... | ... |
@@ -1009,512 +1009,517 @@ |
1009 | 1009 |
typedef typename TR::ProcessedMap ProcessedMap; |
1010 | 1010 |
|
1011 | 1011 |
public: |
1012 | 1012 |
|
1013 | 1013 |
/// Constructor. |
1014 | 1014 |
BfsWizard() : TR() {} |
1015 | 1015 |
|
1016 | 1016 |
/// Constructor that requires parameters. |
1017 | 1017 |
|
1018 | 1018 |
/// Constructor that requires parameters. |
1019 | 1019 |
/// These parameters will be the default values for the traits class. |
1020 | 1020 |
BfsWizard(const Digraph &g, Node s=INVALID) : |
1021 | 1021 |
TR(g,s) {} |
1022 | 1022 |
|
1023 | 1023 |
///Copy constructor |
1024 | 1024 |
BfsWizard(const TR &b) : TR(b) {} |
1025 | 1025 |
|
1026 | 1026 |
~BfsWizard() {} |
1027 | 1027 |
|
1028 | 1028 |
///Runs BFS algorithm from a source node. |
1029 | 1029 |
|
1030 | 1030 |
///Runs BFS algorithm from a source node. |
1031 | 1031 |
///The node can be given with the \ref source() function. |
1032 | 1032 |
void run() |
1033 | 1033 |
{ |
1034 | 1034 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
1035 | 1035 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1036 | 1036 |
if(Base::_reached) |
1037 | 1037 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1038 | 1038 |
if(Base::_processed) |
1039 | 1039 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1040 | 1040 |
if(Base::_pred) |
1041 | 1041 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1042 | 1042 |
if(Base::_dist) |
1043 | 1043 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1044 | 1044 |
alg.run(Base::_source); |
1045 | 1045 |
} |
1046 | 1046 |
|
1047 | 1047 |
///Runs BFS algorithm from the given node. |
1048 | 1048 |
|
1049 | 1049 |
///Runs BFS algorithm from the given node. |
1050 | 1050 |
///\param s is the given source. |
1051 | 1051 |
void run(Node s) |
1052 | 1052 |
{ |
1053 | 1053 |
Base::_source=s; |
1054 | 1054 |
run(); |
1055 | 1055 |
} |
1056 | 1056 |
|
1057 | 1057 |
/// Sets the source node, from which the Bfs algorithm runs. |
1058 | 1058 |
|
1059 | 1059 |
/// Sets the source node, from which the Bfs algorithm runs. |
1060 | 1060 |
/// \param s is the source node. |
1061 | 1061 |
BfsWizard<TR> &source(Node s) |
1062 | 1062 |
{ |
1063 | 1063 |
Base::_source=s; |
1064 | 1064 |
return *this; |
1065 | 1065 |
} |
1066 | 1066 |
|
1067 | 1067 |
template<class T> |
1068 | 1068 |
struct DefPredMapBase : public Base { |
1069 | 1069 |
typedef T PredMap; |
1070 | 1070 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1071 | 1071 |
DefPredMapBase(const TR &b) : TR(b) {} |
1072 | 1072 |
}; |
1073 | 1073 |
///\brief \ref named-templ-param "Named parameter" |
1074 | 1074 |
///for setting \ref PredMap object. |
1075 | 1075 |
/// |
1076 | 1076 |
/// \ref named-templ-param "Named parameter" |
1077 | 1077 |
///for setting \ref PredMap object. |
1078 | 1078 |
template<class T> |
1079 | 1079 |
BfsWizard<DefPredMapBase<T> > predMap(const T &t) |
1080 | 1080 |
{ |
1081 | 1081 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1082 | 1082 |
return BfsWizard<DefPredMapBase<T> >(*this); |
1083 | 1083 |
} |
1084 | 1084 |
|
1085 | 1085 |
template<class T> |
1086 | 1086 |
struct DefReachedMapBase : public Base { |
1087 | 1087 |
typedef T ReachedMap; |
1088 | 1088 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1089 | 1089 |
DefReachedMapBase(const TR &b) : TR(b) {} |
1090 | 1090 |
}; |
1091 | 1091 |
///\brief \ref named-templ-param "Named parameter" |
1092 | 1092 |
///for setting \ref ReachedMap object. |
1093 | 1093 |
/// |
1094 | 1094 |
/// \ref named-templ-param "Named parameter" |
1095 | 1095 |
///for setting \ref ReachedMap object. |
1096 | 1096 |
template<class T> |
1097 | 1097 |
BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
1098 | 1098 |
{ |
1099 | 1099 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1100 | 1100 |
return BfsWizard<DefReachedMapBase<T> >(*this); |
1101 | 1101 |
} |
1102 | 1102 |
|
1103 | 1103 |
template<class T> |
1104 | 1104 |
struct DefProcessedMapBase : public Base { |
1105 | 1105 |
typedef T ProcessedMap; |
1106 | 1106 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1107 | 1107 |
DefProcessedMapBase(const TR &b) : TR(b) {} |
1108 | 1108 |
}; |
1109 | 1109 |
///\brief \ref named-templ-param "Named parameter" |
1110 | 1110 |
///for setting \ref ProcessedMap object. |
1111 | 1111 |
/// |
1112 | 1112 |
/// \ref named-templ-param "Named parameter" |
1113 | 1113 |
///for setting \ref ProcessedMap object. |
1114 | 1114 |
template<class T> |
1115 | 1115 |
BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
1116 | 1116 |
{ |
1117 | 1117 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1118 | 1118 |
return BfsWizard<DefProcessedMapBase<T> >(*this); |
1119 | 1119 |
} |
1120 | 1120 |
|
1121 | 1121 |
template<class T> |
1122 | 1122 |
struct DefDistMapBase : public Base { |
1123 | 1123 |
typedef T DistMap; |
1124 | 1124 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1125 | 1125 |
DefDistMapBase(const TR &b) : TR(b) {} |
1126 | 1126 |
}; |
1127 | 1127 |
///\brief \ref named-templ-param "Named parameter" |
1128 | 1128 |
///for setting \ref DistMap object. |
1129 | 1129 |
/// |
1130 | 1130 |
/// \ref named-templ-param "Named parameter" |
1131 | 1131 |
///for setting \ref DistMap object. |
1132 | 1132 |
template<class T> |
1133 | 1133 |
BfsWizard<DefDistMapBase<T> > distMap(const T &t) |
1134 | 1134 |
{ |
1135 | 1135 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1136 | 1136 |
return BfsWizard<DefDistMapBase<T> >(*this); |
1137 | 1137 |
} |
