++num; |
|
212 |
} |
|
213 |
if (num % 2 == 0 && num > 2) { |
|
214 |
Arc prev = _graph.oppositeArc((*_matching)[n]); |
|
215 |
Node v = _graph.target((*_matching)[n]); |
|
216 |
u = _graph.target((*_matching)[v]); |
|
217 |
_matching->set(v, prev); |
|
218 |
while (u != n) { |
|
219 |
prev = _graph.oppositeArc((*_matching)[u]); |
|
220 |
v = _graph.target((*_matching)[u]); |
|
221 |
u = _graph.target((*_matching)[v]); |
|
222 |
_matching->set(v, prev); |
|
223 |
} |
|
224 |
} |
|
225 |
} |
|
226 |
} |
|
227 |
|
|
228 |
public: |
|
229 |
|
|
230 |
typedef MaxFractionalMatching Create; |
|
231 |
|
|
232 |
///\name Named Template Parameters |
|
233 |
|
|
234 |
///@{ |
|
235 |
|
|
236 |
template <typename T> |
|
237 |
struct SetMatchingMapTraits : public Traits { |
|
238 |
typedef T MatchingMap; |
|
239 |
static MatchingMap *createMatchingMap(const Graph&) { |
|
240 |
LEMON_ASSERT(false, "MatchingMap is not initialized"); |
|
241 |
return 0; // ignore warnings |
|
242 |
} |
|
243 |
}; |
|
244 |
|
|
245 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
246 |
/// MatchingMap type |
|
247 |
/// |
|
248 |
/// \ref named-templ-param "Named parameter" for setting MatchingMap |
|
249 |
/// type. |
|
250 |
template <typename T> |
|
251 |
struct SetMatchingMap |
|
252 |
: public MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > { |
|
253 |
typedef MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > Create; |
|
254 |
}; |
|
255 |
|
|
256 |
template <typename T> |
|
257 |
struct SetElevatorTraits : public Traits { |
|
258 |
typedef T Elevator; |
|
259 |
static Elevator *createElevator(const Graph&, int) { |
|
260 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
|
261 |
return 0; // ignore warnings |
|
262 |
} |
|
263 |
}; |
|
264 |
|
|
265 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
266 |
/// Elevator type |
|
267 |
/// |
|
268 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
269 |
/// type. If this named parameter is used, then an external |
|
270 |
/// elevator object must be passed to the algorithm using the |
|
271 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
|
272 |
/// \ref run() or \ref init(). |
|
273 |
/// \sa SetStandardElevator |
|
274 |
template <typename T> |
|
275 |
struct SetElevator |
|
276 |
: public MaxFractionalMatching<Graph, SetElevatorTraits<T> > { |
|
277 |
typedef MaxFractionalMatching<Graph, SetElevatorTraits<T> > Create; |
|
278 |
}; |
|
279 |
|
|
280 |
template <typename T> |
|
281 |
struct SetStandardElevatorTraits : public Traits { |
|
282 |
typedef T Elevator; |
|
283 |
static Elevator *createElevator(const Graph& graph, int max_level) { |
|
284 |
return new Elevator(graph, max_level); |
|
285 |
} |
|
286 |
}; |
|
287 |
|
|
288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
289 |
/// Elevator type with automatic allocation |
|
290 |
/// |
|
291 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
292 |
/// type with automatic allocation. |
|
293 |
/// The Elevator should have standard constructor interface to be |
|
294 |
/// able to automatically created by the algorithm (i.e. the |
|
295 |
/// graph and the maximum level should be passed to it). |
|
296 |
/// However an external elevator object could also be passed to the |
|
297 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
|
298 |
/// before calling \ref run() or \ref init(). |
|
299 |
/// \sa SetElevator |
|
300 |
template <typename T> |
|
301 |
struct SetStandardElevator |
|
302 |
: public MaxFractionalMatching<Graph, SetStandardElevatorTraits<T> > { |
|
303 |
typedef MaxFractionalMatching<Graph, |
|
304 |
SetStandardElevatorTraits<T> > Create; |
|
305 |
}; |
|
306 |
|
|
307 |
/// @} |
|
308 |
|
|
309 |
protected: |
|
310 |
|
|
311 |
MaxFractionalMatching() {} |
|
312 |
|
|
313 |
public: |
|
314 |
|
|
315 |
/// \brief Constructor |
|
316 |
/// |
|
317 |
/// Constructor. |
|
318 |
/// |
|
319 |
MaxFractionalMatching(const Graph &graph, bool allow_loops = true) |
|
320 |
: _graph(graph), _allow_loops(allow_loops), |
|
321 |
_local_matching(false), _matching(0), |
|
322 |
_local_level(false), _level(0), _indeg(0) |
|
323 |
{} |
|
324 |
|
|
325 |
~MaxFractionalMatching() { |
|
326 |
destroyStructures(); |
|
327 |
} |
|
328 |
|
|
329 |
/// \brief Sets the matching map. |
|
330 |
/// |
|
331 |
/// Sets the matching map. |
|
332 |
/// If you don't use this function before calling \ref run() or |
|
333 |
/// \ref init(), an instance will be allocated automatically. |
|
334 |
/// The destructor deallocates this automatically allocated map, |
|
335 |
/// of course. |
|
336 |
/// \return <tt>(*this)</tt> |
|
337 |
MaxFractionalMatching& matchingMap(MatchingMap& map) { |
|
338 |
if (_local_matching) { |
|
339 |
delete _matching; |
|
340 |
_local_matching = false; |
|
341 |
} |
|
342 |
_matching = ↦ |
|
343 |
return *this; |
|
344 |
} |
|
345 |
|
|
346 |
/// \brief Sets the elevator used by algorithm. |
|
347 |
/// |
|
348 |
/// Sets the elevator used by algorithm. |
|
349 |
/// If you don't use this function before calling \ref run() or |
|
350 |
/// \ref init(), an instance will be allocated automatically. |
|
351 |
/// The destructor deallocates this automatically allocated elevator, |
|
352 |
/// of course. |
|
353 |
/// \return <tt>(*this)</tt> |
|
354 |
MaxFractionalMatching& elevator(Elevator& elevator) { |
|
355 |
if (_local_level) { |
|
356 |
delete _level; |
|
357 |
_local_level = false; |
|
358 |
} |
|
359 |
_level = &elevator; |
|
360 |
return *this; |
|
361 |
} |
|
362 |
|
|
363 |
/// \brief Returns a const reference to the elevator. |
|
364 |
/// |
|
365 |
/// Returns a const reference to the elevator. |
|
366 |
/// |
|
367 |
/// \pre Either \ref run() or \ref init() must be called before |
|
368 |
/// using this function. |
|
369 |
const Elevator& elevator() const { |
|
370 |
return *_level; |
|
371 |
} |
|
372 |
|
|
373 |
/// \name Execution control |
|
374 |
/// The simplest way to execute the algorithm is to use one of the |
|
375 |
/// member functions called \c run(). \n |
|
376 |
/// If you need more control on the execution, first |
|
377 |
/// you must call \ref init() and then one variant of the start() |
|
378 |
/// member. |
|
379 |
|
|
380 |
/// @{ |
|
381 |
|
|
382 |
/// \brief Initializes the internal data structures. |
|
383 |
/// |
|
384 |
/// Initializes the internal data structures and sets the initial |
|
385 |
/// matching. |
|
386 |
void init() { |
|
387 |
createStructures(); |
|
388 |
|
|
389 |
_level->initStart(); |
|
390 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
391 |
_indeg->set(n, 0); |
|
392 |
_matching->set(n, INVALID); |
|
393 |
_level->initAddItem(n); |
|
394 |
} |
|
395 |
_level->initFinish(); |
|
396 |
|
|
397 |
_empty_level = _node_num; |
|
398 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
399 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
|
400 |
if (_graph.target(a) == n && !_allow_loops) continue; |
|
401 |
_matching->set(n, a); |
|
402 |
Node v = _graph.target((*_matching)[n]); |
|
403 |
_indeg->set(v, (*_indeg)[v] + 1); |
|
404 |
break; |
|
405 |
} |
|
406 |
} |
|
407 |
|
|
408 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
409 |
if ((*_indeg)[n] == 0) { |
|
410 |
_level->activate(n); |
|
411 |
} |
|
412 |
} |
|
413 |
} |
|
414 |
|
|
415 |
/// \brief Starts the algorithm and computes a fractional matching |
|
416 |
/// |
|
417 |
/// The algorithm computes a maximum fractional matching. |
|
418 |
/// |
|
419 |
/// \param postprocess The algorithm computes first a matching |
|
420 |
/// which is a union of a matching with one value edges, cycles |
|
421 |
/// with half value edges and even length paths with half value |
|
422 |
/// edges. If the parameter is true, then after the push-relabel |
|
423 |
/// algorithm it postprocesses the matching to contain only |
|
424 |
/// matching edges and half value odd cycles. |
|
425 |
void start(bool postprocess = true) { |
|
426 |
Node n; |
|
427 |
while ((n = _level->highestActive()) != INVALID) { |
|
428 |
int level = _level->highestActiveLevel(); |
|
429 |
int new_level = _level->maxLevel(); |
|
430 |
for (InArcIt a(_graph, n); a != INVALID; ++a) { |
|
431 |
Node u = _graph.source(a); |
|
432 |
if (n == u && !_allow_loops) continue; |
|
433 |
Node v = _graph.target((*_matching)[u]); |
|
434 |
if ((*_level)[v] < level) { |
|
435 |
_indeg->set(v, (*_indeg)[v] - 1); |
|
436 |
if ((*_indeg)[v] == 0) { |
|
437 |
_level->activate(v); |
|
438 |
} |
|
439 |
_matching->set(u, a); |
|
440 |
_indeg->set(n, (*_indeg)[n] + 1); |
|
441 |
_level->deactivate(n); |
|
442 |
goto no_more_push; |
|
443 |
} else if (new_level > (*_level)[v]) { |
|
444 |
new_level = (*_level)[v]; |
|
445 |
} |
|
446 |
} |
|
447 |
|
|
448 |
if (new_level + 1 < _level->maxLevel()) { |
|
449 |
_level->liftHighestActive(new_level + 1); |
|
450 |
} else { |
|
451 |
_level->liftHighestActiveToTop(); |
|
452 |
} |
|
453 |
if (_level->emptyLevel(level)) { |
|
454 |
_level->liftToTop(level); |
|
455 |
} |
|
456 |
no_more_push: |
|
457 |
; |
|
458 |
} |
|
459 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
460 |
if ((*_matching)[n] == INVALID) continue; |
|
461 |
Node u = _graph.target((*_matching)[n]); |
|
462 |
if ((*_indeg)[u] > 1) { |
|
463 |
_indeg->set(u, (*_indeg)[u] - 1); |
|
464 |
_matching->set(n, INVALID); |
|
465 |
} |
|
466 |
} |
|
467 |
if (postprocess) { |
|
468 |
postprocessing(); |
|
469 |
} |
|
470 |
} |
|
471 |
|
|
472 |
/// \brief Starts the algorithm and computes a perfect fractional |
|
473 |
/// matching |
|
474 |
/// |
|
475 |
/// The algorithm computes a perfect fractional matching. If it |
|
476 |
/// does not exists, then the algorithm returns false and the |
|
477 |
/// matching is undefined and the barrier. |
|
478 |
/// |
|
479 |
/// \param postprocess The algorithm computes first a matching |
|
480 |
/// which is a union of a matching with one value edges, cycles |
|
481 |
/// with half value edges and even length paths with half value |
|
482 |
/// edges. If the parameter is true, then after the push-relabel |
|
483 |
/// algorithm it postprocesses the matching to contain only |
|
484 |
/// matching edges and half value odd cycles. |
|
485 |
bool startPerfect(bool postprocess = true) { |
|
486 |
Node n; |
|
487 |
while ((n = _level->highestActive()) != INVALID) { |
|
488 |
int level = _level->highestActiveLevel(); |
|
489 |
int new_level = _level->maxLevel(); |
|
490 |
for (InArcIt a(_graph, n); a != INVALID; ++a) { |
|
491 |
Node u = _graph.source(a); |
|
492 |
if (n == u && !_allow_loops) continue; |
|
493 |
Node v = _graph.target((*_matching)[u]); |
|
494 |
if ((*_level)[v] < level) { |
|
495 |
_indeg->set(v, (*_indeg)[v] - 1); |
|
496 |
if ((*_indeg)[v] == 0) { |
|
497 |
_level->activate(v); |
|
498 |
} |
|
499 |
_matching->set(u, a); |
|
500 |
_indeg->set(n, (*_indeg)[n] + 1); |
|
501 |
_level->deactivate(n); |
|
502 |
goto no_more_push; |
|
503 |
} else if (new_level > (*_level)[v]) { |
|
504 |
new_level = (*_level)[v]; |
|
505 |
} |
|
506 |
} |
|
507 |
|
|
508 |
if (new_level + 1 < _level->maxLevel()) { |
|
509 |
_level->liftHighestActive(new_level + 1); |
|
510 |
} else { |
|
511 |
_level->liftHighestActiveToTop(); |
|
512 |
_empty_level = _level->maxLevel() - 1; |
|
513 |
return false; |
|
514 |
} |
|
515 |
if (_level->emptyLevel(level)) { |
|
516 |
_level->liftToTop(level); |
|
517 |
_empty_level = level; |
|
518 |
return false; |
|
519 |
} |
|
520 |
no_more_push: |
|
521 |
; |
|
522 |
} |
|
523 |
if (postprocess) { |
|
524 |
postprocessing(); |
|
525 |
} |
|
526 |
return true; |
|
527 |
} |
|
528 |
|
|
529 |
/// \brief Runs the algorithm |
|
530 |
/// |
|
531 |
/// Just a shortcut for the next code: |
|
532 |
///\code |
|
533 |
/// init(); |
|
534 |
/// start(); |
|
535 |
///\endcode |
|
536 |
void run(bool postprocess = true) { |
|
537 |
init(); |
|
538 |
start(postprocess); |
|
539 |
} |
|
540 |
|
|
541 |
/// \brief Runs the algorithm to find a perfect fractional matching |
|
542 |
/// |
|
543 |
/// Just a shortcut for the next code: |
|
544 |
///\code |
|
545 |
/// init(); |
|
546 |
/// startPerfect(); |
|
547 |
///\endcode |
|
548 |
bool runPerfect(bool postprocess = true) { |
|
549 |
init(); |
|
550 |
return startPerfect(postprocess); |
|
551 |
} |
|
552 |
|
|
553 |
///@} |
|
554 |
|
|
555 |
/// \name Query Functions |
|
556 |
/// The result of the %Matching algorithm can be obtained using these |
|
557 |
/// functions.\n |
|
558 |
/// Before the use of these functions, |
|
559 |
/// either run() or start() must be called. |
|
560 |
///@{ |
|
561 |
|
|
562 |
|
|
563 |
/// \brief Return the number of covered nodes in the matching. |
|
564 |
/// |
|
565 |
/// This function returns the number of covered nodes in the matching. |
|
566 |
/// |
|
567 |
/// \pre Either run() or start() must be called before using this function. |
|
568 |
int matchingSize() const { |
|
569 |
int num = 0; |
|
570 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
571 |
if ((*_matching)[n] != INVALID) { |
|
572 |
++num; |
|
573 |
} |
|
574 |
} |
|
575 |
return num; |
|
576 |
} |
|
577 |
|
|
578 |
/// \brief Returns a const reference to the matching map. |
|
579 |
/// |
|
580 |
/// Returns a const reference to the node map storing the found |
|
581 |
/// fractional matching. This method can be called after |
|
582 |
/// running the algorithm. |
|
583 |
/// |
|
584 |
/// \pre Either \ref run() or \ref init() must be called before |
|
585 |
/// using this function. |
|
586 |
const MatchingMap& matchingMap() const { |
|
587 |
return *_matching; |
|
588 |
} |
|
589 |
|
|
590 |
/// \brief Return \c true if the given edge is in the matching. |
|
591 |
/// |
|
592 |
/// This function returns \c true if the given edge is in the |
|
593 |
/// found matching. The result is scaled by \ref primalScale |
|
594 |
/// "primal scale". |
|
595 |
/// |
|
596 |
/// \pre Either run() or start() must be called before using this function. |
|
597 |
int matching(const Edge& edge) const { |
|
598 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) + |
|
599 |
(edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
600 |
} |
|
601 |
|
|
602 |
/// \brief Return the fractional matching arc (or edge) incident |
|
603 |
/// to the given node. |
|
604 |
/// |
|
605 |
/// This function returns one of the fractional matching arc (or |
|
606 |
/// edge) incident to the given node in the found matching or \c |
|
607 |
/// INVALID if the node is not covered by the matching or if the |
|
608 |
