0
16
0
1
1
5
5
1
1
21
26
5
5
1
1
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/// \ingroup demos |
20 | 20 |
/// \file |
21 | 21 |
/// \brief Demo of the graph drawing function \ref graphToEps() |
22 | 22 |
/// |
23 | 23 |
/// This demo program shows examples how to use the function \ref |
24 | 24 |
/// graphToEps(). It takes no input but simply creates seven |
25 | 25 |
/// <tt>.eps</tt> files demonstrating the capability of \ref |
26 | 26 |
/// graphToEps(), and showing how to draw directed graphs, |
27 | 27 |
/// how to handle parallel egdes, how to change the properties (like |
28 | 28 |
/// color, shape, size, title etc.) of nodes and arcs individually |
29 |
/// using appropriate |
|
29 |
/// using appropriate graph maps. |
|
30 | 30 |
/// |
31 | 31 |
/// \include graph_to_eps_demo.cc |
32 | 32 |
|
33 | 33 |
#include<lemon/list_graph.h> |
34 | 34 |
#include<lemon/graph_to_eps.h> |
35 | 35 |
#include<lemon/math.h> |
36 | 36 |
|
37 | 37 |
using namespace std; |
38 | 38 |
using namespace lemon; |
39 | 39 |
|
40 | 40 |
int main() |
41 | 41 |
{ |
42 | 42 |
Palette palette; |
43 | 43 |
Palette paletteW(true); |
44 | 44 |
|
45 | 45 |
// Create a small digraph |
46 | 46 |
ListDigraph g; |
47 | 47 |
typedef ListDigraph::Node Node; |
48 | 48 |
typedef ListDigraph::NodeIt NodeIt; |
49 | 49 |
typedef ListDigraph::Arc Arc; |
50 | 50 |
typedef dim2::Point<int> Point; |
51 | 51 |
|
52 | 52 |
Node n1=g.addNode(); |
53 | 53 |
Node n2=g.addNode(); |
54 | 54 |
Node n3=g.addNode(); |
55 | 55 |
Node n4=g.addNode(); |
56 | 56 |
Node n5=g.addNode(); |
57 | 57 |
|
58 | 58 |
ListDigraph::NodeMap<Point> coords(g); |
59 | 59 |
ListDigraph::NodeMap<double> sizes(g); |
60 | 60 |
ListDigraph::NodeMap<int> colors(g); |
61 | 61 |
ListDigraph::NodeMap<int> shapes(g); |
62 | 62 |
ListDigraph::ArcMap<int> acolors(g); |
63 | 63 |
ListDigraph::ArcMap<int> widths(g); |
64 | 64 |
|
65 | 65 |
coords[n1]=Point(50,50); sizes[n1]=1; colors[n1]=1; shapes[n1]=0; |
66 | 66 |
coords[n2]=Point(50,70); sizes[n2]=2; colors[n2]=2; shapes[n2]=2; |
67 | 67 |
coords[n3]=Point(70,70); sizes[n3]=1; colors[n3]=3; shapes[n3]=0; |
68 | 68 |
coords[n4]=Point(70,50); sizes[n4]=2; colors[n4]=4; shapes[n4]=1; |
69 | 69 |
coords[n5]=Point(85,60); sizes[n5]=3; colors[n5]=5; shapes[n5]=2; |
70 | 70 |
|
71 | 71 |
Arc a; |
72 | 72 |
|
73 | 73 |
a=g.addArc(n1,n2); acolors[a]=0; widths[a]=1; |
74 | 74 |
a=g.addArc(n2,n3); acolors[a]=0; widths[a]=1; |
75 | 75 |
a=g.addArc(n3,n5); acolors[a]=0; widths[a]=3; |
76 | 76 |
a=g.addArc(n5,n4); acolors[a]=0; widths[a]=1; |
77 | 77 |
a=g.addArc(n4,n1); acolors[a]=0; widths[a]=1; |
78 | 78 |
a=g.addArc(n2,n4); acolors[a]=1; widths[a]=2; |
79 | 79 |
a=g.addArc(n3,n4); acolors[a]=2; widths[a]=1; |
80 | 80 |
|
81 | 81 |
IdMap<ListDigraph,Node> id(g); |
82 | 82 |
|
83 | 83 |
// Create .eps files showing the digraph with different options |
84 | 84 |
cout << "Create 'graph_to_eps_demo_out_1_pure.eps'" << endl; |
85 | 85 |
graphToEps(g,"graph_to_eps_demo_out_1_pure.eps"). |
86 | 86 |
coords(coords). |
87 | 87 |
title("Sample .eps figure"). |
88 | 88 |
copyright("(C) 2003-2008 LEMON Project"). |
89 | 89 |
run(); |
90 | 90 |
|
91 | 91 |
cout << "Create 'graph_to_eps_demo_out_2.eps'" << endl; |
92 | 92 |
graphToEps(g,"graph_to_eps_demo_out_2.eps"). |
93 | 93 |
coords(coords). |
94 | 94 |
title("Sample .eps figure"). |
95 | 95 |
copyright("(C) 2003-2008 LEMON Project"). |
96 | 96 |
absoluteNodeSizes().absoluteArcWidths(). |
97 | 97 |
nodeScale(2).nodeSizes(sizes). |
98 | 98 |
nodeShapes(shapes). |
99 | 99 |
nodeColors(composeMap(palette,colors)). |
100 | 100 |
arcColors(composeMap(palette,acolors)). |
101 | 101 |
arcWidthScale(.4).arcWidths(widths). |
102 | 102 |
nodeTexts(id).nodeTextSize(3). |
103 | 103 |
run(); |
104 | 104 |
|
105 | 105 |
cout << "Create 'graph_to_eps_demo_out_3_arr.eps'" << endl; |
106 | 106 |
graphToEps(g,"graph_to_eps_demo_out_3_arr.eps"). |
107 | 107 |
title("Sample .eps figure (with arrowheads)"). |
108 | 108 |
copyright("(C) 2003-2008 LEMON Project"). |
109 | 109 |
absoluteNodeSizes().absoluteArcWidths(). |
110 | 110 |
nodeColors(composeMap(palette,colors)). |
111 | 111 |
coords(coords). |
112 | 112 |
nodeScale(2).nodeSizes(sizes). |
113 | 113 |
nodeShapes(shapes). |
114 | 114 |
arcColors(composeMap(palette,acolors)). |
115 | 115 |
arcWidthScale(.4).arcWidths(widths). |
116 | 116 |
nodeTexts(id).nodeTextSize(3). |
117 | 117 |
drawArrows().arrowWidth(2).arrowLength(2). |
118 | 118 |
run(); |
119 | 119 |
|
120 | 120 |
// Add more arcs to the digraph |
121 | 121 |
a=g.addArc(n1,n4); acolors[a]=2; widths[a]=1; |
122 | 122 |
a=g.addArc(n4,n1); acolors[a]=1; widths[a]=2; |
123 | 123 |
|
124 | 124 |
a=g.addArc(n1,n2); acolors[a]=1; widths[a]=1; |
125 | 125 |
a=g.addArc(n1,n2); acolors[a]=2; widths[a]=1; |
126 | 126 |
a=g.addArc(n1,n2); acolors[a]=3; widths[a]=1; |
127 | 127 |
a=g.addArc(n1,n2); acolors[a]=4; widths[a]=1; |
128 | 128 |
a=g.addArc(n1,n2); acolors[a]=5; widths[a]=1; |
129 | 129 |
a=g.addArc(n1,n2); acolors[a]=6; widths[a]=1; |
130 | 130 |
a=g.addArc(n1,n2); acolors[a]=7; widths[a]=1; |
131 | 131 |
|
132 | 132 |
cout << "Create 'graph_to_eps_demo_out_4_par.eps'" << endl; |
133 | 133 |
graphToEps(g,"graph_to_eps_demo_out_4_par.eps"). |
134 | 134 |
title("Sample .eps figure (parallel arcs)"). |
135 | 135 |
copyright("(C) 2003-2008 LEMON Project"). |
136 | 136 |
absoluteNodeSizes().absoluteArcWidths(). |
137 | 137 |
nodeShapes(shapes). |
138 | 138 |
coords(coords). |
139 | 139 |
nodeScale(2).nodeSizes(sizes). |
140 | 140 |
nodeColors(composeMap(palette,colors)). |
141 | 141 |
arcColors(composeMap(palette,acolors)). |
142 | 142 |
arcWidthScale(.4).arcWidths(widths). |
143 | 143 |
nodeTexts(id).nodeTextSize(3). |
144 | 144 |
enableParallel().parArcDist(1.5). |
145 | 145 |
run(); |
146 | 146 |
|
147 | 147 |
cout << "Create 'graph_to_eps_demo_out_5_par_arr.eps'" << endl; |
148 | 148 |
graphToEps(g,"graph_to_eps_demo_out_5_par_arr.eps"). |
149 | 149 |
title("Sample .eps figure (parallel arcs and arrowheads)"). |
150 | 150 |
copyright("(C) 2003-2008 LEMON Project"). |
151 | 151 |
absoluteNodeSizes().absoluteArcWidths(). |
152 | 152 |
nodeScale(2).nodeSizes(sizes). |
153 | 153 |
coords(coords). |
154 | 154 |
nodeShapes(shapes). |
155 | 155 |
nodeColors(composeMap(palette,colors)). |
156 | 156 |
arcColors(composeMap(palette,acolors)). |
157 | 157 |
arcWidthScale(.3).arcWidths(widths). |
158 | 158 |
nodeTexts(id).nodeTextSize(3). |
159 | 159 |
enableParallel().parArcDist(1). |
160 | 160 |
drawArrows().arrowWidth(1).arrowLength(1). |
161 | 161 |
run(); |
162 | 162 |
|
163 | 163 |
cout << "Create 'graph_to_eps_demo_out_6_par_arr_a4.eps'" << endl; |
164 | 164 |
graphToEps(g,"graph_to_eps_demo_out_6_par_arr_a4.eps"). |
165 | 165 |
title("Sample .eps figure (fits to A4)"). |
166 | 166 |
copyright("(C) 2003-2008 LEMON Project"). |
167 | 167 |
scaleToA4(). |
168 | 168 |
absoluteNodeSizes().absoluteArcWidths(). |
169 | 169 |
nodeScale(2).nodeSizes(sizes). |
170 | 170 |
coords(coords). |
171 | 171 |
nodeShapes(shapes). |
172 | 172 |
nodeColors(composeMap(palette,colors)). |
173 | 173 |
arcColors(composeMap(palette,acolors)). |
174 | 174 |
arcWidthScale(.3).arcWidths(widths). |
175 | 175 |
nodeTexts(id).nodeTextSize(3). |
176 | 176 |
enableParallel().parArcDist(1). |
177 | 177 |
drawArrows().arrowWidth(1).arrowLength(1). |
178 | 178 |
run(); |
179 | 179 |
|
180 | 180 |
// Create an .eps file showing the colors of a default Palette |
181 | 181 |
ListDigraph h; |
182 | 182 |
ListDigraph::NodeMap<int> hcolors(h); |
183 | 183 |
ListDigraph::NodeMap<Point> hcoords(h); |
184 | 184 |
|
185 | 185 |
int cols=int(sqrt(double(palette.size()))); |
186 | 186 |
for(int i=0;i<int(paletteW.size());i++) { |
187 | 187 |
Node n=h.addNode(); |
188 | 188 |
hcoords[n]=Point(1+i%cols,1+i/cols); |
189 | 189 |
hcolors[n]=i; |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
cout << "Create 'graph_to_eps_demo_out_7_colors.eps'" << endl; |
193 | 193 |
graphToEps(h,"graph_to_eps_demo_out_7_colors.eps"). |
194 | 194 |
scale(60). |
195 | 195 |
title("Sample .eps figure (Palette demo)"). |
196 | 196 |
copyright("(C) 2003-2008 LEMON Project"). |
197 | 197 |
coords(hcoords). |
198 | 198 |
absoluteNodeSizes().absoluteArcWidths(). |
199 | 199 |
nodeScale(.45). |
200 | 200 |
distantColorNodeTexts(). |
201 | 201 |
nodeTexts(hcolors).nodeTextSize(.6). |
202 | 202 |
nodeColors(composeMap(paletteW,hcolors)). |
203 | 203 |
run(); |
204 | 204 |
|
205 | 205 |
return 0; |
206 | 206 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
/*! |
21 | 21 |
|
22 | 22 |
|
23 | 23 |
|
24 | 24 |
\page lgf-format LEMON Graph Format (LGF) |
25 | 25 |
|
26 | 26 |
The \e LGF is a <em>column oriented</em> |
27 | 27 |
file format for storing graphs and associated data like |
28 | 28 |
node and edge maps. |
29 | 29 |
|
30 | 30 |
Each line with \c '#' first non-whitespace |
31 | 31 |
character is considered as a comment line. |
32 | 32 |
|
33 | 33 |
Otherwise the file consists of sections starting with |
34 | 34 |
a header line. The header lines starts with an \c '@' character followed by the |
35 | 35 |
type of section. The standard section types are \c \@nodes, \c |
36 | 36 |
\@arcs and \c \@edges |
37 | 37 |
and \@attributes. Each header line may also have an optional |
38 | 38 |
\e name, which can be use to distinguish the sections of the same |
39 | 39 |
type. |
40 | 40 |
|
41 | 41 |
The standard sections are column oriented, each line consists of |
42 | 42 |
<em>token</em>s separated by whitespaces. A token can be \e plain or |
43 | 43 |
\e quoted. A plain token is just a sequence of non-whitespace characters, |
44 | 44 |
while a quoted token is a |
45 | 45 |
character sequence surrounded by double quotes, and it can also |
46 | 46 |
contain whitespaces and escape sequences. |
47 | 47 |
|
48 | 48 |
The \c \@nodes section describes a set of nodes and associated |
49 | 49 |
maps. The first is a header line, its columns are the names of the |
50 | 50 |
maps appearing in the following lines. |
51 | 51 |
One of the maps must be called \c |
52 | 52 |
"label", which plays special role in the file. |
53 | 53 |
The following |
54 | 54 |
non-empty lines until the next section describes nodes of the |
55 | 55 |
graph. Each line contains the values of the node maps |
56 | 56 |
associated to the current node. |
57 | 57 |
|
58 | 58 |
\code |
59 | 59 |
@nodes |
60 | 60 |
label coordinates size title |
61 | 61 |
1 (10,20) 10 "First node" |
62 | 62 |
2 (80,80) 8 "Second node" |
63 | 63 |
3 (40,10) 10 "Third node" |
64 | 64 |
\endcode |
65 | 65 |
|
66 | 66 |
The \c \@arcs section is very similar to the \c \@nodes section, |
67 | 67 |
it again starts with a header line describing the names of the maps, |
68 | 68 |
but the \c "label" map is not obligatory here. The following lines |
69 | 69 |
describe the arcs. The first two tokens of each line are |
70 | 70 |
the source and the target node of the arc, respectively, then come the map |
71 | 71 |
values. The source and target tokens must be node labels. |
72 | 72 |
|
73 | 73 |
\code |
74 | 74 |
@arcs |
75 | 75 |
capacity |
76 | 76 |
1 2 16 |
77 | 77 |
1 3 12 |
78 | 78 |
2 3 18 |
79 | 79 |
\endcode |
80 | 80 |
|
81 |
The \c \@edges is just a synonym of \c \@arcs. The @arcs section can |
|
81 |
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can |
|
82 | 82 |
also store the edge set of an undirected graph. In such case there is |
83 | 83 |
a conventional method for store arc maps in the file, if two columns |
84 | 84 |
has the same caption with \c '+' and \c '-' prefix, then these columns |
85 | 85 |
can be regarded as the values of an arc map. |
86 | 86 |
|
87 | 87 |
The \c \@attributes section contains key-value pairs, each line |
88 | 88 |
consists of two tokens, an attribute name, and then an attribute |
89 | 89 |
value. The value of the attribute could be also a label value of a |
90 | 90 |
node or an edge, or even an edge label prefixed with \c '+' or \c '-', |
91 | 91 |
which regards to the forward or backward directed arc of the |
92 | 92 |
corresponding edge. |
93 | 93 |
|
94 | 94 |
\code |
95 | 95 |
@attributes |
96 | 96 |
source 1 |
97 | 97 |
target 3 |
98 | 98 |
caption "LEMON test digraph" |
99 | 99 |
\endcode |
100 | 100 |
|
101 | 101 |
The \e LGF can contain extra sections, but there is no restriction on |
102 | 102 |
the format of such sections. |
103 | 103 |
|
104 | 104 |
*/ |
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
// LocalWords: whitespace whitespaces |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H |
20 | 20 |
#define LEMON_BITS_ALTERATION_NOTIFIER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
|
25 | 25 |
#include <lemon/core.h> |
26 | 26 |
|
27 | 27 |
///\ingroup graphbits |
28 | 28 |
///\file |
29 | 29 |
///\brief Observer notifier for graph alteration observers. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
/// \ingroup graphbits |
34 | 34 |
/// |
35 | 35 |
/// \brief Notifier class to notify observes about alterations in |
36 | 36 |
/// a container. |
37 | 37 |
/// |
38 | 38 |
/// The simple graph's can be refered as two containers, one node container |
39 | 39 |
/// and one edge container. But they are not standard containers they |
40 | 40 |
/// does not store values directly they are just key continars for more |
41 | 41 |
/// value containers which are the node and edge maps. |
42 | 42 |
/// |
43 | 43 |
/// The graph's node and edge sets can be changed as we add or erase |
44 | 44 |
/// nodes and edges in the graph. LEMON would like to handle easily |
45 | 45 |
/// that the node and edge maps should contain values for all nodes or |
46 | 46 |
/// edges. If we want to check on every indicing if the map contains |
47 | 47 |
/// the current indicing key that cause a drawback in the performance |
48 | 48 |
/// in the library. We use another solution we notify all maps about |
49 | 49 |
/// an alteration in the graph, which cause only drawback on the |
50 | 50 |
/// alteration of the graph. |
51 | 51 |
/// |
52 | 52 |
/// This class provides an interface to the container. The \e first() and \e |
53 | 53 |
/// next() member functions make possible to iterate on the keys of the |
54 | 54 |
/// container. The \e id() function returns an integer id for each key. |
55 | 55 |
/// The \e maxId() function gives back an upper bound of the ids. |
56 | 56 |
/// |
57 | 57 |
/// For the proper functonality of this class, we should notify it |
58 | 58 |
/// about each alteration in the container. The alterations have four type |
59 | 59 |
/// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and |
60 | 60 |
/// \e erase() signals that only one or few items added or erased to or |
61 | 61 |
/// from the graph. If all items are erased from the graph or from an empty |
62 | 62 |
/// graph a new graph is builded then it can be signaled with the |
63 | 63 |
/// clear() and build() members. Important rule that if we erase items |
64 | 64 |
/// from graph we should first signal the alteration and after that erase |
65 | 65 |
/// them from the container, on the other way on item addition we should |
66 | 66 |
/// first extend the container and just after that signal the alteration. |
67 | 67 |
/// |
68 | 68 |
/// The alteration can be observed with a class inherited from the |
69 | 69 |
/// \e ObserverBase nested class. The signals can be handled with |
70 | 70 |
/// overriding the virtual functions defined in the base class. The |
71 | 71 |
/// observer base can be attached to the notifier with the |
72 | 72 |
/// \e attach() member and can be detached with detach() function. The |
73 | 73 |
/// alteration handlers should not call any function which signals |
74 | 74 |
/// an other alteration in the same notifier and should not |
75 | 75 |
/// detach any observer from the notifier. |
76 | 76 |
/// |
77 | 77 |
/// Alteration observers try to be exception safe. If an \e add() or |
78 | 78 |
/// a \e clear() function throws an exception then the remaining |
79 | 79 |
/// observeres will not be notified and the fulfilled additions will |
80 | 80 |
/// be rolled back by calling the \e erase() or \e clear() |
81 | 81 |
/// functions. Thence the \e erase() and \e clear() should not throw |
82 |
/// exception. Actullay, it can be throw only |
|
83 |
/// \ref AlterationObserver::ImmediateDetach ImmediateDetach |
|
82 |
/// exception. Actullay, it can be throw only \ref ImmediateDetach |
|
84 | 83 |
/// exception which detach the observer from the notifier. |
85 | 84 |
/// |
86 | 85 |
/// There are some place when the alteration observing is not completly |
87 | 86 |
/// reliable. If we want to carry out the node degree in the graph |
88 | 87 |
/// as in the \ref InDegMap and we use the reverseEdge that cause |
89 | 88 |
/// unreliable functionality. Because the alteration observing signals |
90 | 89 |
/// only erasing and adding but not the reversing it will stores bad |
91 | 90 |
/// degrees. The sub graph adaptors cannot signal the alterations because |
92 | 91 |
/// just a setting in the filter map can modify the graph and this cannot |
93 | 92 |
/// be watched in any way. |
94 | 93 |
/// |
95 | 94 |
/// \param _Container The container which is observed. |
96 | 95 |
/// \param _Item The item type which is obserbved. |
97 | 96 |
|
98 | 97 |
template <typename _Container, typename _Item> |
99 | 98 |
class AlterationNotifier { |
100 | 99 |
public: |
101 | 100 |
|
102 | 101 |
typedef True Notifier; |
103 | 102 |
|
104 | 103 |
typedef _Container Container; |
105 | 104 |
typedef _Item Item; |
106 | 105 |
|
107 | 106 |
/// \brief Exception which can be called from \e clear() and |
108 | 107 |
/// \e erase(). |
109 | 108 |
/// |
110 | 109 |
/// From the \e clear() and \e erase() function only this |
111 | 110 |
/// exception is allowed to throw. The exception immediatly |
112 | 111 |
/// detaches the current observer from the notifier. Because the |
113 | 112 |
/// \e clear() and \e erase() should not throw other exceptions |
114 | 113 |
/// it can be used to invalidate the observer. |
115 | 114 |
struct ImmediateDetach {}; |
116 | 115 |
|
117 | 116 |
/// \brief ObserverBase is the base class for the observers. |
118 | 117 |
/// |
119 | 118 |
/// ObserverBase is the abstract base class for the observers. |
120 | 119 |
/// It will be notified about an item was inserted into or |
121 | 120 |
/// erased from the graph. |
122 | 121 |
/// |
123 | 122 |
/// The observer interface contains some pure virtual functions |
124 | 123 |
/// to override. The add() and erase() functions are |
125 | 124 |
/// to notify the oberver when one item is added or |
126 | 125 |
/// erased. |
127 | 126 |
/// |
128 | 127 |
/// The build() and clear() members are to notify the observer |
129 | 128 |
/// about the container is built from an empty container or |
130 | 129 |
/// is cleared to an empty container. |
131 | 130 |
|
132 | 131 |
class ObserverBase { |
133 | 132 |
protected: |
134 | 133 |
typedef AlterationNotifier Notifier; |
135 | 134 |
|
136 | 135 |
friend class AlterationNotifier; |
137 | 136 |
|
138 | 137 |
/// \brief Default constructor. |
139 | 138 |
/// |
140 | 139 |
/// Default constructor for ObserverBase. |
141 | 140 |
/// |
142 | 141 |
ObserverBase() : _notifier(0) {} |
143 | 142 |
|
144 | 143 |
/// \brief Constructor which attach the observer into notifier. |
145 | 144 |
/// |
146 | 145 |
/// Constructor which attach the observer into notifier. |
147 | 146 |
ObserverBase(AlterationNotifier& nf) { |
148 | 147 |
attach(nf); |
149 | 148 |
} |
150 | 149 |
|
151 | 150 |
/// \brief Constructor which attach the obserever to the same notifier. |
152 | 151 |
/// |
153 | 152 |
/// Constructor which attach the obserever to the same notifier as |
154 | 153 |
/// the other observer is attached to. |
155 | 154 |
ObserverBase(const ObserverBase& copy) { |
156 | 155 |
if (copy.attached()) { |
157 | 156 |
attach(*copy.notifier()); |
158 | 157 |
} |
159 | 158 |
} |
160 | 159 |
|
161 | 160 |
/// \brief Destructor |
162 | 161 |
virtual ~ObserverBase() { |
163 | 162 |
if (attached()) { |
164 | 163 |
detach(); |
165 | 164 |
} |
166 | 165 |
} |
167 | 166 |
|
168 | 167 |
/// \brief Attaches the observer into an AlterationNotifier. |
169 | 168 |
/// |
170 | 169 |
/// This member attaches the observer into an AlterationNotifier. |
171 | 170 |
/// |
172 | 171 |
void attach(AlterationNotifier& nf) { |
173 | 172 |
nf.attach(*this); |
174 | 173 |
} |
175 | 174 |
|
176 | 175 |
/// \brief Detaches the observer into an AlterationNotifier. |
177 | 176 |
/// |
178 | 177 |
/// This member detaches the observer from an AlterationNotifier. |
179 | 178 |
/// |
180 | 179 |
void detach() { |
181 | 180 |
_notifier->detach(*this); |
182 | 181 |
} |
183 | 182 |
|
184 | 183 |
/// \brief Gives back a pointer to the notifier which the map |
185 | 184 |
/// attached into. |
186 | 185 |
/// |
187 | 186 |
/// This function gives back a pointer to the notifier which the map |
188 | 187 |
/// attached into. |
189 | 188 |
/// |
190 | 189 |
Notifier* notifier() const { return const_cast<Notifier*>(_notifier); } |
191 | 190 |
|
192 | 191 |
/// Gives back true when the observer is attached into a notifier. |
193 | 192 |
bool attached() const { return _notifier != 0; } |
194 | 193 |
|
195 | 194 |
private: |
196 | 195 |
|
197 | 196 |
ObserverBase& operator=(const ObserverBase& copy); |
198 | 197 |
|
199 | 198 |
protected: |
200 | 199 |
|
201 | 200 |
Notifier* _notifier; |
202 | 201 |
typename std::list<ObserverBase*>::iterator _index; |
203 | 202 |
|
204 | 203 |
/// \brief The member function to notificate the observer about an |
205 | 204 |
/// item is added to the container. |
206 | 205 |
/// |
207 | 206 |
/// The add() member function notificates the observer about an item |
208 | 207 |
/// is added to the container. It have to be overrided in the |
209 | 208 |
/// subclasses. |
210 | 209 |
virtual void add(const Item&) = 0; |
211 | 210 |
|
212 | 211 |
/// \brief The member function to notificate the observer about |
213 | 212 |
/// more item is added to the container. |
214 | 213 |
/// |
215 | 214 |
/// The add() member function notificates the observer about more item |
216 | 215 |
/// is added to the container. It have to be overrided in the |
217 | 216 |
/// subclasses. |
218 | 217 |
virtual void add(const std::vector<Item>& items) = 0; |
219 | 218 |
|
220 | 219 |
/// \brief The member function to notificate the observer about an |
221 | 220 |
/// item is erased from the container. |
222 | 221 |
/// |
223 | 222 |
/// The erase() member function notificates the observer about an |
224 | 223 |
/// item is erased from the container. It have to be overrided in |
225 | 224 |
/// the subclasses. |
226 | 225 |
virtual void erase(const Item&) = 0; |
227 | 226 |
|
228 | 227 |
/// \brief The member function to notificate the observer about |
229 | 228 |
/// more item is erased from the container. |
230 | 229 |
/// |
231 | 230 |
/// The erase() member function notificates the observer about more item |
232 | 231 |
/// is erased from the container. It have to be overrided in the |
233 | 232 |
/// subclasses. |
234 | 233 |
virtual void erase(const std::vector<Item>& items) = 0; |
235 | 234 |
|
236 | 235 |
/// \brief The member function to notificate the observer about the |
237 | 236 |
/// container is built. |
238 | 237 |
/// |
239 | 238 |
/// The build() member function notificates the observer about the |
240 | 239 |
/// container is built from an empty container. It have to be |
241 | 240 |
/// overrided in the subclasses. |
242 | 241 |
|
243 | 242 |
virtual void build() = 0; |
244 | 243 |
|
245 | 244 |
/// \brief The member function to notificate the observer about all |
246 | 245 |
/// items are erased from the container. |
247 | 246 |
/// |
248 | 247 |
/// The clear() member function notificates the observer about all |
249 | 248 |
/// items are erased from the container. It have to be overrided in |
250 | 249 |
/// the subclasses. |
251 | 250 |
virtual void clear() = 0; |
252 | 251 |
|
253 | 252 |
}; |
254 | 253 |
|
255 | 254 |
protected: |
256 | 255 |
|
257 | 256 |
const Container* container; |
258 | 257 |
|
259 | 258 |
typedef std::list<ObserverBase*> Observers; |
260 | 259 |
Observers _observers; |
261 | 260 |
|
262 | 261 |
|
263 | 262 |
public: |
264 | 263 |
|
265 | 264 |
/// \brief Default constructor. |
266 | 265 |
/// |
267 | 266 |
/// The default constructor of the AlterationNotifier. |
268 | 267 |
/// It creates an empty notifier. |
269 | 268 |
AlterationNotifier() |
270 | 269 |
: container(0) {} |
271 | 270 |
|
272 | 271 |
/// \brief Constructor. |
273 | 272 |
/// |
274 | 273 |
/// Constructor with the observed container parameter. |
275 | 274 |
AlterationNotifier(const Container& _container) |
276 | 275 |
: container(&_container) {} |
277 | 276 |
|
278 | 277 |
/// \brief Copy Constructor of the AlterationNotifier. |
279 | 278 |
/// |
280 | 279 |
/// Copy constructor of the AlterationNotifier. |
281 | 280 |
/// It creates only an empty notifier because the copiable |
282 | 281 |
/// notifier's observers have to be registered still into that notifier. |
283 | 282 |
AlterationNotifier(const AlterationNotifier& _notifier) |
284 | 283 |
: container(_notifier.container) {} |
285 | 284 |
|
286 | 285 |
/// \brief Destructor. |
287 | 286 |
/// |
288 | 287 |
/// Destructor of the AlterationNotifier. |
289 | 288 |
/// |
290 | 289 |
~AlterationNotifier() { |
291 | 290 |
typename Observers::iterator it; |
292 | 291 |
for (it = _observers.begin(); it != _observers.end(); ++it) { |
293 | 292 |
(*it)->_notifier = 0; |
294 | 293 |
} |
295 | 294 |
} |
296 | 295 |
|
297 | 296 |
/// \brief Sets the container. |
298 | 297 |
/// |
299 | 298 |
/// Sets the container. |
300 | 299 |
void setContainer(const Container& _container) { |
301 | 300 |
container = &_container; |
302 | 301 |
} |
303 | 302 |
|
304 | 303 |
protected: |
305 | 304 |
|
306 | 305 |
AlterationNotifier& operator=(const AlterationNotifier&); |
307 | 306 |
|
308 | 307 |
public: |
309 | 308 |
|
310 | 309 |
|
311 | 310 |
|
312 | 311 |
/// \brief First item in the container. |
313 | 312 |
/// |
314 | 313 |
/// Returns the first item in the container. It is |
315 | 314 |
/// for start the iteration on the container. |
316 | 315 |
void first(Item& item) const { |
317 | 316 |
container->first(item); |
318 | 317 |
} |
319 | 318 |
|
320 | 319 |
/// \brief Next item in the container. |
321 | 320 |
/// |
322 | 321 |
/// Returns the next item in the container. It is |
323 | 322 |
/// for iterate on the container. |
324 | 323 |
void next(Item& item) const { |
325 | 324 |
container->next(item); |
326 | 325 |
} |
327 | 326 |
|
328 | 327 |
/// \brief Returns the id of the item. |
329 | 328 |
/// |
330 | 329 |
/// Returns the id of the item provided by the container. |
331 | 330 |
int id(const Item& item) const { |
332 | 331 |
return container->id(item); |
333 | 332 |
} |
334 | 333 |
|
335 | 334 |
/// \brief Returns the maximum id of the container. |
336 | 335 |
/// |
337 | 336 |
/// Returns the maximum id of the container. |
338 | 337 |
int maxId() const { |
339 | 338 |
return container->maxId(Item()); |
340 | 339 |
} |
341 | 340 |
|
342 | 341 |
protected: |
343 | 342 |
|
344 | 343 |
void attach(ObserverBase& observer) { |
345 | 344 |
observer._index = _observers.insert(_observers.begin(), &observer); |
346 | 345 |
observer._notifier = this; |
347 | 346 |
} |
348 | 347 |
|
349 | 348 |
void detach(ObserverBase& observer) { |
350 | 349 |
_observers.erase(observer._index); |
351 | 350 |
observer._index = _observers.end(); |
352 | 351 |
observer._notifier = 0; |
353 | 352 |
} |
354 | 353 |
|
355 | 354 |
public: |
356 | 355 |
|
357 | 356 |
/// \brief Notifies all the registed observers about an item added to |
358 | 357 |
/// the container. |
359 | 358 |
/// |
360 | 359 |
/// It notifies all the registed observers about an item added to |
361 | 360 |
/// the container. |
362 | 361 |
/// |
363 | 362 |
void add(const Item& item) { |
364 | 363 |
typename Observers::reverse_iterator it; |
365 | 364 |
try { |
366 | 365 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
367 | 366 |
(*it)->add(item); |
368 | 367 |
} |
369 | 368 |
} catch (...) { |
370 | 369 |
typename Observers::iterator jt; |
371 | 370 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
372 | 371 |
(*jt)->erase(item); |
373 | 372 |
} |
374 | 373 |
throw; |
375 | 374 |
} |
376 | 375 |
} |
377 | 376 |
|
378 | 377 |
/// \brief Notifies all the registed observers about more item added to |
379 | 378 |
/// the container. |
380 | 379 |
/// |
381 | 380 |
/// It notifies all the registed observers about more item added to |
382 | 381 |
/// the container. |
383 | 382 |
/// |
384 | 383 |
void add(const std::vector<Item>& items) { |
385 | 384 |
typename Observers::reverse_iterator it; |
386 | 385 |
try { |
387 | 386 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
388 | 387 |
(*it)->add(items); |
389 | 388 |
} |
390 | 389 |
} catch (...) { |
391 | 390 |
typename Observers::iterator jt; |
392 | 391 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
393 | 392 |
(*jt)->erase(items); |
394 | 393 |
} |
395 | 394 |
throw; |
396 | 395 |
} |
397 | 396 |
} |
398 | 397 |
|
399 | 398 |
/// \brief Notifies all the registed observers about an item erased from |
400 | 399 |
/// the container. |
401 | 400 |
/// |
402 | 401 |
/// It notifies all the registed observers about an item erased from |
403 | 402 |
/// the container. |
404 | 403 |
/// |
405 | 404 |
void erase(const Item& item) throw() { |
406 | 405 |
typename Observers::iterator it = _observers.begin(); |
407 | 406 |
while (it != _observers.end()) { |
408 | 407 |
try { |
409 | 408 |
(*it)->erase(item); |
410 | 409 |
++it; |
411 | 410 |
} catch (const ImmediateDetach&) { |
412 | 411 |
(*it)->_index = _observers.end(); |
413 | 412 |
(*it)->_notifier = 0; |
414 | 413 |
it = _observers.erase(it); |
415 | 414 |
} |
416 | 415 |
} |
417 | 416 |
} |
418 | 417 |
|
419 | 418 |
/// \brief Notifies all the registed observers about more item erased |
420 | 419 |
/// from the container. |
421 | 420 |
/// |
422 | 421 |
/// It notifies all the registed observers about more item erased from |
423 | 422 |
/// the container. |
424 | 423 |
/// |
425 | 424 |
void erase(const std::vector<Item>& items) { |
426 | 425 |
typename Observers::iterator it = _observers.begin(); |
427 | 426 |
while (it != _observers.end()) { |
428 | 427 |
try { |
429 | 428 |
(*it)->erase(items); |
430 | 429 |
++it; |
431 | 430 |
} catch (const ImmediateDetach&) { |
432 | 431 |
(*it)->_index = _observers.end(); |
433 | 432 |
(*it)->_notifier = 0; |
434 | 433 |
it = _observers.erase(it); |
435 | 434 |
} |
436 | 435 |
} |
437 | 436 |
} |
438 | 437 |
|
439 | 438 |
/// \brief Notifies all the registed observers about the container is |
440 | 439 |
/// built. |
441 | 440 |
/// |
442 | 441 |
/// Notifies all the registed observers about the container is built |
443 | 442 |
/// from an empty container. |
444 | 443 |
void build() { |
445 | 444 |
typename Observers::reverse_iterator it; |
446 | 445 |
try { |
447 | 446 |
for (it = _observers.rbegin(); it != _observers.rend(); ++it) { |
448 | 447 |
(*it)->build(); |
449 | 448 |
} |
450 | 449 |
} catch (...) { |
451 | 450 |
typename Observers::iterator jt; |
452 | 451 |
for (jt = it.base(); jt != _observers.end(); ++jt) { |
453 | 452 |
(*jt)->clear(); |
454 | 453 |
} |
455 | 454 |
throw; |
456 | 455 |
} |
457 | 456 |
} |
458 | 457 |
|
459 | 458 |
/// \brief Notifies all the registed observers about all items are |
460 | 459 |
/// erased. |
461 | 460 |
/// |
462 | 461 |
/// Notifies all the registed observers about all items are erased |
463 | 462 |
/// from the container. |
464 | 463 |
void clear() { |
465 | 464 |
typename Observers::iterator it = _observers.begin(); |
466 | 465 |
while (it != _observers.end()) { |
467 | 466 |
try { |
468 | 467 |
(*it)->clear(); |
469 | 468 |
++it; |
470 | 469 |
} catch (const ImmediateDetach&) { |
471 | 470 |
(*it)->_index = _observers.end(); |
472 | 471 |
(*it)->_notifier = 0; |
473 | 472 |
it = _observers.erase(it); |
474 | 473 |
} |
475 | 474 |
} |
476 | 475 |
} |
477 | 476 |
}; |
478 | 477 |
|
479 | 478 |
} |
480 | 479 |
|
481 | 480 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
21 | 21 |
|
22 | 22 |
|
23 | 23 |
#include <lemon/bits/array_map.h> |
24 | 24 |
#include <lemon/bits/vector_map.h> |
25 | 25 |
//#include <lemon/bits/debug_map.h> |
26 | 26 |
|
27 | 27 |
///\ingroup graphbits |
28 | 28 |
///\file |
29 | 29 |
///\brief Graph maps that construct and destruct their elements dynamically. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
|
34 | 34 |
//#ifndef LEMON_USE_DEBUG_MAP |
35 | 35 |
|
36 | 36 |
template <typename _Graph, typename _Item, typename _Value> |
37 | 37 |
struct DefaultMapSelector { |
38 | 38 |
typedef ArrayMap<_Graph, _Item, _Value> Map; |
39 | 39 |
}; |
40 | 40 |
|
41 | 41 |
// bool |
42 | 42 |
template <typename _Graph, typename _Item> |
43 | 43 |
struct DefaultMapSelector<_Graph, _Item, bool> { |
44 | 44 |
typedef VectorMap<_Graph, _Item, bool> Map; |
45 | 45 |
}; |
46 | 46 |
|
47 | 47 |
// char |
48 | 48 |
template <typename _Graph, typename _Item> |
49 | 49 |
struct DefaultMapSelector<_Graph, _Item, char> { |
50 | 50 |
typedef VectorMap<_Graph, _Item, char> Map; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
template <typename _Graph, typename _Item> |
54 | 54 |
struct DefaultMapSelector<_Graph, _Item, signed char> { |
55 | 55 |
typedef VectorMap<_Graph, _Item, signed char> Map; |
56 | 56 |
}; |
57 | 57 |
|
58 | 58 |
template <typename _Graph, typename _Item> |
59 | 59 |
struct DefaultMapSelector<_Graph, _Item, unsigned char> { |
60 | 60 |
typedef VectorMap<_Graph, _Item, unsigned char> Map; |
61 | 61 |
}; |
62 | 62 |
|
63 | 63 |
|
64 | 64 |
// int |
65 | 65 |
template <typename _Graph, typename _Item> |
66 | 66 |
struct DefaultMapSelector<_Graph, _Item, signed int> { |
67 | 67 |
typedef VectorMap<_Graph, _Item, signed int> Map; |
68 | 68 |
}; |
69 | 69 |
|
70 | 70 |
template <typename _Graph, typename _Item> |
71 | 71 |
struct DefaultMapSelector<_Graph, _Item, unsigned int> { |
72 | 72 |
typedef VectorMap<_Graph, _Item, unsigned int> Map; |
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
// short |
77 | 77 |
template <typename _Graph, typename _Item> |
78 | 78 |
struct DefaultMapSelector<_Graph, _Item, signed short> { |
79 | 79 |
typedef VectorMap<_Graph, _Item, signed short> Map; |
80 | 80 |
}; |
81 | 81 |
|
82 | 82 |
template <typename _Graph, typename _Item> |
83 | 83 |
struct DefaultMapSelector<_Graph, _Item, unsigned short> { |
84 | 84 |
typedef VectorMap<_Graph, _Item, unsigned short> Map; |
85 | 85 |
}; |
86 | 86 |
|
87 | 87 |
|
88 | 88 |
// long |
89 | 89 |
template <typename _Graph, typename _Item> |
90 | 90 |
struct DefaultMapSelector<_Graph, _Item, signed long> { |
91 | 91 |
typedef VectorMap<_Graph, _Item, signed long> Map; |
92 | 92 |
}; |
93 | 93 |
|
94 | 94 |
template <typename _Graph, typename _Item> |
95 | 95 |
struct DefaultMapSelector<_Graph, _Item, unsigned long> { |
96 | 96 |
typedef VectorMap<_Graph, _Item, unsigned long> Map; |
97 | 97 |
}; |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
#if defined __GNUC__ && !defined __STRICT_ANSI__ |
101 | 101 |
|
102 | 102 |
// long long |
103 | 103 |
template <typename _Graph, typename _Item> |
104 | 104 |
struct DefaultMapSelector<_Graph, _Item, signed long long> { |
105 | 105 |
typedef VectorMap<_Graph, _Item, signed long long> Map; |
106 | 106 |
}; |
107 | 107 |
|
108 | 108 |
template <typename _Graph, typename _Item> |
109 | 109 |
struct DefaultMapSelector<_Graph, _Item, unsigned long long> { |
110 | 110 |
typedef VectorMap<_Graph, _Item, unsigned long long> Map; |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
#endif |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
// float |
117 | 117 |
template <typename _Graph, typename _Item> |
118 | 118 |
struct DefaultMapSelector<_Graph, _Item, float> { |
119 | 119 |
typedef VectorMap<_Graph, _Item, float> Map; |
120 | 120 |
}; |
121 | 121 |
|
122 | 122 |
|
123 | 123 |
// double |
124 | 124 |
template <typename _Graph, typename _Item> |
125 | 125 |
struct DefaultMapSelector<_Graph, _Item, double> { |
126 | 126 |
typedef VectorMap<_Graph, _Item, double> Map; |
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
|
130 | 130 |
// long double |
131 | 131 |
template <typename _Graph, typename _Item> |
132 | 132 |
struct DefaultMapSelector<_Graph, _Item, long double> { |
133 | 133 |
typedef VectorMap<_Graph, _Item, long double> Map; |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
|
137 | 137 |
// pointer |
138 | 138 |
template <typename _Graph, typename _Item, typename _Ptr> |
139 | 139 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> { |
140 | 140 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
141 | 141 |
}; |
142 | 142 |
|
143 | 143 |
// #else |
144 | 144 |
|
145 | 145 |
// template <typename _Graph, typename _Item, typename _Value> |
146 | 146 |
// struct DefaultMapSelector { |
147 | 147 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
148 | 148 |
// }; |
149 | 149 |
|
150 | 150 |
// #endif |
151 | 151 |
|
152 |
/// |
|
152 |
/// DefaultMap class |
|
153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
154 | 154 |
class DefaultMap |
155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map { |
156 | 156 |
public: |
157 | 157 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
158 | 158 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
159 | 159 |
|
160 | 160 |
typedef typename Parent::Graph Graph; |
161 | 161 |
typedef typename Parent::Value Value; |
162 | 162 |
|
163 | 163 |
explicit DefaultMap(const Graph& graph) : Parent(graph) {} |
164 | 164 |
DefaultMap(const Graph& graph, const Value& value) |
165 | 165 |
: Parent(graph, value) {} |
166 | 166 |
|
167 | 167 |
DefaultMap& operator=(const DefaultMap& cmap) { |
168 | 168 |
return operator=<DefaultMap>(cmap); |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
template <typename CMap> |
172 | 172 |
DefaultMap& operator=(const CMap& cmap) { |
173 | 173 |
Parent::operator=(cmap); |
174 | 174 |
return *this; |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
}; |
178 | 178 |
|
179 | 179 |
} |
180 | 180 |
|
181 | 181 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COLOR_H |
20 | 20 |
#define LEMON_COLOR_H |
21 | 21 |
|
22 | 22 |
#include<vector> |
23 | 23 |
#include<lemon/math.h> |
24 | 24 |
#include<lemon/maps.h> |
25 | 25 |
|
26 | 26 |
|
27 | 27 |
///\ingroup misc |
28 | 28 |
///\file |
29 | 29 |
///\brief Tools to manage RGB colors. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
|
34 | 34 |
/// \addtogroup misc |
35 | 35 |
/// @{ |
36 | 36 |
|
37 | 37 |
///Data structure representing RGB colors. |
38 | 38 |
|
39 | 39 |
///Data structure representing RGB colors. |
40 | 40 |
class Color |
41 | 41 |
{ |
42 | 42 |
double _r,_g,_b; |
43 | 43 |
public: |
44 | 44 |
///Default constructor |
45 | 45 |
Color() {} |
46 | 46 |
///Constructor |
47 | 47 |
Color(double r,double g,double b) :_r(r),_g(g),_b(b) {}; |
48 | 48 |
///Set the red component |
49 | 49 |
double & red() {return _r;} |
50 | 50 |
///Return the red component |
51 | 51 |
const double & red() const {return _r;} |
52 | 52 |
///Set the green component |
53 | 53 |
double & green() {return _g;} |
54 | 54 |
///Return the green component |
55 | 55 |
const double & green() const {return _g;} |
56 | 56 |
///Set the blue component |
57 | 57 |
double & blue() {return _b;} |
58 | 58 |
///Return the blue component |
59 | 59 |
const double & blue() const {return _b;} |
60 | 60 |
///Set the color components |
61 | 61 |
void set(double r,double g,double b) { _r=r;_g=g;_b=b; }; |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
/// White color constant |
65 | 65 |
extern const Color WHITE; |
66 | 66 |
/// Black color constant |
67 | 67 |
extern const Color BLACK; |
68 | 68 |
/// Red color constant |
69 | 69 |
extern const Color RED; |
70 | 70 |
/// Green color constant |
71 | 71 |
extern const Color GREEN; |
72 | 72 |
/// Blue color constant |
73 | 73 |
extern const Color BLUE; |
74 | 74 |
/// Yellow color constant |
75 | 75 |
extern const Color YELLOW; |
76 | 76 |
/// Magenta color constant |
77 | 77 |
extern const Color MAGENTA; |
78 | 78 |
/// Cyan color constant |
79 | 79 |
extern const Color CYAN; |
80 | 80 |
/// Grey color constant |
81 | 81 |
extern const Color GREY; |
82 | 82 |
/// Dark red color constant |
83 | 83 |
extern const Color DARK_RED; |
84 | 84 |
/// Dark green color constant |
85 | 85 |
extern const Color DARK_GREEN; |
86 | 86 |
/// Drak blue color constant |
87 | 87 |
extern const Color DARK_BLUE; |
88 | 88 |
/// Dark yellow color constant |
89 | 89 |
extern const Color DARK_YELLOW; |
90 | 90 |
/// Dark magenta color constant |
91 | 91 |
extern const Color DARK_MAGENTA; |
92 | 92 |
/// Dark cyan color constant |
93 | 93 |
extern const Color DARK_CYAN; |
94 | 94 |
|
95 |
///Map <tt>int</tt>s to different |
|
95 |
///Map <tt>int</tt>s to different <tt>Color</tt>s |
|
96 | 96 |
|
97 | 97 |
///This map assigns one of the predefined \ref Color "Color"s to |
98 | 98 |
///each <tt>int</tt>. It is possible to change the colors as well as |
99 | 99 |
///their number. The integer range is cyclically mapped to the |
100 | 100 |
///provided set of colors. |
101 | 101 |
/// |
102 | 102 |
///This is a true \ref concepts::ReferenceMap "reference map", so |
103 | 103 |
///you can also change the actual colors. |
104 | 104 |
|
105 | 105 |
class Palette : public MapBase<int,Color> |
106 | 106 |
{ |
107 | 107 |
std::vector<Color> colors; |
108 | 108 |
public: |
109 | 109 |
///Constructor |
110 | 110 |
|
111 | 111 |
///Constructor. |
112 | 112 |
///\param have_white Indicates whether white is among the |
113 | 113 |
///provided initial colors (\c true) or not (\c false). If it is true, |
114 | 114 |
///white will be assigned to \c 0. |
115 | 115 |
///\param num The number of the allocated colors. If it is \c -1, |
116 | 116 |
///the default color configuration is set up (26 color plus optionaly the |
117 | 117 |
///white). If \c num is less then 26/27 then the default color |
118 | 118 |
///list is cut. Otherwise the color list is filled repeatedly with |
119 | 119 |
///the default color list. (The colors can be changed later on.) |
120 | 120 |
Palette(bool have_white=false,int num=-1) |
121 | 121 |
{ |
122 | 122 |
if (num==0) return; |
123 | 123 |
do { |
124 | 124 |
if(have_white) colors.push_back(Color(1,1,1)); |
125 | 125 |
|
126 | 126 |
colors.push_back(Color(0,0,0)); |
127 | 127 |
colors.push_back(Color(1,0,0)); |
128 | 128 |
colors.push_back(Color(0,1,0)); |
129 | 129 |
colors.push_back(Color(0,0,1)); |
130 | 130 |
colors.push_back(Color(1,1,0)); |
131 | 131 |
colors.push_back(Color(1,0,1)); |
132 | 132 |
colors.push_back(Color(0,1,1)); |
133 | 133 |
|
134 | 134 |
colors.push_back(Color(.5,0,0)); |
135 | 135 |
colors.push_back(Color(0,.5,0)); |
136 | 136 |
colors.push_back(Color(0,0,.5)); |
137 | 137 |
colors.push_back(Color(.5,.5,0)); |
138 | 138 |
colors.push_back(Color(.5,0,.5)); |
139 | 139 |
colors.push_back(Color(0,.5,.5)); |
140 | 140 |
|
141 | 141 |
colors.push_back(Color(.5,.5,.5)); |
142 | 142 |
colors.push_back(Color(1,.5,.5)); |
143 | 143 |
colors.push_back(Color(.5,1,.5)); |
144 | 144 |
colors.push_back(Color(.5,.5,1)); |
145 | 145 |
colors.push_back(Color(1,1,.5)); |
146 | 146 |
colors.push_back(Color(1,.5,1)); |
147 | 147 |
colors.push_back(Color(.5,1,1)); |
148 | 148 |
|
149 | 149 |
colors.push_back(Color(1,.5,0)); |
150 | 150 |
colors.push_back(Color(.5,1,0)); |
151 | 151 |
colors.push_back(Color(1,0,.5)); |
152 | 152 |
colors.push_back(Color(0,1,.5)); |
153 | 153 |
colors.push_back(Color(0,.5,1)); |
154 | 154 |
colors.push_back(Color(.5,0,1)); |
155 | 155 |
} while(int(colors.size())<num); |
156 | 156 |
if(num>=0) colors.resize(num); |
157 | 157 |
} |
158 | 158 |
///\e |
159 | 159 |
Color &operator[](int i) |
160 | 160 |
{ |
161 | 161 |
return colors[i%colors.size()]; |
162 | 162 |
} |
163 | 163 |
///\e |
164 | 164 |
const Color &operator[](int i) const |
165 | 165 |
{ |
166 | 166 |
return colors[i%colors.size()]; |
167 | 167 |
} |
168 | 168 |
///\e |
169 | 169 |
void set(int i,const Color &c) |
170 | 170 |
{ |
171 | 171 |
colors[i%colors.size()]=c; |
172 | 172 |
} |
173 | 173 |
///Adds a new color to the end of the color list. |
174 | 174 |
void add(const Color &c) |
175 | 175 |
{ |
176 | 176 |
colors.push_back(c); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
///Sets the number of the existing colors. |
180 | 180 |
void resize(int s) { colors.resize(s);} |
181 | 181 |
///Returns the number of the existing colors. |
182 | 182 |
int size() const { return int(colors.size());} |
183 | 183 |
}; |
184 | 184 |
|
185 | 185 |
///Returns a visibly distinct \ref Color |
186 | 186 |
|
187 | 187 |
///Returns a \ref Color which is as different from the given parameter |
188 | 188 |
///as it is possible. |
189 | 189 |
inline Color distantColor(const Color &c) |
190 | 190 |
{ |
191 | 191 |
return Color(c.red()<.5?1:0,c.green()<.5?1:0,c.blue()<.5?1:0); |
192 | 192 |
} |
193 | 193 |
///Returns black for light colors and white for the dark ones. |
194 | 194 |
|
195 | 195 |
///Returns black for light colors and white for the dark ones. |
196 | 196 |
inline Color distantBW(const Color &c){ |
197 | 197 |
return (.2125*c.red()+.7154*c.green()+.0721*c.blue())<.5 ? WHITE : BLACK; |
198 | 198 |
} |
199 | 199 |
|
200 | 200 |
/// @} |
201 | 201 |
|
202 | 202 |
} //END OF NAMESPACE LEMON |
203 | 203 |
|
204 | 204 |
#endif // LEMON_COLOR_H |
... | ... |
@@ -217,1281 +217,1281 @@ |
217 | 217 |
/// \brief Converter from arc to edge. |
218 | 218 |
/// |
219 | 219 |
/// Besides the core graph item functionality each arc should |
220 | 220 |
/// be convertible to the represented edge. |
221 | 221 |
Edge(const Arc&) {} |
222 | 222 |
/// \brief Assign arc to edge. |
223 | 223 |
/// |
224 | 224 |
/// Besides the core graph item functionality each arc should |
225 | 225 |
/// be convertible to the represented edge. |
226 | 226 |
Edge& operator=(const Arc&) { return *this; } |
227 | 227 |
}; |
228 | 228 |
|
229 | 229 |
/// \brief Returns the direction of the arc. |
230 | 230 |
/// |
231 | 231 |
/// Returns the direction of the arc. Each arc represents an |
232 | 232 |
/// edge with a direction. It gives back the |
233 | 233 |
/// direction. |
234 | 234 |
bool direction(const Arc&) const { return true; } |
235 | 235 |
|
236 | 236 |
/// \brief Returns the directed arc. |
237 | 237 |
/// |
238 | 238 |
/// Returns the directed arc from its direction and the |
239 | 239 |
/// represented edge. |
240 | 240 |
Arc direct(const Edge&, bool) const { return INVALID;} |
241 | 241 |
|
242 | 242 |
/// \brief Returns the directed arc. |
243 | 243 |
/// |
244 | 244 |
/// Returns the directed arc from its source and the |
245 | 245 |
/// represented edge. |
246 | 246 |
Arc direct(const Edge&, const Node&) const { return INVALID;} |
247 | 247 |
|
248 | 248 |
/// \brief Returns the opposite arc. |
249 | 249 |
/// |
250 | 250 |
/// Returns the opposite arc. It is the arc representing the |
251 | 251 |
/// same edge and has opposite direction. |
252 | 252 |
Arc oppositeArc(const Arc&) const { return INVALID;} |
253 | 253 |
|
254 | 254 |
/// \brief Gives back one ending of an edge. |
255 | 255 |
/// |
256 | 256 |
/// Gives back one ending of an edge. |
257 | 257 |
Node u(const Edge&) const { return INVALID;} |
258 | 258 |
|
259 | 259 |
/// \brief Gives back the other ending of an edge. |
260 | 260 |
/// |
261 | 261 |
/// Gives back the other ending of an edge. |
262 | 262 |
Node v(const Edge&) const { return INVALID;} |
263 | 263 |
|
264 | 264 |
template <typename _Graph> |
265 | 265 |
struct Constraints { |
266 | 266 |
typedef typename _Graph::Node Node; |
267 | 267 |
typedef typename _Graph::Arc Arc; |
268 | 268 |
typedef typename _Graph::Edge Edge; |
269 | 269 |
|
270 | 270 |
void constraints() { |
271 | 271 |
checkConcept<BaseDigraphComponent, _Graph>(); |
272 | 272 |
checkConcept<GraphItem<'u'>, Edge>(); |
273 | 273 |
{ |
274 | 274 |
Node n; |
275 | 275 |
Edge ue(INVALID); |
276 | 276 |
Arc e; |
277 | 277 |
n = graph.u(ue); |
278 | 278 |
n = graph.v(ue); |
279 | 279 |
e = graph.direct(ue, true); |
280 | 280 |
e = graph.direct(ue, n); |
281 | 281 |
e = graph.oppositeArc(e); |
282 | 282 |
ue = e; |
283 | 283 |
bool d = graph.direction(e); |
284 | 284 |
ignore_unused_variable_warning(d); |
285 | 285 |
} |
286 | 286 |
} |
287 | 287 |
|
288 | 288 |
const _Graph& graph; |
289 | 289 |
}; |
290 | 290 |
|
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
/// \brief An empty idable base digraph class. |
294 | 294 |
/// |
295 | 295 |
/// This class provides beside the core digraph features |
296 | 296 |
/// core id functions for the digraph structure. |
297 | 297 |
/// The most of the base digraphs should be conform to this concept. |
298 | 298 |
/// The id's are unique and immutable. |
299 | 299 |
template <typename _Base = BaseDigraphComponent> |
300 | 300 |
class IDableDigraphComponent : public _Base { |
301 | 301 |
public: |
302 | 302 |
|
303 | 303 |
typedef _Base Base; |
304 | 304 |
typedef typename Base::Node Node; |
305 | 305 |
typedef typename Base::Arc Arc; |
306 | 306 |
|
307 | 307 |
/// \brief Gives back an unique integer id for the Node. |
308 | 308 |
/// |
309 | 309 |
/// Gives back an unique integer id for the Node. |
310 | 310 |
/// |
311 | 311 |
int id(const Node&) const { return -1;} |
312 | 312 |
|
313 | 313 |
/// \brief Gives back the node by the unique id. |
314 | 314 |
/// |
315 | 315 |
/// Gives back the node by the unique id. |
316 | 316 |
/// If the digraph does not contain node with the given id |
317 | 317 |
/// then the result of the function is undetermined. |
318 | 318 |
Node nodeFromId(int) const { return INVALID;} |
319 | 319 |
|
320 | 320 |
/// \brief Gives back an unique integer id for the Arc. |
321 | 321 |
/// |
322 | 322 |
/// Gives back an unique integer id for the Arc. |
323 | 323 |
/// |
324 | 324 |
int id(const Arc&) const { return -1;} |
325 | 325 |
|
326 | 326 |
/// \brief Gives back the arc by the unique id. |
327 | 327 |
/// |
328 | 328 |
/// Gives back the arc by the unique id. |
329 | 329 |
/// If the digraph does not contain arc with the given id |
330 | 330 |
/// then the result of the function is undetermined. |
331 | 331 |
Arc arcFromId(int) const { return INVALID;} |
332 | 332 |
|
333 | 333 |
/// \brief Gives back an integer greater or equal to the maximum |
334 | 334 |
/// Node id. |
335 | 335 |
/// |
336 | 336 |
/// Gives back an integer greater or equal to the maximum Node |
337 | 337 |
/// id. |
338 | 338 |
int maxNodeId() const { return -1;} |
339 | 339 |
|
340 | 340 |
/// \brief Gives back an integer greater or equal to the maximum |
341 | 341 |
/// Arc id. |
342 | 342 |
/// |
343 | 343 |
/// Gives back an integer greater or equal to the maximum Arc |
344 | 344 |
/// id. |
345 | 345 |
int maxArcId() const { return -1;} |
346 | 346 |
|
347 | 347 |
template <typename _Digraph> |
348 | 348 |
struct Constraints { |
349 | 349 |
|
350 | 350 |
void constraints() { |
351 | 351 |
checkConcept<Base, _Digraph >(); |
352 | 352 |
typename _Digraph::Node node; |
353 | 353 |
int nid = digraph.id(node); |
354 | 354 |
nid = digraph.id(node); |
355 | 355 |
node = digraph.nodeFromId(nid); |
356 | 356 |
typename _Digraph::Arc arc; |
357 | 357 |
int eid = digraph.id(arc); |
358 | 358 |
eid = digraph.id(arc); |
359 | 359 |
arc = digraph.arcFromId(eid); |
360 | 360 |
|
361 | 361 |
nid = digraph.maxNodeId(); |
362 | 362 |
ignore_unused_variable_warning(nid); |
363 | 363 |
eid = digraph.maxArcId(); |
364 | 364 |
ignore_unused_variable_warning(eid); |
365 | 365 |
} |
366 | 366 |
|
367 | 367 |
const _Digraph& digraph; |
368 | 368 |
}; |
369 | 369 |
}; |
370 | 370 |
|
371 | 371 |
/// \brief An empty idable base undirected graph class. |
372 | 372 |
/// |
373 | 373 |
/// This class provides beside the core undirected graph features |
374 | 374 |
/// core id functions for the undirected graph structure. The |
375 | 375 |
/// most of the base undirected graphs should be conform to this |
376 | 376 |
/// concept. The id's are unique and immutable. |
377 | 377 |
template <typename _Base = BaseGraphComponent> |
378 | 378 |
class IDableGraphComponent : public IDableDigraphComponent<_Base> { |
379 | 379 |
public: |
380 | 380 |
|
381 | 381 |
typedef _Base Base; |
382 | 382 |
typedef typename Base::Edge Edge; |
383 | 383 |
|
384 | 384 |
using IDableDigraphComponent<_Base>::id; |
385 | 385 |
|
386 | 386 |
/// \brief Gives back an unique integer id for the Edge. |
387 | 387 |
/// |
388 | 388 |
/// Gives back an unique integer id for the Edge. |
389 | 389 |
/// |
390 | 390 |
int id(const Edge&) const { return -1;} |
391 | 391 |
|
392 | 392 |
/// \brief Gives back the edge by the unique id. |
393 | 393 |
/// |
394 | 394 |
/// Gives back the edge by the unique id. If the |
395 | 395 |
/// graph does not contain arc with the given id then the |
396 | 396 |
/// result of the function is undetermined. |
397 | 397 |
Edge edgeFromId(int) const { return INVALID;} |
398 | 398 |
|
399 | 399 |
/// \brief Gives back an integer greater or equal to the maximum |
400 | 400 |
/// Edge id. |
401 | 401 |
/// |
402 | 402 |
/// Gives back an integer greater or equal to the maximum Edge |
403 | 403 |
/// id. |
404 | 404 |
int maxEdgeId() const { return -1;} |
405 | 405 |
|
406 | 406 |
template <typename _Graph> |
407 | 407 |
struct Constraints { |
408 | 408 |
|
409 | 409 |
void constraints() { |
410 | 410 |
checkConcept<Base, _Graph >(); |
411 | 411 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
412 | 412 |
typename _Graph::Edge edge; |
413 | 413 |
int ueid = graph.id(edge); |
414 | 414 |
ueid = graph.id(edge); |
415 | 415 |
edge = graph.edgeFromId(ueid); |
416 | 416 |
ueid = graph.maxEdgeId(); |
417 | 417 |
ignore_unused_variable_warning(ueid); |
418 | 418 |
} |
419 | 419 |
|
420 | 420 |
const _Graph& graph; |
421 | 421 |
}; |
422 | 422 |
}; |
423 | 423 |
|
424 | 424 |
/// \brief Skeleton class for graph NodeIt and ArcIt |
425 | 425 |
/// |
426 | 426 |
/// Skeleton class for graph NodeIt and ArcIt. |
427 | 427 |
/// |
428 | 428 |
template <typename _Graph, typename _Item> |
429 | 429 |
class GraphItemIt : public _Item { |
430 | 430 |
public: |
431 | 431 |
/// \brief Default constructor. |
432 | 432 |
/// |
433 | 433 |
/// @warning The default constructor sets the iterator |
434 | 434 |
/// to an undefined value. |
435 | 435 |
GraphItemIt() {} |
436 | 436 |
/// \brief Copy constructor. |
437 | 437 |
/// |
438 | 438 |
/// Copy constructor. |
439 | 439 |
/// |
440 | 440 |
GraphItemIt(const GraphItemIt& ) {} |
441 | 441 |
/// \brief Sets the iterator to the first item. |
442 | 442 |
/// |
443 | 443 |
/// Sets the iterator to the first item of \c the graph. |
444 | 444 |
/// |
445 | 445 |
explicit GraphItemIt(const _Graph&) {} |
446 | 446 |
/// \brief Invalid constructor \& conversion. |
447 | 447 |
/// |
448 | 448 |
/// This constructor initializes the item to be invalid. |
449 | 449 |
/// \sa Invalid for more details. |
450 | 450 |
GraphItemIt(Invalid) {} |
451 | 451 |
/// \brief Assign operator for items. |
452 | 452 |
/// |
453 | 453 |
/// The items are assignable. |
454 | 454 |
/// |
455 | 455 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; } |
456 | 456 |
/// \brief Next item. |
457 | 457 |
/// |
458 | 458 |
/// Assign the iterator to the next item. |
459 | 459 |
/// |
460 | 460 |
GraphItemIt& operator++() { return *this; } |
461 | 461 |
/// \brief Equality operator |
462 | 462 |
/// |
463 | 463 |
/// Two iterators are equal if and only if they point to the |
464 | 464 |
/// same object or both are invalid. |
465 | 465 |
bool operator==(const GraphItemIt&) const { return true;} |
466 | 466 |
/// \brief Inequality operator |
467 | 467 |
/// |
468 | 468 |
/// \sa operator==(Node n) |
469 | 469 |
/// |
470 | 470 |
bool operator!=(const GraphItemIt&) const { return true;} |
471 | 471 |
|
472 | 472 |
template<typename _GraphItemIt> |
473 | 473 |
struct Constraints { |
474 | 474 |
void constraints() { |
475 | 475 |
_GraphItemIt it1(g); |
476 | 476 |
_GraphItemIt it2; |
477 | 477 |
|
478 | 478 |
it2 = ++it1; |
479 | 479 |
++it2 = it1; |
480 | 480 |
++(++it1); |
481 | 481 |
|
482 | 482 |
_Item bi = it1; |
483 | 483 |
bi = it2; |
484 | 484 |
} |
485 | 485 |
_Graph& g; |
486 | 486 |
}; |
487 | 487 |
}; |
488 | 488 |
|
489 | 489 |
/// \brief Skeleton class for graph InArcIt and OutArcIt |
490 | 490 |
/// |
491 | 491 |
/// \note Because InArcIt and OutArcIt may not inherit from the same |
492 | 492 |
/// base class, the _selector is a additional template parameter. For |
493 | 493 |
/// InArcIt you should instantiate it with character 'i' and for |
494 | 494 |
/// OutArcIt with 'o'. |
495 | 495 |
template <typename _Graph, |
496 | 496 |
typename _Item = typename _Graph::Arc, |
497 | 497 |
typename _Base = typename _Graph::Node, |
498 | 498 |
char _selector = '0'> |
499 | 499 |
class GraphIncIt : public _Item { |
500 | 500 |
public: |
501 | 501 |
/// \brief Default constructor. |
502 | 502 |
/// |
503 | 503 |
/// @warning The default constructor sets the iterator |
504 | 504 |
/// to an undefined value. |
505 | 505 |
GraphIncIt() {} |
506 | 506 |
/// \brief Copy constructor. |
507 | 507 |
/// |
508 | 508 |
/// Copy constructor. |
509 | 509 |
/// |
510 | 510 |
GraphIncIt(GraphIncIt const& gi) : _Item(gi) {} |
511 | 511 |
/// \brief Sets the iterator to the first arc incoming into or outgoing |
512 | 512 |
/// from the node. |
513 | 513 |
/// |
514 | 514 |
/// Sets the iterator to the first arc incoming into or outgoing |
515 | 515 |
/// from the node. |
516 | 516 |
/// |
517 | 517 |
explicit GraphIncIt(const _Graph&, const _Base&) {} |
518 | 518 |
/// \brief Invalid constructor \& conversion. |
519 | 519 |
/// |
520 | 520 |
/// This constructor initializes the item to be invalid. |
521 | 521 |
/// \sa Invalid for more details. |
522 | 522 |
GraphIncIt(Invalid) {} |
523 | 523 |
/// \brief Assign operator for iterators. |
524 | 524 |
/// |
525 | 525 |
/// The iterators are assignable. |
526 | 526 |
/// |
527 | 527 |
GraphIncIt& operator=(GraphIncIt const&) { return *this; } |
528 | 528 |
/// \brief Next item. |
529 | 529 |
/// |
530 | 530 |
/// Assign the iterator to the next item. |
531 | 531 |
/// |
532 | 532 |
GraphIncIt& operator++() { return *this; } |
533 | 533 |
|
534 | 534 |
/// \brief Equality operator |
535 | 535 |
/// |
536 | 536 |
/// Two iterators are equal if and only if they point to the |
537 | 537 |
/// same object or both are invalid. |
538 | 538 |
bool operator==(const GraphIncIt&) const { return true;} |
539 | 539 |
|
540 | 540 |
/// \brief Inequality operator |
541 | 541 |
/// |
542 | 542 |
/// \sa operator==(Node n) |
543 | 543 |
/// |
544 | 544 |
bool operator!=(const GraphIncIt&) const { return true;} |
545 | 545 |
|
546 | 546 |
template <typename _GraphIncIt> |
547 | 547 |
struct Constraints { |
548 | 548 |
void constraints() { |
549 | 549 |
checkConcept<GraphItem<_selector>, _GraphIncIt>(); |
550 | 550 |
_GraphIncIt it1(graph, node); |
551 | 551 |
_GraphIncIt it2; |
552 | 552 |
|
553 | 553 |
it2 = ++it1; |
554 | 554 |
++it2 = it1; |
555 | 555 |
++(++it1); |
556 | 556 |
_Item e = it1; |
557 | 557 |
e = it2; |
558 | 558 |
|
559 | 559 |
} |
560 | 560 |
|
561 | 561 |
_Item arc; |
562 | 562 |
_Base node; |
563 | 563 |
_Graph graph; |
564 | 564 |
_GraphIncIt it; |
565 | 565 |
}; |
566 | 566 |
}; |
567 | 567 |
|
568 | 568 |
|
569 | 569 |
/// \brief An empty iterable digraph class. |
570 | 570 |
/// |
571 | 571 |
/// This class provides beside the core digraph features |
572 | 572 |
/// iterator based iterable interface for the digraph structure. |
573 | 573 |
/// This concept is part of the Digraph concept. |
574 | 574 |
template <typename _Base = BaseDigraphComponent> |
575 | 575 |
class IterableDigraphComponent : public _Base { |
576 | 576 |
|
577 | 577 |
public: |
578 | 578 |
|
579 | 579 |
typedef _Base Base; |
580 | 580 |
typedef typename Base::Node Node; |
581 | 581 |
typedef typename Base::Arc Arc; |
582 | 582 |
|
583 | 583 |
typedef IterableDigraphComponent Digraph; |
584 | 584 |
|
585 | 585 |
/// \name Base iteration |
586 | 586 |
/// |
587 | 587 |
/// This interface provides functions for iteration on digraph items |
588 | 588 |
/// |
589 | 589 |
/// @{ |
590 | 590 |
|
591 | 591 |
/// \brief Gives back the first node in the iterating order. |
592 | 592 |
/// |
593 | 593 |
/// Gives back the first node in the iterating order. |
594 | 594 |
/// |
595 | 595 |
void first(Node&) const {} |
596 | 596 |
|
597 | 597 |
/// \brief Gives back the next node in the iterating order. |
598 | 598 |
/// |
599 | 599 |
/// Gives back the next node in the iterating order. |
600 | 600 |
/// |
601 | 601 |
void next(Node&) const {} |
602 | 602 |
|
603 | 603 |
/// \brief Gives back the first arc in the iterating order. |
604 | 604 |
/// |
605 | 605 |
/// Gives back the first arc in the iterating order. |
606 | 606 |
/// |
607 | 607 |
void first(Arc&) const {} |
608 | 608 |
|
609 | 609 |
/// \brief Gives back the next arc in the iterating order. |
610 | 610 |
/// |
611 | 611 |
/// Gives back the next arc in the iterating order. |
612 | 612 |
/// |
613 | 613 |
void next(Arc&) const {} |
614 | 614 |
|
615 | 615 |
|
616 | 616 |
/// \brief Gives back the first of the arcs point to the given |
617 | 617 |
/// node. |
618 | 618 |
/// |
619 | 619 |
/// Gives back the first of the arcs point to the given node. |
620 | 620 |
/// |
621 | 621 |
void firstIn(Arc&, const Node&) const {} |
622 | 622 |
|
623 | 623 |
/// \brief Gives back the next of the arcs points to the given |
624 | 624 |
/// node. |
625 | 625 |
/// |
626 | 626 |
/// Gives back the next of the arcs points to the given node. |
627 | 627 |
/// |
628 | 628 |
void nextIn(Arc&) const {} |
629 | 629 |
|
630 | 630 |
/// \brief Gives back the first of the arcs start from the |
631 | 631 |
/// given node. |
632 | 632 |
/// |
633 | 633 |
/// Gives back the first of the arcs start from the given node. |
634 | 634 |
/// |
635 | 635 |
void firstOut(Arc&, const Node&) const {} |
636 | 636 |
|
637 | 637 |
/// \brief Gives back the next of the arcs start from the given |
638 | 638 |
/// node. |
639 | 639 |
/// |
640 | 640 |
/// Gives back the next of the arcs start from the given node. |
641 | 641 |
/// |
642 | 642 |
void nextOut(Arc&) const {} |
643 | 643 |
|
644 | 644 |
/// @} |
645 | 645 |
|
646 | 646 |
/// \name Class based iteration |
647 | 647 |
/// |
648 | 648 |
/// This interface provides functions for iteration on digraph items |
649 | 649 |
/// |
650 | 650 |
/// @{ |
651 | 651 |
|
652 | 652 |
/// \brief This iterator goes through each node. |
653 | 653 |
/// |
654 | 654 |
/// This iterator goes through each node. |
655 | 655 |
/// |
656 | 656 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
657 | 657 |
|
658 | 658 |
/// \brief This iterator goes through each node. |
659 | 659 |
/// |
660 | 660 |
/// This iterator goes through each node. |
661 | 661 |
/// |
662 | 662 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
663 | 663 |
|
664 | 664 |
/// \brief This iterator goes trough the incoming arcs of a node. |
665 | 665 |
/// |
666 | 666 |
/// This iterator goes trough the \e inccoming arcs of a certain node |
667 | 667 |
/// of a digraph. |
668 | 668 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
669 | 669 |
|
670 | 670 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
671 | 671 |
/// |
672 | 672 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
673 | 673 |
/// of a digraph. |
674 | 674 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
675 | 675 |
|
676 | 676 |
/// \brief The base node of the iterator. |
677 | 677 |
/// |
678 | 678 |
/// Gives back the base node of the iterator. |
679 | 679 |
/// It is always the target of the pointed arc. |
680 | 680 |
Node baseNode(const InArcIt&) const { return INVALID; } |
681 | 681 |
|
682 | 682 |
/// \brief The running node of the iterator. |
683 | 683 |
/// |
684 | 684 |
/// Gives back the running node of the iterator. |
685 | 685 |
/// It is always the source of the pointed arc. |
686 | 686 |
Node runningNode(const InArcIt&) const { return INVALID; } |
687 | 687 |
|
688 | 688 |
/// \brief The base node of the iterator. |
689 | 689 |
/// |
690 | 690 |
/// Gives back the base node of the iterator. |
691 | 691 |
/// It is always the source of the pointed arc. |
692 | 692 |
Node baseNode(const OutArcIt&) const { return INVALID; } |
693 | 693 |
|
694 | 694 |
/// \brief The running node of the iterator. |
695 | 695 |
/// |
696 | 696 |
/// Gives back the running node of the iterator. |
697 | 697 |
/// It is always the target of the pointed arc. |
698 | 698 |
Node runningNode(const OutArcIt&) const { return INVALID; } |
699 | 699 |
|
700 | 700 |
/// @} |
701 | 701 |
|
702 | 702 |
template <typename _Digraph> |
703 | 703 |
struct Constraints { |