1138 | 1138 |
|
1139 | 1139 |
}; |
1140 | 1140 |
|
1141 | 1141 |
///Function type interface for Bfs algorithm. |
1142 | 1142 |
|
1143 | 1143 |
/// \ingroup search |
1144 | 1144 |
///Function type interface for Bfs algorithm. |
1145 | 1145 |
/// |
1146 | 1146 |
///This function also has several |
1147 | 1147 |
///\ref named-templ-func-param "named parameters", |
1148 | 1148 |
///they are declared as the members of class \ref BfsWizard. |
1149 | 1149 |
///The following |
1150 | 1150 |
///example shows how to use these parameters. |
1151 | 1151 |
///\code |
1152 | 1152 |
/// bfs(g,source).predMap(preds).run(); |
1153 | 1153 |
///\endcode |
1154 | 1154 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
1155 | 1155 |
///to the end of the parameter list. |
1156 | 1156 |
///\sa BfsWizard |
1157 | 1157 |
///\sa Bfs |
1158 | 1158 |
template<class GR> |
1159 | 1159 |
BfsWizard<BfsWizardBase<GR> > |
1160 | 1160 |
bfs(const GR &g,typename GR::Node s=INVALID) |
1161 | 1161 |
{ |
1162 | 1162 |
return BfsWizard<BfsWizardBase<GR> >(g,s); |
1163 | 1163 |
} |
1164 | 1164 |
|
1165 | 1165 |
#ifdef DOXYGEN |
1166 | 1166 |
/// \brief Visitor class for BFS. |
1167 | 1167 |
/// |
1168 | 1168 |
/// This class defines the interface of the BfsVisit events, and |
1169 | 1169 |
/// it could be the base of a real visitor class. |
1170 | 1170 |
template <typename _Digraph> |
1171 | 1171 |
struct BfsVisitor { |
1172 | 1172 |
typedef _Digraph Digraph; |
1173 | 1173 |
typedef typename Digraph::Arc Arc; |
1174 | 1174 |
typedef typename Digraph::Node Node; |
1175 | 1175 |
/// \brief Called for the source node(s) of the BFS. |
1176 | 1176 |
/// |
1177 | 1177 |
/// This function is called for the source node(s) of the BFS. |
1178 | 1178 |
void start(const Node& node) {} |
1179 | 1179 |
/// \brief Called when a node is reached first time. |
1180 | 1180 |
/// |
1181 | 1181 |
/// This function is called when a node is reached first time. |
1182 | 1182 |
void reach(const Node& node) {} |
1183 | 1183 |
/// \brief Called when a node is processed. |
1184 | 1184 |
/// |
1185 | 1185 |
/// This function is called when a node is processed. |
1186 | 1186 |
void process(const Node& node) {} |
1187 | 1187 |
/// \brief Called when an arc reaches a new node. |
1188 | 1188 |
/// |
1189 | 1189 |
/// This function is called when the BFS finds an arc whose target node |
1190 | 1190 |
/// is not reached yet. |
1191 | 1191 |
void discover(const Arc& arc) {} |
1192 | 1192 |
/// \brief Called when an arc is examined but its target node is |
1193 | 1193 |
/// already discovered. |
1194 | 1194 |
/// |
1195 | 1195 |
/// This function is called when an arc is examined but its target node is |
1196 | 1196 |
/// already discovered. |
1197 | 1197 |
void examine(const Arc& arc) {} |
1198 | 1198 |
}; |
1199 | 1199 |
#else |
1200 | 1200 |
template <typename _Digraph> |
1201 | 1201 |
struct BfsVisitor { |
1202 | 1202 |
typedef _Digraph Digraph; |
1203 | 1203 |
typedef typename Digraph::Arc Arc; |
1204 | 1204 |
typedef typename Digraph::Node Node; |
1205 | 1205 |
void start(const Node&) {} |
1206 | 1206 |
void reach(const Node&) {} |
1207 | 1207 |
void process(const Node&) {} |
1208 | 1208 |
void discover(const Arc&) {} |
1209 | 1209 |
void examine(const Arc&) {} |
1210 | 1210 |
|
1211 | 1211 |
template <typename _Visitor> |
1212 | 1212 |
struct Constraints { |
1213 | 1213 |
void constraints() { |
1214 | 1214 |
Arc arc; |
1215 | 1215 |
Node node; |
1216 | 1216 |
visitor.start(node); |
1217 | 1217 |
visitor.reach(node); |
1218 | 1218 |
visitor.process(node); |
1219 | 1219 |
visitor.discover(arc); |
1220 | 1220 |
visitor.examine(arc); |
1221 | 1221 |
} |
1222 | 1222 |
_Visitor& visitor; |
1223 | 1223 |
}; |
1224 | 1224 |
}; |
1225 | 1225 |
#endif |
1226 | 1226 |
|
1227 | 1227 |
/// \brief Default traits class of BfsVisit class. |
1228 | 1228 |
/// |
1229 | 1229 |
/// Default traits class of BfsVisit class. |
1230 | 1230 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1231 | 1231 |
template<class _Digraph> |
1232 | 1232 |
struct BfsVisitDefaultTraits { |
1233 | 1233 |
|
1234 | 1234 |
/// \brief The type of the digraph the algorithm runs on. |
1235 | 1235 |
typedef _Digraph Digraph; |
1236 | 1236 |
|
1237 | 1237 |
/// \brief The type of the map that indicates which nodes are reached. |
1238 | 1238 |
/// |
1239 | 1239 |
/// The type of the map that indicates which nodes are reached. |
1240 | 1240 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1241 | 1241 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1242 | 1242 |
|
1243 | 1243 |
/// \brief Instantiates a \ref ReachedMap. |
1244 | 1244 |
/// |
1245 | 1245 |
/// This function instantiates a \ref ReachedMap. |
1246 | 1246 |
/// \param digraph is the digraph, to which |
1247 | 1247 |
/// we would like to define the \ref ReachedMap. |
1248 | 1248 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1249 | 1249 |
return new ReachedMap(digraph); |
1250 | 1250 |
} |
1251 | 1251 |
|
1252 | 1252 |
}; |
1253 | 1253 |
|
1254 | 1254 |
/// \ingroup search |
1255 | 1255 |
/// |
1256 | 1256 |
/// \brief %BFS algorithm class with visitor interface. |
1257 | 1257 |
/// |
1258 | 1258 |
/// This class provides an efficient implementation of the %BFS algorithm |
1259 | 1259 |
/// with visitor interface. |
1260 | 1260 |
/// |
1261 | 1261 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1262 | 1262 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1263 | 1263 |
/// the member functions of the \c Visitor class on every BFS event. |