/// node is on an odd length cycle then it is the successor edge |
|
609 |
/// on the cycle. |
|
610 |
/// |
|
611 |
/// \pre Either run() or start() must be called before using this function. |
|
612 |
Arc matching(const Node& node) const { |
|
613 |
return (*_matching)[node]; |
|
614 |
} |
|
615 |
|
|
616 |
/// \brief Returns true if the node is in the barrier |
|
617 |
/// |
|
618 |
/// The barrier is a subset of the nodes. If the nodes in the |
|
619 |
/// barrier have less adjacent nodes than the size of the barrier, |
|
620 |
/// then at least as much nodes cannot be covered as the |
|
621 |
/// difference of the two subsets. |
|
622 |
bool barrier(const Node& node) const { |
|
623 |
return (*_level)[node] >= _empty_level; |
|
624 |
} |
|
625 |
|
|
626 |
/// @} |
|
627 |
|
|
628 |
}; |
|
629 |
|
|
630 |
/// \ingroup matching |
|
631 |
/// |
|
632 |
/// \brief Weighted fractional matching in general graphs |
|
633 |
/// |
|
634 |
/// This class provides an efficient implementation of fractional |
|
635 |
/// matching algorithm. The implementation is based on extensive use |
|
636 |
/// of priority queues and provides \f$O(nm\log n)\f$ time |
|
637 |
/// complexity. |
|
638 |
/// |
|
639 |
/// The maximum weighted fractional matching is a relaxation of the |
|
640 |
/// maximum weighted matching problem where the odd set constraints |
|
641 |
/// are omitted. |
|
642 |
/// It can be formulated with the following linear program. |
|
643 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
|
644 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
645 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
646 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
647 |
/// \f$X\f$. The result must be the union of a matching with one |
|
648 |
/// value edges and a set of odd length cycles with half value edges. |
|
649 |
/// |
|
650 |
/// The algorithm calculates an optimal fractional matching and a |
|
651 |
/// proof of the optimality. The solution of the dual problem can be |
|
652 |
/// used to check the result of the algorithm. The dual linear |
|
653 |
/// problem is the following. |
|
654 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
|
655 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
|
656 |
/// \f[\min \sum_{u \in V}y_u \f] /// |
|
657 |
/// |
|
658 |
/// The algorithm can be executed with the run() function. |
|
659 |
/// After it the matching (the primal solution) and the dual solution |
|
660 |
/// can be obtained using the query functions. |
|
661 |
/// |
|
662 |
/// If the value type is integer, then the primal and the dual |
|
663 |
/// solutions are multiplied by |
|
664 |
/// \ref MaxWeightedMatching::primalScale "2" and |
|
665 |
/// \ref MaxWeightedMatching::dualScale "4" respectively. |
|
666 |
/// |
|
667 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
668 |
/// \tparam WM The type edge weight map. The default type is |
|
669 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
670 |
#ifdef DOXYGEN |
|
671 |
template <typename GR, typename WM> |
|
672 |
#else |
|
673 |
template <typename GR, |
|
674 |
typename WM = typename GR::template EdgeMap<int> > |
|
675 |
#endif |
|
676 |
class MaxWeightedFractionalMatching { |
|
677 |
public: |
|
678 |
|
|
679 |
/// The graph type of the algorithm |
|
680 |
typedef GR Graph; |
|
681 |
/// The type of the edge weight map |
|
682 |
typedef WM WeightMap; |
|
683 |
/// The value type of the edge weights |
|
684 |
typedef typename WeightMap::Value Value; |
|
685 |
|
|
686 |
/// The type of the matching map |
|
687 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
688 |
MatchingMap; |
|
689 |
|
|
690 |
/// \brief Scaling factor for primal solution |
|
691 |
/// |
|
692 |
/// Scaling factor for primal solution. It is equal to 2 or 1 |
|
693 |
/// according to the value type. |
|
694 |
static const int primalScale = |
|
695 |
std::numeric_limits<Value>::is_integer ? 2 : 1; |
|
696 |
|
|
697 |
/// \brief Scaling factor for dual solution |
|
698 |
/// |
|
699 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
|
700 |
/// according to the value type. |
|
701 |
static const int dualScale = |
|
702 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
703 |
|
|
704 |
private: |
|
705 |
|
|
706 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
707 |
|
|
708 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
709 |
|
|
710 |
const Graph& _graph; |
|
711 |
const WeightMap& _weight; |
|
712 |
|
|
713 |
MatchingMap* _matching; |
|
714 |
NodePotential* _node_potential; |
|
715 |
|
|
716 |
int _node_num; |
|
717 |
bool _allow_loops; |
|
718 |
|
|
719 |
enum Status { |
|
720 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
721 |
}; |
|
722 |
|
|
723 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
724 |
StatusMap* _status; |
|
725 |
|
|
726 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
727 |
PredMap* _pred; |
|
728 |
|
|
729 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
730 |
|
|
731 |
IntNodeMap *_tree_set_index; |
|
732 |
TreeSet *_tree_set; |
|
733 |
|
|
734 |
IntNodeMap *_delta1_index; |
|
735 |
BinHeap<Value, IntNodeMap> *_delta1; |
|
736 |
|
|
737 |
IntNodeMap *_delta2_index; |
|
738 |
BinHeap<Value, IntNodeMap> *_delta2; |
|
739 |
|
|
740 |
IntEdgeMap *_delta3_index; |
|
741 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
742 |
|
|
743 |
Value _delta_sum; |
|
744 |
|
|
745 |
void createStructures() { |
|
746 |
_node_num = countNodes(_graph); |
|
747 |
|
|
748 |
if (!_matching) { |
|
749 |
_matching = new MatchingMap(_graph); |
|
750 |
} |
|
751 |
if (!_node_potential) { |
|
752 |
_node_potential = new NodePotential(_graph); |
|
753 |
} |
|
754 |
if (!_status) { |
|
755 |
_status = new StatusMap(_graph); |
|
756 |
} |
|
757 |
if (!_pred) { |
|
758 |
_pred = new PredMap(_graph); |
|
759 |
} |
|
760 |
if (!_tree_set) { |
|
761 |
_tree_set_index = new IntNodeMap(_graph); |
|
762 |
_tree_set = new TreeSet(*_tree_set_index); |
|
763 |
} |
|
764 |
if (!_delta1) { |
|
765 |
_delta1_index = new IntNodeMap(_graph); |
|
766 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
|
767 |
} |
|
768 |
if (!_delta2) { |
|
769 |
_delta2_index = new IntNodeMap(_graph); |
|
770 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
|
771 |
} |
|
772 |
if (!_delta3) { |
|
773 |
_delta3_index = new IntEdgeMap(_graph); |
|
774 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
775 |
} |
|
776 |
} |
|
777 |
|
|
778 |
void destroyStructures() { |
|
779 |
if (_matching) { |
|
780 |
delete _matching; |
|
781 |
} |
|
782 |
if (_node_potential) { |
|
783 |
delete _node_potential; |
|
784 |
} |
|
785 |
if (_status) { |
|
786 |
delete _status; |
|
787 |
} |
|
788 |
if (_pred) { |
|
789 |
delete _pred; |
|
790 |
} |
|
791 |
if (_tree_set) { |
|
792 |
delete _tree_set_index; |
|
793 |
delete _tree_set; |
|
794 |
} |
|
795 |
if (_delta1) { |
|
796 |
delete _delta1_index; |
|
797 |
delete _delta1; |
|
798 |
} |
|
799 |
if (_delta2) { |
|
800 |
delete _delta2_index; |
|
801 |
delete _delta2; |
|
802 |
} |
|
803 |
if (_delta3) { |
|
804 |
delete _delta3_index; |
|
805 |
delete _delta3; |
|
806 |
} |
|
807 |
} |
|
808 |
|
|
809 |
void matchedToEven(Node node, int tree) { |
|
810 |
_tree_set->insert(node, tree); |
|
811 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
812 |
_delta1->push(node, (*_node_potential)[node]); |
|
813 |
|
|
814 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
815 |
_delta2->erase(node); |
|
816 |
} |
|
817 |
|
|
818 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
819 |
Node v = _graph.source(a); |
|
820 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
821 |
dualScale * _weight[a]; |
|
822 |
if (node == v) { |
|
823 |
if (_allow_loops && _graph.direction(a)) { |
|
824 |
_delta3->push(a, rw / 2); |
|
825 |
} |
|
826 |
} else if ((*_status)[v] == EVEN) { |
|
827 |
_delta3->push(a, rw / 2); |
|
828 |
} else if ((*_status)[v] == MATCHED) { |
|
829 |
if (_delta2->state(v) != _delta2->IN_HEAP) { |
|
830 |
_pred->set(v, a); |
|
831 |
_delta2->push(v, rw); |
|
832 |
} else if ((*_delta2)[v] > rw) { |
|
833 |
_pred->set(v, a); |
|
834 |
_delta2->decrease(v, rw); |
|
835 |
} |
|
836 |
} |
|
837 |
} |
|
838 |
} |
|
839 |
|
|
840 |
void matchedToOdd(Node node, int tree) { |
|
841 |
_tree_set->insert(node, tree); |
|
842 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
843 |
|
|
844 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
845 |
_delta2->erase(node); |
|
846 |
} |
|
847 |
} |
|
848 |
|
|
849 |
void evenToMatched(Node node, int tree) { |
|
850 |
_delta1->erase(node); |
|
851 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
852 |
Arc min = INVALID; |
|
853 |
Value minrw = std::numeric_limits<Value>::max(); |
|
854 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
855 |
Node v = _graph.source(a); |
|
856 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
857 |
dualScale * _weight[a]; |
|
858 |
|
|
859 |
if (node == v) { |
|
860 |
if (_allow_loops && _graph.direction(a)) { |
|
861 |
_delta3->erase(a); |
|
862 |
} |
|
863 |
} else if ((*_status)[v] == EVEN) { |
|
864 |
_delta3->erase(a); |
|
865 |
if (minrw > rw) { |
|
866 |
min = _graph.oppositeArc(a); |
|
867 |
minrw = rw; |
|
868 |
} |
|
869 |
} else if ((*_status)[v] == MATCHED) { |
|
870 |
if ((*_pred)[v] == a) { |
|
871 |
Arc mina = INVALID; |
|
872 |
Value minrwa = std::numeric_limits<Value>::max(); |
|
873 |
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) { |
|
874 |
Node va = _graph.target(aa); |
|
875 |
if ((*_status)[va] != EVEN || |
|
876 |
_tree_set->find(va) == tree) continue; |
|
877 |
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
|
878 |
dualScale * _weight[aa]; |
|
879 |
if (minrwa > rwa) { |
|
880 |
minrwa = rwa; |
|
881 |
mina = aa; |
|
882 |
} |
|
883 |
} |
|
884 |
if (mina != INVALID) { |
|
885 |
_pred->set(v, mina); |
|
886 |
_delta2->increase(v, minrwa); |
|
887 |
} else { |
|
888 |
_pred->set(v, INVALID); |
|
889 |
_delta2->erase(v); |
|
890 |
} |
|
891 |
} |
|
892 |
} |
|
893 |
} |
|
894 |
if (min != INVALID) { |
|
895 |
_pred->set(node, min); |
|
896 |
_delta2->push(node, minrw); |
|
897 |
} else { |
|
898 |
_pred->set(node, INVALID); |
|
899 |
} |
|
900 |
} |
|
901 |
|
|
902 |
void oddToMatched(Node node) { |
|
903 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
904 |
Arc min = INVALID; |
|
905 |
Value minrw = std::numeric_limits<Value>::max(); |
|
906 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
907 |
Node v = _graph.source(a); |
|
908 |
if ((*_status)[v] != EVEN) continue; |
|
909 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
910 |
dualScale * _weight[a]; |
|
911 |
|
|
912 |
if (minrw > rw) { |
|
913 |
min = _graph.oppositeArc(a); |
|
914 |
minrw = rw; |
|
915 |
} |
|
916 |
} |
|
917 |
if (min != INVALID) { |
|
918 |
_pred->set(node, min); |
|
919 |
_delta2->push(node, minrw); |
|
920 |
} else { |
|
921 |
_pred->set(node, INVALID); |
|
922 |
} |
|
923 |
} |
|
924 |
|
|
925 |
void alternatePath(Node even, int tree) { |
|
926 |
Node odd; |
|
927 |
|
|
928 |
_status->set(even, MATCHED); |
|
929 |
evenToMatched(even, tree); |
|
930 |
|
|
931 |
Arc prev = (*_matching)[even]; |
|
932 |
while (prev != INVALID) { |
|
933 |
odd = _graph.target(prev); |
|
934 |
even = _graph.target((*_pred)[odd]); |
|
935 |
_matching->set(odd, (*_pred)[odd]); |
|
936 |
_status->set(odd, MATCHED); |
|
937 |
oddToMatched(odd); |
|
938 |
|
|
939 |
prev = (*_matching)[even]; |
|
940 |
_status->set(even, MATCHED); |
|
941 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
|
942 |
evenToMatched(even, tree); |
|
943 |
} |
|
944 |
} |
|
945 |
|
|
946 |
void destroyTree(int tree) { |
|
947 |
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
|
948 |
if ((*_status)[n] == EVEN) { |
|
949 |
_status->set(n, MATCHED); |
|
950 |
evenToMatched(n, tree); |
|
951 |
} else if ((*_status)[n] == ODD) { |
|
952 |
_status->set(n, MATCHED); |
|
953 |
oddToMatched(n); |
|
954 |
} |
|
955 |
} |
|
956 |
_tree_set->eraseClass(tree); |
|
957 |
} |
|
958 |
|
|
959 |
|
|
960 |
void unmatchNode(const Node& node) { |
|
961 |
int tree = _tree_set->find(node); |
|
962 |
|
|
963 |
alternatePath(node, tree); |
|
964 |
destroyTree(tree); |
|
965 |
|
|
966 |
_matching->set(node, INVALID); |
|
967 |
} |
|
968 |
|
|
969 |
|
|
970 |
void augmentOnEdge(const Edge& edge) { |
|
971 |
Node left = _graph.u(edge); |
|
972 |
int left_tree = _tree_set->find(left); |
|
973 |
|
|
974 |
alternatePath(left, left_tree); |
|
975 |
destroyTree(left_tree); |
|
976 |
_matching->set(left, _graph.direct(edge, true)); |
|
977 |
|
|
978 |
Node right = _graph.v(edge); |
|
979 |
int right_tree = _tree_set->find(right); |
|
980 |
|
|
981 |
alternatePath(right, right_tree); |
|
982 |
destroyTree(right_tree); |
|
983 |
_matching->set(right, _graph.direct(edge, false)); |
|
984 |
} |
|
985 |
|
|
986 |
void augmentOnArc(const Arc& arc) { |
|
987 |
Node left = _graph.source(arc); |
|
988 |
_status->set(left, MATCHED); |
|
989 |
_matching->set(left, arc); |
|
990 |
_pred->set(left, arc); |
|
991 |
|
|
992 |
Node right = _graph.target(arc); |
|
993 |
int right_tree = _tree_set->find(right); |
|
994 |
|
|
995 |
alternatePath(right, right_tree); |
|
996 |
destroyTree(right_tree); |
|
997 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
998 |
} |
|
999 |
|
|
1000 |
void extendOnArc(const Arc& arc) { |
|
1001 |
Node base = _graph.target(arc); |
|
1002 |
int tree = _tree_set->find(base); |
|
1003 |
|
|
1004 |
Node odd = _graph.source(arc); |
|
1005 |
_tree_set->insert(odd, tree); |
|
1006 |
_status->set(odd, ODD); |
|
1007 |
matchedToOdd(odd, tree); |
|
1008 |
_pred->set(odd, arc); |
|
1009 |
|
|
1010 |
Node even = _graph.target((*_matching)[odd]); |
|
1011 |
_tree_set->insert(even, tree); |
|
1012 |
_status->set(even, EVEN); |
|
1013 |
matchedToEven(even, tree); |
|
1014 |
} |
|
1015 |
|
|
1016 |
void cycleOnEdge(const Edge& edge, int tree) { |
|
1017 |
Node nca = INVALID; |
|
1018 |
std::vector<Node> left_path, right_path; |
|
1019 |
|
|
1020 |
{ |
|
1021 |
std::set<Node> left_set, right_set; |
|
1022 |
Node left = _graph.u(edge); |
|
1023 |
left_path.push_back(left); |
|
1024 |
left_set.insert(left); |
|
1025 |
|
|
1026 |
Node right = _graph.v(edge); |
|
1027 |
right_path.push_back(right); |
|
1028 |
right_set.insert(right); |
|
1029 |
|
|
1030 |
while (true) { |
|
1031 |
|
|
1032 |
if (left_set.find(right) != left_set.end()) { |
|
1033 |
nca = right; |
|
1034 |
break; |
|
1035 |
} |
|
1036 |
|
|
1037 |