704 | 704 |
void constraints() { |
705 | 705 |
checkConcept<Base, _Digraph>(); |
706 | 706 |
|
707 | 707 |
{ |
708 | 708 |
typename _Digraph::Node node(INVALID); |
709 | 709 |
typename _Digraph::Arc arc(INVALID); |
710 | 710 |
{ |
711 | 711 |
digraph.first(node); |
712 | 712 |
digraph.next(node); |
713 | 713 |
} |
714 | 714 |
{ |
715 | 715 |
digraph.first(arc); |
716 | 716 |
digraph.next(arc); |
717 | 717 |
} |
718 | 718 |
{ |
719 | 719 |
digraph.firstIn(arc, node); |
720 | 720 |
digraph.nextIn(arc); |
721 | 721 |
} |
722 | 722 |
{ |
723 | 723 |
digraph.firstOut(arc, node); |
724 | 724 |
digraph.nextOut(arc); |
725 | 725 |
} |
726 | 726 |
} |
727 | 727 |
|
728 | 728 |
{ |
729 | 729 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
730 | 730 |
typename _Digraph::ArcIt >(); |
731 | 731 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
732 | 732 |
typename _Digraph::NodeIt >(); |
733 | 733 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
734 | 734 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
735 | 735 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
736 | 736 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
737 | 737 |
|
738 | 738 |
typename _Digraph::Node n; |
739 | 739 |
typename _Digraph::InArcIt ieit(INVALID); |
740 | 740 |
typename _Digraph::OutArcIt oeit(INVALID); |
741 | 741 |
n = digraph.baseNode(ieit); |
742 | 742 |
n = digraph.runningNode(ieit); |
743 | 743 |
n = digraph.baseNode(oeit); |
744 | 744 |
n = digraph.runningNode(oeit); |
745 | 745 |
ignore_unused_variable_warning(n); |
746 | 746 |
} |
747 | 747 |
} |
748 | 748 |
|
749 | 749 |
const _Digraph& digraph; |
750 | 750 |
|
751 | 751 |
}; |
752 | 752 |
}; |
753 | 753 |
|
754 | 754 |
/// \brief An empty iterable undirected graph class. |
755 | 755 |
/// |
756 | 756 |
/// This class provides beside the core graph features iterator |
757 | 757 |
/// based iterable interface for the undirected graph structure. |
758 | 758 |
/// This concept is part of the Graph concept. |
759 | 759 |
template <typename _Base = BaseGraphComponent> |
760 | 760 |
class IterableGraphComponent : public IterableDigraphComponent<_Base> { |
761 | 761 |
public: |
762 | 762 |
|
763 | 763 |
typedef _Base Base; |
764 | 764 |
typedef typename Base::Node Node; |
765 | 765 |
typedef typename Base::Arc Arc; |
766 | 766 |
typedef typename Base::Edge Edge; |
767 | 767 |
|
768 | 768 |
|
769 | 769 |
typedef IterableGraphComponent Graph; |
770 | 770 |
|
771 | 771 |
/// \name Base iteration |
772 | 772 |
/// |
773 | 773 |
/// This interface provides functions for iteration on graph items |
774 | 774 |
/// @{ |
775 | 775 |
|
776 | 776 |
using IterableDigraphComponent<_Base>::first; |
777 | 777 |
using IterableDigraphComponent<_Base>::next; |
778 | 778 |
|
779 | 779 |
/// \brief Gives back the first edge in the iterating |
780 | 780 |
/// order. |
781 | 781 |
/// |
782 | 782 |
/// Gives back the first edge in the iterating order. |
783 | 783 |
/// |
784 | 784 |
void first(Edge&) const {} |
785 | 785 |
|
786 | 786 |
/// \brief Gives back the next edge in the iterating |
787 | 787 |
/// order. |
788 | 788 |
/// |
789 | 789 |
/// Gives back the next edge in the iterating order. |
790 | 790 |
/// |
791 | 791 |
void next(Edge&) const {} |
792 | 792 |
|
793 | 793 |
|
794 | 794 |
/// \brief Gives back the first of the edges from the |
795 | 795 |
/// given node. |
796 | 796 |
/// |
797 | 797 |
/// Gives back the first of the edges from the given |
798 | 798 |
/// node. The bool parameter gives back that direction which |
799 | 799 |
/// gives a good direction of the edge so the source of the |
800 | 800 |
/// directed arc is the given node. |
801 | 801 |
void firstInc(Edge&, bool&, const Node&) const {} |
802 | 802 |
|
803 | 803 |
/// \brief Gives back the next of the edges from the |
804 | 804 |
/// given node. |
805 | 805 |
/// |
806 | 806 |
/// Gives back the next of the edges from the given |
807 | 807 |
/// node. The bool parameter should be used as the \c firstInc() |
808 | 808 |
/// use it. |
809 | 809 |
void nextInc(Edge&, bool&) const {} |
810 | 810 |
|
811 | 811 |
using IterableDigraphComponent<_Base>::baseNode; |
812 | 812 |
using IterableDigraphComponent<_Base>::runningNode; |
813 | 813 |
|
814 | 814 |
/// @} |
815 | 815 |
|
816 | 816 |
/// \name Class based iteration |
817 | 817 |
/// |
818 | 818 |
/// This interface provides functions for iteration on graph items |
819 | 819 |
/// |
820 | 820 |
/// @{ |
821 | 821 |
|
822 | 822 |
/// \brief This iterator goes through each node. |
823 | 823 |
/// |
824 | 824 |
/// This iterator goes through each node. |
825 | 825 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
826 | 826 |
/// \brief This iterator goes trough the incident arcs of a |
827 | 827 |
/// node. |
828 | 828 |
/// |
829 | 829 |
/// This iterator goes trough the incident arcs of a certain |
830 | 830 |
/// node of a graph. |
831 | 831 |
typedef GraphIncIt<Graph, Edge, Node, 'u'> IncEdgeIt; |
832 | 832 |
/// \brief The base node of the iterator. |
833 | 833 |
/// |
834 | 834 |
/// Gives back the base node of the iterator. |
835 | 835 |
Node baseNode(const IncEdgeIt&) const { return INVALID; } |
836 | 836 |
|
837 | 837 |
/// \brief The running node of the iterator. |
838 | 838 |
/// |
839 | 839 |
/// Gives back the running node of the iterator. |
840 | 840 |
Node runningNode(const IncEdgeIt&) const { return INVALID; } |
841 | 841 |
|
842 | 842 |
/// @} |
843 | 843 |
|
844 | 844 |
template <typename _Graph> |
845 | 845 |
struct Constraints { |
846 | 846 |
void constraints() { |
847 | 847 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
848 | 848 |
|
849 | 849 |
{ |
850 | 850 |
typename _Graph::Node node(INVALID); |
851 | 851 |
typename _Graph::Edge edge(INVALID); |
852 | 852 |
bool dir; |
853 | 853 |
{ |
854 | 854 |
graph.first(edge); |
855 | 855 |
graph.next(edge); |
856 | 856 |
} |
857 | 857 |
{ |
858 | 858 |
graph.firstInc(edge, dir, node); |
859 | 859 |
graph.nextInc(edge, dir); |
860 | 860 |
} |
861 | 861 |
|
862 | 862 |
} |
863 | 863 |
|
864 | 864 |
{ |
865 | 865 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
866 | 866 |
typename _Graph::EdgeIt >(); |
867 | 867 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
868 | 868 |
typename _Graph::Node, 'u'>, typename _Graph::IncEdgeIt>(); |
869 | 869 |
|
870 | 870 |
typename _Graph::Node n; |
871 | 871 |
typename _Graph::IncEdgeIt ueit(INVALID); |
872 | 872 |
n = graph.baseNode(ueit); |
873 | 873 |
n = graph.runningNode(ueit); |
874 | 874 |
} |
875 | 875 |
} |
876 | 876 |
|
877 | 877 |
const _Graph& graph; |
878 | 878 |
|
879 | 879 |
}; |
880 | 880 |
}; |
881 | 881 |
|
882 | 882 |
/// \brief An empty alteration notifier digraph class. |
883 | 883 |
/// |
884 | 884 |
/// This class provides beside the core digraph features alteration |
885 | 885 |
/// notifier interface for the digraph structure. This implements |
886 | 886 |
/// an observer-notifier pattern for each digraph item. More |
887 | 887 |
/// obsevers can be registered into the notifier and whenever an |
888 | 888 |
/// alteration occured in the digraph all the observers will |
889 | 889 |
/// notified about it. |
890 | 890 |
template <typename _Base = BaseDigraphComponent> |
891 | 891 |
class AlterableDigraphComponent : public _Base { |
892 | 892 |
public: |
893 | 893 |
|
894 | 894 |
typedef _Base Base; |
895 | 895 |
typedef typename Base::Node Node; |
896 | 896 |
typedef typename Base::Arc Arc; |
897 | 897 |
|
898 | 898 |
|
899 | 899 |
/// The node observer registry. |
900 | 900 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
901 | 901 |
NodeNotifier; |
902 | 902 |
/// The arc observer registry. |
903 | 903 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
904 | 904 |
ArcNotifier; |
905 | 905 |
|
906 | 906 |
/// \brief Gives back the node alteration notifier. |
907 | 907 |
/// |
908 | 908 |
/// Gives back the node alteration notifier. |
909 | 909 |
NodeNotifier& notifier(Node) const { |
910 | 910 |
return NodeNotifier(); |
911 | 911 |
} |
912 | 912 |
|
913 | 913 |
/// \brief Gives back the arc alteration notifier. |
914 | 914 |
/// |
915 | 915 |
/// Gives back the arc alteration notifier. |
916 | 916 |
ArcNotifier& notifier(Arc) const { |
917 | 917 |
return ArcNotifier(); |
918 | 918 |
} |
919 | 919 |
|
920 | 920 |
template <typename _Digraph> |
921 | 921 |
struct Constraints { |
922 | 922 |
void constraints() { |
923 | 923 |
checkConcept<Base, _Digraph>(); |
924 | 924 |
typename _Digraph::NodeNotifier& nn |
925 | 925 |
= digraph.notifier(typename _Digraph::Node()); |
926 | 926 |
|
927 | 927 |
typename _Digraph::ArcNotifier& en |
928 | 928 |
= digraph.notifier(typename _Digraph::Arc()); |
929 | 929 |
|
930 | 930 |
ignore_unused_variable_warning(nn); |
931 | 931 |
ignore_unused_variable_warning(en); |
932 | 932 |
} |
933 | 933 |
|
934 | 934 |
const _Digraph& digraph; |
935 | 935 |
|
936 | 936 |
}; |
937 | 937 |
|
938 | 938 |
}; |
939 | 939 |
|
940 | 940 |
/// \brief An empty alteration notifier undirected graph class. |
941 | 941 |
/// |
942 | 942 |
/// This class provides beside the core graph features alteration |
943 | 943 |
/// notifier interface for the graph structure. This implements |
944 | 944 |
/// an observer-notifier pattern for each graph item. More |
945 | 945 |
/// obsevers can be registered into the notifier and whenever an |
946 | 946 |
/// alteration occured in the graph all the observers will |
947 | 947 |
/// notified about it. |
948 | 948 |
template <typename _Base = BaseGraphComponent> |
949 | 949 |
class AlterableGraphComponent : public AlterableDigraphComponent<_Base> { |
950 | 950 |
public: |
951 | 951 |
|
952 | 952 |
typedef _Base Base; |
953 | 953 |
typedef typename Base::Edge Edge; |
954 | 954 |
|
955 | 955 |
|
956 | 956 |
/// The arc observer registry. |
957 | 957 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
958 | 958 |
EdgeNotifier; |
959 | 959 |
|
960 | 960 |
/// \brief Gives back the arc alteration notifier. |
961 | 961 |
/// |
962 | 962 |
/// Gives back the arc alteration notifier. |
963 | 963 |
EdgeNotifier& notifier(Edge) const { |
964 | 964 |
return EdgeNotifier(); |
965 | 965 |
} |
966 | 966 |
|
967 | 967 |
template <typename _Graph> |
968 | 968 |
struct Constraints { |
969 | 969 |
void constraints() { |
970 | 970 |
checkConcept<AlterableGraphComponent<Base>, _Graph>(); |
971 | 971 |
typename _Graph::EdgeNotifier& uen |
972 | 972 |
= graph.notifier(typename _Graph::Edge()); |
973 | 973 |
ignore_unused_variable_warning(uen); |
974 | 974 |
} |
975 | 975 |
|
976 | 976 |
const _Graph& graph; |
977 | 977 |
|
978 | 978 |
}; |
979 | 979 |
|
980 | 980 |
}; |
981 | 981 |
|
982 | 982 |
/// \brief Class describing the concept of graph maps |
983 | 983 |
/// |
984 | 984 |
/// This class describes the common interface of the graph maps |
985 |
/// (NodeMap, ArcMap), that is |
|
985 |
/// (NodeMap, ArcMap), that is maps that can be used to |
|
986 | 986 |
/// associate data to graph descriptors (nodes or arcs). |
987 | 987 |
template <typename _Graph, typename _Item, typename _Value> |
988 | 988 |
class GraphMap : public ReadWriteMap<_Item, _Value> { |
989 | 989 |
public: |
990 | 990 |
|
991 | 991 |
typedef ReadWriteMap<_Item, _Value> Parent; |
992 | 992 |
|
993 | 993 |
/// The graph type of the map. |
994 | 994 |
typedef _Graph Graph; |
995 | 995 |
/// The key type of the map. |
996 | 996 |
typedef _Item Key; |
997 | 997 |
/// The value type of the map. |
998 | 998 |
typedef _Value Value; |
999 | 999 |
|
1000 | 1000 |
/// \brief Construct a new map. |
1001 | 1001 |
/// |
1002 | 1002 |
/// Construct a new map for the graph. |
1003 | 1003 |
explicit GraphMap(const Graph&) {} |
1004 | 1004 |
/// \brief Construct a new map with default value. |
1005 | 1005 |
/// |
1006 | 1006 |
/// Construct a new map for the graph and initalise the values. |
1007 | 1007 |
GraphMap(const Graph&, const Value&) {} |
1008 | 1008 |
|
1009 | 1009 |
private: |
1010 | 1010 |
/// \brief Copy constructor. |
1011 | 1011 |
/// |
1012 | 1012 |
/// Copy Constructor. |
1013 | 1013 |
GraphMap(const GraphMap&) : Parent() {} |
1014 | 1014 |
|
1015 | 1015 |
/// \brief Assign operator. |
1016 | 1016 |
/// |
1017 | 1017 |
/// Assign operator. It does not mofify the underlying graph, |
1018 | 1018 |
/// it just iterates on the current item set and set the map |
1019 | 1019 |
/// with the value returned by the assigned map. |
1020 | 1020 |
template <typename CMap> |
1021 | 1021 |
GraphMap& operator=(const CMap&) { |
1022 | 1022 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
1023 | 1023 |
return *this; |
1024 | 1024 |
} |
1025 | 1025 |
|
1026 | 1026 |
public: |
1027 | 1027 |
template<typename _Map> |
1028 | 1028 |
struct Constraints { |
1029 | 1029 |
void constraints() { |
1030 | 1030 |
checkConcept<ReadWriteMap<Key, Value>, _Map >(); |
1031 | 1031 |
// Construction with a graph parameter |
1032 | 1032 |
_Map a(g); |
1033 | 1033 |
// Constructor with a graph and a default value parameter |
1034 | 1034 |
_Map a2(g,t); |
1035 | 1035 |
// Copy constructor. |
1036 | 1036 |
// _Map b(c); |
1037 | 1037 |
|
1038 | 1038 |
// ReadMap<Key, Value> cmap; |
1039 | 1039 |
// b = cmap; |
1040 | 1040 |
|
1041 | 1041 |
ignore_unused_variable_warning(a); |
1042 | 1042 |
ignore_unused_variable_warning(a2); |
1043 | 1043 |
// ignore_unused_variable_warning(b); |
1044 | 1044 |
} |
1045 | 1045 |
|
1046 | 1046 |
const _Map &c; |
1047 | 1047 |
const Graph &g; |
1048 | 1048 |
const typename GraphMap::Value &t; |
1049 | 1049 |
}; |
1050 | 1050 |
|
1051 | 1051 |
}; |
1052 | 1052 |
|
1053 | 1053 |
/// \brief An empty mappable digraph class. |
1054 | 1054 |
/// |
1055 | 1055 |
/// This class provides beside the core digraph features |
1056 | 1056 |
/// map interface for the digraph structure. |
1057 | 1057 |
/// This concept is part of the Digraph concept. |
1058 | 1058 |
template <typename _Base = BaseDigraphComponent> |
1059 | 1059 |
class MappableDigraphComponent : public _Base { |
1060 | 1060 |
public: |
1061 | 1061 |
|
1062 | 1062 |
typedef _Base Base; |
1063 | 1063 |
typedef typename Base::Node Node; |
1064 | 1064 |
typedef typename Base::Arc Arc; |
1065 | 1065 |
|
1066 | 1066 |
typedef MappableDigraphComponent Digraph; |
1067 | 1067 |
|
1068 | 1068 |
/// \brief ReadWrite map of the nodes. |
1069 | 1069 |
/// |
1070 | 1070 |
/// ReadWrite map of the nodes. |
1071 | 1071 |
/// |
1072 | 1072 |
template <typename _Value> |
1073 | 1073 |
class NodeMap : public GraphMap<Digraph, Node, _Value> { |
1074 | 1074 |
public: |
1075 | 1075 |
typedef GraphMap<MappableDigraphComponent, Node, _Value> Parent; |
1076 | 1076 |
|
1077 | 1077 |
/// \brief Construct a new map. |
1078 | 1078 |
/// |
1079 | 1079 |
/// Construct a new map for the digraph. |
1080 | 1080 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
1081 | 1081 |
: Parent(digraph) {} |
1082 | 1082 |
|
1083 | 1083 |
/// \brief Construct a new map with default value. |
1084 | 1084 |
/// |
1085 | 1085 |
/// Construct a new map for the digraph and initalise the values. |
1086 | 1086 |
NodeMap(const MappableDigraphComponent& digraph, const _Value& value) |
1087 | 1087 |
: Parent(digraph, value) {} |
1088 | 1088 |
|
1089 | 1089 |
private: |
1090 | 1090 |
/// \brief Copy constructor. |
1091 | 1091 |
/// |
1092 | 1092 |
/// Copy Constructor. |
1093 | 1093 |
NodeMap(const NodeMap& nm) : Parent(nm) {} |
1094 | 1094 |
|
1095 | 1095 |
/// \brief Assign operator. |
1096 | 1096 |
/// |
1097 | 1097 |
/// Assign operator. |
1098 | 1098 |
template <typename CMap> |
1099 | 1099 |
NodeMap& operator=(const CMap&) { |
1100 | 1100 |
checkConcept<ReadMap<Node, _Value>, CMap>(); |
1101 | 1101 |
return *this; |
1102 | 1102 |
} |
1103 | 1103 |
|
1104 | 1104 |
}; |
1105 | 1105 |
|
1106 | 1106 |
/// \brief ReadWrite map of the arcs. |
1107 | 1107 |
/// |
1108 | 1108 |
/// ReadWrite map of the arcs. |
1109 | 1109 |
/// |
1110 | 1110 |
template <typename _Value> |
1111 | 1111 |
class ArcMap : public GraphMap<Digraph, Arc, _Value> { |
1112 | 1112 |
public: |
1113 | 1113 |
typedef GraphMap<MappableDigraphComponent, Arc, _Value> Parent; |
1114 | 1114 |
|
1115 | 1115 |
/// \brief Construct a new map. |
1116 | 1116 |
/// |
1117 | 1117 |
/// Construct a new map for the digraph. |
1118 | 1118 |
explicit ArcMap(const MappableDigraphComponent& digraph) |
1119 | 1119 |
: Parent(digraph) {} |
1120 | 1120 |
|
1121 | 1121 |
/// \brief Construct a new map with default value. |
1122 | 1122 |
/// |
1123 | 1123 |
/// Construct a new map for the digraph and initalise the values. |
1124 | 1124 |
ArcMap(const MappableDigraphComponent& digraph, const _Value& value) |
1125 | 1125 |
: Parent(digraph, value) {} |
1126 | 1126 |
|
1127 | 1127 |
private: |
1128 | 1128 |
/// \brief Copy constructor. |
1129 | 1129 |
/// |
1130 | 1130 |
/// Copy Constructor. |
1131 | 1131 |
ArcMap(const ArcMap& nm) : Parent(nm) {} |
1132 | 1132 |
|
1133 | 1133 |
/// \brief Assign operator. |
1134 | 1134 |
/// |
1135 | 1135 |
/// Assign operator. |
1136 | 1136 |
template <typename CMap> |
1137 | 1137 |
ArcMap& operator=(const CMap&) { |
1138 | 1138 |
checkConcept<ReadMap<Arc, _Value>, CMap>(); |
1139 | 1139 |
return *this; |
1140 | 1140 |
} |
1141 | 1141 |
|
1142 | 1142 |
}; |
1143 | 1143 |
|
1144 | 1144 |
|
1145 | 1145 |
template <typename _Digraph> |
1146 | 1146 |
struct Constraints { |
1147 | 1147 |
|
1148 | 1148 |
struct Dummy { |
1149 | 1149 |
int value; |
1150 | 1150 |
Dummy() : value(0) {} |
1151 | 1151 |
Dummy(int _v) : value(_v) {} |
1152 | 1152 |
}; |
1153 | 1153 |
|
1154 | 1154 |
void constraints() { |
1155 | 1155 |
checkConcept<Base, _Digraph>(); |
1156 | 1156 |
{ // int map test |
1157 | 1157 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
1158 | 1158 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
1159 | 1159 |
IntNodeMap >(); |
1160 | 1160 |
} { // bool map test |
1161 | 1161 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
1162 | 1162 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
1163 | 1163 |
BoolNodeMap >(); |
1164 | 1164 |
} { // Dummy map test |
1165 | 1165 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
1166 | 1166 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
1167 | 1167 |
DummyNodeMap >(); |
1168 | 1168 |
} |
1169 | 1169 |
|
1170 | 1170 |
{ // int map test |
1171 | 1171 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
1172 | 1172 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
1173 | 1173 |
IntArcMap >(); |
1174 | 1174 |
} { // bool map test |
1175 | 1175 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
1176 | 1176 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
1177 | 1177 |
BoolArcMap >(); |
1178 | 1178 |
} { // Dummy map test |
1179 | 1179 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
1180 | 1180 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
1181 | 1181 |
DummyArcMap >(); |
1182 | 1182 |
} |
1183 | 1183 |
} |
1184 | 1184 |
|
1185 | 1185 |
_Digraph& digraph; |
1186 | 1186 |
}; |
1187 | 1187 |
}; |
1188 | 1188 |
|
1189 | 1189 |
/// \brief An empty mappable base bipartite graph class. |
1190 | 1190 |
/// |
1191 | 1191 |
/// This class provides beside the core graph features |
1192 | 1192 |
/// map interface for the graph structure. |
1193 | 1193 |
/// This concept is part of the Graph concept. |
1194 | 1194 |
template <typename _Base = BaseGraphComponent> |
1195 | 1195 |
class MappableGraphComponent : public MappableDigraphComponent<_Base> { |
1196 | 1196 |
public: |
1197 | 1197 |
|
1198 | 1198 |
typedef _Base Base; |
1199 | 1199 |
typedef typename Base::Edge Edge; |
1200 | 1200 |
|
1201 | 1201 |
typedef MappableGraphComponent Graph; |
1202 | 1202 |
|
1203 | 1203 |
/// \brief ReadWrite map of the edges. |
1204 | 1204 |
/// |
1205 | 1205 |
/// ReadWrite map of the edges. |
1206 | 1206 |
/// |
1207 | 1207 |
template <typename _Value> |
1208 | 1208 |
class EdgeMap : public GraphMap<Graph, Edge, _Value> { |
1209 | 1209 |
public: |
1210 | 1210 |
typedef GraphMap<MappableGraphComponent, Edge, _Value> Parent; |
1211 | 1211 |
|
1212 | 1212 |
/// \brief Construct a new map. |
1213 | 1213 |
/// |
1214 | 1214 |
/// Construct a new map for the graph. |
1215 | 1215 |
explicit EdgeMap(const MappableGraphComponent& graph) |
1216 | 1216 |
: Parent(graph) {} |
1217 | 1217 |
|
1218 | 1218 |
/// \brief Construct a new map with default value. |
1219 | 1219 |
/// |
1220 | 1220 |
/// Construct a new map for the graph and initalise the values. |
1221 | 1221 |
EdgeMap(const MappableGraphComponent& graph, const _Value& value) |
1222 | 1222 |
: Parent(graph, value) {} |
1223 | 1223 |
|
1224 | 1224 |
private: |
1225 | 1225 |
/// \brief Copy constructor. |
1226 | 1226 |
/// |
1227 | 1227 |
/// Copy Constructor. |
1228 | 1228 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {} |
1229 | 1229 |
|
1230 | 1230 |
/// \brief Assign operator. |
1231 | 1231 |
/// |
1232 | 1232 |
/// Assign operator. |
1233 | 1233 |
template <typename CMap> |
1234 | 1234 |
EdgeMap& operator=(const CMap&) { |
1235 | 1235 |
checkConcept<ReadMap<Edge, _Value>, CMap>(); |
1236 | 1236 |
return *this; |
1237 | 1237 |
} |
1238 | 1238 |
|
1239 | 1239 |
}; |
1240 | 1240 |
|
1241 | 1241 |
|
1242 | 1242 |
template <typename _Graph> |
1243 | 1243 |
struct Constraints { |
1244 | 1244 |
|
1245 | 1245 |
struct Dummy { |
1246 | 1246 |
int value; |
1247 | 1247 |
Dummy() : value(0) {} |
1248 | 1248 |
Dummy(int _v) : value(_v) {} |
1249 | 1249 |
}; |
1250 | 1250 |
|
1251 | 1251 |
void constraints() { |
1252 | 1252 |
checkConcept<MappableGraphComponent<Base>, _Graph>(); |
1253 | 1253 |
|
1254 | 1254 |
{ // int map test |
1255 | 1255 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
1256 | 1256 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
1257 | 1257 |
IntEdgeMap >(); |
1258 | 1258 |
} { // bool map test |
1259 | 1259 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
1260 | 1260 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
1261 | 1261 |
BoolEdgeMap >(); |
1262 | 1262 |
} { // Dummy map test |
1263 | 1263 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
1264 | 1264 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
1265 | 1265 |
DummyEdgeMap >(); |
1266 | 1266 |
} |
1267 | 1267 |
} |
1268 | 1268 |
|
1269 | 1269 |
_Graph& graph; |
1270 | 1270 |
}; |
1271 | 1271 |
}; |
1272 | 1272 |
|
1273 | 1273 |
/// \brief An empty extendable digraph class. |
1274 | 1274 |
/// |
1275 | 1275 |
/// This class provides beside the core digraph features digraph |
1276 | 1276 |
/// extendable interface for the digraph structure. The main |
1277 | 1277 |
/// difference between the base and this interface is that the |
1278 | 1278 |
/// digraph alterations should handled already on this level. |
1279 | 1279 |
template <typename _Base = BaseDigraphComponent> |
1280 | 1280 |
class ExtendableDigraphComponent : public _Base { |
1281 | 1281 |
public: |
1282 | 1282 |
typedef _Base Base; |
1283 | 1283 |
|
1284 | 1284 |
typedef typename _Base::Node Node; |
1285 | 1285 |
typedef typename _Base::Arc Arc; |
1286 | 1286 |
|
1287 | 1287 |
/// \brief Adds a new node to the digraph. |
1288 | 1288 |
/// |
1289 | 1289 |
/// Adds a new node to the digraph. |
1290 | 1290 |
/// |
1291 | 1291 |
Node addNode() { |
1292 | 1292 |
return INVALID; |
1293 | 1293 |
} |
1294 | 1294 |
|
1295 | 1295 |
/// \brief Adds a new arc connects the given two nodes. |
1296 | 1296 |
/// |
1297 | 1297 |
/// Adds a new arc connects the the given two nodes. |
1298 | 1298 |
Arc addArc(const Node&, const Node&) { |
1299 | 1299 |
return INVALID; |
1300 | 1300 |
} |
1301 | 1301 |
|
1302 | 1302 |
template <typename _Digraph> |
1303 | 1303 |
struct Constraints { |
1304 | 1304 |
void constraints() { |
1305 | 1305 |
checkConcept<Base, _Digraph>(); |
1306 | 1306 |
typename _Digraph::Node node_a, node_b; |
1307 | 1307 |
node_a = digraph.addNode(); |
1308 | 1308 |
node_b = digraph.addNode(); |
1309 | 1309 |
typename _Digraph::Arc arc; |
1310 | 1310 |
arc = digraph.addArc(node_a, node_b); |
1311 | 1311 |
} |
1312 | 1312 |
|
1313 | 1313 |
_Digraph& digraph; |
1314 | 1314 |
}; |
1315 | 1315 |
}; |
1316 | 1316 |
|
1317 | 1317 |
/// \brief An empty extendable base undirected graph class. |
1318 | 1318 |
/// |
1319 | 1319 |
/// This class provides beside the core undirected graph features |
1320 | 1320 |
/// core undircted graph extend interface for the graph structure. |
1321 | 1321 |
/// The main difference between the base and this interface is |
1322 | 1322 |
/// that the graph alterations should handled already on this |
1323 | 1323 |
/// level. |
1324 | 1324 |
template <typename _Base = BaseGraphComponent> |
1325 | 1325 |
class ExtendableGraphComponent : public _Base { |
1326 | 1326 |
public: |
1327 | 1327 |
|
1328 | 1328 |
typedef _Base Base; |
1329 | 1329 |
typedef typename _Base::Node Node; |
1330 | 1330 |
typedef typename _Base::Edge Edge; |
1331 | 1331 |
|
1332 | 1332 |
/// \brief Adds a new node to the graph. |
1333 | 1333 |
/// |
1334 | 1334 |
/// Adds a new node to the graph. |
1335 | 1335 |
/// |
1336 | 1336 |
Node addNode() { |
1337 | 1337 |
return INVALID; |
1338 | 1338 |
} |
1339 | 1339 |
|
1340 | 1340 |
/// \brief Adds a new arc connects the given two nodes. |
1341 | 1341 |
/// |
1342 | 1342 |
/// Adds a new arc connects the the given two nodes. |
1343 | 1343 |
Edge addArc(const Node&, const Node&) { |
1344 | 1344 |
return INVALID; |
1345 | 1345 |
} |
1346 | 1346 |
|
1347 | 1347 |
template <typename _Graph> |
1348 | 1348 |
struct Constraints { |
1349 | 1349 |
void constraints() { |
1350 | 1350 |
checkConcept<Base, _Graph>(); |
1351 | 1351 |
typename _Graph::Node node_a, node_b; |
1352 | 1352 |
node_a = graph.addNode(); |
1353 | 1353 |
node_b = graph.addNode(); |
1354 | 1354 |
typename _Graph::Edge edge; |
1355 | 1355 |
edge = graph.addEdge(node_a, node_b); |
1356 | 1356 |
} |
1357 | 1357 |
|
1358 | 1358 |
_Graph& graph; |
1359 | 1359 |
}; |
1360 | 1360 |
}; |
1361 | 1361 |
|
1362 | 1362 |
/// \brief An empty erasable digraph class. |
1363 | 1363 |
/// |
1364 | 1364 |
/// This class provides beside the core digraph features core erase |
1365 | 1365 |
/// functions for the digraph structure. The main difference between |
1366 | 1366 |
/// the base and this interface is that the digraph alterations |
1367 | 1367 |
/// should handled already on this level. |
1368 | 1368 |
template <typename _Base = BaseDigraphComponent> |
1369 | 1369 |
class ErasableDigraphComponent : public _Base { |
1370 | 1370 |
public: |
1371 | 1371 |
|
1372 | 1372 |
typedef _Base Base; |
1373 | 1373 |
typedef typename Base::Node Node; |
1374 | 1374 |
typedef typename Base::Arc Arc; |
1375 | 1375 |
|
1376 | 1376 |
/// \brief Erase a node from the digraph. |
1377 | 1377 |
/// |
1378 | 1378 |
/// Erase a node from the digraph. This function should |
1379 | 1379 |
/// erase all arcs connecting to the node. |
1380 | 1380 |
void erase(const Node&) {} |
1381 | 1381 |
|
1382 | 1382 |
/// \brief Erase an arc from the digraph. |
1383 | 1383 |
/// |
1384 | 1384 |
/// Erase an arc from the digraph. |
1385 | 1385 |
/// |
1386 | 1386 |
void erase(const Arc&) {} |
1387 | 1387 |
|
1388 | 1388 |
template <typename _Digraph> |
1389 | 1389 |
struct Constraints { |
1390 | 1390 |
void constraints() { |
1391 | 1391 |
checkConcept<Base, _Digraph>(); |
1392 | 1392 |
typename _Digraph::Node node; |
1393 | 1393 |
digraph.erase(node); |
1394 | 1394 |
typename _Digraph::Arc arc; |
1395 | 1395 |
digraph.erase(arc); |
1396 | 1396 |
} |
1397 | 1397 |
|
1398 | 1398 |
_Digraph& digraph; |
1399 | 1399 |
}; |
1400 | 1400 |
}; |
1401 | 1401 |
|
1402 | 1402 |
/// \brief An empty erasable base undirected graph class. |
1403 | 1403 |
/// |
1404 | 1404 |
/// This class provides beside the core undirected graph features |
1405 | 1405 |
/// core erase functions for the undirceted graph structure. The |
1406 | 1406 |
/// main difference between the base and this interface is that |
1407 | 1407 |
/// the graph alterations should handled already on this level. |
1408 | 1408 |
template <typename _Base = BaseGraphComponent> |
1409 | 1409 |
class ErasableGraphComponent : public _Base { |
1410 | 1410 |
public: |
1411 | 1411 |
|
1412 | 1412 |
typedef _Base Base; |
1413 | 1413 |
typedef typename Base::Node Node; |
1414 | 1414 |
typedef typename Base::Edge Edge; |
1415 | 1415 |
|
1416 | 1416 |
/// \brief Erase a node from the graph. |
1417 | 1417 |
/// |
1418 | 1418 |
/// Erase a node from the graph. This function should erase |
1419 | 1419 |
/// arcs connecting to the node. |
1420 | 1420 |
void erase(const Node&) {} |
1421 | 1421 |
|
1422 | 1422 |
/// \brief Erase an arc from the graph. |
1423 | 1423 |
/// |
1424 | 1424 |
/// Erase an arc from the graph. |
1425 | 1425 |
/// |
1426 | 1426 |
void erase(const Edge&) {} |
1427 | 1427 |
|
1428 | 1428 |
template <typename _Graph> |
1429 | 1429 |
struct Constraints { |
1430 | 1430 |
void constraints() { |
1431 | 1431 |
checkConcept<Base, _Graph>(); |
1432 | 1432 |
typename _Graph::Node node; |
1433 | 1433 |
graph.erase(node); |
1434 | 1434 |
typename _Graph::Edge edge; |
1435 | 1435 |
graph.erase(edge); |
1436 | 1436 |
} |
1437 | 1437 |
|
1438 | 1438 |
_Graph& graph; |
1439 | 1439 |
}; |
1440 | 1440 |
}; |
1441 | 1441 |
|
1442 | 1442 |
/// \brief An empty clearable base digraph class. |
1443 | 1443 |
/// |
1444 | 1444 |
/// This class provides beside the core digraph features core clear |
1445 | 1445 |
/// functions for the digraph structure. The main difference between |
1446 | 1446 |
/// the base and this interface is that the digraph alterations |
1447 | 1447 |
/// should handled already on this level. |
1448 | 1448 |
template <typename _Base = BaseDigraphComponent> |
1449 | 1449 |
class ClearableDigraphComponent : public _Base { |
1450 | 1450 |
public: |
1451 | 1451 |
|
1452 | 1452 |
typedef _Base Base; |
1453 | 1453 |
|
1454 | 1454 |
/// \brief Erase all nodes and arcs from the digraph. |
1455 | 1455 |
/// |
1456 | 1456 |
/// Erase all nodes and arcs from the digraph. |
1457 | 1457 |
/// |
1458 | 1458 |
void clear() {} |
1459 | 1459 |
|
1460 | 1460 |
template <typename _Digraph> |
1461 | 1461 |
struct Constraints { |
1462 | 1462 |
void constraints() { |
1463 | 1463 |
checkConcept<Base, _Digraph>(); |
1464 | 1464 |
digraph.clear(); |
1465 | 1465 |
} |
1466 | 1466 |
|
1467 | 1467 |
_Digraph digraph; |
1468 | 1468 |
}; |
1469 | 1469 |
}; |
1470 | 1470 |
|
1471 | 1471 |
/// \brief An empty clearable base undirected graph class. |
1472 | 1472 |
/// |
1473 | 1473 |
/// This class provides beside the core undirected graph features |
1474 | 1474 |
/// core clear functions for the undirected graph structure. The |
1475 | 1475 |
/// main difference between the base and this interface is that |
1476 | 1476 |
/// the graph alterations should handled already on this level. |
1477 | 1477 |
template <typename _Base = BaseGraphComponent> |
1478 | 1478 |
class ClearableGraphComponent : public ClearableDigraphComponent<_Base> { |
1479 | 1479 |
public: |
1480 | 1480 |
|
1481 | 1481 |
typedef _Base Base; |
1482 | 1482 |
|
1483 | 1483 |
template <typename _Graph> |
1484 | 1484 |
struct Constraints { |
1485 | 1485 |
void constraints() { |
1486 | 1486 |
checkConcept<ClearableGraphComponent<Base>, _Graph>(); |
1487 | 1487 |
} |
1488 | 1488 |
|
1489 | 1489 |
_Graph graph; |
1490 | 1490 |
}; |
1491 | 1491 |
}; |
1492 | 1492 |
|
1493 | 1493 |
} |
1494 | 1494 |
|
1495 | 1495 |
} |
1496 | 1496 |
|
1497 | 1497 |
#endif |
... | ... |
@@ -789,1056 +789,1056 @@ |
789 | 789 |
template <typename FromMap, typename ToMap> |
790 | 790 |
GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) { |
791 | 791 |
_node_maps.push_back(new _core_bits::MapCopy<From, Node, |
792 | 792 |
NodeRefMap, FromMap, ToMap>(map, tmap)); |
793 | 793 |
return *this; |
794 | 794 |
} |
795 | 795 |
|
796 | 796 |
/// \brief Make a copy of the given node. |
797 | 797 |
/// |
798 | 798 |
/// This function makes a copy of the given node. |
799 | 799 |
GraphCopy& node(const Node& node, TNode& tnode) { |
800 | 800 |
_node_maps.push_back(new _core_bits::ItemCopy<From, Node, |
801 | 801 |
NodeRefMap, TNode>(node, tnode)); |
802 | 802 |
return *this; |
803 | 803 |
} |
804 | 804 |
|
805 | 805 |
/// \brief Copy the arc references into the given map. |
806 | 806 |
/// |
807 | 807 |
/// This function copies the arc references into the given map. |
808 | 808 |
/// The parameter should be a map, whose key type is the Arc type of |
809 | 809 |
/// the source graph, while the value type is the Arc type of the |
810 | 810 |
/// destination graph. |
811 | 811 |
template <typename ArcRef> |
812 | 812 |
GraphCopy& arcRef(ArcRef& map) { |
813 | 813 |
_arc_maps.push_back(new _core_bits::RefCopy<From, Arc, |
814 | 814 |
ArcRefMap, ArcRef>(map)); |
815 | 815 |
return *this; |
816 | 816 |
} |
817 | 817 |
|
818 | 818 |
/// \brief Copy the arc cross references into the given map. |
819 | 819 |
/// |
820 | 820 |
/// This function copies the arc cross references (reverse references) |
821 | 821 |
/// into the given map. The parameter should be a map, whose key type |
822 | 822 |
/// is the Arc type of the destination graph, while the value type is |
823 | 823 |
/// the Arc type of the source graph. |
824 | 824 |
template <typename ArcCrossRef> |
825 | 825 |
GraphCopy& arcCrossRef(ArcCrossRef& map) { |
826 | 826 |
_arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc, |
827 | 827 |
ArcRefMap, ArcCrossRef>(map)); |
828 | 828 |
return *this; |
829 | 829 |
} |
830 | 830 |
|
831 | 831 |
/// \brief Make a copy of the given arc map. |
832 | 832 |
/// |
833 | 833 |
/// This function makes a copy of the given arc map for the newly |
834 | 834 |
/// created graph. |
835 | 835 |
/// The key type of the new map \c tmap should be the Arc type of the |
836 | 836 |
/// destination graph, and the key type of the original map \c map |
837 | 837 |
/// should be the Arc type of the source graph. |
838 | 838 |
template <typename FromMap, typename ToMap> |
839 | 839 |
GraphCopy& arcMap(const FromMap& map, ToMap& tmap) { |
840 | 840 |
_arc_maps.push_back(new _core_bits::MapCopy<From, Arc, |
841 | 841 |
ArcRefMap, FromMap, ToMap>(map, tmap)); |
842 | 842 |
return *this; |
843 | 843 |
} |
844 | 844 |
|
845 | 845 |
/// \brief Make a copy of the given arc. |
846 | 846 |
/// |
847 | 847 |
/// This function makes a copy of the given arc. |
848 | 848 |
GraphCopy& arc(const Arc& arc, TArc& tarc) { |
849 | 849 |
_arc_maps.push_back(new _core_bits::ItemCopy<From, Arc, |
850 | 850 |
ArcRefMap, TArc>(arc, tarc)); |
851 | 851 |
return *this; |
852 | 852 |
} |
853 | 853 |
|
854 | 854 |
/// \brief Copy the edge references into the given map. |
855 | 855 |
/// |
856 | 856 |
/// This function copies the edge references into the given map. |
857 | 857 |
/// The parameter should be a map, whose key type is the Edge type of |
858 | 858 |
/// the source graph, while the value type is the Edge type of the |
859 | 859 |
/// destination graph. |
860 | 860 |
template <typename EdgeRef> |
861 | 861 |
GraphCopy& edgeRef(EdgeRef& map) { |
862 | 862 |
_edge_maps.push_back(new _core_bits::RefCopy<From, Edge, |
863 | 863 |
EdgeRefMap, EdgeRef>(map)); |
864 | 864 |
return *this; |
865 | 865 |
} |
866 | 866 |
|
867 | 867 |
/// \brief Copy the edge cross references into the given map. |
868 | 868 |
/// |
869 | 869 |
/// This function copies the edge cross references (reverse references) |
870 | 870 |
/// into the given map. The parameter should be a map, whose key type |
871 | 871 |
/// is the Edge type of the destination graph, while the value type is |
872 | 872 |
/// the Edge type of the source graph. |
873 | 873 |
template <typename EdgeCrossRef> |
874 | 874 |
GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
875 | 875 |
_edge_maps.push_back(new _core_bits::CrossRefCopy<From, |
876 | 876 |
Edge, EdgeRefMap, EdgeCrossRef>(map)); |
877 | 877 |
return *this; |
878 | 878 |
} |
879 | 879 |
|
880 | 880 |
/// \brief Make a copy of the given edge map. |
881 | 881 |
/// |
882 | 882 |
/// This function makes a copy of the given edge map for the newly |
883 | 883 |
/// created graph. |
884 | 884 |
/// The key type of the new map \c tmap should be the Edge type of the |
885 | 885 |
/// destination graph, and the key type of the original map \c map |
886 | 886 |
/// should be the Edge type of the source graph. |
887 | 887 |
template <typename FromMap, typename ToMap> |
888 | 888 |
GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) { |
889 | 889 |
_edge_maps.push_back(new _core_bits::MapCopy<From, Edge, |
890 | 890 |
EdgeRefMap, FromMap, ToMap>(map, tmap)); |
891 | 891 |
return *this; |
892 | 892 |
} |
893 | 893 |
|
894 | 894 |
/// \brief Make a copy of the given edge. |
895 | 895 |
/// |
896 | 896 |
/// This function makes a copy of the given edge. |
897 | 897 |
GraphCopy& edge(const Edge& edge, TEdge& tedge) { |
898 | 898 |
_edge_maps.push_back(new _core_bits::ItemCopy<From, Edge, |
899 | 899 |
EdgeRefMap, TEdge>(edge, tedge)); |
900 | 900 |
return *this; |
901 | 901 |
} |
902 | 902 |
|
903 | 903 |
/// \brief Execute copying. |
904 | 904 |
/// |
905 | 905 |
/// This function executes the copying of the graph along with the |
906 | 906 |
/// copying of the assigned data. |
907 | 907 |
void run() { |
908 | 908 |
NodeRefMap nodeRefMap(_from); |
909 | 909 |
EdgeRefMap edgeRefMap(_from); |
910 | 910 |
ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap); |
911 | 911 |
_core_bits::GraphCopySelector<To>:: |
912 | 912 |
copy(_from, _to, nodeRefMap, edgeRefMap); |
913 | 913 |
for (int i = 0; i < int(_node_maps.size()); ++i) { |
914 | 914 |
_node_maps[i]->copy(_from, nodeRefMap); |
915 | 915 |
} |
916 | 916 |
for (int i = 0; i < int(_edge_maps.size()); ++i) { |
917 | 917 |
_edge_maps[i]->copy(_from, edgeRefMap); |
918 | 918 |
} |
919 | 919 |
for (int i = 0; i < int(_arc_maps.size()); ++i) { |
920 | 920 |
_arc_maps[i]->copy(_from, arcRefMap); |
921 | 921 |
} |
922 | 922 |
} |
923 | 923 |
|
924 | 924 |
private: |
925 | 925 |
|
926 | 926 |
const From& _from; |
927 | 927 |
To& _to; |
928 | 928 |
|
929 | 929 |
std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* > |
930 | 930 |
_node_maps; |
931 | 931 |
|
932 | 932 |
std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* > |
933 | 933 |
_arc_maps; |
934 | 934 |
|
935 | 935 |
std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
936 | 936 |
_edge_maps; |
937 | 937 |
|
938 | 938 |
}; |
939 | 939 |
|
940 | 940 |
/// \brief Copy a graph to another graph. |
941 | 941 |
/// |
942 | 942 |
/// This function copies a graph to another graph. |
943 | 943 |
/// The complete usage of it is detailed in the GraphCopy class, |
944 | 944 |
/// but a short example shows a basic work: |
945 | 945 |
///\code |
946 | 946 |
/// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run(); |
947 | 947 |
///\endcode |
948 | 948 |
/// |
949 | 949 |
/// After the copy the \c nr map will contain the mapping from the |
950 | 950 |
/// nodes of the \c from graph to the nodes of the \c to graph and |
951 | 951 |
/// \c ecr will contain the mapping from the edges of the \c to graph |
952 | 952 |
/// to the edges of the \c from graph. |
953 | 953 |
/// |
954 | 954 |
/// \see GraphCopy |
955 | 955 |
template <typename From, typename To> |
956 | 956 |
GraphCopy<From, To> |
957 | 957 |
graphCopy(const From& from, To& to) { |
958 | 958 |
return GraphCopy<From, To>(from, to); |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
namespace _core_bits { |
962 | 962 |
|
963 | 963 |
template <typename Graph, typename Enable = void> |
964 | 964 |
struct FindArcSelector { |
965 | 965 |
typedef typename Graph::Node Node; |
966 | 966 |
typedef typename Graph::Arc Arc; |
967 | 967 |
static Arc find(const Graph &g, Node u, Node v, Arc e) { |
968 | 968 |
if (e == INVALID) { |
969 | 969 |
g.firstOut(e, u); |
970 | 970 |
} else { |
971 | 971 |
g.nextOut(e); |
972 | 972 |
} |
973 | 973 |
while (e != INVALID && g.target(e) != v) { |
974 | 974 |
g.nextOut(e); |
975 | 975 |
} |
976 | 976 |
return e; |
977 | 977 |
} |
978 | 978 |
}; |
979 | 979 |
|
980 | 980 |
template <typename Graph> |
981 | 981 |
struct FindArcSelector< |
982 | 982 |
Graph, |
983 | 983 |
typename enable_if<typename Graph::FindArcTag, void>::type> |
984 | 984 |
{ |
985 | 985 |
typedef typename Graph::Node Node; |
986 | 986 |
typedef typename Graph::Arc Arc; |
987 | 987 |
static Arc find(const Graph &g, Node u, Node v, Arc prev) { |
988 | 988 |
return g.findArc(u, v, prev); |
989 | 989 |
} |
990 | 990 |
}; |
991 | 991 |
} |
992 | 992 |
|
993 | 993 |
/// \brief Find an arc between two nodes of a digraph. |
994 | 994 |
/// |
995 | 995 |
/// This function finds an arc from node \c u to node \c v in the |
996 | 996 |
/// digraph \c g. |
997 | 997 |
/// |
998 | 998 |
/// If \c prev is \ref INVALID (this is the default value), then |
999 | 999 |
/// it finds the first arc from \c u to \c v. Otherwise it looks for |
1000 | 1000 |
/// the next arc from \c u to \c v after \c prev. |
1001 | 1001 |
/// \return The found arc or \ref INVALID if there is no such an arc. |
1002 | 1002 |
/// |
1003 | 1003 |
/// Thus you can iterate through each arc from \c u to \c v as it follows. |
1004 | 1004 |
///\code |
1005 | 1005 |
/// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) { |
1006 | 1006 |
/// ... |
1007 | 1007 |
/// } |
1008 | 1008 |
///\endcode |
1009 | 1009 |
/// |
1010 | 1010 |
/// \note \ref ConArcIt provides iterator interface for the same |
1011 | 1011 |
/// functionality. |
1012 | 1012 |
/// |
1013 | 1013 |
///\sa ConArcIt |
1014 | 1014 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1015 | 1015 |
template <typename Graph> |
1016 | 1016 |
inline typename Graph::Arc |
1017 | 1017 |
findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1018 | 1018 |
typename Graph::Arc prev = INVALID) { |
1019 | 1019 |
return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev); |
1020 | 1020 |
} |
1021 | 1021 |
|
1022 | 1022 |
/// \brief Iterator for iterating on parallel arcs connecting the same nodes. |
1023 | 1023 |
/// |
1024 | 1024 |
/// Iterator for iterating on parallel arcs connecting the same nodes. It is |
1025 | 1025 |
/// a higher level interface for the \ref findArc() function. You can |
1026 | 1026 |
/// use it the following way: |
1027 | 1027 |
///\code |
1028 | 1028 |
/// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
1029 | 1029 |
/// ... |
1030 | 1030 |
/// } |
1031 | 1031 |
///\endcode |
1032 | 1032 |
/// |
1033 | 1033 |
///\sa findArc() |
1034 | 1034 |
///\sa ArcLookUp, AllArcLookUp, DynArcLookUp |
1035 | 1035 |
template <typename _Graph> |
1036 | 1036 |
class ConArcIt : public _Graph::Arc { |
1037 | 1037 |
public: |
1038 | 1038 |
|
1039 | 1039 |
typedef _Graph Graph; |
1040 | 1040 |
typedef typename Graph::Arc Parent; |
1041 | 1041 |
|
1042 | 1042 |
typedef typename Graph::Arc Arc; |
1043 | 1043 |
typedef typename Graph::Node Node; |
1044 | 1044 |
|
1045 | 1045 |
/// \brief Constructor. |
1046 | 1046 |
/// |
1047 | 1047 |
/// Construct a new ConArcIt iterating on the arcs that |
1048 | 1048 |
/// connects nodes \c u and \c v. |
1049 | 1049 |
ConArcIt(const Graph& g, Node u, Node v) : _graph(g) { |
1050 | 1050 |
Parent::operator=(findArc(_graph, u, v)); |
1051 | 1051 |
} |
1052 | 1052 |
|
1053 | 1053 |
/// \brief Constructor. |
1054 | 1054 |
/// |
1055 | 1055 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
1056 | 1056 |
ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {} |
1057 | 1057 |
|
1058 | 1058 |
/// \brief Increment operator. |
1059 | 1059 |
/// |
1060 | 1060 |
/// It increments the iterator and gives back the next arc. |
1061 | 1061 |
ConArcIt& operator++() { |
1062 | 1062 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
1063 | 1063 |
_graph.target(*this), *this)); |
1064 | 1064 |
return *this; |
1065 | 1065 |
} |
1066 | 1066 |
private: |
1067 | 1067 |
const Graph& _graph; |
1068 | 1068 |
}; |
1069 | 1069 |
|
1070 | 1070 |
namespace _core_bits { |
1071 | 1071 |
|
1072 | 1072 |
template <typename Graph, typename Enable = void> |
1073 | 1073 |
struct FindEdgeSelector { |
1074 | 1074 |
typedef typename Graph::Node Node; |
1075 | 1075 |
typedef typename Graph::Edge Edge; |
1076 | 1076 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
1077 | 1077 |
bool b; |
1078 | 1078 |
if (u != v) { |
1079 | 1079 |
if (e == INVALID) { |
1080 | 1080 |
g.firstInc(e, b, u); |
1081 | 1081 |
} else { |
1082 | 1082 |
b = g.u(e) == u; |
1083 | 1083 |
g.nextInc(e, b); |
1084 | 1084 |
} |
1085 | 1085 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
1086 | 1086 |
g.nextInc(e, b); |
1087 | 1087 |
} |
1088 | 1088 |
} else { |
1089 | 1089 |
if (e == INVALID) { |
1090 | 1090 |
g.firstInc(e, b, u); |
1091 | 1091 |
} else { |
1092 | 1092 |
b = true; |
1093 | 1093 |
g.nextInc(e, b); |
1094 | 1094 |
} |
1095 | 1095 |
while (e != INVALID && (!b || g.v(e) != v)) { |
1096 | 1096 |
g.nextInc(e, b); |
1097 | 1097 |
} |
1098 | 1098 |
} |
1099 | 1099 |
return e; |
1100 | 1100 |
} |
1101 | 1101 |
}; |
1102 | 1102 |
|
1103 | 1103 |
template <typename Graph> |
1104 | 1104 |
struct FindEdgeSelector< |
1105 | 1105 |
Graph, |
1106 | 1106 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
1107 | 1107 |
{ |
1108 | 1108 |
typedef typename Graph::Node Node; |
1109 | 1109 |
typedef typename Graph::Edge Edge; |
1110 | 1110 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
1111 | 1111 |
return g.findEdge(u, v, prev); |
1112 | 1112 |
} |
1113 | 1113 |
}; |
1114 | 1114 |
} |
1115 | 1115 |
|
1116 | 1116 |
/// \brief Find an edge between two nodes of a graph. |
1117 | 1117 |
/// |
1118 | 1118 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
1119 | 1119 |
/// If node \c u and node \c v is equal then each loop edge |
1120 | 1120 |
/// will be enumerated once. |
1121 | 1121 |
/// |
1122 | 1122 |
/// If \c prev is \ref INVALID (this is the default value), then |
1123 | 1123 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
1124 | 1124 |
/// the next edge from \c u to \c v after \c prev. |
1125 | 1125 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
1126 | 1126 |
/// |
1127 | 1127 |
/// Thus you can iterate through each edge between \c u and \c v |
1128 | 1128 |
/// as it follows. |
1129 | 1129 |
///\code |
1130 | 1130 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
1131 | 1131 |
/// ... |
1132 | 1132 |
/// } |
1133 | 1133 |
///\endcode |
1134 | 1134 |
/// |
1135 | 1135 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
1136 | 1136 |
/// functionality. |
1137 | 1137 |
/// |
1138 | 1138 |
///\sa ConEdgeIt |
1139 | 1139 |
template <typename Graph> |
1140 | 1140 |
inline typename Graph::Edge |
1141 | 1141 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1142 | 1142 |
typename Graph::Edge p = INVALID) { |
1143 | 1143 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
1144 | 1144 |
} |
1145 | 1145 |
|
1146 | 1146 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
1147 | 1147 |
/// |
1148 | 1148 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
1149 | 1149 |
/// It is a higher level interface for the findEdge() function. You can |
1150 | 1150 |
/// use it the following way: |
1151 | 1151 |
///\code |
1152 | 1152 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
1153 | 1153 |
/// ... |
1154 | 1154 |
/// } |
1155 | 1155 |
///\endcode |
1156 | 1156 |
/// |
1157 | 1157 |
///\sa findEdge() |
1158 | 1158 |
template <typename _Graph> |
1159 | 1159 |
class ConEdgeIt : public _Graph::Edge { |
1160 | 1160 |
public: |
1161 | 1161 |
|
1162 | 1162 |
typedef _Graph Graph; |
1163 | 1163 |
typedef typename Graph::Edge Parent; |
1164 | 1164 |
|
1165 | 1165 |
typedef typename Graph::Edge Edge; |
1166 | 1166 |
typedef typename Graph::Node Node; |
1167 | 1167 |
|
1168 | 1168 |
/// \brief Constructor. |
1169 | 1169 |
/// |
1170 | 1170 |
/// Construct a new ConEdgeIt iterating on the edges that |
1171 | 1171 |
/// connects nodes \c u and \c v. |
1172 | 1172 |
ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) { |
1173 | 1173 |
Parent::operator=(findEdge(_graph, u, v)); |
1174 | 1174 |
} |
1175 | 1175 |
|
1176 | 1176 |
/// \brief Constructor. |
1177 | 1177 |
/// |
1178 | 1178 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
1179 | 1179 |
ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {} |
1180 | 1180 |
|
1181 | 1181 |
/// \brief Increment operator. |
1182 | 1182 |
/// |
1183 | 1183 |
/// It increments the iterator and gives back the next edge. |
1184 | 1184 |
ConEdgeIt& operator++() { |
1185 | 1185 |
Parent::operator=(findEdge(_graph, _graph.u(*this), |
1186 | 1186 |
_graph.v(*this), *this)); |
1187 | 1187 |
return *this; |
1188 | 1188 |
} |
1189 | 1189 |
private: |
1190 | 1190 |
const Graph& _graph; |
1191 | 1191 |
}; |
1192 | 1192 |
|
1193 | 1193 |
|
1194 | 1194 |
///Dynamic arc look-up between given endpoints. |
1195 | 1195 |
|
1196 | 1196 |
///Using this class, you can find an arc in a digraph from a given |
1197 | 1197 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
1198 | 1198 |
///where <em>d</em> is the out-degree of the source node. |
1199 | 1199 |
/// |
1200 | 1200 |
///It is possible to find \e all parallel arcs between two nodes with |
1201 | 1201 |
///the \c operator() member. |
1202 | 1202 |
/// |
1203 | 1203 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1204 | 1204 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1205 | 1205 |
/// |
1206 | 1206 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1207 | 1207 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1208 | 1208 |
///time bound for arc look-ups. This class also guarantees the |
1209 | 1209 |
///optimal time bound in a constant factor for any distribution of |
1210 | 1210 |
///queries. |
1211 | 1211 |
/// |
1212 | 1212 |
///\tparam G The type of the underlying digraph. |
1213 | 1213 |
/// |
1214 | 1214 |
///\sa ArcLookUp |
1215 | 1215 |
///\sa AllArcLookUp |
1216 | 1216 |
template<class G> |
1217 | 1217 |
class DynArcLookUp |
1218 | 1218 |
: protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase |
1219 | 1219 |
{ |
1220 | 1220 |
public: |
1221 | 1221 |
typedef typename ItemSetTraits<G, typename G::Arc> |
1222 | 1222 |
::ItemNotifier::ObserverBase Parent; |
1223 | 1223 |
|
1224 | 1224 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1225 | 1225 |
typedef G Digraph; |
1226 | 1226 |
|
1227 | 1227 |
protected: |
1228 | 1228 |
|
1229 | 1229 |
class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type { |
1230 | 1230 |
public: |
1231 | 1231 |
|
1232 | 1232 |
typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent; |
1233 | 1233 |
|
1234 | 1234 |
AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {} |
1235 | 1235 |
|
1236 | 1236 |
virtual void add(const Node& node) { |
1237 | 1237 |
Parent::add(node); |
1238 | 1238 |
Parent::set(node, INVALID); |
1239 | 1239 |
} |
1240 | 1240 |
|
1241 | 1241 |
virtual void add(const std::vector<Node>& nodes) { |
1242 | 1242 |
Parent::add(nodes); |
1243 | 1243 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1244 | 1244 |
Parent::set(nodes[i], INVALID); |
1245 | 1245 |
} |
1246 | 1246 |
} |
1247 | 1247 |
|
1248 | 1248 |
virtual void build() { |
1249 | 1249 |
Parent::build(); |
1250 | 1250 |
Node it; |
1251 | 1251 |
typename Parent::Notifier* nf = Parent::notifier(); |
1252 | 1252 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1253 | 1253 |
Parent::set(it, INVALID); |
1254 | 1254 |
} |
1255 | 1255 |
} |
1256 | 1256 |
}; |
1257 | 1257 |
|
1258 | 1258 |
const Digraph &_g; |
1259 | 1259 |
AutoNodeMap _head; |
1260 | 1260 |
typename Digraph::template ArcMap<Arc> _parent; |
1261 | 1261 |
typename Digraph::template ArcMap<Arc> _left; |
1262 | 1262 |
typename Digraph::template ArcMap<Arc> _right; |
1263 | 1263 |
|
1264 | 1264 |
class ArcLess { |
1265 | 1265 |
const Digraph &g; |
1266 | 1266 |
public: |
1267 | 1267 |
ArcLess(const Digraph &_g) : g(_g) {} |
1268 | 1268 |
bool operator()(Arc a,Arc b) const |
1269 | 1269 |
{ |
1270 | 1270 |
return g.target(a)<g.target(b); |
1271 | 1271 |
} |
1272 | 1272 |
}; |
1273 | 1273 |
|
1274 | 1274 |
public: |
1275 | 1275 |
|
1276 | 1276 |
///Constructor |
1277 | 1277 |
|
1278 | 1278 |
///Constructor. |
1279 | 1279 |
/// |
1280 | 1280 |
///It builds up the search database. |
1281 | 1281 |
DynArcLookUp(const Digraph &g) |
1282 | 1282 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1283 | 1283 |
{ |
1284 | 1284 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1285 | 1285 |
refresh(); |
1286 | 1286 |
} |
1287 | 1287 |
|
1288 | 1288 |
protected: |
1289 | 1289 |
|
1290 | 1290 |
virtual void add(const Arc& arc) { |
1291 | 1291 |
insert(arc); |
1292 | 1292 |
} |
1293 | 1293 |
|
1294 | 1294 |
virtual void add(const std::vector<Arc>& arcs) { |
1295 | 1295 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1296 | 1296 |
insert(arcs[i]); |
1297 | 1297 |
} |
1298 | 1298 |
} |
1299 | 1299 |
|
1300 | 1300 |
virtual void erase(const Arc& arc) { |
1301 | 1301 |
remove(arc); |
1302 | 1302 |
} |
1303 | 1303 |
|
1304 | 1304 |
virtual void erase(const std::vector<Arc>& arcs) { |
1305 | 1305 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1306 | 1306 |
remove(arcs[i]); |
1307 | 1307 |
} |
1308 | 1308 |
} |
1309 | 1309 |
|
1310 | 1310 |
virtual void build() { |
1311 | 1311 |
refresh(); |
1312 | 1312 |
} |
1313 | 1313 |
|
1314 | 1314 |
virtual void clear() { |
1315 | 1315 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1316 | 1316 |
_head.set(n, INVALID); |
1317 | 1317 |
} |
1318 | 1318 |
} |
1319 | 1319 |
|
1320 | 1320 |
void insert(Arc arc) { |
1321 | 1321 |
Node s = _g.source(arc); |
1322 | 1322 |
Node t = _g.target(arc); |
1323 | 1323 |
_left.set(arc, INVALID); |
1324 | 1324 |
_right.set(arc, INVALID); |
1325 | 1325 |
|
1326 | 1326 |
Arc e = _head[s]; |
1327 | 1327 |
if (e == INVALID) { |
1328 | 1328 |
_head.set(s, arc); |
1329 | 1329 |
_parent.set(arc, INVALID); |
1330 | 1330 |
return; |
1331 | 1331 |
} |
1332 | 1332 |
while (true) { |
1333 | 1333 |
if (t < _g.target(e)) { |
1334 | 1334 |
if (_left[e] == INVALID) { |
1335 | 1335 |
_left.set(e, arc); |
1336 | 1336 |
_parent.set(arc, e); |
1337 | 1337 |
splay(arc); |
1338 | 1338 |
return; |
1339 | 1339 |
} else { |
1340 | 1340 |
e = _left[e]; |
1341 | 1341 |
} |
1342 | 1342 |
} else { |
1343 | 1343 |
if (_right[e] == INVALID) { |
1344 | 1344 |
_right.set(e, arc); |
1345 | 1345 |
_parent.set(arc, e); |
1346 | 1346 |
splay(arc); |
1347 | 1347 |
return; |
1348 | 1348 |
} else { |
1349 | 1349 |
e = _right[e]; |
1350 | 1350 |
} |
1351 | 1351 |
} |
1352 | 1352 |
} |
1353 | 1353 |
} |
1354 | 1354 |
|
1355 | 1355 |
void remove(Arc arc) { |
1356 | 1356 |
if (_left[arc] == INVALID) { |
1357 | 1357 |
if (_right[arc] != INVALID) { |
1358 | 1358 |
_parent.set(_right[arc], _parent[arc]); |
1359 | 1359 |
} |
1360 | 1360 |
if (_parent[arc] != INVALID) { |
1361 | 1361 |
if (_left[_parent[arc]] == arc) { |
1362 | 1362 |
_left.set(_parent[arc], _right[arc]); |
1363 | 1363 |
} else { |
1364 | 1364 |
_right.set(_parent[arc], _right[arc]); |
1365 | 1365 |
} |
1366 | 1366 |
} else { |
1367 | 1367 |
_head.set(_g.source(arc), _right[arc]); |
1368 | 1368 |
} |
1369 | 1369 |
} else if (_right[arc] == INVALID) { |
1370 | 1370 |
_parent.set(_left[arc], _parent[arc]); |
1371 | 1371 |
if (_parent[arc] != INVALID) { |
1372 | 1372 |
if (_left[_parent[arc]] == arc) { |
1373 | 1373 |
_left.set(_parent[arc], _left[arc]); |
1374 | 1374 |
} else { |
1375 | 1375 |
_right.set(_parent[arc], _left[arc]); |
1376 | 1376 |
} |
1377 | 1377 |
} else { |
1378 | 1378 |
_head.set(_g.source(arc), _left[arc]); |
1379 | 1379 |
} |
1380 | 1380 |
} else { |
1381 | 1381 |
Arc e = _left[arc]; |
1382 | 1382 |
if (_right[e] != INVALID) { |
1383 | 1383 |
e = _right[e]; |
1384 | 1384 |
while (_right[e] != INVALID) { |
1385 | 1385 |
e = _right[e]; |
1386 | 1386 |
} |
1387 | 1387 |
Arc s = _parent[e]; |
1388 | 1388 |
_right.set(_parent[e], _left[e]); |
1389 | 1389 |
if (_left[e] != INVALID) { |
1390 | 1390 |
_parent.set(_left[e], _parent[e]); |
1391 | 1391 |
} |
1392 | 1392 |
|
1393 | 1393 |
_left.set(e, _left[arc]); |
1394 | 1394 |
_parent.set(_left[arc], e); |
1395 | 1395 |
_right.set(e, _right[arc]); |
1396 | 1396 |
_parent.set(_right[arc], e); |
1397 | 1397 |
|
1398 | 1398 |
_parent.set(e, _parent[arc]); |
1399 | 1399 |
if (_parent[arc] != INVALID) { |
1400 | 1400 |
if (_left[_parent[arc]] == arc) { |
1401 | 1401 |
_left.set(_parent[arc], e); |
1402 | 1402 |
} else { |
1403 | 1403 |
_right.set(_parent[arc], e); |
1404 | 1404 |
} |
1405 | 1405 |
} |
1406 | 1406 |
splay(s); |
1407 | 1407 |
} else { |
1408 | 1408 |
_right.set(e, _right[arc]); |
1409 | 1409 |
_parent.set(_right[arc], e); |
1410 | 1410 |
_parent.set(e, _parent[arc]); |
1411 | 1411 |
|
1412 | 1412 |
if (_parent[arc] != INVALID) { |
1413 | 1413 |
if (_left[_parent[arc]] == arc) { |
1414 | 1414 |
_left.set(_parent[arc], e); |
1415 | 1415 |
} else { |
1416 | 1416 |
_right.set(_parent[arc], e); |
1417 | 1417 |
} |
1418 | 1418 |
} else { |
1419 | 1419 |
_head.set(_g.source(arc), e); |
1420 | 1420 |
} |
1421 | 1421 |
} |
1422 | 1422 |
} |
1423 | 1423 |
} |
1424 | 1424 |
|
1425 | 1425 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1426 | 1426 |
{ |
1427 | 1427 |
int m=(a+b)/2; |
1428 | 1428 |
Arc me=v[m]; |
1429 | 1429 |
if (a < m) { |
1430 | 1430 |
Arc left = refreshRec(v,a,m-1); |
1431 | 1431 |
_left.set(me, left); |
1432 | 1432 |
_parent.set(left, me); |
1433 | 1433 |
} else { |
1434 | 1434 |
_left.set(me, INVALID); |
1435 | 1435 |
} |
1436 | 1436 |
if (m < b) { |
1437 | 1437 |
Arc right = refreshRec(v,m+1,b); |
1438 | 1438 |
_right.set(me, right); |
1439 | 1439 |
_parent.set(right, me); |
1440 | 1440 |
} else { |
1441 | 1441 |
_right.set(me, INVALID); |
1442 | 1442 |
} |
1443 | 1443 |
return me; |
1444 | 1444 |
} |
1445 | 1445 |
|
1446 | 1446 |
void refresh() { |
1447 | 1447 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1448 | 1448 |
std::vector<Arc> v; |
1449 | 1449 |
for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a); |
1450 | 1450 |
if (!v.empty()) { |
1451 | 1451 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1452 | 1452 |
Arc head = refreshRec(v,0,v.size()-1); |
1453 | 1453 |
_head.set(n, head); |
1454 | 1454 |
_parent.set(head, INVALID); |
1455 | 1455 |
} |
1456 | 1456 |
else _head.set(n, INVALID); |
1457 | 1457 |
} |
1458 | 1458 |
} |
1459 | 1459 |
|
1460 | 1460 |
void zig(Arc v) { |
1461 | 1461 |
Arc w = _parent[v]; |
1462 | 1462 |
_parent.set(v, _parent[w]); |
1463 | 1463 |
_parent.set(w, v); |
1464 | 1464 |
_left.set(w, _right[v]); |
1465 | 1465 |
_right.set(v, w); |
1466 | 1466 |
if (_parent[v] != INVALID) { |
1467 | 1467 |
if (_right[_parent[v]] == w) { |
1468 | 1468 |
_right.set(_parent[v], v); |
1469 | 1469 |
} else { |
1470 | 1470 |
_left.set(_parent[v], v); |
1471 | 1471 |
} |
1472 | 1472 |
} |
1473 | 1473 |
if (_left[w] != INVALID){ |
1474 | 1474 |
_parent.set(_left[w], w); |
1475 | 1475 |
} |
1476 | 1476 |
} |
1477 | 1477 |
|
1478 | 1478 |
void zag(Arc v) { |
1479 | 1479 |
Arc w = _parent[v]; |
1480 | 1480 |
_parent.set(v, _parent[w]); |
1481 | 1481 |
_parent.set(w, v); |
1482 | 1482 |
_right.set(w, _left[v]); |
1483 | 1483 |
_left.set(v, w); |
1484 | 1484 |
if (_parent[v] != INVALID){ |
1485 | 1485 |
if (_left[_parent[v]] == w) { |
1486 | 1486 |
_left.set(_parent[v], v); |
1487 | 1487 |
} else { |
1488 | 1488 |
_right.set(_parent[v], v); |
1489 | 1489 |
} |
1490 | 1490 |
} |
1491 | 1491 |
if (_right[w] != INVALID){ |
1492 | 1492 |
_parent.set(_right[w], w); |
1493 | 1493 |
} |
1494 | 1494 |
} |
1495 | 1495 |
|
1496 | 1496 |
void splay(Arc v) { |
1497 | 1497 |
while (_parent[v] != INVALID) { |
1498 | 1498 |
if (v == _left[_parent[v]]) { |
1499 | 1499 |
if (_parent[_parent[v]] == INVALID) { |
1500 | 1500 |
zig(v); |
1501 | 1501 |
} else { |
1502 | 1502 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1503 | 1503 |
zig(_parent[v]); |
1504 | 1504 |
zig(v); |
1505 | 1505 |
} else { |
1506 | 1506 |
zig(v); |
1507 | 1507 |
zag(v); |
1508 | 1508 |
} |
1509 | 1509 |
} |
1510 | 1510 |
} else { |
1511 | 1511 |
if (_parent[_parent[v]] == INVALID) { |
1512 | 1512 |
zag(v); |
1513 | 1513 |
} else { |
1514 | 1514 |
if (_parent[v] == _left[_parent[_parent[v]]]) { |
1515 | 1515 |
zag(v); |
1516 | 1516 |
zig(v); |
1517 | 1517 |
} else { |
1518 | 1518 |
zag(_parent[v]); |
1519 | 1519 |
zag(v); |
1520 | 1520 |
} |
1521 | 1521 |
} |
1522 | 1522 |
} |
1523 | 1523 |
} |
1524 | 1524 |
_head[_g.source(v)] = v; |
1525 | 1525 |
} |
1526 | 1526 |
|
1527 | 1527 |
|
1528 | 1528 |
public: |
1529 | 1529 |
|
1530 | 1530 |
///Find an arc between two nodes. |
1531 | 1531 |
|
1532 | 1532 |
///Find an arc between two nodes. |
1533 | 1533 |
///\param s The source node. |
1534 | 1534 |
///\param t The target node. |
1535 | 1535 |
///\param p The previous arc between \c s and \c t. It it is INVALID or |
1536 | 1536 |
///not given, the operator finds the first appropriate arc. |
1537 | 1537 |
///\return An arc from \c s to \c t after \c p or |
1538 | 1538 |
///\ref INVALID if there is no more. |
1539 | 1539 |
/// |
1540 | 1540 |
///For example, you can count the number of arcs from \c u to \c v in the |
1541 | 1541 |
///following way. |
1542 | 1542 |
///\code |
1543 | 1543 |
///DynArcLookUp<ListDigraph> ae(g); |
1544 | 1544 |
///... |
1545 | 1545 |
///int n = 0; |
1546 | 1546 |
///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++; |
1547 | 1547 |
///\endcode |
1548 | 1548 |
/// |
1549 | 1549 |
///Finding the arcs take at most <em>O</em>(log<em>d</em>) |
1550 | 1550 |
///amortized time, specifically, the time complexity of the lookups |
1551 | 1551 |
///is equal to the optimal search tree implementation for the |
1552 | 1552 |
///current query distribution in a constant factor. |
1553 | 1553 |
/// |
1554 | 1554 |
///\note This is a dynamic data structure, therefore the data |
1555 | 1555 |
///structure is updated after each graph alteration. Thus although |
1556 | 1556 |
///this data structure is theoretically faster than \ref ArcLookUp |
1557 |
///and \ref |
|
1557 |
///and \ref AllArcLookUp, it often provides worse performance than |
|
1558 | 1558 |
///them. |
1559 | 1559 |
Arc operator()(Node s, Node t, Arc p = INVALID) const { |
1560 | 1560 |
if (p == INVALID) { |
1561 | 1561 |
Arc a = _head[s]; |
1562 | 1562 |
if (a == INVALID) return INVALID; |
1563 | 1563 |
Arc r = INVALID; |
1564 | 1564 |
while (true) { |
1565 | 1565 |
if (_g.target(a) < t) { |
1566 | 1566 |
if (_right[a] == INVALID) { |
1567 | 1567 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1568 | 1568 |
return r; |
1569 | 1569 |
} else { |
1570 | 1570 |
a = _right[a]; |
1571 | 1571 |
} |
1572 | 1572 |
} else { |
1573 | 1573 |
if (_g.target(a) == t) { |
1574 | 1574 |
r = a; |
1575 | 1575 |
} |
1576 | 1576 |
if (_left[a] == INVALID) { |
1577 | 1577 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1578 | 1578 |
return r; |
1579 | 1579 |
} else { |
1580 | 1580 |
a = _left[a]; |
1581 | 1581 |
} |
1582 | 1582 |
} |
1583 | 1583 |
} |
1584 | 1584 |
} else { |
1585 | 1585 |
Arc a = p; |
1586 | 1586 |
if (_right[a] != INVALID) { |
1587 | 1587 |
a = _right[a]; |
1588 | 1588 |
while (_left[a] != INVALID) { |
1589 | 1589 |
a = _left[a]; |
1590 | 1590 |
} |
1591 | 1591 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1592 | 1592 |
} else { |
1593 | 1593 |
while (_parent[a] != INVALID && _right[_parent[a]] == a) { |
1594 | 1594 |
a = _parent[a]; |
1595 | 1595 |
} |
1596 | 1596 |
if (_parent[a] == INVALID) { |
1597 | 1597 |
return INVALID; |
1598 | 1598 |
} else { |
1599 | 1599 |
a = _parent[a]; |
1600 | 1600 |
const_cast<DynArcLookUp&>(*this).splay(a); |
1601 | 1601 |
} |
1602 | 1602 |
} |
1603 | 1603 |
if (_g.target(a) == t) return a; |
1604 | 1604 |
else return INVALID; |
1605 | 1605 |
} |
1606 | 1606 |
} |
1607 | 1607 |
|
1608 | 1608 |
}; |
1609 | 1609 |
|
1610 | 1610 |
///Fast arc look-up between given endpoints. |
1611 | 1611 |
|
1612 | 1612 |
///Using this class, you can find an arc in a digraph from a given |
1613 | 1613 |
///source to a given target in time <em>O</em>(log<em>d</em>), |
1614 | 1614 |
///where <em>d</em> is the out-degree of the source node. |
1615 | 1615 |
/// |
1616 | 1616 |
///It is not possible to find \e all parallel arcs between two nodes. |
1617 | 1617 |
///Use \ref AllArcLookUp for this purpose. |
1618 | 1618 |
/// |
1619 | 1619 |
///\warning This class is static, so you should call refresh() (or at |
1620 | 1620 |
///least refresh(Node)) to refresh this data structure whenever the |
1621 | 1621 |
///digraph changes. This is a time consuming (superlinearly proportional |
1622 | 1622 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1623 | 1623 |
/// |
1624 | 1624 |
///\tparam G The type of the underlying digraph. |
1625 | 1625 |
/// |
1626 | 1626 |
///\sa DynArcLookUp |
1627 | 1627 |
///\sa AllArcLookUp |
1628 | 1628 |
template<class G> |
1629 | 1629 |
class ArcLookUp |
1630 | 1630 |
{ |
1631 | 1631 |
public: |
1632 | 1632 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1633 | 1633 |
typedef G Digraph; |
1634 | 1634 |
|
1635 | 1635 |
protected: |
1636 | 1636 |
const Digraph &_g; |
1637 | 1637 |
typename Digraph::template NodeMap<Arc> _head; |
1638 | 1638 |