1264 | 1264 |
/// |
1265 |
/// This interface of the BFS algorithm should be used in special cases |
|
1266 |
/// when extra actions have to be performed in connection with certain |
|
1267 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
|
1268 |
/// instead. |
|
1269 |
/// |
|
1265 | 1270 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1266 | 1271 |
/// The default value is |
1267 | 1272 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1268 | 1273 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
1269 | 1274 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1270 | 1275 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
1271 | 1276 |
/// does not observe the BFS events. If you want to observe the BFS |
1272 | 1277 |
/// events, you should implement your own visitor class. |
1273 | 1278 |
/// \tparam _Traits Traits class to set various data types used by the |
1274 | 1279 |
/// algorithm. The default traits class is |
1275 | 1280 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1276 | 1281 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1277 | 1282 |
/// a BFS visit traits class. |
1278 | 1283 |
#ifdef DOXYGEN |
1279 | 1284 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1280 | 1285 |
#else |
1281 | 1286 |
template <typename _Digraph = ListDigraph, |
1282 | 1287 |
typename _Visitor = BfsVisitor<_Digraph>, |
1283 | 1288 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
1284 | 1289 |
#endif |
1285 | 1290 |
class BfsVisit { |
1286 | 1291 |
public: |
1287 | 1292 |
|
1288 | 1293 |
/// \brief \ref Exception for uninitialized parameters. |
1289 | 1294 |
/// |
1290 | 1295 |
/// This error represents problems in the initialization |
1291 | 1296 |
/// of the parameters of the algorithm. |
1292 | 1297 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1293 | 1298 |
public: |
1294 | 1299 |
virtual const char* what() const throw() |
1295 | 1300 |
{ |
1296 | 1301 |
return "lemon::BfsVisit::UninitializedParameter"; |
1297 | 1302 |
} |
1298 | 1303 |
}; |
1299 | 1304 |
|
1300 | 1305 |
///The traits class. |
1301 | 1306 |
typedef _Traits Traits; |
1302 | 1307 |
|
1303 | 1308 |
///The type of the digraph the algorithm runs on. |
1304 | 1309 |
typedef typename Traits::Digraph Digraph; |
1305 | 1310 |
|
1306 | 1311 |
///The visitor type used by the algorithm. |
1307 | 1312 |
typedef _Visitor Visitor; |
1308 | 1313 |
|
1309 | 1314 |
///The type of the map that indicates which nodes are reached. |
1310 | 1315 |
typedef typename Traits::ReachedMap ReachedMap; |
1311 | 1316 |
|
1312 | 1317 |
private: |
1313 | 1318 |
|
1314 | 1319 |
typedef typename Digraph::Node Node; |
1315 | 1320 |
typedef typename Digraph::NodeIt NodeIt; |
1316 | 1321 |
typedef typename Digraph::Arc Arc; |
1317 | 1322 |
typedef typename Digraph::OutArcIt OutArcIt; |
1318 | 1323 |
|
1319 | 1324 |
//Pointer to the underlying digraph. |
1320 | 1325 |
const Digraph *_digraph; |
1321 | 1326 |
//Pointer to the visitor object. |
1322 | 1327 |
Visitor *_visitor; |
1323 | 1328 |
//Pointer to the map of reached status of the nodes. |
1324 | 1329 |
ReachedMap *_reached; |
1325 | 1330 |
//Indicates if _reached is locally allocated (true) or not. |
1326 | 1331 |
bool local_reached; |
1327 | 1332 |
|
1328 | 1333 |
std::vector<typename Digraph::Node> _list; |
1329 | 1334 |
int _list_front, _list_back; |
1330 | 1335 |
|
1331 | 1336 |
///Creates the maps if necessary. |
1332 | 1337 |
///\todo Better memory allocation (instead of new). |
1333 | 1338 |
void create_maps() { |
1334 | 1339 |
if(!_reached) { |
1335 | 1340 |
local_reached = true; |
1336 | 1341 |
_reached = Traits::createReachedMap(*_digraph); |
1337 | 1342 |
} |
1338 | 1343 |
} |
1339 | 1344 |
|
1340 | 1345 |
protected: |
1341 | 1346 |
|
1342 | 1347 |
BfsVisit() {} |
1343 | 1348 |
|
1344 | 1349 |
public: |
1345 | 1350 |
|
1346 | 1351 |
typedef BfsVisit Create; |
1347 | 1352 |
|
1348 | 1353 |
/// \name Named template parameters |
1349 | 1354 |
|
1350 | 1355 |
///@{ |
1351 | 1356 |
template <class T> |
1352 | 1357 |
struct DefReachedMapTraits : public Traits { |
1353 | 1358 |
typedef T ReachedMap; |
1354 | 1359 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1355 | 1360 |
throw UninitializedParameter(); |
1356 | 1361 |
} |
1357 | 1362 |
}; |
1358 | 1363 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1359 | 1364 |
/// ReachedMap type. |
1360 | 1365 |
/// |
1361 | 1366 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1362 | 1367 |
template <class T> |
1363 | 1368 |
struct DefReachedMap : public BfsVisit< Digraph, Visitor, |
1364 | 1369 |
DefReachedMapTraits<T> > { |
1365 | 1370 |
typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
1366 | 1371 |
}; |
1367 | 1372 |
///@} |
1368 | 1373 |
|
1369 | 1374 |
public: |
1370 | 1375 |
|
1371 | 1376 |
/// \brief Constructor. |
1372 | 1377 |
/// |
1373 | 1378 |
/// Constructor. |
1374 | 1379 |
/// |
1375 | 1380 |
/// \param digraph The digraph the algorithm runs on. |
1376 | 1381 |
/// \param visitor The visitor object of the algorithm. |
1377 | 1382 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1378 | 1383 |
: _digraph(&digraph), _visitor(&visitor), |
1379 | 1384 |
_reached(0), local_reached(false) {} |
1380 | 1385 |
|
1381 | 1386 |
/// \brief Destructor. |
1382 | 1387 |
~BfsVisit() { |
1383 | 1388 |
if(local_reached) delete _reached; |
1384 | 1389 |
} |
1385 | 1390 |
|
1386 | 1391 |
/// \brief Sets the map that indicates which nodes are reached. |
1387 | 1392 |