if ((*_matching)[left] == INVALID) break; |
|
1038 |
|
|
1039 |
left = _graph.target((*_matching)[left]); |
|
1040 |
left_path.push_back(left); |
|
1041 |
left = _graph.target((*_pred)[left]); |
|
1042 |
left_path.push_back(left); |
|
1043 |
|
|
1044 |
left_set.insert(left); |
|
1045 |
|
|
1046 |
if (right_set.find(left) != right_set.end()) { |
|
1047 |
nca = left; |
|
1048 |
break; |
|
1049 |
} |
|
1050 |
|
|
1051 |
if ((*_matching)[right] == INVALID) break; |
|
1052 |
|
|
1053 |
right = _graph.target((*_matching)[right]); |
|
1054 |
right_path.push_back(right); |
|
1055 |
right = _graph.target((*_pred)[right]); |
|
1056 |
right_path.push_back(right); |
|
1057 |
|
|
1058 |
right_set.insert(right); |
|
1059 |
|
|
1060 |
} |
|
1061 |
|
|
1062 |
if (nca == INVALID) { |
|
1063 |
if ((*_matching)[left] == INVALID) { |
|
1064 |
nca = right; |
|
1065 |
while (left_set.find(nca) == left_set.end()) { |
|
1066 |
nca = _graph.target((*_matching)[nca]); |
|
1067 |
right_path.push_back(nca); |
|
1068 |
nca = _graph.target((*_pred)[nca]); |
|
1069 |
right_path.push_back(nca); |
|
1070 |
} |
|
1071 |
} else { |
|
1072 |
nca = left; |
|
1073 |
while (right_set.find(nca) == right_set.end()) { |
|
1074 |
nca = _graph.target((*_matching)[nca]); |
|
1075 |
left_path.push_back(nca); |
|
1076 |
nca = _graph.target((*_pred)[nca]); |
|
1077 |
left_path.push_back(nca); |
|
1078 |
} |
|
1079 |
} |
|
1080 |
} |
|
1081 |
} |
|
1082 |
|
|
1083 |
alternatePath(nca, tree); |
|
1084 |
Arc prev; |
|
1085 |
|
|
1086 |
prev = _graph.direct(edge, true); |
|
1087 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
1088 |
_matching->set(left_path[i], prev); |
|
1089 |
_status->set(left_path[i], MATCHED); |
|
1090 |
evenToMatched(left_path[i], tree); |
|
1091 |
|
|
1092 |
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]); |
|
1093 |
_status->set(left_path[i + 1], MATCHED); |
|
1094 |
oddToMatched(left_path[i + 1]); |
|
1095 |
} |
|
1096 |
_matching->set(nca, prev); |
|
1097 |
|
|
1098 |
for (int i = 0; right_path[i] != nca; i += 2) { |
|
1099 |
_status->set(right_path[i], MATCHED); |
|
1100 |
evenToMatched(right_path[i], tree); |
|
1101 |
|
|
1102 |
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]); |
|
1103 |
_status->set(right_path[i + 1], MATCHED); |
|
1104 |
oddToMatched(right_path[i + 1]); |
|
1105 |
} |
|
1106 |
|
|
1107 |
destroyTree(tree); |
|
1108 |
} |
|
1109 |
|
|
1110 |
void extractCycle(const Arc &arc) { |
|
1111 |
Node left = _graph.source(arc); |
|
1112 |
Node odd = _graph.target((*_matching)[left]); |
|
1113 |
Arc prev; |
|
1114 |
while (odd != left) { |
|
1115 |
Node even = _graph.target((*_matching)[odd]); |
|
1116 |
prev = (*_matching)[odd]; |
|
1117 |
odd = _graph.target((*_matching)[even]); |
|
1118 |
_matching->set(even, _graph.oppositeArc(prev)); |
|
1119 |
} |
|
1120 |
_matching->set(left, arc); |
|
1121 |
|
|
1122 |
Node right = _graph.target(arc); |
|
1123 |
int right_tree = _tree_set->find(right); |
|
1124 |
alternatePath(right, right_tree); |
|
1125 |
destroyTree(right_tree); |
|
1126 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
1127 |
} |
|
1128 |
|
|
1129 |
public: |
|
1130 |
|
|
1131 |
/// \brief Constructor |
|
1132 |
/// |
|
1133 |
/// Constructor. |
|
1134 |
MaxWeightedFractionalMatching(const Graph& graph, const WeightMap& weight, |
|
1135 |
bool allow_loops = true) |
|
1136 |
: _graph(graph), _weight(weight), _matching(0), |
|
1137 |
_node_potential(0), _node_num(0), _allow_loops(allow_loops), |
|
1138 |
_status(0), _pred(0), |
|
1139 |
_tree_set_index(0), _tree_set(0), |
|
1140 |
|
|
1141 |
_delta1_index(0), _delta1(0), |
|
1142 |
_delta2_index(0), _delta2(0), |
|
1143 |
_delta3_index(0), _delta3(0), |
|
1144 |
|
|
1145 |
_delta_sum() {} |
|
1146 |
|
|
1147 |
~MaxWeightedFractionalMatching() { |
|
1148 |
destroyStructures(); |
|
1149 |
} |
|
1150 |
|
|
1151 |
/// \name Execution Control |
|
1152 |
/// The simplest way to execute the algorithm is to use the |
|
1153 |
/// \ref run() member function. |
|
1154 |
|
|
1155 |
///@{ |
|
1156 |
|
|
1157 |
/// \brief Initialize the algorithm |
|
1158 |
/// |
|
1159 |
/// This function initializes the algorithm. |
|
1160 |
void init() { |
|
1161 |
createStructures(); |
|
1162 |
|
|
1163 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1164 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1165 |
(*_delta2_index)[n] = _delta2->PRE_HEAP; |
|
1166 |
} |
|
1167 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1168 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1169 |
} |
|
1170 |
|
|
1171 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1172 |
Value max = 0; |
|
1173 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1174 |
if (_graph.target(e) == n && !_allow_loops) continue; |
|
1175 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
1176 |
max = (dualScale * _weight[e]) / 2; |
|
1177 |
} |
|
1178 |
} |
|
1179 |
_node_potential->set(n, max); |
|
1180 |
_delta1->push(n, max); |
|
1181 |
|
|
1182 |
_tree_set->insert(n); |
|
1183 |
|
|
1184 |
_matching->set(n, INVALID); |
|
1185 |
_status->set(n, EVEN); |
|
1186 |
} |
|
1187 |
|
|
1188 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1189 |
Node left = _graph.u(e); |
|
1190 |
Node right = _graph.v(e); |
|
1191 |
if (left == right && !_allow_loops) continue; |
|
1192 |
_delta3->push(e, ((*_node_potential)[left] + |
|
1193 |
(*_node_potential)[right] - |
|
1194 |
dualScale * _weight[e]) / 2); |
|
1195 |
} |
|
1196 |
} |
|
1197 |
|
|
1198 |
/// \brief Start the algorithm |
|
1199 |
/// |
|
1200 |
/// This function starts the algorithm. |
|
1201 |
/// |
|
1202 |
/// \pre \ref init() must be called before using this function. |
|
1203 |
void start() { |
|
1204 |
enum OpType { |
|
1205 |
D1, D2, D3 |
|
1206 |
}; |
|
1207 |
|
|
1208 |
int unmatched = _node_num; |
|
1209 |
while (unmatched > 0) { |
|
1210 |
Value d1 = !_delta1->empty() ? |
|
1211 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
|
1212 |
|
|
1213 |
Value d2 = !_delta2->empty() ? |
|
1214 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
1215 |
|
|
1216 |
Value d3 = !_delta3->empty() ? |
|
1217 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
1218 |
|
|
1219 |
_delta_sum = d3; OpType ot = D3; |
|
1220 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; } |
|
1221 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
|
1222 |
|
|
1223 |
switch (ot) { |
|
1224 |
case D1: |
|
1225 |
{ |
|
1226 |
Node n = _delta1->top(); |
|
1227 |
unmatchNode(n); |
|
1228 |
--unmatched; |
|
1229 |
} |
|
1230 |
break; |
|
1231 |
case D2: |
|
1232 |
{ |
|
1233 |
Node n = _delta2->top(); |
|
1234 |
Arc a = (*_pred)[n]; |
|
1235 |
if ((*_matching)[n] == INVALID) { |
|
1236 |
augmentOnArc(a); |
|
1237 |
--unmatched; |
|
1238 |
} else { |
|
1239 |
Node v = _graph.target((*_matching)[n]); |
|
1240 |
if ((*_matching)[n] != |
|
1241 |
_graph.oppositeArc((*_matching)[v])) { |
|
1242 |
extractCycle(a); |
|
1243 |
--unmatched; |
|
1244 |
} else { |
|
1245 |
extendOnArc(a); |
|
1246 |
} |
|
1247 |
} |
|
1248 |
} break; |
|
1249 |
case D3: |
|
1250 |
{ |
|
1251 |
Edge e = _delta3->top(); |
|
1252 |
|
|
1253 |
Node left = _graph.u(e); |
|
1254 |
Node right = _graph.v(e); |
|
1255 |
|
|
1256 |
int left_tree = _tree_set->find(left); |
|
1257 |
int right_tree = _tree_set->find(right); |
|
1258 |
|
|
1259 |
if (left_tree == right_tree) { |
|
1260 |
cycleOnEdge(e, left_tree); |
|
1261 |
--unmatched; |
|
1262 |
} else { |
|
1263 |
augmentOnEdge(e); |
|
1264 |
unmatched -= 2; |
|
1265 |
} |
|
1266 |
} break; |
|
1267 |
} |
|
1268 |
} |
|
1269 |
} |
|
1270 |
|
|
1271 |
/// \brief Run the algorithm. |
|
1272 |
/// |
|
1273 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
|
1274 |
/// |
|
1275 |
/// \note mwfm.run() is just a shortcut of the following code. |
|
1276 |
/// \code |
|
1277 |
/// mwfm.init(); |
|
1278 |
/// mwfm.start(); |
|
1279 |
/// \endcode |
|
1280 |
void run() { |
|
1281 |
init(); |
|
1282 |
start(); |
|
1283 |
} |
|
1284 |
|
|
1285 |
/// @} |
|
1286 |
|
|
1287 |
/// \name Primal Solution |
|
1288 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
1289 |
/// matching.\n |
|
1290 |
/// Either \ref run() or \ref start() function should be called before |
|
1291 |
/// using them. |
|
1292 |
|
|
1293 |
/// @{ |
|
1294 |
|
|
1295 |
/// \brief Return the weight of the matching. |
|
1296 |
/// |
|
1297 |
/// This function returns the weight of the found matching. This |
|
1298 |
/// value is scaled by \ref primalScale "primal scale". |
|
1299 |
/// |
|
1300 |
/// \pre Either run() or start() must be called before using this function. |
|
1301 |
Value matchingWeight() const { |
|
1302 |
Value sum = 0; |
|
1303 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1304 |
if ((*_matching)[n] != INVALID) { |
|
1305 |
sum += _weight[(*_matching)[n]]; |
|
1306 |
} |
|
1307 |
} |
|
1308 |
return sum * primalScale / 2; |
|
1309 |
} |
|
1310 |
|
|
1311 |
/// \brief Return the number of covered nodes in the matching. |
|
1312 |
/// |
|
1313 |
/// This function returns the number of covered nodes in the matching. |
|
1314 |
/// |
|
1315 |
/// \pre Either run() or start() must be called before using this function. |
|
1316 |
int matchingSize() const { |
|
1317 |
int num = 0; |
|
1318 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1319 |
if ((*_matching)[n] != INVALID) { |
|
1320 |
++num; |
|
1321 |
} |
|
1322 |
} |
|
1323 |
return num; |
|
1324 |
} |
|
1325 |
|
|
1326 |
/// \brief Return \c true if the given edge is in the matching. |
|
1327 |
/// |
|
1328 |
/// This function returns \c true if the given edge is in the |
|
1329 |
/// found matching. The result is scaled by \ref primalScale |
|
1330 |
/// "primal scale". |
|
1331 |
/// |
|
1332 |
/// \pre Either run() or start() must be called before using this function. |
|
1333 |
Value matching(const Edge& edge) const { |
|
1334 |
return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
1335 |
* primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0) |
|
1336 |
* primalScale / 2; |
|
1337 |
} |
|
1338 |
|
|
1339 |
/// \brief Return the fractional matching arc (or edge) incident |
|
1340 |
/// to the given node. |
|
1341 |
/// |
|
1342 |
/// This function returns one of the fractional matching arc (or |
|
1343 |
/// edge) incident to the given node in the found matching or \c |
|
1344 |
/// INVALID if the node is not covered by the matching or if the |
|
1345 |
/// node is on an odd length cycle then it is the successor edge |
|
1346 |
/// on the cycle. |
|
1347 |
/// |
|
1348 |
/// \pre Either run() or start() must be called before using this function. |
|
1349 |
Arc matching(const Node& node) const { |
|
1350 |
return (*_matching)[node]; |
|
1351 |
} |
|
1352 |
|
|
1353 |
/// \brief Return a const reference to the matching map. |
|
1354 |
/// |
|
1355 |
/// This function returns a const reference to a node map that stores |
|
1356 |
/// the matching arc (or edge) incident to each node. |
|
1357 |
const MatchingMap& matchingMap() const { |
|
1358 |
return *_matching; |
|
1359 |
} |
|
1360 |
|
|
1361 |
/// @} |
|
1362 |
|
|
1363 |
/// \name Dual Solution |
|
1364 |
/// Functions to get the dual solution.\n |
|
1365 |
/// Either \ref run() or \ref start() function should be called before |
|
1366 |
/// using them. |
|
1367 |
|
|
1368 |
/// @{ |
|
1369 |
|
|
1370 |
/// \brief Return the value of the dual solution. |
|
1371 |
/// |
|
1372 |
/// This function returns the value of the dual solution. |
|
1373 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
1374 |
/// "dual scale". |
|
1375 |
/// |
|
1376 |
/// \pre Either run() or start() must be called before using this function. |
|
1377 |
Value dualValue() const { |
|
1378 |
Value sum = 0; |
|
1379 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1380 |
sum += nodeValue(n); |
|
1381 |
} |
|
1382 |
return sum; |
|
1383 |
} |
|
1384 |
|
|
1385 |
/// \brief Return the dual value (potential) of the given node. |
|
1386 |
/// |
|
1387 |
/// This function returns the dual value (potential) of the given node. |
|
1388 |
/// |
|
1389 |
/// \pre Either run() or start() must be called before using this function. |
|
1390 |
Value nodeValue(const Node& n) const { |
|
1391 |
return (*_node_potential)[n]; |
|
1392 |
} |
|
1393 |
|
|
1394 |
/// @} |
|
1395 |
|
|
1396 |
}; |
|
1397 |
|
|
1398 |
/// \ingroup matching |
|
1399 |
/// |
|
1400 |
/// \brief Weighted fractional perfect matching in general graphs |
|
1401 |
/// |
|
1402 |
/// This class provides an efficient implementation of fractional |
|
1403 |
/// matching algorithm. The implementation is based on extensive use |
|
1404 |
/// of priority queues and provides \f$O(nm\log n)\f$ time |
|
1405 |
/// complexity. |
|
1406 |
/// |
|
1407 |
/// The maximum weighted fractional perfect matching is a relaxation |
|
1408 |
/// of the maximum weighted perfect matching problem where the odd |
|
1409 |
/// set constraints are omitted. |
|
1410 |
/// It can be formulated with the following linear program. |
|
1411 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
|
1412 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
1413 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
1414 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
1415 |
/// \f$X\f$. The result must be the union of a matching with one |
|
1416 |
/// value edges and a set of odd length cycles with half value edges. |
|
1417 |
/// |
|
1418 |
/// The algorithm calculates an optimal fractional matching and a |
|
1419 |
/// proof of the optimality. The solution of the dual problem can be |
|
1420 |
/// used to check the result of the algorithm. The dual linear |
|
1421 |
/// problem is the following. |
|
1422 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
|
1423 |
/// \f[\min \sum_{u \in V}y_u \f] /// |
|
1424 |
/// |
|
1425 |
/// The algorithm can be executed with the run() function. |
|
1426 |
/// After it the matching (the primal solution) and the dual solution |
|
1427 |
/// can be obtained using the query functions. |
|
1428 |
|
|
1429 |
/// If the value type is integer, then the primal and the dual |
|
1430 |
/// solutions are multiplied by |
|
1431 |
/// \ref MaxWeightedMatching::primalScale "2" and |
|
1432 |
/// \ref MaxWeightedMatching::dualScale "4" respectively. |
|
1433 |
/// |
|
1434 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
1435 |
/// \tparam WM The type edge weight map. The default type is |
|
1436 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
1437 |
#ifdef DOXYGEN |