typename Digraph::template ArcMap<Arc> _left; |
1639 | 1639 |
typename Digraph::template ArcMap<Arc> _right; |
1640 | 1640 |
|
1641 | 1641 |
class ArcLess { |
1642 | 1642 |
const Digraph &g; |
1643 | 1643 |
public: |
1644 | 1644 |
ArcLess(const Digraph &_g) : g(_g) {} |
1645 | 1645 |
bool operator()(Arc a,Arc b) const |
1646 | 1646 |
{ |
1647 | 1647 |
return g.target(a)<g.target(b); |
1648 | 1648 |
} |
1649 | 1649 |
}; |
1650 | 1650 |
|
1651 | 1651 |
public: |
1652 | 1652 |
|
1653 | 1653 |
///Constructor |
1654 | 1654 |
|
1655 | 1655 |
///Constructor. |
1656 | 1656 |
/// |
1657 | 1657 |
///It builds up the search database, which remains valid until the digraph |
1658 | 1658 |
///changes. |
1659 | 1659 |
ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
1660 | 1660 |
|
1661 | 1661 |
private: |
1662 | 1662 |
Arc refreshRec(std::vector<Arc> &v,int a,int b) |
1663 | 1663 |
{ |
1664 | 1664 |
int m=(a+b)/2; |
1665 | 1665 |
Arc me=v[m]; |
1666 | 1666 |
_left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
1667 | 1667 |
_right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
1668 | 1668 |
return me; |
1669 | 1669 |
} |
1670 | 1670 |
public: |
1671 | 1671 |
///Refresh the search data structure at a node. |
1672 | 1672 |
|
1673 | 1673 |
///Build up the search database of node \c n. |
1674 | 1674 |
/// |
1675 | 1675 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> |
1676 | 1676 |
///is the number of the outgoing arcs of \c n. |
1677 | 1677 |
void refresh(Node n) |
1678 | 1678 |
{ |
1679 | 1679 |
std::vector<Arc> v; |
1680 | 1680 |
for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
1681 | 1681 |
if(v.size()) { |
1682 | 1682 |
std::sort(v.begin(),v.end(),ArcLess(_g)); |
1683 | 1683 |
_head[n]=refreshRec(v,0,v.size()-1); |
1684 | 1684 |
} |
1685 | 1685 |
else _head[n]=INVALID; |
1686 | 1686 |
} |
1687 | 1687 |
///Refresh the full data structure. |
1688 | 1688 |
|
1689 | 1689 |
///Build up the full search database. In fact, it simply calls |
1690 | 1690 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1691 | 1691 |
/// |
1692 | 1692 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1693 | 1693 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1694 | 1694 |
///out-degree of the digraph. |
1695 | 1695 |
void refresh() |
1696 | 1696 |
{ |
1697 | 1697 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
1698 | 1698 |
} |
1699 | 1699 |
|
1700 | 1700 |
///Find an arc between two nodes. |
1701 | 1701 |
|
1702 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), where |
|
1703 |
///<em>d</em> is the number of outgoing arcs of \c s. |
|
1702 |
///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), |
|
1703 |
///where <em>d</em> is the number of outgoing arcs of \c s. |
|
1704 | 1704 |
///\param s The source node. |
1705 | 1705 |
///\param t The target node. |
1706 | 1706 |
///\return An arc from \c s to \c t if there exists, |
1707 | 1707 |
///\ref INVALID otherwise. |
1708 | 1708 |
/// |
1709 | 1709 |
///\warning If you change the digraph, refresh() must be called before using |
1710 | 1710 |
///this operator. If you change the outgoing arcs of |
1711 | 1711 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1712 | 1712 |
Arc operator()(Node s, Node t) const |
1713 | 1713 |
{ |
1714 | 1714 |
Arc e; |
1715 | 1715 |
for(e=_head[s]; |
1716 | 1716 |
e!=INVALID&&_g.target(e)!=t; |
1717 | 1717 |
e = t < _g.target(e)?_left[e]:_right[e]) ; |
1718 | 1718 |
return e; |
1719 | 1719 |
} |
1720 | 1720 |
|
1721 | 1721 |
}; |
1722 | 1722 |
|
1723 | 1723 |
///Fast look-up of all arcs between given endpoints. |
1724 | 1724 |
|
1725 | 1725 |
///This class is the same as \ref ArcLookUp, with the addition |
1726 | 1726 |
///that it makes it possible to find all parallel arcs between given |
1727 | 1727 |
///endpoints. |
1728 | 1728 |
/// |
1729 | 1729 |
///\warning This class is static, so you should call refresh() (or at |
1730 | 1730 |
///least refresh(Node)) to refresh this data structure whenever the |
1731 | 1731 |
///digraph changes. This is a time consuming (superlinearly proportional |
1732 | 1732 |
///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs). |
1733 | 1733 |
/// |
1734 | 1734 |
///\tparam G The type of the underlying digraph. |
1735 | 1735 |
/// |
1736 | 1736 |
///\sa DynArcLookUp |
1737 | 1737 |
///\sa ArcLookUp |
1738 | 1738 |
template<class G> |
1739 | 1739 |
class AllArcLookUp : public ArcLookUp<G> |
1740 | 1740 |
{ |
1741 | 1741 |
using ArcLookUp<G>::_g; |
1742 | 1742 |
using ArcLookUp<G>::_right; |
1743 | 1743 |
using ArcLookUp<G>::_left; |
1744 | 1744 |
using ArcLookUp<G>::_head; |
1745 | 1745 |
|
1746 | 1746 |
TEMPLATE_DIGRAPH_TYPEDEFS(G); |
1747 | 1747 |
typedef G Digraph; |
1748 | 1748 |
|
1749 | 1749 |
typename Digraph::template ArcMap<Arc> _next; |
1750 | 1750 |
|
1751 | 1751 |
Arc refreshNext(Arc head,Arc next=INVALID) |
1752 | 1752 |
{ |
1753 | 1753 |
if(head==INVALID) return next; |
1754 | 1754 |
else { |
1755 | 1755 |
next=refreshNext(_right[head],next); |
1756 | 1756 |
_next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
1757 | 1757 |
? next : INVALID; |
1758 | 1758 |
return refreshNext(_left[head],head); |
1759 | 1759 |
} |
1760 | 1760 |
} |
1761 | 1761 |
|
1762 | 1762 |
void refreshNext() |
1763 | 1763 |
{ |
1764 | 1764 |
for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
1765 | 1765 |
} |
1766 | 1766 |
|
1767 | 1767 |
public: |
1768 | 1768 |
///Constructor |
1769 | 1769 |
|
1770 | 1770 |
///Constructor. |
1771 | 1771 |
/// |
1772 | 1772 |
///It builds up the search database, which remains valid until the digraph |
1773 | 1773 |
///changes. |
1774 | 1774 |
AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();} |
1775 | 1775 |
|
1776 | 1776 |
///Refresh the data structure at a node. |
1777 | 1777 |
|
1778 | 1778 |
///Build up the search database of node \c n. |
1779 | 1779 |
/// |
1780 | 1780 |
///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is |
1781 | 1781 |
///the number of the outgoing arcs of \c n. |
1782 | 1782 |
void refresh(Node n) |
1783 | 1783 |
{ |
1784 | 1784 |
ArcLookUp<G>::refresh(n); |
1785 | 1785 |
refreshNext(_head[n]); |
1786 | 1786 |
} |
1787 | 1787 |
|
1788 | 1788 |
///Refresh the full data structure. |
1789 | 1789 |
|
1790 | 1790 |
///Build up the full search database. In fact, it simply calls |
1791 | 1791 |
///\ref refresh(Node) "refresh(n)" for each node \c n. |
1792 | 1792 |
/// |
1793 | 1793 |
///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is |
1794 | 1794 |
///the number of the arcs in the digraph and <em>D</em> is the maximum |
1795 | 1795 |
///out-degree of the digraph. |
1796 | 1796 |
void refresh() |
1797 | 1797 |
{ |
1798 | 1798 |
for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
1799 | 1799 |
} |
1800 | 1800 |
|
1801 | 1801 |
///Find an arc between two nodes. |
1802 | 1802 |
|
1803 | 1803 |
///Find an arc between two nodes. |
1804 | 1804 |
///\param s The source node. |
1805 | 1805 |
///\param t The target node. |
1806 | 1806 |
///\param prev The previous arc between \c s and \c t. It it is INVALID or |
1807 | 1807 |
///not given, the operator finds the first appropriate arc. |
1808 | 1808 |
///\return An arc from \c s to \c t after \c prev or |
1809 | 1809 |
///\ref INVALID if there is no more. |
1810 | 1810 |
/// |
1811 | 1811 |
///For example, you can count the number of arcs from \c u to \c v in the |
1812 | 1812 |
///following way. |
1813 | 1813 |
///\code |
1814 | 1814 |
///AllArcLookUp<ListDigraph> ae(g); |
1815 | 1815 |
///... |
1816 | 1816 |
///int n = 0; |
1817 | 1817 |
///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++; |
1818 | 1818 |
///\endcode |
1819 | 1819 |
/// |
1820 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, where |
|
1821 |
///<em>d</em> is the number of outgoing arcs of \c s. Then, the |
|
1820 |
///Finding the first arc take <em>O</em>(log<em>d</em>) time, |
|
1821 |
///where <em>d</em> is the number of outgoing arcs of \c s. Then the |
|
1822 | 1822 |
///consecutive arcs are found in constant time. |
1823 | 1823 |
/// |
1824 | 1824 |
///\warning If you change the digraph, refresh() must be called before using |
1825 | 1825 |
///this operator. If you change the outgoing arcs of |
1826 | 1826 |
///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough. |
1827 | 1827 |
/// |
1828 | 1828 |
#ifdef DOXYGEN |
1829 | 1829 |
Arc operator()(Node s, Node t, Arc prev=INVALID) const {} |
1830 | 1830 |
#else |
1831 | 1831 |
using ArcLookUp<G>::operator() ; |
1832 | 1832 |
Arc operator()(Node s, Node t, Arc prev) const |
1833 | 1833 |
{ |
1834 | 1834 |
return prev==INVALID?(*this)(s,t):_next[prev]; |
1835 | 1835 |
} |
1836 | 1836 |
#endif |
1837 | 1837 |
|
1838 | 1838 |
}; |
1839 | 1839 |
|
1840 | 1840 |
/// @} |
1841 | 1841 |
|
1842 | 1842 |
} //namespace lemon |
1843 | 1843 |
|
1844 | 1844 |
#endif |
... | ... |
@@ -70,1537 +70,1537 @@ |
70 | 70 |
///This function instantiates a ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 | 85 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 87 |
///Instantiates a ReachedMap. |
88 | 88 |
|
89 | 89 |
///This function instantiates a ReachedMap. |
90 | 90 |
///\param g is the digraph, to which |
91 | 91 |
///we would like to define the ReachedMap. |
92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 93 |
{ |
94 | 94 |
return new ReachedMap(g); |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
///The type of the map that stores the distances of the nodes. |
98 | 98 |
|
99 | 99 |
///The type of the map that stores the distances of the nodes. |
100 | 100 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 102 |
///Instantiates a DistMap. |
103 | 103 |
|
104 | 104 |
///This function instantiates a DistMap. |
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 | 106 |
///DistMap. |
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%DFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default value is \ref ListDigraph. The value of GR is not used |
124 | 124 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
125 | 125 |
///\tparam TR Traits class to set various data types used by the algorithm. |
126 | 126 |
///The default traits class is |
127 | 127 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
128 | 128 |
///See \ref DfsDefaultTraits for the documentation of |
129 | 129 |
///a Dfs traits class. |
130 | 130 |
#ifdef DOXYGEN |
131 | 131 |
template <typename GR, |
132 | 132 |
typename TR> |
133 | 133 |
#else |
134 | 134 |
template <typename GR=ListDigraph, |
135 | 135 |
typename TR=DfsDefaultTraits<GR> > |
136 | 136 |
#endif |
137 | 137 |
class Dfs { |
138 | 138 |
public: |
139 | 139 |
|
140 | 140 |
///The type of the digraph the algorithm runs on. |
141 | 141 |
typedef typename TR::Digraph Digraph; |
142 | 142 |
|
143 | 143 |
///\brief The type of the map that stores the predecessor arcs of the |
144 | 144 |
///DFS paths. |
145 | 145 |
typedef typename TR::PredMap PredMap; |
146 | 146 |
///The type of the map that stores the distances of the nodes. |
147 | 147 |
typedef typename TR::DistMap DistMap; |
148 | 148 |
///The type of the map that indicates which nodes are reached. |
149 | 149 |
typedef typename TR::ReachedMap ReachedMap; |
150 | 150 |
///The type of the map that indicates which nodes are processed. |
151 | 151 |
typedef typename TR::ProcessedMap ProcessedMap; |
152 | 152 |
///The type of the paths. |
153 | 153 |
typedef PredMapPath<Digraph, PredMap> Path; |
154 | 154 |
|
155 | 155 |
///The traits class. |
156 | 156 |
typedef TR Traits; |
157 | 157 |
|
158 | 158 |
private: |
159 | 159 |
|
160 | 160 |
typedef typename Digraph::Node Node; |
161 | 161 |
typedef typename Digraph::NodeIt NodeIt; |
162 | 162 |
typedef typename Digraph::Arc Arc; |
163 | 163 |
typedef typename Digraph::OutArcIt OutArcIt; |
164 | 164 |
|
165 | 165 |
//Pointer to the underlying digraph. |
166 | 166 |
const Digraph *G; |
167 | 167 |
//Pointer to the map of predecessor arcs. |
168 | 168 |
PredMap *_pred; |
169 | 169 |
//Indicates if _pred is locally allocated (true) or not. |
170 | 170 |
bool local_pred; |
171 | 171 |
//Pointer to the map of distances. |
172 | 172 |
DistMap *_dist; |
173 | 173 |
//Indicates if _dist is locally allocated (true) or not. |
174 | 174 |
bool local_dist; |
175 | 175 |
//Pointer to the map of reached status of the nodes. |
176 | 176 |
ReachedMap *_reached; |
177 | 177 |
//Indicates if _reached is locally allocated (true) or not. |
178 | 178 |
bool local_reached; |
179 | 179 |
//Pointer to the map of processed status of the nodes. |
180 | 180 |
ProcessedMap *_processed; |
181 | 181 |
//Indicates if _processed is locally allocated (true) or not. |
182 | 182 |
bool local_processed; |
183 | 183 |
|
184 | 184 |
std::vector<typename Digraph::OutArcIt> _stack; |
185 | 185 |
int _stack_head; |
186 | 186 |
|
187 | 187 |
//Creates the maps if necessary. |
188 | 188 |
void create_maps() |
189 | 189 |
{ |
190 | 190 |
if(!_pred) { |
191 | 191 |
local_pred = true; |
192 | 192 |
_pred = Traits::createPredMap(*G); |
193 | 193 |
} |
194 | 194 |
if(!_dist) { |
195 | 195 |
local_dist = true; |
196 | 196 |
_dist = Traits::createDistMap(*G); |
197 | 197 |
} |
198 | 198 |
if(!_reached) { |
199 | 199 |
local_reached = true; |
200 | 200 |
_reached = Traits::createReachedMap(*G); |
201 | 201 |
} |
202 | 202 |
if(!_processed) { |
203 | 203 |
local_processed = true; |
204 | 204 |
_processed = Traits::createProcessedMap(*G); |
205 | 205 |
} |
206 | 206 |
} |
207 | 207 |
|
208 | 208 |
protected: |
209 | 209 |
|
210 | 210 |
Dfs() {} |
211 | 211 |
|
212 | 212 |
public: |
213 | 213 |
|
214 | 214 |
typedef Dfs Create; |
215 | 215 |
|
216 | 216 |
///\name Named template parameters |
217 | 217 |
|
218 | 218 |
///@{ |
219 | 219 |
|
220 | 220 |
template <class T> |
221 | 221 |
struct SetPredMapTraits : public Traits { |
222 | 222 |
typedef T PredMap; |
223 | 223 |
static PredMap *createPredMap(const Digraph &) |
224 | 224 |
{ |
225 | 225 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
226 | 226 |
return 0; // ignore warnings |
227 | 227 |
} |
228 | 228 |
}; |
229 | 229 |
///\brief \ref named-templ-param "Named parameter" for setting |
230 | 230 |
///PredMap type. |
231 | 231 |
/// |
232 | 232 |
///\ref named-templ-param "Named parameter" for setting |
233 | 233 |
///PredMap type. |
234 | 234 |
template <class T> |
235 | 235 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
236 | 236 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
template <class T> |
240 | 240 |
struct SetDistMapTraits : public Traits { |
241 | 241 |
typedef T DistMap; |
242 | 242 |
static DistMap *createDistMap(const Digraph &) |
243 | 243 |
{ |
244 | 244 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
245 | 245 |
return 0; // ignore warnings |
246 | 246 |
} |
247 | 247 |
}; |
248 | 248 |
///\brief \ref named-templ-param "Named parameter" for setting |
249 | 249 |
///DistMap type. |
250 | 250 |
/// |
251 | 251 |
///\ref named-templ-param "Named parameter" for setting |
252 | 252 |
///DistMap type. |
253 | 253 |
template <class T> |
254 | 254 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
255 | 255 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
256 | 256 |
}; |
257 | 257 |
|
258 | 258 |
template <class T> |
259 | 259 |
struct SetReachedMapTraits : public Traits { |
260 | 260 |
typedef T ReachedMap; |
261 | 261 |
static ReachedMap *createReachedMap(const Digraph &) |
262 | 262 |
{ |
263 | 263 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
264 | 264 |
return 0; // ignore warnings |
265 | 265 |
} |
266 | 266 |
}; |
267 | 267 |
///\brief \ref named-templ-param "Named parameter" for setting |
268 | 268 |
///ReachedMap type. |
269 | 269 |
/// |
270 | 270 |
///\ref named-templ-param "Named parameter" for setting |
271 | 271 |
///ReachedMap type. |
272 | 272 |
template <class T> |
273 | 273 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
274 | 274 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
275 | 275 |
}; |
276 | 276 |
|
277 | 277 |
template <class T> |
278 | 278 |
struct SetProcessedMapTraits : public Traits { |
279 | 279 |
typedef T ProcessedMap; |
280 | 280 |
static ProcessedMap *createProcessedMap(const Digraph &) |
281 | 281 |
{ |
282 | 282 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
283 | 283 |
return 0; // ignore warnings |
284 | 284 |
} |
285 | 285 |
}; |
286 | 286 |
///\brief \ref named-templ-param "Named parameter" for setting |
287 | 287 |
///ProcessedMap type. |
288 | 288 |
/// |
289 | 289 |
///\ref named-templ-param "Named parameter" for setting |
290 | 290 |
///ProcessedMap type. |
291 | 291 |
template <class T> |
292 | 292 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
293 | 293 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
294 | 294 |
}; |
295 | 295 |
|
296 | 296 |
struct SetStandardProcessedMapTraits : public Traits { |
297 | 297 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
298 | 298 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
299 | 299 |
{ |
300 | 300 |
return new ProcessedMap(g); |
301 | 301 |
} |
302 | 302 |
}; |
303 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
304 | 304 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
305 | 305 |
/// |
306 | 306 |
///\ref named-templ-param "Named parameter" for setting |
307 | 307 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
308 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
309 | 309 |
struct SetStandardProcessedMap : |
310 | 310 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
311 | 311 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
///@} |
315 | 315 |
|
316 | 316 |
public: |
317 | 317 |
|
318 | 318 |
///Constructor. |
319 | 319 |
|
320 | 320 |
///Constructor. |
321 | 321 |
///\param g The digraph the algorithm runs on. |
322 | 322 |
Dfs(const Digraph &g) : |
323 | 323 |
G(&g), |
324 | 324 |
_pred(NULL), local_pred(false), |
325 | 325 |
_dist(NULL), local_dist(false), |
326 | 326 |
_reached(NULL), local_reached(false), |
327 | 327 |
_processed(NULL), local_processed(false) |
328 | 328 |
{ } |
329 | 329 |
|
330 | 330 |
///Destructor. |
331 | 331 |
~Dfs() |
332 | 332 |
{ |
333 | 333 |
if(local_pred) delete _pred; |
334 | 334 |
if(local_dist) delete _dist; |
335 | 335 |
if(local_reached) delete _reached; |
336 | 336 |
if(local_processed) delete _processed; |
337 | 337 |
} |
338 | 338 |
|
339 | 339 |
///Sets the map that stores the predecessor arcs. |
340 | 340 |
|
341 | 341 |
///Sets the map that stores the predecessor arcs. |
342 | 342 |
///If you don't use this function before calling \ref run(), |
343 | 343 |
///it will allocate one. The destructor deallocates this |
344 | 344 |
///automatically allocated map, of course. |
345 | 345 |
///\return <tt> (*this) </tt> |
346 | 346 |
Dfs &predMap(PredMap &m) |
347 | 347 |
{ |
348 | 348 |
if(local_pred) { |
349 | 349 |
delete _pred; |
350 | 350 |
local_pred=false; |
351 | 351 |
} |
352 | 352 |
_pred = &m; |
353 | 353 |
return *this; |
354 | 354 |
} |
355 | 355 |
|
356 | 356 |
///Sets the map that indicates which nodes are reached. |
357 | 357 |
|
358 | 358 |
///Sets the map that indicates which nodes are reached. |
359 | 359 |
///If you don't use this function before calling \ref run(), |
360 | 360 |
///it will allocate one. The destructor deallocates this |
361 | 361 |
///automatically allocated map, of course. |
362 | 362 |
///\return <tt> (*this) </tt> |
363 | 363 |
Dfs &reachedMap(ReachedMap &m) |
364 | 364 |
{ |
365 | 365 |
if(local_reached) { |
366 | 366 |
delete _reached; |
367 | 367 |
local_reached=false; |
368 | 368 |
} |
369 | 369 |
_reached = &m; |
370 | 370 |
return *this; |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
///Sets the map that indicates which nodes are processed. |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
///If you don't use this function before calling \ref run(), |
377 | 377 |
///it will allocate one. The destructor deallocates this |
378 | 378 |
///automatically allocated map, of course. |
379 | 379 |
///\return <tt> (*this) </tt> |
380 | 380 |
Dfs &processedMap(ProcessedMap &m) |
381 | 381 |
{ |
382 | 382 |
if(local_processed) { |
383 | 383 |
delete _processed; |
384 | 384 |
local_processed=false; |
385 | 385 |
} |
386 | 386 |
_processed = &m; |
387 | 387 |
return *this; |
388 | 388 |
} |
389 | 389 |
|
390 | 390 |
///Sets the map that stores the distances of the nodes. |
391 | 391 |
|
392 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 393 |
///the algorithm. |
394 | 394 |
///If you don't use this function before calling \ref run(), |
395 | 395 |
///it will allocate one. The destructor deallocates this |
396 | 396 |
///automatically allocated map, of course. |
397 | 397 |
///\return <tt> (*this) </tt> |
398 | 398 |
Dfs &distMap(DistMap &m) |
399 | 399 |
{ |
400 | 400 |
if(local_dist) { |
401 | 401 |
delete _dist; |
402 | 402 |
local_dist=false; |
403 | 403 |
} |
404 | 404 |
_dist = &m; |
405 | 405 |
return *this; |
406 | 406 |
} |
407 | 407 |
|
408 | 408 |
public: |
409 | 409 |
|
410 | 410 |
///\name Execution control |
411 | 411 |
///The simplest way to execute the algorithm is to use |
412 | 412 |
///one of the member functions called \ref lemon::Dfs::run() "run()". |
413 | 413 |
///\n |
414 | 414 |
///If you need more control on the execution, first you must call |
415 | 415 |
///\ref lemon::Dfs::init() "init()", then you can add a source node |
416 | 416 |
///with \ref lemon::Dfs::addSource() "addSource()". |
417 | 417 |
///Finally \ref lemon::Dfs::start() "start()" will perform the |
418 | 418 |
///actual path computation. |
419 | 419 |
|
420 | 420 |
///@{ |
421 | 421 |
|
422 | 422 |
///Initializes the internal data structures. |
423 | 423 |
|
424 | 424 |
///Initializes the internal data structures. |
425 | 425 |
/// |
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_stack.resize(countNodes(*G)); |
430 | 430 |
_stack_head=-1; |
431 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
432 | 432 |
_pred->set(u,INVALID); |
433 | 433 |
_reached->set(u,false); |
434 | 434 |
_processed->set(u,false); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
///Adds a new source node. |
439 | 439 |
|
440 | 440 |
///Adds a new source node to the set of nodes to be processed. |
441 | 441 |
/// |
442 | 442 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
443 | 443 |
///false results.) |
444 | 444 |
/// |
445 | 445 |
///\warning Distances will be wrong (or at least strange) in case of |
446 | 446 |
///multiple sources. |
447 | 447 |
void addSource(Node s) |
448 | 448 |
{ |
449 | 449 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
450 | 450 |
if(!(*_reached)[s]) |
451 | 451 |
{ |
452 | 452 |
_reached->set(s,true); |
453 | 453 |
_pred->set(s,INVALID); |
454 | 454 |
OutArcIt e(*G,s); |
455 | 455 |
if(e!=INVALID) { |
456 | 456 |
_stack[++_stack_head]=e; |
457 | 457 |
_dist->set(s,_stack_head); |
458 | 458 |
} |
459 | 459 |
else { |
460 | 460 |
_processed->set(s,true); |
461 | 461 |
_dist->set(s,0); |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
} |
465 | 465 |
|
466 | 466 |
///Processes the next arc. |
467 | 467 |
|
468 | 468 |
///Processes the next arc. |
469 | 469 |
/// |
470 | 470 |
///\return The processed arc. |
471 | 471 |
/// |
472 | 472 |
///\pre The stack must not be empty. |
473 | 473 |
Arc processNextArc() |
474 | 474 |
{ |
475 | 475 |
Node m; |
476 | 476 |
Arc e=_stack[_stack_head]; |
477 | 477 |
if(!(*_reached)[m=G->target(e)]) { |
478 | 478 |
_pred->set(m,e); |
479 | 479 |
_reached->set(m,true); |
480 | 480 |
++_stack_head; |
481 | 481 |
_stack[_stack_head] = OutArcIt(*G, m); |
482 | 482 |
_dist->set(m,_stack_head); |
483 | 483 |
} |
484 | 484 |
else { |
485 | 485 |
m=G->source(e); |
486 | 486 |
++_stack[_stack_head]; |
487 | 487 |
} |
488 | 488 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
489 | 489 |
_processed->set(m,true); |
490 | 490 |
--_stack_head; |
491 | 491 |
if(_stack_head>=0) { |
492 | 492 |
m=G->source(_stack[_stack_head]); |
493 | 493 |
++_stack[_stack_head]; |
494 | 494 |
} |
495 | 495 |
} |
496 | 496 |
return e; |
497 | 497 |
} |
498 | 498 |
|
499 | 499 |
///Next arc to be processed. |
500 | 500 |
|
501 | 501 |
///Next arc to be processed. |
502 | 502 |
/// |
503 | 503 |
///\return The next arc to be processed or \c INVALID if the stack |
504 | 504 |
///is empty. |
505 | 505 |
OutArcIt nextArc() const |
506 | 506 |
{ |
507 | 507 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
508 | 508 |
} |
509 | 509 |
|
510 | 510 |
///\brief Returns \c false if there are nodes |
511 | 511 |
///to be processed. |
512 | 512 |
/// |
513 | 513 |
///Returns \c false if there are nodes |
514 | 514 |
///to be processed in the queue (stack). |
515 | 515 |
bool emptyQueue() const { return _stack_head<0; } |
516 | 516 |
|
517 | 517 |
///Returns the number of the nodes to be processed. |
518 | 518 |
|
519 | 519 |
///Returns the number of the nodes to be processed in the queue (stack). |
520 | 520 |
int queueSize() const { return _stack_head+1; } |
521 | 521 |
|
522 | 522 |
///Executes the algorithm. |
523 | 523 |
|
524 | 524 |
///Executes the algorithm. |
525 | 525 |
/// |
526 | 526 |
///This method runs the %DFS algorithm from the root node |
527 | 527 |
///in order to compute the DFS path to each node. |
528 | 528 |
/// |
529 | 529 |
/// The algorithm computes |
530 | 530 |
///- the %DFS tree, |
531 | 531 |
///- the distance of each node from the root in the %DFS tree. |
532 | 532 |
/// |
533 | 533 |
///\pre init() must be called and a root node should be |
534 | 534 |
///added with addSource() before using this function. |
535 | 535 |
/// |
536 | 536 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
537 | 537 |
///\code |
538 | 538 |
/// while ( !d.emptyQueue() ) { |
539 | 539 |
/// d.processNextArc(); |
540 | 540 |
/// } |
541 | 541 |
///\endcode |
542 | 542 |
void start() |
543 | 543 |
{ |
544 | 544 |
while ( !emptyQueue() ) processNextArc(); |
545 | 545 |
} |
546 | 546 |
|
547 | 547 |
///Executes the algorithm until the given target node is reached. |
548 | 548 |
|
549 | 549 |
///Executes the algorithm until the given target node is reached. |
550 | 550 |
/// |
551 | 551 |
///This method runs the %DFS algorithm from the root node |
552 | 552 |
///in order to compute the DFS path to \c t. |
553 | 553 |
/// |
554 | 554 |
///The algorithm computes |
555 | 555 |
///- the %DFS path to \c t, |
556 | 556 |
///- the distance of \c t from the root in the %DFS tree. |
557 | 557 |
/// |
558 | 558 |
///\pre init() must be called and a root node should be |
559 | 559 |
///added with addSource() before using this function. |
560 | 560 |
void start(Node t) |
561 | 561 |
{ |
562 | 562 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
563 | 563 |
processNextArc(); |
564 | 564 |
} |
565 | 565 |
|
566 | 566 |
///Executes the algorithm until a condition is met. |
567 | 567 |
|
568 | 568 |
///Executes the algorithm until a condition is met. |
569 | 569 |
/// |
570 | 570 |
///This method runs the %DFS algorithm from the root node |
571 | 571 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
572 | 572 |
/// |
573 | 573 |
///\param am A \c bool (or convertible) arc map. The algorithm |
574 | 574 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
575 | 575 |
/// |
576 | 576 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
577 | 577 |
///\c INVALID if no such arc was found. |
578 | 578 |
/// |
579 | 579 |
///\pre init() must be called and a root node should be |
580 | 580 |
///added with addSource() before using this function. |
581 | 581 |
/// |
582 | 582 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
583 | 583 |
///not a node map. |
584 | 584 |
template<class ArcBoolMap> |
585 | 585 |
Arc start(const ArcBoolMap &am) |
586 | 586 |
{ |
587 | 587 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
588 | 588 |
processNextArc(); |
589 | 589 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
590 | 590 |
} |
591 | 591 |
|
592 | 592 |
///Runs the algorithm from the given source node. |
593 | 593 |
|
594 | 594 |
///This method runs the %DFS algorithm from node \c s |
595 | 595 |
///in order to compute the DFS path to each node. |
596 | 596 |
/// |
597 | 597 |
///The algorithm computes |
598 | 598 |
///- the %DFS tree, |
599 | 599 |
///- the distance of each node from the root in the %DFS tree. |
600 | 600 |
/// |
601 | 601 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
602 | 602 |
///\code |
603 | 603 |
/// d.init(); |
604 | 604 |
/// d.addSource(s); |
605 | 605 |
/// d.start(); |
606 | 606 |
///\endcode |
607 | 607 |
void run(Node s) { |
608 | 608 |
init(); |
609 | 609 |
addSource(s); |
610 | 610 |
start(); |
611 | 611 |
} |
612 | 612 |
|
613 | 613 |
///Finds the %DFS path between \c s and \c t. |
614 | 614 |
|
615 | 615 |
///This method runs the %DFS algorithm from node \c s |
616 | 616 |
///in order to compute the DFS path to node \c t |
617 | 617 |
///(it stops searching when \c t is processed) |
618 | 618 |
/// |
619 | 619 |
///\return \c true if \c t is reachable form \c s. |
620 | 620 |
/// |
621 | 621 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
622 | 622 |
///just a shortcut of the following code. |
623 | 623 |
///\code |
624 | 624 |
/// d.init(); |
625 | 625 |
/// d.addSource(s); |
626 | 626 |
/// d.start(t); |
627 | 627 |
///\endcode |
628 | 628 |
bool run(Node s,Node t) { |
629 | 629 |
init(); |
630 | 630 |
addSource(s); |
631 | 631 |
start(t); |
632 | 632 |
return reached(t); |
633 | 633 |
} |
634 | 634 |
|
635 | 635 |
///Runs the algorithm to visit all nodes in the digraph. |
636 | 636 |
|
637 | 637 |
///This method runs the %DFS algorithm in order to compute the |
638 | 638 |
///%DFS path to each node. |
639 | 639 |
/// |
640 | 640 |
///The algorithm computes |
641 | 641 |
///- the %DFS tree, |
642 | 642 |
///- the distance of each node from the root in the %DFS tree. |
643 | 643 |
/// |
644 | 644 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
645 | 645 |
///\code |
646 | 646 |
/// d.init(); |
647 | 647 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
648 | 648 |
/// if (!d.reached(n)) { |
649 | 649 |
/// d.addSource(n); |
650 | 650 |
/// d.start(); |
651 | 651 |
/// } |
652 | 652 |
/// } |
653 | 653 |
///\endcode |
654 | 654 |
void run() { |
655 | 655 |
init(); |
656 | 656 |
for (NodeIt it(*G); it != INVALID; ++it) { |
657 | 657 |
if (!reached(it)) { |
658 | 658 |
addSource(it); |
659 | 659 |
start(); |
660 | 660 |
} |
661 | 661 |
} |
662 | 662 |
} |
663 | 663 |
|
664 | 664 |
///@} |
665 | 665 |
|
666 | 666 |
///\name Query Functions |
667 | 667 |
///The result of the %DFS algorithm can be obtained using these |
668 | 668 |
///functions.\n |
669 | 669 |
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
670 | 670 |
///"start()" must be called before using them. |
671 | 671 |
|
672 | 672 |
///@{ |
673 | 673 |
|
674 | 674 |
///The DFS path to a node. |
675 | 675 |
|
676 | 676 |
///Returns the DFS path to a node. |
677 | 677 |
/// |
678 | 678 |
///\warning \c t should be reachable from the root. |
679 | 679 |
/// |
680 | 680 |
///\pre Either \ref run() or \ref start() must be called before |
681 | 681 |
///using this function. |
682 | 682 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
683 | 683 |
|
684 | 684 |
///The distance of a node from the root. |
685 | 685 |
|
686 | 686 |
///Returns the distance of a node from the root. |
687 | 687 |
/// |
688 | 688 |
///\warning If node \c v is not reachable from the root, then |
689 | 689 |
///the return value of this function is undefined. |
690 | 690 |
/// |
691 | 691 |
///\pre Either \ref run() or \ref start() must be called before |
692 | 692 |
///using this function. |
693 | 693 |
int dist(Node v) const { return (*_dist)[v]; } |
694 | 694 |
|
695 | 695 |
///Returns the 'previous arc' of the %DFS tree for a node. |
696 | 696 |
|
697 | 697 |
///This function returns the 'previous arc' of the %DFS tree for the |
698 | 698 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
699 | 699 |
///root to \c v. It is \c INVALID |
700 | 700 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
701 | 701 |
/// |
702 | 702 |
///The %DFS tree used here is equal to the %DFS tree used in |
703 | 703 |
///\ref predNode(). |
704 | 704 |
/// |
705 | 705 |
///\pre Either \ref run() or \ref start() must be called before using |
706 | 706 |
///this function. |
707 | 707 |
Arc predArc(Node v) const { return (*_pred)[v];} |
708 | 708 |
|
709 | 709 |
///Returns the 'previous node' of the %DFS tree. |
710 | 710 |
|
711 | 711 |
///This function returns the 'previous node' of the %DFS |
712 | 712 |
///tree for the node \c v, i.e. it returns the last but one node |
713 | 713 |
///from a %DFS path from the root to \c v. It is \c INVALID |
714 | 714 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
715 | 715 |
/// |
716 | 716 |
///The %DFS tree used here is equal to the %DFS tree used in |
717 | 717 |
///\ref predArc(). |
718 | 718 |
/// |
719 | 719 |
///\pre Either \ref run() or \ref start() must be called before |
720 | 720 |
///using this function. |
721 | 721 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
722 | 722 |
G->source((*_pred)[v]); } |
723 | 723 |
|
724 | 724 |
///\brief Returns a const reference to the node map that stores the |
725 | 725 |
///distances of the nodes. |
726 | 726 |
/// |
727 | 727 |
///Returns a const reference to the node map that stores the |
728 | 728 |
///distances of the nodes calculated by the algorithm. |
729 | 729 |
/// |
730 | 730 |
///\pre Either \ref run() or \ref init() |
731 | 731 |
///must be called before using this function. |
732 | 732 |
const DistMap &distMap() const { return *_dist;} |
733 | 733 |
|
734 | 734 |
///\brief Returns a const reference to the node map that stores the |
735 | 735 |
///predecessor arcs. |
736 | 736 |
/// |
737 | 737 |
///Returns a const reference to the node map that stores the predecessor |
738 | 738 |
///arcs, which form the DFS tree. |
739 | 739 |
/// |
740 | 740 |
///\pre Either \ref run() or \ref init() |
741 | 741 |
///must be called before using this function. |
742 | 742 |
const PredMap &predMap() const { return *_pred;} |
743 | 743 |
|
744 | 744 |
///Checks if a node is reachable from the root(s). |
745 | 745 |
|
746 | 746 |
///Returns \c true if \c v is reachable from the root(s). |
747 | 747 |
///\pre Either \ref run() or \ref start() |
748 | 748 |
///must be called before using this function. |
749 | 749 |
bool reached(Node v) const { return (*_reached)[v]; } |
750 | 750 |
|
751 | 751 |
///@} |
752 | 752 |
}; |
753 | 753 |
|
754 | 754 |
///Default traits class of dfs() function. |
755 | 755 |
|
756 | 756 |
///Default traits class of dfs() function. |
757 | 757 |
///\tparam GR Digraph type. |
758 | 758 |
template<class GR> |
759 | 759 |
struct DfsWizardDefaultTraits |
760 | 760 |
{ |
761 | 761 |
///The type of the digraph the algorithm runs on. |
762 | 762 |
typedef GR Digraph; |
763 | 763 |
|
764 | 764 |
///\brief The type of the map that stores the predecessor |
765 | 765 |
///arcs of the %DFS paths. |
766 | 766 |
/// |
767 | 767 |
///The type of the map that stores the predecessor |
768 | 768 |
///arcs of the %DFS paths. |
769 | 769 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
770 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
771 | 771 |
///Instantiates a PredMap. |
772 | 772 |
|
773 | 773 |
///This function instantiates a PredMap. |
774 | 774 |
///\param g is the digraph, to which we would like to define the |
775 | 775 |
///PredMap. |
776 | 776 |
static PredMap *createPredMap(const Digraph &g) |
777 | 777 |
{ |
778 | 778 |
return new PredMap(g); |
779 | 779 |
} |
780 | 780 |
|
781 | 781 |
///The type of the map that indicates which nodes are processed. |
782 | 782 |
|
783 | 783 |
///The type of the map that indicates which nodes are processed. |
784 | 784 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
785 | 785 |
///By default it is a NullMap. |
786 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
787 | 787 |
///Instantiates a ProcessedMap. |
788 | 788 |
|
789 | 789 |
///This function instantiates a ProcessedMap. |
790 | 790 |
///\param g is the digraph, to which |
791 | 791 |
///we would like to define the ProcessedMap. |
792 | 792 |
#ifdef DOXYGEN |
793 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
794 | 794 |
#else |
795 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
796 | 796 |
#endif |
797 | 797 |
{ |
798 | 798 |
return new ProcessedMap(); |
799 | 799 |
} |
800 | 800 |
|
801 | 801 |
///The type of the map that indicates which nodes are reached. |
802 | 802 |
|
803 | 803 |
///The type of the map that indicates which nodes are reached. |
804 | 804 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
805 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
806 | 806 |
///Instantiates a ReachedMap. |
807 | 807 |
|
808 | 808 |
///This function instantiates a ReachedMap. |
809 | 809 |
///\param g is the digraph, to which |
810 | 810 |
///we would like to define the ReachedMap. |
811 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
812 | 812 |
{ |
813 | 813 |
return new ReachedMap(g); |
814 | 814 |
} |
815 | 815 |
|
816 | 816 |
///The type of the map that stores the distances of the nodes. |
817 | 817 |
|
818 | 818 |
///The type of the map that stores the distances of the nodes. |
819 | 819 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
820 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
821 | 821 |
///Instantiates a DistMap. |
822 | 822 |
|
823 | 823 |
///This function instantiates a DistMap. |
824 | 824 |
///\param g is the digraph, to which we would like to define |
825 | 825 |
///the DistMap |
826 | 826 |
static DistMap *createDistMap(const Digraph &g) |
827 | 827 |
{ |
828 | 828 |
return new DistMap(g); |
829 | 829 |
} |
830 | 830 |
|
831 | 831 |
///The type of the DFS paths. |
832 | 832 |
|
833 | 833 |
///The type of the DFS paths. |
834 | 834 |
///It must meet the \ref concepts::Path "Path" concept. |
835 | 835 |
typedef lemon::Path<Digraph> Path; |
836 | 836 |
}; |
837 | 837 |
|
838 |
/// Default traits class used by |
|
838 |
/// Default traits class used by DfsWizard |
|
839 | 839 |
|
840 | 840 |
/// To make it easier to use Dfs algorithm |
841 | 841 |
/// we have created a wizard class. |
842 | 842 |
/// This \ref DfsWizard class needs default traits, |
843 | 843 |
/// as well as the \ref Dfs class. |
844 | 844 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
845 | 845 |
/// \ref DfsWizard class. |
846 | 846 |
template<class GR> |
847 | 847 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
848 | 848 |
{ |
849 | 849 |
|
850 | 850 |
typedef DfsWizardDefaultTraits<GR> Base; |
851 | 851 |
protected: |
852 | 852 |
//The type of the nodes in the digraph. |
853 | 853 |
typedef typename Base::Digraph::Node Node; |
854 | 854 |
|
855 | 855 |
//Pointer to the digraph the algorithm runs on. |
856 | 856 |
void *_g; |
857 | 857 |
//Pointer to the map of reached nodes. |
858 | 858 |
void *_reached; |
859 | 859 |
//Pointer to the map of processed nodes. |
860 | 860 |
void *_processed; |
861 | 861 |
//Pointer to the map of predecessors arcs. |
862 | 862 |
void *_pred; |
863 | 863 |
//Pointer to the map of distances. |
864 | 864 |
void *_dist; |
865 | 865 |
//Pointer to the DFS path to the target node. |
866 | 866 |
void *_path; |
867 | 867 |
//Pointer to the distance of the target node. |
868 | 868 |
int *_di; |
869 | 869 |
|
870 | 870 |
public: |
871 | 871 |
/// Constructor. |
872 | 872 |
|
873 | 873 |
/// This constructor does not require parameters, therefore it initiates |
874 | 874 |
/// all of the attributes to \c 0. |
875 | 875 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
876 | 876 |
_dist(0), _path(0), _di(0) {} |
877 | 877 |
|
878 | 878 |
/// Constructor. |
879 | 879 |
|
880 | 880 |
/// This constructor requires one parameter, |
881 | 881 |
/// others are initiated to \c 0. |
882 | 882 |
/// \param g The digraph the algorithm runs on. |
883 | 883 |
DfsWizardBase(const GR &g) : |
884 | 884 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
885 | 885 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
886 | 886 |
|
887 | 887 |
}; |
888 | 888 |
|
889 | 889 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
890 | 890 |
|
891 | 891 |
/// This auxiliary class is created to implement the |
892 | 892 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
893 | 893 |
/// It does not have own \ref run() method, it uses the functions |
894 | 894 |
/// and features of the plain \ref Dfs. |
895 | 895 |
/// |
896 | 896 |
/// This class should only be used through the \ref dfs() function, |
897 | 897 |
/// which makes it easier to use the algorithm. |
898 | 898 |
template<class TR> |
899 | 899 |
class DfsWizard : public TR |
900 | 900 |
{ |
901 | 901 |
typedef TR Base; |
902 | 902 |
|
903 | 903 |
///The type of the digraph the algorithm runs on. |
904 | 904 |
typedef typename TR::Digraph Digraph; |
905 | 905 |
|
906 | 906 |
typedef typename Digraph::Node Node; |
907 | 907 |
typedef typename Digraph::NodeIt NodeIt; |
908 | 908 |
typedef typename Digraph::Arc Arc; |
909 | 909 |
typedef typename Digraph::OutArcIt OutArcIt; |
910 | 910 |
|
911 | 911 |
///\brief The type of the map that stores the predecessor |
912 | 912 |
///arcs of the DFS paths. |
913 | 913 |
typedef typename TR::PredMap PredMap; |
914 | 914 |
///\brief The type of the map that stores the distances of the nodes. |
915 | 915 |
typedef typename TR::DistMap DistMap; |
916 | 916 |
///\brief The type of the map that indicates which nodes are reached. |
917 | 917 |
typedef typename TR::ReachedMap ReachedMap; |
918 | 918 |
///\brief The type of the map that indicates which nodes are processed. |
919 | 919 |
typedef typename TR::ProcessedMap ProcessedMap; |
920 | 920 |
///The type of the DFS paths |
921 | 921 |
typedef typename TR::Path Path; |
922 | 922 |
|
923 | 923 |
public: |
924 | 924 |
|
925 | 925 |
/// Constructor. |
926 | 926 |
DfsWizard() : TR() {} |
927 | 927 |
|
928 | 928 |
/// Constructor that requires parameters. |
929 | 929 |
|
930 | 930 |
/// Constructor that requires parameters. |
931 | 931 |
/// These parameters will be the default values for the traits class. |
932 | 932 |
/// \param g The digraph the algorithm runs on. |
933 | 933 |
DfsWizard(const Digraph &g) : |
934 | 934 |
TR(g) {} |
935 | 935 |
|
936 | 936 |
///Copy constructor |
937 | 937 |
DfsWizard(const TR &b) : TR(b) {} |
938 | 938 |
|
939 | 939 |
~DfsWizard() {} |
940 | 940 |
|
941 | 941 |
///Runs DFS algorithm from the given source node. |
942 | 942 |
|
943 | 943 |
///This method runs DFS algorithm from node \c s |
944 | 944 |
///in order to compute the DFS path to each node. |
945 | 945 |
void run(Node s) |
946 | 946 |
{ |
947 | 947 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
948 | 948 |
if (Base::_pred) |
949 | 949 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
950 | 950 |
if (Base::_dist) |
951 | 951 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
952 | 952 |
if (Base::_reached) |
953 | 953 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
954 | 954 |
if (Base::_processed) |
955 | 955 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
956 | 956 |
if (s!=INVALID) |
957 | 957 |
alg.run(s); |
958 | 958 |
else |
959 | 959 |
alg.run(); |
960 | 960 |
} |
961 | 961 |
|
962 | 962 |
///Finds the DFS path between \c s and \c t. |
963 | 963 |
|
964 | 964 |
///This method runs DFS algorithm from node \c s |
965 | 965 |
///in order to compute the DFS path to node \c t |
966 | 966 |
///(it stops searching when \c t is processed). |
967 | 967 |
/// |
968 | 968 |
///\return \c true if \c t is reachable form \c s. |
969 | 969 |
bool run(Node s, Node t) |
970 | 970 |
{ |
971 | 971 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
972 | 972 |
if (Base::_pred) |
973 | 973 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
974 | 974 |
if (Base::_dist) |
975 | 975 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
976 | 976 |
if (Base::_reached) |
977 | 977 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
978 | 978 |
if (Base::_processed) |
979 | 979 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
980 | 980 |
alg.run(s,t); |
981 | 981 |
if (Base::_path) |
982 | 982 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
983 | 983 |
if (Base::_di) |
984 | 984 |
*Base::_di = alg.dist(t); |
985 | 985 |
return alg.reached(t); |
986 | 986 |
} |
987 | 987 |
|
988 | 988 |
///Runs DFS algorithm to visit all nodes in the digraph. |
989 | 989 |
|
990 | 990 |
///This method runs DFS algorithm in order to compute |
991 | 991 |
///the DFS path to each node. |
992 | 992 |
void run() |
993 | 993 |
{ |
994 | 994 |
run(INVALID); |
995 | 995 |
} |
996 | 996 |
|
997 | 997 |
template<class T> |
998 | 998 |
struct SetPredMapBase : public Base { |
999 | 999 |
typedef T PredMap; |
1000 | 1000 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1001 | 1001 |
SetPredMapBase(const TR &b) : TR(b) {} |
1002 | 1002 |
}; |
1003 | 1003 |
///\brief \ref named-func-param "Named parameter" |
1004 | 1004 |
///for setting PredMap object. |
1005 | 1005 |
/// |
1006 | 1006 |
///\ref named-func-param "Named parameter" |
1007 | 1007 |
///for setting PredMap object. |
1008 | 1008 |
template<class T> |
1009 | 1009 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1010 | 1010 |
{ |
1011 | 1011 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1012 | 1012 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1013 | 1013 |
} |
1014 | 1014 |
|
1015 | 1015 |
template<class T> |
1016 | 1016 |
struct SetReachedMapBase : public Base { |
1017 | 1017 |
typedef T ReachedMap; |
1018 | 1018 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1019 | 1019 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1020 | 1020 |
}; |
1021 | 1021 |
///\brief \ref named-func-param "Named parameter" |
1022 | 1022 |
///for setting ReachedMap object. |
1023 | 1023 |
/// |
1024 | 1024 |
/// \ref named-func-param "Named parameter" |
1025 | 1025 |
///for setting ReachedMap object. |
1026 | 1026 |
template<class T> |
1027 | 1027 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1028 | 1028 |
{ |
1029 | 1029 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1030 | 1030 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1031 | 1031 |
} |
1032 | 1032 |
|
1033 | 1033 |
template<class T> |
1034 | 1034 |
struct SetDistMapBase : public Base { |
1035 | 1035 |
typedef T DistMap; |
1036 | 1036 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1037 | 1037 |
SetDistMapBase(const TR &b) : TR(b) {} |
1038 | 1038 |
}; |
1039 | 1039 |
///\brief \ref named-func-param "Named parameter" |
1040 | 1040 |
///for setting DistMap object. |
1041 | 1041 |
/// |
1042 | 1042 |
/// \ref named-func-param "Named parameter" |
1043 | 1043 |
///for setting DistMap object. |
1044 | 1044 |
template<class T> |
1045 | 1045 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1046 | 1046 |
{ |
1047 | 1047 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1048 | 1048 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1049 | 1049 |
} |
1050 | 1050 |
|
1051 | 1051 |
template<class T> |
1052 | 1052 |
struct SetProcessedMapBase : public Base { |
1053 | 1053 |
typedef T ProcessedMap; |
1054 | 1054 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1055 | 1055 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1056 | 1056 |
}; |
1057 | 1057 |
///\brief \ref named-func-param "Named parameter" |
1058 | 1058 |
///for setting ProcessedMap object. |
1059 | 1059 |
/// |
1060 | 1060 |
/// \ref named-func-param "Named parameter" |
1061 | 1061 |
///for setting ProcessedMap object. |
1062 | 1062 |
template<class T> |
1063 | 1063 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1064 | 1064 |
{ |
1065 | 1065 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1066 | 1066 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1067 | 1067 |
} |
1068 | 1068 |
|
1069 | 1069 |
template<class T> |
1070 | 1070 |
struct SetPathBase : public Base { |
1071 | 1071 |
typedef T Path; |
1072 | 1072 |
SetPathBase(const TR &b) : TR(b) {} |
1073 | 1073 |
}; |
1074 | 1074 |
///\brief \ref named-func-param "Named parameter" |
1075 | 1075 |
///for getting the DFS path to the target node. |
1076 | 1076 |
/// |
1077 | 1077 |
///\ref named-func-param "Named parameter" |
1078 | 1078 |
///for getting the DFS path to the target node. |
1079 | 1079 |
template<class T> |
1080 | 1080 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1081 | 1081 |
{ |
1082 | 1082 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1083 | 1083 |
return DfsWizard<SetPathBase<T> >(*this); |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
///\brief \ref named-func-param "Named parameter" |
1087 | 1087 |
///for getting the distance of the target node. |
1088 | 1088 |
/// |
1089 | 1089 |
///\ref named-func-param "Named parameter" |
1090 | 1090 |
///for getting the distance of the target node. |
1091 | 1091 |
DfsWizard dist(const int &d) |
1092 | 1092 |
{ |
1093 | 1093 |
Base::_di=const_cast<int*>(&d); |
1094 | 1094 |
return *this; |
1095 | 1095 |
} |
1096 | 1096 |
|
1097 | 1097 |
}; |
1098 | 1098 |
|
1099 | 1099 |
///Function-type interface for DFS algorithm. |
1100 | 1100 |
|
1101 | 1101 |
///\ingroup search |
1102 | 1102 |
///Function-type interface for DFS algorithm. |
1103 | 1103 |
/// |
1104 | 1104 |
///This function also has several \ref named-func-param "named parameters", |
1105 | 1105 |
///they are declared as the members of class \ref DfsWizard. |
1106 | 1106 |
///The following examples show how to use these parameters. |
1107 | 1107 |
///\code |
1108 | 1108 |
/// // Compute the DFS tree |
1109 | 1109 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1110 | 1110 |
/// |
1111 | 1111 |
/// // Compute the DFS path from s to t |
1112 | 1112 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1113 | 1113 |
///\endcode |
1114 | 1114 |
|
1115 | 1115 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1116 | 1116 |
///to the end of the parameter list. |
1117 | 1117 |
///\sa DfsWizard |
1118 | 1118 |
///\sa Dfs |
1119 | 1119 |
template<class GR> |
1120 | 1120 |
DfsWizard<DfsWizardBase<GR> > |
1121 | 1121 |
dfs(const GR &digraph) |
1122 | 1122 |
{ |
1123 | 1123 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1124 | 1124 |
} |
1125 | 1125 |
|
1126 | 1126 |
#ifdef DOXYGEN |
1127 | 1127 |
/// \brief Visitor class for DFS. |
1128 | 1128 |
/// |
1129 | 1129 |
/// This class defines the interface of the DfsVisit events, and |
1130 | 1130 |
/// it could be the base of a real visitor class. |
1131 | 1131 |
template <typename _Digraph> |
1132 | 1132 |
struct DfsVisitor { |
1133 | 1133 |
typedef _Digraph Digraph; |
1134 | 1134 |
typedef typename Digraph::Arc Arc; |
1135 | 1135 |
typedef typename Digraph::Node Node; |
1136 | 1136 |
/// \brief Called for the source node of the DFS. |
1137 | 1137 |
/// |
1138 | 1138 |
/// This function is called for the source node of the DFS. |
1139 | 1139 |
void start(const Node& node) {} |
1140 | 1140 |
/// \brief Called when the source node is leaved. |
1141 | 1141 |
/// |
1142 | 1142 |
/// This function is called when the source node is leaved. |
1143 | 1143 |
void stop(const Node& node) {} |
1144 | 1144 |
/// \brief Called when a node is reached first time. |
1145 | 1145 |
/// |
1146 | 1146 |
/// This function is called when a node is reached first time. |
1147 | 1147 |
void reach(const Node& node) {} |
1148 | 1148 |
/// \brief Called when an arc reaches a new node. |
1149 | 1149 |
/// |
1150 | 1150 |
/// This function is called when the DFS finds an arc whose target node |
1151 | 1151 |
/// is not reached yet. |
1152 | 1152 |
void discover(const Arc& arc) {} |
1153 | 1153 |
/// \brief Called when an arc is examined but its target node is |
1154 | 1154 |
/// already discovered. |
1155 | 1155 |
/// |
1156 | 1156 |
/// This function is called when an arc is examined but its target node is |
1157 | 1157 |
/// already discovered. |
1158 | 1158 |
void examine(const Arc& arc) {} |
1159 | 1159 |
/// \brief Called when the DFS steps back from a node. |
1160 | 1160 |
/// |
1161 | 1161 |
/// This function is called when the DFS steps back from a node. |
1162 | 1162 |
void leave(const Node& node) {} |
1163 | 1163 |
/// \brief Called when the DFS steps back on an arc. |
1164 | 1164 |
/// |
1165 | 1165 |
/// This function is called when the DFS steps back on an arc. |
1166 | 1166 |
void backtrack(const Arc& arc) {} |
1167 | 1167 |
}; |
1168 | 1168 |
#else |
1169 | 1169 |
template <typename _Digraph> |
1170 | 1170 |
struct DfsVisitor { |
1171 | 1171 |
typedef _Digraph Digraph; |
1172 | 1172 |
typedef typename Digraph::Arc Arc; |
1173 | 1173 |
typedef typename Digraph::Node Node; |
1174 | 1174 |
void start(const Node&) {} |
1175 | 1175 |
void stop(const Node&) {} |
1176 | 1176 |
void reach(const Node&) {} |
1177 | 1177 |
void discover(const Arc&) {} |
1178 | 1178 |
void examine(const Arc&) {} |
1179 | 1179 |
void leave(const Node&) {} |
1180 | 1180 |
void backtrack(const Arc&) {} |
1181 | 1181 |
|
1182 | 1182 |
template <typename _Visitor> |
1183 | 1183 |
struct Constraints { |
1184 | 1184 |
void constraints() { |
1185 | 1185 |
Arc arc; |
1186 | 1186 |
Node node; |
1187 | 1187 |
visitor.start(node); |
1188 | 1188 |
visitor.stop(arc); |
1189 | 1189 |
visitor.reach(node); |
1190 | 1190 |
visitor.discover(arc); |
1191 | 1191 |
visitor.examine(arc); |
1192 | 1192 |
visitor.leave(node); |
1193 | 1193 |
visitor.backtrack(arc); |
1194 | 1194 |
} |
1195 | 1195 |
_Visitor& visitor; |
1196 | 1196 |
}; |
1197 | 1197 |
}; |
1198 | 1198 |
#endif |
1199 | 1199 |
|
1200 | 1200 |
/// \brief Default traits class of DfsVisit class. |
1201 | 1201 |
/// |
1202 | 1202 |
/// Default traits class of DfsVisit class. |
1203 | 1203 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1204 | 1204 |
template<class _Digraph> |
1205 | 1205 |
struct DfsVisitDefaultTraits { |
1206 | 1206 |
|
1207 | 1207 |
/// \brief The type of the digraph the algorithm runs on. |
1208 | 1208 |
typedef _Digraph Digraph; |
1209 | 1209 |
|
1210 | 1210 |
/// \brief The type of the map that indicates which nodes are reached. |
1211 | 1211 |
/// |
1212 | 1212 |
/// The type of the map that indicates which nodes are reached. |
1213 | 1213 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1214 | 1214 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1215 | 1215 |
|
1216 | 1216 |
/// \brief Instantiates a ReachedMap. |
1217 | 1217 |
/// |
1218 | 1218 |
/// This function instantiates a ReachedMap. |
1219 | 1219 |
/// \param digraph is the digraph, to which |
1220 | 1220 |
/// we would like to define the ReachedMap. |
1221 | 1221 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1222 | 1222 |
return new ReachedMap(digraph); |
1223 | 1223 |
} |
1224 | 1224 |
|
1225 | 1225 |
}; |
1226 | 1226 |
|
1227 | 1227 |
/// \ingroup search |
1228 | 1228 |
/// |
1229 | 1229 |
/// \brief %DFS algorithm class with visitor interface. |
1230 | 1230 |
/// |
1231 | 1231 |
/// This class provides an efficient implementation of the %DFS algorithm |
1232 | 1232 |
/// with visitor interface. |
1233 | 1233 |
/// |
1234 | 1234 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1235 | 1235 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1236 | 1236 |
/// the member functions of the \c Visitor class on every DFS event. |
1237 | 1237 |
/// |
1238 | 1238 |
/// This interface of the DFS algorithm should be used in special cases |
1239 | 1239 |
/// when extra actions have to be performed in connection with certain |
1240 | 1240 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1241 | 1241 |
/// instead. |
1242 | 1242 |
/// |
1243 | 1243 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1244 | 1244 |
/// The default value is |
1245 | 1245 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1246 | 1246 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
1247 | 1247 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1248 | 1248 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
1249 | 1249 |
/// does not observe the DFS events. If you want to observe the DFS |
1250 | 1250 |
/// events, you should implement your own visitor class. |
1251 | 1251 |
/// \tparam _Traits Traits class to set various data types used by the |
1252 | 1252 |
/// algorithm. The default traits class is |
1253 | 1253 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1254 | 1254 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1255 | 1255 |
/// a DFS visit traits class. |
1256 | 1256 |
#ifdef DOXYGEN |
1257 | 1257 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1258 | 1258 |
#else |
1259 | 1259 |
template <typename _Digraph = ListDigraph, |
1260 | 1260 |
typename _Visitor = DfsVisitor<_Digraph>, |
1261 | 1261 |
typename _Traits = DfsVisitDefaultTraits<_Digraph> > |
1262 | 1262 |
#endif |
1263 | 1263 |
class DfsVisit { |
1264 | 1264 |
public: |
1265 | 1265 |
|
1266 | 1266 |
///The traits class. |
1267 | 1267 |
typedef _Traits Traits; |
1268 | 1268 |
|
1269 | 1269 |
///The type of the digraph the algorithm runs on. |
1270 | 1270 |
typedef typename Traits::Digraph Digraph; |
1271 | 1271 |
|
1272 | 1272 |
///The visitor type used by the algorithm. |
1273 | 1273 |
typedef _Visitor Visitor; |
1274 | 1274 |
|
1275 | 1275 |
///The type of the map that indicates which nodes are reached. |
1276 | 1276 |
typedef typename Traits::ReachedMap ReachedMap; |
1277 | 1277 |
|
1278 | 1278 |
private: |
1279 | 1279 |
|
1280 | 1280 |
typedef typename Digraph::Node Node; |
1281 | 1281 |
typedef typename Digraph::NodeIt NodeIt; |
1282 | 1282 |
typedef typename Digraph::Arc Arc; |
1283 | 1283 |
typedef typename Digraph::OutArcIt OutArcIt; |
1284 | 1284 |
|
1285 | 1285 |
//Pointer to the underlying digraph. |
1286 | 1286 |
const Digraph *_digraph; |
1287 | 1287 |
//Pointer to the visitor object. |
1288 | 1288 |
Visitor *_visitor; |
1289 | 1289 |
//Pointer to the map of reached status of the nodes. |
1290 | 1290 |
ReachedMap *_reached; |
1291 | 1291 |
//Indicates if _reached is locally allocated (true) or not. |
1292 | 1292 |
bool local_reached; |
1293 | 1293 |
|
1294 | 1294 |
std::vector<typename Digraph::Arc> _stack; |
1295 | 1295 |
int _stack_head; |
1296 | 1296 |
|
1297 | 1297 |
//Creates the maps if necessary. |
1298 | 1298 |
void create_maps() { |
1299 | 1299 |
if(!_reached) { |
1300 | 1300 |
local_reached = true; |
1301 | 1301 |
_reached = Traits::createReachedMap(*_digraph); |
1302 | 1302 |
} |
1303 | 1303 |
} |
1304 | 1304 |
|
1305 | 1305 |
protected: |
1306 | 1306 |
|
1307 | 1307 |
DfsVisit() {} |
1308 | 1308 |
|
1309 | 1309 |
public: |
1310 | 1310 |
|
1311 | 1311 |
typedef DfsVisit Create; |
1312 | 1312 |
|
1313 | 1313 |
/// \name Named template parameters |
1314 | 1314 |
|
1315 | 1315 |
///@{ |
1316 | 1316 |
template <class T> |
1317 | 1317 |
struct SetReachedMapTraits : public Traits { |
1318 | 1318 |
typedef T ReachedMap; |
1319 | 1319 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1320 | 1320 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1321 | 1321 |
return 0; // ignore warnings |
1322 | 1322 |
} |
1323 | 1323 |
}; |
1324 | 1324 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1325 | 1325 |
/// ReachedMap type. |
1326 | 1326 |
/// |
1327 | 1327 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1328 | 1328 |
template <class T> |
1329 | 1329 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1330 | 1330 |
SetReachedMapTraits<T> > { |
1331 | 1331 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1332 | 1332 |
}; |
1333 | 1333 |
///@} |
1334 | 1334 |
|
1335 | 1335 |
public: |
1336 | 1336 |
|
1337 | 1337 |
/// \brief Constructor. |
1338 | 1338 |
/// |
1339 | 1339 |
/// Constructor. |
1340 | 1340 |
/// |
1341 | 1341 |
/// \param digraph The digraph the algorithm runs on. |
1342 | 1342 |
/// \param visitor The visitor object of the algorithm. |
1343 | 1343 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1344 | 1344 |
: _digraph(&digraph), _visitor(&visitor), |
1345 | 1345 |
_reached(0), local_reached(false) {} |
1346 | 1346 |
|
1347 | 1347 |
/// \brief Destructor. |
1348 | 1348 |
~DfsVisit() { |
1349 | 1349 |
if(local_reached) delete _reached; |
1350 | 1350 |
} |
1351 | 1351 |
|
1352 | 1352 |
/// \brief Sets the map that indicates which nodes are reached. |
1353 | 1353 |
/// |
1354 | 1354 |
/// Sets the map that indicates which nodes are reached. |
1355 | 1355 |
/// If you don't use this function before calling \ref run(), |
1356 | 1356 |
/// it will allocate one. The destructor deallocates this |
1357 | 1357 |
/// automatically allocated map, of course. |
1358 | 1358 |
/// \return <tt> (*this) </tt> |
1359 | 1359 |
DfsVisit &reachedMap(ReachedMap &m) { |
1360 | 1360 |
if(local_reached) { |
1361 | 1361 |
delete _reached; |
1362 | 1362 |
local_reached=false; |
1363 | 1363 |
} |
1364 | 1364 |
_reached = &m; |
1365 | 1365 |
return *this; |
1366 | 1366 |
} |
1367 | 1367 |
|
1368 | 1368 |
public: |
1369 | 1369 |
|
1370 | 1370 |
/// \name Execution control |
1371 | 1371 |
/// The simplest way to execute the algorithm is to use |
1372 | 1372 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
1373 | 1373 |
/// "run()". |
1374 | 1374 |
/// \n |
1375 | 1375 |
/// If you need more control on the execution, first you must call |
1376 | 1376 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
1377 | 1377 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
1378 | 1378 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
1379 | 1379 |
/// actual path computation. |
1380 | 1380 |
|
1381 | 1381 |
/// @{ |
1382 | 1382 |
|
1383 | 1383 |
/// \brief Initializes the internal data structures. |
1384 | 1384 |
/// |
1385 | 1385 |
/// Initializes the internal data structures. |
1386 | 1386 |
void init() { |
1387 | 1387 |
create_maps(); |
1388 | 1388 |
_stack.resize(countNodes(*_digraph)); |
1389 | 1389 |
_stack_head = -1; |
1390 | 1390 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1391 | 1391 |
_reached->set(u, false); |
1392 | 1392 |
} |
1393 | 1393 |
} |
1394 | 1394 |
|
1395 | 1395 |
///Adds a new source node. |
1396 | 1396 |
|
1397 | 1397 |
///Adds a new source node to the set of nodes to be processed. |
1398 | 1398 |
/// |
1399 | 1399 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
1400 | 1400 |
///false results.) |
1401 | 1401 |
/// |
1402 | 1402 |
///\warning Distances will be wrong (or at least strange) in case of |
1403 | 1403 |
///multiple sources. |
1404 | 1404 |
void addSource(Node s) |
1405 | 1405 |
{ |
1406 | 1406 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1407 | 1407 |
if(!(*_reached)[s]) { |
1408 | 1408 |
_reached->set(s,true); |
1409 | 1409 |
_visitor->start(s); |
1410 | 1410 |
_visitor->reach(s); |
1411 | 1411 |
Arc e; |
1412 | 1412 |
_digraph->firstOut(e, s); |
1413 | 1413 |
if (e != INVALID) { |
1414 | 1414 |
_stack[++_stack_head] = e; |
1415 | 1415 |
} else { |
1416 | 1416 |
_visitor->leave(s); |
1417 | 1417 |
} |
1418 | 1418 |
} |
1419 | 1419 |
} |
1420 | 1420 |
|
1421 | 1421 |
/// \brief Processes the next arc. |
1422 | 1422 |
/// |
1423 | 1423 |
/// Processes the next arc. |
1424 | 1424 |
/// |
1425 | 1425 |
/// \return The processed arc. |
1426 | 1426 |
/// |
1427 | 1427 |
/// \pre The stack must not be empty. |
1428 | 1428 |
Arc processNextArc() { |
1429 | 1429 |
Arc e = _stack[_stack_head]; |
1430 | 1430 |
Node m = _digraph->target(e); |
1431 | 1431 |
if(!(*_reached)[m]) { |
1432 | 1432 |
_visitor->discover(e); |
1433 | 1433 |
_visitor->reach(m); |
1434 | 1434 |
_reached->set(m, true); |
1435 | 1435 |
_digraph->firstOut(_stack[++_stack_head], m); |
1436 | 1436 |
} else { |
1437 | 1437 |
_visitor->examine(e); |
1438 | 1438 |
m = _digraph->source(e); |
1439 | 1439 |
_digraph->nextOut(_stack[_stack_head]); |
1440 | 1440 |
} |
1441 | 1441 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1442 | 1442 |
_visitor->leave(m); |
1443 | 1443 |
--_stack_head; |
1444 | 1444 |
if (_stack_head >= 0) { |
1445 | 1445 |
_visitor->backtrack(_stack[_stack_head]); |
1446 | 1446 |
m = _digraph->source(_stack[_stack_head]); |
1447 | 1447 |
_digraph->nextOut(_stack[_stack_head]); |
1448 | 1448 |
} else { |
1449 | 1449 |
_visitor->stop(m); |
1450 | 1450 |
} |
1451 | 1451 |
} |
1452 | 1452 |
return e; |
1453 | 1453 |
} |
1454 | 1454 |
|
1455 | 1455 |
/// \brief Next arc to be processed. |
1456 | 1456 |
/// |
1457 | 1457 |
/// Next arc to be processed. |
1458 | 1458 |
/// |
1459 | 1459 |
/// \return The next arc to be processed or INVALID if the stack is |
1460 | 1460 |
/// empty. |
1461 | 1461 |
Arc nextArc() const { |
1462 | 1462 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1463 | 1463 |
} |
1464 | 1464 |
|
1465 | 1465 |
/// \brief Returns \c false if there are nodes |
1466 | 1466 |
/// to be processed. |
1467 | 1467 |
/// |
1468 | 1468 |
/// Returns \c false if there are nodes |
1469 | 1469 |
/// to be processed in the queue (stack). |
1470 | 1470 |
bool emptyQueue() const { return _stack_head < 0; } |
1471 | 1471 |
|
1472 | 1472 |
/// \brief Returns the number of the nodes to be processed. |
1473 | 1473 |
/// |