/// |
1388 | 1393 |
/// Sets the map that indicates which nodes are reached. |
1389 | 1394 |
/// If you don't use this function before calling \ref run(), |
1390 | 1395 |
/// it will allocate one. The destructor deallocates this |
1391 | 1396 |
/// automatically allocated map, of course. |
1392 | 1397 |
/// \return <tt> (*this) </tt> |
1393 | 1398 |
BfsVisit &reachedMap(ReachedMap &m) { |
1394 | 1399 |
if(local_reached) { |
1395 | 1400 |
delete _reached; |
1396 | 1401 |
local_reached = false; |
1397 | 1402 |
} |
1398 | 1403 |
_reached = &m; |
1399 | 1404 |
return *this; |
1400 | 1405 |
} |
1401 | 1406 |
|
1402 | 1407 |
public: |
1403 | 1408 |
|
1404 | 1409 |
/// \name Execution control |
1405 | 1410 |
/// The simplest way to execute the algorithm is to use |
1406 | 1411 |
/// one of the member functions called \ref lemon::BfsVisit::run() |
1407 | 1412 |
/// "run()". |
1408 | 1413 |
/// \n |
1409 | 1414 |
/// If you need more control on the execution, first you must call |
1410 | 1415 |
/// \ref lemon::BfsVisit::init() "init()", then you can add several |
1411 | 1416 |
/// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
1412 | 1417 |
/// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
1413 | 1418 |
/// actual path computation. |
1414 | 1419 |
|
1415 | 1420 |
/// @{ |
1416 | 1421 |
|
1417 | 1422 |
/// \brief Initializes the internal data structures. |
1418 | 1423 |
/// |
1419 | 1424 |
/// Initializes the internal data structures. |
1420 | 1425 |
void init() { |
1421 | 1426 |
create_maps(); |
1422 | 1427 |
_list.resize(countNodes(*_digraph)); |
1423 | 1428 |
_list_front = _list_back = -1; |
1424 | 1429 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1425 | 1430 |
_reached->set(u, false); |
1426 | 1431 |
} |
1427 | 1432 |
} |
1428 | 1433 |
|
1429 | 1434 |
/// \brief Adds a new source node. |
1430 | 1435 |
/// |
1431 | 1436 |
/// Adds a new source node to the set of nodes to be processed. |
1432 | 1437 |
void addSource(Node s) { |
1433 | 1438 |
if(!(*_reached)[s]) { |
1434 | 1439 |
_reached->set(s,true); |
1435 | 1440 |
_visitor->start(s); |
1436 | 1441 |
_visitor->reach(s); |
1437 | 1442 |
_list[++_list_back] = s; |
1438 | 1443 |
} |
1439 | 1444 |
} |
1440 | 1445 |
|
1441 | 1446 |
/// \brief Processes the next node. |
1442 | 1447 |
/// |
1443 | 1448 |
/// Processes the next node. |
1444 | 1449 |
/// |
1445 | 1450 |
/// \return The processed node. |
1446 | 1451 |
/// |
1447 | 1452 |
/// \pre The queue must not be empty. |
1448 | 1453 |
Node processNextNode() { |
1449 | 1454 |
Node n = _list[++_list_front]; |
1450 | 1455 |
_visitor->process(n); |
1451 | 1456 |
Arc e; |
1452 | 1457 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1453 | 1458 |
Node m = _digraph->target(e); |
1454 | 1459 |
if (!(*_reached)[m]) { |
1455 | 1460 |
_visitor->discover(e); |
1456 | 1461 |
_visitor->reach(m); |
1457 | 1462 |
_reached->set(m, true); |
1458 | 1463 |
_list[++_list_back] = m; |
1459 | 1464 |
} else { |
1460 | 1465 |
_visitor->examine(e); |
1461 | 1466 |
} |
1462 | 1467 |
} |
1463 | 1468 |
return n; |
1464 | 1469 |
} |
1465 | 1470 |
|
1466 | 1471 |
/// \brief Processes the next node. |
1467 | 1472 |
/// |
1468 | 1473 |
/// Processes the next node and checks if the given target node |
1469 | 1474 |
/// is reached. If the target node is reachable from the processed |
1470 | 1475 |
/// node, then the \c reach parameter will be set to \c true. |
1471 | 1476 |
/// |
1472 | 1477 |
/// \param target The target node. |
1473 | 1478 |
/// \retval reach Indicates if the target node is reached. |
1474 | 1479 |
/// It should be initially \c false. |
1475 | 1480 |
/// |
1476 | 1481 |
/// \return The processed node. |
1477 | 1482 |
/// |
1478 | 1483 |
/// \pre The queue must not be empty. |
1479 | 1484 |
Node processNextNode(Node target, bool& reach) { |
1480 | 1485 |
Node n = _list[++_list_front]; |
1481 | 1486 |
_visitor->process(n); |
1482 | 1487 |
Arc e; |
1483 | 1488 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1484 | 1489 |
Node m = _digraph->target(e); |
1485 | 1490 |
if (!(*_reached)[m]) { |
1486 | 1491 |
_visitor->discover(e); |
1487 | 1492 |
_visitor->reach(m); |
1488 | 1493 |
_reached->set(m, true); |
1489 | 1494 |
_list[++_list_back] = m; |
1490 | 1495 |
reach = reach || (target == m); |
1491 | 1496 |
} else { |
1492 | 1497 |
_visitor->examine(e); |
1493 | 1498 |
} |
1494 | 1499 |
} |
1495 | 1500 |
return n; |
1496 | 1501 |
} |
1497 | 1502 |
|
1498 | 1503 |
/// \brief Processes the next node. |
1499 | 1504 |
/// |
1500 | 1505 |
/// Processes the next node and checks if at least one of reached |
1501 | 1506 |
/// nodes has \c true value in the \c nm node map. If one node |
1502 | 1507 |
/// with \c true value is reachable from the processed node, then the |
1503 | 1508 |
/// \c rnode parameter will be set to the first of such nodes. |
1504 | 1509 |
/// |
1505 | 1510 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1506 | 1511 |
/// possible targets. |
1507 | 1512 |
/// \retval rnode The reached target node. |
1508 | 1513 |
/// It should be initially \c INVALID. |
1509 | 1514 |
/// |
1510 | 1515 |
/// \return The processed node. |
1511 | 1516 |
/// |
1512 | 1517 |
/// \pre The queue must not be empty. |
1513 | 1518 |
template <typename NM> |
1514 | 1519 |
Node processNextNode(const NM& nm, Node& rnode) { |
1515 | 1520 |
Node n = _list[++_list_front]; |
1516 | 1521 |
_visitor->process(n); |
1517 | 1522 |
Arc e; |
1518 | 1523 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1519 | 1524 |