|
1438 |
template <typename GR, typename WM> |
|
1439 |
#else |
|
1440 |
template <typename GR, |
|
1441 |
typename WM = typename GR::template EdgeMap<int> > |
|
1442 |
#endif |
|
1443 |
class MaxWeightedPerfectFractionalMatching { |
|
1444 |
public: |
|
1445 |
|
|
1446 |
/// The graph type of the algorithm |
|
1447 |
typedef GR Graph; |
|
1448 |
/// The type of the edge weight map |
|
1449 |
typedef WM WeightMap; |
|
1450 |
/// The value type of the edge weights |
|
1451 |
typedef typename WeightMap::Value Value; |
|
1452 |
|
|
1453 |
/// The type of the matching map |
|
1454 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
1455 |
MatchingMap; |
|
1456 |
|
|
1457 |
/// \brief Scaling factor for primal solution |
|
1458 |
/// |
|
1459 |
/// Scaling factor for primal solution. It is equal to 2 or 1 |
|
1460 |
/// according to the value type. |
|
1461 |
static const int primalScale = |
|
1462 |
std::numeric_limits<Value>::is_integer ? 2 : 1; |
|
1463 |
|
|
1464 |
/// \brief Scaling factor for dual solution |
|
1465 |
/// |
|
1466 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
|
1467 |
/// according to the value type. |
|
1468 |
static const int dualScale = |
|
1469 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
1470 |
|
|
1471 |
private: |
|
1472 |
|
|
1473 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
1474 |
|
|
1475 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
1476 |
|
|
1477 |
const Graph& _graph; |
|
1478 |
const WeightMap& _weight; |
|
1479 |
|
|
1480 |
MatchingMap* _matching; |
|
1481 |
NodePotential* _node_potential; |
|
1482 |
|
|
1483 |
int _node_num; |
|
1484 |
bool _allow_loops; |
|
1485 |
|
|
1486 |
enum Status { |
|
1487 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
1488 |
}; |
|
1489 |
|
|
1490 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
1491 |
StatusMap* _status; |
|
1492 |
|
|
1493 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
1494 |
PredMap* _pred; |
|
1495 |
|
|
1496 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
1497 |
|
|
1498 |
IntNodeMap *_tree_set_index; |
|
1499 |
TreeSet *_tree_set; |
|
1500 |
|
|
1501 |
IntNodeMap *_delta2_index; |
|
1502 |
BinHeap<Value, IntNodeMap> *_delta2; |
|
1503 |
|
|
1504 |
IntEdgeMap *_delta3_index; |
|
1505 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
1506 |
|
|
1507 |
Value _delta_sum; |
|
1508 |
|
|
1509 |
void createStructures() { |
|
1510 |
_node_num = countNodes(_graph); |
|
1511 |
|
|
1512 |
if (!_matching) { |
|
1513 |
_matching = new MatchingMap(_graph); |
|
1514 |
} |
|
1515 |
if (!_node_potential) { |
|
1516 |
_node_potential = new NodePotential(_graph); |
|
1517 |
} |
|
1518 |
if (!_status) { |
|
1519 |
_status = new StatusMap(_graph); |
|
1520 |
} |
|
1521 |
if (!_pred) { |
|
1522 |
_pred = new PredMap(_graph); |
|
1523 |
} |
|
1524 |
if (!_tree_set) { |
|
1525 |
_tree_set_index = new IntNodeMap(_graph); |
|
1526 |
_tree_set = new TreeSet(*_tree_set_index); |
|
1527 |
} |
|
1528 |
if (!_delta2) { |
|
1529 |
_delta2_index = new IntNodeMap(_graph); |
|
1530 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
|
1531 |
} |
|
1532 |
if (!_delta3) { |
|
1533 |
_delta3_index = new IntEdgeMap(_graph); |
|
1534 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
1535 |
} |
|
1536 |
} |
|
1537 |
|
|
1538 |
void destroyStructures() { |
|
1539 |
if (_matching) { |
|
1540 |
delete _matching; |
|
1541 |
} |
|
1542 |
if (_node_potential) { |
|
1543 |
delete _node_potential; |
|
1544 |
} |
|
1545 |
if (_status) { |
|
1546 |
delete _status; |
|
1547 |
} |
|
1548 |
if (_pred) { |
|
1549 |
delete _pred; |
|
1550 |
} |
|
1551 |
if (_tree_set) { |
|
1552 |
delete _tree_set_index; |
|
1553 |
delete _tree_set; |
|
1554 |
} |
|
1555 |
if (_delta2) { |
|
1556 |
delete _delta2_index; |
|
1557 |
delete _delta2; |
|
1558 |
} |
|
1559 |
if (_delta3) { |
|
1560 |
delete _delta3_index; |
|
1561 |
delete _delta3; |
|
1562 |
} |
|
1563 |
} |
|
1564 |
|
|
1565 |
void matchedToEven(Node node, int tree) { |
|
1566 |
_tree_set->insert(node, tree); |
|
1567 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
1568 |
|
|
1569 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
1570 |
_delta2->erase(node); |
|
1571 |
} |
|
1572 |
|
|
1573 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
1574 |
Node v = _graph.source(a); |
|
1575 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
1576 |
dualScale * _weight[a]; |
|
1577 |
if (node == v) { |
|
1578 |
if (_allow_loops && _graph.direction(a)) { |
|
1579 |
_delta3->push(a, rw / 2); |
|
1580 |
} |
|
1581 |
} else if ((*_status)[v] == EVEN) { |
|
1582 |
_delta3->push(a, rw / 2); |
|
1583 |
} else if ((*_status)[v] == MATCHED) { |
|
1584 |
if (_delta2->state(v) != _delta2->IN_HEAP) { |
|
1585 |
_pred->set(v, a); |
|
1586 |
_delta2->push(v, rw); |
|
1587 |
} else if ((*_delta2)[v] > rw) { |
|
1588 |
_pred->set(v, a); |
|
1589 |
_delta2->decrease(v, rw); |
|
1590 |
} |
|
1591 |
} |
|
1592 |
} |
|
1593 |
} |
|
1594 |
|
|
1595 |
void matchedToOdd(Node node, int tree) { |
|
1596 |
_tree_set->insert(node, tree); |
|
1597 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
1598 |
|
|
1599 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
1600 |
_delta2->erase(node); |
|
1601 |
} |
|
1602 |
} |
|
1603 |
|
|
1604 |
void evenToMatched(Node node, int tree) { |
|
1605 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
1606 |
Arc min = INVALID; |
|
1607 |
Value minrw = std::numeric_limits<Value>::max(); |
|
1608 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
1609 |
Node v = _graph.source(a); |
|
1610 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
1611 |
dualScale * _weight[a]; |
|
1612 |
|
|
1613 |
if (node == v) { |
|
1614 |
if (_allow_loops && _graph.direction(a)) { |
|
1615 |
_delta3->erase(a); |
|
1616 |
} |
|
1617 |
} else if ((*_status)[v] == EVEN) { |
|
1618 |
_delta3->erase(a); |
|
1619 |
if (minrw > rw) { |
|
1620 |
min = _graph.oppositeArc(a); |
|
1621 |
minrw = rw; |
|
1622 |
} |
|
1623 |
} else if ((*_status)[v] == MATCHED) { |
|
1624 |
if ((*_pred)[v] == a) { |
|
1625 |
Arc mina = INVALID; |
|
1626 |
Value minrwa = std::numeric_limits<Value>::max(); |
|
1627 |
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) { |
|
1628 |
Node va = _graph.target(aa); |
|
1629 |
if ((*_status)[va] != EVEN || |
|
1630 |
_tree_set->find(va) == tree) continue; |
|
1631 |
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
|
1632 |
dualScale * _weight[aa]; |
|
1633 |
if (minrwa > rwa) { |
|
1634 |
minrwa = rwa; |
|
1635 |
mina = aa; |
|
1636 |
} |
|
1637 |
} |
|
1638 |
if (mina != INVALID) { |
|
1639 |
_pred->set(v, mina); |
|
1640 |
_delta2->increase(v, minrwa); |
|
1641 |
} else { |
|
1642 |
_pred->set(v, INVALID); |
|
1643 |
_delta2->erase(v); |
|
1644 |
} |
|
1645 |
} |
|
1646 |
} |
|
1647 |
} |
|
1648 |
if (min != INVALID) { |
|
1649 |
_pred->set(node, min); |
|
1650 |
_delta2->push(node, minrw); |
|
1651 |
} else { |
|
1652 |
_pred->set(node, INVALID); |
|
1653 |
} |
|
1654 |
} |
|
1655 |
|
|
1656 |
void oddToMatched(Node node) { |
|
1657 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
1658 |
Arc min = INVALID; |
|
1659 |
Value minrw = std::numeric_limits<Value>::max(); |
|
1660 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
1661 |
Node v = _graph.source(a); |
|
1662 |
if ((*_status)[v] != EVEN) continue; |
|
1663 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
1664 |
dualScale * _weight[a]; |
|
1665 |
|
|
1666 |
if (minrw > rw) { |
|
1667 |
min = _graph.oppositeArc(a); |
|
1668 |
minrw = rw; |
|
1669 |
} |
|
1670 |
} |
|
1671 |
if (min != INVALID) { |
|
1672 |
_pred->set(node, min); |
|
1673 |
_delta2->push(node, minrw); |
|
1674 |
} else { |
|
1675 |
_pred->set(node, INVALID); |
|
1676 |
} |
|
1677 |
} |
|
1678 |
|
|
1679 |
void alternatePath(Node even, int tree) { |
|
1680 |
Node odd; |
|
1681 |
|
|
1682 |
_status->set(even, MATCHED); |
|
1683 |
evenToMatched(even, tree); |
|
1684 |
|
|
1685 |
Arc prev = (*_matching)[even]; |
|
1686 |
while (prev != INVALID) { |
|
1687 |
odd = _graph.target(prev); |
|
1688 |
even = _graph.target((*_pred)[odd]); |
|
1689 |
_matching->set(odd, (*_pred)[odd]); |
|
1690 |
_status->set(odd, MATCHED); |
|
1691 |
oddToMatched(odd); |
|
1692 |
|
|
1693 |
prev = (*_matching)[even]; |
|
1694 |
_status->set(even, MATCHED); |
|
1695 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
|
1696 |
evenToMatched(even, tree); |
|
1697 |
} |
|
1698 |
} |
|
1699 |
|
|
1700 |
void destroyTree(int tree) { |
|
1701 |
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
|
1702 |
if ((*_status)[n] == EVEN) { |
|
1703 |
_status->set(n, MATCHED); |
|
1704 |
evenToMatched(n, tree); |
|
1705 |
} else if ((*_status)[n] == ODD) { |
|
1706 |
_status->set(n, MATCHED); |
|
1707 |
oddToMatched(n); |
|
1708 |
} |
|
1709 |
} |
|
1710 |
_tree_set->eraseClass(tree); |
|
1711 |
} |
|
1712 |
|
|
1713 |
void augmentOnEdge(const Edge& edge) { |
|
1714 |
Node left = _graph.u(edge); |
|
1715 |
int left_tree = _tree_set->find(left); |
|
1716 |
|
|
1717 |
alternatePath(left, left_tree); |
|
1718 |
destroyTree(left_tree); |
|
1719 |
_matching->set(left, _graph.direct(edge, true)); |
|
1720 |
|
|
1721 |
Node right = _graph.v(edge); |
|
1722 |
int right_tree = _tree_set->find(right); |
|
1723 |
|
|
1724 |
alternatePath(right, right_tree); |
|
1725 |
destroyTree(right_tree); |
|
1726 |
_matching->set(right, _graph.direct(edge, false)); |
|
1727 |
} |
|
1728 |
|
|
1729 |
void augmentOnArc(const Arc& arc) { |
|
1730 |
Node left = _graph.source(arc); |
|
1731 |
_status->set(left, MATCHED); |
|
1732 |
_matching->set(left, arc); |
|
1733 |
_pred->set(left, arc); |
|
1734 |
|
|
1735 |
Node right = _graph.target(arc); |
|
1736 |
int right_tree = _tree_set->find(right); |
|
1737 |
|
|
1738 |
alternatePath(right, right_tree); |
|
1739 |
destroyTree(right_tree); |
|
1740 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
1741 |
} |
|
1742 |
|
|
1743 |
void extendOnArc(const Arc& arc) { |
|
1744 |
Node base = _graph.target(arc); |
|
1745 |
int tree = _tree_set->find(base); |
|
1746 |
|
|
1747 |
Node odd = _graph.source(arc); |
|
1748 |
_tree_set->insert(odd, tree); |
|
1749 |
_status->set(odd, ODD); |
|
1750 |
matchedToOdd(odd, tree); |
|
1751 |
_pred->set(odd, arc); |
|
1752 |
|
|
1753 |
Node even = _graph.target((*_matching)[odd]); |
|
1754 |
_tree_set->insert(even, tree); |
|
1755 |
_status->set(even, EVEN); |
|
1756 |
matchedToEven(even, tree); |
|
1757 |
} |
|
1758 |
|
|
1759 |
void cycleOnEdge(const Edge& edge, int tree) { |
|
1760 |
Node nca = INVALID; |
|
1761 |
std::vector<Node> left_path, right_path; |
|
1762 |
|
|
1763 |
{ |
|
1764 |
std::set<Node> left_set, right_set; |
|
1765 |
Node left = _graph.u(edge); |
|
1766 |
left_path.push_back(left); |
|
1767 |
left_set.insert(left); |
|
1768 |
|
|
1769 |
Node right = _graph.v(edge); |
|
1770 |
right_path.push_back(right); |
|
1771 |
right_set.insert(right); |
|
1772 |
|
|
1773 |
while (true) { |
|
1774 |
|
|
1775 |
if (left_set.find(right) != left_set.end()) { |
|
1776 |
nca = right; |
|
1777 |
break; |
|
1778 |
} |
|
1779 |
|
|
1780 |
if ((*_matching)[left] == INVALID) break; |
|
1781 |
|
|
1782 |
left = _graph.target((*_matching)[left]); |
|
1783 |
left_path.push_back(left); |
|
1784 |
left = _graph.target((*_pred)[left]); |
|
1785 |
left_path.push_back(left); |
|
1786 |
|
|
1787 |
left_set.insert(left); |
|
1788 |
|
|
1789 |
if (right_set.find(left) != right_set.end()) { |
|
1790 |
nca = left; |
|
1791 |
break; |
|
1792 |
} |
|
1793 |
|
|
1794 |
if ((*_matching)[right] == INVALID) break; |
|
1795 |
|
|
1796 |
right = _graph.target((*_matching)[right]); |
|
1797 |
right_path.push_back(right); |
|
1798 |
right = _graph.target((*_pred)[right]); |
|
1799 |
right_path.push_back(right); |
|
1800 |
|
|
1801 |
right_set.insert(right); |
|
1802 |
|
|
1803 |
} |
|
1804 |
|
|
1805 |
if (nca == INVALID) { |
|
1806 |
if ((*_matching)[left] == INVALID) { |
|
1807 |
nca = right; |
|
1808 |
while (left_set.find(nca) == left_set.end()) { |
|
1809 |
nca = _graph.target((*_matching)[nca]); |
|
1810 |
right_path.push_back(nca); |
|
1811 |
nca = _graph.target((*_pred)[nca]); |
|
1812 |
right_path.push_back(nca); |
|
1813 |
} |
|
1814 |
} else { |
|
1815 |
nca = left; |
|
1816 |
while (right_set.find(nca) == right_set.end()) { |
|
1817 |
nca = _graph.target((*_matching)[nca]); |
|
1818 |
left_path.push_back(nca); |
|
1819 |
nca = _graph.target((*_pred)[nca]); |
|
1820 |
left_path.push_back(nca); |
|
1821 |
} |
|
1822 |
} |
|
1823 |
} |
|
1824 |
} |
|
1825 |
|
|
1826 |
alternatePath(nca, tree); |
|
1827 |
Arc prev; |
|
1828 |
|
|
1829 |
prev = _graph.direct(edge, true); |
|
1830 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
1831 |
_matching->set(left_path[i], prev); |
|
1832 |
_status->set(left_path[i], MATCHED); |
|
1833 |
evenToMatched(left_path[i], tree); |
|
1834 |
|
|
1835 |
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]); |
|
1836 |
_status->set(left_path[i + 1], MATCHED); |
|
1837 |
oddToMatched(left_path[i + 1]); |
|
1838 |
} |
|
1839 |
_matching->set(nca, prev); |
|
1840 |
|
|
1841 |
for (int i = 0; right_path[i] != nca; i += 2) { |
|
1842 |
_status->set(right_path[i], MATCHED); |
|
1843 |
evenToMatched(right_path[i], tree); |
|
1844 |
|
|
1845 |
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]); |
|
1846 |
_status->set(right_path[i + 1], MATCHED); |
|
1847 |
oddToMatched(right_path[i + 1]); |
|
1848 |
} |
|
1849 |
|
|
1850 |
destroyTree(tree); |
|
1851 |
} |
|
1852 |
|
|
1853 |
void extractCycle(const Arc &arc) { |
|
1854 |
Node left = _graph.source(arc); |
|
1855 |
Node odd = _graph.target((*_matching)[left]); |
|
1856 |
Arc prev; |
|
1857 |
while (odd != left) { |
|
1858 |
Node even = _graph.target((*_matching)[odd]); |
|
1859 |
prev = (*_matching)[odd]; |
|
1860 |
odd = _graph.target((*_matching)[even]); |
|
1861 |
_matching->set(even, _graph.oppositeArc(prev)); |
|
1862 |
} |
|
1863 |
_matching->set(left, arc); |
|
1864 |
|
|
1865 |
Node right = _graph.target(arc); |
|
1866 |
int right_tree = _tree_set->find(right); |
|
1867 |
alternatePath(right, right_tree); |
|
1868 |
destroyTree(right_tree); |
|
1869 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
1870 |
} |
|
1871 |
|
|
1872 |
public: |
|
1873 |
|
|
1874 |
/// \brief Constructor |
|
1875 |
/// |
|
1876 |
/// Constructor. |
|
1877 |
MaxWeightedPerfectFractionalMatching(const Graph& graph, |
|
1878 |
const WeightMap& weight, |
|
1879 |
bool allow_loops = true) |
|
1880 |