1474 | 1474 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1475 | 1475 |
int queueSize() const { return _stack_head + 1; } |
1476 | 1476 |
|
1477 | 1477 |
/// \brief Executes the algorithm. |
1478 | 1478 |
/// |
1479 | 1479 |
/// Executes the algorithm. |
1480 | 1480 |
/// |
1481 | 1481 |
/// This method runs the %DFS algorithm from the root node |
1482 | 1482 |
/// in order to compute the %DFS path to each node. |
1483 | 1483 |
/// |
1484 | 1484 |
/// The algorithm computes |
1485 | 1485 |
/// - the %DFS tree, |
1486 | 1486 |
/// - the distance of each node from the root in the %DFS tree. |
1487 | 1487 |
/// |
1488 | 1488 |
/// \pre init() must be called and a root node should be |
1489 | 1489 |
/// added with addSource() before using this function. |
1490 | 1490 |
/// |
1491 | 1491 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1492 | 1492 |
/// \code |
1493 | 1493 |
/// while ( !d.emptyQueue() ) { |
1494 | 1494 |
/// d.processNextArc(); |
1495 | 1495 |
/// } |
1496 | 1496 |
/// \endcode |
1497 | 1497 |
void start() { |
1498 | 1498 |
while ( !emptyQueue() ) processNextArc(); |
1499 | 1499 |
} |
1500 | 1500 |
|
1501 | 1501 |
/// \brief Executes the algorithm until the given target node is reached. |
1502 | 1502 |
/// |
1503 | 1503 |
/// Executes the algorithm until the given target node is reached. |
1504 | 1504 |
/// |
1505 | 1505 |
/// This method runs the %DFS algorithm from the root node |
1506 | 1506 |
/// in order to compute the DFS path to \c t. |
1507 | 1507 |
/// |
1508 | 1508 |
/// The algorithm computes |
1509 | 1509 |
/// - the %DFS path to \c t, |
1510 | 1510 |
/// - the distance of \c t from the root in the %DFS tree. |
1511 | 1511 |
/// |
1512 | 1512 |
/// \pre init() must be called and a root node should be added |
1513 | 1513 |
/// with addSource() before using this function. |
1514 | 1514 |
void start(Node t) { |
1515 | 1515 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
1516 | 1516 |
processNextArc(); |
1517 | 1517 |
} |
1518 | 1518 |
|
1519 | 1519 |
/// \brief Executes the algorithm until a condition is met. |
1520 | 1520 |
/// |
1521 | 1521 |
/// Executes the algorithm until a condition is met. |
1522 | 1522 |
/// |
1523 | 1523 |
/// This method runs the %DFS algorithm from the root node |
1524 | 1524 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1525 | 1525 |
/// |
1526 | 1526 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1527 | 1527 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1528 | 1528 |
/// |
1529 | 1529 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1530 | 1530 |
/// \c INVALID if no such arc was found. |
1531 | 1531 |
/// |
1532 | 1532 |
/// \pre init() must be called and a root node should be added |
1533 | 1533 |
/// with addSource() before using this function. |
1534 | 1534 |
/// |
1535 | 1535 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1536 | 1536 |
/// not a node map. |
1537 | 1537 |
template <typename AM> |
1538 | 1538 |
Arc start(const AM &am) { |
1539 | 1539 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1540 | 1540 |
processNextArc(); |
1541 | 1541 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1542 | 1542 |
} |
1543 | 1543 |
|
1544 | 1544 |
/// \brief Runs the algorithm from the given source node. |
1545 | 1545 |
/// |
1546 | 1546 |
/// This method runs the %DFS algorithm from node \c s. |
1547 | 1547 |
/// in order to compute the DFS path to each node. |
1548 | 1548 |
/// |
1549 | 1549 |
/// The algorithm computes |
1550 | 1550 |
/// - the %DFS tree, |
1551 | 1551 |
/// - the distance of each node from the root in the %DFS tree. |
1552 | 1552 |
/// |
1553 | 1553 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1554 | 1554 |
///\code |
1555 | 1555 |
/// d.init(); |
1556 | 1556 |
/// d.addSource(s); |
1557 | 1557 |
/// d.start(); |
1558 | 1558 |
///\endcode |
1559 | 1559 |
void run(Node s) { |
1560 | 1560 |
init(); |
1561 | 1561 |
addSource(s); |
1562 | 1562 |
start(); |
1563 | 1563 |
} |
1564 | 1564 |
|
1565 | 1565 |
/// \brief Finds the %DFS path between \c s and \c t. |
1566 | 1566 |
|
1567 | 1567 |
/// This method runs the %DFS algorithm from node \c s |
1568 | 1568 |
/// in order to compute the DFS path to node \c t |
1569 | 1569 |
/// (it stops searching when \c t is processed). |
1570 | 1570 |
/// |
1571 | 1571 |
/// \return \c true if \c t is reachable form \c s. |
1572 | 1572 |
/// |
1573 | 1573 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1574 | 1574 |
/// just a shortcut of the following code. |
1575 | 1575 |
///\code |
1576 | 1576 |
/// d.init(); |
1577 | 1577 |
/// d.addSource(s); |
1578 | 1578 |
/// d.start(t); |
1579 | 1579 |
///\endcode |
1580 | 1580 |
bool run(Node s,Node t) { |
1581 | 1581 |
init(); |
1582 | 1582 |
addSource(s); |
1583 | 1583 |
start(t); |
1584 | 1584 |
return reached(t); |
1585 | 1585 |
} |
1586 | 1586 |
|
1587 | 1587 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1588 | 1588 |
|
1589 | 1589 |
/// This method runs the %DFS algorithm in order to |
1590 | 1590 |
/// compute the %DFS path to each node. |
1591 | 1591 |
/// |
1592 | 1592 |
/// The algorithm computes |
1593 | 1593 |
/// - the %DFS tree, |
1594 | 1594 |
/// - the distance of each node from the root in the %DFS tree. |
1595 | 1595 |
/// |
1596 | 1596 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1597 | 1597 |
///\code |
1598 | 1598 |
/// d.init(); |
1599 | 1599 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1600 | 1600 |
/// if (!d.reached(n)) { |
1601 | 1601 |
/// d.addSource(n); |
1602 | 1602 |
/// d.start(); |
1603 | 1603 |
/// } |
1604 | 1604 |
/// } |
1605 | 1605 |
///\endcode |
1606 | 1606 |
void run() { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename Value> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \brief Gives back the zero value of the type. |
44 | 44 |
static Value zero() { |
45 | 45 |
return static_cast<Value>(0); |
46 | 46 |
} |
47 | 47 |
/// \brief Gives back the sum of the given two elements. |
48 | 48 |
static Value plus(const Value& left, const Value& right) { |
49 | 49 |
return left + right; |
50 | 50 |
} |
51 | 51 |
/// \brief Gives back true only if the first value is less than the second. |
52 | 52 |
static bool less(const Value& left, const Value& right) { |
53 | 53 |
return left < right; |
54 | 54 |
} |
55 | 55 |
}; |
56 | 56 |
|
57 | 57 |
/// \brief Widest path operation traits for the Dijkstra algorithm class. |
58 | 58 |
/// |
59 | 59 |
/// This operation traits class defines all computational operations and |
60 | 60 |
/// constants which are used in the Dijkstra algorithm for widest path |
61 | 61 |
/// computation. |
62 | 62 |
/// |
63 | 63 |
/// \see DijkstraDefaultOperationTraits |
64 | 64 |
template <typename Value> |
65 | 65 |
struct DijkstraWidestPathOperationTraits { |
66 | 66 |
/// \brief Gives back the maximum value of the type. |
67 | 67 |
static Value zero() { |
68 | 68 |
return std::numeric_limits<Value>::max(); |
69 | 69 |
} |
70 | 70 |
/// \brief Gives back the minimum of the given two elements. |
71 | 71 |
static Value plus(const Value& left, const Value& right) { |
72 | 72 |
return std::min(left, right); |
73 | 73 |
} |
74 | 74 |
/// \brief Gives back true only if the first value is less than the second. |
75 | 75 |
static bool less(const Value& left, const Value& right) { |
76 | 76 |
return left < right; |
77 | 77 |
} |
78 | 78 |
}; |
79 | 79 |
|
80 | 80 |
///Default traits class of Dijkstra class. |
81 | 81 |
|
82 | 82 |
///Default traits class of Dijkstra class. |
83 | 83 |
///\tparam GR The type of the digraph. |
84 | 84 |
///\tparam LM The type of the length map. |
85 | 85 |
template<class GR, class LM> |
86 | 86 |
struct DijkstraDefaultTraits |
87 | 87 |
{ |
88 | 88 |
///The type of the digraph the algorithm runs on. |
89 | 89 |
typedef GR Digraph; |
90 | 90 |
|
91 | 91 |
///The type of the map that stores the arc lengths. |
92 | 92 |
|
93 | 93 |
///The type of the map that stores the arc lengths. |
94 | 94 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
95 | 95 |
typedef LM LengthMap; |
96 | 96 |
///The type of the length of the arcs. |
97 | 97 |
typedef typename LM::Value Value; |
98 | 98 |
|
99 | 99 |
/// Operation traits for Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
/// This class defines the operations that are used in the algorithm. |
102 | 102 |
/// \see DijkstraDefaultOperationTraits |
103 | 103 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
104 | 104 |
|
105 | 105 |
/// The cross reference type used by the heap. |
106 | 106 |
|
107 | 107 |
/// The cross reference type used by the heap. |
108 | 108 |
/// Usually it is \c Digraph::NodeMap<int>. |
109 | 109 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
110 | 110 |
///Instantiates a \ref HeapCrossRef. |
111 | 111 |
|
112 | 112 |
///This function instantiates a \ref HeapCrossRef. |
113 | 113 |
/// \param g is the digraph, to which we would like to define the |
114 | 114 |
/// \ref HeapCrossRef. |
115 | 115 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
116 | 116 |
{ |
117 | 117 |
return new HeapCrossRef(g); |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
///The heap type used by the Dijkstra algorithm. |
121 | 121 |
|
122 | 122 |
///The heap type used by the Dijkstra algorithm. |
123 | 123 |
/// |
124 | 124 |
///\sa BinHeap |
125 | 125 |
///\sa Dijkstra |
126 | 126 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
127 | 127 |
///Instantiates a \ref Heap. |
128 | 128 |
|
129 | 129 |
///This function instantiates a \ref Heap. |
130 | 130 |
static Heap *createHeap(HeapCrossRef& r) |
131 | 131 |
{ |
132 | 132 |
return new Heap(r); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
///\brief The type of the map that stores the predecessor |
136 | 136 |
///arcs of the shortest paths. |
137 | 137 |
/// |
138 | 138 |
///The type of the map that stores the predecessor |
139 | 139 |
///arcs of the shortest paths. |
140 | 140 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
141 | 141 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
142 | 142 |
///Instantiates a PredMap. |
143 | 143 |
|
144 | 144 |
///This function instantiates a PredMap. |
145 | 145 |
///\param g is the digraph, to which we would like to define the |
146 | 146 |
///PredMap. |
147 | 147 |
static PredMap *createPredMap(const Digraph &g) |
148 | 148 |
{ |
149 | 149 |
return new PredMap(g); |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
///The type of the map that indicates which nodes are processed. |
153 | 153 |
|
154 | 154 |
///The type of the map that indicates which nodes are processed. |
155 | 155 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
156 | 156 |
///By default it is a NullMap. |
157 | 157 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
158 | 158 |
///Instantiates a ProcessedMap. |
159 | 159 |
|
160 | 160 |
///This function instantiates a ProcessedMap. |
161 | 161 |
///\param g is the digraph, to which |
162 | 162 |
///we would like to define the ProcessedMap |
163 | 163 |
#ifdef DOXYGEN |
164 | 164 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
165 | 165 |
#else |
166 | 166 |
static ProcessedMap *createProcessedMap(const Digraph &) |
167 | 167 |
#endif |
168 | 168 |
{ |
169 | 169 |
return new ProcessedMap(); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
///The type of the map that stores the distances of the nodes. |
173 | 173 |
|
174 | 174 |
///The type of the map that stores the distances of the nodes. |
175 | 175 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
176 | 176 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
177 | 177 |
///Instantiates a DistMap. |
178 | 178 |
|
179 | 179 |
///This function instantiates a DistMap. |
180 | 180 |
///\param g is the digraph, to which we would like to define |
181 | 181 |
///the DistMap |
182 | 182 |
static DistMap *createDistMap(const Digraph &g) |
183 | 183 |
{ |
184 | 184 |
return new DistMap(g); |
185 | 185 |
} |
186 | 186 |
}; |
187 | 187 |
|
188 | 188 |
///%Dijkstra algorithm class. |
189 | 189 |
|
190 | 190 |
/// \ingroup shortest_path |
191 | 191 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
192 | 192 |
/// |
193 | 193 |
///The arc lengths are passed to the algorithm using a |
194 | 194 |
///\ref concepts::ReadMap "ReadMap", |
195 | 195 |
///so it is easy to change it to any kind of length. |
196 | 196 |
///The type of the length is determined by the |
197 | 197 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
198 | 198 |
///It is also possible to change the underlying priority heap. |
199 | 199 |
/// |
200 | 200 |
///There is also a \ref dijkstra() "function-type interface" for the |
201 | 201 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
202 | 202 |
///it can be used easier. |
203 | 203 |
/// |
204 | 204 |
///\tparam GR The type of the digraph the algorithm runs on. |
205 | 205 |
///The default value is \ref ListDigraph. |
206 | 206 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
207 | 207 |
///passed to \ref DijkstraDefaultTraits. |
208 | 208 |
///\tparam LM A readable arc map that determines the lengths of the |
209 | 209 |
///arcs. It is read once for each arc, so the map may involve in |
210 | 210 |
///relatively time consuming process to compute the arc lengths if |
211 | 211 |
///it is necessary. The default map type is \ref |
212 | 212 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
213 | 213 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
214 | 214 |
///passed to \ref DijkstraDefaultTraits. |
215 | 215 |
///\tparam TR Traits class to set various data types used by the algorithm. |
216 | 216 |
///The default traits class is \ref DijkstraDefaultTraits |
217 | 217 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
218 | 218 |
///for the documentation of a Dijkstra traits class. |
219 | 219 |
#ifdef DOXYGEN |
220 | 220 |
template <typename GR, typename LM, typename TR> |
221 | 221 |
#else |
222 | 222 |
template <typename GR=ListDigraph, |
223 | 223 |
typename LM=typename GR::template ArcMap<int>, |
224 | 224 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
225 | 225 |
#endif |
226 | 226 |
class Dijkstra { |
227 | 227 |
public: |
228 | 228 |
|
229 | 229 |
///The type of the digraph the algorithm runs on. |
230 | 230 |
typedef typename TR::Digraph Digraph; |
231 | 231 |
|
232 | 232 |
///The type of the length of the arcs. |
233 | 233 |
typedef typename TR::LengthMap::Value Value; |
234 | 234 |
///The type of the map that stores the arc lengths. |
235 | 235 |
typedef typename TR::LengthMap LengthMap; |
236 | 236 |
///\brief The type of the map that stores the predecessor arcs of the |
237 | 237 |
///shortest paths. |
238 | 238 |
typedef typename TR::PredMap PredMap; |
239 | 239 |
///The type of the map that stores the distances of the nodes. |
240 | 240 |
typedef typename TR::DistMap DistMap; |
241 | 241 |
///The type of the map that indicates which nodes are processed. |
242 | 242 |
typedef typename TR::ProcessedMap ProcessedMap; |
243 | 243 |
///The type of the paths. |
244 | 244 |
typedef PredMapPath<Digraph, PredMap> Path; |
245 | 245 |
///The cross reference type used for the current heap. |
246 | 246 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
247 | 247 |
///The heap type used by the algorithm. |
248 | 248 |
typedef typename TR::Heap Heap; |
249 | 249 |
///The operation traits class. |
250 | 250 |
typedef typename TR::OperationTraits OperationTraits; |
251 | 251 |
|
252 | 252 |
///The traits class. |
253 | 253 |
typedef TR Traits; |
254 | 254 |
|
255 | 255 |
private: |
256 | 256 |
|
257 | 257 |
typedef typename Digraph::Node Node; |
258 | 258 |
typedef typename Digraph::NodeIt NodeIt; |
259 | 259 |
typedef typename Digraph::Arc Arc; |
260 | 260 |
typedef typename Digraph::OutArcIt OutArcIt; |
261 | 261 |
|
262 | 262 |
//Pointer to the underlying digraph. |
263 | 263 |
const Digraph *G; |
264 | 264 |
//Pointer to the length map. |
265 | 265 |
const LengthMap *length; |
266 | 266 |
//Pointer to the map of predecessors arcs. |
267 | 267 |
PredMap *_pred; |
268 | 268 |
//Indicates if _pred is locally allocated (true) or not. |
269 | 269 |
bool local_pred; |
270 | 270 |
//Pointer to the map of distances. |
271 | 271 |
DistMap *_dist; |
272 | 272 |
//Indicates if _dist is locally allocated (true) or not. |
273 | 273 |
bool local_dist; |
274 | 274 |
//Pointer to the map of processed status of the nodes. |
275 | 275 |
ProcessedMap *_processed; |
276 | 276 |
//Indicates if _processed is locally allocated (true) or not. |
277 | 277 |
bool local_processed; |
278 | 278 |
//Pointer to the heap cross references. |
279 | 279 |
HeapCrossRef *_heap_cross_ref; |
280 | 280 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
281 | 281 |
bool local_heap_cross_ref; |
282 | 282 |
//Pointer to the heap. |
283 | 283 |
Heap *_heap; |
284 | 284 |
//Indicates if _heap is locally allocated (true) or not. |
285 | 285 |
bool local_heap; |
286 | 286 |
|
287 | 287 |
//Creates the maps if necessary. |
288 | 288 |
void create_maps() |
289 | 289 |
{ |
290 | 290 |
if(!_pred) { |
291 | 291 |
local_pred = true; |
292 | 292 |
_pred = Traits::createPredMap(*G); |
293 | 293 |
} |
294 | 294 |
if(!_dist) { |
295 | 295 |
local_dist = true; |
296 | 296 |
_dist = Traits::createDistMap(*G); |
297 | 297 |
} |
298 | 298 |
if(!_processed) { |
299 | 299 |
local_processed = true; |
300 | 300 |
_processed = Traits::createProcessedMap(*G); |
301 | 301 |
} |
302 | 302 |
if (!_heap_cross_ref) { |
303 | 303 |
local_heap_cross_ref = true; |
304 | 304 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
305 | 305 |
} |
306 | 306 |
if (!_heap) { |
307 | 307 |
local_heap = true; |
308 | 308 |
_heap = Traits::createHeap(*_heap_cross_ref); |
309 | 309 |
} |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
public: |
313 | 313 |
|
314 | 314 |
typedef Dijkstra Create; |
315 | 315 |
|
316 | 316 |
///\name Named template parameters |
317 | 317 |
|
318 | 318 |
///@{ |
319 | 319 |
|
320 | 320 |
template <class T> |
321 | 321 |
struct SetPredMapTraits : public Traits { |
322 | 322 |
typedef T PredMap; |
323 | 323 |
static PredMap *createPredMap(const Digraph &) |
324 | 324 |
{ |
325 | 325 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
326 | 326 |
return 0; // ignore warnings |
327 | 327 |
} |
328 | 328 |
}; |
329 | 329 |
///\brief \ref named-templ-param "Named parameter" for setting |
330 | 330 |
///PredMap type. |
331 | 331 |
/// |
332 | 332 |
///\ref named-templ-param "Named parameter" for setting |
333 | 333 |
///PredMap type. |
334 | 334 |
template <class T> |
335 | 335 |
struct SetPredMap |
336 | 336 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
337 | 337 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
338 | 338 |
}; |
339 | 339 |
|
340 | 340 |
template <class T> |
341 | 341 |
struct SetDistMapTraits : public Traits { |
342 | 342 |
typedef T DistMap; |
343 | 343 |
static DistMap *createDistMap(const Digraph &) |
344 | 344 |
{ |
345 | 345 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
346 | 346 |
return 0; // ignore warnings |
347 | 347 |
} |
348 | 348 |
}; |
349 | 349 |
///\brief \ref named-templ-param "Named parameter" for setting |
350 | 350 |
///DistMap type. |
351 | 351 |
/// |
352 | 352 |
///\ref named-templ-param "Named parameter" for setting |
353 | 353 |
///DistMap type. |
354 | 354 |
template <class T> |
355 | 355 |
struct SetDistMap |
356 | 356 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
357 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
358 | 358 |
}; |
359 | 359 |
|
360 | 360 |
template <class T> |
361 | 361 |
struct SetProcessedMapTraits : public Traits { |
362 | 362 |
typedef T ProcessedMap; |
363 | 363 |
static ProcessedMap *createProcessedMap(const Digraph &) |
364 | 364 |
{ |
365 | 365 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
366 | 366 |
return 0; // ignore warnings |
367 | 367 |
} |
368 | 368 |
}; |
369 | 369 |
///\brief \ref named-templ-param "Named parameter" for setting |
370 | 370 |
///ProcessedMap type. |
371 | 371 |
/// |
372 | 372 |
///\ref named-templ-param "Named parameter" for setting |
373 | 373 |
///ProcessedMap type. |
374 | 374 |
template <class T> |
375 | 375 |
struct SetProcessedMap |
376 | 376 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
377 | 377 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
378 | 378 |
}; |
379 | 379 |
|
380 | 380 |
struct SetStandardProcessedMapTraits : public Traits { |
381 | 381 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
382 | 382 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
383 | 383 |
{ |
384 | 384 |
return new ProcessedMap(g); |
385 | 385 |
} |
386 | 386 |
}; |
387 | 387 |
///\brief \ref named-templ-param "Named parameter" for setting |
388 | 388 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
389 | 389 |
/// |
390 | 390 |
///\ref named-templ-param "Named parameter" for setting |
391 | 391 |
///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
392 | 392 |
///If you don't set it explicitly, it will be automatically allocated. |
393 | 393 |
struct SetStandardProcessedMap |
394 | 394 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
395 | 395 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
396 | 396 |
Create; |
397 | 397 |
}; |
398 | 398 |
|
399 | 399 |
template <class H, class CR> |
400 | 400 |
struct SetHeapTraits : public Traits { |
401 | 401 |
typedef CR HeapCrossRef; |
402 | 402 |
typedef H Heap; |
403 | 403 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
404 | 404 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
405 | 405 |
return 0; // ignore warnings |
406 | 406 |
} |
407 | 407 |
static Heap *createHeap(HeapCrossRef &) |
408 | 408 |
{ |
409 | 409 |
LEMON_ASSERT(false, "Heap is not initialized"); |
410 | 410 |
return 0; // ignore warnings |
411 | 411 |
} |
412 | 412 |
}; |
413 | 413 |
///\brief \ref named-templ-param "Named parameter" for setting |
414 | 414 |
///heap and cross reference type |
415 | 415 |
/// |
416 | 416 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
417 | 417 |
///reference type. |
418 | 418 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
419 | 419 |
struct SetHeap |
420 | 420 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
421 | 421 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
422 | 422 |
}; |
423 | 423 |
|
424 | 424 |
template <class H, class CR> |
425 | 425 |
struct SetStandardHeapTraits : public Traits { |
426 | 426 |
typedef CR HeapCrossRef; |
427 | 427 |
typedef H Heap; |
428 | 428 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
429 | 429 |
return new HeapCrossRef(G); |
430 | 430 |
} |
431 | 431 |
static Heap *createHeap(HeapCrossRef &R) |
432 | 432 |
{ |
433 | 433 |
return new Heap(R); |
434 | 434 |
} |
435 | 435 |
}; |
436 | 436 |
///\brief \ref named-templ-param "Named parameter" for setting |
437 | 437 |
///heap and cross reference type with automatic allocation |
438 | 438 |
/// |
439 | 439 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
440 | 440 |
///reference type. It can allocate the heap and the cross reference |
441 | 441 |
///object if the cross reference's constructor waits for the digraph as |
442 | 442 |
///parameter and the heap's constructor waits for the cross reference. |
443 | 443 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
444 | 444 |
struct SetStandardHeap |
445 | 445 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
446 | 446 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
447 | 447 |
Create; |
448 | 448 |
}; |
449 | 449 |
|
450 | 450 |
template <class T> |
451 | 451 |
struct SetOperationTraitsTraits : public Traits { |
452 | 452 |
typedef T OperationTraits; |
453 | 453 |
}; |
454 | 454 |
|
455 | 455 |
/// \brief \ref named-templ-param "Named parameter" for setting |
456 |
///\ |
|
456 |
///\c OperationTraits type |
|
457 | 457 |
/// |
458 | 458 |
///\ref named-templ-param "Named parameter" for setting |
459 | 459 |
///\ref OperationTraits type. |
460 | 460 |
template <class T> |
461 | 461 |
struct SetOperationTraits |
462 | 462 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
463 | 463 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
464 | 464 |
Create; |
465 | 465 |
}; |
466 | 466 |
|
467 | 467 |
///@} |
468 | 468 |
|
469 | 469 |
protected: |
470 | 470 |
|
471 | 471 |
Dijkstra() {} |
472 | 472 |
|
473 | 473 |
public: |
474 | 474 |
|
475 | 475 |
///Constructor. |
476 | 476 |
|
477 | 477 |
///Constructor. |
478 | 478 |
///\param _g The digraph the algorithm runs on. |
479 | 479 |
///\param _length The length map used by the algorithm. |
480 | 480 |
Dijkstra(const Digraph& _g, const LengthMap& _length) : |
481 | 481 |
G(&_g), length(&_length), |
482 | 482 |
_pred(NULL), local_pred(false), |
483 | 483 |
_dist(NULL), local_dist(false), |
484 | 484 |
_processed(NULL), local_processed(false), |
485 | 485 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
486 | 486 |
_heap(NULL), local_heap(false) |
487 | 487 |
{ } |
488 | 488 |
|
489 | 489 |
///Destructor. |
490 | 490 |
~Dijkstra() |
491 | 491 |
{ |
492 | 492 |
if(local_pred) delete _pred; |
493 | 493 |
if(local_dist) delete _dist; |
494 | 494 |
if(local_processed) delete _processed; |
495 | 495 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
496 | 496 |
if(local_heap) delete _heap; |
497 | 497 |
} |
498 | 498 |
|
499 | 499 |
///Sets the length map. |
500 | 500 |
|
501 | 501 |
///Sets the length map. |
502 | 502 |
///\return <tt> (*this) </tt> |
503 | 503 |
Dijkstra &lengthMap(const LengthMap &m) |
504 | 504 |
{ |
505 | 505 |
length = &m; |
506 | 506 |
return *this; |
507 | 507 |
} |
508 | 508 |
|
509 | 509 |
///Sets the map that stores the predecessor arcs. |
510 | 510 |
|
511 | 511 |
///Sets the map that stores the predecessor arcs. |
512 | 512 |
///If you don't use this function before calling \ref run(), |
513 | 513 |
///it will allocate one. The destructor deallocates this |
514 | 514 |
///automatically allocated map, of course. |
515 | 515 |
///\return <tt> (*this) </tt> |
516 | 516 |
Dijkstra &predMap(PredMap &m) |
517 | 517 |
{ |
518 | 518 |
if(local_pred) { |
519 | 519 |
delete _pred; |
520 | 520 |
local_pred=false; |
521 | 521 |
} |
522 | 522 |
_pred = &m; |
523 | 523 |
return *this; |
524 | 524 |
} |
525 | 525 |
|
526 | 526 |
///Sets the map that indicates which nodes are processed. |
527 | 527 |
|
528 | 528 |
///Sets the map that indicates which nodes are processed. |
529 | 529 |
///If you don't use this function before calling \ref run(), |
530 | 530 |
///it will allocate one. The destructor deallocates this |
531 | 531 |
///automatically allocated map, of course. |
532 | 532 |
///\return <tt> (*this) </tt> |
533 | 533 |
Dijkstra &processedMap(ProcessedMap &m) |
534 | 534 |
{ |
535 | 535 |
if(local_processed) { |
536 | 536 |
delete _processed; |
537 | 537 |
local_processed=false; |
538 | 538 |
} |
539 | 539 |
_processed = &m; |
540 | 540 |
return *this; |
541 | 541 |
} |
542 | 542 |
|
543 | 543 |
///Sets the map that stores the distances of the nodes. |
544 | 544 |
|
545 | 545 |
///Sets the map that stores the distances of the nodes calculated by the |
546 | 546 |
///algorithm. |
547 | 547 |
///If you don't use this function before calling \ref run(), |
548 | 548 |
///it will allocate one. The destructor deallocates this |
549 | 549 |
///automatically allocated map, of course. |
550 | 550 |
///\return <tt> (*this) </tt> |
551 | 551 |
Dijkstra &distMap(DistMap &m) |
552 | 552 |
{ |
553 | 553 |
if(local_dist) { |
554 | 554 |
delete _dist; |
555 | 555 |
local_dist=false; |
556 | 556 |
} |
557 | 557 |
_dist = &m; |
558 | 558 |
return *this; |
559 | 559 |
} |
560 | 560 |
|
561 | 561 |
///Sets the heap and the cross reference used by algorithm. |
562 | 562 |
|
563 | 563 |
///Sets the heap and the cross reference used by algorithm. |
564 | 564 |
///If you don't use this function before calling \ref run(), |
565 | 565 |
///it will allocate one. The destructor deallocates this |
566 | 566 |
///automatically allocated heap and cross reference, of course. |
567 | 567 |
///\return <tt> (*this) </tt> |
568 | 568 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
569 | 569 |
{ |
570 | 570 |
if(local_heap_cross_ref) { |
571 | 571 |
delete _heap_cross_ref; |
572 | 572 |
local_heap_cross_ref=false; |
573 | 573 |
} |
574 | 574 |
_heap_cross_ref = &cr; |
575 | 575 |
if(local_heap) { |
576 | 576 |
delete _heap; |
577 | 577 |
local_heap=false; |
578 | 578 |
} |
579 | 579 |
_heap = &hp; |
580 | 580 |
return *this; |
581 | 581 |
} |
582 | 582 |
|
583 | 583 |
private: |
584 | 584 |
|
585 | 585 |
void finalizeNodeData(Node v,Value dst) |
586 | 586 |
{ |
587 | 587 |
_processed->set(v,true); |
588 | 588 |
_dist->set(v, dst); |
589 | 589 |
} |
590 | 590 |
|
591 | 591 |
public: |
592 | 592 |
|
593 | 593 |
///\name Execution control |
594 | 594 |
///The simplest way to execute the algorithm is to use one of the |
595 | 595 |
///member functions called \ref lemon::Dijkstra::run() "run()". |
596 | 596 |
///\n |
597 | 597 |
///If you need more control on the execution, first you must call |
598 | 598 |
///\ref lemon::Dijkstra::init() "init()", then you can add several |
599 | 599 |
///source nodes with \ref lemon::Dijkstra::addSource() "addSource()". |
600 | 600 |
///Finally \ref lemon::Dijkstra::start() "start()" will perform the |
601 | 601 |
///actual path computation. |
602 | 602 |
|
603 | 603 |
///@{ |
604 | 604 |
|
605 | 605 |
///Initializes the internal data structures. |
606 | 606 |
|
607 | 607 |
///Initializes the internal data structures. |
608 | 608 |
/// |
609 | 609 |
void init() |
610 | 610 |
{ |
611 | 611 |
create_maps(); |
612 | 612 |
_heap->clear(); |
613 | 613 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
614 | 614 |
_pred->set(u,INVALID); |
615 | 615 |
_processed->set(u,false); |
616 | 616 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
617 | 617 |
} |
618 | 618 |
} |
619 | 619 |
|
620 | 620 |
///Adds a new source node. |
621 | 621 |
|
622 | 622 |
///Adds a new source node to the priority heap. |
623 | 623 |
///The optional second parameter is the initial distance of the node. |
624 | 624 |
/// |
625 | 625 |
///The function checks if the node has already been added to the heap and |
626 | 626 |
///it is pushed to the heap only if either it was not in the heap |
627 | 627 |
///or the shortest path found till then is shorter than \c dst. |
628 | 628 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
629 | 629 |
{ |
630 | 630 |
if(_heap->state(s) != Heap::IN_HEAP) { |
631 | 631 |
_heap->push(s,dst); |
632 | 632 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
633 | 633 |
_heap->set(s,dst); |
634 | 634 |
_pred->set(s,INVALID); |
635 | 635 |
} |
636 | 636 |
} |
637 | 637 |
|
638 | 638 |
///Processes the next node in the priority heap |
639 | 639 |
|
640 | 640 |
///Processes the next node in the priority heap. |
641 | 641 |
/// |
642 | 642 |
///\return The processed node. |
643 | 643 |
/// |
644 | 644 |
///\warning The priority heap must not be empty. |
645 | 645 |
Node processNextNode() |
646 | 646 |
{ |
647 | 647 |
Node v=_heap->top(); |
648 | 648 |
Value oldvalue=_heap->prio(); |
649 | 649 |
_heap->pop(); |
650 | 650 |
finalizeNodeData(v,oldvalue); |
651 | 651 |
|
652 | 652 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
653 | 653 |
Node w=G->target(e); |
654 | 654 |
switch(_heap->state(w)) { |
655 | 655 |
case Heap::PRE_HEAP: |
656 | 656 |
_heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
657 | 657 |
_pred->set(w,e); |
658 | 658 |
break; |
659 | 659 |
case Heap::IN_HEAP: |
660 | 660 |
{ |
661 | 661 |
Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
662 | 662 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
663 | 663 |
_heap->decrease(w, newvalue); |
664 | 664 |
_pred->set(w,e); |
665 | 665 |
} |
666 | 666 |
} |
667 | 667 |
break; |
668 | 668 |
case Heap::POST_HEAP: |
669 | 669 |
break; |
670 | 670 |
} |
671 | 671 |
} |
672 | 672 |
return v; |
673 | 673 |
} |
674 | 674 |
|
675 | 675 |
///The next node to be processed. |
676 | 676 |
|
677 | 677 |
///Returns the next node to be processed or \c INVALID if the |
678 | 678 |
///priority heap is empty. |
679 | 679 |
Node nextNode() const |
680 | 680 |
{ |
681 | 681 |
return !_heap->empty()?_heap->top():INVALID; |
682 | 682 |
} |
683 | 683 |
|
684 | 684 |
///\brief Returns \c false if there are nodes |
685 | 685 |
///to be processed. |
686 | 686 |
/// |
687 | 687 |
///Returns \c false if there are nodes |
688 | 688 |
///to be processed in the priority heap. |
689 | 689 |
bool emptyQueue() const { return _heap->empty(); } |
690 | 690 |
|
691 | 691 |
///Returns the number of the nodes to be processed in the priority heap |
692 | 692 |
|
693 | 693 |
///Returns the number of the nodes to be processed in the priority heap. |
694 | 694 |
/// |
695 | 695 |
int queueSize() const { return _heap->size(); } |
696 | 696 |
|
697 | 697 |
///Executes the algorithm. |
698 | 698 |
|
699 | 699 |
///Executes the algorithm. |
700 | 700 |
/// |
701 | 701 |
///This method runs the %Dijkstra algorithm from the root node(s) |
702 | 702 |
///in order to compute the shortest path to each node. |
703 | 703 |
/// |
704 | 704 |
///The algorithm computes |
705 | 705 |
///- the shortest path tree (forest), |
706 | 706 |
///- the distance of each node from the root(s). |
707 | 707 |
/// |
708 | 708 |
///\pre init() must be called and at least one root node should be |
709 | 709 |
///added with addSource() before using this function. |
710 | 710 |
/// |
711 | 711 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
712 | 712 |
///\code |
713 | 713 |
/// while ( !d.emptyQueue() ) { |
714 | 714 |
/// d.processNextNode(); |
715 | 715 |
/// } |
716 | 716 |
///\endcode |
717 | 717 |
void start() |
718 | 718 |
{ |
719 | 719 |
while ( !emptyQueue() ) processNextNode(); |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
///Executes the algorithm until the given target node is processed. |
723 | 723 |
|
724 | 724 |
///Executes the algorithm until the given target node is processed. |
725 | 725 |
/// |
726 | 726 |
///This method runs the %Dijkstra algorithm from the root node(s) |
727 | 727 |
///in order to compute the shortest path to \c t. |
728 | 728 |
/// |
729 | 729 |
///The algorithm computes |
730 | 730 |
///- the shortest path to \c t, |
731 | 731 |
///- the distance of \c t from the root(s). |
732 | 732 |
/// |
733 | 733 |
///\pre init() must be called and at least one root node should be |
734 | 734 |
///added with addSource() before using this function. |
735 | 735 |
void start(Node t) |
736 | 736 |
{ |
737 | 737 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
738 | 738 |
if ( !_heap->empty() ) { |
739 | 739 |
finalizeNodeData(_heap->top(),_heap->prio()); |
740 | 740 |
_heap->pop(); |
741 | 741 |
} |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
///Executes the algorithm until a condition is met. |
745 | 745 |
|
746 | 746 |
///Executes the algorithm until a condition is met. |
747 | 747 |
/// |
748 | 748 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
749 | 749 |
///order to compute the shortest path to a node \c v with |
750 | 750 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
751 | 751 |
/// |
752 | 752 |
///\param nm A \c bool (or convertible) node map. The algorithm |
753 | 753 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
754 | 754 |
/// |
755 | 755 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
756 | 756 |
///\c INVALID if no such node was found. |
757 | 757 |
/// |
758 | 758 |
///\pre init() must be called and at least one root node should be |
759 | 759 |
///added with addSource() before using this function. |
760 | 760 |
template<class NodeBoolMap> |
761 | 761 |
Node start(const NodeBoolMap &nm) |
762 | 762 |
{ |
763 | 763 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
764 | 764 |
if ( _heap->empty() ) return INVALID; |
765 | 765 |
finalizeNodeData(_heap->top(),_heap->prio()); |
766 | 766 |
return _heap->top(); |
767 | 767 |
} |
768 | 768 |
|
769 | 769 |
///Runs the algorithm from the given source node. |
770 | 770 |
|
771 | 771 |
///This method runs the %Dijkstra algorithm from node \c s |
772 | 772 |
///in order to compute the shortest path to each node. |
773 | 773 |
/// |
774 | 774 |
///The algorithm computes |
775 | 775 |
///- the shortest path tree, |
776 | 776 |
///- the distance of each node from the root. |
777 | 777 |
/// |
778 | 778 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
779 | 779 |
///\code |
780 | 780 |
/// d.init(); |
781 | 781 |
/// d.addSource(s); |
782 | 782 |
/// d.start(); |
783 | 783 |
///\endcode |
784 | 784 |
void run(Node s) { |
785 | 785 |
init(); |
786 | 786 |
addSource(s); |
787 | 787 |
start(); |
788 | 788 |
} |
789 | 789 |
|
790 | 790 |
///Finds the shortest path between \c s and \c t. |
791 | 791 |
|
792 | 792 |
///This method runs the %Dijkstra algorithm from node \c s |
793 | 793 |
///in order to compute the shortest path to node \c t |
794 | 794 |
///(it stops searching when \c t is processed). |
795 | 795 |
/// |
796 | 796 |
///\return \c true if \c t is reachable form \c s. |
797 | 797 |
/// |
798 | 798 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
799 | 799 |
///shortcut of the following code. |
800 | 800 |
///\code |
801 | 801 |
/// d.init(); |
802 | 802 |
/// d.addSource(s); |
803 | 803 |
/// d.start(t); |
804 | 804 |
///\endcode |
805 | 805 |
bool run(Node s,Node t) { |
806 | 806 |
init(); |
807 | 807 |
addSource(s); |
808 | 808 |
start(t); |
809 | 809 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
810 | 810 |
} |
811 | 811 |
|
812 | 812 |
///@} |
813 | 813 |
|
814 | 814 |
///\name Query Functions |
815 | 815 |
///The result of the %Dijkstra algorithm can be obtained using these |
816 | 816 |
///functions.\n |
817 | 817 |
///Either \ref lemon::Dijkstra::run() "run()" or |
818 | 818 |
///\ref lemon::Dijkstra::start() "start()" must be called before |
819 | 819 |
///using them. |
820 | 820 |
|
821 | 821 |
///@{ |
822 | 822 |
|
823 | 823 |
///The shortest path to a node. |
824 | 824 |
|
825 | 825 |
///Returns the shortest path to a node. |
826 | 826 |
/// |
827 | 827 |
///\warning \c t should be reachable from the root(s). |
828 | 828 |
/// |
829 | 829 |
///\pre Either \ref run() or \ref start() must be called before |
830 | 830 |
///using this function. |
831 | 831 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
832 | 832 |
|
833 | 833 |
///The distance of a node from the root(s). |
834 | 834 |
|
835 | 835 |
///Returns the distance of a node from the root(s). |
836 | 836 |
/// |
837 | 837 |
///\warning If node \c v is not reachable from the root(s), then |
838 | 838 |
///the return value of this function is undefined. |
839 | 839 |
/// |
840 | 840 |
///\pre Either \ref run() or \ref start() must be called before |
841 | 841 |
///using this function. |
842 | 842 |
Value dist(Node v) const { return (*_dist)[v]; } |
843 | 843 |
|
844 | 844 |
///Returns the 'previous arc' of the shortest path tree for a node. |
845 | 845 |
|
846 | 846 |
///This function returns the 'previous arc' of the shortest path |
847 | 847 |
///tree for the node \c v, i.e. it returns the last arc of a |
848 | 848 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
849 | 849 |
///is not reachable from the root(s) or if \c v is a root. |
850 | 850 |
/// |
851 | 851 |
///The shortest path tree used here is equal to the shortest path |
852 | 852 |
///tree used in \ref predNode(). |
853 | 853 |
/// |
854 | 854 |
///\pre Either \ref run() or \ref start() must be called before |
855 | 855 |
///using this function. |
856 | 856 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
857 | 857 |
|
858 | 858 |
///Returns the 'previous node' of the shortest path tree for a node. |
859 | 859 |
|
860 | 860 |
///This function returns the 'previous node' of the shortest path |
861 | 861 |
///tree for the node \c v, i.e. it returns the last but one node |
862 | 862 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
863 | 863 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
864 | 864 |
/// |
865 | 865 |
///The shortest path tree used here is equal to the shortest path |
866 | 866 |
///tree used in \ref predArc(). |
867 | 867 |
/// |
868 | 868 |
///\pre Either \ref run() or \ref start() must be called before |
869 | 869 |
///using this function. |
870 | 870 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
871 | 871 |
G->source((*_pred)[v]); } |
872 | 872 |
|
873 | 873 |
///\brief Returns a const reference to the node map that stores the |
874 | 874 |
///distances of the nodes. |
875 | 875 |
/// |
876 | 876 |
///Returns a const reference to the node map that stores the distances |
877 | 877 |
///of the nodes calculated by the algorithm. |
878 | 878 |
/// |
879 | 879 |
///\pre Either \ref run() or \ref init() |
880 | 880 |
///must be called before using this function. |
881 | 881 |
const DistMap &distMap() const { return *_dist;} |
882 | 882 |
|
883 | 883 |
///\brief Returns a const reference to the node map that stores the |
884 | 884 |
///predecessor arcs. |
885 | 885 |
/// |
886 | 886 |
///Returns a const reference to the node map that stores the predecessor |
887 | 887 |
///arcs, which form the shortest path tree. |
888 | 888 |
/// |
889 | 889 |
///\pre Either \ref run() or \ref init() |
890 | 890 |
///must be called before using this function. |
891 | 891 |
const PredMap &predMap() const { return *_pred;} |
892 | 892 |
|
893 | 893 |
///Checks if a node is reachable from the root(s). |
894 | 894 |
|
895 | 895 |
///Returns \c true if \c v is reachable from the root(s). |
896 | 896 |
///\pre Either \ref run() or \ref start() |
897 | 897 |
///must be called before using this function. |
898 | 898 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
899 | 899 |
Heap::PRE_HEAP; } |
900 | 900 |
|
901 | 901 |
///Checks if a node is processed. |
902 | 902 |
|
903 | 903 |
///Returns \c true if \c v is processed, i.e. the shortest |
904 | 904 |
///path to \c v has already found. |
905 | 905 |
///\pre Either \ref run() or \ref init() |
906 | 906 |
///must be called before using this function. |
907 | 907 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
908 | 908 |
Heap::POST_HEAP; } |
909 | 909 |
|
910 | 910 |
///The current distance of a node from the root(s). |
911 | 911 |
|
912 | 912 |
///Returns the current distance of a node from the root(s). |
913 | 913 |
///It may be decreased in the following processes. |
914 | 914 |
///\pre Either \ref run() or \ref init() |
915 | 915 |
///must be called before using this function and |
916 | 916 |
///node \c v must be reached but not necessarily processed. |
917 | 917 |
Value currentDist(Node v) const { |
918 | 918 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
919 | 919 |
} |
920 | 920 |
|
921 | 921 |
///@} |
922 | 922 |
}; |
923 | 923 |
|
924 | 924 |
|
925 | 925 |
///Default traits class of dijkstra() function. |
926 | 926 |
|
927 | 927 |
///Default traits class of dijkstra() function. |
928 | 928 |
///\tparam GR The type of the digraph. |
929 | 929 |
///\tparam LM The type of the length map. |
930 | 930 |
template<class GR, class LM> |
931 | 931 |
struct DijkstraWizardDefaultTraits |
932 | 932 |
{ |
933 | 933 |
///The type of the digraph the algorithm runs on. |
934 | 934 |
typedef GR Digraph; |
935 | 935 |
///The type of the map that stores the arc lengths. |
936 | 936 |
|
937 | 937 |
///The type of the map that stores the arc lengths. |
938 | 938 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
939 | 939 |
typedef LM LengthMap; |
940 | 940 |
///The type of the length of the arcs. |
941 | 941 |
typedef typename LM::Value Value; |
942 | 942 |
|
943 | 943 |
/// Operation traits for Dijkstra algorithm. |
944 | 944 |
|
945 | 945 |
/// This class defines the operations that are used in the algorithm. |
946 | 946 |
/// \see DijkstraDefaultOperationTraits |
947 | 947 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
948 | 948 |
|
949 | 949 |
/// The cross reference type used by the heap. |
950 | 950 |
|
951 | 951 |
/// The cross reference type used by the heap. |
952 | 952 |
/// Usually it is \c Digraph::NodeMap<int>. |
953 | 953 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
954 | 954 |
///Instantiates a \ref HeapCrossRef. |
955 | 955 |
|
956 | 956 |
///This function instantiates a \ref HeapCrossRef. |
957 | 957 |
/// \param g is the digraph, to which we would like to define the |
958 | 958 |
/// HeapCrossRef. |
959 | 959 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
960 | 960 |
{ |
961 | 961 |
return new HeapCrossRef(g); |
962 | 962 |
} |
963 | 963 |
|
964 | 964 |
///The heap type used by the Dijkstra algorithm. |
965 | 965 |
|
966 | 966 |
///The heap type used by the Dijkstra algorithm. |
967 | 967 |
/// |
968 | 968 |
///\sa BinHeap |
969 | 969 |
///\sa Dijkstra |
970 | 970 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
971 | 971 |
std::less<Value> > Heap; |
972 | 972 |
|
973 | 973 |
///Instantiates a \ref Heap. |
974 | 974 |
|
975 | 975 |
///This function instantiates a \ref Heap. |
976 | 976 |
/// \param r is the HeapCrossRef which is used. |
977 | 977 |
static Heap *createHeap(HeapCrossRef& r) |
978 | 978 |
{ |
979 | 979 |
return new Heap(r); |
980 | 980 |
} |
981 | 981 |
|
982 | 982 |
///\brief The type of the map that stores the predecessor |
983 | 983 |
///arcs of the shortest paths. |
984 | 984 |
/// |
985 | 985 |
///The type of the map that stores the predecessor |
986 | 986 |
///arcs of the shortest paths. |
987 | 987 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
988 | 988 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
989 | 989 |
///Instantiates a PredMap. |
990 | 990 |
|
991 | 991 |
///This function instantiates a PredMap. |
992 | 992 |
///\param g is the digraph, to which we would like to define the |
993 | 993 |
///PredMap. |
994 | 994 |
static PredMap *createPredMap(const Digraph &g) |
995 | 995 |
{ |
996 | 996 |
return new PredMap(g); |
997 | 997 |
} |
998 | 998 |
|
999 | 999 |
///The type of the map that indicates which nodes are processed. |
1000 | 1000 |
|
1001 | 1001 |
///The type of the map that indicates which nodes are processed. |
1002 | 1002 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1003 | 1003 |
///By default it is a NullMap. |
1004 | 1004 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1005 | 1005 |
///Instantiates a ProcessedMap. |
1006 | 1006 |
|
1007 | 1007 |
///This function instantiates a ProcessedMap. |
1008 | 1008 |
///\param g is the digraph, to which |
1009 | 1009 |
///we would like to define the ProcessedMap. |
1010 | 1010 |
#ifdef DOXYGEN |
1011 | 1011 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1012 | 1012 |
#else |
1013 | 1013 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1014 | 1014 |
#endif |
1015 | 1015 |
{ |
1016 | 1016 |
return new ProcessedMap(); |
1017 | 1017 |
} |
1018 | 1018 |
|
1019 | 1019 |
///The type of the map that stores the distances of the nodes. |
1020 | 1020 |
|
1021 | 1021 |
///The type of the map that stores the distances of the nodes. |
1022 | 1022 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
1023 | 1023 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
1024 | 1024 |
///Instantiates a DistMap. |
1025 | 1025 |
|
1026 | 1026 |
///This function instantiates a DistMap. |
1027 | 1027 |
///\param g is the digraph, to which we would like to define |
1028 | 1028 |
///the DistMap |
1029 | 1029 |
static DistMap *createDistMap(const Digraph &g) |
1030 | 1030 |
{ |
1031 | 1031 |
return new DistMap(g); |
1032 | 1032 |
} |
1033 | 1033 |
|
1034 | 1034 |
///The type of the shortest paths. |
1035 | 1035 |
|
1036 | 1036 |
///The type of the shortest paths. |
1037 | 1037 |
///It must meet the \ref concepts::Path "Path" concept. |
1038 | 1038 |
typedef lemon::Path<Digraph> Path; |
1039 | 1039 |
}; |
1040 | 1040 |
|
1041 |
/// Default traits class used by |
|
1041 |
/// Default traits class used by DijkstraWizard |
|
1042 | 1042 |
|
1043 | 1043 |
/// To make it easier to use Dijkstra algorithm |
1044 | 1044 |
/// we have created a wizard class. |
1045 | 1045 |
/// This \ref DijkstraWizard class needs default traits, |
1046 | 1046 |
/// as well as the \ref Dijkstra class. |
1047 | 1047 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
1048 | 1048 |
/// \ref DijkstraWizard class. |
1049 | 1049 |
template<class GR,class LM> |
1050 | 1050 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
1051 | 1051 |
{ |
1052 | 1052 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
1053 | 1053 |
protected: |
1054 | 1054 |
//The type of the nodes in the digraph. |
1055 | 1055 |
typedef typename Base::Digraph::Node Node; |
1056 | 1056 |
|
1057 | 1057 |
//Pointer to the digraph the algorithm runs on. |
1058 | 1058 |
void *_g; |
1059 | 1059 |
//Pointer to the length map. |
1060 | 1060 |
void *_length; |
1061 | 1061 |
//Pointer to the map of processed nodes. |
1062 | 1062 |
void *_processed; |
1063 | 1063 |
//Pointer to the map of predecessors arcs. |
1064 | 1064 |
void *_pred; |
1065 | 1065 |
//Pointer to the map of distances. |
1066 | 1066 |
void *_dist; |
1067 | 1067 |
//Pointer to the shortest path to the target node. |
1068 | 1068 |
void *_path; |
1069 | 1069 |
//Pointer to the distance of the target node. |
1070 | 1070 |
void *_di; |
1071 | 1071 |
|
1072 | 1072 |
public: |
1073 | 1073 |
/// Constructor. |
1074 | 1074 |
|
1075 | 1075 |
/// This constructor does not require parameters, therefore it initiates |
1076 | 1076 |
/// all of the attributes to \c 0. |
1077 | 1077 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1078 | 1078 |
_dist(0), _path(0), _di(0) {} |
1079 | 1079 |
|
1080 | 1080 |
/// Constructor. |
1081 | 1081 |
|
1082 | 1082 |
/// This constructor requires two parameters, |
1083 | 1083 |
/// others are initiated to \c 0. |
1084 | 1084 |
/// \param g The digraph the algorithm runs on. |
1085 | 1085 |
/// \param l The length map. |
1086 | 1086 |
DijkstraWizardBase(const GR &g,const LM &l) : |
1087 | 1087 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1088 | 1088 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1089 | 1089 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1090 | 1090 |
|
1091 | 1091 |
}; |
1092 | 1092 |
|
1093 | 1093 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1094 | 1094 |
|
1095 | 1095 |
/// This auxiliary class is created to implement the |
1096 | 1096 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1097 | 1097 |
/// It does not have own \ref run() method, it uses the functions |
1098 | 1098 |
/// and features of the plain \ref Dijkstra. |
1099 | 1099 |
/// |
1100 | 1100 |
/// This class should only be used through the \ref dijkstra() function, |
1101 | 1101 |
/// which makes it easier to use the algorithm. |
1102 | 1102 |
template<class TR> |
1103 | 1103 |
class DijkstraWizard : public TR |
1104 | 1104 |
{ |
1105 | 1105 |
typedef TR Base; |
1106 | 1106 |
|
1107 | 1107 |
///The type of the digraph the algorithm runs on. |
1108 | 1108 |
typedef typename TR::Digraph Digraph; |
1109 | 1109 |
|
1110 | 1110 |
typedef typename Digraph::Node Node; |
1111 | 1111 |
typedef typename Digraph::NodeIt NodeIt; |
1112 | 1112 |
typedef typename Digraph::Arc Arc; |
1113 | 1113 |
typedef typename Digraph::OutArcIt OutArcIt; |
1114 | 1114 |
|
1115 | 1115 |
///The type of the map that stores the arc lengths. |
1116 | 1116 |
typedef typename TR::LengthMap LengthMap; |
1117 | 1117 |
///The type of the length of the arcs. |
1118 | 1118 |
typedef typename LengthMap::Value Value; |
1119 | 1119 |
///\brief The type of the map that stores the predecessor |
1120 | 1120 |
///arcs of the shortest paths. |
1121 | 1121 |
typedef typename TR::PredMap PredMap; |
1122 | 1122 |
///The type of the map that stores the distances of the nodes. |
1123 | 1123 |
typedef typename TR::DistMap DistMap; |
1124 | 1124 |
///The type of the map that indicates which nodes are processed. |
1125 | 1125 |
typedef typename TR::ProcessedMap ProcessedMap; |
1126 | 1126 |
///The type of the shortest paths |
1127 | 1127 |
typedef typename TR::Path Path; |
1128 | 1128 |
///The heap type used by the dijkstra algorithm. |
1129 | 1129 |
typedef typename TR::Heap Heap; |
1130 | 1130 |
|
1131 | 1131 |
public: |
1132 | 1132 |
|
1133 | 1133 |
/// Constructor. |
1134 | 1134 |
DijkstraWizard() : TR() {} |
1135 | 1135 |
|
1136 | 1136 |
/// Constructor that requires parameters. |
1137 | 1137 |
|
1138 | 1138 |
/// Constructor that requires parameters. |
1139 | 1139 |
/// These parameters will be the default values for the traits class. |
1140 | 1140 |
/// \param g The digraph the algorithm runs on. |
1141 | 1141 |
/// \param l The length map. |
1142 | 1142 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
1143 | 1143 |
TR(g,l) {} |
1144 | 1144 |
|
1145 | 1145 |
///Copy constructor |
1146 | 1146 |
DijkstraWizard(const TR &b) : TR(b) {} |
1147 | 1147 |
|
1148 | 1148 |
~DijkstraWizard() {} |
1149 | 1149 |
|
1150 | 1150 |
///Runs Dijkstra algorithm from the given source node. |
1151 | 1151 |
|
1152 | 1152 |
///This method runs %Dijkstra algorithm from the given source node |
1153 | 1153 |
///in order to compute the shortest path to each node. |
1154 | 1154 |
void run(Node s) |
1155 | 1155 |
{ |
1156 | 1156 |
Dijkstra<Digraph,LengthMap,TR> |
1157 | 1157 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1158 | 1158 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1159 | 1159 |
if (Base::_pred) |
1160 | 1160 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1161 | 1161 |
if (Base::_dist) |
1162 | 1162 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1163 | 1163 |
if (Base::_processed) |
1164 | 1164 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1165 | 1165 |
dijk.run(s); |
1166 | 1166 |
} |
1167 | 1167 |
|
1168 | 1168 |
///Finds the shortest path between \c s and \c t. |
1169 | 1169 |
|
1170 | 1170 |
///This method runs the %Dijkstra algorithm from node \c s |
1171 | 1171 |
///in order to compute the shortest path to node \c t |
1172 | 1172 |
///(it stops searching when \c t is processed). |
1173 | 1173 |
/// |
1174 | 1174 |
///\return \c true if \c t is reachable form \c s. |
1175 | 1175 |
bool run(Node s, Node t) |
1176 | 1176 |
{ |
1177 | 1177 |
Dijkstra<Digraph,LengthMap,TR> |
1178 | 1178 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1179 | 1179 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1180 | 1180 |
if (Base::_pred) |
1181 | 1181 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1182 | 1182 |
if (Base::_dist) |
1183 | 1183 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1184 | 1184 |
if (Base::_processed) |
1185 | 1185 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1186 | 1186 |
dijk.run(s,t); |
1187 | 1187 |
if (Base::_path) |
1188 | 1188 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
1189 | 1189 |
if (Base::_di) |
1190 | 1190 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
1191 | 1191 |
return dijk.reached(t); |
1192 | 1192 |
} |
1193 | 1193 |
|
1194 | 1194 |
template<class T> |
1195 | 1195 |
struct SetPredMapBase : public Base { |
1196 | 1196 |
typedef T PredMap; |
1197 | 1197 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1198 | 1198 |
SetPredMapBase(const TR &b) : TR(b) {} |
1199 | 1199 |
}; |
1200 | 1200 |
///\brief \ref named-func-param "Named parameter" |
1201 | 1201 |
///for setting PredMap object. |
1202 | 1202 |
/// |
1203 | 1203 |
///\ref named-func-param "Named parameter" |
1204 | 1204 |
///for setting PredMap object. |
1205 | 1205 |
template<class T> |
1206 | 1206 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1207 | 1207 |
{ |
1208 | 1208 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1209 | 1209 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1210 | 1210 |
} |
1211 | 1211 |
|
1212 | 1212 |
template<class T> |
1213 | 1213 |
struct SetDistMapBase : public Base { |
1214 | 1214 |
typedef T DistMap; |
1215 | 1215 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1216 | 1216 |
SetDistMapBase(const TR &b) : TR(b) {} |
1217 | 1217 |
}; |
1218 | 1218 |
///\brief \ref named-func-param "Named parameter" |
1219 | 1219 |
///for setting DistMap object. |
1220 | 1220 |
/// |
1221 | 1221 |
///\ref named-func-param "Named parameter" |
1222 | 1222 |
///for setting DistMap object. |
1223 | 1223 |
template<class T> |
1224 | 1224 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1225 | 1225 |
{ |
1226 | 1226 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1227 | 1227 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1228 | 1228 |
} |
1229 | 1229 |
|
1230 | 1230 |
template<class T> |
1231 | 1231 |
struct SetProcessedMapBase : public Base { |
1232 | 1232 |
typedef T ProcessedMap; |
1233 | 1233 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1234 | 1234 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1235 | 1235 |
}; |
1236 | 1236 |
///\brief \ref named-func-param "Named parameter" |
1237 | 1237 |
///for setting ProcessedMap object. |
1238 | 1238 |
/// |
1239 | 1239 |
/// \ref named-func-param "Named parameter" |
1240 | 1240 |
///for setting ProcessedMap object. |
1241 | 1241 |
template<class T> |
1242 | 1242 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1243 | 1243 |
{ |
1244 | 1244 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1245 | 1245 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1246 | 1246 |
} |
1247 | 1247 |
|
1248 | 1248 |
template<class T> |
1249 | 1249 |
struct SetPathBase : public Base { |
1250 | 1250 |
typedef T Path; |
1251 | 1251 |
SetPathBase(const TR &b) : TR(b) {} |
1252 | 1252 |
}; |
1253 | 1253 |
///\brief \ref named-func-param "Named parameter" |
1254 | 1254 |
///for getting the shortest path to the target node. |
1255 | 1255 |
/// |
1256 | 1256 |
///\ref named-func-param "Named parameter" |
1257 | 1257 |
///for getting the shortest path to the target node. |
1258 | 1258 |
template<class T> |
1259 | 1259 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
1260 | 1260 |
{ |
1261 | 1261 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1262 | 1262 |
return DijkstraWizard<SetPathBase<T> >(*this); |
1263 | 1263 |
} |
1264 | 1264 |
|
1265 | 1265 |
///\brief \ref named-func-param "Named parameter" |
1266 | 1266 |
///for getting the distance of the target node. |
1267 | 1267 |
/// |
1268 | 1268 |
///\ref named-func-param "Named parameter" |
1269 | 1269 |
///for getting the distance of the target node. |
1270 | 1270 |
DijkstraWizard dist(const Value &d) |
1271 | 1271 |
{ |
1272 | 1272 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1273 | 1273 |
return *this; |
1274 | 1274 |
} |
1275 | 1275 |
|
1276 | 1276 |
}; |
1277 | 1277 |
|
1278 | 1278 |
///Function-type interface for Dijkstra algorithm. |
1279 | 1279 |
|
1280 | 1280 |
/// \ingroup shortest_path |
1281 | 1281 |
///Function-type interface for Dijkstra algorithm. |
1282 | 1282 |
/// |
1283 | 1283 |
///This function also has several \ref named-func-param "named parameters", |
1284 | 1284 |
///they are declared as the members of class \ref DijkstraWizard. |
1285 | 1285 |
///The following examples show how to use these parameters. |
1286 | 1286 |
///\code |
1287 | 1287 |
/// // Compute shortest path from node s to each node |
1288 | 1288 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
1289 | 1289 |
/// |
1290 | 1290 |
/// // Compute shortest path from s to t |
1291 | 1291 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
1292 | 1292 |
///\endcode |
1293 | 1293 |
///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
1294 | 1294 |
///to the end of the parameter list. |
1295 | 1295 |
///\sa DijkstraWizard |
1296 | 1296 |
///\sa Dijkstra |
1297 | 1297 |
template<class GR, class LM> |
1298 | 1298 |
DijkstraWizard<DijkstraWizardBase<GR,LM> > |
1299 | 1299 |
dijkstra(const GR &digraph, const LM &length) |
1300 | 1300 |
{ |
1301 | 1301 |
return DijkstraWizard<DijkstraWizardBase<GR,LM> >(digraph,length); |
1302 | 1302 |
} |
1303 | 1303 |
|
1304 | 1304 |
} //END OF NAMESPACE LEMON |
1305 | 1305 |
|
1306 | 1306 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
|
24 | 24 |
///\ingroup misc |
25 | 25 |
///\file |
26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
27 | 27 |
/// |
28 | 28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
29 | 29 |
/// a two dimensional vector with the usual operations. |
30 | 30 |
/// |
31 | 31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
32 | 32 |
/// the rectangular bounding box of a set of |
33 | 33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Tools for handling two dimensional coordinates |
38 | 38 |
|
39 | 39 |
///This namespace is a storage of several |
40 | 40 |
///tools for handling two dimensional coordinates |
41 | 41 |
namespace dim2 { |
42 | 42 |
|
43 | 43 |
/// \addtogroup misc |
44 | 44 |
/// @{ |
45 | 45 |
|
46 | 46 |
/// Two dimensional vector (plain vector) |
47 | 47 |
|
48 | 48 |
/// A simple two dimensional vector (plain vector) implementation |
49 | 49 |
/// with the usual vector operations. |
50 | 50 |
template<typename T> |
51 | 51 |
class Point { |
52 | 52 |
|
53 | 53 |
public: |
54 | 54 |
|
55 | 55 |
typedef T Value; |
56 | 56 |
|
57 | 57 |
///First coordinate |
58 | 58 |
T x; |
59 | 59 |
///Second coordinate |
60 | 60 |
T y; |
61 | 61 |
|
62 | 62 |
///Default constructor |
63 | 63 |
Point() {} |
64 | 64 |
|
65 | 65 |
///Construct an instance from coordinates |
66 | 66 |
Point(T a, T b) : x(a), y(b) { } |
67 | 67 |
|
68 | 68 |
///Returns the dimension of the vector (i.e. returns 2). |
69 | 69 |
|
70 | 70 |
///The dimension of the vector. |
71 | 71 |
///This function always returns 2. |
72 | 72 |
int size() const { return 2; } |
73 | 73 |
|
74 | 74 |
///Subscripting operator |
75 | 75 |
|
76 | 76 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
77 | 77 |
/// |
78 | 78 |
T& operator[](int idx) { return idx == 0 ? x : y; } |
79 | 79 |
|
80 | 80 |
///Const subscripting operator |
81 | 81 |
|
82 | 82 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
83 | 83 |
/// |
84 | 84 |
const T& operator[](int idx) const { return idx == 0 ? x : y; } |
85 | 85 |
|
86 | 86 |
///Conversion constructor |
87 | 87 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {} |
88 | 88 |
|
89 | 89 |
///Give back the square of the norm of the vector |
90 | 90 |
T normSquare() const { |
91 | 91 |
return x*x+y*y; |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
///Increment the left hand side by \c u |
95 | 95 |
Point<T>& operator +=(const Point<T>& u) { |
96 | 96 |
x += u.x; |
97 | 97 |
y += u.y; |
98 | 98 |
return *this; |
99 | 99 |
} |
100 | 100 |
|
101 | 101 |
///Decrement the left hand side by \c u |
102 | 102 |
Point<T>& operator -=(const Point<T>& u) { |
103 | 103 |
x -= u.x; |
104 | 104 |
y -= u.y; |
105 | 105 |
return *this; |
106 | 106 |
} |
107 | 107 |
|
108 | 108 |
///Multiply the left hand side with a scalar |
109 | 109 |
Point<T>& operator *=(const T &u) { |
110 | 110 |
x *= u; |
111 | 111 |
y *= u; |
112 | 112 |
return *this; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
///Divide the left hand side by a scalar |
116 | 116 |
Point<T>& operator /=(const T &u) { |
117 | 117 |
x /= u; |
118 | 118 |
y /= u; |
119 | 119 |
return *this; |
120 | 120 |
} |
121 | 121 |
|
122 | 122 |
///Return the scalar product of two vectors |
123 | 123 |
T operator *(const Point<T>& u) const { |
124 | 124 |
return x*u.x+y*u.y; |
125 | 125 |
} |
126 | 126 |
|
127 | 127 |
///Return the sum of two vectors |
128 | 128 |
Point<T> operator+(const Point<T> &u) const { |
129 | 129 |
Point<T> b=*this; |
130 | 130 |
return b+=u; |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
///Return the negative of the vector |
134 | 134 |
Point<T> operator-() const { |
135 | 135 |
Point<T> b=*this; |
136 | 136 |
b.x=-b.x; b.y=-b.y; |
137 | 137 |
return b; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
///Return the difference of two vectors |
141 | 141 |
Point<T> operator-(const Point<T> &u) const { |
142 | 142 |
Point<T> b=*this; |
143 | 143 |
return b-=u; |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
///Return a vector multiplied by a scalar |
147 | 147 |
Point<T> operator*(const T &u) const { |
148 | 148 |
Point<T> b=*this; |
149 | 149 |
return b*=u; |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
///Return a vector divided by a scalar |
153 | 153 |
Point<T> operator/(const T &u) const { |
154 | 154 |
Point<T> b=*this; |
155 | 155 |
return b/=u; |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
///Test equality |
159 | 159 |
bool operator==(const Point<T> &u) const { |
160 | 160 |
return (x==u.x) && (y==u.y); |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
///Test inequality |
164 | 164 |
bool operator!=(Point u) const { |
165 | 165 |
return (x!=u.x) || (y!=u.y); |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
}; |
169 | 169 |
|
170 | 170 |
///Return a Point |
171 | 171 |
|
172 | 172 |
///Return a Point. |
173 | 173 |
///\relates Point |
174 | 174 |
template <typename T> |
175 | 175 |
inline Point<T> makePoint(const T& x, const T& y) { |
176 | 176 |
return Point<T>(x, y); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