Node m = _digraph->target(e); |
1520 | 1525 |
if (!(*_reached)[m]) { |
... | ... |
@@ -956,512 +956,517 @@ |
956 | 956 |
TR(g,s) {} |
957 | 957 |
|
958 | 958 |
///Copy constructor |
959 | 959 |
DfsWizard(const TR &b) : TR(b) {} |
960 | 960 |
|
961 | 961 |
~DfsWizard() {} |
962 | 962 |
|
963 | 963 |
///Runs DFS algorithm from a source node. |
964 | 964 |
|
965 | 965 |
///Runs DFS algorithm from a source node. |
966 | 966 |
///The node can be given with the \ref source() function. |
967 | 967 |
void run() |
968 | 968 |
{ |
969 | 969 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
970 | 970 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
971 | 971 |
if(Base::_reached) |
972 | 972 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
973 | 973 |
if(Base::_processed) |
974 | 974 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
975 | 975 |
if(Base::_pred) |
976 | 976 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
977 | 977 |
if(Base::_dist) |
978 | 978 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
979 | 979 |
alg.run(Base::_source); |
980 | 980 |
} |
981 | 981 |
|
982 | 982 |
///Runs DFS algorithm from the given node. |
983 | 983 |
|
984 | 984 |
///Runs DFS algorithm from the given node. |
985 | 985 |
///\param s is the given source. |
986 | 986 |
void run(Node s) |
987 | 987 |
{ |
988 | 988 |
Base::_source=s; |
989 | 989 |
run(); |
990 | 990 |
} |
991 | 991 |
|
992 | 992 |
/// Sets the source node, from which the Dfs algorithm runs. |
993 | 993 |
|
994 | 994 |
/// Sets the source node, from which the Dfs algorithm runs. |
995 | 995 |
/// \param s is the source node. |
996 | 996 |
DfsWizard<TR> &source(Node s) |
997 | 997 |
{ |
998 | 998 |
Base::_source=s; |
999 | 999 |
return *this; |
1000 | 1000 |
} |
1001 | 1001 |
|
1002 | 1002 |
template<class T> |
1003 | 1003 |
struct DefPredMapBase : public Base { |
1004 | 1004 |
typedef T PredMap; |
1005 | 1005 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1006 | 1006 |
DefPredMapBase(const TR &b) : TR(b) {} |
1007 | 1007 |
}; |
1008 | 1008 |
///\brief \ref named-templ-param "Named parameter" |
1009 | 1009 |
///for setting \ref PredMap object. |
1010 | 1010 |
/// |
1011 | 1011 |
///\ref named-templ-param "Named parameter" |
1012 | 1012 |
///for setting \ref PredMap object. |
1013 | 1013 |
template<class T> |
1014 | 1014 |
DfsWizard<DefPredMapBase<T> > predMap(const T &t) |
1015 | 1015 |
{ |
1016 | 1016 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1017 | 1017 |
return DfsWizard<DefPredMapBase<T> >(*this); |
1018 | 1018 |
} |
1019 | 1019 |
|
1020 | 1020 |
template<class T> |
1021 | 1021 |
struct DefReachedMapBase : public Base { |
1022 | 1022 |
typedef T ReachedMap; |
1023 | 1023 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1024 | 1024 |
DefReachedMapBase(const TR &b) : TR(b) {} |
1025 | 1025 |
}; |
1026 | 1026 |
///\brief \ref named-templ-param "Named parameter" |
1027 | 1027 |
///for setting \ref ReachedMap object. |
1028 | 1028 |
/// |
1029 | 1029 |
/// \ref named-templ-param "Named parameter" |
1030 | 1030 |
///for setting \ref ReachedMap object. |
1031 | 1031 |
template<class T> |
1032 | 1032 |
DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
1033 | 1033 |
{ |
1034 | 1034 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1035 | 1035 |
return DfsWizard<DefReachedMapBase<T> >(*this); |
1036 | 1036 |
} |
1037 | 1037 |
|
1038 | 1038 |
template<class T> |
1039 | 1039 |
struct DefProcessedMapBase : public Base { |
1040 | 1040 |
typedef T ProcessedMap; |
1041 | 1041 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1042 | 1042 |
DefProcessedMapBase(const TR &b) : TR(b) {} |
1043 | 1043 |
}; |
1044 | 1044 |
///\brief \ref named-templ-param "Named parameter" |
1045 | 1045 |
///for setting \ref ProcessedMap object. |
1046 | 1046 |
/// |
1047 | 1047 |
/// \ref named-templ-param "Named parameter" |
1048 | 1048 |
///for setting \ref ProcessedMap object. |
1049 | 1049 |
template<class T> |
1050 | 1050 |
DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
1051 | 1051 |
{ |
1052 | 1052 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1053 | 1053 |
return DfsWizard<DefProcessedMapBase<T> >(*this); |
1054 | 1054 |
} |
1055 | 1055 |
|
1056 | 1056 |
template<class T> |
1057 | 1057 |
struct DefDistMapBase : public Base { |
1058 | 1058 |
typedef T DistMap; |
1059 | 1059 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1060 | 1060 |
DefDistMapBase(const TR &b) : TR(b) {} |
1061 | 1061 |
}; |
1062 | 1062 |
///\brief \ref named-templ-param "Named parameter" |
1063 | 1063 |
///for setting \ref DistMap object. |
1064 | 1064 |
/// |
1065 | 1065 |
///\ref named-templ-param "Named parameter" |
1066 | 1066 |
///for setting \ref DistMap object. |
1067 | 1067 |
template<class T> |
1068 | 1068 |
DfsWizard<DefDistMapBase<T> > distMap(const T &t) |
1069 | 1069 |
{ |
1070 | 1070 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1071 | 1071 |
return DfsWizard<DefDistMapBase<T> >(*this); |
1072 | 1072 |
} |
1073 | 1073 |
|
1074 | 1074 |
}; |
1075 | 1075 |
|
1076 | 1076 |
///Function type interface for Dfs algorithm. |
1077 | 1077 |
|
1078 | 1078 |
///\ingroup search |
1079 | 1079 |
///Function type interface for Dfs algorithm. |
1080 | 1080 |
/// |
1081 | 1081 |
///This function also has several |
1082 | 1082 |
///\ref named-templ-func-param "named parameters", |
1083 | 1083 |
///they are declared as the members of class \ref DfsWizard. |
1084 | 1084 |
///The following |
1085 | 1085 |