: _graph(graph), _weight(weight), _matching(0), |
|
1881 |
_node_potential(0), _node_num(0), _allow_loops(allow_loops), |
|
1882 |
_status(0), _pred(0), |
|
1883 |
_tree_set_index(0), _tree_set(0), |
|
1884 |
|
|
1885 |
_delta2_index(0), _delta2(0), |
|
1886 |
_delta3_index(0), _delta3(0), |
|
1887 |
|
|
1888 |
_delta_sum() {} |
|
1889 |
|
|
1890 |
~MaxWeightedPerfectFractionalMatching() { |
|
1891 |
destroyStructures(); |
|
1892 |
} |
|
1893 |
|
|
1894 |
/// \name Execution Control |
|
1895 |
/// The simplest way to execute the algorithm is to use the |
|
1896 |
/// \ref run() member function. |
|
1897 |
|
|
1898 |
///@{ |
|
1899 |
|
|
1900 |
/// \brief Initialize the algorithm |
|
1901 |
/// |
|
1902 |
/// This function initializes the algorithm. |
|
1903 |
void init() { |
|
1904 |
createStructures(); |
|
1905 |
|
|
1906 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1907 |
(*_delta2_index)[n] = _delta2->PRE_HEAP; |
|
1908 |
} |
|
1909 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1910 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1911 |
} |
|
1912 |
|
|
1913 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1914 |
Value max = - std::numeric_limits<Value>::max(); |
|
1915 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1916 |
if (_graph.target(e) == n && !_allow_loops) continue; |
|
1917 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
1918 |
max = (dualScale * _weight[e]) / 2; |
|
1919 |
} |
|
1920 |
} |
|
1921 |
_node_potential->set(n, max); |
|
1922 |
|
|
1923 |
_tree_set->insert(n); |
|
1924 |
|
|
1925 |
_matching->set(n, INVALID); |
|
1926 |
_status->set(n, EVEN); |
|
1927 |
} |
|
1928 |
|
|
1929 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1930 |
Node left = _graph.u(e); |
|
1931 |
Node right = _graph.v(e); |
|
1932 |
if (left == right && !_allow_loops) continue; |
|
1933 |
_delta3->push(e, ((*_node_potential)[left] + |
|
1934 |
(*_node_potential)[right] - |
|
1935 |
dualScale * _weight[e]) / 2); |
|
1936 |
} |
|
1937 |
} |
|
1938 |
|
|
1939 |
/// \brief Start the algorithm |
|
1940 |
/// |
|
1941 |
/// This function starts the algorithm. |
|
1942 |
/// |
|
1943 |
/// \pre \ref init() must be called before using this function. |
|
1944 |
bool start() { |
|
1945 |
enum OpType { |
|
1946 |
D2, D3 |
|
1947 |
}; |
|
1948 |
|
|
1949 |
int unmatched = _node_num; |
|
1950 |
while (unmatched > 0) { |
|
1951 |
Value d2 = !_delta2->empty() ? |
|
1952 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
1953 |
|
|
1954 |
Value d3 = !_delta3->empty() ? |
|
1955 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
1956 |
|
|
1957 |
_delta_sum = d3; OpType ot = D3; |
|
1958 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
|
1959 |
|
|
1960 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
|
1961 |
return false; |
|
1962 |
} |
|
1963 |
|
|
1964 |
switch (ot) { |
|
1965 |
case D2: |
|
1966 |
{ |
|
1967 |
Node n = _delta2->top(); |
|
1968 |
Arc a = (*_pred)[n]; |
|
1969 |
if ((*_matching)[n] == INVALID) { |
|
1970 |
augmentOnArc(a); |
|
1971 |
--unmatched; |
|
1972 |
} else { |
|
1973 |
Node v = _graph.target((*_matching)[n]); |
|
1974 |
if ((*_matching)[n] != |
|
1975 |
_graph.oppositeArc((*_matching)[v])) { |
|
1976 |
extractCycle(a); |
|
1977 |
--unmatched; |
|
1978 |
} else { |
|
1979 |
extendOnArc(a); |
|
1980 |
} |
|
1981 |
} |
|
1982 |
} break; |
|
1983 |
case D3: |
|
1984 |
{ |
|
1985 |
Edge e = _delta3->top(); |
|
1986 |
|
|
1987 |
Node left = _graph.u(e); |
|
1988 |
Node right = _graph.v(e); |
|
1989 |
|
|
1990 |
int left_tree = _tree_set->find(left); |
|
1991 |
int right_tree = _tree_set->find(right); |
|
1992 |
|
|
1993 |
if (left_tree == right_tree) { |
|
1994 |
cycleOnEdge(e, left_tree); |
|
1995 |
--unmatched; |
|
1996 |
} else { |
|
1997 |
augmentOnEdge(e); |
|
1998 |
unmatched -= 2; |
|
1999 |
} |
|
2000 |
} break; |
|
2001 |
} |
|
2002 |
} |
|
2003 |
return true; |
|
2004 |
} |
|
2005 |
|
|
2006 |
/// \brief Run the algorithm. |
|
2007 |
/// |
|
2008 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
|
2009 |
/// |
|
2010 |
/// \note mwfm.run() is just a shortcut of the following code. |
|
2011 |
/// \code |
|
2012 |
/// mwpfm.init(); |
|
2013 |
/// mwpfm.start(); |
|
2014 |
/// \endcode |
|
2015 |
bool run() { |
|
2016 |
init(); |
|
2017 |
return start(); |
|
2018 |
} |
|
2019 |
|
|
2020 |
/// @} |
|
2021 |
|
|
2022 |
/// \name Primal Solution |
|
2023 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
2024 |
/// matching.\n |
|
2025 |
/// Either \ref run() or \ref start() function should be called before |
|
2026 |
/// using them. |
|
2027 |
|
|
2028 |
/// @{ |
|
2029 |
|
|
2030 |
/// \brief Return the weight of the matching. |
|
2031 |
/// |
|
2032 |
/// This function returns the weight of the found matching. This |
|
2033 |
/// value is scaled by \ref primalScale "primal scale". |
|
2034 |
/// |
|
2035 |
/// \pre Either run() or start() must be called before using this function. |
|
2036 |
Value matchingWeight() const { |
|
2037 |
Value sum = 0; |
|
2038 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2039 |
if ((*_matching)[n] != INVALID) { |
|
2040 |
sum += _weight[(*_matching)[n]]; |
|
2041 |
} |
|
2042 |
} |
|
2043 |
return sum * primalScale / 2; |
|
2044 |
} |
|
2045 |
|
|
2046 |
/// \brief Return the number of covered nodes in the matching. |
|
2047 |
/// |
|
2048 |
/// This function returns the number of covered nodes in the matching. |
|
2049 |
/// |
|
2050 |
/// \pre Either run() or start() must be called before using this function. |
|
2051 |
int matchingSize() const { |
|
2052 |
int num = 0; |
|
2053 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2054 |
if ((*_matching)[n] != INVALID) { |
|
2055 |
++num; |
|
2056 |
} |
|
2057 |
} |
|
2058 |
return num; |
|
2059 |
} |
|
2060 |
|
|
2061 |
/// \brief Return \c true if the given edge is in the matching. |
|
2062 |
/// |
|
2063 |
/// This function returns \c true if the given edge is in the |
|
2064 |
/// found matching. The result is scaled by \ref primalScale |
|
2065 |
/// "primal scale". |
|
2066 |
/// |
|
2067 |
/// \pre Either run() or start() must be called before using this function. |
|
2068 |
Value matching(const Edge& edge) const { |
|
2069 |
return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
2070 |
* primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0) |
|
2071 |
* primalScale / 2; |
|
2072 |
} |
|
2073 |
|
|
2074 |
/// \brief Return the fractional matching arc (or edge) incident |
|
2075 |
/// to the given node. |
|
2076 |
/// |
|
2077 |
/// This function returns one of the fractional matching arc (or |
|
2078 |
/// edge) incident to the given node in the found matching or \c |
|
2079 |
/// INVALID if the node is not covered by the matching or if the |
|
2080 |
/// node is on an odd length cycle then it is the successor edge |
|
2081 |
/// on the cycle. |
|
2082 |
/// |
|
2083 |
/// \pre Either run() or start() must be called before using this function. |
|
2084 |
Arc matching(const Node& node) const { |
|
2085 |
return (*_matching)[node]; |
|
2086 |
} |
|
2087 |
|
|
2088 |
/// \brief Return a const reference to the matching map. |
|
2089 |
/// |
|
2090 |
/// This function returns a const reference to a node map that stores |
|
2091 |
/// the matching arc (or edge) incident to each node. |
|
2092 |
const MatchingMap& matchingMap() const { |
|
2093 |
return *_matching; |
|
2094 |
} |
|
2095 |
|
|
2096 |
/// @} |
|
2097 |
|
|
2098 |
/// \name Dual Solution |
|
2099 |
/// Functions to get the dual solution.\n |
|
2100 |
/// Either \ref run() or \ref start() function should be called before |
|
2101 |
/// using them. |
|
2102 |
|
|
2103 |
/// @{ |
|
2104 |
|
|
2105 |
/// \brief Return the value of the dual solution. |
|
2106 |
/// |
|
2107 |
/// This function returns the value of the dual solution. |
|
2108 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
2109 |
/// "dual scale". |
|
2110 |
/// |
|
2111 |
/// \pre Either run() or start() must be called before using this function. |
|
2112 |
Value dualValue() const { |
|
2113 |
Value sum = 0; |
|
2114 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2115 |
sum += nodeValue(n); |
|
2116 |
} |
|
2117 |
return sum; |
|
2118 |
} |
|
2119 |
|
|
2120 |
/// \brief Return the dual value (potential) of the given node. |
|
2121 |
/// |
|
2122 |
/// This function returns the dual value (potential) of the given node. |
|
2123 |
/// |
|
2124 |
/// \pre Either run() or start() must be called before using this function. |
|
2125 |
Value nodeValue(const Node& n) const { |
|
2126 |
return (*_node_potential)[n]; |
|
2127 |
} |
|
2128 |
|
|
2129 |
/// @} |
|
2130 |
|
|
2131 |
}; |
|
2132 |
|
|
2133 |
} //END OF NAMESPACE LEMON |
|
2134 |
|
|
2135 |
#endif //LEMON_FRACTIONAL_MATCHING_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <iostream> |
|
20 |
#include <sstream> |
|
21 |
#include <vector> |
|
22 |
#include <queue> |
|
23 |
#include <cstdlib> |
|
24 |
|
|
25 |
#include <lemon/fractional_matching.h> |
|
26 |
#include <lemon/smart_graph.h> |
|
27 |
#include <lemon/concepts/graph.h> |
|
28 |
#include <lemon/concepts/maps.h> |
|
29 |
#include <lemon/lgf_reader.h> |
|
30 |
#include <lemon/math.h> |
|
31 |
|
|
32 |
#include "test_tools.h" |
|
33 |
|
|
34 |
using namespace std; |
|
35 |
using namespace lemon; |
|
36 |
|
|
37 |
GRAPH_TYPEDEFS(SmartGraph); |
|
38 |
|
|
39 |
|
|
40 |
const int lgfn = 4; |
|
41 |
const std::string lgf[lgfn] = { |
|
42 |
"@nodes\n" |
|
43 |
"label\n" |
|
44 |
"0\n" |
|
45 |
"1\n" |
|
46 |
"2\n" |
|
47 |
"3\n" |
|
48 |
"4\n" |
|
49 |
"5\n" |
|
50 |
"6\n" |
|
51 |
"7\n" |
|
52 |
"@edges\n" |
|
53 |
" label weight\n" |
|
54 |
"7 4 0 984\n" |
|
55 |
"0 7 1 73\n" |
|
56 |
"7 1 2 204\n" |
|
57 |
"2 3 3 583\n" |
|
58 |
"2 7 4 565\n" |
|
59 |
"2 1 5 582\n" |
|
60 |
"0 4 6 551\n" |
|
61 |
"2 5 7 385\n" |
|
62 |
"1 5 8 561\n" |
|
63 |
"5 3 9 484\n" |
|
64 |
"7 5 10 904\n" |
|
65 |
"3 6 11 47\n" |
|
66 |
"7 6 12 888\n" |
|
67 |
"3 0 13 747\n" |
|
68 |
"6 1 14 310\n", |
|
69 |
|
|
70 |
"@nodes\n" |
|
71 |
"label\n" |
|
72 |
"0\n" |
|
73 |
"1\n" |
|
74 |
"2\n" |
|
75 |
"3\n" |
|
76 |
"4\n" |
|
77 |
"5\n" |
|
78 |
"6\n" |
|
79 |
"7\n" |
|
80 |
"@edges\n" |
|
81 |
" label weight\n" |
|
82 |
"2 5 0 710\n" |
|
83 |
"0 5 1 241\n" |
|
84 |
"2 4 2 856\n" |
|
85 |
"2 6 3 762\n" |
|
86 |
"4 1 4 747\n" |
|
87 |
"6 1 5 962\n" |
|
88 |
"4 7 6 723\n" |
|
89 |
"1 7 7 661\n" |
|
90 |
"2 3 8 376\n" |
|
91 |
"1 0 9 416\n" |
|
92 |
"6 7 10 391\n", |
|
93 |
|
|
94 |
"@nodes\n" |
|
95 |
"label\n" |
|
96 |
"0\n" |
|
97 |
"1\n" |
|
98 |
"2\n" |
|
99 |
"3\n" |
|
100 |
"4\n" |
|
101 |
"5\n" |
|
102 |
"6\n" |
|
103 |
"7\n" |
|
104 |
"@edges\n" |
|
105 |
" label weight\n" |
|
106 |
"6 2 0 553\n" |
|
107 |
"0 7 1 653\n" |
|
108 |
"6 3 2 22\n" |
|
109 |
"4 7 3 846\n" |
|
110 |
"7 2 4 981\n" |
|
111 |
"7 6 5 250\n" |
|
112 |
"5 2 6 539\n", |
|
113 |
|
|
114 |
"@nodes\n" |
|
115 |
"label\n" |
|
116 |
"0\n" |
|
117 |
"@edges\n" |
|
118 |
" label weight\n" |
|
119 |
"0 0 0 100\n" |
|
120 |
}; |
|
121 |
|
|
122 |
void checkMaxFractionalMatchingCompile() |
|
123 |
{ |
|
124 |
typedef concepts::Graph Graph; |
|
125 |
typedef Graph::Node Node; |
|
126 |
typedef Graph::Edge Edge; |
|
127 |
|
|
128 |
Graph g; |
|
129 |
Node n; |
|
130 |
Edge e; |
|
131 |
|
|
132 |
MaxFractionalMatching<Graph> mat_test(g); |
|
133 |
const MaxFractionalMatching<Graph>& |
|
134 |
const_mat_test = mat_test; |
|
135 |
|
|
136 |
mat_test.init(); |
|
137 |
mat_test.start(); |
|
138 |
mat_test.start(true); |
|
139 |
mat_test.startPerfect(); |
|
140 |
mat_test.startPerfect(true); |
|
141 |
mat_test.run(); |
|
142 |
mat_test.run(true); |
|
143 |
mat_test.runPerfect(); |
|
144 |
mat_test.runPerfect(true); |
|
145 |
|
|
146 |
const_mat_test.matchingSize(); |
|
147 |
const_mat_test.matching(e); |
|
148 |
const_mat_test.matching(n); |
|
149 |
const MaxFractionalMatching<Graph>::MatchingMap& mmap = |
|
150 |
const_mat_test.matchingMap(); |
|
151 |
e = mmap[n]; |
|
152 |
|
|
153 |
const_mat_test.barrier(n); |
|
154 |
} |
|
155 |
|
|
156 |
void checkMaxWeightedFractionalMatchingCompile() |
|
157 |
{ |
|
158 |
typedef concepts::Graph Graph; |
|
159 |
typedef Graph::Node Node; |
|
160 |
typedef Graph::Edge Edge; |
|
161 |
typedef Graph::EdgeMap<int> WeightMap; |
|
162 |
|
|
163 |
Graph g; |
|
164 |
Node n; |
|
165 |
Edge e; |
|
166 |
WeightMap w(g); |
|
167 |
|
|
168 |
MaxWeightedFractionalMatching<Graph> mat_test(g, w); |
|
169 |
const MaxWeightedFractionalMatching<Graph>& |
|
170 |
const_mat_test = mat_test; |
|
171 |
|
|
172 |
mat_test.init(); |
|
173 |
mat_test.start(); |
|
174 |
mat_test.run(); |
|
175 |
|
|
176 |
const_mat_test.matchingWeight(); |
|
177 |
const_mat_test.matchingSize(); |
|
178 |
const_mat_test.matching(e); |
|
179 |
const_mat_test.matching(n); |
|
180 |
const MaxWeightedFractionalMatching<Graph>::MatchingMap& mmap = |
|
181 |
const_mat_test.matchingMap(); |
|
182 |
e = mmap[n]; |
|
183 |
|
|
184 |
const_mat_test.dualValue(); |
|
185 |
const_mat_test.nodeValue(n); |
|
186 |
} |
|
187 |
|
|
188 |
void checkMaxWeightedPerfectFractionalMatchingCompile() |
|
189 |
{ |
|
190 |
typedef concepts::Graph Graph; |
|
191 |
typedef Graph::Node Node; |
|
192 |
typedef Graph::Edge Edge; |
|
193 |
typedef Graph::EdgeMap<int> WeightMap; |
|
194 |
|
|
195 |
Graph g; |
|
196 |
Node n; |
|
197 |
Edge e; |
|
198 |
WeightMap w(g); |
|
199 |
|
|
200 |
MaxWeightedPerfectFractionalMatching<Graph> mat_test(g, w); |
|
201 |
const MaxWeightedPerfectFractionalMatching<Graph>& |
|
202 |
const_mat_test = mat_test; |
|
203 |
|
|
204 |
mat_test.init(); |
|
205 |
mat_test.start(); |
|
206 |
mat_test.run(); |
|
207 |
|
|
208 |
const_mat_test.matchingWeight(); |
|
209 |
const_mat_test.matching(e); |
|
210 |
const_mat_test.matching(n); |
|
211 |
const MaxWeightedPerfectFractionalMatching<Graph>::MatchingMap& mmap = |
|
212 |
const_mat_test.matchingMap(); |
|
213 |
e = mmap[n]; |
|
214 |
|
|
215 |
const_mat_test.dualValue(); |
|
216 |
const_mat_test.nodeValue(n); |
|
217 |
} |
|
218 |
|
|
219 |
void checkFractionalMatching(const SmartGraph& graph, |
|
220 |
const MaxFractionalMatching<SmartGraph>& mfm, |
|
221 |
bool allow_loops = true) { |
|
222 |
int pv = 0; |
|
223 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
224 |
int indeg = 0; |
|
225 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
226 |
if (mfm.matching(graph.source(a)) == a) { |
|
227 |
++indeg; |
|
228 |
} |
|
229 |
} |
|
230 |
if (mfm.matching(n) != INVALID) { |
|
231 |