///Return a vector multiplied by a scalar |
180 | 180 |
|
181 | 181 |
///Return a vector multiplied by a scalar. |
182 | 182 |
///\relates Point |
183 | 183 |
template<typename T> Point<T> operator*(const T &u,const Point<T> &x) { |
184 | 184 |
return x*u; |
185 | 185 |
} |
186 | 186 |
|
187 | 187 |
///Read a plain vector from a stream |
188 | 188 |
|
189 | 189 |
///Read a plain vector from a stream. |
190 | 190 |
///\relates Point |
191 | 191 |
/// |
192 | 192 |
template<typename T> |
193 | 193 |
inline std::istream& operator>>(std::istream &is, Point<T> &z) { |
194 | 194 |
char c; |
195 | 195 |
if (is >> c) { |
196 | 196 |
if (c != '(') is.putback(c); |
197 | 197 |
} else { |
198 | 198 |
is.clear(); |
199 | 199 |
} |
200 | 200 |
if (!(is >> z.x)) return is; |
201 | 201 |
if (is >> c) { |
202 | 202 |
if (c != ',') is.putback(c); |
203 | 203 |
} else { |
204 | 204 |
is.clear(); |
205 | 205 |
} |
206 | 206 |
if (!(is >> z.y)) return is; |
207 | 207 |
if (is >> c) { |
208 | 208 |
if (c != ')') is.putback(c); |
209 | 209 |
} else { |
210 | 210 |
is.clear(); |
211 | 211 |
} |
212 | 212 |
return is; |
213 | 213 |
} |
214 | 214 |
|
215 | 215 |
///Write a plain vector to a stream |
216 | 216 |
|
217 | 217 |
///Write a plain vector to a stream. |
218 | 218 |
///\relates Point |
219 | 219 |
/// |
220 | 220 |
template<typename T> |
221 | 221 |
inline std::ostream& operator<<(std::ostream &os, const Point<T>& z) |
222 | 222 |
{ |
223 | 223 |
os << "(" << z.x << "," << z.y << ")"; |
224 | 224 |
return os; |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
///Rotate by 90 degrees |
228 | 228 |
|
229 | 229 |
///Returns the parameter rotated by 90 degrees in positive direction. |
230 | 230 |
///\relates Point |
231 | 231 |
/// |
232 | 232 |
template<typename T> |
233 | 233 |
inline Point<T> rot90(const Point<T> &z) |
234 | 234 |
{ |
235 | 235 |
return Point<T>(-z.y,z.x); |
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
///Rotate by 180 degrees |
239 | 239 |
|
240 | 240 |
///Returns the parameter rotated by 180 degrees. |
241 | 241 |
///\relates Point |
242 | 242 |
/// |
243 | 243 |
template<typename T> |
244 | 244 |
inline Point<T> rot180(const Point<T> &z) |
245 | 245 |
{ |
246 | 246 |
return Point<T>(-z.x,-z.y); |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
///Rotate by 270 degrees |
250 | 250 |
|
251 | 251 |
///Returns the parameter rotated by 90 degrees in negative direction. |
252 | 252 |
///\relates Point |
253 | 253 |
/// |
254 | 254 |
template<typename T> |
255 | 255 |
inline Point<T> rot270(const Point<T> &z) |
256 | 256 |
{ |
257 | 257 |
return Point<T>(z.y,-z.x); |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
|
261 | 261 |
|
262 |
/// Bounding box of plain vectors ( |
|
262 |
/// Bounding box of plain vectors (points). |
|
263 | 263 |
|
264 | 264 |
/// A class to calculate or store the bounding box of plain vectors |
265 |
/// (\ref Point points). |
|
265 |
/// (\ref Point "points"). |
|
266 | 266 |
template<typename T> |
267 | 267 |
class Box { |
268 | 268 |
Point<T> _bottom_left, _top_right; |
269 | 269 |
bool _empty; |
270 | 270 |
public: |
271 | 271 |
|
272 | 272 |
///Default constructor: creates an empty box |
273 | 273 |
Box() { _empty = true; } |
274 | 274 |
|
275 | 275 |
///Construct a box from one point |
276 | 276 |
Box(Point<T> a) { |
277 | 277 |
_bottom_left = _top_right = a; |
278 | 278 |
_empty = false; |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
///Construct a box from two points |
282 | 282 |
|
283 | 283 |
///Construct a box from two points. |
284 | 284 |
///\param a The bottom left corner. |
285 | 285 |
///\param b The top right corner. |
286 | 286 |
///\warning The coordinates of the bottom left corner must be no more |
287 | 287 |
///than those of the top right one. |
288 | 288 |
Box(Point<T> a,Point<T> b) |
289 | 289 |
{ |
290 | 290 |
_bottom_left = a; |
291 | 291 |
_top_right = b; |
292 | 292 |
_empty = false; |
293 | 293 |
} |
294 | 294 |
|
295 | 295 |
///Construct a box from four numbers |
296 | 296 |
|
297 | 297 |
///Construct a box from four numbers. |
298 | 298 |
///\param l The left side of the box. |
299 | 299 |
///\param b The bottom of the box. |
300 | 300 |
///\param r The right side of the box. |
301 | 301 |
///\param t The top of the box. |
302 | 302 |
///\warning The left side must be no more than the right side and |
303 | 303 |
///bottom must be no more than the top. |
304 | 304 |
Box(T l,T b,T r,T t) |
305 | 305 |
{ |
306 | 306 |
_bottom_left=Point<T>(l,b); |
307 | 307 |
_top_right=Point<T>(r,t); |
308 | 308 |
_empty = false; |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
///Return \c true if the box is empty. |
312 | 312 |
|
313 | 313 |
///Return \c true if the box is empty (i.e. return \c false |
314 | 314 |
///if at least one point was added to the box or the coordinates of |
315 | 315 |
///the box were set). |
316 | 316 |
/// |
317 | 317 |
///The coordinates of an empty box are not defined. |
318 | 318 |
bool empty() const { |
319 | 319 |
return _empty; |
320 | 320 |
} |
321 | 321 |
|
322 | 322 |
///Make the box empty |
323 | 323 |
void clear() { |
324 | 324 |
_empty = true; |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
///Give back the bottom left corner of the box |
328 | 328 |
|
329 | 329 |
///Give back the bottom left corner of the box. |
330 | 330 |
///If the box is empty, then the return value is not defined. |
331 | 331 |
Point<T> bottomLeft() const { |
332 | 332 |
return _bottom_left; |
333 | 333 |
} |
334 | 334 |
|
335 | 335 |
///Set the bottom left corner of the box |
336 | 336 |
|
337 | 337 |
///Set the bottom left corner of the box. |
338 | 338 |
///\pre The box must not be empty. |
339 | 339 |
void bottomLeft(Point<T> p) { |
340 | 340 |
_bottom_left = p; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
///Give back the top right corner of the box |
344 | 344 |
|
345 | 345 |
///Give back the top right corner of the box. |
346 | 346 |
///If the box is empty, then the return value is not defined. |
347 | 347 |
Point<T> topRight() const { |
348 | 348 |
return _top_right; |
349 | 349 |
} |
350 | 350 |
|
351 | 351 |
///Set the top right corner of the box |
352 | 352 |
|
353 | 353 |
///Set the top right corner of the box. |
354 | 354 |
///\pre The box must not be empty. |
355 | 355 |
void topRight(Point<T> p) { |
356 | 356 |
_top_right = p; |
357 | 357 |
} |
358 | 358 |
|
359 | 359 |
///Give back the bottom right corner of the box |
360 | 360 |
|
361 | 361 |
///Give back the bottom right corner of the box. |
362 | 362 |
///If the box is empty, then the return value is not defined. |
363 | 363 |
Point<T> bottomRight() const { |
364 | 364 |
return Point<T>(_top_right.x,_bottom_left.y); |
365 | 365 |
} |
366 | 366 |
|
367 | 367 |
///Set the bottom right corner of the box |
368 | 368 |
|
369 | 369 |
///Set the bottom right corner of the box. |
370 | 370 |
///\pre The box must not be empty. |
371 | 371 |
void bottomRight(Point<T> p) { |
372 | 372 |
_top_right.x = p.x; |
373 | 373 |
_bottom_left.y = p.y; |
374 | 374 |
} |
375 | 375 |
|
376 | 376 |
///Give back the top left corner of the box |
377 | 377 |
|
378 | 378 |
///Give back the top left corner of the box. |
379 | 379 |
///If the box is empty, then the return value is not defined. |
380 | 380 |
Point<T> topLeft() const { |
381 | 381 |
return Point<T>(_bottom_left.x,_top_right.y); |
382 | 382 |
} |
383 | 383 |
|
384 | 384 |
///Set the top left corner of the box |
385 | 385 |
|
386 | 386 |
///Set the top left corner of the box. |
387 | 387 |
///\pre The box must not be empty. |
388 | 388 |
void topLeft(Point<T> p) { |
389 | 389 |
_top_right.y = p.y; |
390 | 390 |
_bottom_left.x = p.x; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
///Give back the bottom of the box |
394 | 394 |
|
395 | 395 |
///Give back the bottom of the box. |
396 | 396 |
///If the box is empty, then the return value is not defined. |
397 | 397 |
T bottom() const { |
398 | 398 |
return _bottom_left.y; |
399 | 399 |
} |
400 | 400 |
|
401 | 401 |
///Set the bottom of the box |
402 | 402 |
|
403 | 403 |
///Set the bottom of the box. |
404 | 404 |
///\pre The box must not be empty. |
405 | 405 |
void bottom(T t) { |
406 | 406 |
_bottom_left.y = t; |
407 | 407 |
} |
408 | 408 |
|
409 | 409 |
///Give back the top of the box |
410 | 410 |
|
411 | 411 |
///Give back the top of the box. |
412 | 412 |
///If the box is empty, then the return value is not defined. |
413 | 413 |
T top() const { |
414 | 414 |
return _top_right.y; |
415 | 415 |
} |
416 | 416 |
|
417 | 417 |
///Set the top of the box |
418 | 418 |
|
419 | 419 |
///Set the top of the box. |
420 | 420 |
///\pre The box must not be empty. |
421 | 421 |
void top(T t) { |
422 | 422 |
_top_right.y = t; |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
///Give back the left side of the box |
426 | 426 |
|
427 | 427 |
///Give back the left side of the box. |
428 | 428 |
///If the box is empty, then the return value is not defined. |
429 | 429 |
T left() const { |
430 | 430 |
return _bottom_left.x; |
431 | 431 |
} |
432 | 432 |
|
433 | 433 |
///Set the left side of the box |
434 | 434 |
|
435 | 435 |
///Set the left side of the box. |
436 | 436 |
///\pre The box must not be empty. |
437 | 437 |
void left(T t) { |
438 | 438 |
_bottom_left.x = t; |
439 | 439 |
} |
440 | 440 |
|
441 | 441 |
/// Give back the right side of the box |
442 | 442 |
|
443 | 443 |
/// Give back the right side of the box. |
444 | 444 |
///If the box is empty, then the return value is not defined. |
445 | 445 |
T right() const { |
446 | 446 |
return _top_right.x; |
447 | 447 |
} |
448 | 448 |
|
449 | 449 |
///Set the right side of the box |
450 | 450 |
|
451 | 451 |
///Set the right side of the box. |
452 | 452 |
///\pre The box must not be empty. |
453 | 453 |
void right(T t) { |
454 | 454 |
_top_right.x = t; |
455 | 455 |
} |
456 | 456 |
|
457 | 457 |
///Give back the height of the box |
458 | 458 |
|
459 | 459 |
///Give back the height of the box. |
460 | 460 |
///If the box is empty, then the return value is not defined. |
461 | 461 |
T height() const { |
462 | 462 |
return _top_right.y-_bottom_left.y; |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
///Give back the width of the box |
466 | 466 |
|
467 | 467 |
///Give back the width of the box. |
468 | 468 |
///If the box is empty, then the return value is not defined. |
469 | 469 |
T width() const { |
470 | 470 |
return _top_right.x-_bottom_left.x; |
471 | 471 |
} |
472 | 472 |
|
473 | 473 |
///Checks whether a point is inside the box |
474 | 474 |
bool inside(const Point<T>& u) const { |
475 | 475 |
if (_empty) |
476 | 476 |
return false; |
477 | 477 |
else { |
478 | 478 |
return ( (u.x-_bottom_left.x)*(_top_right.x-u.x) >= 0 && |
479 | 479 |
(u.y-_bottom_left.y)*(_top_right.y-u.y) >= 0 ); |
480 | 480 |
} |
481 | 481 |
} |
482 | 482 |
|
483 | 483 |
///Increments the box with a point |
484 | 484 |
|
485 | 485 |
///Increments the box with a point. |
486 | 486 |
/// |
487 | 487 |
Box& add(const Point<T>& u){ |
488 | 488 |
if (_empty) { |
489 | 489 |
_bottom_left = _top_right = u; |
490 | 490 |
_empty = false; |
491 | 491 |
} |
492 | 492 |
else { |
493 | 493 |
if (_bottom_left.x > u.x) _bottom_left.x = u.x; |
494 | 494 |
if (_bottom_left.y > u.y) _bottom_left.y = u.y; |
495 | 495 |
if (_top_right.x < u.x) _top_right.x = u.x; |
496 | 496 |
if (_top_right.y < u.y) _top_right.y = u.y; |
497 | 497 |
} |
498 | 498 |
return *this; |
499 | 499 |
} |
500 | 500 |
|
501 | 501 |
///Increments the box to contain another box |
502 | 502 |
|
503 | 503 |
///Increments the box to contain another box. |
504 | 504 |
/// |
505 | 505 |
Box& add(const Box &u){ |
506 | 506 |
if ( !u.empty() ){ |
507 | 507 |
add(u._bottom_left); |
508 | 508 |
add(u._top_right); |
509 | 509 |
} |
510 | 510 |
return *this; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
///Intersection of two boxes |
514 | 514 |
|
515 | 515 |
///Intersection of two boxes. |
516 | 516 |
/// |
517 | 517 |
Box operator&(const Box& u) const { |
518 | 518 |
Box b; |
519 | 519 |
if (_empty || u._empty) { |
520 | 520 |
b._empty = true; |
521 | 521 |
} else { |
522 | 522 |
b._bottom_left.x = std::max(_bottom_left.x, u._bottom_left.x); |
523 | 523 |
b._bottom_left.y = std::max(_bottom_left.y, u._bottom_left.y); |
524 | 524 |
b._top_right.x = std::min(_top_right.x, u._top_right.x); |
525 | 525 |
b._top_right.y = std::min(_top_right.y, u._top_right.y); |
526 | 526 |
b._empty = b._bottom_left.x > b._top_right.x || |
527 | 527 |
b._bottom_left.y > b._top_right.y; |
528 | 528 |
} |
529 | 529 |
return b; |
530 | 530 |
} |
531 | 531 |
|
532 | 532 |
};//class Box |
533 | 533 |
|
534 | 534 |
|
535 | 535 |
///Read a box from a stream |
536 | 536 |
|
537 | 537 |
///Read a box from a stream. |
538 | 538 |
///\relates Box |
539 | 539 |
template<typename T> |
540 | 540 |
inline std::istream& operator>>(std::istream &is, Box<T>& b) { |
541 | 541 |
char c; |
542 | 542 |
Point<T> p; |
543 | 543 |
if (is >> c) { |
544 | 544 |
if (c != '(') is.putback(c); |
545 | 545 |
} else { |
546 | 546 |
is.clear(); |
547 | 547 |
} |
548 | 548 |
if (!(is >> p)) return is; |
549 | 549 |
b.bottomLeft(p); |
550 | 550 |
if (is >> c) { |
551 | 551 |
if (c != ',') is.putback(c); |
552 | 552 |
} else { |
553 | 553 |
is.clear(); |
554 | 554 |
} |
555 | 555 |
if (!(is >> p)) return is; |
556 | 556 |
b.topRight(p); |
557 | 557 |
if (is >> c) { |
558 | 558 |
if (c != ')') is.putback(c); |
559 | 559 |
} else { |
560 | 560 |
is.clear(); |
561 | 561 |
} |
562 | 562 |
return is; |
563 | 563 |
} |
564 | 564 |
|
565 | 565 |
///Write a box to a stream |
566 | 566 |
|
567 | 567 |
///Write a box to a stream. |
568 | 568 |
///\relates Box |
569 | 569 |
template<typename T> |
570 | 570 |
inline std::ostream& operator<<(std::ostream &os, const Box<T>& b) |
571 | 571 |
{ |
572 | 572 |
os << "(" << b.bottomLeft() << "," << b.topRight() << ")"; |
573 | 573 |
return os; |
574 | 574 |
} |
575 | 575 |
|
576 |
///Map of x-coordinates of a |
|
576 |
///Map of x-coordinates of a <tt>Point</tt>-map |
|
577 | 577 |
|
578 |
///Map of x-coordinates of a \ref Point "Point"-map. |
|
578 | 579 |
///\ingroup maps |
579 |
///Map of x-coordinates of a \ref Point "Point"-map. |
|
580 |
/// |
|
581 | 580 |
template<class M> |
582 | 581 |
class XMap |
583 | 582 |
{ |
584 | 583 |
M& _map; |
585 | 584 |
public: |
586 | 585 |
|
587 | 586 |
typedef typename M::Value::Value Value; |
588 | 587 |
typedef typename M::Key Key; |
589 | 588 |
///\e |
590 | 589 |
XMap(M& map) : _map(map) {} |
591 | 590 |
Value operator[](Key k) const {return _map[k].x;} |
592 | 591 |
void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));} |
593 | 592 |
}; |
594 | 593 |
|
595 |
///Returns an |
|
594 |
///Returns an XMap class |
|
596 | 595 |
|
597 |
///This function just returns an |
|
596 |
///This function just returns an XMap class. |
|
598 | 597 |
/// |
599 | 598 |
///\ingroup maps |
600 | 599 |
///\relates XMap |
601 | 600 |
template<class M> |
602 | 601 |
inline XMap<M> xMap(M &m) |
603 | 602 |
{ |
604 | 603 |
return XMap<M>(m); |
605 | 604 |
} |
606 | 605 |
|
607 | 606 |
template<class M> |
608 | 607 |
inline XMap<M> xMap(const M &m) |
609 | 608 |
{ |
610 | 609 |
return XMap<M>(m); |
611 | 610 |
} |
612 | 611 |
|
613 |
///Constant (read only) version of |
|
612 |
///Constant (read only) version of XMap |
|
614 | 613 |
|
614 |
///Constant (read only) version of XMap. |
|
615 | 615 |
///\ingroup maps |
616 |
///Constant (read only) version of \ref XMap |
|
617 |
/// |
|
618 | 616 |
template<class M> |
619 | 617 |
class ConstXMap |
620 | 618 |
{ |
621 | 619 |
const M& _map; |
622 | 620 |
public: |
623 | 621 |
|
624 | 622 |
typedef typename M::Value::Value Value; |
625 | 623 |
typedef typename M::Key Key; |
626 | 624 |
///\e |
627 | 625 |
ConstXMap(const M &map) : _map(map) {} |
628 | 626 |
Value operator[](Key k) const {return _map[k].x;} |
629 | 627 |
}; |
630 | 628 |
|
631 |
///Returns a |
|
629 |
///Returns a ConstXMap class |
|
632 | 630 |
|
633 |
///This function just returns a |
|
631 |
///This function just returns a ConstXMap class. |
|
634 | 632 |
/// |
635 | 633 |
///\ingroup maps |
636 | 634 |
///\relates ConstXMap |
637 | 635 |
template<class M> |
638 | 636 |
inline ConstXMap<M> xMap(const M &m) |
639 | 637 |
{ |
640 | 638 |
return ConstXMap<M>(m); |
641 | 639 |
} |
642 | 640 |
|
643 |
///Map of y-coordinates of a |
|
641 |
///Map of y-coordinates of a <tt>Point</tt>-map |
|
644 | 642 |
|
643 |
///Map of y-coordinates of a \ref Point "Point"-map. |
|
645 | 644 |
///\ingroup maps |
646 |
///Map of y-coordinates of a \ref Point "Point"-map. |
|
647 |
/// |
|
648 | 645 |
template<class M> |
649 | 646 |
class YMap |
650 | 647 |
{ |
651 | 648 |
M& _map; |
652 | 649 |
public: |
653 | 650 |
|
654 | 651 |
typedef typename M::Value::Value Value; |
655 | 652 |
typedef typename M::Key Key; |
656 | 653 |
///\e |
657 | 654 |
YMap(M& map) : _map(map) {} |
658 | 655 |
Value operator[](Key k) const {return _map[k].y;} |
659 | 656 |
void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));} |
660 | 657 |
}; |
661 | 658 |
|
662 |
///Returns a |
|
659 |
///Returns a YMap class |
|
663 | 660 |
|
664 |
///This function just returns a |
|
661 |
///This function just returns a YMap class. |
|
665 | 662 |
/// |
666 | 663 |
///\ingroup maps |
667 | 664 |
///\relates YMap |
668 | 665 |
template<class M> |
669 | 666 |
inline YMap<M> yMap(M &m) |
670 | 667 |
{ |
671 | 668 |
return YMap<M>(m); |
672 | 669 |
} |
673 | 670 |
|
674 | 671 |
template<class M> |
675 | 672 |
inline YMap<M> yMap(const M &m) |
676 | 673 |
{ |
677 | 674 |
return YMap<M>(m); |
678 | 675 |
} |
679 | 676 |
|
680 |
///Constant (read only) version of |
|
677 |
///Constant (read only) version of YMap |
|
681 | 678 |
|
679 |
///Constant (read only) version of YMap. |
|
682 | 680 |
///\ingroup maps |
683 |
///Constant (read only) version of \ref YMap |
|
684 |
/// |
|
685 | 681 |
template<class M> |
686 | 682 |
class ConstYMap |
687 | 683 |
{ |
688 | 684 |
const M& _map; |
689 | 685 |
public: |
690 | 686 |
|
691 | 687 |
typedef typename M::Value::Value Value; |
692 | 688 |
typedef typename M::Key Key; |
693 | 689 |
///\e |
694 | 690 |
ConstYMap(const M &map) : _map(map) {} |
695 | 691 |
Value operator[](Key k) const {return _map[k].y;} |
696 | 692 |
}; |
697 | 693 |
|
698 |
///Returns a |
|
694 |
///Returns a ConstYMap class |
|
699 | 695 |
|
700 |
///This function just returns a |
|
696 |
///This function just returns a ConstYMap class. |
|
701 | 697 |
/// |
702 | 698 |
///\ingroup maps |
703 | 699 |
///\relates ConstYMap |
704 | 700 |
template<class M> |
705 | 701 |
inline ConstYMap<M> yMap(const M &m) |
706 | 702 |
{ |
707 | 703 |
return ConstYMap<M>(m); |
708 | 704 |
} |
709 | 705 |
|
710 | 706 |
|
711 |
///\brief Map of the \ref Point::normSquare() "normSquare()" |
|
712 |
///of a \ref Point "Point"-map |
|
707 |
///\brief Map of the normSquare() of a <tt>Point</tt>-map |
|
713 | 708 |
/// |
714 | 709 |
///Map of the \ref Point::normSquare() "normSquare()" |
715 | 710 |
///of a \ref Point "Point"-map. |
716 | 711 |
///\ingroup maps |
717 | 712 |
template<class M> |
718 | 713 |
class NormSquareMap |
719 | 714 |
{ |
720 | 715 |
const M& _map; |
721 | 716 |
public: |
722 | 717 |
|
723 | 718 |
typedef typename M::Value::Value Value; |
724 | 719 |
typedef typename M::Key Key; |
725 | 720 |
///\e |
726 | 721 |
NormSquareMap(const M &map) : _map(map) {} |
727 | 722 |
Value operator[](Key k) const {return _map[k].normSquare();} |
728 | 723 |
}; |
729 | 724 |
|
730 |
///Returns a |
|
725 |
///Returns a NormSquareMap class |
|
731 | 726 |
|
732 |
///This function just returns a |
|
727 |
///This function just returns a NormSquareMap class. |
|
733 | 728 |
/// |
734 | 729 |
///\ingroup maps |
735 | 730 |
///\relates NormSquareMap |
736 | 731 |
template<class M> |
737 | 732 |
inline NormSquareMap<M> normSquareMap(const M &m) |
738 | 733 |
{ |
739 | 734 |
return NormSquareMap<M>(m); |
740 | 735 |
} |
741 | 736 |
|
742 | 737 |
/// @} |
743 | 738 |
|
744 | 739 |
} //namespce dim2 |
745 | 740 |
|
746 | 741 |
} //namespace lemon |
747 | 742 |
|
748 | 743 |
#endif //LEMON_DIM2_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 | 32 |
#define WIN32_LEAN_AND_MEAN |
33 | 33 |
#define NOMINMAX |
34 | 34 |
#include<windows.h> |
35 | 35 |
#endif |
36 | 36 |
|
37 | 37 |
#include<lemon/math.h> |
38 | 38 |
#include<lemon/core.h> |
39 | 39 |
#include<lemon/dim2.h> |
40 | 40 |
#include<lemon/maps.h> |
41 | 41 |
#include<lemon/color.h> |
42 | 42 |
#include<lemon/bits/bezier.h> |
43 | 43 |
#include<lemon/error.h> |
44 | 44 |
|
45 | 45 |
|
46 | 46 |
///\ingroup eps_io |
47 | 47 |
///\file |
48 | 48 |
///\brief A well configurable tool for visualizing graphs |
49 | 49 |
|
50 | 50 |
namespace lemon { |
51 | 51 |
|
52 | 52 |
namespace _graph_to_eps_bits { |
53 | 53 |
template<class MT> |
54 | 54 |
class _NegY { |
55 | 55 |
public: |
56 | 56 |
typedef typename MT::Key Key; |
57 | 57 |
typedef typename MT::Value Value; |
58 | 58 |
const MT ↦ |
59 | 59 |
int yscale; |
60 | 60 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
61 | 61 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
62 | 62 |
}; |
63 | 63 |
} |
64 | 64 |
|
65 |
///Default traits class of |
|
65 |
///Default traits class of GraphToEps |
|
66 | 66 |
|
67 | 67 |
///Default traits class of \ref GraphToEps. |
68 | 68 |
/// |
69 | 69 |
///\c G is the type of the underlying graph. |
70 | 70 |
template<class G> |
71 | 71 |
struct DefaultGraphToEpsTraits |
72 | 72 |
{ |
73 | 73 |
typedef G Graph; |
74 | 74 |
typedef typename Graph::Node Node; |
75 | 75 |
typedef typename Graph::NodeIt NodeIt; |
76 | 76 |
typedef typename Graph::Arc Arc; |
77 | 77 |
typedef typename Graph::ArcIt ArcIt; |
78 | 78 |
typedef typename Graph::InArcIt InArcIt; |
79 | 79 |
typedef typename Graph::OutArcIt OutArcIt; |
80 | 80 |
|
81 | 81 |
|
82 | 82 |
const Graph &g; |
83 | 83 |
|
84 | 84 |
std::ostream& os; |
85 | 85 |
|
86 | 86 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
87 | 87 |
CoordsMapType _coords; |
88 | 88 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
89 | 89 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
90 | 90 |
|
91 | 91 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
92 | 92 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
93 | 93 |
|
94 | 94 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
95 | 95 |
|
96 | 96 |
double _arcWidthScale; |
97 | 97 |
|
98 | 98 |
double _nodeScale; |
99 | 99 |
double _xBorder, _yBorder; |
100 | 100 |
double _scale; |
101 | 101 |
double _nodeBorderQuotient; |
102 | 102 |
|
103 | 103 |
bool _drawArrows; |
104 | 104 |
double _arrowLength, _arrowWidth; |
105 | 105 |
|
106 | 106 |
bool _showNodes, _showArcs; |
107 | 107 |
|
108 | 108 |
bool _enableParallel; |
109 | 109 |
double _parArcDist; |
110 | 110 |
|
111 | 111 |
bool _showNodeText; |
112 | 112 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
113 | 113 |
double _nodeTextSize; |
114 | 114 |
|
115 | 115 |
bool _showNodePsText; |
116 | 116 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
117 | 117 |
char *_nodePsTextsPreamble; |
118 | 118 |
|
119 | 119 |
bool _undirected; |
120 | 120 |
|
121 | 121 |
bool _pleaseRemoveOsStream; |
122 | 122 |
|
123 | 123 |
bool _scaleToA4; |
124 | 124 |
|
125 | 125 |
std::string _title; |
126 | 126 |
std::string _copyright; |
127 | 127 |
|
128 | 128 |
enum NodeTextColorType |
129 | 129 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
130 | 130 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
131 | 131 |
|
132 | 132 |
bool _autoNodeScale; |
133 | 133 |
bool _autoArcWidthScale; |
134 | 134 |
|
135 | 135 |
bool _absoluteNodeSizes; |
136 | 136 |
bool _absoluteArcWidths; |
137 | 137 |
|
138 | 138 |
bool _negY; |
139 | 139 |
|
140 | 140 |
bool _preScale; |
141 | 141 |
///Constructor |
142 | 142 |
|
143 | 143 |
///Constructor |
144 | 144 |
///\param _g Reference to the graph to be printed. |
145 | 145 |
///\param _os Reference to the output stream. |
146 | 146 |
///\param _os Reference to the output stream. |
147 | 147 |
///By default it is <tt>std::cout</tt>. |
148 | 148 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
149 | 149 |
///will be explicitly deallocated by the destructor. |
150 | 150 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
151 | 151 |
bool _pros=false) : |
152 | 152 |
g(_g), os(_os), |
153 | 153 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
154 | 154 |
_nodeColors(WHITE), _arcColors(BLACK), |
155 | 155 |
_arcWidths(1.0), _arcWidthScale(0.003), |
156 | 156 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
157 | 157 |
_nodeBorderQuotient(.1), |
158 | 158 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
159 | 159 |
_showNodes(true), _showArcs(true), |
160 | 160 |
_enableParallel(false), _parArcDist(1), |
161 | 161 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
162 | 162 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
163 | 163 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
164 | 164 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
165 | 165 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
166 | 166 |
_autoNodeScale(false), |
167 | 167 |
_autoArcWidthScale(false), |
168 | 168 |
_absoluteNodeSizes(false), |
169 | 169 |
_absoluteArcWidths(false), |
170 | 170 |
_negY(false), |
171 | 171 |
_preScale(true) |
172 | 172 |
{} |
173 | 173 |
}; |
174 | 174 |
|
175 | 175 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
176 | 176 |
|
177 | 177 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
178 | 178 |
/// |
179 | 179 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
180 | 180 |
template<class T> class GraphToEps : public T |
181 | 181 |
{ |
182 | 182 |
// Can't believe it is required by the C++ standard |
183 | 183 |
using T::g; |
184 | 184 |
using T::os; |
185 | 185 |
|
186 | 186 |
using T::_coords; |
187 | 187 |
using T::_nodeSizes; |
188 | 188 |
using T::_nodeShapes; |
189 | 189 |
using T::_nodeColors; |
190 | 190 |
using T::_arcColors; |
191 | 191 |
using T::_arcWidths; |
192 | 192 |
|
193 | 193 |
using T::_arcWidthScale; |
194 | 194 |
using T::_nodeScale; |
195 | 195 |
using T::_xBorder; |
196 | 196 |
using T::_yBorder; |
197 | 197 |
using T::_scale; |
198 | 198 |
using T::_nodeBorderQuotient; |
199 | 199 |
|
200 | 200 |
using T::_drawArrows; |
201 | 201 |
using T::_arrowLength; |
202 | 202 |
using T::_arrowWidth; |
203 | 203 |
|
204 | 204 |
using T::_showNodes; |
205 | 205 |
using T::_showArcs; |
206 | 206 |
|
207 | 207 |
using T::_enableParallel; |
208 | 208 |
using T::_parArcDist; |
209 | 209 |
|
210 | 210 |
using T::_showNodeText; |
211 | 211 |
using T::_nodeTexts; |
212 | 212 |
using T::_nodeTextSize; |
213 | 213 |
|
214 | 214 |
using T::_showNodePsText; |
215 | 215 |
using T::_nodePsTexts; |
216 | 216 |
using T::_nodePsTextsPreamble; |
217 | 217 |
|
218 | 218 |
using T::_undirected; |
219 | 219 |
|
220 | 220 |
using T::_pleaseRemoveOsStream; |
221 | 221 |
|
222 | 222 |
using T::_scaleToA4; |
223 | 223 |
|
224 | 224 |
using T::_title; |
225 | 225 |
using T::_copyright; |
226 | 226 |
|
227 | 227 |
using T::NodeTextColorType; |
228 | 228 |
using T::CUST_COL; |
229 | 229 |
using T::DIST_COL; |
230 | 230 |
using T::DIST_BW; |
231 | 231 |
using T::_nodeTextColorType; |
232 | 232 |
using T::_nodeTextColors; |
233 | 233 |
|
234 | 234 |
using T::_autoNodeScale; |
235 | 235 |
using T::_autoArcWidthScale; |
236 | 236 |
|
237 | 237 |
using T::_absoluteNodeSizes; |
238 | 238 |
using T::_absoluteArcWidths; |
239 | 239 |
|
240 | 240 |
|
241 | 241 |
using T::_negY; |
242 | 242 |
using T::_preScale; |
243 | 243 |
|
244 | 244 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
245 | 245 |
|
246 | 246 |
typedef typename T::Graph Graph; |
247 | 247 |
typedef typename Graph::Node Node; |
248 | 248 |
typedef typename Graph::NodeIt NodeIt; |
249 | 249 |
typedef typename Graph::Arc Arc; |
250 | 250 |
typedef typename Graph::ArcIt ArcIt; |
251 | 251 |
typedef typename Graph::InArcIt InArcIt; |
252 | 252 |
typedef typename Graph::OutArcIt OutArcIt; |
253 | 253 |
|
254 | 254 |
static const int INTERPOL_PREC; |
255 | 255 |
static const double A4HEIGHT; |
256 | 256 |
static const double A4WIDTH; |
257 | 257 |
static const double A4BORDER; |
258 | 258 |
|
259 | 259 |
bool dontPrint; |
260 | 260 |
|
261 | 261 |
public: |
262 | 262 |
///Node shapes |
263 | 263 |
|
264 | 264 |
///Node shapes. |
265 | 265 |
/// |
266 | 266 |
enum NodeShapes { |
267 | 267 |
/// = 0 |
268 | 268 |
///\image html nodeshape_0.png |
269 | 269 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
270 | 270 |
CIRCLE=0, |
271 | 271 |
/// = 1 |
272 | 272 |
///\image html nodeshape_1.png |
273 | 273 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
274 | 274 |
/// |
275 | 275 |
SQUARE=1, |
276 | 276 |
/// = 2 |
277 | 277 |
///\image html nodeshape_2.png |
278 | 278 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
279 | 279 |
/// |
280 | 280 |
DIAMOND=2, |
281 | 281 |
/// = 3 |
282 | 282 |
///\image html nodeshape_3.png |
283 | 283 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
284 | 284 |
/// |
285 | 285 |
MALE=3, |
286 | 286 |
/// = 4 |
287 | 287 |
///\image html nodeshape_4.png |
288 | 288 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
289 | 289 |
/// |
290 | 290 |
FEMALE=4 |
291 | 291 |
}; |
292 | 292 |
|
293 | 293 |
private: |
294 | 294 |
class arcLess { |
295 | 295 |
const Graph &g; |
296 | 296 |
public: |
297 | 297 |
arcLess(const Graph &_g) : g(_g) {} |
298 | 298 |
bool operator()(Arc a,Arc b) const |
299 | 299 |
{ |
300 | 300 |
Node ai=std::min(g.source(a),g.target(a)); |
301 | 301 |
Node aa=std::max(g.source(a),g.target(a)); |
302 | 302 |
Node bi=std::min(g.source(b),g.target(b)); |
303 | 303 |
Node ba=std::max(g.source(b),g.target(b)); |
304 | 304 |
return ai<bi || |
305 | 305 |
(ai==bi && (aa < ba || |
306 | 306 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
307 | 307 |
} |
308 | 308 |
}; |
309 | 309 |
bool isParallel(Arc e,Arc f) const |
310 | 310 |
{ |
311 | 311 |
return (g.source(e)==g.source(f)&& |
312 | 312 |
g.target(e)==g.target(f)) || |
313 | 313 |
(g.source(e)==g.target(f)&& |
314 | 314 |
g.target(e)==g.source(f)); |
315 | 315 |
} |
316 | 316 |
template<class TT> |
317 | 317 |
static std::string psOut(const dim2::Point<TT> &p) |
318 | 318 |
{ |
319 | 319 |
std::ostringstream os; |
320 | 320 |
os << p.x << ' ' << p.y; |
321 | 321 |
return os.str(); |
322 | 322 |
} |
323 | 323 |
static std::string psOut(const Color &c) |
324 | 324 |
{ |
325 | 325 |
std::ostringstream os; |
326 | 326 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
327 | 327 |
return os.str(); |
328 | 328 |
} |
329 | 329 |
|
330 | 330 |
public: |
331 | 331 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
332 | 332 |
|
333 | 333 |
template<class X> struct CoordsTraits : public T { |
334 | 334 |
typedef X CoordsMapType; |
335 | 335 |
const X &_coords; |
336 | 336 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
337 | 337 |
}; |
338 | 338 |
///Sets the map of the node coordinates |
339 | 339 |
|
340 | 340 |
///Sets the map of the node coordinates. |
341 | 341 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
342 | 342 |
///\ref dim2::Point "dim2::Point<int>" values. |
343 | 343 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
344 | 344 |
dontPrint=true; |
345 | 345 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
346 | 346 |
} |
347 | 347 |
template<class X> struct NodeSizesTraits : public T { |
348 | 348 |
const X &_nodeSizes; |
349 | 349 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
350 | 350 |
}; |
351 | 351 |
///Sets the map of the node sizes |
352 | 352 |
|
353 | 353 |
///Sets the map of the node sizes. |
354 | 354 |
///\param x must be a node map with \c double (or convertible) values. |
355 | 355 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
356 | 356 |
{ |
357 | 357 |
dontPrint=true; |
358 | 358 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
359 | 359 |
} |
360 | 360 |
template<class X> struct NodeShapesTraits : public T { |
361 | 361 |
const X &_nodeShapes; |
362 | 362 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
363 | 363 |
}; |
364 | 364 |
///Sets the map of the node shapes |
365 | 365 |
|
366 | 366 |
///Sets the map of the node shapes. |
367 | 367 |
///The available shape values |
368 | 368 |
///can be found in \ref NodeShapes "enum NodeShapes". |
369 | 369 |
///\param x must be a node map with \c int (or convertible) values. |
370 | 370 |
///\sa NodeShapes |
371 | 371 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
372 | 372 |
{ |
373 | 373 |
dontPrint=true; |
374 | 374 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
375 | 375 |
} |
376 | 376 |
template<class X> struct NodeTextsTraits : public T { |
377 | 377 |
const X &_nodeTexts; |
378 | 378 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
379 | 379 |
}; |
380 | 380 |
///Sets the text printed on the nodes |
381 | 381 |
|
382 | 382 |
///Sets the text printed on the nodes. |
383 | 383 |
///\param x must be a node map with type that can be pushed to a standard |
384 | 384 |
///\c ostream. |
385 | 385 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
386 | 386 |
{ |
387 | 387 |
dontPrint=true; |
388 | 388 |
_showNodeText=true; |
389 | 389 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
390 | 390 |
} |
391 | 391 |
template<class X> struct NodePsTextsTraits : public T { |
392 | 392 |
const X &_nodePsTexts; |
393 | 393 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
394 | 394 |
}; |
395 | 395 |
///Inserts a PostScript block to the nodes |
396 | 396 |
|
397 | 397 |
///With this command it is possible to insert a verbatim PostScript |
398 | 398 |
///block to the nodes. |
399 | 399 |
///The PS current point will be moved to the center of the node before |
400 | 400 |
///the PostScript block inserted. |
401 | 401 |
/// |
402 | 402 |
///Before and after the block a newline character is inserted so you |
403 | 403 |
///don't have to bother with the separators. |
404 | 404 |
/// |
405 | 405 |
///\param x must be a node map with type that can be pushed to a standard |
406 | 406 |
///\c ostream. |
407 | 407 |
/// |
408 | 408 |
///\sa nodePsTextsPreamble() |
409 | 409 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
410 | 410 |
{ |
411 | 411 |
dontPrint=true; |
412 | 412 |
_showNodePsText=true; |
413 | 413 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
414 | 414 |
} |
415 | 415 |
template<class X> struct ArcWidthsTraits : public T { |
416 | 416 |
const X &_arcWidths; |
417 | 417 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
418 | 418 |
}; |
419 | 419 |
///Sets the map of the arc widths |
420 | 420 |
|
421 | 421 |
///Sets the map of the arc widths. |
422 | 422 |
///\param x must be an arc map with \c double (or convertible) values. |
423 | 423 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
424 | 424 |
{ |
425 | 425 |
dontPrint=true; |
426 | 426 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
427 | 427 |
} |
428 | 428 |
|
429 | 429 |
template<class X> struct NodeColorsTraits : public T { |
430 | 430 |
const X &_nodeColors; |
431 | 431 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
432 | 432 |
}; |
433 | 433 |
///Sets the map of the node colors |
434 | 434 |
|
435 | 435 |
///Sets the map of the node colors. |
436 | 436 |
///\param x must be a node map with \ref Color values. |
437 | 437 |
/// |
438 | 438 |
///\sa Palette |
439 | 439 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
440 | 440 |
nodeColors(const X &x) |
441 | 441 |
{ |
442 | 442 |
dontPrint=true; |
443 | 443 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
444 | 444 |
} |
445 | 445 |
template<class X> struct NodeTextColorsTraits : public T { |
446 | 446 |
const X &_nodeTextColors; |
447 | 447 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
448 | 448 |
}; |
449 | 449 |
///Sets the map of the node text colors |
450 | 450 |
|
451 | 451 |
///Sets the map of the node text colors. |
452 | 452 |
///\param x must be a node map with \ref Color values. |
453 | 453 |
/// |
454 | 454 |
///\sa Palette |
455 | 455 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
456 | 456 |
nodeTextColors(const X &x) |
457 | 457 |
{ |
458 | 458 |
dontPrint=true; |
459 | 459 |
_nodeTextColorType=CUST_COL; |
460 | 460 |
return GraphToEps<NodeTextColorsTraits<X> > |
461 | 461 |
(NodeTextColorsTraits<X>(*this,x)); |
462 | 462 |
} |
463 | 463 |
template<class X> struct ArcColorsTraits : public T { |
464 | 464 |
const X &_arcColors; |
465 | 465 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
466 | 466 |
}; |
467 | 467 |
///Sets the map of the arc colors |
468 | 468 |
|
469 | 469 |
///Sets the map of the arc colors. |
470 | 470 |
///\param x must be an arc map with \ref Color values. |
471 | 471 |
/// |
472 | 472 |
///\sa Palette |
473 | 473 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
474 | 474 |
arcColors(const X &x) |
475 | 475 |
{ |
476 | 476 |
dontPrint=true; |
477 | 477 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
478 | 478 |
} |
479 | 479 |
///Sets a global scale factor for node sizes |
480 | 480 |
|
481 | 481 |
///Sets a global scale factor for node sizes. |
482 | 482 |
/// |
483 | 483 |
/// If nodeSizes() is not given, this function simply sets the node |
484 | 484 |
/// sizes to \c d. If nodeSizes() is given, but |
485 | 485 |
/// autoNodeScale() is not, then the node size given by |
486 | 486 |
/// nodeSizes() will be multiplied by the value \c d. |
487 | 487 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
488 | 488 |
/// node sizes will be scaled in such a way that the greatest size will be |
489 | 489 |
/// equal to \c d. |
490 | 490 |
/// \sa nodeSizes() |
491 | 491 |
/// \sa autoNodeScale() |
492 | 492 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
493 | 493 |
///Turns on/off the automatic node size scaling. |
494 | 494 |
|
495 | 495 |
///Turns on/off the automatic node size scaling. |
496 | 496 |
/// |
497 | 497 |
///\sa nodeScale() |
498 | 498 |
/// |
499 | 499 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
500 | 500 |
_autoNodeScale=b;return *this; |
501 | 501 |
} |
502 | 502 |
|
503 | 503 |
///Turns on/off the absolutematic node size scaling. |
504 | 504 |
|
505 | 505 |
///Turns on/off the absolutematic node size scaling. |
506 | 506 |
/// |
507 | 507 |
///\sa nodeScale() |
508 | 508 |
/// |
509 | 509 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
510 | 510 |
_absoluteNodeSizes=b;return *this; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
///Negates the Y coordinates. |
514 | 514 |
GraphToEps<T> &negateY(bool b=true) { |
515 | 515 |
_negY=b;return *this; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Turn on/off pre-scaling |
519 | 519 |
|
520 | 520 |
///By default graphToEps() rescales the whole image in order to avoid |
521 | 521 |
///very big or very small bounding boxes. |
522 | 522 |
/// |
523 | 523 |
///This (p)rescaling can be turned off with this function. |
524 | 524 |
/// |
525 | 525 |
GraphToEps<T> &preScale(bool b=true) { |
526 | 526 |
_preScale=b;return *this; |
527 | 527 |
} |
528 | 528 |
|
529 | 529 |
///Sets a global scale factor for arc widths |
530 | 530 |
|
531 | 531 |
/// Sets a global scale factor for arc widths. |
532 | 532 |
/// |
533 | 533 |
/// If arcWidths() is not given, this function simply sets the arc |
534 | 534 |
/// widths to \c d. If arcWidths() is given, but |
535 | 535 |
/// autoArcWidthScale() is not, then the arc withs given by |
536 | 536 |
/// arcWidths() will be multiplied by the value \c d. |
537 | 537 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
538 | 538 |
/// arc withs will be scaled in such a way that the greatest width will be |
539 | 539 |
/// equal to \c d. |
540 | 540 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
541 | 541 |
///Turns on/off the automatic arc width scaling. |
542 | 542 |
|
543 | 543 |
///Turns on/off the automatic arc width scaling. |
544 | 544 |
/// |
545 | 545 |
///\sa arcWidthScale() |
546 | 546 |
/// |
547 | 547 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
548 | 548 |
_autoArcWidthScale=b;return *this; |
549 | 549 |
} |
550 | 550 |
///Turns on/off the absolutematic arc width scaling. |
551 | 551 |
|
552 | 552 |
///Turns on/off the absolutematic arc width scaling. |
553 | 553 |
/// |
554 | 554 |
///\sa arcWidthScale() |
555 | 555 |
/// |
556 | 556 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
557 | 557 |
_absoluteArcWidths=b;return *this; |
558 | 558 |
} |
559 | 559 |
///Sets a global scale factor for the whole picture |
560 | 560 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
561 | 561 |
///Sets the width of the border around the picture |
562 | 562 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
563 | 563 |
///Sets the width of the border around the picture |
564 | 564 |
GraphToEps<T> &border(double x, double y) { |
565 | 565 |
_xBorder=x;_yBorder=y;return *this; |
566 | 566 |
} |
567 | 567 |
///Sets whether to draw arrows |
568 | 568 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
569 | 569 |
///Sets the length of the arrowheads |
570 | 570 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
571 | 571 |
///Sets the width of the arrowheads |
572 | 572 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
573 | 573 |
|
574 | 574 |
///Scales the drawing to fit to A4 page |
575 | 575 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
576 | 576 |
|
577 | 577 |
///Enables parallel arcs |
578 | 578 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
579 | 579 |
|
580 | 580 |
///Sets the distance between parallel arcs |
581 | 581 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
582 | 582 |
|
583 | 583 |
///Hides the arcs |
584 | 584 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
585 | 585 |
///Hides the nodes |
586 | 586 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
587 | 587 |
|
588 | 588 |
///Sets the size of the node texts |
589 | 589 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
590 | 590 |
|
591 | 591 |
///Sets the color of the node texts to be different from the node color |
592 | 592 |
|
593 | 593 |
///Sets the color of the node texts to be as different from the node color |
594 | 594 |
///as it is possible. |
595 | 595 |
GraphToEps<T> &distantColorNodeTexts() |
596 | 596 |
{_nodeTextColorType=DIST_COL;return *this;} |
597 | 597 |
///Sets the color of the node texts to be black or white and always visible. |
598 | 598 |
|
599 | 599 |
///Sets the color of the node texts to be black or white according to |
600 | 600 |
///which is more different from the node color. |
601 | 601 |
GraphToEps<T> &distantBWNodeTexts() |
602 | 602 |
{_nodeTextColorType=DIST_BW;return *this;} |
603 | 603 |
|
604 | 604 |
///Gives a preamble block for node Postscript block. |
605 | 605 |
|
606 | 606 |
///Gives a preamble block for node Postscript block. |
607 | 607 |
/// |
608 | 608 |
///\sa nodePsTexts() |
609 | 609 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
610 | 610 |
_nodePsTextsPreamble=str ;return *this; |
611 | 611 |
} |
612 | 612 |
///Sets whether the graph is undirected |
613 | 613 |
|
614 | 614 |
///Sets whether the graph is undirected. |
615 | 615 |
/// |
616 | 616 |
///This setting is the default for undirected graphs. |
617 | 617 |
/// |
618 | 618 |
///\sa directed() |
619 | 619 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
620 | 620 |
|
621 | 621 |
///Sets whether the graph is directed |
622 | 622 |
|
623 | 623 |
///Sets whether the graph is directed. |
624 | 624 |
///Use it to show the edges as a pair of directed ones. |
625 | 625 |
/// |
626 | 626 |
///This setting is the default for digraphs. |
627 | 627 |
/// |
628 | 628 |
///\sa undirected() |
629 | 629 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
630 | 630 |
|
631 | 631 |
///Sets the title. |
632 | 632 |
|
633 | 633 |
///Sets the title of the generated image, |
634 | 634 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
635 | 635 |
///the EPS file. |
636 | 636 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;} |
637 | 637 |
///Sets the copyright statement. |
638 | 638 |
|
639 | 639 |
///Sets the copyright statement of the generated image, |
640 | 640 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
641 | 641 |
///the EPS file. |
642 | 642 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;} |
643 | 643 |
|
644 | 644 |
protected: |
645 | 645 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
646 | 646 |
{ |
647 | 647 |
switch(t) { |
648 | 648 |
case CIRCLE: |
649 | 649 |
case MALE: |
650 | 650 |
case FEMALE: |
651 | 651 |
return p.normSquare()<=r*r; |
652 | 652 |
case SQUARE: |
653 | 653 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
654 | 654 |
case DIAMOND: |
655 | 655 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
656 | 656 |
} |
657 | 657 |
return false; |
658 | 658 |
} |
659 | 659 |
|
660 | 660 |
public: |
661 | 661 |
~GraphToEps() { } |
662 | 662 |
|
663 | 663 |
///Draws the graph. |
664 | 664 |
|
665 | 665 |
///Like other functions using |
666 | 666 |
///\ref named-templ-func-param "named template parameters", |
667 | 667 |
///this function calls the algorithm itself, i.e. in this case |
668 | 668 |
///it draws the graph. |
669 | 669 |
void run() { |
670 | 670 |
const double EPSILON=1e-9; |
671 | 671 |
if(dontPrint) return; |
672 | 672 |
|
673 | 673 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
674 | 674 |
mycoords(_coords,_negY); |
675 | 675 |
|
676 | 676 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
677 | 677 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
678 | 678 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
679 | 679 |
os << "%%Creator: LEMON, graphToEps()\n"; |
680 | 680 |
|
681 | 681 |
{ |
682 | 682 |
#ifndef WIN32 |
683 | 683 |
timeval tv; |
684 | 684 |
gettimeofday(&tv, 0); |
685 | 685 |
|
686 | 686 |
char cbuf[26]; |
687 | 687 |
ctime_r(&tv.tv_sec,cbuf); |
688 | 688 |
os << "%%CreationDate: " << cbuf; |
689 | 689 |
#else |
690 | 690 |
SYSTEMTIME time; |
691 | 691 |
char buf1[11], buf2[9], buf3[5]; |
692 | 692 |
|
693 | 693 |
GetSystemTime(&time); |
694 | 694 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
695 | 695 |
"ddd MMM dd", buf1, 11) && |
696 | 696 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
697 | 697 |
"HH':'mm':'ss", buf2, 9) && |
698 | 698 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
699 | 699 |
"yyyy", buf3, 5)) { |
700 | 700 |
os << "%%CreationDate: " << buf1 << ' ' |
701 | 701 |
<< buf2 << ' ' << buf3 << std::endl; |
702 | 702 |
} |
703 | 703 |
#endif |
704 | 704 |
} |
705 | 705 |
|
706 | 706 |
if (_autoArcWidthScale) { |
707 | 707 |
double max_w=0; |
708 | 708 |
for(ArcIt e(g);e!=INVALID;++e) |
709 | 709 |
max_w=std::max(double(_arcWidths[e]),max_w); |
710 | 710 |
if(max_w>EPSILON) { |
711 | 711 |
_arcWidthScale/=max_w; |
712 | 712 |
} |
713 | 713 |
} |
714 | 714 |
|
715 | 715 |
if (_autoNodeScale) { |
716 | 716 |
double max_s=0; |
717 | 717 |
for(NodeIt n(g);n!=INVALID;++n) |
718 | 718 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
719 | 719 |
if(max_s>EPSILON) { |
720 | 720 |
_nodeScale/=max_s; |
721 | 721 |
} |
722 | 722 |
} |
723 | 723 |
|
724 | 724 |
double diag_len = 1; |
725 | 725 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { |
726 | 726 |
dim2::Box<double> bb; |
727 | 727 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
728 | 728 |
if (bb.empty()) { |
729 | 729 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
730 | 730 |
} |
731 | 731 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
732 | 732 |
if(diag_len<EPSILON) diag_len = 1; |
733 | 733 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
734 | 734 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
735 | 735 |
} |
736 | 736 |
|
737 | 737 |
dim2::Box<double> bb; |
738 | 738 |
for(NodeIt n(g);n!=INVALID;++n) { |
739 | 739 |
double ns=_nodeSizes[n]*_nodeScale; |
740 | 740 |
dim2::Point<double> p(ns,ns); |
741 | 741 |
switch(_nodeShapes[n]) { |
742 | 742 |
case CIRCLE: |
743 | 743 |
case SQUARE: |
744 | 744 |
case DIAMOND: |
745 | 745 |
bb.add(p+mycoords[n]); |
746 | 746 |
bb.add(-p+mycoords[n]); |
747 | 747 |
break; |
748 | 748 |
case MALE: |
749 | 749 |
bb.add(-p+mycoords[n]); |
750 | 750 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
751 | 751 |
break; |
752 | 752 |
case FEMALE: |
753 | 753 |
bb.add(p+mycoords[n]); |
754 | 754 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
755 | 755 |
break; |
756 | 756 |
} |
757 | 757 |
} |
758 | 758 |
if (bb.empty()) { |
759 | 759 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
760 | 760 |
} |
761 | 761 |
|
762 | 762 |
if(_scaleToA4) |
763 | 763 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
764 | 764 |
else { |
765 | 765 |
if(_preScale) { |
766 | 766 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
767 | 767 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
768 | 768 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
769 | 769 |
} |
770 | 770 |
|
771 | 771 |
os << "%%BoundingBox: " |
772 | 772 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
773 | 773 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
774 | 774 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
775 | 775 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
776 | 776 |
} |
777 | 777 |
|
778 | 778 |
os << "%%EndComments\n"; |
779 | 779 |
|
780 | 780 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
781 | 781 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n" |
782 | 782 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
783 | 783 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }" |
784 | 784 |
<< " bind def\n"; |
785 | 785 |
//x y r |
786 | 786 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }" |
787 | 787 |
<< " bind def\n"; |
788 | 788 |
//x y r |
789 | 789 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
790 | 790 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
791 | 791 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
792 | 792 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
793 | 793 |
<< " closepath pop pop pop} bind def\n"; |
794 | 794 |
//x y r |
795 | 795 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
796 | 796 |
<< " 2 index 2 index 2 index add lineto\n" |
797 | 797 |
<< " 2 index 1 index sub 2 index lineto\n" |
798 | 798 |
<< " 2 index 2 index 2 index sub lineto\n" |
799 | 799 |
<< " closepath pop pop pop} bind def\n"; |
800 | 800 |
// x y r cr cg cb |
801 | 801 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
802 | 802 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
803 | 803 |
<< " } bind def\n"; |
804 | 804 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
805 | 805 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
806 | 806 |
<< " } bind def\n"; |
807 | 807 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
808 | 808 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
809 | 809 |
<< " } bind def\n"; |
810 | 810 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
811 | 811 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
812 | 812 |
<< " 1.5 mul mul setlinewidth\n" |
813 | 813 |
<< " newpath 5 index 5 index moveto " |
814 | 814 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
815 | 815 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
816 | 816 |
<< " moveto\n" |
817 | 817 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
818 | 818 |
<< "stroke\n" |
819 | 819 |
<< " 5 index 5 index 5 index c fill\n" |
820 | 820 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
821 | 821 |
<< " } bind def\n"; |
822 | 822 |
os << "/nmale {\n" |
823 | 823 |
<< " 0 0 0 setrgbcolor 3 index " |
824 | 824 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
825 | 825 |
<<" 1.5 mul mul setlinewidth\n" |
826 | 826 |
<< " newpath 5 index 5 index moveto\n" |
827 | 827 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
828 | 828 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
829 | 829 |
<< " 1 index 1 index lineto\n" |
830 | 830 |
<< " 1 index 1 index 7 index sub moveto\n" |
831 | 831 |
<< " 1 index 1 index lineto\n" |
832 | 832 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
833 | 833 |
<< " lineto\n" |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief ListDigraph, ListGraph classes. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
#include <lemon/bits/graph_extender.h> |
29 | 29 |
|
30 | 30 |
#include <vector> |
31 | 31 |
#include <list> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
class ListDigraphBase { |
36 | 36 |
|
37 | 37 |
protected: |
38 | 38 |
struct NodeT { |
39 | 39 |
int first_in, first_out; |
40 | 40 |
int prev, next; |
41 | 41 |
}; |
42 | 42 |
|
43 | 43 |
struct ArcT { |
44 | 44 |
int target, source; |
45 | 45 |
int prev_in, prev_out; |
46 | 46 |
int next_in, next_out; |
47 | 47 |
}; |
48 | 48 |
|
49 | 49 |
std::vector<NodeT> nodes; |
50 | 50 |
|
51 | 51 |
int first_node; |
52 | 52 |
|
53 | 53 |
int first_free_node; |
54 | 54 |
|
55 | 55 |
std::vector<ArcT> arcs; |
56 | 56 |
|
57 | 57 |
int first_free_arc; |
58 | 58 |
|
59 | 59 |
public: |
60 | 60 |
|
61 | 61 |
typedef ListDigraphBase Digraph; |
62 | 62 |
|
63 | 63 |
class Node { |
64 | 64 |
friend class ListDigraphBase; |
65 | 65 |
protected: |
66 | 66 |
|
67 | 67 |
int id; |
68 | 68 |
explicit Node(int pid) { id = pid;} |
69 | 69 |
|
70 | 70 |
public: |
71 | 71 |
Node() {} |
72 | 72 |
Node (Invalid) { id = -1; } |
73 | 73 |
bool operator==(const Node& node) const {return id == node.id;} |
74 | 74 |
bool operator!=(const Node& node) const {return id != node.id;} |
75 | 75 |
bool operator<(const Node& node) const {return id < node.id;} |
76 | 76 |
}; |
77 | 77 |
|
78 | 78 |
class Arc { |
79 | 79 |
friend class ListDigraphBase; |
80 | 80 |
protected: |
81 | 81 |
|
82 | 82 |
int id; |
83 | 83 |
explicit Arc(int pid) { id = pid;} |
84 | 84 |
|
85 | 85 |
public: |
86 | 86 |
Arc() {} |
87 | 87 |
Arc (Invalid) { id = -1; } |
88 | 88 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
89 | 89 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
90 | 90 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
91 | 91 |
}; |
92 | 92 |
|
93 | 93 |
|
94 | 94 |
|
95 | 95 |
ListDigraphBase() |
96 | 96 |
: nodes(), first_node(-1), |
97 | 97 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
int maxNodeId() const { return nodes.size()-1; } |
101 | 101 |
int maxArcId() const { return arcs.size()-1; } |
102 | 102 |
|
103 | 103 |
Node source(Arc e) const { return Node(arcs[e.id].source); } |
104 | 104 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
105 | 105 |
|
106 | 106 |
|
107 | 107 |
void first(Node& node) const { |
108 | 108 |
node.id = first_node; |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
void next(Node& node) const { |
112 | 112 |
node.id = nodes[node.id].next; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
void first(Arc& arc) const { |
117 | 117 |
int n; |
118 | 118 |
for(n = first_node; |
119 | 119 |
n!=-1 && nodes[n].first_in == -1; |
120 | 120 |
n = nodes[n].next) {} |
121 | 121 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
void next(Arc& arc) const { |
125 | 125 |
if (arcs[arc.id].next_in != -1) { |
126 | 126 |
arc.id = arcs[arc.id].next_in; |
127 | 127 |
} else { |
128 | 128 |
int n; |
129 | 129 |
for(n = nodes[arcs[arc.id].target].next; |
130 | 130 |
n!=-1 && nodes[n].first_in == -1; |
131 | 131 |
n = nodes[n].next) {} |
132 | 132 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
133 | 133 |
} |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
void firstOut(Arc &e, const Node& v) const { |
137 | 137 |
e.id = nodes[v.id].first_out; |
138 | 138 |
} |
139 | 139 |
void nextOut(Arc &e) const { |
140 | 140 |
e.id=arcs[e.id].next_out; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
void firstIn(Arc &e, const Node& v) const { |
144 | 144 |
e.id = nodes[v.id].first_in; |
145 | 145 |
} |
146 | 146 |
void nextIn(Arc &e) const { |
147 | 147 |
e.id=arcs[e.id].next_in; |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
|
151 | 151 |
static int id(Node v) { return v.id; } |
152 | 152 |
static int id(Arc e) { return e.id; } |
153 | 153 |
|
154 | 154 |
static Node nodeFromId(int id) { return Node(id);} |
155 | 155 |
static Arc arcFromId(int id) { return Arc(id);} |
156 | 156 |
|
157 | 157 |
bool valid(Node n) const { |
158 | 158 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
159 | 159 |
nodes[n.id].prev != -2; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
bool valid(Arc a) const { |
163 | 163 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
164 | 164 |
arcs[a.id].prev_in != -2; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
Node addNode() { |
168 | 168 |
int n; |
169 | 169 |
|
170 | 170 |
if(first_free_node==-1) { |
171 | 171 |
n = nodes.size(); |
172 | 172 |
nodes.push_back(NodeT()); |
173 | 173 |
} else { |
174 | 174 |
n = first_free_node; |
175 | 175 |
first_free_node = nodes[n].next; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
nodes[n].next = first_node; |
179 | 179 |
if(first_node != -1) nodes[first_node].prev = n; |
180 | 180 |
first_node = n; |
181 | 181 |
nodes[n].prev = -1; |
182 | 182 |
|
183 | 183 |
nodes[n].first_in = nodes[n].first_out = -1; |
184 | 184 |
|
185 | 185 |
return Node(n); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
Arc addArc(Node u, Node v) { |
189 | 189 |
int n; |
190 | 190 |
|
191 | 191 |
if (first_free_arc == -1) { |
192 | 192 |
n = arcs.size(); |
193 | 193 |
arcs.push_back(ArcT()); |
194 | 194 |
} else { |
195 | 195 |
n = first_free_arc; |
196 | 196 |
first_free_arc = arcs[n].next_in; |
197 | 197 |
} |
198 | 198 |
|
199 | 199 |
arcs[n].source = u.id; |
200 | 200 |
arcs[n].target = v.id; |
201 | 201 |
|
202 | 202 |
arcs[n].next_out = nodes[u.id].first_out; |
203 | 203 |
if(nodes[u.id].first_out != -1) { |
204 | 204 |
arcs[nodes[u.id].first_out].prev_out = n; |
205 | 205 |
} |
206 | 206 |
|
207 | 207 |
arcs[n].next_in = nodes[v.id].first_in; |
208 | 208 |
if(nodes[v.id].first_in != -1) { |
209 | 209 |
arcs[nodes[v.id].first_in].prev_in = n; |
210 | 210 |
} |
211 | 211 |
|
212 | 212 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
213 | 213 |
|
214 | 214 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
215 | 215 |
|
216 | 216 |
return Arc(n); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
void erase(const Node& node) { |
220 | 220 |
int n = node.id; |
221 | 221 |
|
222 | 222 |
if(nodes[n].next != -1) { |
223 | 223 |
nodes[nodes[n].next].prev = nodes[n].prev; |
224 | 224 |
} |
225 | 225 |
|
226 | 226 |
if(nodes[n].prev != -1) { |
227 | 227 |
nodes[nodes[n].prev].next = nodes[n].next; |
228 | 228 |
} else { |
229 | 229 |
first_node = nodes[n].next; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
nodes[n].next = first_free_node; |
233 | 233 |
first_free_node = n; |
234 | 234 |
nodes[n].prev = -2; |
235 | 235 |
|
236 | 236 |
} |
237 | 237 |
|
238 | 238 |
void erase(const Arc& arc) { |
239 | 239 |
int n = arc.id; |
240 | 240 |
|
241 | 241 |
if(arcs[n].next_in!=-1) { |
242 | 242 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
if(arcs[n].prev_in!=-1) { |
246 | 246 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
247 | 247 |
} else { |
248 | 248 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
|
252 | 252 |
if(arcs[n].next_out!=-1) { |
253 | 253 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
if(arcs[n].prev_out!=-1) { |
257 | 257 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
258 | 258 |
} else { |
259 | 259 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
260 | 260 |
} |
261 | 261 |
|
262 | 262 |
arcs[n].next_in = first_free_arc; |
263 | 263 |
first_free_arc = n; |
264 | 264 |
arcs[n].prev_in = -2; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
void clear() { |
268 | 268 |
arcs.clear(); |
269 | 269 |
nodes.clear(); |
270 | 270 |
first_node = first_free_node = first_free_arc = -1; |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
protected: |
274 | 274 |
void changeTarget(Arc e, Node n) |
275 | 275 |
{ |
276 | 276 |
if(arcs[e.id].next_in != -1) |
277 | 277 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
278 | 278 |
if(arcs[e.id].prev_in != -1) |
279 | 279 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
280 | 280 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
281 | 281 |
if (nodes[n.id].first_in != -1) { |
282 | 282 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
283 | 283 |
} |
284 | 284 |
arcs[e.id].target = n.id; |
285 | 285 |
arcs[e.id].prev_in = -1; |
286 | 286 |
arcs[e.id].next_in = nodes[n.id].first_in; |
287 | 287 |
nodes[n.id].first_in = e.id; |
288 | 288 |
} |
289 | 289 |
void changeSource(Arc e, Node n) |
290 | 290 |
{ |
291 | 291 |
if(arcs[e.id].next_out != -1) |
292 | 292 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
293 | 293 |
if(arcs[e.id].prev_out != -1) |
294 | 294 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
295 | 295 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
296 | 296 |
if (nodes[n.id].first_out != -1) { |
297 | 297 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
298 | 298 |
} |
299 | 299 |
arcs[e.id].source = n.id; |
300 | 300 |
arcs[e.id].prev_out = -1; |
301 | 301 |
arcs[e.id].next_out = nodes[n.id].first_out; |
302 | 302 |
nodes[n.id].first_out = e.id; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
}; |
306 | 306 |
|
307 | 307 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
308 | 308 |
|
309 | 309 |
/// \addtogroup graphs |
310 | 310 |
/// @{ |
311 | 311 |
|
312 | 312 |
///A general directed graph structure. |
313 | 313 |
|
314 | 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
315 | 315 |
///implementation based on static linked lists that are stored in |
316 | 316 |
///\c std::vector structures. |
317 | 317 |
/// |
318 | 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
319 | 319 |
///also provides several useful additional functionalities. |
320 | 320 |
///Most of the member functions and nested classes are documented |
321 | 321 |
///only in the concept class. |
322 | 322 |
/// |
323 | 323 |
///An important extra feature of this digraph implementation is that |
324 | 324 |
///its maps are real \ref concepts::ReferenceMap "reference map"s. |
325 | 325 |
/// |
326 | 326 |
///\sa concepts::Digraph |
327 | 327 |
|
328 | 328 |
class ListDigraph : public ExtendedListDigraphBase { |
329 | 329 |
private: |
330 | 330 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
331 | 331 |
|
332 | 332 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
333 | 333 |
/// |
334 | 334 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
335 | 335 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
336 | 336 |
///Use copyDigraph() instead. |
337 | 337 |
|
338 | 338 |
///Assignment of ListDigraph to another one is \e not allowed. |
339 | 339 |
///Use copyDigraph() instead. |
340 | 340 |
void operator=(const ListDigraph &) {} |
341 | 341 |
public: |
342 | 342 |
|
343 | 343 |
typedef ExtendedListDigraphBase Parent; |
344 | 344 |
|
345 | 345 |
/// Constructor |
346 | 346 |
|
347 | 347 |
/// Constructor. |
348 | 348 |
/// |
349 | 349 |
ListDigraph() {} |
350 | 350 |
|
351 | 351 |
///Add a new node to the digraph. |
352 | 352 |
|
353 | 353 |
///Add a new node to the digraph. |
354 | 354 |
///\return the new node. |
355 | 355 |
Node addNode() { return Parent::addNode(); } |
356 | 356 |
|
357 | 357 |
///Add a new arc to the digraph. |
358 | 358 |
|
359 | 359 |
///Add a new arc to the digraph with source node \c s |
360 | 360 |
///and target node \c t. |
361 | 361 |
///\return the new arc. |
362 | 362 |
Arc addArc(const Node& s, const Node& t) { |
363 | 363 |
return Parent::addArc(s, t); |
364 | 364 |
} |
365 | 365 |
|
366 | 366 |
///\brief Erase a node from the digraph. |
367 | 367 |
/// |
368 | 368 |
///Erase a node from the digraph. |
369 | 369 |
/// |
370 | 370 |
void erase(const Node& n) { Parent::erase(n); } |
371 | 371 |
|
372 | 372 |
///\brief Erase an arc from the digraph. |
373 | 373 |
/// |
374 | 374 |
///Erase an arc from the digraph. |
375 | 375 |
/// |
376 | 376 |
void erase(const Arc& a) { Parent::erase(a); } |
377 | 377 |
|
378 | 378 |
/// Node validity check |
379 | 379 |
|
380 | 380 |
/// This function gives back true if the given node is valid, |
381 | 381 |
/// ie. it is a real node of the graph. |
382 | 382 |
/// |
383 | 383 |
/// \warning A Node pointing to a removed item |
384 | 384 |
/// could become valid again later if new nodes are |
385 | 385 |
/// added to the graph. |
386 | 386 |
bool valid(Node n) const { return Parent::valid(n); } |
387 | 387 |
|
388 | 388 |
/// Arc validity check |
389 | 389 |
|
390 | 390 |
/// This function gives back true if the given arc is valid, |
391 | 391 |
/// ie. it is a real arc of the graph. |
392 | 392 |
/// |
393 | 393 |
/// \warning An Arc pointing to a removed item |
394 | 394 |
/// could become valid again later if new nodes are |
395 | 395 |
/// added to the graph. |
396 | 396 |
bool valid(Arc a) const { return Parent::valid(a); } |