///example shows how to use these parameters. |
1086 | 1086 |
///\code |
1087 | 1087 |
/// dfs(g,source).predMap(preds).run(); |
1088 | 1088 |
///\endcode |
1089 | 1089 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1090 | 1090 |
///to the end of the parameter list. |
1091 | 1091 |
///\sa DfsWizard |
1092 | 1092 |
///\sa Dfs |
1093 | 1093 |
template<class GR> |
1094 | 1094 |
DfsWizard<DfsWizardBase<GR> > |
1095 | 1095 |
dfs(const GR &g,typename GR::Node s=INVALID) |
1096 | 1096 |
{ |
1097 | 1097 |
return DfsWizard<DfsWizardBase<GR> >(g,s); |
1098 | 1098 |
} |
1099 | 1099 |
|
1100 | 1100 |
#ifdef DOXYGEN |
1101 | 1101 |
/// \brief Visitor class for DFS. |
1102 | 1102 |
/// |
1103 | 1103 |
/// This class defines the interface of the DfsVisit events, and |
1104 | 1104 |
/// it could be the base of a real visitor class. |
1105 | 1105 |
template <typename _Digraph> |
1106 | 1106 |
struct DfsVisitor { |
1107 | 1107 |
typedef _Digraph Digraph; |
1108 | 1108 |
typedef typename Digraph::Arc Arc; |
1109 | 1109 |
typedef typename Digraph::Node Node; |
1110 | 1110 |
/// \brief Called for the source node of the DFS. |
1111 | 1111 |
/// |
1112 | 1112 |
/// This function is called for the source node of the DFS. |
1113 | 1113 |
void start(const Node& node) {} |
1114 | 1114 |
/// \brief Called when the source node is leaved. |
1115 | 1115 |
/// |
1116 | 1116 |
/// This function is called when the source node is leaved. |
1117 | 1117 |
void stop(const Node& node) {} |
1118 | 1118 |
/// \brief Called when a node is reached first time. |
1119 | 1119 |
/// |
1120 | 1120 |
/// This function is called when a node is reached first time. |
1121 | 1121 |
void reach(const Node& node) {} |
1122 | 1122 |
/// \brief Called when an arc reaches a new node. |
1123 | 1123 |
/// |
1124 | 1124 |
/// This function is called when the DFS finds an arc whose target node |
1125 | 1125 |
/// is not reached yet. |
1126 | 1126 |
void discover(const Arc& arc) {} |
1127 | 1127 |
/// \brief Called when an arc is examined but its target node is |
1128 | 1128 |
/// already discovered. |
1129 | 1129 |
/// |
1130 | 1130 |
/// This function is called when an arc is examined but its target node is |
1131 | 1131 |
/// already discovered. |
1132 | 1132 |
void examine(const Arc& arc) {} |
1133 | 1133 |
/// \brief Called when the DFS steps back from a node. |
1134 | 1134 |
/// |
1135 | 1135 |
/// This function is called when the DFS steps back from a node. |
1136 | 1136 |
void leave(const Node& node) {} |
1137 | 1137 |
/// \brief Called when the DFS steps back on an arc. |
1138 | 1138 |
/// |
1139 | 1139 |
/// This function is called when the DFS steps back on an arc. |
1140 | 1140 |
void backtrack(const Arc& arc) {} |
1141 | 1141 |
}; |
1142 | 1142 |
#else |
1143 | 1143 |
template <typename _Digraph> |
1144 | 1144 |
struct DfsVisitor { |
1145 | 1145 |
typedef _Digraph Digraph; |
1146 | 1146 |
typedef typename Digraph::Arc Arc; |
1147 | 1147 |
typedef typename Digraph::Node Node; |
1148 | 1148 |
void start(const Node&) {} |
1149 | 1149 |
void stop(const Node&) {} |
1150 | 1150 |
void reach(const Node&) {} |
1151 | 1151 |
void discover(const Arc&) {} |
1152 | 1152 |
void examine(const Arc&) {} |
1153 | 1153 |
void leave(const Node&) {} |
1154 | 1154 |
void backtrack(const Arc&) {} |
1155 | 1155 |
|
1156 | 1156 |
template <typename _Visitor> |
1157 | 1157 |
struct Constraints { |
1158 | 1158 |
void constraints() { |
1159 | 1159 |
Arc arc; |
1160 | 1160 |
Node node; |
1161 | 1161 |
visitor.start(node); |
1162 | 1162 |
visitor.stop(arc); |
1163 | 1163 |
visitor.reach(node); |
1164 | 1164 |
visitor.discover(arc); |
1165 | 1165 |
visitor.examine(arc); |
1166 | 1166 |
visitor.leave(node); |
1167 | 1167 |
visitor.backtrack(arc); |
1168 | 1168 |
} |
1169 | 1169 |
_Visitor& visitor; |
1170 | 1170 |
}; |
1171 | 1171 |
}; |
1172 | 1172 |
#endif |
1173 | 1173 |
|
1174 | 1174 |
/// \brief Default traits class of DfsVisit class. |
1175 | 1175 |
/// |
1176 | 1176 |
/// Default traits class of DfsVisit class. |
1177 | 1177 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1178 | 1178 |
template<class _Digraph> |
1179 | 1179 |
struct DfsVisitDefaultTraits { |
1180 | 1180 |
|
1181 | 1181 |
/// \brief The type of the digraph the algorithm runs on. |
1182 | 1182 |
typedef _Digraph Digraph; |
1183 | 1183 |
|
1184 | 1184 |
/// \brief The type of the map that indicates which nodes are reached. |
1185 | 1185 |
/// |
1186 | 1186 |
/// The type of the map that indicates which nodes are reached. |
1187 | 1187 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1188 | 1188 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1189 | 1189 |
|
1190 | 1190 |
/// \brief Instantiates a \ref ReachedMap. |
1191 | 1191 |
/// |
1192 | 1192 |
/// This function instantiates a \ref ReachedMap. |
1193 | 1193 |
/// \param digraph is the digraph, to which |
1194 | 1194 |
/// we would like to define the \ref ReachedMap. |
1195 | 1195 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1196 | 1196 |
return new ReachedMap(digraph); |
1197 | 1197 |
} |
1198 | 1198 |
|
1199 | 1199 |
}; |
1200 | 1200 |
|
1201 | 1201 |
/// \ingroup search |
1202 | 1202 |
/// |
1203 | 1203 |
/// \brief %DFS algorithm class with visitor interface. |
1204 | 1204 |
/// |
1205 | 1205 |
/// This class provides an efficient implementation of the %DFS algorithm |
1206 | 1206 |
/// with visitor interface. |
1207 | 1207 |
/// |
1208 | 1208 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1209 | 1209 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1210 | 1210 |