check(indeg == 1, "Invalid matching"); |
|
232 |
++pv; |
|
233 |
} else { |
|
234 |
check(indeg == 0, "Invalid matching"); |
|
235 |
} |
|
236 |
} |
|
237 |
check(pv == mfm.matchingSize(), "Wrong matching size"); |
|
238 |
|
|
239 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
240 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
241 |
if (processed[n]) continue; |
|
242 |
processed[n] = true; |
|
243 |
if (mfm.matching(n) == INVALID) continue; |
|
244 |
int num = 1; |
|
245 |
Node v = graph.target(mfm.matching(n)); |
|
246 |
while (v != n) { |
|
247 |
processed[v] = true; |
|
248 |
++num; |
|
249 |
v = graph.target(mfm.matching(v)); |
|
250 |
} |
|
251 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
252 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
253 |
} |
|
254 |
|
|
255 |
int anum = 0, bnum = 0; |
|
256 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
|
257 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
258 |
if (!mfm.barrier(n)) continue; |
|
259 |
++anum; |
|
260 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) { |
|
261 |
Node u = graph.source(a); |
|
262 |
if (!allow_loops && u == n) continue; |
|
263 |
if (!neighbours[u]) { |
|
264 |
neighbours[u] = true; |
|
265 |
++bnum; |
|
266 |
} |
|
267 |
} |
|
268 |
} |
|
269 |
check(anum - bnum + mfm.matchingSize() == countNodes(graph), |
|
270 |
"Wrong barrier"); |
|
271 |
} |
|
272 |
|
|
273 |
void checkPerfectFractionalMatching(const SmartGraph& graph, |
|
274 |
const MaxFractionalMatching<SmartGraph>& mfm, |
|
275 |
bool perfect, bool allow_loops = true) { |
|
276 |
if (perfect) { |
|
277 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
278 |
int indeg = 0; |
|
279 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
280 |
if (mfm.matching(graph.source(a)) == a) { |
|
281 |
++indeg; |
|
282 |
} |
|
283 |
} |
|
284 |
check(mfm.matching(n) != INVALID, "Invalid matching"); |
|
285 |
check(indeg == 1, "Invalid matching"); |
|
286 |
} |
|
287 |
} else { |
|
288 |
int anum = 0, bnum = 0; |
|
289 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
|
290 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
291 |
if (!mfm.barrier(n)) continue; |
|
292 |
++anum; |
|
293 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) { |
|
294 |
Node u = graph.source(a); |
|
295 |
if (!allow_loops && u == n) continue; |
|
296 |
if (!neighbours[u]) { |
|
297 |
neighbours[u] = true; |
|
298 |
++bnum; |
|
299 |
} |
|
300 |
} |
|
301 |
} |
|
302 |
check(anum - bnum > 0, "Wrong barrier"); |
|
303 |
} |
|
304 |
} |
|
305 |
|
|
306 |
void checkWeightedFractionalMatching(const SmartGraph& graph, |
|
307 |
const SmartGraph::EdgeMap<int>& weight, |
|
308 |
const MaxWeightedFractionalMatching<SmartGraph>& mwfm, |
|
309 |
bool allow_loops = true) { |
|
310 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
311 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
|
312 |
int rw = mwfm.nodeValue(graph.u(e)) + mwfm.nodeValue(graph.v(e)) |
|
313 |
- weight[e] * mwfm.dualScale; |
|
314 |
|
|
315 |
check(rw >= 0, "Negative reduced weight"); |
|
316 |
check(rw == 0 || !mwfm.matching(e), |
|
317 |
"Non-zero reduced weight on matching edge"); |
|
318 |
} |
|
319 |
|
|
320 |
int pv = 0; |
|
321 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
322 |
int indeg = 0; |
|
323 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
324 |
if (mwfm.matching(graph.source(a)) == a) { |
|
325 |
++indeg; |
|
326 |
} |
|
327 |
} |
|
328 |
check(indeg <= 1, "Invalid matching"); |
|
329 |
if (mwfm.matching(n) != INVALID) { |
|
330 |
check(mwfm.nodeValue(n) >= 0, "Invalid node value"); |
|
331 |
check(indeg == 1, "Invalid matching"); |
|
332 |
pv += weight[mwfm.matching(n)]; |
|
333 |
SmartGraph::Node o = graph.target(mwfm.matching(n)); |
|
334 |
} else { |
|
335 |
check(mwfm.nodeValue(n) == 0, "Invalid matching"); |
|
336 |
check(indeg == 0, "Invalid matching"); |
|
337 |
} |
|
338 |
} |
|
339 |
|
|
340 |
int dv = 0; |
|
341 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
342 |
dv += mwfm.nodeValue(n); |
|
343 |
} |
|
344 |
|
|
345 |
check(pv * mwfm.dualScale == dv * 2, "Wrong duality"); |
|
346 |
|
|
347 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
348 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
349 |
if (processed[n]) continue; |
|
350 |
processed[n] = true; |
|
351 |
if (mwfm.matching(n) == INVALID) continue; |
|
352 |
int num = 1; |
|
353 |
Node v = graph.target(mwfm.matching(n)); |
|
354 |
while (v != n) { |
|
355 |
processed[v] = true; |
|
356 |
++num; |
|
357 |
v = graph.target(mwfm.matching(v)); |
|
358 |
} |
|
359 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
360 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
361 |
} |
|
362 |
|
|
363 |
return; |
|
364 |
} |
|
365 |
|
|
366 |
void checkWeightedPerfectFractionalMatching(const SmartGraph& graph, |
|
367 |
const SmartGraph::EdgeMap<int>& weight, |
|
368 |
const MaxWeightedPerfectFractionalMatching<SmartGraph>& mwpfm, |
|
369 |
bool allow_loops = true) { |
|
370 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
371 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
|
372 |
int rw = mwpfm.nodeValue(graph.u(e)) + mwpfm.nodeValue(graph.v(e)) |
|
373 |
- weight[e] * mwpfm.dualScale; |
|
374 |
|
|
375 |
check(rw >= 0, "Negative reduced weight"); |
|
376 |
check(rw == 0 || !mwpfm.matching(e), |
|
377 |
"Non-zero reduced weight on matching edge"); |
|
378 |
} |
|
379 |
|
|
380 |
int pv = 0; |
|
381 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
382 |
int indeg = 0; |
|
383 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
384 |
if (mwpfm.matching(graph.source(a)) == a) { |
|
385 |
++indeg; |
|
386 |
} |
|
387 |
} |
|
388 |
check(mwpfm.matching(n) != INVALID, "Invalid perfect matching"); |
|
389 |
check(indeg == 1, "Invalid perfect matching"); |
|
390 |
pv += weight[mwpfm.matching(n)]; |
|
391 |
SmartGraph::Node o = graph.target(mwpfm.matching(n)); |
|
392 |
} |
|
393 |
|
|
394 |
int dv = 0; |
|
395 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
396 |
dv += mwpfm.nodeValue(n); |
|
397 |
} |
|
398 |
|
|
399 |
check(pv * mwpfm.dualScale == dv * 2, "Wrong duality"); |
|
400 |
|
|
401 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
402 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
403 |
if (processed[n]) continue; |
|
404 |
processed[n] = true; |
|
405 |
if (mwpfm.matching(n) == INVALID) continue; |
|
406 |
int num = 1; |
|
407 |
Node v = graph.target(mwpfm.matching(n)); |
|
408 |
while (v != n) { |
|
409 |
processed[v] = true; |
|
410 |
++num; |
|
411 |
v = graph.target(mwpfm.matching(v)); |
|
412 |
} |
|
413 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
414 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
415 |
} |
|
416 |
|
|
417 |
return; |
|
418 |
} |
|
419 |
|
|
420 |
|
|
421 |
int main() { |
|
422 |
|
|
423 |
for (int i = 0; i < lgfn; ++i) { |
|
424 |
SmartGraph graph; |
|
425 |
SmartGraph::EdgeMap<int> weight(graph); |
|
426 |
|
|
427 |
istringstream lgfs(lgf[i]); |
|
428 |
graphReader(graph, lgfs). |
|
429 |
edgeMap("weight", weight).run(); |
|
430 |
|
|
431 |
bool perfect_with_loops; |
|
432 |
{ |
|
433 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
|
434 |
mfm.run(); |
|
435 |
checkFractionalMatching(graph, mfm, true); |
|
436 |
perfect_with_loops = mfm.matchingSize() == countNodes(graph); |
|
437 |
} |
|
438 |
|
|
439 |
bool perfect_without_loops; |
|
440 |
{ |
|
441 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
|
442 |
mfm.run(); |
|
443 |
checkFractionalMatching(graph, mfm, false); |
|
444 |
perfect_without_loops = mfm.matchingSize() == countNodes(graph); |
|
445 |
} |
|
446 |
|
|
447 |
{ |
|
448 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
|
449 |
bool result = mfm.runPerfect(); |
|
450 |
checkPerfectFractionalMatching(graph, mfm, result, true); |
|
451 |
check(result == perfect_with_loops, "Wrong perfect matching"); |
|
452 |
} |
|
453 |
|
|
454 |
{ |
|
455 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
|
456 |
bool result = mfm.runPerfect(); |
|
457 |
checkPerfectFractionalMatching(graph, mfm, result, false); |
|
458 |
check(result == perfect_without_loops, "Wrong perfect matching"); |
|
459 |
} |
|
460 |
|
|
461 |
{ |
|
462 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, true); |
|
463 |
mwfm.run(); |
|
464 |
checkWeightedFractionalMatching(graph, weight, mwfm, true); |
|
465 |
} |
|
466 |
|
|
467 |
{ |
|
468 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, false); |
|
469 |
mwfm.run(); |
|
470 |
checkWeightedFractionalMatching(graph, weight, mwfm, false); |
|
471 |
} |
|
472 |
|
|
473 |
{ |
|
474 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
|
475 |
true); |
|
476 |
bool perfect = mwpfm.run(); |
|
477 |
check(perfect == (mwpfm.matchingSize() == countNodes(graph)), |
|
478 |
"Perfect matching found"); |
|
479 |
check(perfect == perfect_with_loops, "Wrong perfect matching"); |
|
480 |
|
|
481 |
if (perfect) { |
|
482 |
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, true); |
|
483 |
} |
|
484 |
} |
|
485 |
|
|
486 |
{ |
|
487 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
|
488 |
false); |
|
489 |
bool perfect = mwpfm.run(); |
|
490 |
check(perfect == (mwpfm.matchingSize() == countNodes(graph)), |
|
491 |
"Perfect matching found"); |
|
492 |
check(perfect == perfect_without_loops, "Wrong perfect matching"); |
|
493 |
|
|
494 |
if (perfect) { |
|
495 |
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, false); |
|
496 |
} |
|
497 |
} |
|
498 |
|
|
499 |
} |
|
500 |
|
|
501 |
return 0; |
|
502 |
} |
... | ... |
@@ -89,605 +89,612 @@ |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup maps Maps |
142 | 142 |
@ingroup datas |
143 | 143 |
\brief Map structures implemented in LEMON. |
144 | 144 |
|
145 | 145 |
This group contains the map structures implemented in LEMON. |
146 | 146 |
|
147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
148 | 148 |
new maps from existing ones. |
149 | 149 |
|
150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
151 | 151 |
*/ |
152 | 152 |
|
153 | 153 |
/** |
154 | 154 |
@defgroup graph_maps Graph Maps |
155 | 155 |
@ingroup maps |
156 | 156 |
\brief Special graph-related maps. |
157 | 157 |
|
158 | 158 |
This group contains maps that are specifically designed to assign |
159 | 159 |
values to the nodes and arcs/edges of graphs. |
160 | 160 |
|
161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
163 | 163 |
*/ |
164 | 164 |
|
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 | 229 |
@defgroup paths Path Structures |
230 | 230 |
@ingroup datas |
231 | 231 |
\brief %Path structures implemented in LEMON. |
232 | 232 |
|
233 | 233 |
This group contains the path structures implemented in LEMON. |
234 | 234 |
|
235 | 235 |
LEMON provides flexible data structures to work with paths. |
236 | 236 |
All of them have similar interfaces and they can be copied easily with |
237 | 237 |
assignment operators and copy constructors. This makes it easy and |
238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
239 | 239 |
any kind of path structure. |
240 | 240 |
|
241 | 241 |
\sa \ref concepts::Path "Path concept" |
242 | 242 |
*/ |
243 | 243 |
|
244 | 244 |
/** |
245 | 245 |
@defgroup heaps Heap Structures |
246 | 246 |
@ingroup datas |
247 | 247 |
\brief %Heap structures implemented in LEMON. |
248 | 248 |
|
249 | 249 |
This group contains the heap structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
253 | 253 |
specified values called \e priorities in such a way that finding and |
254 | 254 |
removing the item with minimum priority are efficient. |
255 | 255 |
The basic operations are adding and erasing items, changing the priority |
256 | 256 |
of an item, etc. |
257 | 257 |
|
258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
259 | 259 |
The heap implementations have the same interface, thus any of them can be |
260 | 260 |
used easily in such algorithms. |
261 | 261 |
|
262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
263 | 263 |
*/ |
264 | 264 |
|
265 | 265 |
/** |
266 | 266 |
@defgroup matrices Matrices |
267 | 267 |
@ingroup datas |
268 | 268 |
\brief Two dimensional data storages implemented in LEMON. |
269 | 269 |
|
270 | 270 |
This group contains two dimensional data storages implemented in LEMON. |
271 | 271 |
*/ |
272 | 272 |
|
273 | 273 |
/** |
274 | 274 |
@defgroup auxdat Auxiliary Data Structures |
275 | 275 |
@ingroup datas |
276 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
277 | 277 |
|
278 | 278 |
This group contains some data structures implemented in LEMON in |
279 | 279 |
order to make it easier to implement combinatorial algorithms. |
280 | 280 |
*/ |
281 | 281 |
|
282 | 282 |
/** |
283 | 283 |
@defgroup algs Algorithms |
284 | 284 |
\brief This group contains the several algorithms |
285 | 285 |
implemented in LEMON. |
286 | 286 |
|
287 | 287 |
This group contains the several algorithms |
288 | 288 |
implemented in LEMON. |
289 | 289 |
*/ |
290 | 290 |
|
291 | 291 |
/** |
292 | 292 |
@defgroup search Graph Search |
293 | 293 |
@ingroup algs |
294 | 294 |
\brief Common graph search algorithms. |
295 | 295 |
|
296 | 296 |
This group contains the common graph search algorithms, namely |
297 | 297 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
298 | 298 |
*/ |
299 | 299 |
|
300 | 300 |
/** |
301 | 301 |
@defgroup shortest_path Shortest Path Algorithms |
302 | 302 |
@ingroup algs |
303 | 303 |
\brief Algorithms for finding shortest paths. |
304 | 304 |
|
305 | 305 |
This group contains the algorithms for finding shortest paths in digraphs. |
306 | 306 |
|
307 | 307 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
308 | 308 |
when all arc lengths are non-negative. |
309 | 309 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
310 | 310 |
from a source node when arc lenghts can be either positive or negative, |
311 | 311 |
but the digraph should not contain directed cycles with negative total |
312 | 312 |
length. |
313 | 313 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
314 | 314 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
315 | 315 |
lenghts can be either positive or negative, but the digraph should |
316 | 316 |
not contain directed cycles with negative total length. |
317 | 317 |
- \ref Suurballe A successive shortest path algorithm for finding |
318 | 318 |
arc-disjoint paths between two nodes having minimum total length. |
319 | 319 |
*/ |
320 | 320 |
|
321 | 321 |
/** |
322 | 322 |