397 | 397 |
|
398 | 398 |
/// Change the target of \c a to \c n |
399 | 399 |
|
400 | 400 |
/// Change the target of \c a to \c n |
401 | 401 |
/// |
402 | 402 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
403 | 403 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
404 | 404 |
///invalidated. |
405 | 405 |
/// |
406 | 406 |
///\warning This functionality cannot be used together with the Snapshot |
407 | 407 |
///feature. |
408 | 408 |
void changeTarget(Arc a, Node n) { |
409 | 409 |
Parent::changeTarget(a,n); |
410 | 410 |
} |
411 | 411 |
/// Change the source of \c a to \c n |
412 | 412 |
|
413 | 413 |
/// Change the source of \c a to \c n |
414 | 414 |
/// |
415 | 415 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
416 |
///valid. However the <tt>ArcIt<tt>s and <tt>OutArcIt</tt>s are |
|
416 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
|
417 | 417 |
///invalidated. |
418 | 418 |
/// |
419 | 419 |
///\warning This functionality cannot be used together with the Snapshot |
420 | 420 |
///feature. |
421 | 421 |
void changeSource(Arc a, Node n) { |
422 | 422 |
Parent::changeSource(a,n); |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
/// Invert the direction of an arc. |
426 | 426 |
|
427 | 427 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
428 | 428 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
429 | 429 |
///invalidated. |
430 | 430 |
/// |
431 | 431 |
///\warning This functionality cannot be used together with the Snapshot |
432 | 432 |
///feature. |
433 | 433 |
void reverseArc(Arc e) { |
434 | 434 |
Node t=target(e); |
435 | 435 |
changeTarget(e,source(e)); |
436 | 436 |
changeSource(e,t); |
437 | 437 |
} |
438 | 438 |
|
439 | 439 |
/// Reserve memory for nodes. |
440 | 440 |
|
441 | 441 |
/// Using this function it is possible to avoid the superfluous memory |
442 | 442 |
/// allocation: if you know that the digraph you want to build will |
443 | 443 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
444 | 444 |
/// then it is worth reserving space for this amount before starting |
445 | 445 |
/// to build the digraph. |
446 | 446 |
/// \sa reserveArc |
447 | 447 |
void reserveNode(int n) { nodes.reserve(n); }; |
448 | 448 |
|
449 | 449 |
/// Reserve memory for arcs. |
450 | 450 |
|
451 | 451 |
/// Using this function it is possible to avoid the superfluous memory |
452 | 452 |
/// allocation: if you know that the digraph you want to build will |
453 | 453 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
454 | 454 |
/// then it is worth reserving space for this amount before starting |
455 | 455 |
/// to build the digraph. |
456 | 456 |
/// \sa reserveNode |
457 | 457 |
void reserveArc(int m) { arcs.reserve(m); }; |
458 | 458 |
|
459 | 459 |
///Contract two nodes. |
460 | 460 |
|
461 | 461 |
///This function contracts two nodes. |
462 | 462 |
///Node \p b will be removed but instead of deleting |
463 | 463 |
///incident arcs, they will be joined to \p a. |
464 | 464 |
///The last parameter \p r controls whether to remove loops. \c true |
465 | 465 |
///means that loops will be removed. |
466 | 466 |
/// |
467 | 467 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
468 | 468 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
469 | 469 |
///may be invalidated. |
470 | 470 |
/// |
471 | 471 |
///\warning This functionality cannot be used together with the Snapshot |
472 | 472 |
///feature. |
473 | 473 |
void contract(Node a, Node b, bool r = true) |
474 | 474 |
{ |
475 | 475 |
for(OutArcIt e(*this,b);e!=INVALID;) { |
476 | 476 |
OutArcIt f=e; |
477 | 477 |
++f; |
478 | 478 |
if(r && target(e)==a) erase(e); |
479 | 479 |
else changeSource(e,a); |
480 | 480 |
e=f; |
481 | 481 |
} |
482 | 482 |
for(InArcIt e(*this,b);e!=INVALID;) { |
483 | 483 |
InArcIt f=e; |
484 | 484 |
++f; |
485 | 485 |
if(r && source(e)==a) erase(e); |
486 | 486 |
else changeTarget(e,a); |
487 | 487 |
e=f; |
488 | 488 |
} |
489 | 489 |
erase(b); |
490 | 490 |
} |
491 | 491 |
|
492 | 492 |
///Split a node. |
493 | 493 |
|
494 | 494 |
///This function splits a node. First a new node is added to the digraph, |
495 | 495 |
///then the source of each outgoing arc of \c n is moved to this new node. |
496 | 496 |
///If \c connect is \c true (this is the default value), then a new arc |
497 | 497 |
///from \c n to the newly created node is also added. |
498 | 498 |
///\return The newly created node. |
499 | 499 |
/// |
500 | 500 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
501 | 501 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
502 | 502 |
///be invalidated. |
503 | 503 |
/// |
504 | 504 |
///\warning This functionality cannot be used in conjunction with the |
505 | 505 |
///Snapshot feature. |
506 | 506 |
Node split(Node n, bool connect = true) { |
507 | 507 |
Node b = addNode(); |
508 | 508 |
for(OutArcIt e(*this,n);e!=INVALID;) { |
509 | 509 |
OutArcIt f=e; |
510 | 510 |
++f; |
511 | 511 |
changeSource(e,b); |
512 | 512 |
e=f; |
513 | 513 |
} |
514 | 514 |
if (connect) addArc(n,b); |
515 | 515 |
return b; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Split an arc. |
519 | 519 |
|
520 | 520 |
///This function splits an arc. First a new node \c b is added to |
521 | 521 |
///the digraph, then the original arc is re-targeted to \c |
522 | 522 |
///b. Finally an arc from \c b to the original target is added. |
523 | 523 |
/// |
524 | 524 |
///\return The newly created node. |
525 | 525 |
/// |
526 | 526 |
///\warning This functionality cannot be used together with the |
527 | 527 |
///Snapshot feature. |
528 | 528 |
Node split(Arc e) { |
529 | 529 |
Node b = addNode(); |
530 | 530 |
addArc(b,target(e)); |
531 | 531 |
changeTarget(e,b); |
532 | 532 |
return b; |
533 | 533 |
} |
534 | 534 |
|
535 | 535 |
/// \brief Class to make a snapshot of the digraph and restore |
536 | 536 |
/// it later. |
537 | 537 |
/// |
538 | 538 |
/// Class to make a snapshot of the digraph and restore it later. |
539 | 539 |
/// |
540 | 540 |
/// The newly added nodes and arcs can be removed using the |
541 | 541 |
/// restore() function. |
542 | 542 |
/// |
543 | 543 |
/// \warning Arc and node deletions and other modifications (e.g. |
544 | 544 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
545 | 545 |
/// restored. These events invalidate the snapshot. |
546 | 546 |
class Snapshot { |
547 | 547 |
protected: |
548 | 548 |
|
549 | 549 |
typedef Parent::NodeNotifier NodeNotifier; |
550 | 550 |
|
551 | 551 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
552 | 552 |
public: |
553 | 553 |
|
554 | 554 |
NodeObserverProxy(Snapshot& _snapshot) |
555 | 555 |
: snapshot(_snapshot) {} |
556 | 556 |
|
557 | 557 |
using NodeNotifier::ObserverBase::attach; |
558 | 558 |
using NodeNotifier::ObserverBase::detach; |
559 | 559 |
using NodeNotifier::ObserverBase::attached; |
560 | 560 |
|
561 | 561 |
protected: |
562 | 562 |
|
563 | 563 |
virtual void add(const Node& node) { |
564 | 564 |
snapshot.addNode(node); |
565 | 565 |
} |
566 | 566 |
virtual void add(const std::vector<Node>& nodes) { |
567 | 567 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
568 | 568 |
snapshot.addNode(nodes[i]); |
569 | 569 |
} |
570 | 570 |
} |
571 | 571 |
virtual void erase(const Node& node) { |
572 | 572 |
snapshot.eraseNode(node); |
573 | 573 |
} |
574 | 574 |
virtual void erase(const std::vector<Node>& nodes) { |
575 | 575 |
for (int i = 0; i < int(nodes.size()); ++i) { |
576 | 576 |
snapshot.eraseNode(nodes[i]); |
577 | 577 |
} |
578 | 578 |
} |
579 | 579 |
virtual void build() { |
580 | 580 |
Node node; |
581 | 581 |
std::vector<Node> nodes; |
582 | 582 |
for (notifier()->first(node); node != INVALID; |
583 | 583 |
notifier()->next(node)) { |
584 | 584 |
nodes.push_back(node); |
585 | 585 |
} |
586 | 586 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
587 | 587 |
snapshot.addNode(nodes[i]); |
588 | 588 |
} |
589 | 589 |
} |
590 | 590 |
virtual void clear() { |
591 | 591 |
Node node; |
592 | 592 |
for (notifier()->first(node); node != INVALID; |
593 | 593 |
notifier()->next(node)) { |
594 | 594 |
snapshot.eraseNode(node); |
595 | 595 |
} |
596 | 596 |
} |
597 | 597 |
|
598 | 598 |
Snapshot& snapshot; |
599 | 599 |
}; |
600 | 600 |
|
601 | 601 |
class ArcObserverProxy : public ArcNotifier::ObserverBase { |
602 | 602 |
public: |
603 | 603 |
|
604 | 604 |
ArcObserverProxy(Snapshot& _snapshot) |
605 | 605 |
: snapshot(_snapshot) {} |
606 | 606 |
|
607 | 607 |
using ArcNotifier::ObserverBase::attach; |
608 | 608 |
using ArcNotifier::ObserverBase::detach; |
609 | 609 |
using ArcNotifier::ObserverBase::attached; |
610 | 610 |
|
611 | 611 |
protected: |
612 | 612 |
|
613 | 613 |
virtual void add(const Arc& arc) { |
614 | 614 |
snapshot.addArc(arc); |
615 | 615 |
} |
616 | 616 |
virtual void add(const std::vector<Arc>& arcs) { |
617 | 617 |
for (int i = arcs.size() - 1; i >= 0; ++i) { |
618 | 618 |
snapshot.addArc(arcs[i]); |
619 | 619 |
} |
620 | 620 |
} |
621 | 621 |
virtual void erase(const Arc& arc) { |
622 | 622 |
snapshot.eraseArc(arc); |
623 | 623 |
} |
624 | 624 |
virtual void erase(const std::vector<Arc>& arcs) { |
625 | 625 |
for (int i = 0; i < int(arcs.size()); ++i) { |
626 | 626 |
snapshot.eraseArc(arcs[i]); |
627 | 627 |
} |
628 | 628 |
} |
629 | 629 |
virtual void build() { |
630 | 630 |
Arc arc; |
631 | 631 |
std::vector<Arc> arcs; |
632 | 632 |
for (notifier()->first(arc); arc != INVALID; |
633 | 633 |
notifier()->next(arc)) { |
634 | 634 |
arcs.push_back(arc); |
635 | 635 |
} |
636 | 636 |
for (int i = arcs.size() - 1; i >= 0; --i) { |
637 | 637 |
snapshot.addArc(arcs[i]); |
638 | 638 |
} |
639 | 639 |
} |
640 | 640 |
virtual void clear() { |
641 | 641 |
Arc arc; |
642 | 642 |
for (notifier()->first(arc); arc != INVALID; |
643 | 643 |
notifier()->next(arc)) { |
644 | 644 |
snapshot.eraseArc(arc); |
645 | 645 |
} |
646 | 646 |
} |
647 | 647 |
|
648 | 648 |
Snapshot& snapshot; |
649 | 649 |
}; |
650 | 650 |
|
651 | 651 |
ListDigraph *digraph; |
652 | 652 |
|
653 | 653 |
NodeObserverProxy node_observer_proxy; |
654 | 654 |
ArcObserverProxy arc_observer_proxy; |
655 | 655 |
|
656 | 656 |
std::list<Node> added_nodes; |
657 | 657 |
std::list<Arc> added_arcs; |
658 | 658 |
|
659 | 659 |
|
660 | 660 |
void addNode(const Node& node) { |
661 | 661 |
added_nodes.push_front(node); |
662 | 662 |
} |
663 | 663 |
void eraseNode(const Node& node) { |
664 | 664 |
std::list<Node>::iterator it = |
665 | 665 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
666 | 666 |
if (it == added_nodes.end()) { |
667 | 667 |
clear(); |
668 | 668 |
arc_observer_proxy.detach(); |
669 | 669 |
throw NodeNotifier::ImmediateDetach(); |
670 | 670 |
} else { |
671 | 671 |
added_nodes.erase(it); |
672 | 672 |
} |
673 | 673 |
} |
674 | 674 |
|
675 | 675 |
void addArc(const Arc& arc) { |
676 | 676 |
added_arcs.push_front(arc); |
677 | 677 |
} |
678 | 678 |
void eraseArc(const Arc& arc) { |
679 | 679 |
std::list<Arc>::iterator it = |
680 | 680 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
681 | 681 |
if (it == added_arcs.end()) { |
682 | 682 |
clear(); |
683 | 683 |
node_observer_proxy.detach(); |
684 | 684 |
throw ArcNotifier::ImmediateDetach(); |
685 | 685 |
} else { |
686 | 686 |
added_arcs.erase(it); |
687 | 687 |
} |
688 | 688 |
} |
689 | 689 |
|
690 | 690 |
void attach(ListDigraph &_digraph) { |
691 | 691 |
digraph = &_digraph; |
692 | 692 |
node_observer_proxy.attach(digraph->notifier(Node())); |
693 | 693 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
void detach() { |
697 | 697 |
node_observer_proxy.detach(); |
698 | 698 |
arc_observer_proxy.detach(); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
bool attached() const { |
702 | 702 |
return node_observer_proxy.attached(); |
703 | 703 |
} |
704 | 704 |
|
705 | 705 |
void clear() { |
706 | 706 |
added_nodes.clear(); |
707 | 707 |
added_arcs.clear(); |
708 | 708 |
} |
709 | 709 |
|
710 | 710 |
public: |
711 | 711 |
|
712 | 712 |
/// \brief Default constructor. |
713 | 713 |
/// |
714 | 714 |
/// Default constructor. |
715 | 715 |
/// To actually make a snapshot you must call save(). |
716 | 716 |
Snapshot() |
717 | 717 |
: digraph(0), node_observer_proxy(*this), |
718 | 718 |
arc_observer_proxy(*this) {} |
719 | 719 |
|
720 | 720 |
/// \brief Constructor that immediately makes a snapshot. |
721 | 721 |
/// |
722 | 722 |
/// This constructor immediately makes a snapshot of the digraph. |
723 | 723 |
/// \param _digraph The digraph we make a snapshot of. |
724 | 724 |
Snapshot(ListDigraph &_digraph) |
725 | 725 |
: node_observer_proxy(*this), |
726 | 726 |
arc_observer_proxy(*this) { |
727 | 727 |
attach(_digraph); |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
/// \brief Make a snapshot. |
731 | 731 |
/// |
732 | 732 |
/// Make a snapshot of the digraph. |
733 | 733 |
/// |
734 | 734 |
/// This function can be called more than once. In case of a repeated |
735 | 735 |
/// call, the previous snapshot gets lost. |
736 | 736 |
/// \param _digraph The digraph we make the snapshot of. |
737 | 737 |
void save(ListDigraph &_digraph) { |
738 | 738 |
if (attached()) { |
739 | 739 |
detach(); |
740 | 740 |
clear(); |
741 | 741 |
} |
742 | 742 |
attach(_digraph); |
743 | 743 |
} |
744 | 744 |
|
745 | 745 |
/// \brief Undo the changes until the last snapshot. |
746 | 746 |
// |
747 | 747 |
/// Undo the changes until the last snapshot created by save(). |
748 | 748 |
void restore() { |
749 | 749 |
detach(); |
750 | 750 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
751 | 751 |
it != added_arcs.end(); ++it) { |
752 | 752 |
digraph->erase(*it); |
753 | 753 |
} |
754 | 754 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
755 | 755 |
it != added_nodes.end(); ++it) { |
756 | 756 |
digraph->erase(*it); |
757 | 757 |
} |
758 | 758 |
clear(); |
759 | 759 |
} |
760 | 760 |
|
761 | 761 |
/// \brief Gives back true when the snapshot is valid. |
762 | 762 |
/// |
763 | 763 |
/// Gives back true when the snapshot is valid. |
764 | 764 |
bool valid() const { |
765 | 765 |
return attached(); |
766 | 766 |
} |
767 | 767 |
}; |
768 | 768 |
|
769 | 769 |
}; |
770 | 770 |
|
771 | 771 |
///@} |
772 | 772 |
|
773 | 773 |
class ListGraphBase { |
774 | 774 |
|
775 | 775 |
protected: |
776 | 776 |
|
777 | 777 |
struct NodeT { |
778 | 778 |
int first_out; |
779 | 779 |
int prev, next; |
780 | 780 |
}; |
781 | 781 |
|
782 | 782 |
struct ArcT { |
783 | 783 |
int target; |
784 | 784 |
int prev_out, next_out; |
785 | 785 |
}; |
786 | 786 |
|
787 | 787 |
std::vector<NodeT> nodes; |
788 | 788 |
|
789 | 789 |
int first_node; |
790 | 790 |
|
791 | 791 |
int first_free_node; |
792 | 792 |
|
793 | 793 |
std::vector<ArcT> arcs; |
794 | 794 |
|
795 | 795 |
int first_free_arc; |
796 | 796 |
|
797 | 797 |
public: |
798 | 798 |
|
799 | 799 |
typedef ListGraphBase Digraph; |
800 | 800 |
|
801 | 801 |
class Node; |
802 | 802 |
class Arc; |
803 | 803 |
class Edge; |
804 | 804 |
|
805 | 805 |
class Node { |
806 | 806 |
friend class ListGraphBase; |
807 | 807 |
protected: |
808 | 808 |
|
809 | 809 |
int id; |
810 | 810 |
explicit Node(int pid) { id = pid;} |
811 | 811 |
|
812 | 812 |
public: |
813 | 813 |
Node() {} |
814 | 814 |
Node (Invalid) { id = -1; } |
815 | 815 |
bool operator==(const Node& node) const {return id == node.id;} |
816 | 816 |
bool operator!=(const Node& node) const {return id != node.id;} |
817 | 817 |
bool operator<(const Node& node) const {return id < node.id;} |
818 | 818 |
}; |
819 | 819 |
|
820 | 820 |
class Edge { |
821 | 821 |
friend class ListGraphBase; |
822 | 822 |
protected: |
823 | 823 |
|
824 | 824 |
int id; |
825 | 825 |
explicit Edge(int pid) { id = pid;} |
826 | 826 |
|
827 | 827 |
public: |
828 | 828 |
Edge() {} |
829 | 829 |
Edge (Invalid) { id = -1; } |
830 | 830 |
bool operator==(const Edge& edge) const {return id == edge.id;} |
831 | 831 |
bool operator!=(const Edge& edge) const {return id != edge.id;} |
832 | 832 |
bool operator<(const Edge& edge) const {return id < edge.id;} |
833 | 833 |
}; |
834 | 834 |
|
835 | 835 |
class Arc { |
836 | 836 |
friend class ListGraphBase; |
837 | 837 |
protected: |
838 | 838 |
|
839 | 839 |
int id; |
840 | 840 |
explicit Arc(int pid) { id = pid;} |
841 | 841 |
|
842 | 842 |
public: |
843 | 843 |
operator Edge() const { |
844 | 844 |
return id != -1 ? edgeFromId(id / 2) : INVALID; |
845 | 845 |
} |
846 | 846 |
|
847 | 847 |
Arc() {} |
848 | 848 |
Arc (Invalid) { id = -1; } |
849 | 849 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
850 | 850 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
851 | 851 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
852 | 852 |
}; |
853 | 853 |
|
854 | 854 |
|
855 | 855 |
|
856 | 856 |
ListGraphBase() |
857 | 857 |
: nodes(), first_node(-1), |
858 | 858 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
859 | 859 |
|
860 | 860 |
|
861 | 861 |
int maxNodeId() const { return nodes.size()-1; } |
862 | 862 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
863 | 863 |
int maxArcId() const { return arcs.size()-1; } |
864 | 864 |
|
865 | 865 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); } |
866 | 866 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
867 | 867 |
|
868 | 868 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); } |
869 | 869 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); } |
870 | 870 |
|
871 | 871 |
static bool direction(Arc e) { |
872 | 872 |
return (e.id & 1) == 1; |
873 | 873 |
} |
874 | 874 |
|
875 | 875 |
static Arc direct(Edge e, bool d) { |
876 | 876 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
877 | 877 |
} |
878 | 878 |
|
879 | 879 |
void first(Node& node) const { |
880 | 880 |
node.id = first_node; |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
void next(Node& node) const { |
884 | 884 |
node.id = nodes[node.id].next; |
885 | 885 |
} |
886 | 886 |
|
887 | 887 |
void first(Arc& e) const { |
888 | 888 |
int n = first_node; |
889 | 889 |
while (n != -1 && nodes[n].first_out == -1) { |
890 | 890 |
n = nodes[n].next; |
891 | 891 |
} |
892 | 892 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
893 | 893 |
} |
894 | 894 |
|
895 | 895 |
void next(Arc& e) const { |
896 | 896 |
if (arcs[e.id].next_out != -1) { |
897 | 897 |
e.id = arcs[e.id].next_out; |
898 | 898 |
} else { |
899 | 899 |
int n = nodes[arcs[e.id ^ 1].target].next; |
900 | 900 |
while(n != -1 && nodes[n].first_out == -1) { |
901 | 901 |
n = nodes[n].next; |
902 | 902 |
} |
903 | 903 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
904 | 904 |
} |
905 | 905 |
} |
906 | 906 |
|
907 | 907 |
void first(Edge& e) const { |
908 | 908 |
int n = first_node; |
909 | 909 |
while (n != -1) { |
910 | 910 |
e.id = nodes[n].first_out; |
911 | 911 |
while ((e.id & 1) != 1) { |
912 | 912 |
e.id = arcs[e.id].next_out; |
913 | 913 |
} |
914 | 914 |
if (e.id != -1) { |
915 | 915 |
e.id /= 2; |
916 | 916 |
return; |
917 | 917 |
} |
918 | 918 |
n = nodes[n].next; |
919 | 919 |
} |
920 | 920 |
e.id = -1; |
921 | 921 |
} |
922 | 922 |
|
923 | 923 |
void next(Edge& e) const { |
924 | 924 |
int n = arcs[e.id * 2].target; |
925 | 925 |
e.id = arcs[(e.id * 2) | 1].next_out; |
926 | 926 |
while ((e.id & 1) != 1) { |
927 | 927 |
e.id = arcs[e.id].next_out; |
928 | 928 |
} |
929 | 929 |
if (e.id != -1) { |
930 | 930 |
e.id /= 2; |
931 | 931 |
return; |
932 | 932 |
} |
933 | 933 |
n = nodes[n].next; |
934 | 934 |
while (n != -1) { |
935 | 935 |
e.id = nodes[n].first_out; |
936 | 936 |
while ((e.id & 1) != 1) { |
937 | 937 |
e.id = arcs[e.id].next_out; |
938 | 938 |
} |
939 | 939 |
if (e.id != -1) { |
940 | 940 |
e.id /= 2; |
941 | 941 |
return; |
942 | 942 |
} |
943 | 943 |
n = nodes[n].next; |
944 | 944 |
} |
945 | 945 |
e.id = -1; |
946 | 946 |
} |
947 | 947 |
|
948 | 948 |
void firstOut(Arc &e, const Node& v) const { |
949 | 949 |
e.id = nodes[v.id].first_out; |
950 | 950 |
} |
951 | 951 |
void nextOut(Arc &e) const { |
952 | 952 |
e.id = arcs[e.id].next_out; |
953 | 953 |
} |
954 | 954 |
|
955 | 955 |
void firstIn(Arc &e, const Node& v) const { |
956 | 956 |
e.id = ((nodes[v.id].first_out) ^ 1); |
957 | 957 |
if (e.id == -2) e.id = -1; |
958 | 958 |
} |
959 | 959 |
void nextIn(Arc &e) const { |
960 | 960 |
e.id = ((arcs[e.id ^ 1].next_out) ^ 1); |
961 | 961 |
if (e.id == -2) e.id = -1; |
962 | 962 |
} |
963 | 963 |
|
964 | 964 |
void firstInc(Edge &e, bool& d, const Node& v) const { |
965 | 965 |
int a = nodes[v.id].first_out; |
966 | 966 |
if (a != -1 ) { |
967 | 967 |
e.id = a / 2; |
968 | 968 |
d = ((a & 1) == 1); |
969 | 969 |
} else { |
970 | 970 |
e.id = -1; |
971 | 971 |
d = true; |
972 | 972 |
} |
973 | 973 |
} |
974 | 974 |
void nextInc(Edge &e, bool& d) const { |
975 | 975 |
int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); |
976 | 976 |
if (a != -1 ) { |
977 | 977 |
e.id = a / 2; |
978 | 978 |
d = ((a & 1) == 1); |
979 | 979 |
} else { |
980 | 980 |
e.id = -1; |
981 | 981 |
d = true; |
982 | 982 |
} |
983 | 983 |
} |
984 | 984 |
|
985 | 985 |
static int id(Node v) { return v.id; } |
986 | 986 |
static int id(Arc e) { return e.id; } |
987 | 987 |
static int id(Edge e) { return e.id; } |
988 | 988 |
|
989 | 989 |
static Node nodeFromId(int id) { return Node(id);} |
990 | 990 |
static Arc arcFromId(int id) { return Arc(id);} |
991 | 991 |
static Edge edgeFromId(int id) { return Edge(id);} |
992 | 992 |
|
993 | 993 |
bool valid(Node n) const { |
994 | 994 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
995 | 995 |
nodes[n.id].prev != -2; |
996 | 996 |
} |
997 | 997 |
|
998 | 998 |
bool valid(Arc a) const { |
999 | 999 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
1000 | 1000 |
arcs[a.id].prev_out != -2; |
1001 | 1001 |
} |
1002 | 1002 |
|
1003 | 1003 |
bool valid(Edge e) const { |
1004 | 1004 |
return e.id >= 0 && 2 * e.id < static_cast<int>(arcs.size()) && |
1005 | 1005 |
arcs[2 * e.id].prev_out != -2; |
1006 | 1006 |
} |
1007 | 1007 |
|
1008 | 1008 |
Node addNode() { |
1009 | 1009 |
int n; |
1010 | 1010 |
|
1011 | 1011 |
if(first_free_node==-1) { |
1012 | 1012 |
n = nodes.size(); |
1013 | 1013 |
nodes.push_back(NodeT()); |
1014 | 1014 |
} else { |
1015 | 1015 |
n = first_free_node; |
1016 | 1016 |
first_free_node = nodes[n].next; |
1017 | 1017 |
} |
1018 | 1018 |
|
1019 | 1019 |
nodes[n].next = first_node; |
1020 | 1020 |
if (first_node != -1) nodes[first_node].prev = n; |
1021 | 1021 |
first_node = n; |
1022 | 1022 |
nodes[n].prev = -1; |
1023 | 1023 |
|
1024 | 1024 |
nodes[n].first_out = -1; |
1025 | 1025 |
|
1026 | 1026 |
return Node(n); |
1027 | 1027 |
} |
1028 | 1028 |
|
1029 | 1029 |
Edge addEdge(Node u, Node v) { |
1030 | 1030 |
int n; |
1031 | 1031 |
|
1032 | 1032 |
if (first_free_arc == -1) { |
1033 | 1033 |
n = arcs.size(); |
1034 | 1034 |
arcs.push_back(ArcT()); |
1035 | 1035 |
arcs.push_back(ArcT()); |
1036 | 1036 |
} else { |
1037 | 1037 |
n = first_free_arc; |
1038 | 1038 |
first_free_arc = arcs[n].next_out; |
1039 | 1039 |
} |
1040 | 1040 |
|
1041 | 1041 |
arcs[n].target = u.id; |
1042 | 1042 |
arcs[n | 1].target = v.id; |
1043 | 1043 |
|
1044 | 1044 |
arcs[n].next_out = nodes[v.id].first_out; |
1045 | 1045 |
if (nodes[v.id].first_out != -1) { |
1046 | 1046 |
arcs[nodes[v.id].first_out].prev_out = n; |
1047 | 1047 |
} |
1048 | 1048 |
arcs[n].prev_out = -1; |
1049 | 1049 |
nodes[v.id].first_out = n; |
1050 | 1050 |
|
1051 | 1051 |
arcs[n | 1].next_out = nodes[u.id].first_out; |
1052 | 1052 |
if (nodes[u.id].first_out != -1) { |
1053 | 1053 |
arcs[nodes[u.id].first_out].prev_out = (n | 1); |
1054 | 1054 |
} |
1055 | 1055 |
arcs[n | 1].prev_out = -1; |
1056 | 1056 |
nodes[u.id].first_out = (n | 1); |
1057 | 1057 |
|
1058 | 1058 |
return Edge(n / 2); |
1059 | 1059 |
} |
1060 | 1060 |
|
1061 | 1061 |
void erase(const Node& node) { |
1062 | 1062 |
int n = node.id; |
1063 | 1063 |
|
1064 | 1064 |
if(nodes[n].next != -1) { |
1065 | 1065 |
nodes[nodes[n].next].prev = nodes[n].prev; |
1066 | 1066 |
} |
1067 | 1067 |
|
1068 | 1068 |
if(nodes[n].prev != -1) { |
1069 | 1069 |
nodes[nodes[n].prev].next = nodes[n].next; |
1070 | 1070 |
} else { |
1071 | 1071 |
first_node = nodes[n].next; |
1072 | 1072 |
} |
1073 | 1073 |
|
1074 | 1074 |
nodes[n].next = first_free_node; |
1075 | 1075 |
first_free_node = n; |
1076 | 1076 |
nodes[n].prev = -2; |
1077 | 1077 |
} |
1078 | 1078 |
|
1079 | 1079 |
void erase(const Edge& edge) { |
1080 | 1080 |
int n = edge.id * 2; |
1081 | 1081 |
|
1082 | 1082 |
if (arcs[n].next_out != -1) { |
1083 | 1083 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
if (arcs[n].prev_out != -1) { |
1087 | 1087 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
1088 | 1088 |
} else { |
1089 | 1089 |
nodes[arcs[n | 1].target].first_out = arcs[n].next_out; |
1090 | 1090 |
} |
1091 | 1091 |
|
1092 | 1092 |
if (arcs[n | 1].next_out != -1) { |
1093 | 1093 |
arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; |
1094 | 1094 |
} |
1095 | 1095 |
|
1096 | 1096 |
if (arcs[n | 1].prev_out != -1) { |
1097 | 1097 |
arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; |
1098 | 1098 |
} else { |
1099 | 1099 |
nodes[arcs[n].target].first_out = arcs[n | 1].next_out; |
1100 | 1100 |
} |
1101 | 1101 |
|
1102 | 1102 |
arcs[n].next_out = first_free_arc; |
1103 | 1103 |
first_free_arc = n; |
1104 | 1104 |
arcs[n].prev_out = -2; |
1105 | 1105 |
arcs[n | 1].prev_out = -2; |
1106 | 1106 |
|
1107 | 1107 |
} |
1108 | 1108 |
|
1109 | 1109 |
void clear() { |
1110 | 1110 |
arcs.clear(); |
1111 | 1111 |
nodes.clear(); |
1112 | 1112 |
first_node = first_free_node = first_free_arc = -1; |
1113 | 1113 |
} |
1114 | 1114 |
|
1115 | 1115 |
protected: |
1116 | 1116 |
|
1117 | 1117 |
void changeV(Edge e, Node n) { |
1118 | 1118 |
if(arcs[2 * e.id].next_out != -1) { |
1119 | 1119 |
arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; |
1120 | 1120 |
} |
1121 | 1121 |
if(arcs[2 * e.id].prev_out != -1) { |
1122 | 1122 |
arcs[arcs[2 * e.id].prev_out].next_out = |
1123 | 1123 |
arcs[2 * e.id].next_out; |
1124 | 1124 |
} else { |
1125 | 1125 |
nodes[arcs[(2 * e.id) | 1].target].first_out = |
1126 | 1126 |
arcs[2 * e.id].next_out; |
1127 | 1127 |
} |
1128 | 1128 |
|
1129 | 1129 |
if (nodes[n.id].first_out != -1) { |
1130 | 1130 |
arcs[nodes[n.id].first_out].prev_out = 2 * e.id; |
1131 | 1131 |
} |
1132 | 1132 |
arcs[(2 * e.id) | 1].target = n.id; |
1133 | 1133 |
arcs[2 * e.id].prev_out = -1; |
1134 | 1134 |
arcs[2 * e.id].next_out = nodes[n.id].first_out; |
1135 | 1135 |
nodes[n.id].first_out = 2 * e.id; |
1136 | 1136 |
} |
1137 | 1137 |
|
1138 | 1138 |
void changeU(Edge e, Node n) { |
1139 | 1139 |
if(arcs[(2 * e.id) | 1].next_out != -1) { |
1140 | 1140 |
arcs[arcs[(2 * e.id) | 1].next_out].prev_out = |
1141 | 1141 |
arcs[(2 * e.id) | 1].prev_out; |
1142 | 1142 |
} |
1143 | 1143 |
if(arcs[(2 * e.id) | 1].prev_out != -1) { |
1144 | 1144 |
arcs[arcs[(2 * e.id) | 1].prev_out].next_out = |
1145 | 1145 |
arcs[(2 * e.id) | 1].next_out; |
1146 | 1146 |
} else { |
1147 | 1147 |
nodes[arcs[2 * e.id].target].first_out = |
1148 | 1148 |
arcs[(2 * e.id) | 1].next_out; |
1149 | 1149 |
} |
1150 | 1150 |
|
1151 | 1151 |
if (nodes[n.id].first_out != -1) { |
1152 | 1152 |
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); |
1153 | 1153 |
} |
1154 | 1154 |
arcs[2 * e.id].target = n.id; |
1155 | 1155 |
arcs[(2 * e.id) | 1].prev_out = -1; |
1156 | 1156 |
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; |
1157 | 1157 |
nodes[n.id].first_out = ((2 * e.id) | 1); |
1158 | 1158 |
} |
1159 | 1159 |
|
1160 | 1160 |
}; |
1161 | 1161 |
|
1162 | 1162 |
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase; |
1163 | 1163 |
|
1164 | 1164 |
|
1165 | 1165 |
/// \addtogroup graphs |
1166 | 1166 |
/// @{ |
1167 | 1167 |
|
1168 | 1168 |
///A general undirected graph structure. |
1169 | 1169 |
|
1170 | 1170 |
///\ref ListGraph is a simple and fast <em>undirected graph</em> |
1171 | 1171 |
///implementation based on static linked lists that are stored in |
1172 | 1172 |
///\c std::vector structures. |
1173 | 1173 |
/// |
1174 | 1174 |
///It conforms to the \ref concepts::Graph "Graph concept" and it |
1175 | 1175 |
///also provides several useful additional functionalities. |
1176 | 1176 |
///Most of the member functions and nested classes are documented |
1177 | 1177 |
///only in the concept class. |
1178 | 1178 |
/// |
1179 | 1179 |
///An important extra feature of this graph implementation is that |
1180 | 1180 |
///its maps are real \ref concepts::ReferenceMap "reference map"s. |
1181 | 1181 |
/// |
1182 | 1182 |
///\sa concepts::Graph |
1183 | 1183 |
|
1184 | 1184 |
class ListGraph : public ExtendedListGraphBase { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
|
28 | 28 |
///\file |
29 | 29 |
///\ingroup maps |
30 | 30 |
///\brief Miscellaneous property maps |
31 | 31 |
|
32 | 32 |
#include <map> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup maps |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// Base class of maps. |
40 | 40 |
|
41 | 41 |
/// Base class of maps. It provides the necessary type definitions |
42 | 42 |
/// required by the map %concepts. |
43 | 43 |
template<typename K, typename V> |
44 | 44 |
class MapBase { |
45 | 45 |
public: |
46 |
/// \ |
|
46 |
/// \brief The key type of the map. |
|
47 | 47 |
typedef K Key; |
48 | 48 |
/// \brief The value type of the map. |
49 | 49 |
/// (The type of objects associated with the keys). |
50 | 50 |
typedef V Value; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
|
54 | 54 |
/// Null map. (a.k.a. DoNothingMap) |
55 | 55 |
|
56 | 56 |
/// This map can be used if you have to provide a map only for |
57 | 57 |
/// its type definitions, or if you have to provide a writable map, |
58 | 58 |
/// but data written to it is not required (i.e. it will be sent to |
59 | 59 |
/// <tt>/dev/null</tt>). |
60 | 60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
61 | 61 |
/// |
62 | 62 |
/// \sa ConstMap |
63 | 63 |
template<typename K, typename V> |
64 | 64 |
class NullMap : public MapBase<K, V> { |
65 | 65 |
public: |
66 | 66 |
typedef MapBase<K, V> Parent; |
67 | 67 |
typedef typename Parent::Key Key; |
68 | 68 |
typedef typename Parent::Value Value; |
69 | 69 |
|
70 | 70 |
/// Gives back a default constructed element. |
71 | 71 |
Value operator[](const Key&) const { return Value(); } |
72 | 72 |
/// Absorbs the value. |
73 | 73 |
void set(const Key&, const Value&) {} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
/// Returns a \c NullMap class |
77 | 77 |
|
78 | 78 |
/// This function just returns a \c NullMap class. |
79 | 79 |
/// \relates NullMap |
80 | 80 |
template <typename K, typename V> |
81 | 81 |
NullMap<K, V> nullMap() { |
82 | 82 |
return NullMap<K, V>(); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// Constant map. |
87 | 87 |
|
88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
89 | 89 |
/// value to each key. |
90 | 90 |
/// |
91 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
92 | 92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
93 | 93 |
/// concept, but it absorbs the data written to it. |
94 | 94 |
/// |
95 | 95 |
/// The simplest way of using this map is through the constMap() |
96 | 96 |
/// function. |
97 | 97 |
/// |
98 | 98 |
/// \sa NullMap |
99 | 99 |
/// \sa IdentityMap |
100 | 100 |
template<typename K, typename V> |
101 | 101 |
class ConstMap : public MapBase<K, V> { |
102 | 102 |
private: |
103 | 103 |
V _value; |
104 | 104 |
public: |
105 | 105 |
typedef MapBase<K, V> Parent; |
106 | 106 |
typedef typename Parent::Key Key; |
107 | 107 |
typedef typename Parent::Value Value; |
108 | 108 |
|
109 | 109 |
/// Default constructor |
110 | 110 |
|
111 | 111 |
/// Default constructor. |
112 | 112 |
/// The value of the map will be default constructed. |
113 | 113 |
ConstMap() {} |
114 | 114 |
|
115 | 115 |
/// Constructor with specified initial value |
116 | 116 |
|
117 | 117 |
/// Constructor with specified initial value. |
118 | 118 |
/// \param v The initial value of the map. |
119 | 119 |
ConstMap(const Value &v) : _value(v) {} |
120 | 120 |
|
121 | 121 |
/// Gives back the specified value. |
122 | 122 |
Value operator[](const Key&) const { return _value; } |
123 | 123 |
|
124 | 124 |
/// Absorbs the value. |
125 | 125 |
void set(const Key&, const Value&) {} |
126 | 126 |
|
127 | 127 |
/// Sets the value that is assigned to each key. |
128 | 128 |
void setAll(const Value &v) { |
129 | 129 |
_value = v; |
130 | 130 |
} |
131 | 131 |
|
132 | 132 |
template<typename V1> |
133 | 133 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
/// Returns a \c ConstMap class |
137 | 137 |
|
138 | 138 |
/// This function just returns a \c ConstMap class. |
139 | 139 |
/// \relates ConstMap |
140 | 140 |
template<typename K, typename V> |
141 | 141 |
inline ConstMap<K, V> constMap(const V &v) { |
142 | 142 |
return ConstMap<K, V>(v); |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
template<typename K, typename V> |
146 | 146 |
inline ConstMap<K, V> constMap() { |
147 | 147 |
return ConstMap<K, V>(); |
148 | 148 |
} |
149 | 149 |
|
150 | 150 |
|
151 | 151 |
template<typename T, T v> |
152 | 152 |
struct Const {}; |
153 | 153 |
|
154 | 154 |
/// Constant map with inlined constant value. |
155 | 155 |
|
156 | 156 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
157 | 157 |
/// value to each key. |
158 | 158 |
/// |
159 | 159 |
/// In other aspects it is equivalent to \c NullMap. |
160 | 160 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
161 | 161 |
/// concept, but it absorbs the data written to it. |
162 | 162 |
/// |
163 | 163 |
/// The simplest way of using this map is through the constMap() |
164 | 164 |
/// function. |
165 | 165 |
/// |
166 | 166 |
/// \sa NullMap |
167 | 167 |
/// \sa IdentityMap |
168 | 168 |
template<typename K, typename V, V v> |
169 | 169 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
170 | 170 |
public: |
171 | 171 |
typedef MapBase<K, V> Parent; |
172 | 172 |
typedef typename Parent::Key Key; |
173 | 173 |
typedef typename Parent::Value Value; |
174 | 174 |
|
175 | 175 |
/// Constructor. |
176 | 176 |
ConstMap() {} |
177 | 177 |
|
178 | 178 |
/// Gives back the specified value. |
179 | 179 |
Value operator[](const Key&) const { return v; } |
180 | 180 |
|
181 | 181 |
/// Absorbs the value. |
182 | 182 |
void set(const Key&, const Value&) {} |
183 | 183 |
}; |
184 | 184 |
|
185 | 185 |
/// Returns a \c ConstMap class with inlined constant value |
186 | 186 |
|
187 | 187 |
/// This function just returns a \c ConstMap class with inlined |
188 | 188 |
/// constant value. |
189 | 189 |
/// \relates ConstMap |
190 | 190 |
template<typename K, typename V, V v> |
191 | 191 |
inline ConstMap<K, Const<V, v> > constMap() { |
192 | 192 |
return ConstMap<K, Const<V, v> >(); |
193 | 193 |
} |
194 | 194 |
|
195 | 195 |
|
196 | 196 |
/// Identity map. |
197 | 197 |
|
198 | 198 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
199 | 199 |
/// key as value without any modification. |
200 | 200 |
/// |
201 | 201 |
/// \sa ConstMap |
202 | 202 |
template <typename T> |
203 | 203 |
class IdentityMap : public MapBase<T, T> { |
204 | 204 |
public: |
205 | 205 |
typedef MapBase<T, T> Parent; |
206 | 206 |
typedef typename Parent::Key Key; |
207 | 207 |
typedef typename Parent::Value Value; |
208 | 208 |
|
209 | 209 |
/// Gives back the given value without any modification. |
210 | 210 |
Value operator[](const Key &k) const { |
211 | 211 |
return k; |
212 | 212 |
} |
213 | 213 |
}; |
214 | 214 |
|
215 | 215 |
/// Returns an \c IdentityMap class |
216 | 216 |
|
217 | 217 |
/// This function just returns an \c IdentityMap class. |
218 | 218 |
/// \relates IdentityMap |
219 | 219 |
template<typename T> |
220 | 220 |
inline IdentityMap<T> identityMap() { |
221 | 221 |
return IdentityMap<T>(); |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
|
225 | 225 |
/// \brief Map for storing values for integer keys from the range |
226 | 226 |
/// <tt>[0..size-1]</tt>. |
227 | 227 |
/// |
228 | 228 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
229 | 229 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
230 | 230 |
/// It can be used with some data structures, for example |
231 | 231 |
/// \c UnionFind, \c BinHeap, when the used items are small |
232 | 232 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
233 | 233 |
/// "ReferenceMap" concept. |
234 | 234 |
/// |
235 | 235 |
/// The simplest way of using this map is through the rangeMap() |
236 | 236 |
/// function. |
237 | 237 |
template <typename V> |
238 | 238 |
class RangeMap : public MapBase<int, V> { |
239 | 239 |
template <typename V1> |
240 | 240 |
friend class RangeMap; |
241 | 241 |
private: |
242 | 242 |
|
243 | 243 |
typedef std::vector<V> Vector; |
244 | 244 |
Vector _vector; |
245 | 245 |
|
246 | 246 |
public: |
247 | 247 |
|
248 | 248 |
typedef MapBase<int, V> Parent; |
249 | 249 |
/// Key type |
250 | 250 |
typedef typename Parent::Key Key; |
251 | 251 |
/// Value type |
252 | 252 |
typedef typename Parent::Value Value; |
253 | 253 |
/// Reference type |
254 | 254 |
typedef typename Vector::reference Reference; |
255 | 255 |
/// Const reference type |
256 | 256 |
typedef typename Vector::const_reference ConstReference; |
257 | 257 |
|
258 | 258 |
typedef True ReferenceMapTag; |
259 | 259 |
|
260 | 260 |
public: |
261 | 261 |
|
262 | 262 |
/// Constructor with specified default value. |
263 | 263 |
RangeMap(int size = 0, const Value &value = Value()) |
264 | 264 |
: _vector(size, value) {} |
265 | 265 |
|
266 | 266 |
/// Constructs the map from an appropriate \c std::vector. |
267 | 267 |
template <typename V1> |
268 | 268 |
RangeMap(const std::vector<V1>& vector) |
269 | 269 |
: _vector(vector.begin(), vector.end()) {} |
270 | 270 |
|
271 | 271 |
/// Constructs the map from another \c RangeMap. |
272 | 272 |
template <typename V1> |
273 | 273 |
RangeMap(const RangeMap<V1> &c) |
274 | 274 |
: _vector(c._vector.begin(), c._vector.end()) {} |
275 | 275 |
|
276 | 276 |
/// Returns the size of the map. |
277 | 277 |
int size() { |
278 | 278 |
return _vector.size(); |
279 | 279 |
} |
280 | 280 |
|
281 | 281 |
/// Resizes the map. |
282 | 282 |
|
283 | 283 |
/// Resizes the underlying \c std::vector container, so changes the |
284 | 284 |
/// keyset of the map. |
285 | 285 |
/// \param size The new size of the map. The new keyset will be the |
286 | 286 |
/// range <tt>[0..size-1]</tt>. |
287 | 287 |
/// \param value The default value to assign to the new keys. |
288 | 288 |
void resize(int size, const Value &value = Value()) { |
289 | 289 |
_vector.resize(size, value); |
290 | 290 |
} |
291 | 291 |
|
292 | 292 |
private: |
293 | 293 |
|
294 | 294 |
RangeMap& operator=(const RangeMap&); |
295 | 295 |
|
296 | 296 |
public: |
297 | 297 |
|
298 | 298 |
///\e |
299 | 299 |
Reference operator[](const Key &k) { |
300 | 300 |
return _vector[k]; |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
///\e |
304 | 304 |
ConstReference operator[](const Key &k) const { |
305 | 305 |
return _vector[k]; |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
///\e |
309 | 309 |
void set(const Key &k, const Value &v) { |
310 | 310 |
_vector[k] = v; |
311 | 311 |
} |
312 | 312 |
}; |
313 | 313 |
|
314 | 314 |
/// Returns a \c RangeMap class |
315 | 315 |
|
316 | 316 |
/// This function just returns a \c RangeMap class. |
317 | 317 |
/// \relates RangeMap |
318 | 318 |
template<typename V> |
319 | 319 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
320 | 320 |
return RangeMap<V>(size, value); |
321 | 321 |
} |
322 | 322 |
|
323 | 323 |
/// \brief Returns a \c RangeMap class created from an appropriate |
324 | 324 |
/// \c std::vector |
325 | 325 |
|
326 | 326 |
/// This function just returns a \c RangeMap class created from an |
327 | 327 |
/// appropriate \c std::vector. |
328 | 328 |
/// \relates RangeMap |
329 | 329 |
template<typename V> |
330 | 330 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
331 | 331 |
return RangeMap<V>(vector); |
332 | 332 |
} |
333 | 333 |
|
334 | 334 |
|
335 | 335 |
/// Map type based on \c std::map |
336 | 336 |
|
337 | 337 |
/// This map is essentially a wrapper for \c std::map with addition |
338 | 338 |
/// that you can specify a default value for the keys that are not |
339 | 339 |
/// stored actually. This value can be different from the default |
340 | 340 |
/// contructed value (i.e. \c %Value()). |
341 | 341 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
342 | 342 |
/// concept. |
343 | 343 |
/// |
344 | 344 |
/// This map is useful if a default value should be assigned to most of |
345 | 345 |
/// the keys and different values should be assigned only to a few |
346 | 346 |
/// keys (i.e. the map is "sparse"). |
347 | 347 |
/// The name of this type also refers to this important usage. |
348 | 348 |
/// |
349 | 349 |
/// Apart form that this map can be used in many other cases since it |
350 | 350 |
/// is based on \c std::map, which is a general associative container. |
351 | 351 |
/// However keep in mind that it is usually not as efficient as other |
352 | 352 |
/// maps. |
353 | 353 |
/// |
354 | 354 |
/// The simplest way of using this map is through the sparseMap() |
355 | 355 |
/// function. |
356 | 356 |
template <typename K, typename V, typename Compare = std::less<K> > |
357 | 357 |
class SparseMap : public MapBase<K, V> { |
358 | 358 |
template <typename K1, typename V1, typename C1> |
359 | 359 |
friend class SparseMap; |
360 | 360 |
public: |
361 | 361 |
|
362 | 362 |
typedef MapBase<K, V> Parent; |
363 | 363 |
/// Key type |
364 | 364 |
typedef typename Parent::Key Key; |
365 | 365 |
/// Value type |
366 | 366 |
typedef typename Parent::Value Value; |
367 | 367 |
/// Reference type |
368 | 368 |
typedef Value& Reference; |
369 | 369 |
/// Const reference type |
370 | 370 |
typedef const Value& ConstReference; |
371 | 371 |
|
372 | 372 |
typedef True ReferenceMapTag; |
373 | 373 |
|
374 | 374 |
private: |
375 | 375 |
|
376 | 376 |
typedef std::map<K, V, Compare> Map; |
377 | 377 |
Map _map; |
378 | 378 |
Value _value; |
379 | 379 |
|
380 | 380 |
public: |
381 | 381 |
|
382 | 382 |
/// \brief Constructor with specified default value. |
383 | 383 |
SparseMap(const Value &value = Value()) : _value(value) {} |
384 | 384 |
/// \brief Constructs the map from an appropriate \c std::map, and |
385 | 385 |
/// explicitly specifies a default value. |
386 | 386 |
template <typename V1, typename Comp1> |
387 | 387 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
388 | 388 |
const Value &value = Value()) |
389 | 389 |
: _map(map.begin(), map.end()), _value(value) {} |
390 | 390 |
|
391 | 391 |
/// \brief Constructs the map from another \c SparseMap. |
392 | 392 |
template<typename V1, typename Comp1> |
393 | 393 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
394 | 394 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
395 | 395 |
|
396 | 396 |
private: |
397 | 397 |
|
398 | 398 |
SparseMap& operator=(const SparseMap&); |
399 | 399 |
|
400 | 400 |
public: |
401 | 401 |
|
402 | 402 |
///\e |
403 | 403 |
Reference operator[](const Key &k) { |
404 | 404 |
typename Map::iterator it = _map.lower_bound(k); |
405 | 405 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
406 | 406 |
return it->second; |
407 | 407 |
else |
408 | 408 |
return _map.insert(it, std::make_pair(k, _value))->second; |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
///\e |
412 | 412 |
ConstReference operator[](const Key &k) const { |
413 | 413 |
typename Map::const_iterator it = _map.find(k); |
414 | 414 |
if (it != _map.end()) |
415 | 415 |
return it->second; |
416 | 416 |
else |
417 | 417 |
return _value; |
418 | 418 |
} |
419 | 419 |
|
420 | 420 |
///\e |
421 | 421 |
void set(const Key &k, const Value &v) { |
422 | 422 |
typename Map::iterator it = _map.lower_bound(k); |
423 | 423 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
424 | 424 |
it->second = v; |
425 | 425 |
else |
426 | 426 |
_map.insert(it, std::make_pair(k, v)); |
427 | 427 |
} |
428 | 428 |
|
429 | 429 |
///\e |
430 | 430 |
void setAll(const Value &v) { |
431 | 431 |
_value = v; |
432 | 432 |
_map.clear(); |
433 | 433 |
} |
434 | 434 |
}; |
435 | 435 |
|
436 | 436 |
/// Returns a \c SparseMap class |
437 | 437 |
|
438 | 438 |
/// This function just returns a \c SparseMap class with specified |
439 | 439 |
/// default value. |
440 | 440 |
/// \relates SparseMap |
441 | 441 |
template<typename K, typename V, typename Compare> |
442 | 442 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
443 | 443 |
return SparseMap<K, V, Compare>(value); |
444 | 444 |
} |
445 | 445 |
|
446 | 446 |
template<typename K, typename V> |
447 | 447 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
448 | 448 |
return SparseMap<K, V, std::less<K> >(value); |
449 | 449 |
} |
450 | 450 |
|
451 | 451 |
/// \brief Returns a \c SparseMap class created from an appropriate |
452 | 452 |
/// \c std::map |
453 | 453 |
|
454 | 454 |
/// This function just returns a \c SparseMap class created from an |
455 | 455 |
/// appropriate \c std::map. |
456 | 456 |
/// \relates SparseMap |
457 | 457 |
template<typename K, typename V, typename Compare> |
458 | 458 |
inline SparseMap<K, V, Compare> |
459 | 459 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
460 | 460 |
{ |
461 | 461 |
return SparseMap<K, V, Compare>(map, value); |
462 | 462 |
} |
463 | 463 |
|
464 | 464 |
/// @} |
465 | 465 |
|
466 | 466 |
/// \addtogroup map_adaptors |
467 | 467 |
/// @{ |
468 | 468 |
|
469 | 469 |
/// Composition of two maps |
470 | 470 |
|
471 | 471 |
/// This \ref concepts::ReadMap "read-only map" returns the |
472 | 472 |
/// composition of two given maps. That is to say, if \c m1 is of |
473 | 473 |
/// type \c M1 and \c m2 is of \c M2, then for |
474 | 474 |
/// \code |
475 | 475 |
/// ComposeMap<M1, M2> cm(m1,m2); |
476 | 476 |
/// \endcode |
477 | 477 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
478 | 478 |
/// |
479 | 479 |
/// The \c Key type of the map is inherited from \c M2 and the |
480 | 480 |
/// \c Value type is from \c M1. |
481 | 481 |
/// \c M2::Value must be convertible to \c M1::Key. |
482 | 482 |
/// |
483 | 483 |
/// The simplest way of using this map is through the composeMap() |
484 | 484 |
/// function. |
485 | 485 |
/// |
486 | 486 |
/// \sa CombineMap |
487 | 487 |
template <typename M1, typename M2> |
488 | 488 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
489 | 489 |
const M1 &_m1; |
490 | 490 |
const M2 &_m2; |
491 | 491 |
public: |
492 | 492 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
493 | 493 |
typedef typename Parent::Key Key; |
494 | 494 |
typedef typename Parent::Value Value; |
495 | 495 |
|
496 | 496 |
/// Constructor |
497 | 497 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
498 | 498 |
|
499 | 499 |
/// \e |
500 | 500 |
typename MapTraits<M1>::ConstReturnValue |
501 | 501 |
operator[](const Key &k) const { return _m1[_m2[k]]; } |
502 | 502 |
}; |
503 | 503 |
|
504 | 504 |
/// Returns a \c ComposeMap class |
505 | 505 |
|
506 | 506 |
/// This function just returns a \c ComposeMap class. |
507 | 507 |
/// |
508 | 508 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
509 | 509 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
510 | 510 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
511 | 511 |
/// |
512 | 512 |
/// \relates ComposeMap |
513 | 513 |
template <typename M1, typename M2> |
514 | 514 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
515 | 515 |
return ComposeMap<M1, M2>(m1, m2); |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
|
519 | 519 |
/// Combination of two maps using an STL (binary) functor. |
520 | 520 |
|
521 | 521 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
522 | 522 |
/// binary functor and returns the combination of the two given maps |
523 | 523 |
/// using the functor. |
524 | 524 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
525 | 525 |
/// and \c f is of \c F, then for |
526 | 526 |
/// \code |
527 | 527 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
528 | 528 |
/// \endcode |
529 | 529 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
530 | 530 |
/// |
531 | 531 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
532 | 532 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
533 | 533 |
/// \c M2::Value and \c M1::Value must be convertible to the |
534 | 534 |
/// corresponding input parameter of \c F and the return type of \c F |
535 | 535 |
/// must be convertible to \c V. |
536 | 536 |
/// |
537 | 537 |
/// The simplest way of using this map is through the combineMap() |
538 | 538 |
/// function. |
539 | 539 |
/// |
540 | 540 |
/// \sa ComposeMap |
541 | 541 |
template<typename M1, typename M2, typename F, |
542 | 542 |
typename V = typename F::result_type> |
543 | 543 |
class CombineMap : public MapBase<typename M1::Key, V> { |
544 | 544 |
const M1 &_m1; |
545 | 545 |
const M2 &_m2; |
546 | 546 |
F _f; |
547 | 547 |
public: |
548 | 548 |
typedef MapBase<typename M1::Key, V> Parent; |
549 | 549 |
typedef typename Parent::Key Key; |
550 | 550 |
typedef typename Parent::Value Value; |
551 | 551 |
|
552 | 552 |
/// Constructor |
553 | 553 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
554 | 554 |
: _m1(m1), _m2(m2), _f(f) {} |
555 | 555 |
/// \e |
556 | 556 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
557 | 557 |
}; |
558 | 558 |
|
559 | 559 |
/// Returns a \c CombineMap class |
560 | 560 |
|
561 | 561 |
/// This function just returns a \c CombineMap class. |
562 | 562 |
/// |
563 | 563 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
564 | 564 |
/// values, then |
565 | 565 |
/// \code |
566 | 566 |
/// combineMap(m1,m2,std::plus<double>()) |
567 | 567 |
/// \endcode |
568 | 568 |
/// is equivalent to |
569 | 569 |
/// \code |
570 | 570 |
/// addMap(m1,m2) |
571 | 571 |
/// \endcode |
572 | 572 |
/// |
573 | 573 |
/// This function is specialized for adaptable binary function |
574 | 574 |
/// classes and C++ functions. |
575 | 575 |
/// |
576 | 576 |
/// \relates CombineMap |
577 | 577 |
template<typename M1, typename M2, typename F, typename V> |
578 | 578 |
inline CombineMap<M1, M2, F, V> |
579 | 579 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
580 | 580 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
581 | 581 |
} |
582 | 582 |
|
583 | 583 |
template<typename M1, typename M2, typename F> |
584 | 584 |
inline CombineMap<M1, M2, F, typename F::result_type> |
585 | 585 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
586 | 586 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
587 | 587 |
} |
588 | 588 |
|
589 | 589 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
590 | 590 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
591 | 591 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
592 | 592 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
|
596 | 596 |
/// Converts an STL style (unary) functor to a map |
597 | 597 |
|
598 | 598 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
599 | 599 |
/// of a given functor. Actually, it just wraps the functor and |
600 | 600 |
/// provides the \c Key and \c Value typedefs. |
601 | 601 |
/// |
602 | 602 |
/// Template parameters \c K and \c V will become its \c Key and |
603 | 603 |
/// \c Value. In most cases they have to be given explicitly because |
604 | 604 |
/// a functor typically does not provide \c argument_type and |
605 | 605 |
/// \c result_type typedefs. |
606 | 606 |
/// Parameter \c F is the type of the used functor. |
607 | 607 |
/// |
608 | 608 |
/// The simplest way of using this map is through the functorToMap() |
609 | 609 |
/// function. |
610 | 610 |
/// |
611 | 611 |
/// \sa MapToFunctor |
612 | 612 |
template<typename F, |
613 | 613 |
typename K = typename F::argument_type, |
614 | 614 |
typename V = typename F::result_type> |
615 | 615 |
class FunctorToMap : public MapBase<K, V> { |
616 | 616 |
F _f; |
617 | 617 |
public: |
618 | 618 |
typedef MapBase<K, V> Parent; |
619 | 619 |
typedef typename Parent::Key Key; |
620 | 620 |
typedef typename Parent::Value Value; |
621 | 621 |
|
622 | 622 |
/// Constructor |
623 | 623 |
FunctorToMap(const F &f = F()) : _f(f) {} |
624 | 624 |
/// \e |
625 | 625 |
Value operator[](const Key &k) const { return _f(k); } |
626 | 626 |
}; |
627 | 627 |
|
628 | 628 |
/// Returns a \c FunctorToMap class |
629 | 629 |
|
630 | 630 |
/// This function just returns a \c FunctorToMap class. |
631 | 631 |
/// |
632 | 632 |
/// This function is specialized for adaptable binary function |
633 | 633 |
/// classes and C++ functions. |
634 | 634 |
/// |
635 | 635 |
/// \relates FunctorToMap |
636 | 636 |
template<typename K, typename V, typename F> |
637 | 637 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
638 | 638 |
return FunctorToMap<F, K, V>(f); |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
template <typename F> |
642 | 642 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
643 | 643 |
functorToMap(const F &f) |
644 | 644 |
{ |
645 | 645 |
return FunctorToMap<F, typename F::argument_type, |
646 | 646 |
typename F::result_type>(f); |
647 | 647 |
} |
648 | 648 |
|
649 | 649 |
template <typename K, typename V> |
650 | 650 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
651 | 651 |
return FunctorToMap<V (*)(K), K, V>(f); |
652 | 652 |
} |
653 | 653 |
|
654 | 654 |
|
655 | 655 |
/// Converts a map to an STL style (unary) functor |
656 | 656 |
|
657 | 657 |
/// This class converts a map to an STL style (unary) functor. |
658 | 658 |
/// That is it provides an <tt>operator()</tt> to read its values. |
659 | 659 |
/// |
660 | 660 |
/// For the sake of convenience it also works as a usual |
661 | 661 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
662 | 662 |
/// and the \c Key and \c Value typedefs also exist. |
663 | 663 |
/// |
664 | 664 |
/// The simplest way of using this map is through the mapToFunctor() |
665 | 665 |
/// function. |
666 | 666 |
/// |
667 | 667 |
///\sa FunctorToMap |
668 | 668 |
template <typename M> |
669 | 669 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
670 | 670 |
const M &_m; |
671 | 671 |
public: |
672 | 672 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
673 | 673 |
typedef typename Parent::Key Key; |
674 | 674 |
typedef typename Parent::Value Value; |
675 | 675 |
|
676 | 676 |
typedef typename Parent::Key argument_type; |
677 | 677 |
typedef typename Parent::Value result_type; |
678 | 678 |
|
679 | 679 |
/// Constructor |
680 | 680 |
MapToFunctor(const M &m) : _m(m) {} |
681 | 681 |
/// \e |
682 | 682 |
Value operator()(const Key &k) const { return _m[k]; } |
683 | 683 |
/// \e |
684 | 684 |
Value operator[](const Key &k) const { return _m[k]; } |
685 | 685 |
}; |
686 | 686 |
|
687 | 687 |
/// Returns a \c MapToFunctor class |
688 | 688 |
|
689 | 689 |
/// This function just returns a \c MapToFunctor class. |
690 | 690 |
/// \relates MapToFunctor |
691 | 691 |
template<typename M> |
692 | 692 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
693 | 693 |
return MapToFunctor<M>(m); |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
|
697 | 697 |
/// \brief Map adaptor to convert the \c Value type of a map to |
698 | 698 |
/// another type using the default conversion. |
699 | 699 |
|
700 | 700 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
701 | 701 |
/// "readable map" to another type using the default conversion. |
702 | 702 |
/// The \c Key type of it is inherited from \c M and the \c Value |
703 | 703 |
/// type is \c V. |
704 | 704 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
705 | 705 |
/// |
706 | 706 |
/// The simplest way of using this map is through the convertMap() |
707 | 707 |
/// function. |
708 | 708 |
template <typename M, typename V> |
709 | 709 |
class ConvertMap : public MapBase<typename M::Key, V> { |
710 | 710 |
const M &_m; |
711 | 711 |
public: |
712 | 712 |
typedef MapBase<typename M::Key, V> Parent; |
713 | 713 |
typedef typename Parent::Key Key; |
714 | 714 |
typedef typename Parent::Value Value; |
715 | 715 |
|
716 | 716 |
/// Constructor |
717 | 717 |
|
718 | 718 |
/// Constructor. |
719 | 719 |
/// \param m The underlying map. |
720 | 720 |
ConvertMap(const M &m) : _m(m) {} |
721 | 721 |
|
722 | 722 |
/// \e |
723 | 723 |
Value operator[](const Key &k) const { return _m[k]; } |
724 | 724 |
}; |
725 | 725 |
|
726 | 726 |
/// Returns a \c ConvertMap class |
727 | 727 |
|
728 | 728 |
/// This function just returns a \c ConvertMap class. |
729 | 729 |
/// \relates ConvertMap |
730 | 730 |
template<typename V, typename M> |
731 | 731 |
inline ConvertMap<M, V> convertMap(const M &map) { |
732 | 732 |
return ConvertMap<M, V>(map); |
733 | 733 |
} |
734 | 734 |
|
735 | 735 |
|
736 | 736 |
/// Applies all map setting operations to two maps |
737 | 737 |
|
738 | 738 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
739 | 739 |
/// and each write request will be passed to both of them. |
740 | 740 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
741 | 741 |
/// operations will return the corresponding values of \c M1. |
742 | 742 |
/// |
743 | 743 |
/// The \c Key and \c Value types are inherited from \c M1. |
744 | 744 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
745 | 745 |
/// of \c M1. |
746 | 746 |
/// |
747 | 747 |
/// The simplest way of using this map is through the forkMap() |
748 | 748 |
/// function. |
749 | 749 |
template<typename M1, typename M2> |
750 | 750 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
751 | 751 |
M1 &_m1; |
752 | 752 |
M2 &_m2; |
753 | 753 |
public: |
754 | 754 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
755 | 755 |
typedef typename Parent::Key Key; |
756 | 756 |
typedef typename Parent::Value Value; |
757 | 757 |
|
758 | 758 |
/// Constructor |
759 | 759 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
760 | 760 |
/// Returns the value associated with the given key in the first map. |
761 | 761 |
Value operator[](const Key &k) const { return _m1[k]; } |
762 | 762 |
/// Sets the value associated with the given key in both maps. |
763 | 763 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
764 | 764 |
}; |
765 | 765 |
|
766 | 766 |
/// Returns a \c ForkMap class |
767 | 767 |
|
768 | 768 |
/// This function just returns a \c ForkMap class. |
769 | 769 |
/// \relates ForkMap |
770 | 770 |
template <typename M1, typename M2> |
771 | 771 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
772 | 772 |
return ForkMap<M1,M2>(m1,m2); |
773 | 773 |
} |
774 | 774 |
|
775 | 775 |
|
776 | 776 |
/// Sum of two maps |
777 | 777 |
|
778 | 778 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
779 | 779 |
/// of the values of the two given maps. |
780 | 780 |
/// Its \c Key and \c Value types are inherited from \c M1. |
781 | 781 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
782 | 782 |
/// \c M1. |
783 | 783 |
/// |
784 | 784 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
785 | 785 |
/// \code |
786 | 786 |
/// AddMap<M1,M2> am(m1,m2); |
787 | 787 |
/// \endcode |
788 | 788 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
789 | 789 |
/// |
790 | 790 |
/// The simplest way of using this map is through the addMap() |
791 | 791 |
/// function. |
792 | 792 |
/// |
793 | 793 |
/// \sa SubMap, MulMap, DivMap |
794 | 794 |
/// \sa ShiftMap, ShiftWriteMap |
795 | 795 |
template<typename M1, typename M2> |
796 | 796 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
797 | 797 |
const M1 &_m1; |
798 | 798 |
const M2 &_m2; |
799 | 799 |
public: |
800 | 800 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
801 | 801 |
typedef typename Parent::Key Key; |
802 | 802 |
typedef typename Parent::Value Value; |
803 | 803 |
|
804 | 804 |
/// Constructor |
805 | 805 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
806 | 806 |
/// \e |
807 | 807 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
808 | 808 |
}; |
809 | 809 |
|
810 | 810 |
/// Returns an \c AddMap class |
811 | 811 |
|
812 | 812 |
/// This function just returns an \c AddMap class. |
813 | 813 |
/// |
814 | 814 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
... | ... |
@@ -1501,1201 +1501,1201 @@ |
1501 | 1501 |
/// The simplest way of using this map is through the notMap() |
1502 | 1502 |
/// function. |
1503 | 1503 |
/// |
1504 | 1504 |
/// \sa NotWriteMap |
1505 | 1505 |
template <typename M> |
1506 | 1506 |
class NotMap : public MapBase<typename M::Key, bool> { |
1507 | 1507 |
const M &_m; |
1508 | 1508 |
public: |
1509 | 1509 |
typedef MapBase<typename M::Key, bool> Parent; |
1510 | 1510 |
typedef typename Parent::Key Key; |
1511 | 1511 |
typedef typename Parent::Value Value; |
1512 | 1512 |
|
1513 | 1513 |
/// Constructor |
1514 | 1514 |
NotMap(const M &m) : _m(m) {} |
1515 | 1515 |
/// \e |
1516 | 1516 |
Value operator[](const Key &k) const { return !_m[k]; } |
1517 | 1517 |
}; |
1518 | 1518 |
|
1519 | 1519 |
/// Logical 'not' of a map (read-write version) |
1520 | 1520 |
|
1521 | 1521 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1522 | 1522 |
/// logical negation of the values of the given map. |
1523 | 1523 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1524 | 1524 |
/// It makes also possible to write the map. When a value is set, |
1525 | 1525 |
/// the opposite value is set to the original map. |
1526 | 1526 |
/// |
1527 | 1527 |
/// The simplest way of using this map is through the notWriteMap() |
1528 | 1528 |
/// function. |
1529 | 1529 |
/// |
1530 | 1530 |
/// \sa NotMap |
1531 | 1531 |
template <typename M> |
1532 | 1532 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1533 | 1533 |
M &_m; |
1534 | 1534 |
public: |
1535 | 1535 |
typedef MapBase<typename M::Key, bool> Parent; |
1536 | 1536 |
typedef typename Parent::Key Key; |
1537 | 1537 |
typedef typename Parent::Value Value; |
1538 | 1538 |
|
1539 | 1539 |
/// Constructor |
1540 | 1540 |
NotWriteMap(M &m) : _m(m) {} |
1541 | 1541 |
/// \e |
1542 | 1542 |
Value operator[](const Key &k) const { return !_m[k]; } |
1543 | 1543 |
/// \e |
1544 | 1544 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1545 | 1545 |
}; |
1546 | 1546 |
|
1547 | 1547 |
/// Returns a \c NotMap class |
1548 | 1548 |
|
1549 | 1549 |
/// This function just returns a \c NotMap class. |
1550 | 1550 |
/// |
1551 | 1551 |
/// For example, if \c m is a map with \c bool values, then |
1552 | 1552 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1553 | 1553 |
/// |
1554 | 1554 |
/// \relates NotMap |
1555 | 1555 |
template <typename M> |
1556 | 1556 |
inline NotMap<M> notMap(const M &m) { |
1557 | 1557 |
return NotMap<M>(m); |
1558 | 1558 |
} |
1559 | 1559 |
|
1560 | 1560 |
/// Returns a \c NotWriteMap class |
1561 | 1561 |
|
1562 | 1562 |
/// This function just returns a \c NotWriteMap class. |
1563 | 1563 |
/// |
1564 | 1564 |
/// For example, if \c m is a map with \c bool values, then |
1565 | 1565 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1566 | 1566 |
/// Moreover it makes also possible to write the map. |
1567 | 1567 |
/// |
1568 | 1568 |
/// \relates NotWriteMap |
1569 | 1569 |
template <typename M> |
1570 | 1570 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1571 | 1571 |
return NotWriteMap<M>(m); |
1572 | 1572 |
} |
1573 | 1573 |
|
1574 | 1574 |
|
1575 | 1575 |
/// Combination of two maps using the \c == operator |
1576 | 1576 |
|
1577 | 1577 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1578 | 1578 |
/// the keys for which the corresponding values of the two maps are |
1579 | 1579 |
/// equal. |
1580 | 1580 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1581 | 1581 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1582 | 1582 |
/// |
1583 | 1583 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1584 | 1584 |
/// \code |
1585 | 1585 |
/// EqualMap<M1,M2> em(m1,m2); |
1586 | 1586 |
/// \endcode |
1587 | 1587 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1588 | 1588 |
/// |
1589 | 1589 |
/// The simplest way of using this map is through the equalMap() |
1590 | 1590 |
/// function. |
1591 | 1591 |
/// |
1592 | 1592 |
/// \sa LessMap |
1593 | 1593 |
template<typename M1, typename M2> |
1594 | 1594 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1595 | 1595 |
const M1 &_m1; |
1596 | 1596 |
const M2 &_m2; |
1597 | 1597 |
public: |
1598 | 1598 |
typedef MapBase<typename M1::Key, bool> Parent; |
1599 | 1599 |
typedef typename Parent::Key Key; |
1600 | 1600 |
typedef typename Parent::Value Value; |
1601 | 1601 |
|
1602 | 1602 |
/// Constructor |
1603 | 1603 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1604 | 1604 |
/// \e |
1605 | 1605 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1606 | 1606 |
}; |
1607 | 1607 |
|
1608 | 1608 |
/// Returns an \c EqualMap class |
1609 | 1609 |
|
1610 | 1610 |
/// This function just returns an \c EqualMap class. |
1611 | 1611 |
/// |
1612 | 1612 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1613 | 1613 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1614 | 1614 |
/// <tt>m1[x]==m2[x]</tt>. |