/// the member functions of the \c Visitor class on every DFS event. |
1211 | 1211 |
/// |
1212 |
/// This interface of the DFS algorithm should be used in special cases |
|
1213 |
/// when extra actions have to be performed in connection with certain |
|
1214 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
|
1215 |
/// instead. |
|
1216 |
/// |
|
1212 | 1217 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1213 | 1218 |
/// The default value is |
1214 | 1219 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1215 | 1220 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
1216 | 1221 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1217 | 1222 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
1218 | 1223 |
/// does not observe the DFS events. If you want to observe the DFS |
1219 | 1224 |
/// events, you should implement your own visitor class. |
1220 | 1225 |
/// \tparam _Traits Traits class to set various data types used by the |
1221 | 1226 |
/// algorithm. The default traits class is |
1222 | 1227 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1223 | 1228 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1224 | 1229 |
/// a DFS visit traits class. |
1225 | 1230 |
#ifdef DOXYGEN |
1226 | 1231 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1227 | 1232 |
#else |
1228 | 1233 |
template <typename _Digraph = ListDigraph, |
1229 | 1234 |
typename _Visitor = DfsVisitor<_Digraph>, |
1230 | 1235 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
1231 | 1236 |
#endif |
1232 | 1237 |
class DfsVisit { |
1233 | 1238 |
public: |
1234 | 1239 |
|
1235 | 1240 |
/// \brief \ref Exception for uninitialized parameters. |
1236 | 1241 |
/// |
1237 | 1242 |
/// This error represents problems in the initialization |
1238 | 1243 |
/// of the parameters of the algorithm. |
1239 | 1244 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1240 | 1245 |
public: |
1241 | 1246 |
virtual const char* what() const throw() |
1242 | 1247 |
{ |
1243 | 1248 |
return "lemon::DfsVisit::UninitializedParameter"; |
1244 | 1249 |
} |
1245 | 1250 |
}; |
1246 | 1251 |
|
1247 | 1252 |
///The traits class. |
1248 | 1253 |
typedef _Traits Traits; |
1249 | 1254 |
|
1250 | 1255 |
///The type of the digraph the algorithm runs on. |
1251 | 1256 |
typedef typename Traits::Digraph Digraph; |
1252 | 1257 |
|
1253 | 1258 |
///The visitor type used by the algorithm. |
1254 | 1259 |
typedef _Visitor Visitor; |
1255 | 1260 |
|
1256 | 1261 |
///The type of the map that indicates which nodes are reached. |
1257 | 1262 |
typedef typename Traits::ReachedMap ReachedMap; |
1258 | 1263 |
|
1259 | 1264 |
private: |
1260 | 1265 |
|
1261 | 1266 |
typedef typename Digraph::Node Node; |
1262 | 1267 |
typedef typename Digraph::NodeIt NodeIt; |
1263 | 1268 |
typedef typename Digraph::Arc Arc; |
1264 | 1269 |
typedef typename Digraph::OutArcIt OutArcIt; |
1265 | 1270 |
|
1266 | 1271 |
//Pointer to the underlying digraph. |
1267 | 1272 |
const Digraph *_digraph; |
1268 | 1273 |
//Pointer to the visitor object. |
1269 | 1274 |
Visitor *_visitor; |
1270 | 1275 |
//Pointer to the map of reached status of the nodes. |
1271 | 1276 |
ReachedMap *_reached; |
1272 | 1277 |
//Indicates if _reached is locally allocated (true) or not. |
1273 | 1278 |
bool local_reached; |
1274 | 1279 |
|
1275 | 1280 |
std::vector<typename Digraph::Arc> _stack; |
1276 | 1281 |
int _stack_head; |
1277 | 1282 |
|
1278 | 1283 |
///Creates the maps if necessary. |
1279 | 1284 |
///\todo Better memory allocation (instead of new). |
1280 | 1285 |
void create_maps() { |
1281 | 1286 |
if(!_reached) { |
1282 | 1287 |
local_reached = true; |
1283 | 1288 |
_reached = Traits::createReachedMap(*_digraph); |
1284 | 1289 |
} |
1285 | 1290 |
} |
1286 | 1291 |
|
1287 | 1292 |
protected: |
1288 | 1293 |
|
1289 | 1294 |
DfsVisit() {} |
1290 | 1295 |
|
1291 | 1296 |
public: |
1292 | 1297 |
|
1293 | 1298 |
typedef DfsVisit Create; |
1294 | 1299 |
|
1295 | 1300 |
/// \name Named template parameters |
1296 | 1301 |
|
1297 | 1302 |
///@{ |
1298 | 1303 |
template <class T> |
1299 | 1304 |
struct DefReachedMapTraits : public Traits { |
1300 | 1305 |
typedef T ReachedMap; |
1301 | 1306 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1302 | 1307 |
throw UninitializedParameter(); |
1303 | 1308 |
} |
1304 | 1309 |
}; |
1305 | 1310 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1306 | 1311 |
/// ReachedMap type. |
1307 | 1312 |
/// |
1308 | 1313 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1309 | 1314 |
template <class T> |
1310 | 1315 |
struct DefReachedMap : public DfsVisit< Digraph, Visitor, |
1311 | 1316 |
DefReachedMapTraits<T> > { |
1312 | 1317 |
typedef DfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
1313 | 1318 |
}; |
1314 | 1319 |
///@} |
1315 | 1320 |
|
1316 | 1321 |
public: |
1317 | 1322 |
|
1318 | 1323 |
/// \brief Constructor. |
1319 | 1324 |
/// |
1320 | 1325 |
/// Constructor. |
1321 | 1326 |
/// |
1322 | 1327 |
/// \param digraph The digraph the algorithm runs on. |
1323 | 1328 |
/// \param visitor The visitor object of the algorithm. |
1324 | 1329 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1325 | 1330 |
: _digraph(&digraph), _visitor(&visitor), |
1326 | 1331 |
_reached(0), local_reached(false) {} |
1327 | 1332 |
|
1328 | 1333 |
/// \brief Destructor. |
1329 | 1334 |
~DfsVisit() { |
1330 | 1335 |
if(local_reached) delete _reached; |
1331 | 1336 |
} |