@defgroup max_flow Maximum Flow Algorithms |
323 | 323 |
@ingroup algs |
324 | 324 |
\brief Algorithms for finding maximum flows. |
325 | 325 |
|
326 | 326 |
This group contains the algorithms for finding maximum flows and |
327 | 327 |
feasible circulations. |
328 | 328 |
|
329 | 329 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
330 | 330 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
331 | 331 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
332 | 332 |
\f$s, t \in V\f$ source and target nodes. |
333 | 333 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
334 | 334 |
following optimization problem. |
335 | 335 |
|
336 | 336 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
337 | 337 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
338 | 338 |
\quad \forall u\in V\setminus\{s,t\} \f] |
339 | 339 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
340 | 340 |
|
341 | 341 |
LEMON contains several algorithms for solving maximum flow problems: |
342 | 342 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
343 | 343 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
344 | 344 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
345 | 345 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
346 | 346 |
|
347 | 347 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
348 | 348 |
fastest method for computing a maximum flow. All implementations |
349 | 349 |
also provide functions to query the minimum cut, which is the dual |
350 | 350 |
problem of maximum flow. |
351 | 351 |
|
352 | 352 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
353 | 353 |
for finding feasible circulations, which is a somewhat different problem, |
354 | 354 |
but it is strongly related to maximum flow. |
355 | 355 |
For more information, see \ref Circulation. |
356 | 356 |
*/ |
357 | 357 |
|
358 | 358 |
/** |
359 | 359 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
360 | 360 |
@ingroup algs |
361 | 361 |
|
362 | 362 |
\brief Algorithms for finding minimum cost flows and circulations. |
363 | 363 |
|
364 | 364 |
This group contains the algorithms for finding minimum cost flows and |
365 | 365 |
circulations. For more information about this problem and its dual |
366 | 366 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
367 | 367 |
|
368 | 368 |
LEMON contains several algorithms for this problem. |
369 | 369 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
370 | 370 |
pivot strategies. |
371 | 371 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
372 | 372 |
cost scaling. |
373 | 373 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
374 | 374 |
capacity scaling. |
375 | 375 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
376 | 376 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
377 | 377 |
|
378 | 378 |
In general NetworkSimplex is the most efficient implementation, |
379 | 379 |
but in special cases other algorithms could be faster. |
380 | 380 |
For example, if the total supply and/or capacities are rather small, |
381 | 381 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
382 | 382 |
*/ |
383 | 383 |
|
384 | 384 |
/** |
385 | 385 |
@defgroup min_cut Minimum Cut Algorithms |
386 | 386 |
@ingroup algs |
387 | 387 |
|
388 | 388 |
\brief Algorithms for finding minimum cut in graphs. |
389 | 389 |
|
390 | 390 |
This group contains the algorithms for finding minimum cut in graphs. |
391 | 391 |
|
392 | 392 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
393 | 393 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
394 | 394 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
395 | 395 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
396 | 396 |
cut is the \f$X\f$ solution of the next optimization problem: |
397 | 397 |
|
398 | 398 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
399 | 399 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
400 | 400 |
|
401 | 401 |
LEMON contains several algorithms related to minimum cut problems: |
402 | 402 |
|
403 | 403 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
404 | 404 |
in directed graphs. |
405 | 405 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
406 | 406 |
calculating minimum cut in undirected graphs. |
407 | 407 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
408 | 408 |
all-pairs minimum cut in undirected graphs. |
409 | 409 |
|
410 | 410 |
If you want to find minimum cut just between two distinict nodes, |
411 | 411 |
see the \ref max_flow "maximum flow problem". |
412 | 412 |
*/ |
413 | 413 |
|
414 | 414 |
/** |
415 | 415 |
@defgroup graph_properties Connectivity and Other Graph Properties |
416 | 416 |
@ingroup algs |
417 | 417 |
\brief Algorithms for discovering the graph properties |
418 | 418 |
|
419 | 419 |
This group contains the algorithms for discovering the graph properties |
420 | 420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
421 | 421 |
|
422 | 422 |
\image html edge_biconnected_components.png |
423 | 423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
424 | 424 |
*/ |
425 | 425 |
|
426 | 426 |
/** |
427 | 427 |
@defgroup planar Planarity Embedding and Drawing |
428 | 428 |
@ingroup algs |
429 | 429 |
\brief Algorithms for planarity checking, embedding and drawing |
430 | 430 |
|
431 | 431 |
This group contains the algorithms for planarity checking, |
432 | 432 |
embedding and drawing. |
433 | 433 |
|
434 | 434 |
\image html planar.png |
435 | 435 |
\image latex planar.eps "Plane graph" width=\textwidth |
436 | 436 |
*/ |
437 | 437 |
|
438 | 438 |
/** |
439 | 439 |
@defgroup matching Matching Algorithms |
440 | 440 |
@ingroup algs |
441 | 441 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
442 | 442 |
|
443 | 443 |
This group contains the algorithms for calculating |
444 | 444 |
matchings in graphs and bipartite graphs. The general matching problem is |
445 | 445 |
finding a subset of the edges for which each node has at most one incident |
446 | 446 |
edge. |
447 | 447 |
|
448 | 448 |
There are several different algorithms for calculate matchings in |
449 | 449 |
graphs. The matching problems in bipartite graphs are generally |
450 | 450 |
easier than in general graphs. The goal of the matching optimization |
451 | 451 |
can be finding maximum cardinality, maximum weight or minimum cost |
452 | 452 |
matching. The search can be constrained to find perfect or |
453 | 453 |
maximum cardinality matching. |
454 | 454 |
|
455 | 455 |
The matching algorithms implemented in LEMON: |
456 | 456 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
457 | 457 |
for calculating maximum cardinality matching in bipartite graphs. |
458 | 458 |
- \ref PrBipartiteMatching Push-relabel algorithm |
459 | 459 |
for calculating maximum cardinality matching in bipartite graphs. |
460 | 460 |
- \ref MaxWeightedBipartiteMatching |
461 | 461 |
Successive shortest path algorithm for calculating maximum weighted |
462 | 462 |
matching and maximum weighted bipartite matching in bipartite graphs. |
463 | 463 |
- \ref MinCostMaxBipartiteMatching |
464 | 464 |
Successive shortest path algorithm for calculating minimum cost maximum |
465 | 465 |
matching in bipartite graphs. |
466 | 466 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
467 | 467 |
maximum cardinality matching in general graphs. |
468 | 468 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
469 | 469 |
maximum weighted matching in general graphs. |
470 | 470 |
- \ref MaxWeightedPerfectMatching |
471 | 471 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
472 | 472 |
perfect matching in general graphs. |
473 |
- \ref MaxFractionalMatching Push-relabel algorithm for calculating |
|
474 |
maximum cardinality fractional matching in general graphs. |
|
475 |
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating |
|
476 |
maximum weighted fractional matching in general graphs. |
|
477 |
- \ref MaxWeightedPerfectFractionalMatching |
|
478 |
Augmenting path algorithm for calculating maximum weighted |
|
479 |
perfect fractional matching in general graphs. |
|
473 | 480 |
|
474 | 481 |
\image html bipartite_matching.png |
475 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
476 | 483 |
*/ |
477 | 484 |
|
478 | 485 |
/** |
479 | 486 |
@defgroup spantree Minimum Spanning Tree Algorithms |
480 | 487 |
@ingroup algs |
481 | 488 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
482 | 489 |
|
483 | 490 |
This group contains the algorithms for finding minimum cost spanning |
484 | 491 |
trees and arborescences. |
485 | 492 |
*/ |
486 | 493 |
|
487 | 494 |
/** |
488 | 495 |
@defgroup auxalg Auxiliary Algorithms |
489 | 496 |
@ingroup algs |
490 | 497 |
\brief Auxiliary algorithms implemented in LEMON. |
491 | 498 |
|
492 | 499 |
This group contains some algorithms implemented in LEMON |
493 | 500 |
in order to make it easier to implement complex algorithms. |
494 | 501 |
*/ |
495 | 502 |
|
496 | 503 |
/** |
497 | 504 |
@defgroup approx Approximation Algorithms |
498 | 505 |
@ingroup algs |
499 | 506 |
\brief Approximation algorithms. |
500 | 507 |
|
501 | 508 |
This group contains the approximation and heuristic algorithms |
502 | 509 |
implemented in LEMON. |
503 | 510 |
*/ |
504 | 511 |
|
505 | 512 |
/** |
506 | 513 |
@defgroup gen_opt_group General Optimization Tools |
507 | 514 |
\brief This group contains some general optimization frameworks |
508 | 515 |
implemented in LEMON. |
509 | 516 |
|
510 | 517 |
This group contains some general optimization frameworks |
511 | 518 |
implemented in LEMON. |
512 | 519 |
*/ |
513 | 520 |
|
514 | 521 |
/** |
515 | 522 |
@defgroup lp_group Lp and Mip Solvers |
516 | 523 |
@ingroup gen_opt_group |
517 | 524 |
\brief Lp and Mip solver interfaces for LEMON. |
518 | 525 |
|
519 | 526 |
This group contains Lp and Mip solver interfaces for LEMON. The |
520 | 527 |
various LP solvers could be used in the same manner with this |
521 | 528 |
interface. |
522 | 529 |
*/ |
523 | 530 |
|
524 | 531 |
/** |
525 | 532 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
526 | 533 |
@ingroup lp_group |
527 | 534 |
\brief Helper tools to the Lp and Mip solvers. |
528 | 535 |
|
529 | 536 |
This group adds some helper tools to general optimization framework |
530 | 537 |
implemented in LEMON. |
531 | 538 |
*/ |
532 | 539 |
|
533 | 540 |
/** |
534 | 541 |
@defgroup metah Metaheuristics |
535 | 542 |
@ingroup gen_opt_group |
536 | 543 |
\brief Metaheuristics for LEMON library. |
537 | 544 |
|
538 | 545 |
This group contains some metaheuristic optimization tools. |
539 | 546 |
*/ |
540 | 547 |
|
541 | 548 |
/** |
542 | 549 |
@defgroup utils Tools and Utilities |
543 | 550 |
\brief Tools and utilities for programming in LEMON |
544 | 551 |
|
545 | 552 |
Tools and utilities for programming in LEMON. |
546 | 553 |
*/ |
547 | 554 |
|
548 | 555 |
/** |
549 | 556 |
@defgroup gutils Basic Graph Utilities |
550 | 557 |
@ingroup utils |
551 | 558 |
\brief Simple basic graph utilities. |
552 | 559 |
|
553 | 560 |
This group contains some simple basic graph utilities. |
554 | 561 |
*/ |
555 | 562 |
|
556 | 563 |
/** |
557 | 564 |
@defgroup misc Miscellaneous Tools |
558 | 565 |
@ingroup utils |
559 | 566 |
\brief Tools for development, debugging and testing. |
560 | 567 |
|
561 | 568 |
This group contains several useful tools for development, |
562 | 569 |
debugging and testing. |
563 | 570 |
*/ |
564 | 571 |
|
565 | 572 |
/** |
566 | 573 |
@defgroup timecount Time Measuring and Counting |
567 | 574 |
@ingroup misc |
568 | 575 |
\brief Simple tools for measuring the performance of algorithms. |
569 | 576 |
|
570 | 577 |
This group contains simple tools for measuring the performance |
571 | 578 |
of algorithms. |
572 | 579 |
*/ |
573 | 580 |
|
574 | 581 |
/** |
575 | 582 |
@defgroup exceptions Exceptions |
576 | 583 |
@ingroup utils |
577 | 584 |
\brief Exceptions defined in LEMON. |
578 | 585 |
|
579 | 586 |
This group contains the exceptions defined in LEMON. |
580 | 587 |
*/ |
581 | 588 |
|
582 | 589 |
/** |
583 | 590 |
@defgroup io_group Input-Output |
584 | 591 |
\brief Graph Input-Output methods |
585 | 592 |
|
586 | 593 |
This group contains the tools for importing and exporting graphs |
587 | 594 |
and graph related data. Now it supports the \ref lgf-format |
588 | 595 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
589 | 596 |
postscript (EPS) format. |
590 | 597 |
*/ |
591 | 598 |
|
592 | 599 |
/** |
593 | 600 |
@defgroup lemon_io LEMON Graph Format |
594 | 601 |
@ingroup io_group |
595 | 602 |
\brief Reading and writing LEMON Graph Format. |
596 | 603 |
|
597 | 604 |
This group contains methods for reading and writing |
598 | 605 |
\ref lgf-format "LEMON Graph Format". |
599 | 606 |
*/ |
600 | 607 |
|
601 | 608 |
/** |
602 | 609 |
@defgroup eps_io Postscript Exporting |
603 | 610 |
@ingroup io_group |
604 | 611 |
\brief General \c EPS drawer and graph exporter |
605 | 612 |
|
606 | 613 |
This group contains general \c EPS drawing methods and special |
607 | 614 |
graph exporting tools. |
608 | 615 |
*/ |
609 | 616 |
|
610 | 617 |
/** |
611 | 618 |
@defgroup dimacs_group DIMACS format |
612 | 619 |
@ingroup io_group |
613 | 620 |
\brief Read and write files in DIMACS format |
614 | 621 |
|
615 | 622 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
616 | 623 |
*/ |
617 | 624 |
|
618 | 625 |
/** |
619 | 626 |
@defgroup nauty_group NAUTY Format |
620 | 627 |
@ingroup io_group |
621 | 628 |
\brief Read \e Nauty format |
622 | 629 |
|
623 | 630 |
Tool to read graphs from \e Nauty format data. |
624 | 631 |
*/ |
625 | 632 |
|
626 | 633 |
/** |
627 | 634 |
@defgroup concept Concepts |
628 | 635 |
\brief Skeleton classes and concept checking classes |
629 | 636 |
|
630 | 637 |
This group contains the data/algorithm skeletons and concept checking |
631 | 638 |
classes implemented in LEMON. |
632 | 639 |
|
633 | 640 |
The purpose of the classes in this group is fourfold. |
634 | 641 |
|
635 | 642 |
- These classes contain the documentations of the %concepts. In order |
636 | 643 |
to avoid document multiplications, an implementation of a concept |
637 | 644 |
simply refers to the corresponding concept class. |
638 | 645 |
|
639 | 646 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
640 | 647 |
implementation of the %concepts should provide, however completely |
641 | 648 |
without implementations and real data structures behind the |
642 | 649 |
interface. On the other hand they should provide nothing else. All |
643 | 650 |