1615 | 1615 |
/// |
1616 | 1616 |
/// \relates EqualMap |
1617 | 1617 |
template<typename M1, typename M2> |
1618 | 1618 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1619 | 1619 |
return EqualMap<M1, M2>(m1,m2); |
1620 | 1620 |
} |
1621 | 1621 |
|
1622 | 1622 |
|
1623 | 1623 |
/// Combination of two maps using the \c < operator |
1624 | 1624 |
|
1625 | 1625 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1626 | 1626 |
/// the keys for which the corresponding value of the first map is |
1627 | 1627 |
/// less then the value of the second map. |
1628 | 1628 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1629 | 1629 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1630 | 1630 |
/// |
1631 | 1631 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1632 | 1632 |
/// \code |
1633 | 1633 |
/// LessMap<M1,M2> lm(m1,m2); |
1634 | 1634 |
/// \endcode |
1635 | 1635 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1636 | 1636 |
/// |
1637 | 1637 |
/// The simplest way of using this map is through the lessMap() |
1638 | 1638 |
/// function. |
1639 | 1639 |
/// |
1640 | 1640 |
/// \sa EqualMap |
1641 | 1641 |
template<typename M1, typename M2> |
1642 | 1642 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1643 | 1643 |
const M1 &_m1; |
1644 | 1644 |
const M2 &_m2; |
1645 | 1645 |
public: |
1646 | 1646 |
typedef MapBase<typename M1::Key, bool> Parent; |
1647 | 1647 |
typedef typename Parent::Key Key; |
1648 | 1648 |
typedef typename Parent::Value Value; |
1649 | 1649 |
|
1650 | 1650 |
/// Constructor |
1651 | 1651 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1652 | 1652 |
/// \e |
1653 | 1653 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1654 | 1654 |
}; |
1655 | 1655 |
|
1656 | 1656 |
/// Returns an \c LessMap class |
1657 | 1657 |
|
1658 | 1658 |
/// This function just returns an \c LessMap class. |
1659 | 1659 |
/// |
1660 | 1660 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1661 | 1661 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1662 | 1662 |
/// <tt>m1[x]<m2[x]</tt>. |
1663 | 1663 |
/// |
1664 | 1664 |
/// \relates LessMap |
1665 | 1665 |
template<typename M1, typename M2> |
1666 | 1666 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1667 | 1667 |
return LessMap<M1, M2>(m1,m2); |
1668 | 1668 |
} |
1669 | 1669 |
|
1670 | 1670 |
namespace _maps_bits { |
1671 | 1671 |
|
1672 | 1672 |
template <typename _Iterator, typename Enable = void> |
1673 | 1673 |
struct IteratorTraits { |
1674 | 1674 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1675 | 1675 |
}; |
1676 | 1676 |
|
1677 | 1677 |
template <typename _Iterator> |
1678 | 1678 |
struct IteratorTraits<_Iterator, |
1679 | 1679 |
typename exists<typename _Iterator::container_type>::type> |
1680 | 1680 |
{ |
1681 | 1681 |
typedef typename _Iterator::container_type::value_type Value; |
1682 | 1682 |
}; |
1683 | 1683 |
|
1684 | 1684 |
} |
1685 | 1685 |
|
1686 | 1686 |
/// \brief Writable bool map for logging each \c true assigned element |
1687 | 1687 |
/// |
1688 | 1688 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1689 | 1689 |
/// each \c true assigned element, i.e it copies subsequently each |
1690 | 1690 |
/// keys set to \c true to the given iterator. |
1691 | 1691 |
/// The most important usage of it is storing certain nodes or arcs |
1692 | 1692 |
/// that were marked \c true by an algorithm. |
1693 | 1693 |
/// |
1694 | 1694 |
/// There are several algorithms that provide solutions through bool |
1695 | 1695 |
/// maps and most of them assign \c true at most once for each key. |
1696 | 1696 |
/// In these cases it is a natural request to store each \c true |
1697 | 1697 |
/// assigned elements (in order of the assignment), which can be |
1698 | 1698 |
/// easily done with LoggerBoolMap. |
1699 | 1699 |
/// |
1700 | 1700 |
/// The simplest way of using this map is through the loggerBoolMap() |
1701 | 1701 |
/// function. |
1702 | 1702 |
/// |
1703 | 1703 |
/// \tparam It The type of the iterator. |
1704 | 1704 |
/// \tparam Ke The key type of the map. The default value set |
1705 | 1705 |
/// according to the iterator type should work in most cases. |
1706 | 1706 |
/// |
1707 | 1707 |
/// \note The container of the iterator must contain enough space |
1708 | 1708 |
/// for the elements or the iterator should be an inserter iterator. |
1709 | 1709 |
#ifdef DOXYGEN |
1710 | 1710 |
template <typename It, typename Ke> |
1711 | 1711 |
#else |
1712 | 1712 |
template <typename It, |
1713 | 1713 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
1714 | 1714 |
#endif |
1715 | 1715 |
class LoggerBoolMap { |
1716 | 1716 |
public: |
1717 | 1717 |
typedef It Iterator; |
1718 | 1718 |
|
1719 | 1719 |
typedef Ke Key; |
1720 | 1720 |
typedef bool Value; |
1721 | 1721 |
|
1722 | 1722 |
/// Constructor |
1723 | 1723 |
LoggerBoolMap(Iterator it) |
1724 | 1724 |
: _begin(it), _end(it) {} |
1725 | 1725 |
|
1726 | 1726 |
/// Gives back the given iterator set for the first key |
1727 | 1727 |
Iterator begin() const { |
1728 | 1728 |
return _begin; |
1729 | 1729 |
} |
1730 | 1730 |
|
1731 | 1731 |
/// Gives back the the 'after the last' iterator |
1732 | 1732 |
Iterator end() const { |
1733 | 1733 |
return _end; |
1734 | 1734 |
} |
1735 | 1735 |
|
1736 | 1736 |
/// The set function of the map |
1737 | 1737 |
void set(const Key& key, Value value) { |
1738 | 1738 |
if (value) { |
1739 | 1739 |
*_end++ = key; |
1740 | 1740 |
} |
1741 | 1741 |
} |
1742 | 1742 |
|
1743 | 1743 |
private: |
1744 | 1744 |
Iterator _begin; |
1745 | 1745 |
Iterator _end; |
1746 | 1746 |
}; |
1747 | 1747 |
|
1748 | 1748 |
/// Returns a \c LoggerBoolMap class |
1749 | 1749 |
|
1750 | 1750 |
/// This function just returns a \c LoggerBoolMap class. |
1751 | 1751 |
/// |
1752 | 1752 |
/// The most important usage of it is storing certain nodes or arcs |
1753 | 1753 |
/// that were marked \c true by an algorithm. |
1754 | 1754 |
/// For example it makes easier to store the nodes in the processing |
1755 | 1755 |
/// order of Dfs algorithm, as the following examples show. |
1756 | 1756 |
/// \code |
1757 | 1757 |
/// std::vector<Node> v; |
1758 | 1758 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
1759 | 1759 |
/// \endcode |
1760 | 1760 |
/// \code |
1761 | 1761 |
/// std::vector<Node> v(countNodes(g)); |
1762 | 1762 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
1763 | 1763 |
/// \endcode |
1764 | 1764 |
/// |
1765 | 1765 |
/// \note The container of the iterator must contain enough space |
1766 | 1766 |
/// for the elements or the iterator should be an inserter iterator. |
1767 | 1767 |
/// |
1768 | 1768 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1769 | 1769 |
/// it cannot be used when a readable map is needed, for example as |
1770 | 1770 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1771 | 1771 |
/// |
1772 | 1772 |
/// \relates LoggerBoolMap |
1773 | 1773 |
template<typename Iterator> |
1774 | 1774 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1775 | 1775 |
return LoggerBoolMap<Iterator>(it); |
1776 | 1776 |
} |
1777 | 1777 |
|
1778 | 1778 |
/// Provides an immutable and unique id for each item in the graph. |
1779 | 1779 |
|
1780 | 1780 |
/// The IdMap class provides a unique and immutable id for each item of the |
1781 | 1781 |
/// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
1782 | 1782 |
/// different items (nodes) get different ids <li>\b immutable: the id of an |
1783 | 1783 |
/// item (node) does not change (even if you delete other nodes). </ul> |
1784 | 1784 |
/// Through this map you get access (i.e. can read) the inner id values of |
1785 | 1785 |
/// the items stored in the graph. This map can be inverted with its member |
1786 | 1786 |
/// class \c InverseMap or with the \c operator() member. |
1787 | 1787 |
/// |
1788 | 1788 |
template <typename _Graph, typename _Item> |
1789 | 1789 |
class IdMap { |
1790 | 1790 |
public: |
1791 | 1791 |
typedef _Graph Graph; |
1792 | 1792 |
typedef int Value; |
1793 | 1793 |
typedef _Item Item; |
1794 | 1794 |
typedef _Item Key; |
1795 | 1795 |
|
1796 | 1796 |
/// \brief Constructor. |
1797 | 1797 |
/// |
1798 | 1798 |
/// Constructor of the map. |
1799 | 1799 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1800 | 1800 |
|
1801 | 1801 |
/// \brief Gives back the \e id of the item. |
1802 | 1802 |
/// |
1803 | 1803 |
/// Gives back the immutable and unique \e id of the item. |
1804 | 1804 |
int operator[](const Item& item) const { return _graph->id(item);} |
1805 | 1805 |
|
1806 | 1806 |
/// \brief Gives back the item by its id. |
1807 | 1807 |
/// |
1808 | 1808 |
/// Gives back the item by its id. |
1809 | 1809 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1810 | 1810 |
|
1811 | 1811 |
private: |
1812 | 1812 |
const Graph* _graph; |
1813 | 1813 |
|
1814 | 1814 |
public: |
1815 | 1815 |
|
1816 | 1816 |
/// \brief The class represents the inverse of its owner (IdMap). |
1817 | 1817 |
/// |
1818 | 1818 |
/// The class represents the inverse of its owner (IdMap). |
1819 | 1819 |
/// \see inverse() |
1820 | 1820 |
class InverseMap { |
1821 | 1821 |
public: |
1822 | 1822 |
|
1823 | 1823 |
/// \brief Constructor. |
1824 | 1824 |
/// |
1825 | 1825 |
/// Constructor for creating an id-to-item map. |
1826 | 1826 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1827 | 1827 |
|
1828 | 1828 |
/// \brief Constructor. |
1829 | 1829 |
/// |
1830 | 1830 |
/// Constructor for creating an id-to-item map. |
1831 | 1831 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1832 | 1832 |
|
1833 | 1833 |
/// \brief Gives back the given item from its id. |
1834 | 1834 |
/// |
1835 | 1835 |
/// Gives back the given item from its id. |
1836 | 1836 |
/// |
1837 | 1837 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1838 | 1838 |
|
1839 | 1839 |
private: |
1840 | 1840 |
const Graph* _graph; |
1841 | 1841 |
}; |
1842 | 1842 |
|
1843 | 1843 |
/// \brief Gives back the inverse of the map. |
1844 | 1844 |
/// |
1845 | 1845 |
/// Gives back the inverse of the IdMap. |
1846 | 1846 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1847 | 1847 |
|
1848 | 1848 |
}; |
1849 | 1849 |
|
1850 | 1850 |
|
1851 | 1851 |
/// \brief General invertable graph-map type. |
1852 | 1852 |
|
1853 | 1853 |
/// This type provides simple invertable graph-maps. |
1854 | 1854 |
/// The InvertableMap wraps an arbitrary ReadWriteMap |
1855 | 1855 |
/// and if a key is set to a new value then store it |
1856 | 1856 |
/// in the inverse map. |
1857 | 1857 |
/// |
1858 | 1858 |
/// The values of the map can be accessed |
1859 | 1859 |
/// with stl compatible forward iterator. |
1860 | 1860 |
/// |
1861 | 1861 |
/// \tparam _Graph The graph type. |
1862 | 1862 |
/// \tparam _Item The item type of the graph. |
1863 | 1863 |
/// \tparam _Value The value type of the map. |
1864 | 1864 |
/// |
1865 | 1865 |
/// \see IterableValueMap |
1866 | 1866 |
template <typename _Graph, typename _Item, typename _Value> |
1867 | 1867 |
class InvertableMap |
1868 | 1868 |
: protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type { |
1869 | 1869 |
private: |
1870 | 1870 |
|
1871 | 1871 |
typedef typename ItemSetTraits<_Graph, _Item>:: |
1872 | 1872 |
template Map<_Value>::Type Map; |
1873 | 1873 |
typedef _Graph Graph; |
1874 | 1874 |
|
1875 | 1875 |
typedef std::map<_Value, _Item> Container; |
1876 | 1876 |
Container _inv_map; |
1877 | 1877 |
|
1878 | 1878 |
public: |
1879 | 1879 |
|
1880 | 1880 |
/// The key type of InvertableMap (Node, Arc, Edge). |
1881 | 1881 |
typedef typename Map::Key Key; |
1882 | 1882 |
/// The value type of the InvertableMap. |
1883 | 1883 |
typedef typename Map::Value Value; |
1884 | 1884 |
|
1885 | 1885 |
|
1886 | 1886 |
|
1887 | 1887 |
/// \brief Constructor. |
1888 | 1888 |
/// |
1889 | 1889 |
/// Construct a new InvertableMap for the graph. |
1890 | 1890 |
/// |
1891 | 1891 |
explicit InvertableMap(const Graph& graph) : Map(graph) {} |
1892 | 1892 |
|
1893 | 1893 |
/// \brief Forward iterator for values. |
1894 | 1894 |
/// |
1895 | 1895 |
/// This iterator is an stl compatible forward |
1896 | 1896 |
/// iterator on the values of the map. The values can |
1897 | 1897 |
/// be accessed in the [beginValue, endValue) range. |
1898 | 1898 |
/// |
1899 | 1899 |
class ValueIterator |
1900 | 1900 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1901 | 1901 |
friend class InvertableMap; |
1902 | 1902 |
private: |
1903 | 1903 |
ValueIterator(typename Container::const_iterator _it) |
1904 | 1904 |
: it(_it) {} |
1905 | 1905 |
public: |
1906 | 1906 |
|
1907 | 1907 |
ValueIterator() {} |
1908 | 1908 |
|
1909 | 1909 |
ValueIterator& operator++() { ++it; return *this; } |
1910 | 1910 |
ValueIterator operator++(int) { |
1911 | 1911 |
ValueIterator tmp(*this); |
1912 | 1912 |
operator++(); |
1913 | 1913 |
return tmp; |
1914 | 1914 |
} |
1915 | 1915 |
|
1916 | 1916 |
const Value& operator*() const { return it->first; } |
1917 | 1917 |
const Value* operator->() const { return &(it->first); } |
1918 | 1918 |
|
1919 | 1919 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1920 | 1920 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1921 | 1921 |
|
1922 | 1922 |
private: |
1923 | 1923 |
typename Container::const_iterator it; |
1924 | 1924 |
}; |
1925 | 1925 |
|
1926 | 1926 |
/// \brief Returns an iterator to the first value. |
1927 | 1927 |
/// |
1928 | 1928 |
/// Returns an stl compatible iterator to the |
1929 | 1929 |
/// first value of the map. The values of the |
1930 | 1930 |
/// map can be accessed in the [beginValue, endValue) |
1931 | 1931 |
/// range. |
1932 | 1932 |
ValueIterator beginValue() const { |
1933 | 1933 |
return ValueIterator(_inv_map.begin()); |
1934 | 1934 |
} |
1935 | 1935 |
|
1936 | 1936 |
/// \brief Returns an iterator after the last value. |
1937 | 1937 |
/// |
1938 | 1938 |
/// Returns an stl compatible iterator after the |
1939 | 1939 |
/// last value of the map. The values of the |
1940 | 1940 |
/// map can be accessed in the [beginValue, endValue) |
1941 | 1941 |
/// range. |
1942 | 1942 |
ValueIterator endValue() const { |
1943 | 1943 |
return ValueIterator(_inv_map.end()); |
1944 | 1944 |
} |
1945 | 1945 |
|
1946 | 1946 |
/// \brief The setter function of the map. |
1947 | 1947 |
/// |
1948 | 1948 |
/// Sets the mapped value. |
1949 | 1949 |
void set(const Key& key, const Value& val) { |
1950 | 1950 |
Value oldval = Map::operator[](key); |
1951 | 1951 |
typename Container::iterator it = _inv_map.find(oldval); |
1952 | 1952 |
if (it != _inv_map.end() && it->second == key) { |
1953 | 1953 |
_inv_map.erase(it); |
1954 | 1954 |
} |
1955 | 1955 |
_inv_map.insert(make_pair(val, key)); |
1956 | 1956 |
Map::set(key, val); |
1957 | 1957 |
} |
1958 | 1958 |
|
1959 | 1959 |
/// \brief The getter function of the map. |
1960 | 1960 |
/// |
1961 | 1961 |
/// It gives back the value associated with the key. |
1962 | 1962 |
typename MapTraits<Map>::ConstReturnValue |
1963 | 1963 |
operator[](const Key& key) const { |
1964 | 1964 |
return Map::operator[](key); |
1965 | 1965 |
} |
1966 | 1966 |
|
1967 | 1967 |
/// \brief Gives back the item by its value. |
1968 | 1968 |
/// |
1969 | 1969 |
/// Gives back the item by its value. |
1970 | 1970 |
Key operator()(const Value& key) const { |
1971 | 1971 |
typename Container::const_iterator it = _inv_map.find(key); |
1972 | 1972 |
return it != _inv_map.end() ? it->second : INVALID; |
1973 | 1973 |
} |
1974 | 1974 |
|
1975 | 1975 |
protected: |
1976 | 1976 |
|
1977 | 1977 |
/// \brief Erase the key from the map. |
1978 | 1978 |
/// |
1979 | 1979 |
/// Erase the key to the map. It is called by the |
1980 | 1980 |
/// \c AlterationNotifier. |
1981 | 1981 |
virtual void erase(const Key& key) { |
1982 | 1982 |
Value val = Map::operator[](key); |
1983 | 1983 |
typename Container::iterator it = _inv_map.find(val); |
1984 | 1984 |
if (it != _inv_map.end() && it->second == key) { |
1985 | 1985 |
_inv_map.erase(it); |
1986 | 1986 |
} |
1987 | 1987 |
Map::erase(key); |
1988 | 1988 |
} |
1989 | 1989 |
|
1990 | 1990 |
/// \brief Erase more keys from the map. |
1991 | 1991 |
/// |
1992 | 1992 |
/// Erase more keys from the map. It is called by the |
1993 | 1993 |
/// \c AlterationNotifier. |
1994 | 1994 |
virtual void erase(const std::vector<Key>& keys) { |
1995 | 1995 |
for (int i = 0; i < int(keys.size()); ++i) { |
1996 | 1996 |
Value val = Map::operator[](keys[i]); |
1997 | 1997 |
typename Container::iterator it = _inv_map.find(val); |
1998 | 1998 |
if (it != _inv_map.end() && it->second == keys[i]) { |
1999 | 1999 |
_inv_map.erase(it); |
2000 | 2000 |
} |
2001 | 2001 |
} |
2002 | 2002 |
Map::erase(keys); |
2003 | 2003 |
} |
2004 | 2004 |
|
2005 | 2005 |
/// \brief Clear the keys from the map and inverse map. |
2006 | 2006 |
/// |
2007 | 2007 |
/// Clear the keys from the map and inverse map. It is called by the |
2008 | 2008 |
/// \c AlterationNotifier. |
2009 | 2009 |
virtual void clear() { |
2010 | 2010 |
_inv_map.clear(); |
2011 | 2011 |
Map::clear(); |
2012 | 2012 |
} |
2013 | 2013 |
|
2014 | 2014 |
public: |
2015 | 2015 |
|
2016 | 2016 |
/// \brief The inverse map type. |
2017 | 2017 |
/// |
2018 | 2018 |
/// The inverse of this map. The subscript operator of the map |
2019 | 2019 |
/// gives back always the item what was last assigned to the value. |
2020 | 2020 |
class InverseMap { |
2021 | 2021 |
public: |
2022 | 2022 |
/// \brief Constructor of the InverseMap. |
2023 | 2023 |
/// |
2024 | 2024 |
/// Constructor of the InverseMap. |
2025 | 2025 |
explicit InverseMap(const InvertableMap& inverted) |
2026 | 2026 |
: _inverted(inverted) {} |
2027 | 2027 |
|
2028 | 2028 |
/// The value type of the InverseMap. |
2029 | 2029 |
typedef typename InvertableMap::Key Value; |
2030 | 2030 |
/// The key type of the InverseMap. |
2031 | 2031 |
typedef typename InvertableMap::Value Key; |
2032 | 2032 |
|
2033 | 2033 |
/// \brief Subscript operator. |
2034 | 2034 |
/// |
2035 | 2035 |
/// Subscript operator. It gives back always the item |
2036 | 2036 |
/// what was last assigned to the value. |
2037 | 2037 |
Value operator[](const Key& key) const { |
2038 | 2038 |
return _inverted(key); |
2039 | 2039 |
} |
2040 | 2040 |
|
2041 | 2041 |
private: |
2042 | 2042 |
const InvertableMap& _inverted; |
2043 | 2043 |
}; |
2044 | 2044 |
|
2045 | 2045 |
/// \brief It gives back the just readable inverse map. |
2046 | 2046 |
/// |
2047 | 2047 |
/// It gives back the just readable inverse map. |
2048 | 2048 |
InverseMap inverse() const { |
2049 | 2049 |
return InverseMap(*this); |
2050 | 2050 |
} |
2051 | 2051 |
|
2052 | 2052 |
|
2053 | 2053 |
|
2054 | 2054 |
}; |
2055 | 2055 |
|
2056 | 2056 |
/// \brief Provides a mutable, continuous and unique descriptor for each |
2057 | 2057 |
/// item in the graph. |
2058 | 2058 |
/// |
2059 | 2059 |
/// The DescriptorMap class provides a unique and continuous (but mutable) |
2060 | 2060 |
/// descriptor (id) for each item of the same type (e.g. node) in the |
2061 | 2061 |
/// graph. This id is <ul><li>\b unique: different items (nodes) get |
2062 | 2062 |
/// different ids <li>\b continuous: the range of the ids is the set of |
2063 | 2063 |
/// integers between 0 and \c n-1, where \c n is the number of the items of |
2064 | 2064 |
/// this type (e.g. nodes) (so the id of a node can change if you delete an |
2065 | 2065 |
/// other node, i.e. this id is mutable). </ul> This map can be inverted |
2066 | 2066 |
/// with its member class \c InverseMap, or with the \c operator() member. |
2067 | 2067 |
/// |
2068 | 2068 |
/// \tparam _Graph The graph class the \c DescriptorMap belongs to. |
2069 | 2069 |
/// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or |
2070 | 2070 |
/// Edge. |
2071 | 2071 |
template <typename _Graph, typename _Item> |
2072 | 2072 |
class DescriptorMap |
2073 | 2073 |
: protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type { |
2074 | 2074 |
|
2075 | 2075 |
typedef _Item Item; |
2076 | 2076 |
typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map; |
2077 | 2077 |
|
2078 | 2078 |
public: |
2079 | 2079 |
/// The graph class of DescriptorMap. |
2080 | 2080 |
typedef _Graph Graph; |
2081 | 2081 |
|
2082 | 2082 |
/// The key type of DescriptorMap (Node, Arc, Edge). |
2083 | 2083 |
typedef typename Map::Key Key; |
2084 | 2084 |
/// The value type of DescriptorMap. |
2085 | 2085 |
typedef typename Map::Value Value; |
2086 | 2086 |
|
2087 | 2087 |
/// \brief Constructor. |
2088 | 2088 |
/// |
2089 | 2089 |
/// Constructor for descriptor map. |
2090 | 2090 |
explicit DescriptorMap(const Graph& _graph) : Map(_graph) { |
2091 | 2091 |
Item it; |
2092 | 2092 |
const typename Map::Notifier* nf = Map::notifier(); |
2093 | 2093 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2094 | 2094 |
Map::set(it, _inv_map.size()); |
2095 | 2095 |
_inv_map.push_back(it); |
2096 | 2096 |
} |
2097 | 2097 |
} |
2098 | 2098 |
|
2099 | 2099 |
protected: |
2100 | 2100 |
|
2101 | 2101 |
/// \brief Add a new key to the map. |
2102 | 2102 |
/// |
2103 | 2103 |
/// Add a new key to the map. It is called by the |
2104 | 2104 |
/// \c AlterationNotifier. |
2105 | 2105 |
virtual void add(const Item& item) { |
2106 | 2106 |
Map::add(item); |
2107 | 2107 |
Map::set(item, _inv_map.size()); |
2108 | 2108 |
_inv_map.push_back(item); |
2109 | 2109 |
} |
2110 | 2110 |
|
2111 | 2111 |
/// \brief Add more new keys to the map. |
2112 | 2112 |
/// |
2113 | 2113 |
/// Add more new keys to the map. It is called by the |
2114 | 2114 |
/// \c AlterationNotifier. |
2115 | 2115 |
virtual void add(const std::vector<Item>& items) { |
2116 | 2116 |
Map::add(items); |
2117 | 2117 |
for (int i = 0; i < int(items.size()); ++i) { |
2118 | 2118 |
Map::set(items[i], _inv_map.size()); |
2119 | 2119 |
_inv_map.push_back(items[i]); |
2120 | 2120 |
} |
2121 | 2121 |
} |
2122 | 2122 |
|
2123 | 2123 |
/// \brief Erase the key from the map. |
2124 | 2124 |
/// |
2125 | 2125 |
/// Erase the key from the map. It is called by the |
2126 | 2126 |
/// \c AlterationNotifier. |
2127 | 2127 |
virtual void erase(const Item& item) { |
2128 | 2128 |
Map::set(_inv_map.back(), Map::operator[](item)); |
2129 | 2129 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
2130 | 2130 |
_inv_map.pop_back(); |
2131 | 2131 |
Map::erase(item); |
2132 | 2132 |
} |
2133 | 2133 |
|
2134 | 2134 |
/// \brief Erase more keys from the map. |
2135 | 2135 |
/// |
2136 | 2136 |
/// Erase more keys from the map. It is called by the |
2137 | 2137 |
/// \c AlterationNotifier. |
2138 | 2138 |
virtual void erase(const std::vector<Item>& items) { |
2139 | 2139 |
for (int i = 0; i < int(items.size()); ++i) { |
2140 | 2140 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
2141 | 2141 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
2142 | 2142 |
_inv_map.pop_back(); |
2143 | 2143 |
} |
2144 | 2144 |
Map::erase(items); |
2145 | 2145 |
} |
2146 | 2146 |
|
2147 | 2147 |
/// \brief Build the unique map. |
2148 | 2148 |
/// |
2149 | 2149 |
/// Build the unique map. It is called by the |
2150 | 2150 |
/// \c AlterationNotifier. |
2151 | 2151 |
virtual void build() { |
2152 | 2152 |
Map::build(); |
2153 | 2153 |
Item it; |
2154 | 2154 |
const typename Map::Notifier* nf = Map::notifier(); |
2155 | 2155 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2156 | 2156 |
Map::set(it, _inv_map.size()); |
2157 | 2157 |
_inv_map.push_back(it); |
2158 | 2158 |
} |
2159 | 2159 |
} |
2160 | 2160 |
|
2161 | 2161 |
/// \brief Clear the keys from the map. |
2162 | 2162 |
/// |
2163 | 2163 |
/// Clear the keys from the map. It is called by the |
2164 | 2164 |
/// \c AlterationNotifier. |
2165 | 2165 |
virtual void clear() { |
2166 | 2166 |
_inv_map.clear(); |
2167 | 2167 |
Map::clear(); |
2168 | 2168 |
} |
2169 | 2169 |
|
2170 | 2170 |
public: |
2171 | 2171 |
|
2172 | 2172 |
/// \brief Returns the maximal value plus one. |
2173 | 2173 |
/// |
2174 | 2174 |
/// Returns the maximal value plus one in the map. |
2175 | 2175 |
unsigned int size() const { |
2176 | 2176 |
return _inv_map.size(); |
2177 | 2177 |
} |
2178 | 2178 |
|
2179 | 2179 |
/// \brief Swaps the position of the two items in the map. |
2180 | 2180 |
/// |
2181 | 2181 |
/// Swaps the position of the two items in the map. |
2182 | 2182 |
void swap(const Item& p, const Item& q) { |
2183 | 2183 |
int pi = Map::operator[](p); |
2184 | 2184 |
int qi = Map::operator[](q); |
2185 | 2185 |
Map::set(p, qi); |
2186 | 2186 |
_inv_map[qi] = p; |
2187 | 2187 |
Map::set(q, pi); |
2188 | 2188 |
_inv_map[pi] = q; |
2189 | 2189 |
} |
2190 | 2190 |
|
2191 | 2191 |
/// \brief Gives back the \e descriptor of the item. |
2192 | 2192 |
/// |
2193 | 2193 |
/// Gives back the mutable and unique \e descriptor of the map. |
2194 | 2194 |
int operator[](const Item& item) const { |
2195 | 2195 |
return Map::operator[](item); |
2196 | 2196 |
} |
2197 | 2197 |
|
2198 | 2198 |
/// \brief Gives back the item by its descriptor. |
2199 | 2199 |
/// |
2200 | 2200 |
/// Gives back th item by its descriptor. |
2201 | 2201 |
Item operator()(int id) const { |
2202 | 2202 |
return _inv_map[id]; |
2203 | 2203 |
} |
2204 | 2204 |
|
2205 | 2205 |
private: |
2206 | 2206 |
|
2207 | 2207 |
typedef std::vector<Item> Container; |
2208 | 2208 |
Container _inv_map; |
2209 | 2209 |
|
2210 | 2210 |
public: |
2211 | 2211 |
/// \brief The inverse map type of DescriptorMap. |
2212 | 2212 |
/// |
2213 | 2213 |
/// The inverse map type of DescriptorMap. |
2214 | 2214 |
class InverseMap { |
2215 | 2215 |
public: |
2216 | 2216 |
/// \brief Constructor of the InverseMap. |
2217 | 2217 |
/// |
2218 | 2218 |
/// Constructor of the InverseMap. |
2219 | 2219 |
explicit InverseMap(const DescriptorMap& inverted) |
2220 | 2220 |
: _inverted(inverted) {} |
2221 | 2221 |
|
2222 | 2222 |
|
2223 | 2223 |
/// The value type of the InverseMap. |
2224 | 2224 |
typedef typename DescriptorMap::Key Value; |
2225 | 2225 |
/// The key type of the InverseMap. |
2226 | 2226 |
typedef typename DescriptorMap::Value Key; |
2227 | 2227 |
|
2228 | 2228 |
/// \brief Subscript operator. |
2229 | 2229 |
/// |
2230 | 2230 |
/// Subscript operator. It gives back the item |
2231 | 2231 |
/// that the descriptor belongs to currently. |
2232 | 2232 |
Value operator[](const Key& key) const { |
2233 | 2233 |
return _inverted(key); |
2234 | 2234 |
} |
2235 | 2235 |
|
2236 | 2236 |
/// \brief Size of the map. |
2237 | 2237 |
/// |
2238 | 2238 |
/// Returns the size of the map. |
2239 | 2239 |
unsigned int size() const { |
2240 | 2240 |
return _inverted.size(); |
2241 | 2241 |
} |
2242 | 2242 |
|
2243 | 2243 |
private: |
2244 | 2244 |
const DescriptorMap& _inverted; |
2245 | 2245 |
}; |
2246 | 2246 |
|
2247 | 2247 |
/// \brief Gives back the inverse of the map. |
2248 | 2248 |
/// |
2249 | 2249 |
/// Gives back the inverse of the map. |
2250 | 2250 |
const InverseMap inverse() const { |
2251 | 2251 |
return InverseMap(*this); |
2252 | 2252 |
} |
2253 | 2253 |
}; |
2254 | 2254 |
|
2255 | 2255 |
/// \brief Returns the source of the given arc. |
2256 | 2256 |
/// |
2257 | 2257 |
/// The SourceMap gives back the source Node of the given arc. |
2258 | 2258 |
/// \see TargetMap |
2259 | 2259 |
template <typename Digraph> |
2260 | 2260 |
class SourceMap { |
2261 | 2261 |
public: |
2262 | 2262 |
|
2263 | 2263 |
typedef typename Digraph::Node Value; |
2264 | 2264 |
typedef typename Digraph::Arc Key; |
2265 | 2265 |
|
2266 | 2266 |
/// \brief Constructor |
2267 | 2267 |
/// |
2268 | 2268 |
/// Constructor |
2269 |
/// \param |
|
2269 |
/// \param digraph The digraph that the map belongs to. |
|
2270 | 2270 |
explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {} |
2271 | 2271 |
|
2272 | 2272 |
/// \brief The subscript operator. |
2273 | 2273 |
/// |
2274 | 2274 |
/// The subscript operator. |
2275 | 2275 |
/// \param arc The arc |
2276 | 2276 |
/// \return The source of the arc |
2277 | 2277 |
Value operator[](const Key& arc) const { |
2278 | 2278 |
return _digraph.source(arc); |
2279 | 2279 |
} |
2280 | 2280 |
|
2281 | 2281 |
private: |
2282 | 2282 |
const Digraph& _digraph; |
2283 | 2283 |
}; |
2284 | 2284 |
|
2285 | 2285 |
/// \brief Returns a \c SourceMap class. |
2286 | 2286 |
/// |
2287 | 2287 |
/// This function just returns an \c SourceMap class. |
2288 | 2288 |
/// \relates SourceMap |
2289 | 2289 |
template <typename Digraph> |
2290 | 2290 |
inline SourceMap<Digraph> sourceMap(const Digraph& digraph) { |
2291 | 2291 |
return SourceMap<Digraph>(digraph); |
2292 | 2292 |
} |
2293 | 2293 |
|
2294 | 2294 |
/// \brief Returns the target of the given arc. |
2295 | 2295 |
/// |
2296 | 2296 |
/// The TargetMap gives back the target Node of the given arc. |
2297 | 2297 |
/// \see SourceMap |
2298 | 2298 |
template <typename Digraph> |
2299 | 2299 |
class TargetMap { |
2300 | 2300 |
public: |
2301 | 2301 |
|
2302 | 2302 |
typedef typename Digraph::Node Value; |
2303 | 2303 |
typedef typename Digraph::Arc Key; |
2304 | 2304 |
|
2305 | 2305 |
/// \brief Constructor |
2306 | 2306 |
/// |
2307 | 2307 |
/// Constructor |
2308 |
/// \param |
|
2308 |
/// \param digraph The digraph that the map belongs to. |
|
2309 | 2309 |
explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {} |
2310 | 2310 |
|
2311 | 2311 |
/// \brief The subscript operator. |
2312 | 2312 |
/// |
2313 | 2313 |
/// The subscript operator. |
2314 | 2314 |
/// \param e The arc |
2315 | 2315 |
/// \return The target of the arc |
2316 | 2316 |
Value operator[](const Key& e) const { |
2317 | 2317 |
return _digraph.target(e); |
2318 | 2318 |
} |
2319 | 2319 |
|
2320 | 2320 |
private: |
2321 | 2321 |
const Digraph& _digraph; |
2322 | 2322 |
}; |
2323 | 2323 |
|
2324 | 2324 |
/// \brief Returns a \c TargetMap class. |
2325 | 2325 |
/// |
2326 | 2326 |
/// This function just returns a \c TargetMap class. |
2327 | 2327 |
/// \relates TargetMap |
2328 | 2328 |
template <typename Digraph> |
2329 | 2329 |
inline TargetMap<Digraph> targetMap(const Digraph& digraph) { |
2330 | 2330 |
return TargetMap<Digraph>(digraph); |
2331 | 2331 |
} |
2332 | 2332 |
|
2333 | 2333 |
/// \brief Returns the "forward" directed arc view of an edge. |
2334 | 2334 |
/// |
2335 | 2335 |
/// Returns the "forward" directed arc view of an edge. |
2336 | 2336 |
/// \see BackwardMap |
2337 | 2337 |
template <typename Graph> |
2338 | 2338 |
class ForwardMap { |
2339 | 2339 |
public: |
2340 | 2340 |
|
2341 | 2341 |
typedef typename Graph::Arc Value; |
2342 | 2342 |
typedef typename Graph::Edge Key; |
2343 | 2343 |
|
2344 | 2344 |
/// \brief Constructor |
2345 | 2345 |
/// |
2346 | 2346 |
/// Constructor |
2347 |
/// \param |
|
2347 |
/// \param graph The graph that the map belongs to. |
|
2348 | 2348 |
explicit ForwardMap(const Graph& graph) : _graph(graph) {} |
2349 | 2349 |
|
2350 | 2350 |
/// \brief The subscript operator. |
2351 | 2351 |
/// |
2352 | 2352 |
/// The subscript operator. |
2353 | 2353 |
/// \param key An edge |
2354 | 2354 |
/// \return The "forward" directed arc view of edge |
2355 | 2355 |
Value operator[](const Key& key) const { |
2356 | 2356 |
return _graph.direct(key, true); |
2357 | 2357 |
} |
2358 | 2358 |
|
2359 | 2359 |
private: |
2360 | 2360 |
const Graph& _graph; |
2361 | 2361 |
}; |
2362 | 2362 |
|
2363 | 2363 |
/// \brief Returns a \c ForwardMap class. |
2364 | 2364 |
/// |
2365 | 2365 |
/// This function just returns an \c ForwardMap class. |
2366 | 2366 |
/// \relates ForwardMap |
2367 | 2367 |
template <typename Graph> |
2368 | 2368 |
inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
2369 | 2369 |
return ForwardMap<Graph>(graph); |
2370 | 2370 |
} |
2371 | 2371 |
|
2372 | 2372 |
/// \brief Returns the "backward" directed arc view of an edge. |
2373 | 2373 |
/// |
2374 | 2374 |
/// Returns the "backward" directed arc view of an edge. |
2375 | 2375 |
/// \see ForwardMap |
2376 | 2376 |
template <typename Graph> |
2377 | 2377 |
class BackwardMap { |
2378 | 2378 |
public: |
2379 | 2379 |
|
2380 | 2380 |
typedef typename Graph::Arc Value; |
2381 | 2381 |
typedef typename Graph::Edge Key; |
2382 | 2382 |
|
2383 | 2383 |
/// \brief Constructor |
2384 | 2384 |
/// |
2385 | 2385 |
/// Constructor |
2386 |
/// \param |
|
2386 |
/// \param graph The graph that the map belongs to. |
|
2387 | 2387 |
explicit BackwardMap(const Graph& graph) : _graph(graph) {} |
2388 | 2388 |
|
2389 | 2389 |
/// \brief The subscript operator. |
2390 | 2390 |
/// |
2391 | 2391 |
/// The subscript operator. |
2392 | 2392 |
/// \param key An edge |
2393 | 2393 |
/// \return The "backward" directed arc view of edge |
2394 | 2394 |
Value operator[](const Key& key) const { |
2395 | 2395 |
return _graph.direct(key, false); |
2396 | 2396 |
} |
2397 | 2397 |
|
2398 | 2398 |
private: |
2399 | 2399 |
const Graph& _graph; |
2400 | 2400 |
}; |
2401 | 2401 |
|
2402 | 2402 |
/// \brief Returns a \c BackwardMap class |
2403 | 2403 |
|
2404 | 2404 |
/// This function just returns a \c BackwardMap class. |
2405 | 2405 |
/// \relates BackwardMap |
2406 | 2406 |
template <typename Graph> |
2407 | 2407 |
inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
2408 | 2408 |
return BackwardMap<Graph>(graph); |
2409 | 2409 |
} |
2410 | 2410 |
|
2411 | 2411 |
/// \brief Potential difference map |
2412 | 2412 |
/// |
2413 | 2413 |
/// If there is an potential map on the nodes then we |
2414 | 2414 |
/// can get an arc map as we get the substraction of the |
2415 | 2415 |
/// values of the target and source. |
2416 | 2416 |
template <typename Digraph, typename NodeMap> |
2417 | 2417 |
class PotentialDifferenceMap { |
2418 | 2418 |
public: |
2419 | 2419 |
typedef typename Digraph::Arc Key; |
2420 | 2420 |
typedef typename NodeMap::Value Value; |
2421 | 2421 |
|
2422 | 2422 |
/// \brief Constructor |
2423 | 2423 |
/// |
2424 | 2424 |
/// Contructor of the map |
2425 | 2425 |
explicit PotentialDifferenceMap(const Digraph& digraph, |
2426 | 2426 |
const NodeMap& potential) |
2427 | 2427 |
: _digraph(digraph), _potential(potential) {} |
2428 | 2428 |
|
2429 | 2429 |
/// \brief Const subscription operator |
2430 | 2430 |
/// |
2431 | 2431 |
/// Const subscription operator |
2432 | 2432 |
Value operator[](const Key& arc) const { |
2433 | 2433 |
return _potential[_digraph.target(arc)] - |
2434 | 2434 |
_potential[_digraph.source(arc)]; |
2435 | 2435 |
} |
2436 | 2436 |
|
2437 | 2437 |
private: |
2438 | 2438 |
const Digraph& _digraph; |
2439 | 2439 |
const NodeMap& _potential; |
2440 | 2440 |
}; |
2441 | 2441 |
|
2442 | 2442 |
/// \brief Returns a PotentialDifferenceMap. |
2443 | 2443 |
/// |
2444 | 2444 |
/// This function just returns a PotentialDifferenceMap. |
2445 | 2445 |
/// \relates PotentialDifferenceMap |
2446 | 2446 |
template <typename Digraph, typename NodeMap> |
2447 | 2447 |
PotentialDifferenceMap<Digraph, NodeMap> |
2448 | 2448 |
potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) { |
2449 | 2449 |
return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential); |
2450 | 2450 |
} |
2451 | 2451 |
|
2452 | 2452 |
/// \brief Map of the node in-degrees. |
2453 | 2453 |
/// |
2454 | 2454 |
/// This map returns the in-degree of a node. Once it is constructed, |
2455 | 2455 |
/// the degrees are stored in a standard NodeMap, so each query is done |
2456 | 2456 |
/// in constant time. On the other hand, the values are updated automatically |
2457 | 2457 |
/// whenever the digraph changes. |
2458 | 2458 |
/// |
2459 | 2459 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
2460 | 2460 |
/// alternative ways to modify the digraph. The correct behavior of InDegMap |
2461 | 2461 |
/// is not guarantied if these additional features are used. For example |
2462 | 2462 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
2463 | 2463 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2464 | 2464 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2465 | 2465 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2466 | 2466 |
/// |
2467 | 2467 |
/// \sa OutDegMap |
2468 | 2468 |
|
2469 | 2469 |
template <typename _Digraph> |
2470 | 2470 |
class InDegMap |
2471 | 2471 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
2472 | 2472 |
::ItemNotifier::ObserverBase { |
2473 | 2473 |
|
2474 | 2474 |
public: |
2475 | 2475 |
|
2476 | 2476 |
typedef _Digraph Digraph; |
2477 | 2477 |
typedef int Value; |
2478 | 2478 |
typedef typename Digraph::Node Key; |
2479 | 2479 |
|
2480 | 2480 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2481 | 2481 |
::ItemNotifier::ObserverBase Parent; |
2482 | 2482 |
|
2483 | 2483 |
private: |
2484 | 2484 |
|
2485 | 2485 |
class AutoNodeMap |
2486 | 2486 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2487 | 2487 |
public: |
2488 | 2488 |
|
2489 | 2489 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2490 | 2490 |
template Map<int>::Type Parent; |
2491 | 2491 |
|
2492 | 2492 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2493 | 2493 |
|
2494 | 2494 |
virtual void add(const Key& key) { |
2495 | 2495 |
Parent::add(key); |
2496 | 2496 |
Parent::set(key, 0); |
2497 | 2497 |
} |
2498 | 2498 |
|
2499 | 2499 |
virtual void add(const std::vector<Key>& keys) { |
2500 | 2500 |
Parent::add(keys); |
2501 | 2501 |
for (int i = 0; i < int(keys.size()); ++i) { |
2502 | 2502 |
Parent::set(keys[i], 0); |
2503 | 2503 |
} |
2504 | 2504 |
} |
2505 | 2505 |
|
2506 | 2506 |
virtual void build() { |
2507 | 2507 |
Parent::build(); |
2508 | 2508 |
Key it; |
2509 | 2509 |
typename Parent::Notifier* nf = Parent::notifier(); |
2510 | 2510 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2511 | 2511 |
Parent::set(it, 0); |
2512 | 2512 |
} |
2513 | 2513 |
} |
2514 | 2514 |
}; |
2515 | 2515 |
|
2516 | 2516 |
public: |
2517 | 2517 |
|
2518 | 2518 |
/// \brief Constructor. |
2519 | 2519 |
/// |
2520 | 2520 |
/// Constructor for creating in-degree map. |
2521 | 2521 |
explicit InDegMap(const Digraph& digraph) |
2522 | 2522 |
: _digraph(digraph), _deg(digraph) { |
2523 | 2523 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2524 | 2524 |
|
2525 | 2525 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2526 | 2526 |
_deg[it] = countInArcs(_digraph, it); |
2527 | 2527 |
} |
2528 | 2528 |
} |
2529 | 2529 |
|
2530 | 2530 |
/// Gives back the in-degree of a Node. |
2531 | 2531 |
int operator[](const Key& key) const { |
2532 | 2532 |
return _deg[key]; |
2533 | 2533 |
} |
2534 | 2534 |
|
2535 | 2535 |
protected: |
2536 | 2536 |
|
2537 | 2537 |
typedef typename Digraph::Arc Arc; |
2538 | 2538 |
|
2539 | 2539 |
virtual void add(const Arc& arc) { |
2540 | 2540 |
++_deg[_digraph.target(arc)]; |
2541 | 2541 |
} |
2542 | 2542 |
|
2543 | 2543 |
virtual void add(const std::vector<Arc>& arcs) { |
2544 | 2544 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2545 | 2545 |
++_deg[_digraph.target(arcs[i])]; |
2546 | 2546 |
} |
2547 | 2547 |
} |
2548 | 2548 |
|
2549 | 2549 |
virtual void erase(const Arc& arc) { |
2550 | 2550 |
--_deg[_digraph.target(arc)]; |
2551 | 2551 |
} |
2552 | 2552 |
|
2553 | 2553 |
virtual void erase(const std::vector<Arc>& arcs) { |
2554 | 2554 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2555 | 2555 |
--_deg[_digraph.target(arcs[i])]; |
2556 | 2556 |
} |
2557 | 2557 |
} |
2558 | 2558 |
|
2559 | 2559 |
virtual void build() { |
2560 | 2560 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2561 | 2561 |
_deg[it] = countInArcs(_digraph, it); |
2562 | 2562 |
} |
2563 | 2563 |
} |
2564 | 2564 |
|
2565 | 2565 |
virtual void clear() { |
2566 | 2566 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2567 | 2567 |
_deg[it] = 0; |
2568 | 2568 |
} |
2569 | 2569 |
} |
2570 | 2570 |
private: |
2571 | 2571 |
|
2572 | 2572 |
const Digraph& _digraph; |
2573 | 2573 |
AutoNodeMap _deg; |
2574 | 2574 |
}; |
2575 | 2575 |
|
2576 | 2576 |
/// \brief Map of the node out-degrees. |
2577 | 2577 |
/// |
2578 | 2578 |
/// This map returns the out-degree of a node. Once it is constructed, |
2579 | 2579 |
/// the degrees are stored in a standard NodeMap, so each query is done |
2580 | 2580 |
/// in constant time. On the other hand, the values are updated automatically |
2581 | 2581 |
/// whenever the digraph changes. |
2582 | 2582 |
/// |
2583 | 2583 |
/// \warning Besides addNode() and addArc(), a digraph structure may provide |
2584 | 2584 |
/// alternative ways to modify the digraph. The correct behavior of OutDegMap |
2585 | 2585 |
/// is not guarantied if these additional features are used. For example |
2586 | 2586 |
/// the functions \ref ListDigraph::changeSource() "changeSource()", |
2587 | 2587 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2588 | 2588 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2589 | 2589 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2590 | 2590 |
/// |
2591 | 2591 |
/// \sa InDegMap |
2592 | 2592 |
|
2593 | 2593 |
template <typename _Digraph> |
2594 | 2594 |
class OutDegMap |
2595 | 2595 |
: protected ItemSetTraits<_Digraph, typename _Digraph::Arc> |
2596 | 2596 |
::ItemNotifier::ObserverBase { |
2597 | 2597 |
|
2598 | 2598 |
public: |
2599 | 2599 |
|
2600 | 2600 |
typedef _Digraph Digraph; |
2601 | 2601 |
typedef int Value; |
2602 | 2602 |
typedef typename Digraph::Node Key; |
2603 | 2603 |
|
2604 | 2604 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2605 | 2605 |
::ItemNotifier::ObserverBase Parent; |
2606 | 2606 |
|
2607 | 2607 |
private: |
2608 | 2608 |
|
2609 | 2609 |
class AutoNodeMap |
2610 | 2610 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2611 | 2611 |
public: |
2612 | 2612 |
|
2613 | 2613 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2614 | 2614 |
template Map<int>::Type Parent; |
2615 | 2615 |
|
2616 | 2616 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2617 | 2617 |
|
2618 | 2618 |
virtual void add(const Key& key) { |
2619 | 2619 |
Parent::add(key); |
2620 | 2620 |
Parent::set(key, 0); |
2621 | 2621 |
} |
2622 | 2622 |
virtual void add(const std::vector<Key>& keys) { |
2623 | 2623 |
Parent::add(keys); |
2624 | 2624 |
for (int i = 0; i < int(keys.size()); ++i) { |
2625 | 2625 |
Parent::set(keys[i], 0); |
2626 | 2626 |
} |
2627 | 2627 |
} |
2628 | 2628 |
virtual void build() { |
2629 | 2629 |
Parent::build(); |
2630 | 2630 |
Key it; |
2631 | 2631 |
typename Parent::Notifier* nf = Parent::notifier(); |
2632 | 2632 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2633 | 2633 |
Parent::set(it, 0); |
2634 | 2634 |
} |
2635 | 2635 |
} |
2636 | 2636 |
}; |
2637 | 2637 |
|
2638 | 2638 |
public: |
2639 | 2639 |
|
2640 | 2640 |
/// \brief Constructor. |
2641 | 2641 |
/// |
2642 | 2642 |
/// Constructor for creating out-degree map. |
2643 | 2643 |
explicit OutDegMap(const Digraph& digraph) |
2644 | 2644 |
: _digraph(digraph), _deg(digraph) { |
2645 | 2645 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
2646 | 2646 |
|
2647 | 2647 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2648 | 2648 |
_deg[it] = countOutArcs(_digraph, it); |
2649 | 2649 |
} |
2650 | 2650 |
} |
2651 | 2651 |
|
2652 | 2652 |
/// Gives back the out-degree of a Node. |
2653 | 2653 |
int operator[](const Key& key) const { |
2654 | 2654 |
return _deg[key]; |
2655 | 2655 |
} |
2656 | 2656 |
|
2657 | 2657 |
protected: |
2658 | 2658 |
|
2659 | 2659 |
typedef typename Digraph::Arc Arc; |
2660 | 2660 |
|
2661 | 2661 |
virtual void add(const Arc& arc) { |
2662 | 2662 |
++_deg[_digraph.source(arc)]; |
2663 | 2663 |
} |
2664 | 2664 |
|
2665 | 2665 |
virtual void add(const std::vector<Arc>& arcs) { |
2666 | 2666 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2667 | 2667 |
++_deg[_digraph.source(arcs[i])]; |
2668 | 2668 |
} |
2669 | 2669 |
} |
2670 | 2670 |
|
2671 | 2671 |
virtual void erase(const Arc& arc) { |
2672 | 2672 |
--_deg[_digraph.source(arc)]; |
2673 | 2673 |
} |
2674 | 2674 |
|
2675 | 2675 |
virtual void erase(const std::vector<Arc>& arcs) { |
2676 | 2676 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2677 | 2677 |
--_deg[_digraph.source(arcs[i])]; |
2678 | 2678 |
} |
2679 | 2679 |
} |
2680 | 2680 |
|
2681 | 2681 |
virtual void build() { |
2682 | 2682 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2683 | 2683 |
_deg[it] = countOutArcs(_digraph, it); |
2684 | 2684 |
} |
2685 | 2685 |
} |
2686 | 2686 |
|
2687 | 2687 |
virtual void clear() { |
2688 | 2688 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2689 | 2689 |
_deg[it] = 0; |
2690 | 2690 |
} |
2691 | 2691 |
} |
2692 | 2692 |
private: |
2693 | 2693 |
|
2694 | 2694 |
const Digraph& _digraph; |
2695 | 2695 |
AutoNodeMap _deg; |
2696 | 2696 |
}; |
2697 | 2697 |
|
2698 | 2698 |
/// @} |
2699 | 2699 |
} |
2700 | 2700 |
|
2701 | 2701 |
#endif // LEMON_MAPS_H |
... | ... |
@@ -84,1003 +84,1003 @@ |
84 | 84 |
|
85 | 85 |
/// \brief LEMON style iterator for path arcs |
86 | 86 |
/// |
87 | 87 |
/// This class is used to iterate on the arcs of the paths. |
88 | 88 |
class ArcIt { |
89 | 89 |
friend class Path; |
90 | 90 |
public: |
91 | 91 |
/// \brief Default constructor |
92 | 92 |
ArcIt() {} |
93 | 93 |
/// \brief Invalid constructor |
94 | 94 |
ArcIt(Invalid) : path(0), idx(-1) {} |
95 | 95 |
/// \brief Initializate the iterator to the first arc of path |
96 | 96 |
ArcIt(const Path &_path) |
97 | 97 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
98 | 98 |
|
99 | 99 |
private: |
100 | 100 |
|
101 | 101 |
ArcIt(const Path &_path, int _idx) |
102 | 102 |
: path(&_path), idx(_idx) {} |
103 | 103 |
|
104 | 104 |
public: |
105 | 105 |
|
106 | 106 |
/// \brief Conversion to Arc |
107 | 107 |
operator const Arc&() const { |
108 | 108 |
return path->nth(idx); |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
/// \brief Next arc |
112 | 112 |
ArcIt& operator++() { |
113 | 113 |
++idx; |
114 | 114 |
if (idx >= path->length()) idx = -1; |
115 | 115 |
return *this; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
/// \brief Comparison operator |
119 | 119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
120 | 120 |
/// \brief Comparison operator |
121 | 121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
122 | 122 |
/// \brief Comparison operator |
123 | 123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
124 | 124 |
|
125 | 125 |
private: |
126 | 126 |
const Path *path; |
127 | 127 |
int idx; |
128 | 128 |
}; |
129 | 129 |
|
130 | 130 |
/// \brief Length of the path. |
131 | 131 |
int length() const { return head.size() + tail.size(); } |
132 | 132 |
/// \brief Return whether the path is empty. |
133 | 133 |
bool empty() const { return head.empty() && tail.empty(); } |
134 | 134 |
|
135 | 135 |
/// \brief Reset the path to an empty one. |
136 | 136 |
void clear() { head.clear(); tail.clear(); } |
137 | 137 |
|
138 | 138 |
/// \brief The nth arc. |
139 | 139 |
/// |
140 | 140 |
/// \pre n is in the [0..length() - 1] range |
141 | 141 |
const Arc& nth(int n) const { |
142 | 142 |
return n < int(head.size()) ? *(head.rbegin() + n) : |
143 | 143 |
*(tail.begin() + (n - head.size())); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
/// \brief Initialize arc iterator to point to the nth arc |
147 | 147 |
/// |
148 | 148 |
/// \pre n is in the [0..length() - 1] range |
149 | 149 |
ArcIt nthIt(int n) const { |
150 | 150 |
return ArcIt(*this, n); |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
/// \brief The first arc of the path |
154 | 154 |
const Arc& front() const { |
155 | 155 |
return head.empty() ? tail.front() : head.back(); |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
/// \brief Add a new arc before the current path |
159 | 159 |
void addFront(const Arc& arc) { |
160 | 160 |
head.push_back(arc); |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
/// \brief Erase the first arc of the path |
164 | 164 |
void eraseFront() { |
165 | 165 |
if (!head.empty()) { |
166 | 166 |
head.pop_back(); |
167 | 167 |
} else { |
168 | 168 |
head.clear(); |
169 | 169 |
int halfsize = tail.size() / 2; |
170 | 170 |
head.resize(halfsize); |
171 | 171 |
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
172 | 172 |
head.rbegin()); |
173 | 173 |
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
174 | 174 |
tail.resize(tail.size() - halfsize - 1); |
175 | 175 |
} |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
/// \brief The last arc of the path |
179 | 179 |
const Arc& back() const { |
180 | 180 |
return tail.empty() ? head.front() : tail.back(); |
181 | 181 |
} |
182 | 182 |
|
183 | 183 |
/// \brief Add a new arc behind the current path |
184 | 184 |
void addBack(const Arc& arc) { |
185 | 185 |
tail.push_back(arc); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
/// \brief Erase the last arc of the path |
189 | 189 |
void eraseBack() { |
190 | 190 |
if (!tail.empty()) { |
191 | 191 |
tail.pop_back(); |
192 | 192 |
} else { |
193 | 193 |
int halfsize = head.size() / 2; |
194 | 194 |
tail.resize(halfsize); |
195 | 195 |
std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
196 | 196 |
tail.rbegin()); |
197 | 197 |
std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
198 | 198 |
head.resize(head.size() - halfsize - 1); |
199 | 199 |
} |
200 | 200 |
} |
201 | 201 |
|
202 | 202 |
typedef True BuildTag; |
203 | 203 |
|
204 | 204 |
template <typename CPath> |
205 | 205 |
void build(const CPath& path) { |
206 | 206 |
int len = path.length(); |
207 | 207 |
tail.reserve(len); |
208 | 208 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
209 | 209 |
tail.push_back(it); |
210 | 210 |
} |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
template <typename CPath> |
214 | 214 |
void buildRev(const CPath& path) { |
215 | 215 |
int len = path.length(); |
216 | 216 |
head.reserve(len); |
217 | 217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
218 | 218 |
head.push_back(it); |
219 | 219 |
} |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
protected: |
223 | 223 |
typedef std::vector<Arc> Container; |
224 | 224 |
Container head, tail; |
225 | 225 |
|
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// \brief A structure for representing directed paths in a digraph. |
229 | 229 |
/// |
230 | 230 |
/// A structure for representing directed path in a digraph. |
231 | 231 |
/// \tparam _Digraph The digraph type in which the path is. |
232 | 232 |
/// |
233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
234 | 234 |
/// lemon path type stores just this list. As a consequence it |
235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
236 | 236 |
/// cannot store the source. |
237 | 237 |
/// |
238 | 238 |
/// This implementation is a just back insertable and erasable path |
239 | 239 |
/// type. It can be indexed in O(1) time. The back insertion and |
240 | 240 |
/// erasure is amortized O(1) time. This implementation is faster |
241 | 241 |
/// then the \c Path type because it use just one vector for the |
242 | 242 |
/// arcs. |
243 | 243 |
template <typename _Digraph> |
244 | 244 |
class SimplePath { |
245 | 245 |
public: |
246 | 246 |
|
247 | 247 |
typedef _Digraph Digraph; |
248 | 248 |
typedef typename Digraph::Arc Arc; |
249 | 249 |
|
250 | 250 |
/// \brief Default constructor |
251 | 251 |
/// |
252 | 252 |
/// Default constructor |
253 | 253 |
SimplePath() {} |
254 | 254 |
|
255 | 255 |
/// \brief Template copy constructor |
256 | 256 |
/// |
257 | 257 |
/// This path can be initialized with any other path type. It just |
258 | 258 |
/// makes a copy of the given path. |
259 | 259 |
template <typename CPath> |
260 | 260 |
SimplePath(const CPath& cpath) { |
261 | 261 |
copyPath(*this, cpath); |
262 | 262 |
} |
263 | 263 |
|
264 | 264 |
/// \brief Template copy assignment |
265 | 265 |
/// |
266 | 266 |
/// This path can be initialized with any other path type. It just |
267 | 267 |
/// makes a copy of the given path. |
268 | 268 |
template <typename CPath> |
269 | 269 |
SimplePath& operator=(const CPath& cpath) { |
270 | 270 |
copyPath(*this, cpath); |
271 | 271 |
return *this; |
272 | 272 |
} |
273 | 273 |
|
274 | 274 |
/// \brief Iterator class to iterate on the arcs of the paths |
275 | 275 |
/// |
276 | 276 |
/// This class is used to iterate on the arcs of the paths |
277 | 277 |
/// |
278 | 278 |
/// Of course it converts to Digraph::Arc |
279 | 279 |
class ArcIt { |
280 | 280 |
friend class SimplePath; |
281 | 281 |
public: |
282 | 282 |
/// Default constructor |
283 | 283 |
ArcIt() {} |
284 | 284 |
/// Invalid constructor |
285 | 285 |
ArcIt(Invalid) : path(0), idx(-1) {} |
286 | 286 |
/// \brief Initializate the constructor to the first arc of path |
287 | 287 |
ArcIt(const SimplePath &_path) |
288 | 288 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
289 | 289 |
|
290 | 290 |
private: |
291 | 291 |
|
292 | 292 |
/// Constructor with starting point |
293 | 293 |
ArcIt(const SimplePath &_path, int _idx) |
294 | 294 |
: idx(_idx), path(&_path) {} |
295 | 295 |
|
296 | 296 |
public: |
297 | 297 |
|
298 | 298 |
///Conversion to Digraph::Arc |
299 | 299 |
operator const Arc&() const { |
300 | 300 |
return path->nth(idx); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
/// Next arc |
304 | 304 |
ArcIt& operator++() { |
305 | 305 |
++idx; |
306 | 306 |
if (idx >= path->length()) idx = -1; |
307 | 307 |
return *this; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
/// Comparison operator |
311 | 311 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
312 | 312 |
/// Comparison operator |
313 | 313 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
314 | 314 |
/// Comparison operator |
315 | 315 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
316 | 316 |
|
317 | 317 |
private: |
318 | 318 |
const SimplePath *path; |
319 | 319 |
int idx; |
320 | 320 |
}; |
321 | 321 |
|
322 | 322 |
/// \brief Length of the path. |
323 | 323 |
int length() const { return data.size(); } |
324 | 324 |
/// \brief Return true if the path is empty. |
325 | 325 |
bool empty() const { return data.empty(); } |
326 | 326 |
|
327 | 327 |
/// \brief Reset the path to an empty one. |
328 | 328 |
void clear() { data.clear(); } |
329 | 329 |
|
330 | 330 |
/// \brief The nth arc. |
331 | 331 |
/// |
332 | 332 |
/// \pre n is in the [0..length() - 1] range |
333 | 333 |
const Arc& nth(int n) const { |
334 | 334 |
return data[n]; |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
/// \brief Initializes arc iterator to point to the nth arc. |
338 | 338 |
ArcIt nthIt(int n) const { |
339 | 339 |
return ArcIt(*this, n); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
/// \brief The first arc of the path. |
343 | 343 |
const Arc& front() const { |
344 | 344 |
return data.front(); |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief The last arc of the path. |
348 | 348 |
const Arc& back() const { |
349 | 349 |
return data.back(); |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
/// \brief Add a new arc behind the current path. |
353 | 353 |
void addBack(const Arc& arc) { |
354 | 354 |
data.push_back(arc); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief Erase the last arc of the path |
358 | 358 |
void eraseBack() { |
359 | 359 |
data.pop_back(); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
typedef True BuildTag; |
363 | 363 |
|
364 | 364 |
template <typename CPath> |
365 | 365 |
void build(const CPath& path) { |
366 | 366 |
int len = path.length(); |
367 | 367 |
data.resize(len); |
368 | 368 |
int index = 0; |
369 | 369 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
370 | 370 |
data[index] = it;; |
371 | 371 |
++index; |
372 | 372 |
} |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
template <typename CPath> |
376 | 376 |
void buildRev(const CPath& path) { |
377 | 377 |
int len = path.length(); |
378 | 378 |
data.resize(len); |
379 | 379 |
int index = len; |
380 | 380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
381 | 381 |
--index; |
382 | 382 |
data[index] = it;; |
383 | 383 |
} |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
protected: |
387 | 387 |
typedef std::vector<Arc> Container; |
388 | 388 |
Container data; |
389 | 389 |
|
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
/// \brief A structure for representing directed paths in a digraph. |
393 | 393 |
/// |
394 | 394 |
/// A structure for representing directed path in a digraph. |
395 | 395 |
/// \tparam _Digraph The digraph type in which the path is. |
396 | 396 |
/// |
397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
398 | 398 |
/// lemon path type stores just this list. As a consequence it |
399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
400 | 400 |
/// cannot store the source. |
401 | 401 |
/// |
402 | 402 |
/// This implementation is a back and front insertable and erasable |
403 | 403 |
/// path type. It can be indexed in O(k) time, where k is the rank |
404 | 404 |
/// of the arc in the path. The length can be computed in O(n) |
405 | 405 |
/// time. The front and back insertion and erasure is O(1) time |
406 | 406 |
/// and it can be splited and spliced in O(1) time. |
407 | 407 |
template <typename _Digraph> |
408 | 408 |
class ListPath { |
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
typedef _Digraph Digraph; |
412 | 412 |
typedef typename Digraph::Arc Arc; |
413 | 413 |
|
414 | 414 |
protected: |
415 | 415 |
|
416 | 416 |
// the std::list<> is incompatible |
417 | 417 |
// hard to create invalid iterator |
418 | 418 |
struct Node { |
419 | 419 |
Arc arc; |
420 | 420 |
Node *next, *prev; |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
Node *first, *last; |
424 | 424 |
|
425 | 425 |
std::allocator<Node> alloc; |
426 | 426 |
|
427 | 427 |
public: |
428 | 428 |
|
429 | 429 |
/// \brief Default constructor |
430 | 430 |
/// |
431 | 431 |
/// Default constructor |
432 | 432 |
ListPath() : first(0), last(0) {} |
433 | 433 |
|
434 | 434 |
/// \brief Template copy constructor |
435 | 435 |
/// |
436 | 436 |
/// This path can be initialized with any other path type. It just |
437 | 437 |
/// makes a copy of the given path. |
438 | 438 |
template <typename CPath> |
439 | 439 |
ListPath(const CPath& cpath) : first(0), last(0) { |
440 | 440 |
copyPath(*this, cpath); |
441 | 441 |
} |
442 | 442 |
|
443 | 443 |
/// \brief Destructor of the path |
444 | 444 |
/// |
445 | 445 |
/// Destructor of the path |
446 | 446 |
~ListPath() { |
447 | 447 |
clear(); |
448 | 448 |
} |
449 | 449 |
|
450 | 450 |
/// \brief Template copy assignment |
451 | 451 |
/// |
452 | 452 |
/// This path can be initialized with any other path type. It just |
453 | 453 |
/// makes a copy of the given path. |
454 | 454 |
template <typename CPath> |
455 | 455 |
ListPath& operator=(const CPath& cpath) { |
456 | 456 |
copyPath(*this, cpath); |
457 | 457 |
return *this; |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
/// \brief Iterator class to iterate on the arcs of the paths |
461 | 461 |
/// |
462 | 462 |
/// This class is used to iterate on the arcs of the paths |
463 | 463 |
/// |
464 | 464 |
/// Of course it converts to Digraph::Arc |
465 | 465 |
class ArcIt { |
466 | 466 |
friend class ListPath; |
467 | 467 |
public: |
468 | 468 |
/// Default constructor |
469 | 469 |
ArcIt() {} |
470 | 470 |
/// Invalid constructor |
471 | 471 |
ArcIt(Invalid) : path(0), node(0) {} |
472 | 472 |
/// \brief Initializate the constructor to the first arc of path |
473 | 473 |
ArcIt(const ListPath &_path) |
474 | 474 |
: path(&_path), node(_path.first) {} |
475 | 475 |
|
476 | 476 |
protected: |
477 | 477 |
|
478 | 478 |
ArcIt(const ListPath &_path, Node *_node) |
479 | 479 |
: path(&_path), node(_node) {} |
480 | 480 |
|
481 | 481 |
|
482 | 482 |
public: |
483 | 483 |
|
484 | 484 |
///Conversion to Digraph::Arc |
485 | 485 |
operator const Arc&() const { |
486 | 486 |
return node->arc; |
487 | 487 |
} |
488 | 488 |
|
489 | 489 |
/// Next arc |
490 | 490 |
ArcIt& operator++() { |
491 | 491 |
node = node->next; |
492 | 492 |
return *this; |
493 | 493 |
} |
494 | 494 |
|
495 | 495 |
/// Comparison operator |
496 | 496 |
bool operator==(const ArcIt& e) const { return node==e.node; } |
497 | 497 |
/// Comparison operator |
498 | 498 |
bool operator!=(const ArcIt& e) const { return node!=e.node; } |
499 | 499 |
/// Comparison operator |
500 | 500 |
bool operator<(const ArcIt& e) const { return node<e.node; } |
501 | 501 |
|
502 | 502 |
private: |
503 | 503 |
const ListPath *path; |
504 | 504 |
Node *node; |
505 | 505 |
}; |
506 | 506 |
|
507 | 507 |
/// \brief The nth arc. |
508 | 508 |
/// |
509 | 509 |
/// This function looks for the nth arc in O(n) time. |
510 | 510 |
/// \pre n is in the [0..length() - 1] range |
511 | 511 |
const Arc& nth(int n) const { |
512 | 512 |
Node *node = first; |
513 | 513 |
for (int i = 0; i < n; ++i) { |
514 | 514 |
node = node->next; |
515 | 515 |
} |
516 | 516 |
return node->arc; |
517 | 517 |
} |
518 | 518 |
|
519 | 519 |
/// \brief Initializes arc iterator to point to the nth arc. |
520 | 520 |
ArcIt nthIt(int n) const { |
521 | 521 |
Node *node = first; |
522 | 522 |
for (int i = 0; i < n; ++i) { |
523 | 523 |
node = node->next; |
524 | 524 |
} |
525 | 525 |
return ArcIt(*this, node); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
/// \brief Length of the path. |
529 | 529 |
int length() const { |
530 | 530 |
int len = 0; |
531 | 531 |
Node *node = first; |
532 | 532 |
while (node != 0) { |
533 | 533 |
node = node->next; |
534 | 534 |
++len; |
535 | 535 |
} |
536 | 536 |
return len; |
537 | 537 |
} |
538 | 538 |
|
539 | 539 |
/// \brief Return true if the path is empty. |
540 | 540 |
bool empty() const { return first == 0; } |
541 | 541 |
|
542 | 542 |
/// \brief Reset the path to an empty one. |
543 | 543 |
void clear() { |
544 | 544 |
while (first != 0) { |
545 | 545 |
last = first->next; |
546 | 546 |
alloc.destroy(first); |
547 | 547 |
alloc.deallocate(first, 1); |
548 | 548 |
first = last; |
549 | 549 |
} |
550 | 550 |
} |
551 | 551 |
|
552 | 552 |
/// \brief The first arc of the path |
553 | 553 |
const Arc& front() const { |
554 | 554 |
return first->arc; |
555 | 555 |
} |
556 | 556 |
|
557 | 557 |
/// \brief Add a new arc before the current path |
558 | 558 |
void addFront(const Arc& arc) { |
559 | 559 |
Node *node = alloc.allocate(1); |
560 | 560 |
alloc.construct(node, Node()); |
561 | 561 |
node->prev = 0; |
562 | 562 |
node->next = first; |
563 | 563 |
node->arc = arc; |
564 | 564 |
if (first) { |
565 | 565 |
first->prev = node; |
566 | 566 |
first = node; |
567 | 567 |
} else { |
568 | 568 |
first = last = node; |
569 | 569 |
} |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
/// \brief Erase the first arc of the path |
573 | 573 |
void eraseFront() { |
574 | 574 |
Node *node = first; |
575 | 575 |
first = first->next; |
576 | 576 |
if (first) { |
577 | 577 |
first->prev = 0; |
578 | 578 |
} else { |
579 | 579 |
last = 0; |
580 | 580 |
} |
581 | 581 |
alloc.destroy(node); |
582 | 582 |
alloc.deallocate(node, 1); |
583 | 583 |
} |
584 | 584 |
|
585 | 585 |
/// \brief The last arc of the path. |
586 | 586 |
const Arc& back() const { |
587 | 587 |
return last->arc; |
588 | 588 |
} |
589 | 589 |
|
590 | 590 |
/// \brief Add a new arc behind the current path. |
591 | 591 |
void addBack(const Arc& arc) { |
592 | 592 |
Node *node = alloc.allocate(1); |
593 | 593 |
alloc.construct(node, Node()); |
594 | 594 |
node->next = 0; |
595 | 595 |
node->prev = last; |
596 | 596 |
node->arc = arc; |
597 | 597 |
if (last) { |
598 | 598 |
last->next = node; |
599 | 599 |
last = node; |
600 | 600 |
} else { |
601 | 601 |
last = first = node; |
602 | 602 |
} |
603 | 603 |
} |
604 | 604 |
|
605 | 605 |
/// \brief Erase the last arc of the path |
606 | 606 |
void eraseBack() { |
607 | 607 |
Node *node = last; |
608 | 608 |
last = last->prev; |
609 | 609 |
if (last) { |
610 | 610 |
last->next = 0; |
611 | 611 |
} else { |
612 | 612 |
first = 0; |
613 | 613 |
} |
614 | 614 |
alloc.destroy(node); |
615 | 615 |
alloc.deallocate(node, 1); |
616 | 616 |
} |
617 | 617 |
|
618 | 618 |
/// \brief Splice a path to the back of the current path. |
619 | 619 |
/// |
620 | 620 |
/// It splices \c tpath to the back of the current path and \c |
621 | 621 |
/// tpath becomes empty. The time complexity of this function is |
622 | 622 |
/// O(1). |
623 | 623 |
void spliceBack(ListPath& tpath) { |
624 | 624 |
if (first) { |
625 | 625 |
if (tpath.first) { |
626 | 626 |
last->next = tpath.first; |
627 | 627 |
tpath.first->prev = last; |
628 | 628 |
last = tpath.last; |
629 | 629 |
} |
630 | 630 |
} else { |
631 | 631 |
first = tpath.first; |
632 | 632 |
last = tpath.last; |
633 | 633 |
} |
634 | 634 |
tpath.first = tpath.last = 0; |
635 | 635 |
} |
636 | 636 |
|
637 | 637 |
/// \brief Splice a path to the front of the current path. |
638 | 638 |
/// |
639 | 639 |
/// It splices \c tpath before the current path and \c tpath |
640 | 640 |
/// becomes empty. The time complexity of this function |
641 | 641 |
/// is O(1). |
642 | 642 |
void spliceFront(ListPath& tpath) { |
643 | 643 |
if (first) { |
644 | 644 |
if (tpath.first) { |
645 | 645 |
first->prev = tpath.last; |
646 | 646 |
tpath.last->next = first; |
647 | 647 |
first = tpath.first; |
648 | 648 |
} |
649 | 649 |
} else { |
650 | 650 |
first = tpath.first; |
651 | 651 |