1332 | 1337 |
|
1333 | 1338 |
/// \brief Sets the map that indicates which nodes are reached. |
1334 | 1339 |
/// |
1335 | 1340 |
/// Sets the map that indicates which nodes are reached. |
1336 | 1341 |
/// If you don't use this function before calling \ref run(), |
1337 | 1342 |
/// it will allocate one. The destructor deallocates this |
1338 | 1343 |
/// automatically allocated map, of course. |
1339 | 1344 |
/// \return <tt> (*this) </tt> |
1340 | 1345 |
DfsVisit &reachedMap(ReachedMap &m) { |
1341 | 1346 |
if(local_reached) { |
1342 | 1347 |
delete _reached; |
1343 | 1348 |
local_reached=false; |
1344 | 1349 |
} |
1345 | 1350 |
_reached = &m; |
1346 | 1351 |
return *this; |
1347 | 1352 |
} |
1348 | 1353 |
|
1349 | 1354 |
public: |
1350 | 1355 |
|
1351 | 1356 |
/// \name Execution control |
1352 | 1357 |
/// The simplest way to execute the algorithm is to use |
1353 | 1358 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
1354 | 1359 |
/// "run()". |
1355 | 1360 |
/// \n |
1356 | 1361 |
/// If you need more control on the execution, first you must call |
1357 | 1362 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
1358 | 1363 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
1359 | 1364 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
1360 | 1365 |
/// actual path computation. |
1361 | 1366 |
|
1362 | 1367 |
/// @{ |
1363 | 1368 |
|
1364 | 1369 |
/// \brief Initializes the internal data structures. |
1365 | 1370 |
/// |
1366 | 1371 |
/// Initializes the internal data structures. |
1367 | 1372 |
void init() { |
1368 | 1373 |
create_maps(); |
1369 | 1374 |
_stack.resize(countNodes(*_digraph)); |
1370 | 1375 |
_stack_head = -1; |
1371 | 1376 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1372 | 1377 |
_reached->set(u, false); |
1373 | 1378 |
} |
1374 | 1379 |
} |
1375 | 1380 |
|
1376 | 1381 |
///Adds a new source node. |
1377 | 1382 |
|
1378 | 1383 |
///Adds a new source node to the set of nodes to be processed. |
1379 | 1384 |
/// |
1380 | 1385 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
1381 | 1386 |
///false results.) |
1382 | 1387 |
/// |
1383 | 1388 |
///\warning Distances will be wrong (or at least strange) in case of |
1384 | 1389 |
///multiple sources. |
1385 | 1390 |
void addSource(Node s) |
1386 | 1391 |
{ |
1387 | 1392 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1388 | 1393 |
if(!(*_reached)[s]) { |
1389 | 1394 |
_reached->set(s,true); |
1390 | 1395 |
_visitor->start(s); |
1391 | 1396 |
_visitor->reach(s); |
1392 | 1397 |
Arc e; |
1393 | 1398 |
_digraph->firstOut(e, s); |
1394 | 1399 |
if (e != INVALID) { |
1395 | 1400 |
_stack[++_stack_head] = e; |
1396 | 1401 |
} else { |
1397 | 1402 |
_visitor->leave(s); |
1398 | 1403 |
} |
1399 | 1404 |
} |
1400 | 1405 |
} |
1401 | 1406 |
|
1402 | 1407 |
/// \brief Processes the next arc. |
1403 | 1408 |
/// |
1404 | 1409 |
/// Processes the next arc. |
1405 | 1410 |
/// |
1406 | 1411 |
/// \return The processed arc. |
1407 | 1412 |
/// |
1408 | 1413 |
/// \pre The stack must not be empty. |
1409 | 1414 |
Arc processNextArc() { |
1410 | 1415 |
Arc e = _stack[_stack_head]; |
1411 | 1416 |
Node m = _digraph->target(e); |
1412 | 1417 |
if(!(*_reached)[m]) { |
1413 | 1418 |
_visitor->discover(e); |
1414 | 1419 |
_visitor->reach(m); |
1415 | 1420 |
_reached->set(m, true); |
1416 | 1421 |
_digraph->firstOut(_stack[++_stack_head], m); |
1417 | 1422 |
} else { |
1418 | 1423 |
_visitor->examine(e); |
1419 | 1424 |
m = _digraph->source(e); |
1420 | 1425 |
_digraph->nextOut(_stack[_stack_head]); |
1421 | 1426 |
} |
1422 | 1427 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1423 | 1428 |
_visitor->leave(m); |
1424 | 1429 |
--_stack_head; |
1425 | 1430 |
if (_stack_head >= 0) { |
1426 | 1431 |
_visitor->backtrack(_stack[_stack_head]); |
1427 | 1432 |
m = _digraph->source(_stack[_stack_head]); |
1428 | 1433 |
_digraph->nextOut(_stack[_stack_head]); |
1429 | 1434 |
} else { |
1430 | 1435 |
_visitor->stop(m); |
1431 | 1436 |
} |
1432 | 1437 |
} |
1433 | 1438 |
return e; |
1434 | 1439 |
} |
1435 | 1440 |
|
1436 | 1441 |
/// \brief Next arc to be processed. |
1437 | 1442 |
/// |
1438 | 1443 |
/// Next arc to be processed. |
1439 | 1444 |
/// |
1440 | 1445 |
/// \return The next arc to be processed or INVALID if the stack is |
1441 | 1446 |
/// empty. |
1442 | 1447 |
Arc nextArc() const { |
1443 | 1448 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1444 | 1449 |
} |
1445 | 1450 |
|
1446 | 1451 |
/// \brief Returns \c false if there are nodes |
1447 | 1452 |
/// to be processed. |
1448 | 1453 |
/// |
1449 | 1454 |
/// Returns \c false if there are nodes |
1450 | 1455 |
/// to be processed in the queue (stack). |
1451 | 1456 |
bool emptyQueue() const { return _stack_head < 0; } |
1452 | 1457 |
|
1453 | 1458 |
/// \brief Returns the number of the nodes to be processed. |
1454 | 1459 |
/// |
1455 | 1460 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1456 | 1461 |
int queueSize() const { return _stack_head + 1; } |
1457 | 1462 |
|
1458 | 1463 |
/// \brief Executes the algorithm. |
1459 | 1464 |
/// |
1460 | 1465 |
/// Executes the algorithm. |
1461 | 1466 |
/// |
1462 | 1467 |
/// This method runs the %DFS algorithm from the root node |
1463 | 1468 |
/// in order to compute the %DFS path to each node. |
1464 | 1469 |
/// |
1465 | 1470 |
/// The algorithm computes |
1466 | 1471 |
/// - the %DFS tree, |
1467 | 1472 |
/// - the distance of each node from the root in the %DFS tree. |
0 comments (0 inline)