the algorithms working on a data structure meeting a certain concept |
644 | 651 |
should compile with these classes. (Though it will not run properly, |
645 | 652 |
of course.) In this way it is easily to check if an algorithm |
646 | 653 |
doesn't use any extra feature of a certain implementation. |
647 | 654 |
|
648 | 655 |
- The concept descriptor classes also provide a <em>checker class</em> |
649 | 656 |
that makes it possible to check whether a certain implementation of a |
650 | 657 |
concept indeed provides all the required features. |
651 | 658 |
|
652 | 659 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
653 | 660 |
*/ |
654 | 661 |
|
655 | 662 |
/** |
656 | 663 |
@defgroup graph_concepts Graph Structure Concepts |
657 | 664 |
@ingroup concept |
658 | 665 |
\brief Skeleton and concept checking classes for graph structures |
659 | 666 |
|
660 | 667 |
This group contains the skeletons and concept checking classes of LEMON's |
661 | 668 |
graph structures and helper classes used to implement these. |
662 | 669 |
*/ |
663 | 670 |
|
664 | 671 |
/** |
665 | 672 |
@defgroup map_concepts Map Concepts |
666 | 673 |
@ingroup concept |
667 | 674 |
\brief Skeleton and concept checking classes for maps |
668 | 675 |
|
669 | 676 |
This group contains the skeletons and concept checking classes of maps. |
670 | 677 |
*/ |
671 | 678 |
|
672 | 679 |
/** |
673 | 680 |
\anchor demoprograms |
674 | 681 |
|
675 | 682 |
@defgroup demos Demo Programs |
676 | 683 |
|
677 | 684 |
Some demo programs are listed here. Their full source codes can be found in |
678 | 685 |
the \c demo subdirectory of the source tree. |
679 | 686 |
|
680 | 687 |
In order to compile them, use the <tt>make demo</tt> or the |
681 | 688 |
<tt>make check</tt> commands. |
682 | 689 |
*/ |
683 | 690 |
|
684 | 691 |
/** |
685 | 692 |
@defgroup tools Standalone Utility Applications |
686 | 693 |
|
687 | 694 |
Some utility applications are listed here. |
688 | 695 |
|
689 | 696 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
690 | 697 |
them, as well. |
691 | 698 |
*/ |
692 | 699 |
|
693 | 700 |
} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt \ |
4 | 4 |
lemon/config.h.cmake |
5 | 5 |
|
6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
7 | 7 |
|
8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
9 | 9 |
|
10 | 10 |
lemon_libemon_la_SOURCES = \ |
11 | 11 |
lemon/arg_parser.cc \ |
12 | 12 |
lemon/base.cc \ |
13 | 13 |
lemon/color.cc \ |
14 | 14 |
lemon/lp_base.cc \ |
15 | 15 |
lemon/lp_skeleton.cc \ |
16 | 16 |
lemon/random.cc \ |
17 | 17 |
lemon/bits/windows.cc |
18 | 18 |
|
19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
20 | 20 |
|
21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
22 | 22 |
$(AM_CXXFLAGS) \ |
23 | 23 |
$(GLPK_CFLAGS) \ |
24 | 24 |
$(CPLEX_CFLAGS) \ |
25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
26 | 26 |
$(CLP_CXXFLAGS) \ |
27 | 27 |
$(CBC_CXXFLAGS) |
28 | 28 |
|
29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
30 | 30 |
$(GLPK_LIBS) \ |
31 | 31 |
$(CPLEX_LIBS) \ |
32 | 32 |
$(SOPLEX_LIBS) \ |
33 | 33 |
$(CLP_LIBS) \ |
34 | 34 |
$(CBC_LIBS) |
35 | 35 |
|
36 | 36 |
if HAVE_GLPK |
37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
38 | 38 |
endif |
39 | 39 |
|
40 | 40 |
if HAVE_CPLEX |
41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
42 | 42 |
endif |
43 | 43 |
|
44 | 44 |
if HAVE_SOPLEX |
45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
46 | 46 |
endif |
47 | 47 |
|
48 | 48 |
if HAVE_CLP |
49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
50 | 50 |
endif |
51 | 51 |
|
52 | 52 |
if HAVE_CBC |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 | 60 |
lemon/bellman_ford.h \ |
61 | 61 |
lemon/bfs.h \ |
62 | 62 |
lemon/bin_heap.h \ |
63 | 63 |
lemon/binom_heap.h \ |
64 | 64 |
lemon/bucket_heap.h \ |
65 | 65 |
lemon/cbc.h \ |
66 | 66 |
lemon/circulation.h \ |
67 | 67 |
lemon/clp.h \ |
68 | 68 |
lemon/color.h \ |
69 | 69 |
lemon/concept_check.h \ |
70 | 70 |
lemon/connectivity.h \ |
71 | 71 |
lemon/counter.h \ |
72 | 72 |
lemon/core.h \ |
73 | 73 |
lemon/cplex.h \ |
74 | 74 |
lemon/dfs.h \ |
75 | 75 |
lemon/dijkstra.h \ |
76 | 76 |
lemon/dim2.h \ |
77 | 77 |
lemon/dimacs.h \ |
78 | 78 |
lemon/edge_set.h \ |
79 | 79 |
lemon/elevator.h \ |
80 | 80 |
lemon/error.h \ |
81 | 81 |
lemon/euler.h \ |
82 | 82 |
lemon/fib_heap.h \ |
83 | 83 |
lemon/fourary_heap.h \ |
84 |
lemon/fractional_matching.h \ |
|
84 | 85 |
lemon/full_graph.h \ |
85 | 86 |
lemon/glpk.h \ |
86 | 87 |
lemon/gomory_hu.h \ |
87 | 88 |
lemon/graph_to_eps.h \ |
88 | 89 |
lemon/grid_graph.h \ |
89 | 90 |
lemon/hypercube_graph.h \ |
90 | 91 |
lemon/kary_heap.h \ |
91 | 92 |
lemon/kruskal.h \ |
92 | 93 |
lemon/hao_orlin.h \ |
93 | 94 |
lemon/lgf_reader.h \ |
94 | 95 |
lemon/lgf_writer.h \ |
95 | 96 |
lemon/list_graph.h \ |
96 | 97 |
lemon/lp.h \ |
97 | 98 |
lemon/lp_base.h \ |
98 | 99 |
lemon/lp_skeleton.h \ |
99 | 100 |
lemon/maps.h \ |
100 | 101 |
lemon/matching.h \ |
101 | 102 |
lemon/math.h \ |
102 | 103 |
lemon/min_cost_arborescence.h \ |
103 | 104 |
lemon/nauty_reader.h \ |
104 | 105 |
lemon/network_simplex.h \ |
105 | 106 |
lemon/pairing_heap.h \ |
106 | 107 |
lemon/path.h \ |
107 | 108 |
lemon/preflow.h \ |
108 | 109 |
lemon/radix_heap.h \ |
109 | 110 |
lemon/radix_sort.h \ |
110 | 111 |
lemon/random.h \ |
111 | 112 |
lemon/smart_graph.h \ |
112 | 113 |
lemon/soplex.h \ |
113 | 114 |
lemon/suurballe.h \ |
114 | 115 |
lemon/time_measure.h \ |
115 | 116 |
lemon/tolerance.h \ |
116 | 117 |
lemon/unionfind.h \ |
117 | 118 |
lemon/bits/windows.h |
118 | 119 |
|
119 | 120 |
bits_HEADERS += \ |
120 | 121 |
lemon/bits/alteration_notifier.h \ |
121 | 122 |
lemon/bits/array_map.h \ |
122 | 123 |
lemon/bits/bezier.h \ |
123 | 124 |
lemon/bits/default_map.h \ |
124 | 125 |
lemon/bits/edge_set_extender.h \ |
125 | 126 |
lemon/bits/enable_if.h \ |
126 | 127 |
lemon/bits/graph_adaptor_extender.h \ |
127 | 128 |
lemon/bits/graph_extender.h \ |
128 | 129 |
lemon/bits/map_extender.h \ |
129 | 130 |
lemon/bits/path_dump.h \ |
130 | 131 |
lemon/bits/solver_bits.h \ |
131 | 132 |
lemon/bits/traits.h \ |
132 | 133 |
lemon/bits/variant.h \ |
133 | 134 |
lemon/bits/vector_map.h |
134 | 135 |
|
135 | 136 |
concept_HEADERS += \ |
136 | 137 |
lemon/concepts/digraph.h \ |
137 | 138 |
lemon/concepts/graph.h \ |
138 | 139 |
lemon/concepts/graph_components.h \ |
139 | 140 |
lemon/concepts/heap.h \ |
140 | 141 |
lemon/concepts/maps.h \ |
141 | 142 |
lemon/concepts/path.h |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
LINK_DIRECTORIES( |
7 | 7 |
${PROJECT_BINARY_DIR}/lemon |
8 | 8 |
) |
9 | 9 |
|
10 | 10 |
SET(TESTS |
11 | 11 |
adaptors_test |
12 | 12 |
bellman_ford_test |
13 | 13 |
bfs_test |
14 | 14 |
circulation_test |
15 | 15 |
connectivity_test |
16 | 16 |
counter_test |
17 | 17 |
dfs_test |
18 | 18 |
digraph_test |
19 | 19 |
dijkstra_test |
20 | 20 |
dim_test |
21 | 21 |
edge_set_test |
22 | 22 |
error_test |
23 | 23 |
euler_test |
24 |
fractional_matching_test |
|
24 | 25 |
gomory_hu_test |
25 | 26 |
graph_copy_test |
26 | 27 |
graph_test |
27 | 28 |
graph_utils_test |
28 | 29 |
hao_orlin_test |
29 | 30 |
heap_test |
30 | 31 |
kruskal_test |
31 | 32 |
maps_test |
32 | 33 |
matching_test |
33 | 34 |
min_cost_arborescence_test |
34 | 35 |
min_cost_flow_test |
35 | 36 |
path_test |
36 | 37 |
preflow_test |
37 | 38 |
radix_sort_test |
38 | 39 |
random_test |
39 | 40 |
suurballe_test |
40 | 41 |
time_measure_test |
41 | 42 |
unionfind_test |
42 | 43 |
) |
43 | 44 |
|
44 | 45 |
IF(LEMON_HAVE_LP) |
45 | 46 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
46 | 47 |
SET(LP_TEST_LIBS lemon) |
47 | 48 |
|
48 | 49 |
IF(LEMON_HAVE_GLPK) |
49 | 50 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
50 | 51 |
ENDIF() |
51 | 52 |
IF(LEMON_HAVE_CPLEX) |
52 | 53 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
53 | 54 |
ENDIF() |
54 | 55 |
IF(LEMON_HAVE_CLP) |
55 | 56 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES}) |
56 | 57 |
ENDIF() |
57 | 58 |
|
58 | 59 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) |
59 | 60 |
ADD_TEST(lp_test lp_test) |
60 | 61 |
|
61 | 62 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
62 | 63 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
63 | 64 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
64 | 65 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
65 | 66 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
66 | 67 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
67 | 68 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
68 | 69 |
) |
69 | 70 |
ENDIF() |
70 | 71 |
|
71 | 72 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
72 | 73 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
73 | 74 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
74 | 75 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
75 | 76 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
76 | 77 |
) |
77 | 78 |
ENDIF() |
78 | 79 |
ENDIF() |
79 | 80 |
|
80 | 81 |
IF(LEMON_HAVE_MIP) |
81 | 82 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
82 | 83 |
SET(MIP_TEST_LIBS lemon) |
83 | 84 |
|
84 | 85 |
IF(LEMON_HAVE_GLPK) |
85 | 86 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES}) |
86 | 87 |
ENDIF() |
87 | 88 |
IF(LEMON_HAVE_CPLEX) |
88 | 89 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
89 | 90 |
ENDIF() |
90 | 91 |
IF(LEMON_HAVE_CBC) |
91 | 92 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${COIN_CBC_LIBRARIES}) |
92 | 93 |
ENDIF() |
93 | 94 |
|
94 | 95 |
TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS}) |
95 | 96 |
ADD_TEST(mip_test mip_test) |
96 | 97 |
|
97 | 98 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
98 | 99 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
99 | 100 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
100 | 101 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
101 | 102 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
102 | 103 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
103 | 104 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
104 | 105 |
) |
105 | 106 |
ENDIF() |
106 | 107 |
|
107 | 108 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
108 | 109 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
109 | 110 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
110 | 111 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
111 | 112 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
112 | 113 |
) |
113 | 114 |
ENDIF() |
114 | 115 |
ENDIF() |
115 | 116 |
|
116 | 117 |
FOREACH(TEST_NAME ${TESTS}) |
117 | 118 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc) |
118 | 119 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon) |
119 | 120 |
ADD_TEST(${TEST_NAME} ${TEST_NAME}) |
120 | 121 |
ENDFOREACH() |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 | 10 |
test/bellman_ford_test \ |
11 | 11 |
test/bfs_test \ |
12 | 12 |
test/circulation_test \ |
13 | 13 |
test/connectivity_test \ |
14 | 14 |
test/counter_test \ |
15 | 15 |
test/dfs_test \ |
16 | 16 |
test/digraph_test \ |
17 | 17 |
test/dijkstra_test \ |
18 | 18 |
test/dim_test \ |
19 | 19 |
test/edge_set_test \ |
20 | 20 |
test/error_test \ |
21 | 21 |
test/euler_test \ |
22 |
test/fractional_matching_test \ |
|
22 | 23 |
test/gomory_hu_test \ |
23 | 24 |
test/graph_copy_test \ |
24 | 25 |
test/graph_test \ |
25 | 26 |
test/graph_utils_test \ |
26 | 27 |
test/hao_orlin_test \ |
27 | 28 |
test/heap_test \ |
28 | 29 |
test/kruskal_test \ |
29 | 30 |
test/maps_test \ |
30 | 31 |
test/matching_test \ |
31 | 32 |
test/min_cost_arborescence_test \ |
32 | 33 |
test/min_cost_flow_test \ |
33 | 34 |
test/path_test \ |
34 | 35 |
test/preflow_test \ |
35 | 36 |
test/radix_sort_test \ |
36 | 37 |
test/random_test \ |
37 | 38 |
test/suurballe_test \ |
38 | 39 |
test/test_tools_fail \ |
39 | 40 |
test/test_tools_pass \ |
40 | 41 |
test/time_measure_test \ |
41 | 42 |
test/unionfind_test |
42 | 43 |
|
43 | 44 |
test_test_tools_pass_DEPENDENCIES = demo |
44 | 45 |
|
45 | 46 |
if HAVE_LP |
46 | 47 |
check_PROGRAMS += test/lp_test |
47 | 48 |
endif HAVE_LP |
48 | 49 |
if HAVE_MIP |
49 | 50 |
check_PROGRAMS += test/mip_test |
50 | 51 |
endif HAVE_MIP |
51 | 52 |
|
52 | 53 |
TESTS += $(check_PROGRAMS) |
53 | 54 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
54 | 55 |
|
55 | 56 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
56 | 57 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
57 | 58 |
test_bfs_test_SOURCES = test/bfs_test.cc |
58 | 59 |
test_circulation_test_SOURCES = test/circulation_test.cc |
59 | 60 |
test_counter_test_SOURCES = test/counter_test.cc |
60 | 61 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
61 | 62 |
test_dfs_test_SOURCES = test/dfs_test.cc |
62 | 63 |
test_digraph_test_SOURCES = test/digraph_test.cc |
63 | 64 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
64 | 65 |
test_dim_test_SOURCES = test/dim_test.cc |
65 | 66 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
66 | 67 |
test_error_test_SOURCES = test/error_test.cc |
67 | 68 |
test_euler_test_SOURCES = test/euler_test.cc |
69 |
test_fractional_matching_test_SOURCES = test/fractional_matching_test.cc |
|
68 | 70 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
69 | 71 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
70 | 72 |
test_graph_test_SOURCES = test/graph_test.cc |
71 | 73 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
72 | 74 |
test_heap_test_SOURCES = test/heap_test.cc |
73 | 75 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
74 | 76 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
75 | 77 |
test_lp_test_SOURCES = test/lp_test.cc |
76 | 78 |
test_maps_test_SOURCES = test/maps_test.cc |
77 | 79 |
test_mip_test_SOURCES = test/mip_test.cc |
78 | 80 |
test_matching_test_SOURCES = test/matching_test.cc |
79 | 81 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
80 | 82 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
81 | 83 |
test_path_test_SOURCES = test/path_test.cc |
82 | 84 |
test_preflow_test_SOURCES = test/preflow_test.cc |
83 | 85 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
84 | 86 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
85 | 87 |
test_random_test_SOURCES = test/random_test.cc |
86 | 88 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
87 | 89 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
88 | 90 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
89 | 91 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
0 comments (0 inline)