last = tpath.last; |
652 | 652 |
} |
653 | 653 |
tpath.first = tpath.last = 0; |
654 | 654 |
} |
655 | 655 |
|
656 | 656 |
/// \brief Splice a path into the current path. |
657 | 657 |
/// |
658 | 658 |
/// It splices the \c tpath into the current path before the |
659 | 659 |
/// position of \c it iterator and \c tpath becomes empty. The |
660 | 660 |
/// time complexity of this function is O(1). If the \c it is |
661 | 661 |
/// \c INVALID then it will splice behind the current path. |
662 | 662 |
void splice(ArcIt it, ListPath& tpath) { |
663 | 663 |
if (it.node) { |
664 | 664 |
if (tpath.first) { |
665 | 665 |
tpath.first->prev = it.node->prev; |
666 | 666 |
if (it.node->prev) { |
667 | 667 |
it.node->prev->next = tpath.first; |
668 | 668 |
} else { |
669 | 669 |
first = tpath.first; |
670 | 670 |
} |
671 | 671 |
it.node->prev = tpath.last; |
672 | 672 |
tpath.last->next = it.node; |
673 | 673 |
} |
674 | 674 |
} else { |
675 | 675 |
if (first) { |
676 | 676 |
if (tpath.first) { |
677 | 677 |
last->next = tpath.first; |
678 | 678 |
tpath.first->prev = last; |
679 | 679 |
last = tpath.last; |
680 | 680 |
} |
681 | 681 |
} else { |
682 | 682 |
first = tpath.first; |
683 | 683 |
last = tpath.last; |
684 | 684 |
} |
685 | 685 |
} |
686 | 686 |
tpath.first = tpath.last = 0; |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
/// \brief Split the current path. |
690 | 690 |
/// |
691 | 691 |
/// It splits the current path into two parts. The part before |
692 | 692 |
/// the iterator \c it will remain in the current path and the part |
693 | 693 |
/// starting with |
694 | 694 |
/// \c it will put into \c tpath. If \c tpath have arcs |
695 | 695 |
/// before the operation they are removed first. The time |
696 | 696 |
/// complexity of this function is O(1) plus the the time of emtying |
697 | 697 |
/// \c tpath. If \c it is \c INVALID then it just clears \c tpath |
698 | 698 |
void split(ArcIt it, ListPath& tpath) { |
699 | 699 |
tpath.clear(); |
700 | 700 |
if (it.node) { |
701 | 701 |
tpath.first = it.node; |
702 | 702 |
tpath.last = last; |
703 | 703 |
if (it.node->prev) { |
704 | 704 |
last = it.node->prev; |
705 | 705 |
last->next = 0; |
706 | 706 |
} else { |
707 | 707 |
first = last = 0; |
708 | 708 |
} |
709 | 709 |
it.node->prev = 0; |
710 | 710 |
} |
711 | 711 |
} |
712 | 712 |
|
713 | 713 |
|
714 | 714 |
typedef True BuildTag; |
715 | 715 |
|
716 | 716 |
template <typename CPath> |
717 | 717 |
void build(const CPath& path) { |
718 | 718 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
719 | 719 |
addBack(it); |
720 | 720 |
} |
721 | 721 |
} |
722 | 722 |
|
723 | 723 |
template <typename CPath> |
724 | 724 |
void buildRev(const CPath& path) { |
725 | 725 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
726 | 726 |
addFront(it); |
727 | 727 |
} |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
}; |
731 | 731 |
|
732 | 732 |
/// \brief A structure for representing directed paths in a digraph. |
733 | 733 |
/// |
734 | 734 |
/// A structure for representing directed path in a digraph. |
735 | 735 |
/// \tparam _Digraph The digraph type in which the path is. |
736 | 736 |
/// |
737 | 737 |
/// In a sense, the path can be treated as a list of arcs. The |
738 | 738 |
/// lemon path type stores just this list. As a consequence it |
739 | 739 |
/// cannot enumerate the nodes in the path and the source node of |
740 | 740 |
/// a zero length path is undefined. |
741 | 741 |
/// |
742 | 742 |
/// This implementation is completly static, i.e. it can be copy constucted |
743 | 743 |
/// or copy assigned from another path, but otherwise it cannot be |
744 | 744 |
/// modified. |
745 | 745 |
/// |
746 | 746 |
/// Being the the most memory efficient path type in LEMON, |
747 | 747 |
/// it is intented to be |
748 | 748 |
/// used when you want to store a large number of paths. |
749 | 749 |
template <typename _Digraph> |
750 | 750 |
class StaticPath { |
751 | 751 |
public: |
752 | 752 |
|
753 | 753 |
typedef _Digraph Digraph; |
754 | 754 |
typedef typename Digraph::Arc Arc; |
755 | 755 |
|
756 | 756 |
/// \brief Default constructor |
757 | 757 |
/// |
758 | 758 |
/// Default constructor |
759 | 759 |
StaticPath() : len(0), arcs(0) {} |
760 | 760 |
|
761 | 761 |
/// \brief Template copy constructor |
762 | 762 |
/// |
763 | 763 |
/// This path can be initialized from any other path type. |
764 | 764 |
template <typename CPath> |
765 | 765 |
StaticPath(const CPath& cpath) : arcs(0) { |
766 | 766 |
copyPath(*this, cpath); |
767 | 767 |
} |
768 | 768 |
|
769 | 769 |
/// \brief Destructor of the path |
770 | 770 |
/// |
771 | 771 |
/// Destructor of the path |
772 | 772 |
~StaticPath() { |
773 | 773 |
if (arcs) delete[] arcs; |
774 | 774 |
} |
775 | 775 |
|
776 | 776 |
/// \brief Template copy assignment |
777 | 777 |
/// |
778 | 778 |
/// This path can be made equal to any other path type. It simply |
779 | 779 |
/// makes a copy of the given path. |
780 | 780 |
template <typename CPath> |
781 | 781 |
StaticPath& operator=(const CPath& cpath) { |
782 | 782 |
copyPath(*this, cpath); |
783 | 783 |
return *this; |
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
/// \brief Iterator class to iterate on the arcs of the paths |
787 | 787 |
/// |
788 | 788 |
/// This class is used to iterate on the arcs of the paths |
789 | 789 |
/// |
790 | 790 |
/// Of course it converts to Digraph::Arc |
791 | 791 |
class ArcIt { |
792 | 792 |
friend class StaticPath; |
793 | 793 |
public: |
794 | 794 |
/// Default constructor |
795 | 795 |
ArcIt() {} |
796 | 796 |
/// Invalid constructor |
797 | 797 |
ArcIt(Invalid) : path(0), idx(-1) {} |
798 | 798 |
/// Initializate the constructor to the first arc of path |
799 | 799 |
ArcIt(const StaticPath &_path) |
800 | 800 |
: path(&_path), idx(_path.empty() ? -1 : 0) {} |
801 | 801 |
|
802 | 802 |
private: |
803 | 803 |
|
804 | 804 |
/// Constructor with starting point |
805 | 805 |
ArcIt(const StaticPath &_path, int _idx) |
806 | 806 |
: idx(_idx), path(&_path) {} |
807 | 807 |
|
808 | 808 |
public: |
809 | 809 |
|
810 | 810 |
///Conversion to Digraph::Arc |
811 | 811 |
operator const Arc&() const { |
812 | 812 |
return path->nth(idx); |
813 | 813 |
} |
814 | 814 |
|
815 | 815 |
/// Next arc |
816 | 816 |
ArcIt& operator++() { |
817 | 817 |
++idx; |
818 | 818 |
if (idx >= path->length()) idx = -1; |
819 | 819 |
return *this; |
820 | 820 |
} |
821 | 821 |
|
822 | 822 |
/// Comparison operator |
823 | 823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
824 | 824 |
/// Comparison operator |
825 | 825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
826 | 826 |
/// Comparison operator |
827 | 827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
828 | 828 |
|
829 | 829 |
private: |
830 | 830 |
const StaticPath *path; |
831 | 831 |
int idx; |
832 | 832 |
}; |
833 | 833 |
|
834 | 834 |
/// \brief The nth arc. |
835 | 835 |
/// |
836 | 836 |
/// \pre n is in the [0..length() - 1] range |
837 | 837 |
const Arc& nth(int n) const { |
838 | 838 |
return arcs[n]; |
839 | 839 |
} |
840 | 840 |
|
841 | 841 |
/// \brief The arc iterator pointing to the nth arc. |
842 | 842 |
ArcIt nthIt(int n) const { |
843 | 843 |
return ArcIt(*this, n); |
844 | 844 |
} |
845 | 845 |
|
846 | 846 |
/// \brief The length of the path. |
847 | 847 |
int length() const { return len; } |
848 | 848 |
|
849 | 849 |
/// \brief Return true when the path is empty. |
850 | 850 |
int empty() const { return len == 0; } |
851 | 851 |
|
852 |
/// \ |
|
852 |
/// \brief Erase all arcs in the digraph. |
|
853 | 853 |
void clear() { |
854 | 854 |
len = 0; |
855 | 855 |
if (arcs) delete[] arcs; |
856 | 856 |
arcs = 0; |
857 | 857 |
} |
858 | 858 |
|
859 | 859 |
/// \brief The first arc of the path. |
860 | 860 |
const Arc& front() const { |
861 | 861 |
return arcs[0]; |
862 | 862 |
} |
863 | 863 |
|
864 | 864 |
/// \brief The last arc of the path. |
865 | 865 |
const Arc& back() const { |
866 | 866 |
return arcs[len - 1]; |
867 | 867 |
} |
868 | 868 |
|
869 | 869 |
|
870 | 870 |
typedef True BuildTag; |
871 | 871 |
|
872 | 872 |
template <typename CPath> |
873 | 873 |
void build(const CPath& path) { |
874 | 874 |
len = path.length(); |
875 | 875 |
arcs = new Arc[len]; |
876 | 876 |
int index = 0; |
877 | 877 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
878 | 878 |
arcs[index] = it; |
879 | 879 |
++index; |
880 | 880 |
} |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
template <typename CPath> |
884 | 884 |
void buildRev(const CPath& path) { |
885 | 885 |
len = path.length(); |
886 | 886 |
arcs = new Arc[len]; |
887 | 887 |
int index = len; |
888 | 888 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
889 | 889 |
--index; |
890 | 890 |
arcs[index] = it; |
891 | 891 |
} |
892 | 892 |
} |
893 | 893 |
|
894 | 894 |
private: |
895 | 895 |
int len; |
896 | 896 |
Arc* arcs; |
897 | 897 |
}; |
898 | 898 |
|
899 | 899 |
/////////////////////////////////////////////////////////////////////// |
900 | 900 |
// Additional utilities |
901 | 901 |
/////////////////////////////////////////////////////////////////////// |
902 | 902 |
|
903 | 903 |
namespace _path_bits { |
904 | 904 |
|
905 | 905 |
template <typename Path, typename Enable = void> |
906 | 906 |
struct RevPathTagIndicator { |
907 | 907 |
static const bool value = false; |
908 | 908 |
}; |
909 | 909 |
|
910 | 910 |
template <typename Path> |
911 | 911 |
struct RevPathTagIndicator< |
912 | 912 |
Path, |
913 | 913 |
typename enable_if<typename Path::RevPathTag, void>::type |
914 | 914 |
> { |
915 | 915 |
static const bool value = true; |
916 | 916 |
}; |
917 | 917 |
|
918 | 918 |
template <typename Path, typename Enable = void> |
919 | 919 |
struct BuildTagIndicator { |
920 | 920 |
static const bool value = false; |
921 | 921 |
}; |
922 | 922 |
|
923 | 923 |
template <typename Path> |
924 | 924 |
struct BuildTagIndicator< |
925 | 925 |
Path, |
926 | 926 |
typename enable_if<typename Path::BuildTag, void>::type |
927 | 927 |
> { |
928 | 928 |
static const bool value = true; |
929 | 929 |
}; |
930 | 930 |
|
931 | 931 |
template <typename Target, typename Source, |
932 | 932 |
bool buildEnable = BuildTagIndicator<Target>::value, |
933 | 933 |
bool revEnable = RevPathTagIndicator<Source>::value> |
934 | 934 |
struct PathCopySelector { |
935 | 935 |
static void copy(Target& target, const Source& source) { |
936 | 936 |
target.clear(); |
937 | 937 |
for (typename Source::ArcIt it(source); it != INVALID; ++it) { |
938 | 938 |
target.addBack(it); |
939 | 939 |
} |
940 | 940 |
} |
941 | 941 |
}; |
942 | 942 |
|
943 | 943 |
template <typename Target, typename Source> |
944 | 944 |
struct PathCopySelector<Target, Source, false, true> { |
945 | 945 |
static void copy(Target& target, const Source& source) { |
946 | 946 |
target.clear(); |
947 | 947 |
for (typename Source::RevArcIt it(source); it != INVALID; ++it) { |
948 | 948 |
target.addFront(it); |
949 | 949 |
} |
950 | 950 |
} |
951 | 951 |
}; |
952 | 952 |
|
953 | 953 |
template <typename Target, typename Source> |
954 | 954 |
struct PathCopySelector<Target, Source, true, false> { |
955 | 955 |
static void copy(Target& target, const Source& source) { |
956 | 956 |
target.clear(); |
957 | 957 |
target.build(source); |
958 | 958 |
} |
959 | 959 |
}; |
960 | 960 |
|
961 | 961 |
template <typename Target, typename Source> |
962 | 962 |
struct PathCopySelector<Target, Source, true, true> { |
963 | 963 |
static void copy(Target& target, const Source& source) { |
964 | 964 |
target.clear(); |
965 | 965 |
target.buildRev(source); |
966 | 966 |
} |
967 | 967 |
}; |
968 | 968 |
|
969 | 969 |
} |
970 | 970 |
|
971 | 971 |
|
972 | 972 |
/// \brief Make a copy of a path. |
973 | 973 |
/// |
974 | 974 |
/// This function makes a copy of a path. |
975 | 975 |
template <typename Target, typename Source> |
976 | 976 |
void copyPath(Target& target, const Source& source) { |
977 | 977 |
checkConcept<concepts::PathDumper<typename Source::Digraph>, Source>(); |
978 | 978 |
_path_bits::PathCopySelector<Target, Source>::copy(target, source); |
979 | 979 |
} |
980 | 980 |
|
981 | 981 |
/// \brief Check the consistency of a path. |
982 | 982 |
/// |
983 | 983 |
/// This function checks that the target of each arc is the same |
984 | 984 |
/// as the source of the next one. |
985 | 985 |
/// |
986 | 986 |
template <typename Digraph, typename Path> |
987 | 987 |
bool checkPath(const Digraph& digraph, const Path& path) { |
988 | 988 |
typename Path::ArcIt it(path); |
989 | 989 |
if (it == INVALID) return true; |
990 | 990 |
typename Digraph::Node node = digraph.target(it); |
991 | 991 |
++it; |
992 | 992 |
while (it != INVALID) { |
993 | 993 |
if (digraph.source(it) != node) return false; |
994 | 994 |
node = digraph.target(it); |
995 | 995 |
++it; |
996 | 996 |
} |
997 | 997 |
return true; |
998 | 998 |
} |
999 | 999 |
|
1000 | 1000 |
/// \brief The source of a path |
1001 | 1001 |
/// |
1002 | 1002 |
/// This function returns the source of the given path. |
1003 | 1003 |
template <typename Digraph, typename Path> |
1004 | 1004 |
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) { |
1005 | 1005 |
return digraph.source(path.front()); |
1006 | 1006 |
} |
1007 | 1007 |
|
1008 | 1008 |
/// \brief The target of a path |
1009 | 1009 |
/// |
1010 | 1010 |
/// This function returns the target of the given path. |
1011 | 1011 |
template <typename Digraph, typename Path> |
1012 | 1012 |
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) { |
1013 | 1013 |
return digraph.target(path.back()); |
1014 | 1014 |
} |
1015 | 1015 |
|
1016 | 1016 |
/// \brief Class which helps to iterate through the nodes of a path |
1017 | 1017 |
/// |
1018 | 1018 |
/// In a sense, the path can be treated as a list of arcs. The |
1019 | 1019 |
/// lemon path type stores only this list. As a consequence, it |
1020 | 1020 |
/// cannot enumerate the nodes in the path and the zero length paths |
1021 | 1021 |
/// cannot have a source node. |
1022 | 1022 |
/// |
1023 | 1023 |
/// This class implements the node iterator of a path structure. To |
1024 | 1024 |
/// provide this feature, the underlying digraph should be passed to |
1025 | 1025 |
/// the constructor of the iterator. |
1026 | 1026 |
template <typename Path> |
1027 | 1027 |
class PathNodeIt { |
1028 | 1028 |
private: |
1029 | 1029 |
const typename Path::Digraph *_digraph; |
1030 | 1030 |
typename Path::ArcIt _it; |
1031 | 1031 |
typename Path::Digraph::Node _nd; |
1032 | 1032 |
|
1033 | 1033 |
public: |
1034 | 1034 |
|
1035 | 1035 |
typedef typename Path::Digraph Digraph; |
1036 | 1036 |
typedef typename Digraph::Node Node; |
1037 | 1037 |
|
1038 | 1038 |
/// Default constructor |
1039 | 1039 |
PathNodeIt() {} |
1040 | 1040 |
/// Invalid constructor |
1041 | 1041 |
PathNodeIt(Invalid) |
1042 | 1042 |
: _digraph(0), _it(INVALID), _nd(INVALID) {} |
1043 | 1043 |
/// Constructor |
1044 | 1044 |
PathNodeIt(const Digraph& digraph, const Path& path) |
1045 | 1045 |
: _digraph(&digraph), _it(path) { |
1046 | 1046 |
_nd = (_it != INVALID ? _digraph->source(_it) : INVALID); |
1047 | 1047 |
} |
1048 | 1048 |
/// Constructor |
1049 | 1049 |
PathNodeIt(const Digraph& digraph, const Path& path, const Node& src) |
1050 | 1050 |
: _digraph(&digraph), _it(path), _nd(src) {} |
1051 | 1051 |
|
1052 | 1052 |
///Conversion to Digraph::Node |
1053 | 1053 |
operator Node() const { |
1054 | 1054 |
return _nd; |
1055 | 1055 |
} |
1056 | 1056 |
|
1057 | 1057 |
/// Next node |
1058 | 1058 |
PathNodeIt& operator++() { |
1059 | 1059 |
if (_it == INVALID) _nd = INVALID; |
1060 | 1060 |
else { |
1061 | 1061 |
_nd = _digraph->target(_it); |
1062 | 1062 |
++_it; |
1063 | 1063 |
} |
1064 | 1064 |
return *this; |
1065 | 1065 |
} |
1066 | 1066 |
|
1067 | 1067 |
/// Comparison operator |
1068 | 1068 |
bool operator==(const PathNodeIt& n) const { |
1069 | 1069 |
return _it == n._it && _nd == n._nd; |
1070 | 1070 |
} |
1071 | 1071 |
/// Comparison operator |
1072 | 1072 |
bool operator!=(const PathNodeIt& n) const { |
1073 | 1073 |
return _it != n._it || _nd != n._nd; |
1074 | 1074 |
} |
1075 | 1075 |
/// Comparison operator |
1076 | 1076 |
bool operator<(const PathNodeIt& n) const { |
1077 | 1077 |
return (_it < n._it && _nd != INVALID); |
1078 | 1078 |
} |
1079 | 1079 |
|
1080 | 1080 |
}; |
1081 | 1081 |
|
1082 | 1082 |
///@} |
1083 | 1083 |
|
1084 | 1084 |
} // namespace lemon |
1085 | 1085 |
|
1086 | 1086 |
#endif // LEMON_PATH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SMART_GRAPH_H |
20 | 20 |
#define LEMON_SMART_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief SmartDigraph and SmartGraph classes. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/bits/graph_extender.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
class SmartDigraph; |
35 | 35 |
///Base of SmartDigraph |
36 | 36 |
|
37 | 37 |
///Base of SmartDigraph |
38 | 38 |
/// |
39 | 39 |
class SmartDigraphBase { |
40 | 40 |
protected: |
41 | 41 |
|
42 | 42 |
struct NodeT |
43 | 43 |
{ |
44 | 44 |
int first_in, first_out; |
45 | 45 |
NodeT() {} |
46 | 46 |
}; |
47 | 47 |
struct ArcT |
48 | 48 |
{ |
49 | 49 |
int target, source, next_in, next_out; |
50 | 50 |
ArcT() {} |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
std::vector<NodeT> nodes; |
54 | 54 |
std::vector<ArcT> arcs; |
55 | 55 |
|
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
typedef SmartDigraphBase Graph; |
59 | 59 |
|
60 | 60 |
class Node; |
61 | 61 |
class Arc; |
62 | 62 |
|
63 | 63 |
public: |
64 | 64 |
|
65 | 65 |
SmartDigraphBase() : nodes(), arcs() { } |
66 | 66 |
SmartDigraphBase(const SmartDigraphBase &_g) |
67 | 67 |
: nodes(_g.nodes), arcs(_g.arcs) { } |
68 | 68 |
|
69 | 69 |
typedef True NodeNumTag; |
70 | 70 |
typedef True EdgeNumTag; |
71 | 71 |
|
72 | 72 |
int nodeNum() const { return nodes.size(); } |
73 | 73 |
int arcNum() const { return arcs.size(); } |
74 | 74 |
|
75 | 75 |
int maxNodeId() const { return nodes.size()-1; } |
76 | 76 |
int maxArcId() const { return arcs.size()-1; } |
77 | 77 |
|
78 | 78 |
Node addNode() { |
79 | 79 |
int n = nodes.size(); |
80 | 80 |
nodes.push_back(NodeT()); |
81 | 81 |
nodes[n].first_in = -1; |
82 | 82 |
nodes[n].first_out = -1; |
83 | 83 |
return Node(n); |
84 | 84 |
} |
85 | 85 |
|
86 | 86 |
Arc addArc(Node u, Node v) { |
87 | 87 |
int n = arcs.size(); |
88 | 88 |
arcs.push_back(ArcT()); |
89 | 89 |
arcs[n].source = u._id; |
90 | 90 |
arcs[n].target = v._id; |
91 | 91 |
arcs[n].next_out = nodes[u._id].first_out; |
92 | 92 |
arcs[n].next_in = nodes[v._id].first_in; |
93 | 93 |
nodes[u._id].first_out = nodes[v._id].first_in = n; |
94 | 94 |
|
95 | 95 |
return Arc(n); |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
void clear() { |
99 | 99 |
arcs.clear(); |
100 | 100 |
nodes.clear(); |
101 | 101 |
} |
102 | 102 |
|
103 | 103 |
Node source(Arc a) const { return Node(arcs[a._id].source); } |
104 | 104 |
Node target(Arc a) const { return Node(arcs[a._id].target); } |
105 | 105 |
|
106 | 106 |
static int id(Node v) { return v._id; } |
107 | 107 |
static int id(Arc a) { return a._id; } |
108 | 108 |
|
109 | 109 |
static Node nodeFromId(int id) { return Node(id);} |
110 | 110 |
static Arc arcFromId(int id) { return Arc(id);} |
111 | 111 |
|
112 | 112 |
bool valid(Node n) const { |
113 | 113 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
114 | 114 |
} |
115 | 115 |
bool valid(Arc a) const { |
116 | 116 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
class Node { |
120 | 120 |
friend class SmartDigraphBase; |
121 | 121 |
friend class SmartDigraph; |
122 | 122 |
|
123 | 123 |
protected: |
124 | 124 |
int _id; |
125 | 125 |
explicit Node(int id) : _id(id) {} |
126 | 126 |
public: |
127 | 127 |
Node() {} |
128 | 128 |
Node (Invalid) : _id(-1) {} |
129 | 129 |
bool operator==(const Node i) const {return _id == i._id;} |
130 | 130 |
bool operator!=(const Node i) const {return _id != i._id;} |
131 | 131 |
bool operator<(const Node i) const {return _id < i._id;} |
132 | 132 |
}; |
133 | 133 |
|
134 | 134 |
|
135 | 135 |
class Arc { |
136 | 136 |
friend class SmartDigraphBase; |
137 | 137 |
friend class SmartDigraph; |
138 | 138 |
|
139 | 139 |
protected: |
140 | 140 |
int _id; |
141 | 141 |
explicit Arc(int id) : _id(id) {} |
142 | 142 |
public: |
143 | 143 |
Arc() { } |
144 | 144 |
Arc (Invalid) : _id(-1) {} |
145 | 145 |
bool operator==(const Arc i) const {return _id == i._id;} |
146 | 146 |
bool operator!=(const Arc i) const {return _id != i._id;} |
147 | 147 |
bool operator<(const Arc i) const {return _id < i._id;} |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
void first(Node& node) const { |
151 | 151 |
node._id = nodes.size() - 1; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
static void next(Node& node) { |
155 | 155 |
--node._id; |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
void first(Arc& arc) const { |
159 | 159 |
arc._id = arcs.size() - 1; |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
static void next(Arc& arc) { |
163 | 163 |
--arc._id; |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
void firstOut(Arc& arc, const Node& node) const { |
167 | 167 |
arc._id = nodes[node._id].first_out; |
168 | 168 |
} |
169 | 169 |
|
170 | 170 |
void nextOut(Arc& arc) const { |
171 | 171 |
arc._id = arcs[arc._id].next_out; |
172 | 172 |
} |
173 | 173 |
|
174 | 174 |
void firstIn(Arc& arc, const Node& node) const { |
175 | 175 |
arc._id = nodes[node._id].first_in; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
void nextIn(Arc& arc) const { |
179 | 179 |
arc._id = arcs[arc._id].next_in; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
}; |
183 | 183 |
|
184 | 184 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
185 | 185 |
|
186 | 186 |
///\ingroup graphs |
187 | 187 |
/// |
188 | 188 |
///\brief A smart directed graph class. |
189 | 189 |
/// |
190 | 190 |
///This is a simple and fast digraph implementation. |
191 | 191 |
///It is also quite memory efficient, but at the price |
192 | 192 |
///that <b> it does support only limited (only stack-like) |
193 | 193 |
///node and arc deletions</b>. |
194 | 194 |
///It conforms to the \ref concepts::Digraph "Digraph concept" with |
195 | 195 |
///an important extra feature that its maps are real \ref |
196 | 196 |
///concepts::ReferenceMap "reference map"s. |
197 | 197 |
/// |
198 | 198 |
///\sa concepts::Digraph. |
199 | 199 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
200 | 200 |
public: |
201 | 201 |
|
202 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
203 | 203 |
|
204 | 204 |
private: |
205 | 205 |
|
206 | 206 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
207 | 207 |
|
208 | 208 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
209 | 209 |
/// |
210 | 210 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {}; |
211 | 211 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
212 | 212 |
///Use DigraphCopy() instead. |
213 | 213 |
|
214 | 214 |
///Assignment of SmartDigraph to another one is \e not allowed. |
215 | 215 |
///Use DigraphCopy() instead. |
216 | 216 |
void operator=(const SmartDigraph &) {} |
217 | 217 |
|
218 | 218 |
public: |
219 | 219 |
|
220 | 220 |
/// Constructor |
221 | 221 |
|
222 | 222 |
/// Constructor. |
223 | 223 |
/// |
224 | 224 |
SmartDigraph() {}; |
225 | 225 |
|
226 | 226 |
///Add a new node to the digraph. |
227 | 227 |
|
228 | 228 |
/// \return the new node. |
229 | 229 |
/// |
230 | 230 |
Node addNode() { return Parent::addNode(); } |
231 | 231 |
|
232 | 232 |
///Add a new arc to the digraph. |
233 | 233 |
|
234 | 234 |
///Add a new arc to the digraph with source node \c s |
235 | 235 |
///and target node \c t. |
236 | 236 |
///\return the new arc. |
237 | 237 |
Arc addArc(const Node& s, const Node& t) { |
238 | 238 |
return Parent::addArc(s, t); |
239 | 239 |
} |
240 | 240 |
|
241 | 241 |
/// \brief Using this it is possible to avoid the superfluous memory |
242 | 242 |
/// allocation. |
243 | 243 |
|
244 | 244 |
/// Using this it is possible to avoid the superfluous memory |
245 | 245 |
/// allocation: if you know that the digraph you want to build will |
246 | 246 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
247 | 247 |
/// then it is worth reserving space for this amount before starting |
248 | 248 |
/// to build the digraph. |
249 | 249 |
/// \sa reserveArc |
250 | 250 |
void reserveNode(int n) { nodes.reserve(n); }; |
251 | 251 |
|
252 | 252 |
/// \brief Using this it is possible to avoid the superfluous memory |
253 | 253 |
/// allocation. |
254 | 254 |
|
255 | 255 |
/// Using this it is possible to avoid the superfluous memory |
256 | 256 |
/// allocation: if you know that the digraph you want to build will |
257 | 257 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
258 | 258 |
/// then it is worth reserving space for this amount before starting |
259 | 259 |
/// to build the digraph. |
260 | 260 |
/// \sa reserveNode |
261 | 261 |
void reserveArc(int m) { arcs.reserve(m); }; |
262 | 262 |
|
263 | 263 |
/// \brief Node validity check |
264 | 264 |
/// |
265 | 265 |
/// This function gives back true if the given node is valid, |
266 | 266 |
/// ie. it is a real node of the graph. |
267 | 267 |
/// |
268 | 268 |
/// \warning A removed node (using Snapshot) could become valid again |
269 | 269 |
/// when new nodes are added to the graph. |
270 | 270 |
bool valid(Node n) const { return Parent::valid(n); } |
271 | 271 |
|
272 | 272 |
/// \brief Arc validity check |
273 | 273 |
/// |
274 | 274 |
/// This function gives back true if the given arc is valid, |
275 | 275 |
/// ie. it is a real arc of the graph. |
276 | 276 |
/// |
277 | 277 |
/// \warning A removed arc (using Snapshot) could become valid again |
278 | 278 |
/// when new arcs are added to the graph. |
279 | 279 |
bool valid(Arc a) const { return Parent::valid(a); } |
280 | 280 |
|
281 | 281 |
///Clear the digraph. |
282 | 282 |
|
283 | 283 |
///Erase all the nodes and arcs from the digraph. |
284 | 284 |
/// |
285 | 285 |
void clear() { |
286 | 286 |
Parent::clear(); |
287 | 287 |
} |
288 | 288 |
|
289 | 289 |
///Split a node. |
290 | 290 |
|
291 | 291 |
///This function splits a node. First a new node is added to the digraph, |
292 | 292 |
///then the source of each outgoing arc of \c n is moved to this new node. |
293 | 293 |
///If \c connect is \c true (this is the default value), then a new arc |
294 | 294 |
///from \c n to the newly created node is also added. |
295 | 295 |
///\return The newly created node. |
296 | 296 |
/// |
297 | 297 |
///\note The <tt>Arc</tt>s |
298 | 298 |
///referencing a moved arc remain |
299 | 299 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
300 | 300 |
///may be invalidated. |
301 | 301 |
///\warning This functionality cannot be used together with the Snapshot |
302 | 302 |
///feature. |
303 | 303 |
Node split(Node n, bool connect = true) |
304 | 304 |
{ |
305 | 305 |
Node b = addNode(); |
306 | 306 |
nodes[b._id].first_out=nodes[n._id].first_out; |
307 | 307 |
nodes[n._id].first_out=-1; |
308 | 308 |
for(int i=nodes[b._id].first_out;i!=-1;i++) arcs[i].source=b._id; |
309 | 309 |
if(connect) addArc(n,b); |
310 | 310 |
return b; |
311 | 311 |
} |
312 | 312 |
|
313 | 313 |
public: |
314 | 314 |
|
315 | 315 |
class Snapshot; |
316 | 316 |
|
317 | 317 |
protected: |
318 | 318 |
|
319 | 319 |
void restoreSnapshot(const Snapshot &s) |
320 | 320 |
{ |
321 | 321 |
while(s.arc_num<arcs.size()) { |
322 | 322 |
Arc arc = arcFromId(arcs.size()-1); |
323 | 323 |
Parent::notifier(Arc()).erase(arc); |
324 | 324 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
325 | 325 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
326 | 326 |
arcs.pop_back(); |
327 | 327 |
} |
328 | 328 |
while(s.node_num<nodes.size()) { |
329 | 329 |
Node node = nodeFromId(nodes.size()-1); |
330 | 330 |
Parent::notifier(Node()).erase(node); |
331 | 331 |
nodes.pop_back(); |
332 | 332 |
} |
333 | 333 |
} |
334 | 334 |
|
335 | 335 |
public: |
336 | 336 |
|
337 | 337 |
///Class to make a snapshot of the digraph and to restrore to it later. |
338 | 338 |
|
339 | 339 |
///Class to make a snapshot of the digraph and to restrore to it later. |
340 | 340 |
/// |
341 | 341 |
///The newly added nodes and arcs can be removed using the |
342 | 342 |
///restore() function. |
343 | 343 |
///\note After you restore a state, you cannot restore |
344 | 344 |
///a later state, in other word you cannot add again the arcs deleted |
345 | 345 |
///by restore() using another one Snapshot instance. |
346 | 346 |
/// |
347 | 347 |
///\warning If you do not use correctly the snapshot that can cause |
348 | 348 |
///either broken program, invalid state of the digraph, valid but |
349 | 349 |
///not the restored digraph or no change. Because the runtime performance |
350 | 350 |
///the validity of the snapshot is not stored. |
351 | 351 |
class Snapshot |
352 | 352 |
{ |
353 | 353 |
SmartDigraph *_graph; |
354 | 354 |
protected: |
355 | 355 |
friend class SmartDigraph; |
356 | 356 |
unsigned int node_num; |
357 | 357 |
unsigned int arc_num; |
358 | 358 |
public: |
359 | 359 |
///Default constructor. |
360 | 360 |
|
361 | 361 |
///Default constructor. |
362 | 362 |
///To actually make a snapshot you must call save(). |
363 | 363 |
/// |
364 | 364 |
Snapshot() : _graph(0) {} |
365 | 365 |
///Constructor that immediately makes a snapshot |
366 | 366 |
|
367 | 367 |
///This constructor immediately makes a snapshot of the digraph. |
368 |
///\param |
|
368 |
///\param graph The digraph we make a snapshot of. |
|
369 | 369 |
Snapshot(SmartDigraph &graph) : _graph(&graph) { |
370 | 370 |
node_num=_graph->nodes.size(); |
371 | 371 |
arc_num=_graph->arcs.size(); |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Make a snapshot. |
375 | 375 |
|
376 | 376 |
///Make a snapshot of the digraph. |
377 | 377 |
/// |
378 | 378 |
///This function can be called more than once. In case of a repeated |
379 | 379 |
///call, the previous snapshot gets lost. |
380 |
///\param |
|
380 |
///\param graph The digraph we make the snapshot of. |
|
381 | 381 |
void save(SmartDigraph &graph) |
382 | 382 |
{ |
383 | 383 |
_graph=&graph; |
384 | 384 |
node_num=_graph->nodes.size(); |
385 | 385 |
arc_num=_graph->arcs.size(); |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
///Undo the changes until a snapshot. |
389 | 389 |
|
390 | 390 |
///Undo the changes until a snapshot created by save(). |
391 | 391 |
/// |
392 | 392 |
///\note After you restored a state, you cannot restore |
393 | 393 |
///a later state, in other word you cannot add again the arcs deleted |
394 | 394 |
///by restore(). |
395 | 395 |
void restore() |
396 | 396 |
{ |
397 | 397 |
_graph->restoreSnapshot(*this); |
398 | 398 |
} |
399 | 399 |
}; |
400 | 400 |
}; |
401 | 401 |
|
402 | 402 |
|
403 | 403 |
class SmartGraphBase { |
404 | 404 |
|
405 | 405 |
protected: |
406 | 406 |
|
407 | 407 |
struct NodeT { |
408 | 408 |
int first_out; |
409 | 409 |
}; |
410 | 410 |
|
411 | 411 |
struct ArcT { |
412 | 412 |
int target; |
413 | 413 |
int next_out; |
414 | 414 |
}; |
415 | 415 |
|
416 | 416 |
std::vector<NodeT> nodes; |
417 | 417 |
std::vector<ArcT> arcs; |
418 | 418 |
|
419 | 419 |
int first_free_arc; |
420 | 420 |
|
421 | 421 |
public: |
422 | 422 |
|
423 | 423 |
typedef SmartGraphBase Digraph; |
424 | 424 |
|
425 | 425 |
class Node; |
426 | 426 |
class Arc; |
427 | 427 |
class Edge; |
428 | 428 |
|
429 | 429 |
class Node { |
430 | 430 |
friend class SmartGraphBase; |
431 | 431 |
protected: |
432 | 432 |
|
433 | 433 |
int _id; |
434 | 434 |
explicit Node(int id) { _id = id;} |
435 | 435 |
|
436 | 436 |
public: |
437 | 437 |
Node() {} |
438 | 438 |
Node (Invalid) { _id = -1; } |
439 | 439 |
bool operator==(const Node& node) const {return _id == node._id;} |
440 | 440 |
bool operator!=(const Node& node) const {return _id != node._id;} |
441 | 441 |
bool operator<(const Node& node) const {return _id < node._id;} |
442 | 442 |
}; |
443 | 443 |
|
444 | 444 |
class Edge { |
445 | 445 |
friend class SmartGraphBase; |
446 | 446 |
protected: |
447 | 447 |
|
448 | 448 |
int _id; |
449 | 449 |
explicit Edge(int id) { _id = id;} |
450 | 450 |
|
451 | 451 |
public: |
452 | 452 |
Edge() {} |
453 | 453 |
Edge (Invalid) { _id = -1; } |
454 | 454 |
bool operator==(const Edge& arc) const {return _id == arc._id;} |
455 | 455 |
bool operator!=(const Edge& arc) const {return _id != arc._id;} |
456 | 456 |
bool operator<(const Edge& arc) const {return _id < arc._id;} |
457 | 457 |
}; |
458 | 458 |
|
459 | 459 |
class Arc { |
460 | 460 |
friend class SmartGraphBase; |
461 | 461 |
protected: |
462 | 462 |
|
463 | 463 |
int _id; |
464 | 464 |
explicit Arc(int id) { _id = id;} |
465 | 465 |
|
466 | 466 |
public: |
467 | 467 |
operator Edge() const { |
468 | 468 |
return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
469 | 469 |
} |
470 | 470 |
|
471 | 471 |
Arc() {} |
472 | 472 |
Arc (Invalid) { _id = -1; } |
473 | 473 |
bool operator==(const Arc& arc) const {return _id == arc._id;} |
474 | 474 |
bool operator!=(const Arc& arc) const {return _id != arc._id;} |
475 | 475 |
bool operator<(const Arc& arc) const {return _id < arc._id;} |
476 | 476 |
}; |
477 | 477 |
|
478 | 478 |
|
479 | 479 |
|
480 | 480 |
SmartGraphBase() |
481 | 481 |
: nodes(), arcs() {} |
482 | 482 |
|
483 | 483 |
|
484 | 484 |
int maxNodeId() const { return nodes.size()-1; } |
485 | 485 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
486 | 486 |
int maxArcId() const { return arcs.size()-1; } |
487 | 487 |
|
488 | 488 |
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); } |
489 | 489 |
Node target(Arc e) const { return Node(arcs[e._id].target); } |
490 | 490 |
|
491 | 491 |
Node u(Edge e) const { return Node(arcs[2 * e._id].target); } |
492 | 492 |
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); } |
493 | 493 |
|
494 | 494 |
static bool direction(Arc e) { |
495 | 495 |
return (e._id & 1) == 1; |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
static Arc direct(Edge e, bool d) { |
499 | 499 |
return Arc(e._id * 2 + (d ? 1 : 0)); |
500 | 500 |
} |
501 | 501 |
|
502 | 502 |
void first(Node& node) const { |
503 | 503 |
node._id = nodes.size() - 1; |
504 | 504 |
} |
505 | 505 |
|
506 | 506 |
void next(Node& node) const { |
507 | 507 |
--node._id; |
508 | 508 |
} |
509 | 509 |
|
510 | 510 |
void first(Arc& arc) const { |
511 | 511 |
arc._id = arcs.size() - 1; |
512 | 512 |
} |
513 | 513 |
|
514 | 514 |
void next(Arc& arc) const { |
515 | 515 |
--arc._id; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
void first(Edge& arc) const { |
519 | 519 |
arc._id = arcs.size() / 2 - 1; |
520 | 520 |
} |
521 | 521 |
|
522 | 522 |
void next(Edge& arc) const { |
523 | 523 |
--arc._id; |
524 | 524 |
} |
525 | 525 |
|
526 | 526 |
void firstOut(Arc &arc, const Node& v) const { |
527 | 527 |
arc._id = nodes[v._id].first_out; |
528 | 528 |
} |
529 | 529 |
void nextOut(Arc &arc) const { |
530 | 530 |
arc._id = arcs[arc._id].next_out; |
531 | 531 |
} |
532 | 532 |
|
533 | 533 |
void firstIn(Arc &arc, const Node& v) const { |
534 | 534 |
arc._id = ((nodes[v._id].first_out) ^ 1); |
535 | 535 |
if (arc._id == -2) arc._id = -1; |
536 | 536 |
} |
537 | 537 |
void nextIn(Arc &arc) const { |
538 | 538 |
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1); |
539 | 539 |
if (arc._id == -2) arc._id = -1; |
540 | 540 |
} |
541 | 541 |
|
542 | 542 |
void firstInc(Edge &arc, bool& d, const Node& v) const { |
543 | 543 |
int de = nodes[v._id].first_out; |
544 | 544 |
if (de != -1) { |
545 | 545 |
arc._id = de / 2; |
546 | 546 |
d = ((de & 1) == 1); |
547 | 547 |
} else { |
548 | 548 |
arc._id = -1; |
549 | 549 |
d = true; |
550 | 550 |
} |
551 | 551 |
} |
552 | 552 |
void nextInc(Edge &arc, bool& d) const { |
553 | 553 |
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out); |
554 | 554 |
if (de != -1) { |
555 | 555 |
arc._id = de / 2; |
556 | 556 |
d = ((de & 1) == 1); |
557 | 557 |
} else { |
558 | 558 |
arc._id = -1; |
559 | 559 |
d = true; |
560 | 560 |
} |
561 | 561 |
} |
562 | 562 |
|
563 | 563 |
static int id(Node v) { return v._id; } |
564 | 564 |
static int id(Arc e) { return e._id; } |
565 | 565 |
static int id(Edge e) { return e._id; } |
566 | 566 |
|
567 | 567 |
static Node nodeFromId(int id) { return Node(id);} |
568 | 568 |
static Arc arcFromId(int id) { return Arc(id);} |
569 | 569 |
static Edge edgeFromId(int id) { return Edge(id);} |
570 | 570 |
|
571 | 571 |
bool valid(Node n) const { |
572 | 572 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
573 | 573 |
} |
574 | 574 |
bool valid(Arc a) const { |
575 | 575 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
576 | 576 |
} |
577 | 577 |
bool valid(Edge e) const { |
578 | 578 |
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size()); |
579 | 579 |
} |
580 | 580 |
|
581 | 581 |
Node addNode() { |
582 | 582 |
int n = nodes.size(); |
583 | 583 |
nodes.push_back(NodeT()); |
584 | 584 |
nodes[n].first_out = -1; |
585 | 585 |
|
586 | 586 |
return Node(n); |
587 | 587 |
} |
588 | 588 |
|
589 | 589 |
Edge addEdge(Node u, Node v) { |
590 | 590 |
int n = arcs.size(); |
591 | 591 |
arcs.push_back(ArcT()); |
592 | 592 |
arcs.push_back(ArcT()); |
593 | 593 |
|
594 | 594 |
arcs[n].target = u._id; |
595 | 595 |
arcs[n | 1].target = v._id; |
596 | 596 |
|
597 | 597 |
arcs[n].next_out = nodes[v._id].first_out; |
598 | 598 |
nodes[v._id].first_out = n; |
599 | 599 |
|
600 | 600 |
arcs[n | 1].next_out = nodes[u._id].first_out; |
601 | 601 |
nodes[u._id].first_out = (n | 1); |
602 | 602 |
|
603 | 603 |
return Edge(n / 2); |
604 | 604 |
} |
605 | 605 |
|
606 | 606 |
void clear() { |
607 | 607 |
arcs.clear(); |
608 | 608 |
nodes.clear(); |
609 | 609 |
} |
610 | 610 |
|
611 | 611 |
}; |
612 | 612 |
|
613 | 613 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
614 | 614 |
|
615 | 615 |
/// \ingroup graphs |
616 | 616 |
/// |
617 | 617 |
/// \brief A smart undirected graph class. |
618 | 618 |
/// |
619 | 619 |
/// This is a simple and fast graph implementation. |
620 | 620 |
/// It is also quite memory efficient, but at the price |
621 | 621 |
/// that <b> it does support only limited (only stack-like) |
622 | 622 |
/// node and arc deletions</b>. |
623 | 623 |
/// Except from this it conforms to |
624 | 624 |
/// the \ref concepts::Graph "Graph concept". |
625 | 625 |
/// |
626 | 626 |
/// It also has an |
627 | 627 |
/// important extra feature that |
628 | 628 |
/// its maps are real \ref concepts::ReferenceMap "reference map"s. |
629 | 629 |
/// |
630 | 630 |
/// \sa concepts::Graph. |
631 | 631 |
/// |
632 | 632 |
class SmartGraph : public ExtendedSmartGraphBase { |
633 | 633 |
private: |
634 | 634 |
|
635 | 635 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
636 | 636 |
|
637 | 637 |
///SmartGraph is \e not copy constructible. Use GraphCopy() instead. |
638 | 638 |
/// |
639 | 639 |
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {}; |
640 | 640 |
|
641 | 641 |
///\brief Assignment of SmartGraph to another one is \e not allowed. |
642 | 642 |
///Use GraphCopy() instead. |
643 | 643 |
|
644 | 644 |
///Assignment of SmartGraph to another one is \e not allowed. |
645 | 645 |
///Use GraphCopy() instead. |
646 | 646 |
void operator=(const SmartGraph &) {} |
647 | 647 |
|
648 | 648 |
public: |
649 | 649 |
|
650 | 650 |
typedef ExtendedSmartGraphBase Parent; |
651 | 651 |
|
652 | 652 |
/// Constructor |
653 | 653 |
|
654 | 654 |
/// Constructor. |
655 | 655 |
/// |
656 | 656 |
SmartGraph() {} |
657 | 657 |
|
658 | 658 |
///Add a new node to the graph. |
659 | 659 |
|
660 | 660 |
/// \return the new node. |
661 | 661 |
/// |
662 | 662 |
Node addNode() { return Parent::addNode(); } |
663 | 663 |
|
664 | 664 |
///Add a new edge to the graph. |
665 | 665 |
|
666 | 666 |
///Add a new edge to the graph with node \c s |
667 | 667 |
///and \c t. |
668 | 668 |
///\return the new edge. |
669 | 669 |
Edge addEdge(const Node& s, const Node& t) { |
670 | 670 |
return Parent::addEdge(s, t); |
671 | 671 |
} |
672 | 672 |
|
673 | 673 |
/// \brief Node validity check |
674 | 674 |
/// |
675 | 675 |
/// This function gives back true if the given node is valid, |
676 | 676 |
/// ie. it is a real node of the graph. |
677 | 677 |
/// |
678 | 678 |
/// \warning A removed node (using Snapshot) could become valid again |
679 | 679 |
/// when new nodes are added to the graph. |
680 | 680 |
bool valid(Node n) const { return Parent::valid(n); } |
681 | 681 |
|
682 | 682 |
/// \brief Arc validity check |
683 | 683 |
/// |
684 | 684 |
/// This function gives back true if the given arc is valid, |
685 | 685 |
/// ie. it is a real arc of the graph. |
686 | 686 |
/// |
687 | 687 |
/// \warning A removed arc (using Snapshot) could become valid again |
688 | 688 |
/// when new edges are added to the graph. |
689 | 689 |
bool valid(Arc a) const { return Parent::valid(a); } |
690 | 690 |
|
691 | 691 |
/// \brief Edge validity check |
692 | 692 |
/// |
693 | 693 |
/// This function gives back true if the given edge is valid, |
694 | 694 |
/// ie. it is a real edge of the graph. |
695 | 695 |
/// |
696 | 696 |
/// \warning A removed edge (using Snapshot) could become valid again |
697 | 697 |
/// when new edges are added to the graph. |
698 | 698 |
bool valid(Edge e) const { return Parent::valid(e); } |
699 | 699 |
|
700 | 700 |
///Clear the graph. |
701 | 701 |
|
702 | 702 |
///Erase all the nodes and edges from the graph. |
703 | 703 |
/// |
704 | 704 |
void clear() { |
705 | 705 |
Parent::clear(); |
706 | 706 |
} |
707 | 707 |
|
708 | 708 |
public: |
709 | 709 |
|
710 | 710 |
class Snapshot; |
711 | 711 |
|
712 | 712 |
protected: |
713 | 713 |
|
714 | 714 |
void saveSnapshot(Snapshot &s) |
715 | 715 |
{ |
716 | 716 |
s._graph = this; |
717 | 717 |
s.node_num = nodes.size(); |
718 | 718 |
s.arc_num = arcs.size(); |
719 | 719 |
} |
720 | 720 |
|
721 | 721 |
void restoreSnapshot(const Snapshot &s) |
722 | 722 |
{ |
723 | 723 |
while(s.arc_num<arcs.size()) { |
724 | 724 |
int n=arcs.size()-1; |
725 | 725 |
Edge arc=edgeFromId(n/2); |
726 | 726 |
Parent::notifier(Edge()).erase(arc); |
727 | 727 |
std::vector<Arc> dir; |
728 | 728 |
dir.push_back(arcFromId(n)); |
729 | 729 |
dir.push_back(arcFromId(n-1)); |
730 | 730 |
Parent::notifier(Arc()).erase(dir); |
731 | 731 |
nodes[arcs[n].target].first_out=arcs[n].next_out; |
732 | 732 |
nodes[arcs[n-1].target].first_out=arcs[n-1].next_out; |
733 | 733 |
arcs.pop_back(); |
734 | 734 |
arcs.pop_back(); |
735 | 735 |
} |
736 | 736 |
while(s.node_num<nodes.size()) { |
737 | 737 |
int n=nodes.size()-1; |
738 | 738 |
Node node = nodeFromId(n); |
739 | 739 |
Parent::notifier(Node()).erase(node); |
740 | 740 |
nodes.pop_back(); |
741 | 741 |
} |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
public: |
745 | 745 |
|
746 | 746 |
///Class to make a snapshot of the digraph and to restrore to it later. |
747 | 747 |
|
748 | 748 |
///Class to make a snapshot of the digraph and to restrore to it later. |
749 | 749 |
/// |
750 | 750 |
///The newly added nodes and arcs can be removed using the |
751 | 751 |
///restore() function. |
752 | 752 |
/// |
753 | 753 |
///\note After you restore a state, you cannot restore |
754 | 754 |
///a later state, in other word you cannot add again the arcs deleted |
755 | 755 |
///by restore() using another one Snapshot instance. |
756 | 756 |
/// |
757 | 757 |
///\warning If you do not use correctly the snapshot that can cause |
758 | 758 |
///either broken program, invalid state of the digraph, valid but |
759 | 759 |
///not the restored digraph or no change. Because the runtime performance |
760 | 760 |
///the validity of the snapshot is not stored. |
761 | 761 |
class Snapshot |
762 | 762 |
{ |
763 | 763 |
SmartGraph *_graph; |
764 | 764 |
protected: |
765 | 765 |
friend class SmartGraph; |
766 | 766 |
unsigned int node_num; |
767 | 767 |
unsigned int arc_num; |
768 | 768 |
public: |
769 | 769 |
///Default constructor. |
770 | 770 |
|
771 | 771 |
///Default constructor. |
772 | 772 |
///To actually make a snapshot you must call save(). |
773 | 773 |
/// |
774 | 774 |
Snapshot() : _graph(0) {} |
775 | 775 |
///Constructor that immediately makes a snapshot |
776 | 776 |
|
777 | 777 |
///This constructor immediately makes a snapshot of the digraph. |
778 |
///\param |
|
778 |
///\param graph The digraph we make a snapshot of. |
|
779 | 779 |
Snapshot(SmartGraph &graph) { |
780 | 780 |
graph.saveSnapshot(*this); |
781 | 781 |
} |
782 | 782 |
|
783 | 783 |
///Make a snapshot. |
784 | 784 |
|
785 | 785 |
///Make a snapshot of the graph. |
786 | 786 |
/// |
787 | 787 |
///This function can be called more than once. In case of a repeated |
788 | 788 |
///call, the previous snapshot gets lost. |
789 |
///\param |
|
789 |
///\param graph The digraph we make the snapshot of. |
|
790 | 790 |
void save(SmartGraph &graph) |
791 | 791 |
{ |
792 | 792 |
graph.saveSnapshot(*this); |
793 | 793 |
} |
794 | 794 |
|
795 | 795 |
///Undo the changes until a snapshot. |
796 | 796 |
|
797 | 797 |
///Undo the changes until a snapshot created by save(). |
798 | 798 |
/// |
799 | 799 |
///\note After you restored a state, you cannot restore |
800 | 800 |
///a later state, in other word you cannot add again the arcs deleted |
801 | 801 |
///by restore(). |
802 | 802 |
void restore() |
803 | 803 |
{ |
804 | 804 |
_graph->restoreSnapshot(*this); |
805 | 805 |
} |
806 | 806 |
}; |
807 | 807 |
}; |
808 | 808 |
|
809 | 809 |
} //namespace lemon |
810 | 810 |
|
811 | 811 |
|
812 | 812 |
#endif //LEMON_SMART_GRAPH_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TIME_MEASURE_H |
20 | 20 |
#define LEMON_TIME_MEASURE_H |
21 | 21 |
|
22 | 22 |
///\ingroup timecount |
23 | 23 |
///\file |
24 | 24 |
///\brief Tools for measuring cpu usage |
25 | 25 |
|
26 | 26 |
#ifdef WIN32 |
27 | 27 |
#define WIN32_LEAN_AND_MEAN |
28 | 28 |
#define NOMINMAX |
29 | 29 |
#include <windows.h> |
30 | 30 |
#include <cmath> |
31 | 31 |
#else |
32 | 32 |
#include <sys/times.h> |
33 | 33 |
#include <sys/time.h> |
34 | 34 |
#endif |
35 | 35 |
|
36 | 36 |
#include <string> |
37 | 37 |
#include <fstream> |
38 | 38 |
#include <iostream> |
39 | 39 |
|
40 | 40 |
namespace lemon { |
41 | 41 |
|
42 | 42 |
/// \addtogroup timecount |
43 | 43 |
/// @{ |
44 | 44 |
|
45 | 45 |
/// A class to store (cpu)time instances. |
46 | 46 |
|
47 | 47 |
/// This class stores five time values. |
48 | 48 |
/// - a real time |
49 | 49 |
/// - a user cpu time |
50 | 50 |
/// - a system cpu time |
51 | 51 |
/// - a user cpu time of children |
52 | 52 |
/// - a system cpu time of children |
53 | 53 |
/// |
54 | 54 |
/// TimeStamp's can be added to or substracted from each other and |
55 | 55 |
/// they can be pushed to a stream. |
56 | 56 |
/// |
57 | 57 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport |
58 | 58 |
/// class is what you want to use instead. |
59 | 59 |
|
60 | 60 |
class TimeStamp |
61 | 61 |
{ |
62 | 62 |
double utime; |
63 | 63 |
double stime; |
64 | 64 |
double cutime; |
65 | 65 |
double cstime; |
66 | 66 |
double rtime; |
67 | 67 |
|
68 | 68 |
void _reset() { |
69 | 69 |
utime = stime = cutime = cstime = rtime = 0; |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
public: |
73 | 73 |
|
74 | 74 |
///Read the current time values of the process |
75 | 75 |
void stamp() |
76 | 76 |
{ |
77 | 77 |
#ifndef WIN32 |
78 | 78 |
timeval tv; |
79 | 79 |
gettimeofday(&tv, 0); |
80 | 80 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
81 | 81 |
|
82 | 82 |
tms ts; |
83 | 83 |
double tck=sysconf(_SC_CLK_TCK); |
84 | 84 |
times(&ts); |
85 | 85 |
utime=ts.tms_utime/tck; |
86 | 86 |
stime=ts.tms_stime/tck; |
87 | 87 |
cutime=ts.tms_cutime/tck; |
88 | 88 |
cstime=ts.tms_cstime/tck; |
89 | 89 |
#else |
90 | 90 |
static const double ch = 4294967296.0e-7; |
91 | 91 |
static const double cl = 1.0e-7; |
92 | 92 |
|
93 | 93 |
FILETIME system; |
94 | 94 |
GetSystemTimeAsFileTime(&system); |
95 | 95 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
96 | 96 |
|
97 | 97 |
FILETIME create, exit, kernel, user; |
98 | 98 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { |
99 | 99 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
100 | 100 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
101 | 101 |
cutime = 0; |
102 | 102 |
cstime = 0; |
103 | 103 |
} else { |
104 | 104 |
rtime = 0; |
105 | 105 |
utime = 0; |
106 | 106 |
stime = 0; |
107 | 107 |
cutime = 0; |
108 | 108 |
cstime = 0; |
109 | 109 |
} |
110 | 110 |
#endif |
111 | 111 |
} |
112 | 112 |
|
113 | 113 |
/// Constructor initializing with zero |
114 | 114 |
TimeStamp() |
115 | 115 |
{ _reset(); } |
116 | 116 |
///Constructor initializing with the current time values of the process |
117 | 117 |
TimeStamp(void *) { stamp();} |
118 | 118 |
|
119 | 119 |
///Set every time value to zero |
120 | 120 |
TimeStamp &reset() {_reset();return *this;} |
121 | 121 |
|
122 | 122 |
///\e |
123 | 123 |
TimeStamp &operator+=(const TimeStamp &b) |
124 | 124 |
{ |
125 | 125 |
utime+=b.utime; |
126 | 126 |
stime+=b.stime; |
127 | 127 |
cutime+=b.cutime; |
128 | 128 |
cstime+=b.cstime; |
129 | 129 |
rtime+=b.rtime; |
130 | 130 |
return *this; |
131 | 131 |
} |
132 | 132 |
///\e |
133 | 133 |
TimeStamp operator+(const TimeStamp &b) const |
134 | 134 |
{ |
135 | 135 |
TimeStamp t(*this); |
136 | 136 |
return t+=b; |
137 | 137 |
} |
138 | 138 |
///\e |
139 | 139 |
TimeStamp &operator-=(const TimeStamp &b) |
140 | 140 |
{ |
141 | 141 |
utime-=b.utime; |
142 | 142 |
stime-=b.stime; |
143 | 143 |
cutime-=b.cutime; |
144 | 144 |
cstime-=b.cstime; |
145 | 145 |
rtime-=b.rtime; |
146 | 146 |
return *this; |
147 | 147 |
} |
148 | 148 |
///\e |
149 | 149 |
TimeStamp operator-(const TimeStamp &b) const |
150 | 150 |
{ |
151 | 151 |
TimeStamp t(*this); |
152 | 152 |
return t-=b; |
153 | 153 |
} |
154 | 154 |
///\e |
155 | 155 |
TimeStamp &operator*=(double b) |
156 | 156 |
{ |
157 | 157 |
utime*=b; |
158 | 158 |
stime*=b; |
159 | 159 |
cutime*=b; |
160 | 160 |
cstime*=b; |
161 | 161 |
rtime*=b; |
162 | 162 |
return *this; |
163 | 163 |
} |
164 | 164 |
///\e |
165 | 165 |
TimeStamp operator*(double b) const |
166 | 166 |
{ |
167 | 167 |
TimeStamp t(*this); |
168 | 168 |
return t*=b; |
169 | 169 |
} |
170 | 170 |
friend TimeStamp operator*(double b,const TimeStamp &t); |
171 | 171 |
///\e |
172 | 172 |
TimeStamp &operator/=(double b) |
173 | 173 |
{ |
174 | 174 |
utime/=b; |
175 | 175 |
stime/=b; |
176 | 176 |
cutime/=b; |
177 | 177 |
cstime/=b; |
178 | 178 |
rtime/=b; |
179 | 179 |
return *this; |
180 | 180 |
} |
181 | 181 |
///\e |
182 | 182 |
TimeStamp operator/(double b) const |
183 | 183 |
{ |
184 | 184 |
TimeStamp t(*this); |
185 | 185 |
return t/=b; |
186 | 186 |
} |
187 | 187 |
///The time ellapsed since the last call of stamp() |
188 | 188 |
TimeStamp ellapsed() const |
189 | 189 |
{ |
190 | 190 |
TimeStamp t(NULL); |
191 | 191 |
return t-*this; |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t); |
195 | 195 |
|
196 | 196 |
///Gives back the user time of the process |
197 | 197 |
double userTime() const |
198 | 198 |
{ |
199 | 199 |
return utime; |
200 | 200 |
} |
201 | 201 |
///Gives back the system time of the process |
202 | 202 |
double systemTime() const |
203 | 203 |
{ |
204 | 204 |
return stime; |
205 | 205 |
} |
206 | 206 |
///Gives back the user time of the process' children |
207 | 207 |
|
208 | 208 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
209 | 209 |
/// |
210 | 210 |
double cUserTime() const |
211 | 211 |
{ |
212 | 212 |
return cutime; |
213 | 213 |
} |
214 | 214 |
///Gives back the user time of the process' children |
215 | 215 |
|
216 | 216 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
217 | 217 |
/// |
218 | 218 |
double cSystemTime() const |
219 | 219 |
{ |
220 | 220 |
return cstime; |
221 | 221 |
} |
222 | 222 |
///Gives back the real time |
223 | 223 |
double realTime() const {return rtime;} |
224 | 224 |
}; |
225 | 225 |
|
226 | 226 |
TimeStamp operator*(double b,const TimeStamp &t) |
227 | 227 |
{ |
228 | 228 |
return t*b; |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
///Prints the time counters |
232 | 232 |
|
233 | 233 |
///Prints the time counters in the following form: |
234 | 234 |
/// |
235 | 235 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
236 | 236 |
/// |
237 | 237 |
/// where the values are the |
238 | 238 |
/// \li \c u: user cpu time, |
239 | 239 |
/// \li \c s: system cpu time, |
240 | 240 |
/// \li \c cu: user cpu time of children, |
241 | 241 |
/// \li \c cs: system cpu time of children, |
242 | 242 |
/// \li \c real: real time. |
243 | 243 |
/// \relates TimeStamp |
244 | 244 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
245 | 245 |
/// calculated. |
246 | 246 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
247 | 247 |
{ |
248 | 248 |
os << "u: " << t.userTime() << |
249 | 249 |
"s, s: " << t.systemTime() << |
250 | 250 |
"s, cu: " << t.cUserTime() << |
251 | 251 |
"s, cs: " << t.cSystemTime() << |
252 | 252 |
"s, real: " << t.realTime() << "s"; |
253 | 253 |
return os; |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
///Class for measuring the cpu time and real time usage of the process |
257 | 257 |
|
258 | 258 |
///Class for measuring the cpu time and real time usage of the process. |
259 | 259 |
///It is quite easy-to-use, here is a short example. |
260 | 260 |
///\code |
261 | 261 |
/// #include<lemon/time_measure.h> |
262 | 262 |
/// #include<iostream> |
263 | 263 |
/// |
264 | 264 |
/// int main() |
265 | 265 |
/// { |
266 | 266 |
/// |
267 | 267 |
/// ... |
268 | 268 |
/// |
269 | 269 |
/// Timer t; |
270 | 270 |
/// doSomething(); |
271 | 271 |
/// std::cout << t << '\n'; |
272 | 272 |
/// t.restart(); |
273 | 273 |
/// doSomethingElse(); |
274 | 274 |
/// std::cout << t << '\n'; |
275 | 275 |
/// |
276 | 276 |
/// ... |
277 | 277 |
/// |
278 | 278 |
/// } |
279 | 279 |
///\endcode |
280 | 280 |
/// |
281 | 281 |
///The \ref Timer can also be \ref stop() "stopped" and |
282 | 282 |
///\ref start() "started" again, so it is possible to compute collected |
283 | 283 |
///running times. |
284 | 284 |
/// |
285 | 285 |
///\warning Depending on the operation system and its actual configuration |
286 | 286 |
///the time counters have a certain (10ms on a typical Linux system) |
287 | 287 |
///granularity. |
288 | 288 |
///Therefore this tool is not appropriate to measure very short times. |
289 | 289 |
///Also, if you start and stop the timer very frequently, it could lead to |
290 | 290 |
///distorted results. |
291 | 291 |
/// |
292 | 292 |
///\note If you want to measure the running time of the execution of a certain |
293 | 293 |
///function, consider the usage of \ref TimeReport instead. |
294 | 294 |
/// |
295 | 295 |
///\sa TimeReport |
296 | 296 |
class Timer |
297 | 297 |
{ |
298 | 298 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
299 | 299 |
TimeStamp start_time; //This is the relativ start-time if the timer |
300 | 300 |
//is _running, the collected _running time otherwise. |
301 | 301 |
|
302 | 302 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
303 | 303 |
|
304 | 304 |
public: |
305 | 305 |
///Constructor. |
306 | 306 |
|
307 | 307 |
///\param run indicates whether or not the timer starts immediately. |
308 | 308 |
/// |
309 | 309 |
Timer(bool run=true) :_running(run) {_reset();} |
310 | 310 |
|
311 | 311 |
///\name Control the state of the timer |
312 | 312 |
///Basically a Timer can be either running or stopped, |
313 | 313 |
///but it provides a bit finer control on the execution. |
314 |
///The \ref Timer also counts the number of \ref start() |
|
315 |
///executions, and is stops only after the same amount (or more) |
|
316 |
///\ref stop() "stop()"s. This can be useful e.g. to compute |
|
317 |
///the running time |
|
314 |
///The \ref lemon::Timer "Timer" also counts the number of |
|
315 |
///\ref lemon::Timer::start() "start()" executions, and it stops |
|
316 |
///only after the same amount (or more) \ref lemon::Timer::stop() |
|
317 |
///"stop()"s. This can be useful e.g. to compute the running time |
|
318 | 318 |
///of recursive functions. |
319 |
/// |
|
320 | 319 |
|
321 | 320 |
///@{ |
322 | 321 |
|
323 | 322 |
///Reset and stop the time counters |
324 | 323 |
|
325 | 324 |
///This function resets and stops the time counters |
326 | 325 |
///\sa restart() |
327 | 326 |
void reset() |
328 | 327 |
{ |
329 | 328 |
_running=0; |
330 | 329 |
_reset(); |
331 | 330 |
} |
332 | 331 |
|
333 | 332 |
///Start the time counters |
334 | 333 |
|
335 | 334 |
///This function starts the time counters. |
336 | 335 |
/// |
337 | 336 |
///If the timer is started more than ones, it will remain running |
338 | 337 |
///until the same amount of \ref stop() is called. |
339 | 338 |
///\sa stop() |
340 | 339 |
void start() |
341 | 340 |
{ |
342 | 341 |
if(_running) _running++; |
343 | 342 |
else { |
344 | 343 |
_running=1; |
345 | 344 |
TimeStamp t; |
346 | 345 |
t.stamp(); |
347 | 346 |
start_time=t-start_time; |
348 | 347 |
} |
349 | 348 |
} |
350 | 349 |
|
351 | 350 |
|
352 | 351 |
///Stop the time counters |
353 | 352 |
|
354 | 353 |
///This function stops the time counters. If start() was executed more than |
355 | 354 |
///once, then the same number of stop() execution is necessary the really |
356 | 355 |
///stop the timer. |
357 | 356 |
/// |
358 | 357 |
///\sa halt() |
359 | 358 |
///\sa start() |
360 | 359 |
///\sa restart() |
361 | 360 |
///\sa reset() |
362 | 361 |
|
363 | 362 |
void stop() |
364 | 363 |
{ |
365 | 364 |
if(_running && !--_running) { |
366 | 365 |
TimeStamp t; |
367 | 366 |
t.stamp(); |
368 | 367 |
start_time=t-start_time; |
369 | 368 |
} |
370 | 369 |
} |
371 | 370 |
|
372 | 371 |
///Halt (i.e stop immediately) the time counters |
373 | 372 |
|
374 | 373 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt> |
375 | 374 |
///is a faster |
376 | 375 |
///equivalent of the following. |
377 | 376 |
///\code |
378 | 377 |
/// while(t.running()) t.stop() |
379 | 378 |
///\endcode |
380 | 379 |
/// |
381 | 380 |
/// |
382 | 381 |
///\sa stop() |
383 | 382 |
///\sa restart() |
384 | 383 |
///\sa reset() |
385 | 384 |
|
386 | 385 |
void halt() |
387 | 386 |
{ |
388 | 387 |
if(_running) { |
389 | 388 |
_running=0; |
390 | 389 |
TimeStamp t; |
391 | 390 |
t.stamp(); |
392 | 391 |
start_time=t-start_time; |
393 | 392 |
} |
394 | 393 |
} |
395 | 394 |
|
396 | 395 |
///Returns the running state of the timer |
397 | 396 |
|
398 | 397 |
///This function returns the number of stop() exections that is |
399 | 398 |
///necessary to really stop the timer. |
400 | 399 |
///For example the timer |
401 | 400 |
///is running if and only if the return value is \c true |
402 | 401 |
///(i.e. greater than |
403 | 402 |
///zero). |
404 | 403 |
int running() { return _running; } |
405 | 404 |
|
406 | 405 |
|
407 | 406 |
///Restart the time counters |
408 | 407 |
|
409 | 408 |
///This function is a shorthand for |
410 | 409 |
///a reset() and a start() calls. |
411 | 410 |
/// |
412 | 411 |
void restart() |
413 | 412 |
{ |
414 | 413 |
reset(); |
415 | 414 |
start(); |
416 | 415 |
} |
417 | 416 |
|
418 | 417 |
///@} |
419 | 418 |
|
420 | 419 |
///\name Query Functions for the ellapsed time |
421 | 420 |
|
422 | 421 |
///@{ |
423 | 422 |
|
424 | 423 |
///Gives back the ellapsed user time of the process |
425 | 424 |
double userTime() const |
426 | 425 |
{ |
427 | 426 |
return operator TimeStamp().userTime(); |
428 | 427 |
} |
429 | 428 |
///Gives back the ellapsed system time of the process |
430 | 429 |
double systemTime() const |
431 | 430 |
{ |
432 | 431 |
return operator TimeStamp().systemTime(); |
433 | 432 |
} |
434 | 433 |
///Gives back the ellapsed user time of the process' children |
435 | 434 |
|
436 | 435 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
437 | 436 |
/// |
438 | 437 |
double cUserTime() const |
439 | 438 |
{ |
440 | 439 |
return operator TimeStamp().cUserTime(); |
441 | 440 |
} |
442 | 441 |
///Gives back the ellapsed user time of the process' children |
443 | 442 |
|
444 | 443 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
445 | 444 |
/// |
446 | 445 |
double cSystemTime() const |
447 | 446 |
{ |
448 | 447 |
return operator TimeStamp().cSystemTime(); |
449 | 448 |
} |
450 | 449 |
///Gives back the ellapsed real time |
451 | 450 |
double realTime() const |
452 | 451 |
{ |
453 | 452 |
return operator TimeStamp().realTime(); |
454 | 453 |
} |
455 | 454 |
///Computes the ellapsed time |
456 | 455 |
|
457 | 456 |
///This conversion computes the ellapsed time, therefore you can print |
458 | 457 |
///the ellapsed time like this. |
459 | 458 |
///\code |
460 | 459 |
/// Timer t; |
461 | 460 |
/// doSomething(); |
462 | 461 |
/// std::cout << t << '\n'; |
463 | 462 |
///\endcode |
464 | 463 |
operator TimeStamp () const |
465 | 464 |
{ |
466 | 465 |
TimeStamp t; |
467 | 466 |
t.stamp(); |
468 | 467 |
return _running?t-start_time:start_time; |
469 | 468 |
} |
470 | 469 |
|
471 | 470 |
|
472 | 471 |
///@} |
473 | 472 |
}; |
474 | 473 |
|
475 |
///Same as |
|
474 |
///Same as Timer but prints a report on destruction. |
|
476 | 475 |
|
477 | 476 |
///Same as \ref Timer but prints a report on destruction. |
478 | 477 |
///This example shows its usage. |
479 | 478 |
///\code |
480 | 479 |
/// void myAlg(ListGraph &g,int n) |
481 | 480 |
/// { |
482 | 481 |
/// TimeReport tr("Running time of myAlg: "); |
483 | 482 |
/// ... //Here comes the algorithm |
484 | 483 |
/// } |
485 | 484 |
///\endcode |
486 | 485 |
/// |
487 | 486 |
///\sa Timer |
488 | 487 |
///\sa NoTimeReport |
489 | 488 |
class TimeReport : public Timer |
490 | 489 |
{ |
491 | 490 |
std::string _title; |
492 | 491 |
std::ostream &_os; |
493 | 492 |
public: |
494 |
/// |
|
493 |
///Constructor |
|
495 | 494 |
|
495 |
///Constructor. |
|
496 | 496 |
///\param title This text will be printed before the ellapsed time. |
497 | 497 |
///\param os The stream to print the report to. |
498 | 498 |
///\param run Sets whether the timer should start immediately. |
499 |
|
|
500 | 499 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
501 | 500 |
: Timer(run), _title(title), _os(os){} |
502 |
/// |
|
501 |
///Destructor that prints the ellapsed time |
|
503 | 502 |
~TimeReport() |
504 | 503 |
{ |
505 | 504 |
_os << _title << *this << std::endl; |
506 | 505 |
} |
507 | 506 |
}; |
508 | 507 |
|
509 |
///'Do nothing' version of |
|
508 |
///'Do nothing' version of TimeReport |
|
510 | 509 |
|
511 | 510 |
///\sa TimeReport |
512 | 511 |
/// |
513 | 512 |
class NoTimeReport |
514 | 513 |
{ |
515 | 514 |
public: |
516 | 515 |
///\e |
517 | 516 |
NoTimeReport(std::string,std::ostream &,bool) {} |
518 | 517 |
///\e |
519 | 518 |
NoTimeReport(std::string,std::ostream &) {} |
520 | 519 |
///\e |
521 | 520 |
NoTimeReport(std::string) {} |
522 | 521 |
///\e Do nothing. |
523 | 522 |
~NoTimeReport() {} |
524 | 523 |
|
525 | 524 |
operator TimeStamp () const { return TimeStamp(); } |
526 | 525 |
void reset() {} |
527 | 526 |
void start() {} |
528 | 527 |
void stop() {} |
529 | 528 |
void halt() {} |
530 | 529 |
int running() { return 0; } |
531 | 530 |
void restart() {} |
532 | 531 |
double userTime() const { return 0; } |
533 | 532 |
double systemTime() const { return 0; } |
534 | 533 |
double cUserTime() const { return 0; } |
535 | 534 |
double cSystemTime() const { return 0; } |
536 | 535 |
double realTime() const { return 0; } |
537 | 536 |
}; |
538 | 537 |
|
539 | 538 |
///Tool to measure the running time more exactly. |
540 | 539 |
|
541 | 540 |
///This function calls \c f several times and returns the average |
542 | 541 |
///running time. The number of the executions will be choosen in such a way |
543 | 542 |
///that the full real running time will be roughly between \c min_time |
544 | 543 |
///and <tt>2*min_time</tt>. |
545 | 544 |
///\param f the function object to be measured. |
546 | 545 |
///\param min_time the minimum total running time. |
547 | 546 |
///\retval num if it is not \c NULL, then the actual |
548 | 547 |
/// number of execution of \c f will be written into <tt>*num</tt>. |
549 | 548 |
///\retval full_time if it is not \c NULL, then the actual |
550 | 549 |
/// total running time will be written into <tt>*full_time</tt>. |
551 | 550 |
///\return The average running time of \c f. |
552 | 551 |
|
553 | 552 |
template<class F> |
554 | 553 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
555 | 554 |
TimeStamp *full_time=NULL) |
556 | 555 |
{ |
557 | 556 |
TimeStamp full; |
558 | 557 |
unsigned int total=0; |
559 | 558 |
Timer t; |
560 | 559 |
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) { |
561 | 560 |
for(;total<tn;total++) f(); |
562 | 561 |
full=t; |
563 | 562 |
} |
564 | 563 |
if(num) *num=total; |
565 | 564 |
if(full_time) *full_time=full; |
566 | 565 |
return full/total; |
567 | 566 |
} |
568 | 567 |
|
569 | 568 |
/// @} |
570 | 569 |
|
571 | 570 |
|
572 | 571 |
} //namespace lemon |
573 | 572 |
|
574 | 573 |
#endif //LEMON_TIME_MEASURE_H |
0 comments (0 inline)